
Chest

Adrien Vanègue, Pierre Laborde and Steven Costiou

March 12, 2024

Copyright 2023 by Adrien Vanègue, Pierre Laborde and Steven Costiou.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or li-
censor (but not in any way that suggests that they endorse you or your use of the
work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of
this work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a
human-readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations ii

1 Introduction 1

1.1 Original repository . 2

1.2 Install Chest . 2

1.3 Open Chest . 2

1.4 More Details . 2

2 API Description 13

2.1 Chest class-side API . 13

2.2 Chest instance-side API . 15

i

Illustrations

1-1 Chest overview . 1

1-2 Chest in debug menu . 2

1-3 Chest debugger extension in the Pharo settings 3

1-4 Store object context menu, inside the debugger 4

1-5 Store object popup . 4

1-6 Chest tree view inside the debugger, after having stored an object 5

1-7 Load object context menu, inside the debugger 5

1-8 Load object popup . 6

1-9 Usage of the Chest variable inside the debugger, after having loaded the object 6

1-10 Chest variable, in the debugger inspector 7

1-11 Variable from Chest playground, not visible in the debugger inspector 7

1-12 Paste object from Chest context menu . 8

1-13 Injected code for Chest, after having pasted the object 9

1-14 Copy object to Chest Clipboard context menu 10

1-15 Paste last object from Chest Clipboard context menu 10

1-16 Injected code for Chest, after having pasted the object from Chest Clipboard 11

ii

CHA P T E R 1
Introduction

Chest allows you to store objects from anywhere, to keep themaround to check
equality...

Figure 1-1 Chest overview

1

Introduction

1.1 Original repository

Link to original repositoryhttps://github.com/dupriezt/Chest

1.2 Install Chest

Metacello new
baseline: 'Chest';
repository: 'github://pharo-spec/Chest';
load.

1.3 Open Chest

Chest is available in the world menu of Pharo. It is available as an entry of the Debug menu

Figure 1-2 Chest in debug menu

You can also enable it as a debugger extension in the debugging settings of Pharo:

In the debugger, Chest will provide a view as a tree of all chests with the objects inside.

Maybe we need an image of the tree view here?

1.4 More Details

Name (= ID)

Each Chest instance has an ID (String). These IDs are unique. Two chests cannot have the same ID.

Default Chest

This is an instance of Chest that can be interacted with in the same way as any other Chest by
sending the messages to the Chest class.

2

https://github.com/dupriezt/Chest
https://github.com/dupriezt/Chest

1.4 More Details

Figure 1-3 Chest debugger extension in the Pharo settings

Weak Chests

Chest weak

is a way to access the class WeakChest. This class can be interacted with the same way as you
would with the Chest class.

WeakChest has its own default chest, and can be used to manipulate this default chest or to
create new weak chests.

Commands in context

Store object into chest

If you right-click on a code presenter with an SpCodeInteractionModel or StDebuggerContex-
tInteractionModel (e.g: playground, debugger etc.), you can evaluate an expression and store
the result in the chest of your choice, with the name of your choice:

Load object from a chest into a playground or a debugger

It’s also possible to load objects from a chest into these code presenters:

And then variables can be seen from any other context if it has been loaded in a debugger and
these variables can be seen in the debugger inspector:

Chest, as a debugger extension, provides a playground. All bindings between this playground
and the debugger selected context are shared. So: all variables defined in this playground are
recognized by the debugger and all variables from the debugger’s selected context or loaded from
Chest into the debugger are recognized by the playground. However, only the variables loaded
from Chest (via the load menu entry described above) are displayed in the debugger inspector:

3

Figure 1-4 Store object context menu, inside the debugger

Figure 1-5 Store object popup

Figure 1-6 Chest tree view inside the debugger, after having stored an object

Figure 1-7 Load object context menu, inside the debugger

Figure 1-8 Load object popup

Figure 1-9 Usage of the Chest variable inside the debugger, after having loaded

the object

Figure 1-10 Chest variable, in the debugger inspector

Figure 1-11 Variable from Chest playground, not visible in the debugger inspector

Introduction

Inject code to access an object inside a chest, in a playground or in the

debugger

To make it easier to access the content of a chest in a playground or in the debugger, it is possible
to use the Paste object from chest > sub-menu. This sub-menu allows to choose a chest and the
key of an object inside the chest.

Figure 1-12 Paste object from Chest context menu

When clicking on a variable name, the necessary code to access the corresponding object is
pasted where you had put your cursor in the playground/debugger:

This command allows you to access objects from a chest, without relying on your memory of
the Chest API.

Simpler code injection in any spec code presenter

Themethod described above to access objects in chests implies that your objects need to be stored
in a chest with a name that you must remember...

Sometimes, you would like to access objects quickly, without needing to give a name to an
object that is stored...

That’s why it is possible to copy / paste (=inject code to access) to / from a ”Clipboard Chest”,
just as you would do to copy/paste text to/from the clipboard.

8

1.4 More Details

Figure 1-13 Injected code for Chest, after having pasted the object

To do that, you just need to select the expression that you want to evaluate and whose results
should be stored in the ”Clipboard Chest”, and then select Copy object in a clipboard chest in
the context menu:

This will store the result of the expression into the default clipboard chest. Please note, that
if you ”copy” another object to the clipboard chest, it will replace the previous copied object. Note
also that the clipboard chest is a weak chest, so your object inside the clipboard chest can become
nil if it gets garbage-collected.

In order to inject the code to access the object, you should then select in the context menu:
Paste last object copied to clipboard:

And the code to access your object is now pasted:

9

Figure 1-14 Copy object to Chest Clipboard context menu

Figure 1-15 Paste last object from Chest Clipboard context menu

Figure 1-16 Injected code for Chest, after having pasted the object from Chest

Clipboard

CHA P T E R2
API Description

In this chapter, we detail the API of Chest and give examples of its usage.

2.1 Chest class-side API

In this section, we describe the API that can be used on the class Chest.

How to create instances

• Chest class>>#new

creates a chest with a default name that is in the form of Chest_autoIncrementedNumber.

In the examples below, if no other chest has been created before, the names of the created
chests are respectively ”Chest1” and ”Chest2”:

Chest new. "Chest_1"
Chest new. "Chest_2"

• Chest class>>#newNamed:

creates a chest with the name given in parameter if no other chest is already named so, else
an exception ChestKeyAlreadyInUseError is raised.

For example, if no other chest is already called ”toto”, the piece of code below creates a chest
that is named as ”toto”:

Chest newNamed: 'toto'. "its name is 'toto'"

On the contrary, if another chest is already called ”toto”, the same piece of code would raise
a ChestKeyAlreadyInUseError because two chests cannot have the same name:

Chest newNamed: 'toto'. "ChestKeyAlreadyInUseError as a chest named
'toto' already exists"

13

API Description

 Accessors

• Chest class>>#allChests

returns an ordered collection that contains all chest instances.

If we suppose that there are no other chests than the ones created above, the piece of code
returns a collection with two chests: the default chest and the chest named ”toto”:

Chest allChests "{DefaultChest. totoChest}"

• Chest class>>#chestDictionary

returns a dictionary containing all chests with their name as key.

If we suppose that there are no other chests than the ones created above, the piece of code
returns a dictionarywith two chests: the default chest, with ’Default’ as a key, and the chest named
”toto”, with ’toto’ as a key:

Chest chestDictionary "{'Default' -> DefaultChest. 'toto' ->
totoChest}"

• Chest class>>#named:

returns the chest that is named as the string in argument if it exists, else raises an exception
KeyNotFound.

The expression below can be used to get the chest named ’toto’, if it exists:

Chest named: 'toto' "chest named 'toto'"

However, no chest is named ’titi’, the expression below would raise a KeyNotFound:

Chest named: 'titi' "KeyNotFound"

• Chest class>>#defaultInstance (or Chest class>>#default).

You can usemost of Chest’s instance-side API on the class Chest itself. Thesemethods returns
the default chest that is used when you use Chest’s instance-side API directly on Chest class. If
the default chest doesn’t already exist, calling these methods lazily create it.

For example, the expression below returns true:

Chest defaultInstance == Chest default "true"

• Chest class>>#announcer

helpermethod that returns the unique instance ofChestAnnouncer, whichpropagates changes
related to chests to any subscriber.

The example belows subscribes self to the ChestAnnouncer singleton to 3 different events;
when a new chest chest has been created, when the content of a chest has changed and when a
chest has been removed:

Chest announcer weak when: ChestCreated send: #eventNewChest: to:
self;

when: ChestUpdated send:
#eventContentOfChestUpdated: to: self.

when: ChestRemoved send: #eventChestRemoved:

14

2.2 Chest instance-side API

to: self.

When the event happens, the methods that are called (in the example: #eventNewChest:,
#eventContentOfChestUpdated: and #eventChestRemoved:) take the related event as an ar-
gument.

• Chest class>>#weak

returns the class WeakChest, subclass of Chest. You can use the same API on this class as you
would on Chest class, in order to create or access chests that hold weak references to objects.
This means, that storing your objects in a weak chest doesn’t prevent them from being garbage-
collected.

For example, the expression below creates a new weak chest named as ”wtiti”, if it doesn’t
already exist:

Chest weak newNamed: 'wtiti' "weak chest named as 'wtiti'"

How to perform actions

• Chest class>>#inChest:at:put:

puts the object in third argumentwith the name given in second argument in the chest named
as first argument. This chest is lazily created if it doesn’t exist yet.

In the example below, the object 42 is stored as ”toto” in the chest named ”toto”:

(Chest named: 'toto') at: 'toto' put: 42. "stores 42 as 'toto' in
chest named as 'toto'.

If the chest ”toto” didn’t exist, it would be created automatically. *Also, please note that a
chest cannot contain the same object twice. So, if the chest named as ”toto” already contained the
object 42, it would simply be renamed as ”toto” in this chest.*

• Chest class>>#unsubscribe:

helper method that unsubscribes its argument from the unique instance of ChestAnnouncer.

For example, the expression below unsubscribes self from the ChestAnnouncer singleton:

Chest unsubscribe: self

2.2 Chest instance-side API

In this section, we describe the API that can be used on an instance of Chest. Methods marked by
the symbol (*) can also be used on the class Chest itself. In this case, it is equivalent to using the
API on the default instance of Chest.

Accessors

• Chest>>#name:

returns the receiver chest’s name.

For example, the expression below evaluates to true:

15

API Description

(Chest named: 'toto') name = 'toto' "true"

• Chest>>#contents: (*)

returns a copy of the receiver chest’s contents, as a dictionary that contains all objects in the
chest with their name as key.

For example, evaluating the piece of code below returns a dictionary that associates 42 to
”toto” and 144 to ”titi”:

| c |
c := Chest new.
Chest inChest: c name at: 'toto' put: 42.
Chest inChest: c name at: 'titi' put: 144.
c contents "{'toto' -> 42. 'titi' -> 144}"

• Chest>>#at: : (*)

returns the object, contained in the receiver chest, whose name is the string in argument if it
exists, else an exception KeyNotFound is raised.

For example, if the chest named as ”toto” stores 42 as ”titi”, then the expression below returns
42:

(Chest named: 'toto') at: 'titi'. "42"

On the contrary, if no object is named as ”titi” in the chest named as ”toto”, then the same
expression raises a KeyNotFound:

(Chest named: 'toto') at: 'titi' "KeyNotFound"

How to perform actions

• Chest>>#add: (*)

adds the object in argument to the receiver chest, with a default name that is in the form of
chestName_autoIncrementedNumber.

In the piece of code below, we add 42 then 144 to a new chest named ”MyChest”. Thus, 42 is
stored with the key ”MyChest1” and 144 is stored with the key ”MyChest2”:

| c |
c := Chest newNamed: 'MyChest'.
c add: 42. "MyChest_1 -> 42"
c add: 144 "MyChest_2 -> 144"

• Chest>>#at:put: (*)

adds the object in second argument to the receiver chest with the name in first argument if
no other object is already named so, else an exception ChestKeyAlreadyInUseError is raised.

In the example below, in a new chest, 42 is stored as ”toto”. Then, trying to store 144 as ”toto”
raises a ChestKeyAlreadyInUseError because two objects cannot have the same name:

16

2.2 Chest instance-side API

| c |
c := Chest new.
c at: 'toto' put: 42. "toto -> 42"
c at: 'toto' put: 144 "ChestKeyAlreadyInUseError"

*Also, please note that a chest cannot contain the same object twice. So, if the chest named
as ”toto” already contained the object 42, it would simply be renamed as ”toto” in this chest.*

• Chest>>#at:put:ifPresent: (*)

adds the object in second argument to the receiver chest with the name in first argument
if no other object is already named so, else the block in third argument is evaluated with zero
argument.

In the exemple below, in a new chest, 42 is stored as ”toto”. Then, we try to store 144 as ”toto”
and if the key is already use, we try to store it as ”titi” instead. As the key ”toto” is already used
by 42, 144 is stored as ”titi”:

| c |
c := Chest new.
c at: 'toto' put: 42 ifPresent: [Chest at: 'titi' put: 42]. "toto ->

42"
c at: 'toto' put: 144 ifPresent: [Chest at: 'titi' put: 144] "titi

-> 144"

• Chest>>#remove: (*)

removes the object in argument from the receiver chest if it is there, else an exceptionKeyNot-
Found is raised.

For example, if the chest named ”toto” contains the object 42, then the following code snippet
successfully removes 42 from this chest. Then it tries to remove 42 from this chest a second time,
in which case a KeyNotFound is raised because the object is not there anymore:

| c |
c := Chest named: 'toto'.
c contents includes: 42 "true"

c remove: 42. "42 is removed from c"

c contents includes: 42. "false"

c remove: 42 "KeyNotFound"

• Chest>>#removeObjectNamed: (*)

removes from the receiver chest the object named as the argument if the key exists, else an
exception ObjectNotInChestError is raised.

For example, if the chest named ”toto” stores an object named as ”tata”, then the following
code snippet removes the object named as ”tata” from this chest. Then it tries to remove a second
time the object named as ”tata” from this chest, in which case an ObjectNotInChestError is
raised because the key isn’t used anymore.

17

API Description

| c |
c := Chest named: 'toto'.
c contents includesKey: 'tata' "true"

c removeObjectNamed: 'tata'. "obj named 'tata' is removed from c"

c contents includesKey: 'tata'. "false"

c removeObjectNamed: 'tata' "ObjectNotInChestError"

• Chest>>#empty:

removes the entire contents of the receiver chest:

| c |
c := Chest new.
c at: 'toto' put: 42.
c at: 'titi' put 144.

c contents isEmpty. "false"

c empty.

c contentns isEmpty "true"

• Chest>>#remove

completely deletes the receiver chest from the list of existing chests. It cannot be accessed
afterwards:

| c cname |
c := Chest new.
cname := c name.
Chest chestDictionary includesKey: cname. "true"

c remove.

Chest chestDictionary includesKey: cname. "false"

• Chest>>#name:

renames the receiver chest as the string in argument if no other chest is already named so,
else an exception ChestKeyAlreadyInUseError is raised.

For example, if there exist only two chests named ”toto” and ”titi”, then it is possible to re-
name ”toto” into ”tata” but not into ”titi”, inwhich case a ChestKeyAlreadyInUseError is raised:

| toto titi |
toto := Chest named: 'toto'.
titi := Chest named: 'titi'.

toto name: 'tata'.
toto name "tata".

18

2.2 Chest instance-side API

toto name: 'titi'. "ChestKeyAlreadyInUseError"
toto name "tata"

• Chest>>#renameObject:into::

inside the receiver chest, renames the object in first argument into the string in second argu-
ment if the object is in the chest, else an exception ObjectNotInChestError is raised, and if no
other object is already named so else an exception ChestKeyAlreadyInUseError is raised.

If the chest named as ”toto” contains only 42 as ”titi” and 144 as ”tata”, then the piece of code
below renames 42 to ”tutu”:

(Chest named: 'toto') at: 'titi'. "42"
(Chest named: 'toto') renameObject: 42 into: 'tutu'.
(Chest named: 'toto') at: 'tutu'. "42"
(Chest named: 'toto') at: 'titi' "KeyNotFound"

Under the same circumstances, the following code snippet raises an ObjectNotInChestEr-
ror because it tries to rename 666 that is not in the chest named as ”toto”:

(Chest named: 'toto) contents includes: 666 "false"
(Chest named: 'toto') renameObject: 666 into 'anyValidName'

"ObjectNotInChestError"

Finally, trying to rename 144 into ”tutu” will raise a ChestKeyAlreadyInUseError because
42 is already named so:

(Chest named: 'toto') renameObject: 144 into: 'tutu'
"ChestKeyAlreadyInUseError"

• Chest>>#inspectAt::

inspect the object named as the argument in the receiver chest:

For example, the following expression opens an inspector on the object stored as ”titi” in the
chest named ”toto”:

(Chest named: 'toto') inspectAt: 'titi'

19

	Illustrations
	Introduction
	Original repository
	Install Chest
	Open Chest
	More Details
	Name (= ID)
	Default Chest
	Weak Chests
	Commands in context
	Store object into chest
	Load object from a chest into a playground or a debugger
	Inject code to access an object inside a chest, in a playground or in the debugger
	Simpler code injection in any spec code presenter

	API Description
	Chest class-side API
	How to create instances
	 Accessors
	How to perform actions

	Chest instance-side API
	Accessors
	How to perform actions

