

Application Building with Spec 2.0

K. De Hondt, S. Ducasse with S. Jordan Montaño and E. Lorenzano

June 28, 2024

Copyright 2024 by K. De Hondt, S. Ducasse with S. Jordan Montaño and E. Lorenzano.

The contents of this book are protected under the Creative Commons Attribution-
NonCommercial-NoDerivs CC BY-NC-ND
You are free to:

Share — copy and redistribute the material in any medium or format

The licensor cannot revoke these freedoms as long as you follow the license terms. Un-
der the following conditions:

Attribution. — You must give appropriate credit, provide a link to the license, and indi-
cate if changes were made. You may do so in any reasonable manner, but not in
any way that suggests the licensor endorses you or your use.

NonCommercial. — You may not use the material for commercial purposes.

NoDerivatives. — If you remix, transform, or build upon the material, you may not dis-
tribute the modified material.

No additional restrictions. — You may not apply legal terms or technological measures
that legally restrict others from doing anything the license permits.

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Keepers of the lighthouse
Édition : BoD - Books on Demand,
12/14 rond-point des Champs-Élysées,75008 Paris
Impression : Books on Demand GmbH, Norderstedt, Allemagne
ISBN: 9782322182015
Dépôt légal : 3/2022

Layout and typography based on the sbabook LATEX class by Damien Pollet.

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Contents

1 Introduction 1

1.1 Reuse of logic . 1

1.2 Spec 2.0 . 3

1.3 Code . 4

1.4 Acknowledgements . 4

I All Spec in One Example

2 A 10 min small example 9

2.1 A customer satisfaction UI . 9

2.2 Create the class of the UI . 10

2.3 Instantiate and configure subpresenters . 10

2.4 Define a title and window size, open and close the UI 13

2.5 Conclusion . 14

3 Most of Spec in one example 15

3.1 Application . 15

3.2 A basic film model . 15

3.3 List of films . 17

3.4 Filling up the film list . 18

3.5 Opening presenters via the application . 19

3.6 Improving the window . 19

3.7 An application manages icons . 21

3.8 FilmPresenter . 21

3.9 Better looking FilmPresenter . 23

3.10 Opening FilmPresenter in a modal dialog . 23

3.11 Customizing the modal dialog . 24

3.12 Invoking a presenter . 26

3.13 Embedding a FilmPresenter into the FilmListPresenter 28

3.14 Define component communication . 29

3.15 Testing your application UI . 30

3.16 Adding more tests . 32

3.17 Changing layout . 33

i

Contents

3.18 Using transmissions . 34

3.19 Styling the application . 35

3.20 Conclusion . 37

II Spec Essentials

4 Spec core in a nutshell 41

4.1 Spec architecture overview . 41

4.2 Spec core architecture overview . 42

4.3 Presenters . 42

4.4 Application . 43

4.5 Application configuration . 44

4.6 Layouts . 45

4.7 Styles and stylesheets . 46

4.8 Navigation between presenters . 48

4.9 Conclusion . 48

5 Testing Spec applications 49

5.1 Testing presenters . 49

5.2 Spec user example . 51

5.3 Tests . 55

5.4 Testing your application . 60

5.5 Known limitations and conclusion . 62

6 The dual aspects of presenters: Domain and interaction model 63

6.1 About presenters on a model . 63

6.2 Example with SpPresenter . 64

6.3 SpPresenter vs. SpPresenterWithModel . 65

6.4 Example with SpPresenterWithModel . 66

6.5 User interface building: a model of UI presentation 68

6.6 The initializePresenters method . 69

6.7 The connectPresenters method . 70

6.8 The defaultLayout method . 70

6.9 Conclusion . 71

7 Reuse and composition at work 73

7.1 First requirements . 73

7.2 Creating a basic UI to be reused as a widget 74

7.3 Supporting reuse . 75

7.4 Combining two basic presenters into a reusable UI 75

7.5 Live inspection of the widgets . 79

7.6 Writing tests . 80

7.7 Managing three widgets and their interactions 80

7.8 Having different layouts . 82

ii

Contents

7.9 Enhancing our API . 84

7.10 Changing the layout of a reused widget . 85

7.11 Changing layouts . 86

7.12 Considerations about a public configuration API 87

7.13 New versus old patterns . 88

7.14 Conclusion . 89

8 Lists, tables and trees 91

8.1 Lists . 91

8.2 Controlling item display . 91

8.3 Decorating elements . 92

8.4 About single/multiple selection . 93

8.5 Drag and drop . 94

8.6 Activation clicks . 95

8.7 Filtering lists . 96

8.8 Selectable filtering lists . 97

8.9 Component lists . 98

8.10 Trees . 99

8.11 Tables . 102

8.12 First table . 103

8.13 Sorting headers . 103

8.14 Editable tables . 105

8.15 Tree tables . 105

8.16 Conclusion . 108

9 Managing windows 109

9.1 A working example . 109

9.2 Opening a window or a dialog box . 110

9.3 Preventing window close . 112

9.4 Acting on window close . 113

9.5 Window size and decoration . 114

9.6 Getting values from a dialog window . 117

9.7 Little modal dialog presenters . 118

9.8 Placing a presenter inside a dialog window 119

9.9 Conclusion . 119

10 Layouts 121

10.1 Basic principle reminder . 121

10.2 A running example . 122

10.3 BoxLayout (SpBoxLayout and SpBoxConstraints) 122

10.4 Box layout alignment . 125

10.5 Example setup for layout reuse . 130

10.6 Opening with a layout . 131

10.7 Better design . 131

iii

Contents

10.8 Specifying a layout when reusing a presenter 132

10.9 Grid layout (SpGridLayout) . 135

10.10 Paned layout (SpPanedLayout) . 138

10.11 Overlay layout (SpOverlayLayout) . 139

10.12 Conclusion . 141

11 Dynamic presenters 143

11.1 Layouts as simple as objects . 143

11.2 Creating a presenter that dynamically adds buttons with random numbers . . 145

11.3 Building a little dynamic browser . 149

11.4 Placing elements visually . 152

11.5 Connecting the flow . 154

11.6 Toggling Edit/Read-only mode . 154

11.7 Conclusion . 155

12 Menu and menuBar 157

12.1 Menu . 157

12.2 Menu Bar . 158

12.3 ToolBar . 158

13 Styling applications 159

13.1 How do styles work? . 160

13.2 About stylesheets . 160

13.3 STON notation . 160

13.4 Anatomy of a style . 162

13.5 Environmental variables . 163

13.6 Defining an application . 163

13.7 Dynamically applying styles . 164

13.8 Now using classes . 164

13.9 Defining a presenter for the editor . 166

13.10 Initializing styles . 167

13.11 Wiring buttons . 169

13.12 Spec implementation details . 170

13.13 Conclusion . 170

14 Using transmissions and ports (Draft) 171

14.1 What are transmissions? . 171

14.2 Transmitting from an output port to an input port 172

14.3 Transforming a transmission . 172

14.4 Transmitting from an output port to an arbitrary input receiver 172

14.5 Acting after a transmission . 172

iv

Contents

15 Integration of Athens in Spec 175

15.1 Introduction . 175

15.2 Hello world in Athens . 176

15.3 Handling resizing . 178

15.4 Using the morph with Spec . 178

15.5 Direct integration of Athens with Spec . 179

15.6 Conclusion . 181

16 Customizing your Inspector 183

16.1 A first look at the inspector . 183

16.2 The inspector toolbar . 184

16.3 The Breakpoints tab: managing breakpoints 186

16.4 The Meta tab: class hierarchy and searching methods 186

16.5 Creating custom tabs . 187

16.6 Adding a tab with text . 187

16.7 Adding a tab with a table and conditions on when to display it 188

16.8 Adding a raw view of a specific element of the collection and removing the

evaluator . 189

16.9 Adding Roassal charts . 192

16.10 Conclusion . 192

III Working with Commands

17 A simple contact book 197

17.1 Contact book model . 197

17.2 A simple graphical user interface . 201

17.3 Conclusion . 205

18 Commander: A powerful and simple command framework 207

18.1 Commands . 207

18.2 Defining commands . 208

18.3 Adding some convenience methods . 208

18.4 Adding the Remove Contact command . 210

18.5 Turning commands into menu items . 211

18.6 Introducing groups . 212

18.7 Extending menus . 214

18.8 Managing icons and shortcuts . 215

18.9 Enabling shortcuts . 216

18.10 In-place customisation . 216

18.11 Managing a menu bar . 217

18.12 Conclusion . 220

v

CHA P T E R 1
Introduction

Spec is a framework in Pharo for describing user interfaces. It allows for the
construction of a wide variety of UIs; from small windows with a few buttons
up to complex tools like a debugger. Indeed, multiple tools in Pharo are writ-
ten in Spec, e.g., Iceberg the git manager, Change Sorter, Critics Browser, and
the Pharo debugger. An important architectural decision is that Spec supports
multiple backends (at the time of writing this book, GTK and Morphic are avail-
able).

1.1 Reuse of logic

The fundamental principle behind Spec is the reuse of user interface logic and
its visual composition. User interfaces are built by reusing and composing ex-
isting user interfaces, and configuring them as needed. This principle starts
from the most primitive elements of the UI: widgets such as buttons and labels
are in themselves complete UIs that can be reused, configured, and opened in a
window. These elements can be combined to form more complex UIs that again
can be reused as part of a bigger UI, and so on. This is somewhat similar to how
the different tiles on the cover of this book are combined. Smaller tiles config-
ured with different colors or patterns join to form bigger rectangular shapes
that are part of an even bigger floor design.

To allow such reuse, Spec was influenced by VisualWorks’ and Dolphin Smalltalk’s
Model View Presenter (MVP) pattern. Spec recognizes the need for a Presenter
class. A presenter represents the glue between a domain and widgets as well as
the logic of interaction between the widgets composing the application.

1

Introduction

Figure 1-1 Spec supports multiple backends Morphic and GTK3.0.: Here we see

GTK. %width=100

In Spec 1.0, this role was filled by the class ComposableModel and now, in Spec
2.0, the class is called SpPresenter. A presenter manages the logic UI and the
link between widgets and domain objects. Fundamentally, when writing Spec code,
developers do not come into contact with UI widgets. Instead, they program a
Presenter that holds the UI logic (interactions, layout, ...) and talks to domain
objects. When the UI is opened, this presenter instantiates the appropriate
widgets. This being said, for developers, this distinction is not apparent and it
feels as if the widgets are being programmed directly.

Spec is the standard GUI framework in Pharo and differs from Pharo’s other
GUI frameworks such as Morphic. It is restricted in that it only allows one to
build user interfaces for applications that have typical GUI widgets such as but-
tons, lists, etc. It cannot be used as a general drawing framework, but you can
integrate a canvas inside a Spec component.

For example, you can embed a Roassal visualization (see Figure ??), or you can
extend Spec itself with additional native components.

Another example of integration is the NovaStelo project of Prof. E. Ito as shown
in Figure ??. It shows that Spec can be used for the overall structure of the ap-

2

1.2 Spec 2.0

Figure 1-2 Roassal and Spec integration. %width=100&anchor=SpecRoassal

plication and embed specific elements.

1.2 Spec 2.0

Since Spec 2.0, different widget sets can be used to render your applications.
At the time of writing this book, Spec can be rendered using either Morphic
or GTK as a backend. Spec 2.0 represents a large iteration over Spec 1.0. Many
enhancements have been introduced: the way user interface layouts are ex-
pressed, the API has been revisited, new widgets are supported, and integra-
tion with other projects, such as Commander, has been added.

Pharo’s objective is to use Spec to build all its own GUIs. This ensures strong
support of Spec over time and improves the standardization of Pharo’s inter-
faces as well as their portability to new graphical systems. Using Spec 2.0 pro-
vides backend independence and logic reuse. This means that a UI written in
Spec will be rendered on backends other than GTK and Morphic. As new back-
ends become available, all applications written in Spec will be able to use them.

While this book uses previous Spec documentation as a foundation, the text
has been almost completely rewritten with an aim toward higher quality. We
hope that it will be of use to developers who write UIs in Pharo. This book fo-
cuses on Pharo 12. Earlier versions of Pharo come equipped with different ver-
sions of Spec, which may cause some code samples from this book to break.

3

Introduction

Figure 1-3 An integration of Morphic Native Widgets and Spec. %width=100&an-

chor=NovaStelo

Nevertheless, the fundamental principles of UI development in Spec are the
same.

1.3 Code

The code of all the examples in this book is stored at https://github.com/SquareBracketAssociates/

CodeOfSpec20Book.

You can load the code by evaluating this code snippet:

Metacello new
baseline: 'CodeOfSpec20Book';
repository: 'github://SquareBracketAssociates/CodeOfSpec20Book/src';
load

1.4 Acknowledgements

Even though due to the lack of manpower the fundraising campaign was not
used, the authors would like to express their warm gratitude to the following
people for their financial support: Masashi Fujita, Roch-Alexandre Nominé,
Eiichiro Ito, sumim, Hilaire Fernandes, Dominique Dartois, Philippe Mougin,
Pavel Krivanek, Michael L. Davis, Ewan Dawson, Luc Fabresse, David Bajger,
Jörg Frank, Petter Egesund, Pierre Bulens, Tomohiro Oda, Sebastian Heidbrink,
Alexandre Bergel, Jonas Skučas, and Mark Schwenk.

4

https://github.com/SquareBracketAssociates/CodeOfSpec20Book
https://github.com/SquareBracketAssociates/CodeOfSpec20Book

1.4 Acknowledgements

We want to thank I. Thomas for her chapter on the inspector, and R. De Ville-
meur for the chapter on Athens integration.

Finally, Stéphane Ducasse wants to thank Johan Fabry for his co-authoring of
the first book on Spec 1.0. Without that first book, this one would not exist.

If you supported us and you are not on this list, please contact us or do a pull
request.

5

Part I

All Spec in One Example

CHA P T E R2
A 10 min small example

We will construct a small but complete user interface. This will allow you to
build basic user interfaces.

After completing this chapter you may read Chapter 7 about the reuse of Spec
presenters, which is the key behind the power of Spec. With these two chap-
ters, you should be able to construct Spec user interfaces as intended. You
could use the rest of this book as reference material, but nonetheless, we rec-
ommend you to at least give a brief look at the other chapters as well.

2.1 A customer satisfaction UI

Figure 2-1 A screenshot of the customer satisfaction survey UI. % width=50&an-

chor=figCustomersBasic

We construct a simple customer satisfaction survey UI, which allows a user to
give feedback about a service by clicking on one of three buttons. This feed-

9

A 10 min small example

back should be recorded and processed, but that is outside of the scope of this
example. Figure ?? shows a screenshot of the UI.

2.2 Create the class of the UI

All user interfaces in Spec are subclasses of SpPresenter, so the first step in
creating the UI is subclassing that class:

SpPresenter << #CustomerSatisfactionPresenter
slots: { #buttonHappy . #buttonNeutral . #buttonBad . #result};
package: 'CodeOfSpec20Book'

The instance variables of the class hold the presenters the UI contains, the so-
called subpresenters. In this case, we have three buttons and a text to show the
result of the survey.

The methods of the class provide the initialization and configuration of the
presenters, e.g., labels and actions, as well as the logic of their interaction. The
basic design of our GUI, i.e., how the presenters are laid out, is defined by the
class as well.

2.3 Instantiate and configure subpresenters

A subclass of SpPresenter has the responsibility to define the initializeP-
resentersmethod, which instantiates and configures the presenters used
in the user interface. We will discuss it piece by piece. Note that since this
method may be a bit long we will split it into pieces that represent their intent.

Presenter creation

CustomerSatisfactionPresenter >> initializePresenters

result := self newLabel.
buttonHappy := self newButton.
buttonNeutral := self newButton.
buttonBad := self newButton.

SpPresenter defines messages for the creation of standard presenters: new-
Button, newCheckBox, newDropList, … All of these are defined in the script-
ing - widgets protocol of the SpTPresenterBuilder trait. They are short-
cuts to create presenters.

The following method shows how newButton is defined.

10

2.3 Instantiate and configure subpresenters

SpPresenter >> newButton

^ self instantiate: SpButtonPresenter

Note that the naming may be a bit confusing since we write newButton while it
will create a button presenter and not a button widget, which Spec will take care
by itself. Spec provides newButton because it is easier to use than newButton-
Presenter.

Do not call new to instantiate a presenter that is part of your UI. An alterna-
tive way to instantiate presenters is to use the message instantiate: with a
presenter class as an argument. For example result := self instantiate:
SpLabelPresenter. This allows one to instantiate standard and non-standard
presenters.

Presenter configuration

The next step is configuring the buttons of our UI. The message label: sets
the button label and the message icon: specifies the icon that will be dis-
played near the label.

CustomerSatisfactionPresenter >> initializePresenters

... continued ...
result label: 'Please give us your feedback.'.
buttonHappy
label: 'Happy';
icon: (self iconNamed: #thumbsUp).

buttonNeutral
label: 'Neutral';
icon: (self iconNamed: #user).

buttonBad
label: 'Bad';
icon: (self iconNamed: #thumbsDown)

The method iconNamed: of SpPresenter uses an icon provider to fetch the
icon with the given name. You can browse the Spec icon provider by look-
ing at SpPharoThemeIconProvider, which is a subclass of SpIconProvider.
Each application is able to define its own icon provider by defining a subclass of
SpIconProvider.

Presenter interaction logic

Now we define what will happen when the user presses a button. We define
this in a separate method called connectPresenters:

11

A 10 min small example

CustomerSatisfactionPresenter >> connectPresenters

buttonHappy action: [result label: buttonHappy label].
buttonNeutral action: [result label: buttonNeutral label].
buttonBad action: [result label: buttonBad label]

We use the message action: to specify the action that is performed when the
button is clicked. In this case, we change the content of the result text to in-
form the user that the choice has been registered. Note that the message ac-
tion: is part of the button API. In other situations, you will specify that when
a given event occurs, some message should be sent to a subpresenter.

To summarize:

• Specialize initializePresenters to define and configure the presen-
ters that are the elements of your UI.

• Specialize connectPresenters to connect those presenters together and
specify their interaction.

Specifying the presenter layout

The presenters have been defined and configured, but their placement in the
UI has not yet been specified. This is the role of the method defaultLayout.

CustomerSatisfactionPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: (SpBoxLayout newLeftToRight

add: buttonHappy;
add: buttonNeutral;
add: buttonBad;
yourself);

add: result;
yourself

In this layout, we add two rows to the UI, one with the buttons and one with
the result text. Defining presenter layout is a complex process with many dif-
ferent possible requirements, hence in this chapter we do not talk in detail
about layout specification. For more information we refer to Chapter 10.

Once the method defaultLayout is defined, you can open your UI with Cus-
tomerSatisfactionPresenter new open. You should see a window similar
to the one shown in Figure ??.

12

2.4 Define a title and window size, open and close the UI

Figure 2-2 A first version of the customer satisfaction UI. % width=50&anchor=fig-

FirstCut

2.4 Define a title and window size, open and close the UI

To set the window title and the initial size of your presenter, you have to spe-
cialize the method initializeWindow: as follows:

CustomerSatisfactionPresenter >> initializeWindow: aWindowPresenter

super initializeWindow: aWindowPresenter.
aWindowPresenter
title: 'Customer Satisfaction Survey';
initialExtent: 400@100

You are free to use helper methods to return the title and extent of your pre-
senter. When you reopen your presenter, and you click the ”Happy” button,
you should see the window shown in Fig. ??.

Sending the openmessage to a presenter will open a window and return an
instance of SpWindowPresenter, which allows the window to be closed from
code.

13

A 10 min small example

Figure 2-3 A final version of the customer satisfaction UI. % width=50&an-

chor=figSecondCut

| ui |
ui := CustomerSatisfactionPresenter new open.
[... do a lot of stuff until the UI needs to be closed ...]
ui close

Note that to update the contents of your window once it is open, you have the
method SpPresenter>>withWindowDo:, but we will discuss it later in this
book. More information about managing windows, e.g., opening dialog boxes
or setting the about text is present in Chapter 9.

This concludes our first example of a Spec user interface. In the next chapter,
we continue with more examples on how to configure the different presenters
that can be used in a user interface.

2.5 Conclusion

In this chapter, we have given you a small example of Spec user interfaces. We
have shown you what the different steps are to build a user interface with Spec.

More examples of Spec user interfaces are found in the Pharo image. Since
all Spec user interfaces are subclasses of SpPresenter, they are easy to find
and each of them may serve as an example. Furthermore, experimentation
with presenters and user interfaces is made easy because all presenters can be
opened as standalone windows.

We recommend that you at least read Chapter 7 about reuse of Spec presenters,
which is the key reason behind the power of Spec. This knowledge will help
you in building UIs faster through better reuse, and also allow your own UIs to
be reused.

14

CHA P T E R3
Most of Spec in one example

In this chapter, we will guide you through the building of a simple but non-
trivial application to manage films as shown in Figure 3-1. We will show many
aspects of Spec that we will revisit in depth in the rest of this book: the applica-
tion, presenters, the separation between domain and presenter, layout, trans-
missions to connect widgets, and styles.

3.1 Application

Spec 2.0 introduces the concept of an application. An application is a small
object responsible for keeping the state of your application. It manages, for
example, the multiple windows that compose your application, and its backend
(Morphic or GTK), and can hold properties shared by the presenters.

We start with the definition of the example application class:

SpApplication << #ImdbApp
package: 'CodeOfSpec20Book'

3.2 A basic film model

Since we will manage films we define an ImdbFilm class as follows. It has a
name, a year, and a director. We generate the companion accessors.

Object << #ImdbFilm
slots: {#name . #year . #director};
package: 'CodeOfSpec20Book'

15

Most of Spec in one example

Figure 3-1 Film app: reusing the same component to edit and browsing a film.

We need a way to store and query films. We could use Voyage (https://github.
com/pharo-nosql/voyage) since it works without an external Mongo DB. But we
want to keep it extremely simple. So let’s define a singleton.

We define a class instance variable called films.

Object class << ImdbFilm class
slots: { #films }

We define a method that lazy initializes the films variable to an ordered col-
lection.

ImdbFilm class >> films

^ films ifNil: [films := OrderedCollection new]

And to finish we define a way to add a film to the list.

ImdbFilm class >> addFilm: aFilm

films add: aFilm

Now we are ready to define a first presenter that manages a list of films.

16

https://github.com/pharo-nosql/voyage
https://github.com/pharo-nosql/voyage

3.3 List of films

3.3 List of films

We define a presenter to manage a list of films by introducing a new class named
ImdbFilmListPresenter which inherits from SpPresenter. We add an in-
stance variable named filmList that will hold an elementary list presenter.

SpPresenter << #ImdbFilmListPresenter
slots: { #filmList };
package: 'CodeOfSpec20Book'

We define how the information should be presented by defining a method
named defaultLayout. We specify a simple vertical box layout with the film-
List as the only element.

defaultLayout

ImdbFilmListPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: filmList;
yourself

When you do not define any other methods to represent layout, defaultLay-
out is the method that is invoked by Spec logic.

A presenter can have subpresenters. ImdbFilmListPresenter contains a table
presenter and you will see later that:

1. a presenter can have multiple layouts

2. layouts can be defined dynamically

In Spec, layouts are dynamic by default and are expressed at the instance level.
To allow backward compatibility, it is still possible to define a defaultLay-
out class-sidemethod that returns a layout instead of using a defaultLayout
instance-side method, but it is not the recommended way.

initializePresenters

So far, we have not initialized filmList.

The place to initialize the subpresenters is the method initializePresen-
ters as shown below. There we define that filmList is a table with three
columns. The message newTable instantiates a SpTablePresenter.

ImdbFilmListPresenter >> initializePresenters

filmList := self newTable
addColumn: (SpStringTableColumn title: 'Name'

17

Most of Spec in one example

evaluated: #name);
addColumn: (SpStringTableColumn title: 'Director'

evaluated: #director);
addColumn: (SpStringTableColumn title: 'Year'

evaluated: #year);
yourself

The following expression creates an instance of the film list presenter and
opens it. You get the window shown in Figure ??.

ImdbFilmListPresenter new open

Figure 3-2 A layout and a simple initializePresenters showing an empty list

of films. %width=60&anchor=LayoutInitilalizePresenters

3.4 Filling up the film list

We define the method updatePresenter which is automatically invoked after
initializePresenters. It just queries the domain (ImdbFilm) to get the list
of the recorded films and populates the internal table. Right now we do not
have any film in the singleton so the list of films is empty.

18

3.5 Opening presenters via the application

ImdbFilmListPresenter >> updatePresenter

filmList items: ImdbFilm films

If you want, just add a film and reopen the presenter. You should see the film
on the list.

ImdbFilm addFilm: (ImdbFilm new
name: 'E.T.';
director: 'Steven Spielberg';
year: '1982';
yourself)

3.5 Opening presenters via the application

While directly creating a presenter is possible during development, a more
canonical way to create a presenter is to ask the application using the message
newPresenter: as follows.

| app |
app := ImdbApp new.
(app newPresenter: ImdbFilmListPresenter) open

The application is responsible for managing windows and other information,
therefore it is important to use it to create presenters that compose the appli-
cation.

3.6 Improving the window

A presenter can be embedded in another presenter as we will show later. It
can also be placed within a window and this is what the message open does.
Spec offers another hook, the method initializeWindow:, to specialize the
information presented when a presenter is displayed within a window.

The method initializeWindow: allows you to define a title, a default size
(message initialExtent:), and a toolbar.

ImdbFilmListPresenter >> initializeWindow: aWindowPresenter

| addButton toolbar |
addButton := self newToolbarButton

label: 'Add film' ;
icon: (self iconNamed: #smallAdd);
action: [self addFilm];
yourself.

toolbar := self newToolbar
add: addButton;

19

Most of Spec in one example

Figure 3-3 Film list presenter with a toolbar and a decorated window.

%width=60&anchor=figFilmListPresenter2

yourself.
aWindowPresenter

title: 'Mini IMDB';
initialExtent: 600@400;
toolbar: toolbar

You should obtain the window with a toolbar as shown in Figure ??. To make
sure that the Add film button does not raise an error, we trigger an addFilm
method that is defined with no behavior. In fact, we will define a different pre-
senter to be able to define a film.

ImdbFilmListPresenter >> addFilm

"empty for now"

As we will see in Chapter 18, toolbars can be automatically created out of com-
mands. We could have added the toolbar in that way to the filmList (e.g. us-
ing an instance variable) as part of the ImdbFilmListPresenter because the
toolbar is also a presenter (similar to the table presenter or other predefined
presenters). But doing it that way is less modular. Note also that the toolbar we
created could be factored in a separate class to increase reuse too.

20

3.7 An application manages icons

3.7 An application manages icons

What we can see from the definition of the method initializeWindow: is that
an application manages icons with the message iconNamed:. Indeed, a pre-
senter defines the iconNamed: message as a delegation to its application. In
addition, your application can define its own icon set using the message icon-
Manager:.

3.8 FilmPresenter

We are ready to define a simple presenter to edit a film. We will use it to add a
new film or simply display it. We create a new subclass of SpPresenter named
ImdbFilmPresenter. This class has three instance variables: nameText, di-
rectorText, and yearNumber.

SpPresenter << #ImdbFilmPresenter
slots: { #nameText . #directorText . #yearNumber };
package: 'CodeOfSpec20Book'

As we did previously, we define a default layout. This time we use a grid layout.
With a grid layout, you can choose the position in the grid where your presen-
ters will appear.

ImdbFilmPresenter >> defaultLayout

^ SpGridLayout new
add: 'Name' at: 1@1; add: nameText at: 2@1;
add: 'Director' at: 1@2; add: directorText at: 2@2;
add: 'Year' at: 1@3; add: yearNumber at: 2@3;
yourself

Note that it is not required to create the accessors for the presenter elements
as we were forced to do in Spec 1.0. Here we only create getters because we will
need them when creating the corresponding ImbdFilm instance.

ImdbFilmPresenter >> year

^ yearNumber text

ImdbFilmPresenter >> director

^ directorText text

ImdbFilmPresenter >> name

^ nameText text

21

Most of Spec in one example

For convenience, a SpGridLayout also comes with a builder that lets you add
elements to the layout in the order they will appear. The previous layout defi-
nition can be rewritten as:

ImdbFilmPresenter >> defaultLayout

^ SpGridLayout build: [:builder |
builder
add: 'Name'; add: nameText; nextRow;
add: 'Director'; add: directorText; nextRow;
add: 'Year'; add: yearNumber]

Pay attention: do not add a yourselfmessage here because you would return
the class and not the layout instance.

Figure 3-4 A single film presenter. % width=50&anchor=figFilmPresenter1

And as before, we define the method initializePresenters to initialize the
variables to the corresponding elementary presenters. Here nameText and di-
rectorText are initialized to a text input, and yearNumber is a number input.

22

3.9 Better looking FilmPresenter

ImdbFilmPresenter >> initializePresenters

nameText := self newTextInput.
directorText := self newTextInput.
yearNumber := self newNumberInput
rangeMinimum: 1900 maximum: Year current year;
yourself

Now we can try our little application with the following script and obtain a
window similar to the one shown in Figure ??:

| app |
app := ImdbApp new.
(app newPresenter: ImdbFilmPresenter) open

3.9 Better looking FilmPresenter

We improve the look of the film presenter by specifying column behavior and
setting window properties. As you can see, the form to present Film data has
very large labels. Indeed, they take half of the form width. We can solve that
by using non-homogenous columns and asking the second column to take the
biggest possible width with column:expand:. See Figure ??.

ImdbFilmPresenter >> defaultLayout

^ SpGridLayout build: [:builder |
builder

beColumnNotHomogeneous;
column: 2 expand: true;
add: 'Name'; add: nameText; nextRow;
add: 'Director'; add: directorText; nextRow;
add: 'Year'; add: yearNumber]

Now we set the window properties by adding the following new initial-
izeWindow: method. We get the situation shown in Figure ??.

ImdbFilmPresenter >> initializeWindow: aWindowPresenter

aWindowPresenter
title: 'Film';
initialExtent: 400@250

3.10 Opening FilmPresenter in a modal dialog

Instead of opening the film presenter in a separate window, we like to open it
in a modal dialog window. The modal dialog blocks the user interface until the

23

Most of Spec in one example

Figure 3-5 Using a non-homogenous grid layout. % width=50&anchor=FilmListPre-

senter2

user confirms or cancels the dialog. A modal dialog has no window decorations
and it cannot be moved.

While a window can be opened by sending open to an instance of a presenter
class, a dialog can be opened by sending openModal.

| app |
app := ImdbApp new.
(app newPresenter: ImdbFilmPresenter) openModal

Figure ?? shows the result. Note that there are no UI components to close the
dialog. Press the ”Esc” key on the keyboard to close it.

3.11 Customizing the modal dialog

Spec lets us adapt the dialog window, for example, to add interaction buttons.
We specialize the method initializeDialogWindow: to add two buttons that
control the behavior of the application, as shown in Figure ??. We also center

24

Figure 3-6 Better window. % width=50&anchor=FilmListPresenter3

Figure 3-7 A modal dialog. %width=50&anchor=dialog

Most of Spec in one example

the dialog on screen by sending centered to the dialog presenter.

ImdbFilmPresenter >> initializeDialogWindow: aDialogPresenter

aDialogPresenter centered.
aDialogPresenter

addButton: 'Cancel' do: [:button | button close];
addButton: 'Save Film' do: [:button | button beOk; close].

Figure 3-8 Customizing the dialog window. % width=60&anchor=Customizeddia-

log

3.12 Invoking a presenter

We are ready to use the film presenter from within the film list presenter. We
define the method addFilm in the class ImdbFilmListPresenter. When the
user clicks on the button, we create a new film presenter that we associate with
the current application.

We open the film presenter as a modal dialog using the message openModal.
When the user presses the ”Save Film” button, a new film is added to our little
database and we update the list.

26

3.12 Invoking a presenter

ImdbFilmListPresenter >> addFilm

| dialog windowPresenter film |
dialog := ImdbFilmPresenter newApplication: self application.
windowPresenter := dialog openModal.
windowPresenter isOk ifFalse: [^ self].

film := ImdbFilm new
name: dialog name;
director: dialog director;
year: dialog yearNumber.

ImdbFilm addFilm: film.
self updatePresenter

Now we can open the FilmListPresenter and click on the Add film but-
ton. When the film data has been entered and the Save Film button has been
clicked, you will see that the FilmListPresenter is updated with the added film,
as shown in Figure ??.

app := ImdbApp new.
(app newPresenter: ImdbFilmListPresenter) open

Figure 3-9 The refreshed film list. % width=60&anchor=refreshed

27

Most of Spec in one example

3.13 Embedding a FilmPresenter into the FilmListPresenter

We have two main visual elements: a list of films and the film details. We can
imagine that we would like to see the film details in the same container as the
list, especially because a film description is larger than the list columns.

To achieve that, we add a new instance variable named detail to the class
ImdbFilmListPresenter.
SpPresenter << #ImdbFilmListPresenter
slots: { #filmList . #detail };
package: 'CodeOfSpec20Book'

We redefine the default layout. We will show later that we can have different
layouts.

ImdbFilmListPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: filmList;
add: detail;
yourself

Since we are going to use this presenter in different places, we have to add a
method to control whether it is editable or not:

ImdbFilmPresenter >> editable: aBoolean

nameText editable: aBoolean.
directorText editable: aBoolean.
yearNumber editable: aBoolean

Now we improve the initializePresenters of ImdbFilmListPresenter.

• First we instantiate ImdbFilmPresenter.

• Second, we configure it as read-only by sending the editable: false
message.

• Third, when an element of the list is selected, we should display the in-
formation in the detail presenter. While we can express this in the ini-
tializePresentersmethod, we prefer specifying it in the connectPre-
sentersmethod. See Section 3.14.

ImdbFilmListPresenter >> initializePresenters

filmList := self newTable
addColumn: (SpStringTableColumn title: 'Name'

evaluated: #name);
addColumn: (SpStringTableColumn title: 'Director'

evaluated: #director);

28

3.14 Define component communication

addColumn: (SpStringTableColumn title: 'Year'
evaluated: #year);

yourself.
detail := self instantiate: ImdbFilmPresenter.
detail editable: false

3.14 Define component communication

We add a helper method named setModel: in class ImdbFilmPresenter to be
able to pass a film and populate the presenter accordingly.

ImdbFilmPresenter >> setModel: aFilm

aFilm
ifNil: [

nameText text: ''.
directorText text: ''.
yearNumber number: '']

ifNotNil: [
nameText text: aFilm name.
directorText text: aFilm director.
yearNumber number: aFilm year]

It is important to check for a nil value, otherwise sending name, director, or
year would fail. If the given aFilm argument is nil, we clear the three subpre-
senters.

Note that the method setModel: is needed only if you do not subclass from
SpPresenterWithModel. If you subclass from SpPresenter, it is the only way
to have the model initialized before the setup of the presenter, and avoid errors
when opening the presenter.

Defining interactions between presenters is done in the connectPresenters
method. We implement it to define that, when an element of the list is se-
lected, we display the information in the detail presenter. It is worth taking
some time to look at the whenSelectionChangedDo: method.

The whenSelectionChangedDo: method expects a block with at most one ar-
gument. The argument does not hold the selected item directly, but a more
complex object that represents the selection. Indeed a selection is different in
a single selection list and a multiple selection list. Therefore Spec defines the
concept of selection mode under the form of subclasses of SpAbstractSelec-
tionMode.
ImdbFilmListPresenter >> connectPresenters

filmList whenSelectionChangedDo: [:selectedItemMode |
detail setModel: selectedItemMode selectedItem]

29

Most of Spec in one example

With connectPresenters in place, selecting an item in the list results in show-
ing the details of the selected item, as shown in Figure ??.

Figure 3-10 Embedding the film description in the list: selecting a list item popu-

lates the detailed visual component. % width=60&anchor=embedded

3.15 Testing your application UI

A strong property of Spec is that we can write tests to describe the interaction
and the logic of a UI. Tests are so powerful to help us create nice designs and
make sure that we can spot errors, that we will show that writing tests for a UI
is not complex.

We define ImdbFilmListPresenterTest as a subclass of TestCase.

TestCase << #ImdbFilmListPresenterTest
package: 'CodeOfSpec20Book'

ImdbFilmListPresenterTest >>
testWhenSelectingOneFilmThenDetailIsUpdated

| presenter detail |
"Arrange"
presenter := ImdbFilmListPresenter new.
presenter open.

30

3.15 Testing your application UI

detail := presenter detail.
self assert: detail name isEmpty.

"Act"
presenter clickFilmAtIndex: 1.

"Assert"
self deny: detail name isEmpty.
presenter delete

As you see, we will have to define two methods on ImdbFilmListPresenter to
support proper testing: a getter for detail and an interaction method click-
FilmAtIndex:. We categorize them in the testing - support protocol to
indicate that they are only intended for testing purposes.

ImdbFilmListPresenter >> detail

^ detail

ImdbFilmListPresenter >> clickFilmAtIndex: anIndex

filmList clickAtIndex: anIndex

This test is a bit poor because we do not explicitly test the value of the film’s
name in the detail presenter. We did this to keep the test setup simple, partly
because ImdbFilm stores the current films globally. Singletons are ugly and
they also make testing more complex.

We define three helper methods on ImdbFilm to reset the stored films and add
the E.T. film.

ImdbFilm class >> reset

films := OrderedCollection new

ImdbFilm class >> addET

films add: self ET

ImdbFilm class >> ET

^ self new
name: 'E.T.';
director: 'Steven Spielberg';
year: '1982';
yourself

Now we can define the setUpmethod.

31

Most of Spec in one example

ImdbFilmListPresenterTest >> setUp

super setUp.
ImdbFilm reset.
ImdbFilm addET

Now we update the test to keep the opened presenter in an instance variable.
This allows us to define a tearDownmethod that always closes the presenter,
no matter if the test succeeds or fails.

ImdbFilmListPresenterTest >>
testWhenSelectingOneFilmThenDetailIsUpdated

| detail |
"Arrange"
presenter := ImdbFilmListPresenter new.
presenter open.
detail := presenter detail.
self assert: detail name isEmpty.

"Act"
presenter clickFilmAtIndex: 1.

"Assert"
self deny: detail name isEmpty

ImdbFilmListPresenterTest >> tearDown

presenter ifNotNil: [presenter delete].
super tearDown

3.16 Adding more tests

Tests are addictive because we can change programs and check that they still
work and limit our stress. So we will write another one.

Let us add the following getter method to support our tests.

ImdbFilmListPresenter >> filmList

^ filmList

Let us test that a list has one film and that if we select a non-existent index, the
name is cleared.

ImdbFilmListPresenterTest >> testNoSelectionClearsDetails

| name |
"Arrange"

32

3.17 Changing layout

presenter := ImdbFilmListPresenter new.
presenter open.

"Act"
presenter clickFilmAtIndex: 1.

"Assert"
name := presenter detail name.
self deny: name isEmpty.
self assert: presenter filmList listSize equals: 1.

presenter clickFilmAtIndex: 2.
self assert: presenter detail name equals: ''

Multiple selection is not supported. Therefore we test that filmList is config-
ured for single selection. There is no isSingleSelectionmethod, so instead
of asserting single selection, we deny multiple selection.

ImdbFilmListPresenterTest >> testListIsSingleSelection

presenter := ImdbFilmListPresenter new.
presenter open.
self deny: presenter filmList isMultipleSelection

What you see is that it is relatively simple to test that the interaction you speci-
fied actually works as expected.

3.17 Changing layout

With Spec, a presenter can have multiple layouts, even layouts that are created
on the fly as we will see with dynamic layouts. We can decide which layout to
use when opening a presenter. Let us illustrate that. Imagine that we prefer to
have the list positioned below the film details, or just the list alone.

ImdbFilmListPresenter >> listBelowLayout

^ SpBoxLayout newTopToBottom
add: detail;
add: filmList;
yourself

The following example shows that we can open ImdbFilmListPresenter with
the layout listBelowLayout that we just defined. See Figure 3-11.

| app presenter |
app := ImdbApp new.
presenter := app newPresenter: ImdbFilmListPresenter.
presenter openWithLayout: presenter listBelowLayout.

33

Most of Spec in one example

Figure 3-11 A presenter can have multiple layouts for its subpresenters.

We can also define a layout with a part of the subpresenters. Here listOnly-
Layout only shows the list.

ImdbFilmListPresenter >> listOnlyLayout

^ SpBoxLayout newTopToBottom
add: filmList;
yourself

The following example shows that we can open ImdbFilmListPresenter with
one layout and dynamically change it by another layout. In a playground, do
not declare the temporary variables so that they are bound and kept in the
playground.

app := ImdbApp new.
presenter := app newPresenter: ImdbFilmListPresenter.
presenter open

The presenter opens with the default layout. Now in the playground execute
the following line.

presenter layout: presenter listOnlyLayout

Now you can see that the layout with only one list has been applied dynami-
cally.

3.18 Using transmissions

Spec 2.0 introduces a nice concept to propagate selections from one presenter
to another, thinking about the ”flow” of information more than the implemen-

34

3.19 Styling the application

tation details of this propagation, which can change from presenter to presen-
ter.

With transmissions, each presenter can define a set of output ports (ports to
transmit information) and input ports (ports to receive information). Widget
presenters already have defined the output/input ports you can use with them,
but you can add your own ports to your presenters.

The easiest way to declare a transmission is by sending the transmitTo: mes-
sage from one presenter to another. We can now change the connectPresen-
tersmethod to use transmissions.

ImdbFilmListPresenter >> connectPresenters

filmList transmitTo: detail

Here, filmList is a table that will transmit its selection to the detail presen-
ter.

Let us explain a bit. ImdbFilmPresenter is a custom presenter. Spec does not
know how to ”fill” it with input data. We need to tell Spec that ImdbFilmPre-
sentermodel will be the input port and receive the input data. Therefore we
need to define an input port as follows:

ImdbFilmPresenter >> inputModelPort

^ SpModelPort newPresenter: self

ImdbFilmPresenter >> defaultInputPort

^ self inputModelPort

Note that we could have inlined inputModelPort’s definition into the de-
faultInputPort definition.

The input data will be set by using the setModel: method we already defined
on ImdbFilmPresenter. SpModelPort takes care of that.

Now you can open the application and see that it still behaves as expected.

| app |
app := ImdbApp new.
(app newPresenter: ImdbFilmListPresenter) open

3.19 Styling the application

Different UI components in an application can have different look and feels, for
example to change the size or color of a font for a header. To support this, Spec
introduces the concept of ”styles” for components.

35

Most of Spec in one example

In Spec, an application defines a stylesheet (or a set of them). A stylesheet de-
fines a set of ”style classes” that can be assigned to presenter widgets. Defining
a style class, however, works differently for each backend. While GTK accepts
(mostly) regular CSS to style widgets, Morphic has its own subframework.

An application comes with a default configuration and a default stylesheet. If
you do not need to style your application, there is no need to define them. In
our example, we would like to define a header style to customize some labels.
In Spec every presenter understands the message addStyle: that adds a tag (a
CSS class) to the receiver.

To do so, you need to declare a stylesheet in a configuration. The configuration
itself needs to be declared in your application. We will define a new presenter
for the label and tag it with a specific CCS class using the message addStyle:.
Our CCS class will be named 'customLabel'.

First, we create the specific configuration for our application.

SpMorphicConfiguration << #ImdbConfiguration
package: 'CodeOfSpec20Book'

Second, we use it in ImdbApp.

ImdbApp >> initialize

super initialize.
self

useBackend: #Morphic
with: ImdbConfiguration new

Then we can define our custom styles. The easiest way is to create a style from
a String. Here we define that an element using the tag customLabel will have
red text.

ImdbConfiguration >> customStyleSheet

^ '
.application [
.customLabel [Font { #color: #red }]]'

Pay attention not to forget the ’.’ in front of application and customLabel

We specialize the method configure: so that it includes the custom style as
follows:

ImdbConfiguration >> configure: anApplication

super configure: anApplication.
self addStyleSheetFromString: self customStyleSheet

36

3.20 Conclusion

We are ready to use the tag for the label. Until now, Spec was creating a pre-
senter for the label automatically, but it was not accessible by the developer.
Therefore we have to add a label explicitly so that we can tag it with a CSS-like
class. This is what the message addStyle: 'customLabel' below does.

We add a nameLabel instance variable to ImdbFilmPresenter to hold a label,
and we initialize it in the method initializePresenters as follows:

ImdbFilmPresenter >> initializePresenters

nameLabel := self newLabel
label: 'Name';
addStyle: 'customLabel';
yourself.

nameText := self newTextInput.
directorText := self newTextInput.
yearNumber := self newNumberInput
rangeMinimum: 1900 maximum: Year current year;
yourself

Then we update the layout to use the newly defined label presenter.

ImdbFilmPresenter >> defaultLayout

^ SpGridLayout build: [:builder |
builder

beColumnNotHomogeneous;
column:2 withConstraints: #beExpand;
add: nameLabel; add: nameText; nextRow;
add: 'Director'; add: directorText; nextRow;
add: 'Year'; add: yearNumber]

Now we see that the name label of a film detail has been styled, as shown in
Figure ??.

3.20 Conclusion

We saw that with Spec the developer defines how a visual element (a presenter)
is composed of other visual elements. Such a presenter has the responsibility
to describe the interaction with other presenters, but also with the domain
objects. It has also the responsibility to describe its visual aspects.

37

Figure 3-12 Styled film name label. % width=60&anchor=FilmListPresenterStyled

Part II

Spec Essentials

CHA P T E R4
Spec core in a nutshell

Spec is Pharo’s user interface framework. It provides the building blocks for
constructing UIs, from simple windows to complex tools like browsers and de-
buggers. With Spec, developers can capture the layout and the interactions
between the elements that compose a UI. For example, a developer can express
that a tool has two components: a list on the left and a component displaying
information on the right. Clicking on an item in the list will display detailed in-
formation about the selected item. In addition, Spec supports the reuse of the
UI interaction logic.

Spec is the foundation of most tools in Pharo, such as the inspector, Spotter,
the Pharo debugger, Iceberg, etc. In this short chapter, we place the key archi-
tectural elements of Spec in context.

4.1 Spec architecture overview

Figure ?? presents the general architecture of Spec. Basically, Spec is built
around 5 concepts that we will describe in subsequent sections. The most im-
portant concepts are Presenter, Layout, and Application.

A Presenter represents the UI element logic and it is also the connection with
the domain. The Application is also a place to be in contact with domain ob-
jects but generally, it handles application-specific resources (icons, windows,…).

Based on presenters and layouts, Spec builds the actual UI. Internally, it uses
adapters that are specific to each widget and per backend. This way presenters
are agnostic about backends and are reusable across them.

41

Spec core in a nutshell

Application

Stylesheet

Style

Presenter

Layout

1..n

1..n
1..n

1

1..n

uses

1..n

Domain

Domain

Widget

Adapter

0..n

Figure 4-1 Architecture of Spec. % anchor=coreextended&width=80

4.2 Spec core architecture overview

Spec core is composed of the following elements:

• Application. An application is composed of multiple presenters and a
stylesheet.

• Presenters. A presenter is a unit of interactive behavior. It is connected
to domain objects and other presenters. Its visual representation is de-
fined via at least one layout.

• Layout. A layout describes the positions of elements and it can be recur-
sive.

• Stylesheet and styles. A stylesheet is composed of styles that describe
visual properties such as fonts, colors, …

We detail each of the main elements.

4.3 Presenters

A Spec presenter (an instance of a SpPresenter subclass), is an essential part
of the Spec framework. It represents the logic of a UI element. It can define
the behavior of a simple UI widget such as a button, as well as of a complex UI
widget composed by many other presenters (either simple or complex). To
build your user interface, you compose presenters.

Spec already comes with a predefined set of basic presenters (widgets) ready to
use in your presenters. You can find them in the ’scripting - widgets’ protocol

42

4.4 Application

Application

Stylesheet

Style

Presenter

Layout

1..n

1..n

1

1..n

uses

1..n 1..n0..n

Figure 4-2 Presenter, Application, Layout and Style of Spec. % an-

chor=core&width=60

of the SpPresenter class. You will find buttons, labels, checkboxes, text input,
drop lists, lists, menus, tables, trees, toolbars, action bars, but also more com-
plex widgets like code diff presenters and notebooks. You can easily instantiate
a new presenter and display it:

SpButtonPresenter new
label: 'ok';
open

A presenter may also have a model that is a domain object you need to interact
with to display or update data. In this case, your presenter class should inherit
from SpPresenterWithModel so that the presenter keeps a reference to the
domain object and updates when the model changes (see Chapter 6).

A presenter defines layouts. One is mandatory. If you want to display a presen-
ter with the default layout, you can use the open or openDialogmethods. The
former will open a new window with the presenter while the latter will open a
blocking dialog with the presenter. You can use openWithLayout: or openDi-
alogWithLayout: to open the presenter with the layout you will provide as an
argument.

4.4 Application

A Spec application (an instance of the SpApplication class hierarchy) han-
dles your application initialization, configuration, and resources. SpAppli-

43

Spec core in a nutshell

cation is not a presenter because it does not have a graphical representation.
An instance of SpApplication defines your application (keeping the backend,
theme, icons, and other graphical resources), and keeps the opened windows
that belong to the application, but it is not shown itself.

A Spec application also provides a way to access windows or resources such as
icons, and provides abstractions for interactions with the user (inform, error,
file, or directory selection).

Finally, an application provides the style used by Spec to style UI elements. A
default style is available, but you can customize it as shown in Chapter 13.

You should also define a method to tell what is the main window / presenter
to use when running the application. Here we specialize the method start as
follows:

MyApplication >> start

(MyMainPresenter newApplication: self) open

You can run your application with MyApplication new run. It will call the
startmethod you defined.

4.5 Application configuration

In the application initialization, you can configure the backend you want to
use: Morphic (default) or GTK. In the future, Spec will also support Toplo, a
new widget library built on top of Bloc. It will replace Morphic.

Using Morphic

Here is an example using the Film application from Chapter 3. We define a con-
figuration as a subclass of SpMorphicConfiguration.

SpMorphicConfiguration << #ImdbMorphicConfiguration
package: 'CodeOfSpec20Book'

Then we define the method configure: as follows:

ImdbMorphicConfiguration >> configure: anApplication

super configure: anApplication.
"There are ways to write/read this from strings or files,
but this is how you do it programatically."

self styleSheet
addClass: 'header' with: [:style |

style
addPropertyFontWith: [:font | font bold: true];

44

4.6 Layouts

addPropertyDrawWith: [:draw | draw color: Color red]]

Note that we could use a style described in a string as shown Chapter 13.

Finally, in the corresponding application class, we declare that the Morphic
backend should use our configuration using the message useBackend:with:.

ImdbApp >> initialize

super initialize.
self useBackend: #Morphic with: ImdbMorphicConfiguration new

Using GTK theme and settings

For GTK the process is similar, we define a subclass of SpGTKConfiguration.

SpGTKConfiguration << #ImdbGTKConfiguration
package: 'CodeOfSpec20Book'

Then we configure it by selecting and extending CSS.

ImdbGTKConfiguration >> configure: anApplication

super configure: anApplication.
"This will choose the theme 'Sierra-dark' if it is available"
self installTheme: 'Sierra-dark'.
"This will add a 'provider' (a stylesheet)"
self addCSSProviderFromString: '.header {color: red; font-weight:

bold}'

And in the application initialization, we declare that the configuration should
be used for GTK.

ImdbApp >> initialize

super initialize.
self useBackend: #GTK with: ImdbGTKConfiguration new

4.6 Layouts

To display its elements, a presenter uses a layout. A layout describes how ele-
ments are placed on the display surface. To help you build nice user interfaces,
several layouts are available:

• GridLayout: Choose this layout when you need to create a presenter with
a label, and fields that need to be aligned (form style). You can specify in
which box of the grid you want to place an element.

45

Spec core in a nutshell

• BoxLayout: a SpBoxLayout arranges presenters in a box, vertically (top
to bottom) or horizontally (left to right).

• PanedLayout: a SpPanedLayout is a layout with two elements called
”panes” and a splitter in between. The user can drag the splitter to resize
the panes.

• TabLayout: a SpTabLayout shows all its elements as tabs. You can select
a tab to display the content.

• MillerLayout: a layout to implement miller columns, also known as cas-
cading lists (https://en.wikipedia.org/wiki/Miller_columns).

Any layout in Spec is dynamic and composable. In general, a layout is defined
at the presenter instance level, but it can be defined on the class side.

Defining a layout is as simple as defining the defaultLayoutmethod. This
method is automatically invoked if a layout is not manually set.

Let’s revisit the defaultLayoutmethod from Chapter 2.

CustomerSatisfactionPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: (SpBoxLayout newLeftToRight

add: buttonHappy;
add: buttonNeutral;
add: buttonBad;
yourself);

add: result;
yourself

The method defines two box layouts:

• one containing the three buttons

• one containing the first one and a result text below.

Each of the layouts refers to accessible subpresenters (buttonHappy, button-
Neutral, buttonBad, result) from the presenter. Figure ?? shows the corre-
sponding result.

4.7 Styles and stylesheets

A Spec application always comes with a default stylesheet. A stylesheet con-
tains style definitions that can be applied to presenters. Chapter 13 presents
styles in detail.

A style is a property container to “style” components, and defines (to a certain
degree) its behavior within the different layouts.

46

https://en.wikipedia.org/wiki/Miller_columns

4.7 Styles and stylesheets

Figure 4-3 The layout corresponding to the defaultLayoutmethod. %

width=70&anchor=layout6B

Here is an example of a stylesheet for the Morphic backend:

'.application [
.lightGreen [Draw { #color: #B3E6B5 }],
.lightBlue [Draw { #color: #lightBlue }]]'

The styles in Spec format are similar to CSS but expressed in STON. Pay atten-
tion not to forget the leading periods.

You can apply it on your Spec application by sending the styleSheet: mes-
sage to an application:

myStyleSheet := SpStyleVariableSTONReader fromString:
'.application [
Font { #bold: true },
.bgBlack [Draw { #backgroundColor: #black }],
.blue [Draw { #color: #blue }]

]'
application styleSheet: SpStyle defaultStyleSheet, myStyleSheet.

Then you can style a presenter using the message addStyle: (think about a

47

Spec core in a nutshell

tag with a class in CSS) as follows:

presenter label: 'I am a label'.
presenter addStyle: 'blue'.

4.8 Navigation between presenters

Once the definition of your UI components (i.e., your Spec presenters and lay-
outs) is done, you will need to define the behavior of the UI: what happens
when you open a new presenter?

You will probably want to provide some data (a model) to the presenter so that
it can be used to display data. It is called a transmission: you transmit data
from one presenter to another presenter. Transmissions are defined as reac-
tions to events.

It is quite easy to define the behavior of the UI by using widget-predefined
events. You can find them in the api-events protocol of the presenter classes.
Most used events are whenSelectionChangedDo:, whenModelChangedDo:,
whenTextChangedDo:. Here are some examples:

messageList
whenSelectionChangedDo: [:selection |

messageDetail model: selection selectedItem];
whenModelChangedDo: [self updateTitle].

textModel whenSubmitDo: [:text | self accept: text].
addButton action: [self addDirectory].
filterInput whenTextChangedDo: [:text | self refreshTable].

4.9 Conclusion

Class SpPresenter is a central class that has the following responsibilities:

• Initialization of presenter part and state.

• Definition of application layout.

• Connection of the elements to support the interaction flow.

• Update of the UI components.

We will illustrate these points in the following chapters.

48

CHA P T E R5
Testing Spec applications

Developers often think that testing a user interface is difficult. It is true that
fully testing the placement and layout of widgets can be tedious. However, test-
ing the logic of an application and in particular the interaction logic is possi-
ble. That is what we will show in this chapter. We will show that testing a Spec
application is simple and effective.

5.1 Testing presenters

Tests are key to ensuring that everything works correctly. In addition, they free
us from the fear of breaking something without being warned about it. Tests
support refactorings. While such facts are general and applicable to many do-
mains, they are also true for user interfaces.

Spec architecture

Spec is based on an architecture with three different layers as shown in Figure
??:

• Presenters: Presenters define the interaction logic and manipulate do-
main objects. They access backend widgets but via an API that is speci-
fied by Adapters.

• Adapters: Adapters are objects exposing low-level backend widgets.
They are a bridge between presenters and low-level widgets.

• Backend widgets. Backend widgets are plain widgets that can be used
without Spec.

49

Testing Spec applications

SpPresenterSpApplication SpAbstractWidget
Presenter

SpListPresenter

MyUIPresenter

SpButtonPresenter

SpMorphicButton
Adapter

SpAbstractMorphicAdapter

SpMorphicList
Adapter

SimpleButtonMorph FastTableMorph Backends

Adapters

YourApp

Presenters

Figure 5-1 Spec Architecture: three layers Presenters - Adapters - Backends. %

width=95&anchor=Architecture

Three roles and concerns

To help you understand the different possibilities of testing that you can en-
gage in, we identify the following roles and their related concerns.

• Spec Users. Spec users are developers who build a new application. They
define the logic of the application by assembling presenters and domain
objects. We believe that this is the role that you will play most of the
time.

• Spec Developers. Spec developers are more concerned with the develop-
ment of new Spec presenters and their link with the adapters.

• Widget Developers. Widget developers are concerned about the logic
and working of a given widget for a given backend.

Spec user perspective

We will focus on the first role. For the reader interested in the second role, the
class SpAbstractBackendForTest is a good starting place.

As a Spec user, you should consider that the backends are working and your
responsibility is to test the logic of the user interface components. You should
make sure that when the model changes, the user interface components reflect
the changes. Inversely when the user interface components change, you should
ensure that the model is updated. Let’s give an example.

50

5.2 Spec user example

5.2 Spec user example

We will test a simple spec application, as shown in Figure ??. The model for this
application is an instance of the Color class. The application shows a list of
colors from which the user can choose one. After choosing a color, the appli-
cation shows the color in a big box, and it shows the printString of the color,
together with the hexadecimal code. The application also provides two buttons
to make the chosen color lighter or darker.

Figure 5-2 A Spec application. % width=70&anchor=exampleapplication

The presenter is defined as described below. The class has six instance vari-
ables. The first five instance variables hold subpresenters that compose the
application window. The sixth instance variable holds the color that serves as
the model of the application.

SpPresenter << #ColorChooser
slots: { #colorList . #colorDetails . #colorBox . #lighterButton .

#darkerButton . #currentColor };
package: 'CodeOfSpec20Book'

The method initializePresenters initializes the subpresenters. colorList
holds a list presenter with the colors. colorBox displays the chosen color in a

51

Testing Spec applications

SpRoassalPresenter. colorDetails holds a text presenter that shows infor-
mation about the color. lighterButton and darkerButton are the buttons to
make the current color lighter or darker.

ColorChooser >> initializePresenters

colorList := self newList
display: [:color | ''];
displayBackgroundColor: [:color | color];
yourself.

colorBox := self instantiate: SpRoassalPresenter.
lighterButton := self newButton

label: 'Lighter';
action: [self lighter];
yourself.

darkerButton := self newButton
label: 'Darker';
action: [self darker];
yourself.

colorDetails := self newText

currentColor is not initialized by initializePresenters. It is initialized in
setModelBeforeInitialization: because a color can be given when creat-
ing a new ColorChooser instance.

ColorChooser >> setModelBeforeInitialization: aColor

currentColor := aColor

defaultLayout defines the layout with a left side and a right side. The left
side is the color list. The right side consists of the color box, the two buttons,
and the color details. Composition with horizontal and vertical BoxLayouts,
together with a 5-pixel spacing, results in the window shown in Figure ??.

ColorChooser >> defaultLayout

| colorBoxAndDetails buttons |
buttons := SpBoxLayout newLeftToRight

spacing: 5;
add: lighterButton;
add: darkerButton;
yourself.

colorBoxAndDetails := SpBoxLayout newTopToBottom
spacing: 5;
add: colorBox;
add: buttons expand: false;
add: colorDetails;
yourself.

52

5.2 Spec user example

^ SpBoxLayout newLeftToRight
spacing: 5;
add: colorList expand: false;
add: colorBoxAndDetails;
yourself

initializeWindow: sets the title and the initial dimensions of the window.

ColorChooser >> initializeWindow: aWindowPresenter

aWindowPresenter
title: 'Color Chooser';
initialExtent: 400@294

Connecting the subpresenters is expressed easily. When a selection in the color
list is made, the color is updated.

ColorChooser >> connectPresenters

colorList whenSelectionChangedDo: [:selection |
self updateColor: selection selectedItem]

connectPresenters delegates to updateColor: to update the color box and
the color details. As you can see, updateColor: takes care of a possible nil
value for currentColor.

ColorChooser >> updateColor: color

| details |
currentColor := color.
colorBox canvas
background: (currentColor ifNil: [Color transparent]);
signalUpdate.

details := currentColor
ifNil: ['']
ifNotNil: [self detailsFor: currentColor].

colorDetails text: details

updateColor: delegates the responsability of producing the text with color
details to detailsFor:.

ColorChooser >> detailsFor: color

^ String streamContents: [:stream |
stream

print: color; cr; cr; nextPut: $#;
nextPutAll: color asHexString]

We also define updatePresenter to set the initial state of the subpresenters. It
populates the color list with default colors, as defined by defaultColors, and

53

Testing Spec applications

the initial color is set with updateColor:.

ColorChooser >> updatePresenter

| initialColor |
initialColor := currentColor.
colorList items: self defaultColors.
self updateColor: initialColor

Note that keeping the initial color with initialColor := currentColor is
necessary because colorList items: self defaultColors resets the se-
lection in the list, which triggers the block in connectPresenters. That block
sends updateColor: nil because there is no selection. So this method keeps
the initial color and applies it with self updateColor: initialColor.

To keep things simple, defaultColors answers only a handful of colors. This
method can be changed easily to answer a different collection of colors. For
instance, you could try Color red wheel: 20.

ColorChooser >> defaultColors

^ {
Color red .
Color orange .
Color yellow .
Color green .
Color magenta .
Color cyan .
Color blue .
Color purple .
Color pink .
Color brown .
Color white .
Color gray .
Color black }

There are only two methods missing from the code above to complete the class
implementation. initializePresenters sets actions for the buttons, which
invoke the following two methods. These methods delegate to updateColor:
to do the heavy lifting.

ColorChooser >> lighter

self updateColor: currentColor lighter

ColorChooser >> darker

self updateColor: currentColor darker

54

5.3 Tests

With the code above in place, we can open the application. Let’s start with
opening the default with:

ColorChooser new open

In this case, there is no initial color, which results in the window shown in Fig-
ure ??. The color box does not show a color and the color details are empty.

Figure 5-3 The default ColorChooser. % width=70&anchor=defaultapplication

Let’s see what happens when we provide a color with:

(ColorChooser on: Color yellow) open

In this case, yellow is given as the initial color that should be shown when the
window opens. Note that on: has not been defined as a class method by Col-
orChooser. The class method is inherited from the superclass SpAbstractP-
resenter. The result is shown in Figure 5-4.

5.3 Tests

With all the code in place, it is time to write some tests. First, we define the test
class.

55

Testing Spec applications

Figure 5-4 The ColorChooser opened on the color yellow.

TestCase << #ColorChooserTest
slots: { #chooser };
package: 'CodeOfSpec20Book'

Each test will open a new instance of ColorChooser. It is expected that the
instance variable chooser will hold the instance used in a test. To ensure that
the instance is cleaned up, we define tearDown. It takes into account that a test
can fail before chooser is bound to an instance of ColorChooser.
ColorChooserTest >> tearDown

chooser ifNotNil: [chooser delete].
super tearDown

With that infrastructure in place, we can write our tests.

Opening the default application

Our first test describes the state of the application after opening the default
application.

ColorChooserTest >> testDefault
"When a ColorChooser opens without a color,
the color box shows a transparent color and the details are empty."

chooser := ColorChooser new.
chooser open.

56

5.3 Tests

self assert: chooser boxColor equals: Color transparent.
self assert: chooser detailsText equals: ''

We have to add a few so-called ’test support’ methods to make this work. These
methods belong to the test api of the ColorChooser, because they are intended
to be used for testing purposes only.

ColorChooser >> boxColor

^ colorBox canvas color

ColorChooser >> detailsText

^ colorDetails text

Correct initialization

The second test describes the state of the application after opening the appli-
cation with a color.

ColorChooserTest >> testInitialization
"When a ColorChooser opens on a color,
the color box shows that color
and the details show the print string and the HEX code."

chooser := ColorChooser on: Color palePeach.
chooser open.

self assert: chooser boxColor equals: Color palePeach.
self assert: chooser detailsText equals: 'Color palePeach\\#FFEDD5'

withCRs

Choosing a color

The third test describes what happens when the user chooses a color.

First, the test selects the first color in the list and verifies the state of the subp-
resenters. Then it selects the seventh color in the list and verifies the expected
state changes in the subpresenters.

ColorChooserTest >> testChooseColor
"When the user chooses a color in the list,
the color box shows the color
and the details show the print string and the HEX code."

chooser := ColorChooser new.
chooser open.

chooser clickColorAtIndex: 1.

57

Testing Spec applications

self assert: chooser boxColor equals: Color red.
self assert: chooser detailsText equals: 'Color red\\#FF0000'

withCRs.

chooser clickColorAtIndex: 7.
self assert: chooser boxColor equals: Color blue.
self assert: chooser detailsText equals: 'Color blue\\#0000FF'

withCRs

This test uses an extra test support method to click on a color in the list.

ColorChooser >> clickColorAtIndex: index

colorList clickAtIndex: index

Making the current color lighter

Now it is time to describe the application behavior after clicking the ’Lighter’
button.

The test consists of four parts. First, the first color in the list is clicked. That
results in an update of the color box and the color details. After a click on the
button, the test verifies the changed state of the color box and the color de-
tails. Then it clicks the button a second time to describe that the current color
can be made lighter over and over again. Finally, the test selects the seventh
color in the list and verifies the expected state changes in the subpresenters.

ColorChooserTest >> testLighter
"When the user presses the 'Lighter' button,
the color box shows the ligher color
and the details show the print string and the HEX code."

chooser := ColorChooser new.
chooser open.

chooser clickColorAtIndex: 1.
chooser clickLighterButton.
self

assert: chooser boxColor
equals: (Color r: 1.0 g: 0.030303030303030304 b:
0.030303030303030304 alpha: 1.0).

self
assert: chooser detailsText
equals: '(Color r: 1.0 g: 0.030303030303030304 b:
0.030303030303030304 alpha: 1.0)\\#FF0707' withCRs.

chooser clickLighterButton.
self

58

5.3 Tests

assert: chooser boxColor
equals: (Color r: 1.0 g: 0.06060606060606061 b:
0.06060606060606061 alpha: 1.0).

self
assert: chooser detailsText
equals: '(Color r: 1.0 g: 0.06060606060606061 b:
0.06060606060606061 alpha: 1.0)\\#FF0F0F' withCRs.

chooser clickColorAtIndex: 7.
chooser clickLighterButton.
self
assert: chooser boxColor
equals: (Color r: 0.030303030303030304 g: 0.030303030303030304 b:
1.0 alpha: 1.0).

self
assert: chooser detailsText
equals: '(Color r: 0.030303030303030304 g: 0.030303030303030304 b:
1.0 alpha: 1.0)\\#0707FF' withCRs

As the other tests, this test requires an extra test support method.

ColorChooser >> clickLighterButton

lighterButton click

Making the current color darker

This test is very similar to the previous test. Instead of clicking the ’Lighter’
button, this test clicks the ’Darker’ button.

ColorChooserTest >> testDarker
"When the user presses the 'Darker' button,
the color box shows the darker color
and the details show the print string and the HEX code."

chooser := ColorChooser new.
chooser open.

chooser clickColorAtIndex: 1.
chooser clickDarkerButton.
self
assert: chooser boxColor
equals: (Color r: 0.9198435972629521 g: 0.0 b: 0.0 alpha: 1.0).

self
assert: chooser detailsText
equals: '(Color r: 0.9198435972629521 g: 0.0 b: 0.0 alpha:
1.0)\\#EB0000' withCRs.

59

Testing Spec applications

chooser clickDarkerButton.
self

assert: chooser boxColor
equals: (Color r: 0.8396871945259042 g: 0.0 b: 0.0 alpha: 1.0).

self
assert: chooser detailsText
equals: '(Color r: 0.8396871945259042 g: 0.0 b: 0.0 alpha:
1.0)\\#D60000' withCRs.

chooser clickColorAtIndex: 7.
chooser clickDarkerButton.
self

assert: chooser boxColor
equals: (Color r: 0.0 g: 0.0 b: 0.9198435972629521 alpha: 1.0).

self
assert: chooser detailsText
equals: '(Color r: 0.0 g: 0.0 b: 0.9198435972629521 alpha:
1.0)\\#0000EB' withCRs

Again, this test requires an extra test support method.

ColorChooser >> clickDarkerButton

darkerButton click

Verifying window properties

Now we want to check that the window is built correctly. We will verify that the
title and the initial extent of the window are correct.

ColorChooserTest >> testInitializeWindow

| window |
chooser := ColorChooser new.
window := chooser open.
self assert: window isBuilt.
self assert: window title equals: 'Color Chooser'.
self assert: window initialExtent equals: 400@294

5.4 Testing your application

In Spec, an application is responsible to run and gather the windows of your
application. The pattern is to override the startmethod of your application.
The method start is a hook method that is invoked when you execute your
application using the runmessage as in ColorChooserApplication new run.

60

5.4 Testing your application

It is important to see that in the startmethod you should configure the pre-
senter you are opening so that it knows its application. This is important so
that the application knows the windows it is opening.

In a TDD fashion, we define the test class first:

TestCase << #ColorChooserApplicationTest
slots: { #application };
package: 'CodeOfSpec20Book'

ColorChooserApplicationTest >> setUp

super setUp.
application := ColorChooserApplication new

ColorChooserApplicationTest >> tearDown

application ifNotNil: [application closeAllWindows].
super tearDown

ColorChooserApplicationTest >> testWindowRegistration

self assert: application windows size equals: 0.
application start.
self assert: application windows size equals: 1.
application start.
self assert: application windows size equals: 2

testWindowRegistration describes the expected behaviour of our applica-
tion. When opened windows are correctly registered, the application should
have access to all the opened windows. The test opens two windows and veri-
fies that the number of windows increases.

The test fails, because ColorChooserApplication does not exist yet. Let’s
define it:

SpApplication << #ColorChooserApplication
slots: {};
package: 'CodeOfSpec20Book'

The test still fails. It fails in the second assert because the application does not
register the open windows. Let’s implement the startmethod to register the
windows.

ColorChooserApplication >> start

ColorChooser new
application: self;
open

Tada! The test passes.

61

Testing Spec applications

5.5 Known limitations and conclusion

In this chapter we showed that you can take advantage of Spec to define tests
that will help you to evolve the visual part of your application. This is really
key for modern software development and to lower your stress in the future.
So take advantage of agile development.

Currently, Spec does not offer a way to script and control popup windows. It is
not possible to script a button that opens a dialog for a value. Future versions
of Spec should cover this missing feature.

62

CHA P T E R6
The dual aspects of presenters:

Domain and interaction model

A presenter has a dual role in Spec. On the one hand, it acts as the glue be-
tween domain objects and widgets, and on the other hand, it implements the
user interface logic by connecting subpresenters together. These two aspects
compose the core of a presenter and this is what this chapter describes.

We start by presenting an important aspect of presenters: the way they handle
communication with domain objects that here we call a model.

In this chapter, we visit the key aspects of Spec and put the important cus-
tomization points of its building process in perspective.

6.1 About presenters on a model

Frequently you want to open a presenter on a given object such as your list of
to-do items. In that case, you would like the subpresenters (list, text,..) to be
initialized based on the object that you passed. For example, you may want to
get all the items in your basket.

However, simply instantiating a presenter using the message new and passing
the object will not work because messages such as initializePresenters will
be already sent.

There are two ways to address this situation in Spec and in particular, Spec
offers a special presenter called SpPresenterWithModel. Let us explain how
to take advantage of it.

63

The dual aspects of presenters: Domain and interaction model

We will build the simplest example to show how to do it. We will implement
a presenter that lists the method signatures of a class, first using a presenter
inheriting from the default superclass (SpPresenter) and second using a pre-
senter (subclass of SpPresenterWithModel) dedicated to handling a model.

6.2 Example with SpPresenter

If you do not need to react to model changes, you can simply inherit from SpP-
resenter, override the setModelBeforeInitialization: method to set your
domain object, and use YourPresenter on: yourDomainObject to instanti-
ate it.

This is exactly what we do hereafter.

First, we create a new presenter class.

SpPresenter << #MethodLister
slots: { #sourceClass . #list};
package: 'Spec2Book'

We define a list presenter and populate it.

MethodLister >> initializePresenters

list := self newList.
list items: sourceClass selectors sorted

Specializing the method setModelBeforeInitialization:, we assign its ar-
gument coming from the on: message to the instance variable sourceClass
for future use.

MethodLister >> setModelBeforeInitialization: aModel

sourceClass := aModel

We define a basic layout for the list presenter.

MethodLister >> defaultLayout

^ SpBoxLayout newTopToBottom
add: #list;
yourself

The following snippet opens a window with the list of methods of the class
Point as shown in Figure ??.

(MethodLister on: Point) open.

64

6.3 SpPresenter vs. SpPresenterWithModel

Figure 6-1 A simple list of sorted selectors of the class Point. %anchor=pointselec-

tors&width=45

6.3 SpPresenter vs. SpPresenterWithModel

The key difference between using SpPresenter and SpPresenterWithModel
is if you need to react to changes of the model. We mean that while the presen-
ter is open, an event changes the model that was used to build the UI. In our
example, that means that when you change the class, the method list displays
its selectors. If you need this behavior, then you should use SpPresenterWith-
Model.

The following snippet shows that the change of model is not taken into account
in the sense that the list is not refreshed and still displays methods of the class
Point, while the methods of the class ‘Rectangle should be displayed.

| lister |
lister := MethodLister on: Point.
lister open.
lister class: Rectangle

65

The dual aspects of presenters: Domain and interaction model

6.4 Example with SpPresenterWithModel

A presenter may also have a model that is a domain object you need to interact
with to display or update data. In that case, you should inherit from SpPre-
senterWithModel so that the presenter keeps a reference to the domain ob-
ject and manages its changes. As a client of this presenter, we use the message
model: to change the model.

The method is inherited from the superclass. This model: method implements
the following behavior:

• If the domain object is an instance of Model, it is stored as is in the pre-
senter.

• Else a value holder is created to hold the domain object so that you can
be notified when the domain object used by the presenter changes.

You do not need to define the method setModelBeforeInitialization: as
we previously showed.

Let us revisit our little example. First, we inherit from SpPresenterWith-
Model.

SpPresenterWithModel << #MethodListerWithModel
slots: { #list };
package: 'Spec2Book'

Second, we define initializePresenters.

MethodListerWithModel >> initializePresenters

list := self newList

You can then implement the modelChangedmethod to refresh your UI when
the model changes.

MethodListerWithModel >> modelChanged

list items: self model selectors sorted

We define the same layout method as before:

MethodListerWithModel >> defaultLayout

^ SpBoxLayout newTopToBottom
add: #list;
yourself

Now we can open our widget. As the following script shows, it will react to the
change of the model (see Figure ??).

66

6.4 Example with SpPresenterWithModel

Figure 6-2 A simple list of sorted selectors changing based on its model. %an-

chor=pointRectangeSelectors&width=90

| lister |
lister := MethodListerWithModel on: Point.
lister open.
lister model: Rectangle

Note that the right way to create a presenter is to use the method newAppli-
cation: anApplication because it ensures that the application knows its
constituents.

So the code above should be:

| lister app |
app := SpApplication new
lister := MethodListerWithModel newApplication: app.

Then we have a problem because we want to specify the model too. The correct
and idiomatic way is to use the method newApplication:model: so the final
code version is:

| lister |
app := SpApplication new.
lister := MethodListerWithModel newApplication: app model: Point.
lister open.
lister model: Rectangle

You saw that you can easily build an application user interface populated from
a model and reacting to model changes.

Now we will focus on the user interface logic modeling.

67

The dual aspects of presenters: Domain and interaction model

6.5 User interface building: a model of UI presentation

A key aspect of Spec is that all user interfaces are constructed through the
reuse and composition of existing user interfaces. To allow this, defining a user
interface consists of defining the model of the user interface, and not the user
interface elements that will be shown on screen. These UI elements are instan-
tiated by Spec, taking into account the underlying UI framework.

In the end, it is the presentation model and the UI elements that make up the
resulting user interface that is shown. This composition of the presentation
models is represented as a Presenter object as in Model-View-Presenter. The
presenter that is defined in Spec corresponds to a presenter in the MVP triad
as shown in Figure ??.

subPresenters
parent

Presenter

Model

Widgets

Figure 6-3 A presenter is a model of presentation: It is in relationships with the

widgets and its domain model. It composes other presenters to form a presenter

tree. %anchor=mvpfig&width=60

To define a new user interface, the developer should create a subclass of SpP-
resenter.

Fundamentally, it is built around three concerns that materialize themselves as
the following three methods in SpPresenter:

• The method initializePresenters treats the subpresenters them-
selves.

• The method connectPresenters treats the interactions between the
subpresenters.

• The method defaultLayout treats the layout of the subpresenters.

Hence, these methods are typically found in the model of each user interface.
You can read the code of the small interface presented in Chapter 2 to get ex-
amples of each of the points we will present now.

In this chapter, we describe the finer points of each method and how these
three methods work together to build the overall UI.

68

6.6 The initializePresenters method

6.6 The initializePresentersmethod

The method initializePresenters instantiates, holds in instance variables,
and partially configures the different widgets that will be part of the UI.

The instantiation of the presentation models will cause the instantiation and
initialization of the different lower-level user interface components, construct-
ing the UI that is shown to the user. The first part of the configuration of each
widget is specified in initializePresenters as well.

The focus of this method is to specify what the widgets will look like and what
their self-contained behavior is. The behavior to update the model state, e.g.,
when pressing a Save button, is described in this method as well. It is explic-
itly not the responsibility of this method to define the interactions between the
widgets.

In general, the initializePresentersmethod should follow the pattern:

• Widget instantiation

• Widget configuration

• Specification of focus order

The last step is not mandatory since the focus order is by default given by the
order of declaration of the subpresenters.

Note. Specifying the method initializePresenters is mandatory, as without
it the UI would have no widgets.

Subpresenter instantiation

The instantiation of a subpresenter (i.e., the model for a widget composing the
UI) can be done in two ways: through the use of a creation method or through
the use of the instantiate: method.

• Considering the first option, the framework provides unary messages
for the creation of all basic widgets. The format of these messages is
new[Widget], for example, newButton creates a button widget, and
newList creates a list widget. The complete list of available widget cre-
ation methods can be found in the class SpPresenter in the protocol
scripting - widgets.

• The second option is more general: to reuse a SpPresenter subclass
(other than the ones handled by the first option), the widget needs to
be instantiated using the instantiate: method. For example, to reuse a
MessageBrowser presenter, the code is self instantiate: Message-
Browser. The instantiate: method has the responsibility to build an
internal parent presenter tree.

69

The dual aspects of presenters: Domain and interaction model

6.7 The connectPresentersmethod

The method connectPresenters defines the interactions between the differ-
ent widgets. By connecting the behaviors of the different widgets, it specifies
the overall presentation, i.e., how the overall UI responds to interactions by the
user. Usually, this method consists of specifications of actions to perform when
a certain event is received by a widget. The whole interaction flow of the UI
then emerges from the propagation of those events.

Note. The method connectPresenters is an optional method for a Spec UI,
but we recommend to separate this behavior clearly.

In Spec, the different UI models are contained in value holders, and the event
mechanism relies on the announcements from these value holders to manage
the interactions between widgets.

Value holders provide the method whenChangedDo: that is used to register a
block to perform on change, and the method whenChangedSend: aSelector
to: aReceiver to send a message to a given object. In addition to these primi-
tive methods, the basic widgets provide more specific hooks, e.g., when an item
in a list is selected (whenSelectionChangedDo:).

6.8 The defaultLayout method

Widget layout is defined by specifying methods that state how the different
widgets are placed in the UI. In addition, it also specifies how a widget reacts
when the window is resized. As we will see later, these methods can have dif-
ferent names.

The method defaultLayout is an instance method, but it can be also defined
at the class level. Put differently, typically all the instances of the same user
interface have the same layout, but a layout can be specific to one instance and
be dynamic.

Note. Specifying a layout is mandatory, as without it the UI would show no
widgets to the user.

Using setter message layout:

We recommend to clearly separate presenter initialization (initializePresenters
and defaultLayout). You can, however, also use the layout: message to set a
layout during the presenter initialization phase.

70

6.9 Conclusion

Multiple layouts for a widget

For the same UI, multiple layouts can be described, and when the UI is built,
the use of a specific layout can be indicated. To do this, instead of calling open
(as we have done until now), use the openWithLayout: message with a layout
as an argument.

6.9 Conclusion

In this chapter, we have given a more detailed description of how the three
fundamental methods of Spec, initializePresenters, defaultLayout, and
connectPresenters, are each responsible for a different aspect of the user
interface building process.

Although reuse is fundamental in Spec, we did not explicitly treat it in this
chapter. Instead, we refer to the next chapter for more information.

71

CHA P T E R7
Reuse and composition at work

A key design goal of Spec is to enable the seamless reuse of user interfaces. The
reason for this is that it results in a significant productivity boost when creat-
ing user interfaces.

This focus on reuse was actually already visible in the previous chapters, where
we have seen that basic widgets can be used as if they were complete user in-
terfaces. In this section we focus on the reuse and composition of presenters,
showing that it basically comes for free. The only requirement when building
a UI is to consider how the user interface should be parameterized when it is
being reused.

Said differently, in this chapter, you will learn how you can build a new UI by
reusing already defined elements.

7.1 First requirements

To show how Spec enables the composition and reuse of user interfaces, in this
chapter we build the user interface shown in Figure ?? as a composition of four
parts:

1. TheWidgetClassListPresenter: a widget containing a SpListPresenter
specifically for displaying the subclasses of SpAbstractWidgetPresen-
ter.

2. The ProtocolMethodListPresenter: a widget composed of a SpListPre-
senter and a SpLabelPresenter for displaying methods of a protocol.

73

Reuse and composition at work

Figure 7-1 ProtocolCodeBrowser: Browsing the public APIs of widgets.

%width=80&anchor=figprotocolbrowser&label=figprotocolbrowser

3. The ProtocolViewerPresenter: a composition of one WidgetClassList-
Presenter and two ProtocolMethodListPresenter. It allows browsing
the methods of all subclasses of SpAbstractWidgetPresenter.

4. The ProtocolCodeBrowserPresenter: reuses a ProtocolViewerP-
resenter, changes its layout, and adds a SpTextPresenter to see the
source code of the methods.

7.2 Creating a basic UI to be reused as a widget

The first UI we build displays a list of all subclasses of the class SpAbstractWid-
getPresenter. This UI will later be reused as a widget for a more complete UI.
The code is as follows.

First, we create a subclass of SpPresenter with one instance variable list
which will hold an instance of SpListPresenter.

SpPresenter << #WidgetClassListPresenter
slots: { #list };
package: 'CodeOfSpec20Book'

In the method initializePresenters, we create the list and populate it with
the required classes, in alphabetical order.

74

7.3 Supporting reuse

WidgetClassListPresenter >> initializePresenters

list := self newList.
list items: (SpAbstractWidgetPresenter allSubclasses sorted: [:a :b

| a name < b name]).
self focusOrder add: list

We also add a title for the window.

WidgetClassListPresenter >> initializeWindow: aWindowPresenter

aWindowPresenter title: 'Widgets'

The layout contains only the list.

WidgetClassListPresenter >> defaultLayout

^ SpBoxLayout newLeftToRight
add: #list;
yourself

When doing WidgetClassListPresenter new open, you should see the UI
shown in Figure ??.

7.3 Supporting reuse

Since this UI will later be used together with other widgets to provide a more
complete user interface, some actions will need to occur when a list item is
clicked. However, we cannot know beforehand what all these possible actions
will be everywhere that it will be reused. Therefore the best solution is to place
this responsibility on the reuser of the widget. Every time this UI is reused as
a widget, it will be configured by the reuser. To allow this, we add a configura-
tion method named whenSelectionChangedDo: as follows:

WidgetClassListPresenter >> whenSelectionChangedDo: aBlock

list whenSelectionChangedDo: aBlock

Now, whoever reuses this widget can parameterize it with a block that will be
executed whenever the selection changes.

7.4 Combining two basic presenters into a reusable UI

The UI we build next will show a list of all methods of a given protocol, and it
combines two widgets: a list and a label. Considering reuse, there is no differ-
ence from the previous UI. This is because the reuse of a UI as a widget is not

75

Reuse and composition at work

Figure 7-2 WidgetClassListPresenter. %anchor=WidgetClassList&width=50

impacted at all by the number of widgets it contains (nor by their position).
Large and complex UIs are reused in the same way as simple widgets.

SpPresenter << #ProtocolMethodListPresenter
slots: { #label . #methods };
package: 'CodeOfSpec20Book'

The initializePresentersmethod for this UI is straightforward. We specify
the default label text as ’Protocol’, which will be changed when the widget is
reused.

ProtocolMethodListPresenter >> initializePresenters

methods := self newList.
methods display: [:m | m selector].
label := self newLabel.
label label: 'Protocol'.
self focusOrder add: methods

To make sure that we have a nice title when the widget is opened in a window,
we define the method initializeWindow:.

76

7.4 Combining two basic presenters into a reusable UI

ProtocolMethodListPresenter >> initializeWindow: aWindowPresenter

aWindowPresenter title: 'Protocol widget'

The layout code builds a column with the label above the method list.

ProtocolMethodListPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: #label;
add: #methods;
yourself

This UI can be seen by executing ProtocolMethodList new open. As shown
in Figure ?? the list is empty and the result is not really nice. This is normal
because we did not set any items. We should also place the elements better.

Figure 7-3 ProtocolMethodListPresenter with bad layout. % width=50&anchor=fig-

protocollist

77

Reuse and composition at work

ProtocolMethodListPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: #label expand: false;
add: #methods;
yourself

Now you should get a better UI as shown in Figure ??.

Figure 7-4 ProtocolMethodListPresenter with nicer layout. % width=50&an-

chor=figprotocollist2

Our protocol method list needs to be configured when it is used, by filling the
list of methods and specifying what the name of the protocol is. To allow this,
we add some configuration methods:

ProtocolMethodListPresenter >> items: aCollection

methods items: aCollection

ProtocolMethodListPresenter >> label: aText

label label: aText

78

7.5 Live inspection of the widgets

ProtocolMethodListPresenter >> resetSelection

methods selection unselectAll

ProtocolMethodListPresenter >> whenSelectionChangedDo: aBlock

methods whenSelectionChangedDo: aBlock

7.5 Live inspection of the widgets

Now we can check manually if the widget is working by doing:

ProtocolMethodListPresenter new open; inspect

Then in the inspector, we can use the newly created presenter to pass a collec-
tion of methods. See the result in Figure ??.

self items: Point methods

Figure 7-5 Live coding your widgets. % width=90&anchor=figinspectingLive

79

Reuse and composition at work

Now we can play and for example, decide to sort the items as follows:

self items: (Point methods sort: #selector ascending)

7.6 Writing tests

When we start to feel the need to check manually what we have done, that is
a sign that we should write a test instead. It is easy to write simple tests for
widgets when we do not use popups. So let’s take advantage of that.

We add an accessor to access the method list.

ProtocolMethodListPresenter >> methods

^ methods

TestCase << #ProtocolMethodListPresenterTest
slots: {};
package: 'CodeOfSpec20Book'

ProtocolMethodListPresenterTest >> testItems

| proto methods |
methods := Point methods sort: #selector ascending.
proto := ProtocolMethodListPresenter new.
proto items: methods.
self assert: proto methods items first class equals: CompiledMethod.
self assert: proto methods items first selector equals: methods

first selector

We hope that we convinced you that writing simple UI tests is easy with Spec.
Do not miss this opportunity to control the complexity of your software.

7.7 Managing three widgets and their interactions

The third user interface we build is a composition of the two previous user in-
terfaces. We will see that there is no difference between configuring custom
UIs and configuring system widgets: both kinds of widgets are configured by
calling methods of the ’api’ protocol.

This UI is composed of a WidgetClassListPresenter and two Protocol-
MethodListPresenters. It specifies that when a model class is selected in
the WidgetClassListPresenter, the methods in the protocols ’api’ and ’api-
events’ will be shown in the two ProtocolMethodListPresenter widgets.

SpPresenter << #ProtocolViewerPresenter
slots: { #models . #api . #events };
package: 'CodeOfSpec20Book'

80

7.7 Managing three widgets and their interactions

The initializePresentersmethod shows the use of instantiate: to in-
stantiate widgets, and some of the different parameterization methods of the
ProtocolMethodListPresenter class.

ProtocolViewerPresenter >> initializePresenters

models := self instantiate: WidgetClassListPresenter.
api := self instantiate: ProtocolMethodListPresenter.
events := self instantiate: ProtocolMethodListPresenter.

api label: 'api'.
events label: 'api-events'.

self focusOrder
add: models;
add: api;
add: events

ProtocolViewerPresenter >> initializeWindow: aWindowPresenter

aWindowPresenter title: 'Protocol viewer'

To describe the interactions between the different widgets we define the con-
nectPresentersmethod. It specifies that when a class is selected, the selec-
tions in the method lists are reset and both method lists are populated. Ad-
ditionally, when a method is selected in one method list, the selection in the
other list is reset.

ProtocolViewerPresenter >> connectPresenters

models whenSelectionChangedDo: [:selection |
| class |
api resetSelection.
events resetSelection.
class := selection selectedItem.
class

ifNil: [
api items: #().
events items: #()]

ifNotNil: [
api items: (self methodsIn: class for: 'api').
events items: (self methodsIn: class for: 'api - events')]].

api whenSelectionChangedDo: [:selection |
selection selectedItem ifNotNil: [events resetSelection]].

events whenSelectionChangedDo: [:selection |
selection selectedItem ifNotNil: [api resetSelection]]

81

Reuse and composition at work

ProtocolViewerPresenter >> methodsIn: class for: protocol

^ (class methodsInProtocol: protocol)
sorted: [:a :b | a selector < b selector]

Lastly, the layout puts the subpresenters in one column, with all subpresenters
taking the same amount of space.

ProtocolViewerPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: #models;
add: #api;
add: #events;
yourself

As previously, the result can be seen by executing the following snippet of
code. The result is shown in Figure ??.

ProtocolViewerPresenter new open

This user interface is functional. Clicking on a class will show the methods of
the ’api’ and the ’api-events’ protocols of that class.

7.8 Having different layouts

Note that you can change the layout as follows to get all the widgets in a row
as shown in Figure ??. We will show later that a presenter can have multiple
layouts and that the programmer decides which one to use.

We can do better. Let us define two methods as follows:

ProtocolViewerPresenter >> horizontalLayout

^ SpBoxLayout newLeftToRight
add: #models;
add: #api;
add: #events;
yourself

ProtocolViewerPresenter >> verticalLayout

^ SpBoxLayout newTopToBottom
add: #models;
add: #api;
add: #events;
yourself

82

Figure 7-6 ProtocolViewerPresenter in vertical mode. % width=50&anchor=figPro-

tocolViewerVertical

Reuse and composition at work

ProtocolViewerPresenter >> defaultLayout

^ self verticalLayout

Now we can decide to open the viewer with different layouts using the message
openWithLayout: as follows. See Figure ?? for the result.

ProtocolViewerPresenter class >> exampleHorizontal

| inst |
instance := self new.
instance openWithLayout: instance horizontalLayout

Figure 7-7 ProtocolViewerPresenter in horizontal mode. %width=70&anchor=fig-

ProtocolViewerHorizontal

7.9 Enhancing our API

Similar to the second user interface, when this UI is reused it will probably
need to be configured. The relevant configuration here is what to do when a
selection change happens in any of the three lists. Hence we add the following
three methods to the ’api’ protocol.

ProtocolViewerPresenter >> whenSelectionInAPIChanged: aBlock

api whenSelectionChangedDo: aBlock

ProtocolViewerPresenter >> whenSelectionInClassChanged: aBlock

models whenSelectionChangedDo: aBlock

84

7.10 Changing the layout of a reused widget

ProtocolViewerPresenter >> whenSelectionInEventChanged: aBlock

events whenSelectionChangedDo: aBlock

Note. These methods add semantic information to the configuration API. They
state that they configure what to do when a class, ’api’, or ’api-events’ list item
has been changed. This arguably communicates the customization API more
clearly than just having the subpresenters accessible.

7.10 Changing the layout of a reused widget

Sometimes, when you want to reuse an existing UI as a widget, the layout of
that UI is not appropriate for your needs. Nonetheless Spec allows you to reuse
such a UI by overriding the layout of its widgets, and we show this here.

Our last user interface reuses the ProtocolViewerPresenter with a different
layout and adds a text zone to edit the source code of the selected method.

SpPresenter << #ProtocolCodeBrowserPresenter
slots: { #text . #viewer };
package: 'CodeOfSpec20Book'

ProtocolCodeBrowserPresenter >> initializePresenters

text := self instantiate: SpCodePresenter.
viewer := self instantiate: ProtocolViewerPresenter.
text syntaxHighlight: true.
self focusOrder
add: viewer;
add: text

ProtocolCodeBrowserPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: (SpBoxLayout newLeftToRight add: #viewer; yourself);
add: #text;
yourself

ProtocolCodeBrowserPresenter >> initializeWindow: aWindowPresenter

aWindowPresenter title: 'Spec Protocol Browser'

The connectPresentersmethod is used to make the text zone react to a selec-
tion in the lists. When a method is selected, the text zone updates its contents
to show the source code of the selected method.

85

Reuse and composition at work

ProtocolCodeBrowserPresenter >> connectPresenters

viewer whenSelectionInClassChanged: [:selection |
text behavior: selection selectedItem].

viewer whenSelectionInAPIChanged: [:selection |
selection selectedItem

ifNotNil: [:item | text beForMethod: item; text: item
sourceCode]].

viewer whenSelectionInEventChanged: [:selection |
selection selectedItem

ifNotNil: [:item | text beForMethod: item; text: item
sourceCode]]

With the current implementation of initializePresenters, opening a win-
dow with ProtocolCodeBrowserPresenter new open results in a vertical
layout for the ProtocolViewerPresenter instance held in the viewer in-
stance variable because its default layout is the vertical layout. Our objective
was to use a different layout. That can be achieved by sending layout: to the
viewer. So let’s adapt initializePresenters that way.

initializePresenters

text := self instantiate: SpCodePresenter.
viewer := self instantiate: ProtocolViewerPresenter.
viewer layout: viewer horizontalLayout.
text syntaxHighlight: true.
self focusOrder

add: viewer;
add: text

Now a window opens as shown in Figure ??.

7.11 Changing layouts

There are different ways to configure the layout of a presenter. Let’s demon-
strate that with ProtocolViewerPresenter. The first option is using open-
WithLayout: to open a window.

presenter := ProtocolViewerPresenter new.
presenter openWithLayout: (SpBoxLayout newLeftToRight
add: #models;
add: #api;
add: #events;
yourself)

Or you can send layout to the presenter and open the window afterwards.

86

7.12 Considerations about a public configuration API

presenter := ProtocolViewerPresenter new.
presenter layout: (SpBoxLayout newLeftToRight

add: #models;
add: #api;
add: #events;
yourself).

presenter open

An alternative is to use a layout provided by the presenter, like we did in the
previous section.

presenter := ProtocolViewerPresenter new.
presenter layout: presenter horizontalLayout.
presenter open

7.12 Considerations about a public configuration API

In this chapter, we have seen several definitions of methods in the public con-
figuration API of the presenter being built. The implementation of our configu-
ration methods is simply delegated to internal widgets, but a configuration can
of course be more complex than that, depending on the internal logic of the UI.

For methods that simply delegate to the internal widgets, the question is whether
it makes sense to define these as methods in the ’api’ protocols at all. Funda-
mentally this is a design decision to be made by the programmer. Not having
such methods makes the implementation of the presenter more lightweight
but comes at the cost of less clear intent and of breaking encapsulation.

For the former cost, we have seen an example in the protocol method list of
Section 7.4. The presence of the three methods defined there communicates
to the user that we care about what to do when a class, ’api’ or ’api-events’ list
item has been changed. Fundamentally the same also holds for the other ex-
amples in this chapter: each method in an ’api’ protocol communicates an in-
tent to the reuser: this is how we expect that this presenter will be configured.
Without such declared methods, it is less clear to the reuser what can be done
to effectively reuse a presenter.

For the latter cost, expecting reusers of the widget to directly send messages
to internal objects (in instance variables) means breaking encapsulation. As a
consequence, we are no longer free to change the internals of the UI, e.g., by
renaming the instance variables to a better name or changing the kind of wid-
get used. Such changes may break reusers of the presenter and hence severely
limit how we can evolve this presenter in the future. It is safer to define a pub-
lic API and ensure in future versions of the presenter that the functionality of
this API remains the same.

87

Reuse and composition at work

So in the end it is important to consider future reusers of your UI and the fu-
ture evolution of your UI. You need to make a tradeoff between writing extra
methods and possibly making reuse of the UI harder as well as possibly making
future evolution of the UI harder.

7.13 New versus old patterns

In Spec 1.0, list presenters exposed a different API, namely whenSelecte-
dItemChanged:, as in the following example.

initializePresenters

models := self instantiate: WidgetClassListPresenter.
api := self instantiate: ProtocolMethodListPresenter.
events := self instantiate: ProtocolMethodListPresenter.

api label: 'api'.
events label: 'api-events'

connectPresenters

api whenSelectedItemChanged: [:method |
method ifNotNil: [events resetSelection]].

events whenSelectedItemChanged: [:method |
method ifNotNil: [api resetSelection]]

In Spec 2.0, list presenters and friends expose a different object that represents
the selection of the list. The design rationale is that a selection is a complex
object (single selection, multiple selection). So we have:

connectPresenters
api whenSelectionChangedDo: [:selection |

selection selectedItem ifNotNil: [events resetSelection]].
events whenSelectionChangedDo: [:selection |

selection selectedItem ifNotNil: [api resetSelection]]

The question for your presenters is what is the API that you should expose to
your users. If you like the Spec 1.0 way, that is still possible as shown below.

whenSelectedItemChangedDo: aBlock
methods whenSelectionChangedDo: [:selection |

selection selectedItem ifNotNil: [:item | aBlock value: item]]

But we advise using the Spec 2.0 way because it will give your presenters con-
sistency with the core presenters of Spec and it will be easier to make them
collaborate.

88

7.14 Conclusion

7.14 Conclusion

In this chapter, we have discussed a key point of Spec: the ability to seamlessly
reuse existing UIs as widgets. This ability comes with no significant cost to the
creator of a UI. The only thing that needs to be taken into account is how a UI
can (or should) be customized.

The reuse of complex widgets at no significant cost was a key design goal of
Spec because it is an important productivity boost for the writing process of
UIs. The boost firstly comes from being able to reuse existing nontrivial wid-
gets, and secondly because it allows you to structure your UI in coherent and
more easily manageable subparts with clear interfaces. We therefore encour-
age you to think of your UI as a composition of such subparts and construct it
modularly, to yield greater productivity.

89

CHA P T E R8
Lists, tables and trees

An important part of user interfaces is displaying lists of data. Such lists can be
structured as tables, plain lists, but also trees supporting the nesting of data.

Spec provides three main presenters: SpListPresenter, SpTreePresenter,
and SpTablePresenter. In addition, it offers SpComponentListPresenter
which allows one to embed any presenter in a list. In this chapter, we present
some of the functionality of these presenters.

8.1 Lists

Creating a list is as simple as instantiating a SpListPresenter and specifying a
list of items that the list should display. The following script illustrates this and
the result is shown in Figure ??.

SpListPresenter new
items: Collection withAllSubclasses;
open

We can change the header title of the list using the message headerTitle:.
The header title can be hidden using the message hideHeaderTitle.

8.2 Controlling item display

By default a list item is displayed using the result of the asStringOrTextmes-
sage sent to the item. We can configure a list to apply a block to control the dis-
play of each item using the message display:. The following script configures

91

Lists, tables and trees

Figure 8-1 A simple list showing class names. % width=50&anchor=figSimpleList

a list presenter to display the name of the methods of the class Point instead
of showing the result of asStringOrText. See Figure 8-2.

SpListPresenter new
items: Point methods;
display: [:item | item selector];
open

We can sort the items using the message sortingBlock:.

SpListPresenter new
items: Point methods;
display: [:item | item selector];
sortingBlock: [:a :b | a selector < b selector];
open

8.3 Decorating elements

We can configure the way items are displayed in a more finer-grained way. The
following example illustrates it. We can control the icon associated with the

92

8.4 About single/multiple selection

Figure 8-2 A simple list controlling the way items are displayed.

item using the message displayIcon:, and the item color using the message
displayColor:. The format (bold, italic, underline) can the controlled by the
corresponding messages displayItalic:, displayBold: and displayUnder-
line:. See Figure ??.

SpListPresenter new
items: Collection withAllSubclasses;
displayIcon: [:aClass | self iconNamed: aClass systemIconName];
displayColor: [:aClass |
(aClass name endsWith: 'Set')

ifTrue: [Color green]
ifFalse: [self theme textColor]];

displayItalic: [:aClass | aClass isAbstract];
displayBold: [:aClass | aClass hasSubclasses];
displayUnderline: [:aClass | aClass numberOfMethods > 10];
open

8.4 About single/multiple selection

Lists support multiple selections. The message beMultipleSelection controls
that aspect.

SpListPresenter new
items: Collection withAllSubclasses;
beMultipleSelection;
open

Since selection can hold multiple items, there is an impact on the protocol to
react to selection changes. Indeed, lists, filtering lists, trees, and tables offer
the whenSelectionChangedDo: API and not whenSelectedItemDo:. The ar-

93

Lists, tables and trees

Figure 8-3 A decorated list: icons, text styling, and color.%width=50&an-

chor=figSimpleListDecorated

gument of the block is an instance of SpSingleSelectionMode, SpMultiple-
SelectionMode, SpTreeMultipleSelectionMode or SpTreeSingleSelec-
tionMode.

Here is a typical use case of the method whenSelectionChangedDo:.

connectPresenters

changesTree whenSelectionChangedDo: [:selection | | diff |
diff := selection selectedItem

ifNil: ['']
ifNotNil: [:item | self buildDiffFor: item].

textArea text: diff]

8.5 Drag and drop

Lists and other container structures support drag and drop. The following
script shows how to configure two lists to support dragging from one and drop-

94

8.6 Activation clicks

ping in another.

| list1 list2 |
list1 := SpListPresenter new.
list1

items: #('abc' 'def' 'xyz');
dragEnabled: true.

list2 := SpListPresenter new.
list2 dropEnabled: true;

wantsDrop: [:transfer | transfer passenger allSatisfy: #isString];
acceptDrop: [:transfer | list2 items: list2 items , transfer

passenger].

SpPresenter new
layout: (SpBoxLayout newLeftToRight
add: list1;
add: list2;
yourself);

open

The following script illustrates the API.

• dragEnabled: configures the receiver to allow dragging of its items.

• dropEnabled: configures the receiver to accept dropped items.

• wantsDrop: [:transfer | transfer passenger allSatisfy:
#isString]. With the message wantsDrop: we can specify a predicate
to accept a dropped elements.

• acceptDrop: [:transfer | list2 items: list2 items , trans-
fer passenger]. The message acceptDrop: specifies the treatment
performed once the dropped items are accepted.

8.6 Activation clicks

An element on a list can be activated, meaning it will trigger an event to exe-
cute an action on it. Note that an activation is different than a selection: one
can select an element without activating it. The message activateOnDou-
bleClick configures the list to react to double click, while its counterpart is
activateOnSingleClick.

95

Lists, tables and trees

8.7 Filtering lists

Lists can also be filtered as shown in Figure ??. The following script shows the
use of the SpFilteringListPresenter.

SpFilteringListPresenter new
items: Collection withAllSubclasses;
open;
withWindowDo: [:window |

window title: 'SpFilteringListPresenter example']

Figure 8-4 A filtering list with bottom filter. % width=50&anchor=figFiltering

The following script shows that the filter can be placed at the top.

SpFilteringListPresenter new
items: Collection withAllSubclasses;
openWithLayout: SpFilteringListPresenter topLayout;
withWindowDo: [:window |

window title: 'SpFilteringListPresenter example']

Note that a filter can be declared upfront using the message applyFilter:.

96

8.8 Selectable filtering lists

SpFilteringListPresenter new
items: Collection withAllSubclasses;
openWithLayout: SpFilteringListPresenter topLayout;
applyFilter: 'set';
withWindowDo: [:window |
window title: 'SpFilteringListPresenter prefiltered example']

8.8 Selectable filtering lists

Often lists are used to select items. This is what the class SpFilteringSe-
lectableListPresenter offers. In addition to being able to filter items, it
lets the user select items by ticking them as shown by Figure ??.

Figure 8-5 A selectable filtering list with a filter at the top. % width=50&an-

chor=figSelectable

The following script produces this situation.

(SpFilteringSelectableListPresenter new
items: Collection withAllSubclasses;
layout: SpFilteringListPresenter topLayout;
applyFilter: 'set';

97

Lists, tables and trees

asWindow)
title: 'SpFilteringSelectableListPresenter example';
open

8.9 Component lists

While the lists we saw until now are homogeneous in the sense that they all
display strings, Spec offers the possibility to display a list of presenters. It
means that elements in the list do not have the same size and can contain
other presenters.

This lets developers produce advanced user interfaces such as the one of the
report builder of the ModMoose tool suite shown in Figure ??.

Figure 8-6 An example of a component list from the ModMoose plat-

form.%width=80&anchor=figModMoose

The following script shows how to define a SpComponentListPresenter as
shown in Figure ??.

| list |
list := {
(SpLabelPresenter new

label: 'Test 1';
yourself).

(SpImagePresenter new

98

8.10 Trees

image: (self iconNamed: #smallOk);
yourself).

(SpButtonPresenter new
label: 'A button';
yourself).

(SpImagePresenter new
image: PolymorphSystemSettings pharoLogo asForm;
yourself) }.

SpComponentListPresenter new
presenters: list;
open

Figure 8-7 A component list with several different presenters: a label, an image, a

button, and an image. %width=45&anchor=figCompo

8.10 Trees

Spec offers also trees. The following script shows how to list all the classes of
Pharo using inheritance as shown by Figure ??.

99

Lists, tables and trees

Figure 8-8 A Tree. % width=45&anchor=figTreeExpanded

SpTreePresenter new
roots: { Object };
children: [:aClass | aClass subclasses];
displayIcon: [:aClass | self iconNamed: aClass systemIconName];
display: [:aClass | aClass name];
expandPath: #(1 1 3);
open

The message expandPath: shows that we can expand a specific item by a path.

The following script shows how to use a dynamic context menu. This is a dy-
namic menu because its content is recalculated. The dynamic aspect is ex-
pressed by a block. Figure ?? shows the result.

| tree |
tree := SpTreePresenter new.
tree roots: { Object };
children: [:aClass | aClass subclasses];
displayIcon: [:aClass | self iconNamed: aClass systemIconName];
display: [:aClass | aClass name];
contextMenu: [

100

8.10 Trees

Figure 8-9 A tree with a menu. %width=45&anchor=figTreemenu

SpMenuPresenter new
addGroup: [:group |

group addItem: [:item | item name: tree selectedItem asString
]]];

open

The following script shows the use of the message selectPathByItems:scroll-
ToSelection:, which allows selecting elements by specifying a group of items
and asking the tree to scroll to the selection. Figure ?? shows the result.

| pathToSpPresenter |
pathToSpPresenter := SpTreePresenter withAllSuperclasses reversed

allButFirst.
SpTreePresenter new

roots: { Object };
children: [:aClass | aClass subclasses];
displayIcon: [:aClass | self iconNamed: aClass systemIconName];
display: [:aClass | aClass name];
open;
selectPathByItems: pathToSpPresenter scrollToSelection: true

101

Lists, tables and trees

Figure 8-10 A tree with a selected item. % width=50&anchor=figTreeselect

8.11 Tables

Spec offers tables. A table can have multiple columns and a column can be
composed of elementary elements. Tables have different kinds of columns that
can be added to a table:

• SpStringTableColumn offers cell items that are strings.

• SpCheckBoxTableColumn lets us have cells with a checkbox.

• SpIndexTableColumn displays the index of the current item.

• SpDropListTableColumn lets us have a drop list in cells.

• SpImageTableColumn offers cell items with forms (icons, graphics, ...).

• SpCompositeTableColumn offers the possibility to compose a column
out of different kinds of columns. For instance, it allows one to compose
an icon (SpImageTableColumn) with a name (SpStringTableColumn).

102

8.12 First table

8.12 First table

The following script shows how to define a simple table with two columns as
shown in Figure ??. The message showColumnHeaders will display the headers.

SpTablePresenter new
addColumn: (SpStringTableColumn title: 'Number' evaluated:

#yourself);
addColumn: (SpStringTableColumn title: 'Hex' evaluated: #hex);
showColumnHeaders;
items: (1 to: 10);
open

Figure 8-11 A simple table with two columns. % width=50&anchor=figSimpleTable

Add SpIndexTableColumn title: 'My index' to the previous table to see
the index column in action.

8.13 Sorting headers

The following script presents how to define a table with two sortable columns.
Figure ?? shows the result after sorting the second column in descending or-

103

Lists, tables and trees

der.

| classNameCompare methodCountSorter |
classNameCompare := [:c1 :c2 | c1 name < c2 name].
methodCountSorter := [:c1 :c2 |
c1 methodDictionary size threeWayCompareTo: c2 methodDictionary size

].

SpTablePresenter new
addColumn: ((SpStringTableColumn title: 'Name' evaluated: #name)

compareFunction: classNameCompare);
addColumn: ((SpStringTableColumn

title: 'Methods'
evaluated: [:c | c methodDictionary size]) sortFunction:

methodCountSorter);
items: Collection withAllSubclasses;
open

Figure 8-12 A simple table with two columns that can be sorted. % width=50&an-

chor=figTableSorting

104

8.14 Editable tables

8.14 Editable tables

The following script shows that table cells can be editable using the messages
beEditable and onAcceptEdition:. The resulting table is shown in Figure ??.

| items |
items := String methods.
SpTablePresenter new

addColumn:
(SpStringTableColumn new

title: 'Editable selector name';
evaluated: [:m | m selector];
displayBold: [:m | m selector isKeyword];
beEditable;
onAcceptEdition: [:m :t |

Transcript
nextPutAll: t;
cr;
endEntry];

yourself);
addColumn:
(SpStringTableColumn title: 'Size' evaluated: #size)

beSortable;
showColumnHeaders;
items: items;

open

8.15 Tree tables

Spec offers a way to have a tree with extra columns. The class SpTreeTableP-
resenter encapsulates this behavior. Note that the first column is interpreted
as a tree.

The following script shows that the first column will be a tree whose element is
composed of an icon and a name: SpCompositeTableColumn. Figure ?? shows
the window after expanding the root of the tree.

SpTreeTablePresenter new
beResizable;
addColumn:
(SpCompositeTableColumn new

title: 'Classes';
addColumn:

(SpImageTableColumn evaluated: [:aClass |
self iconNamed: aClass systemIconName]);

addColumn:
(SpStringTableColumn evaluated: [:each | each name]);

105

Lists, tables and trees

Figure 8-13 A table with an editable column. % width=50&anchor=figEditableTable

yourself);
addColumn:

(SpStringTableColumn new
title: 'Methods';
evaluated: [:class | class methodDictionary size asString]);

roots: { Object };
children: [:aClass | aClass subclasses];
open

Sending the messages width: and beExpandable to the SpCompositeTableCol-
umn instance fixes the size of the column.

SpCompositeTableColumn new
title: 'Classes';
addColumn:

(SpImageTableColumn evaluated: [:aClass |
self iconNamed: aClass systemIconName]);

addColumn: (SpStringTableColumn evaluated: #name);
width: 250;
beExpandable;
yourself

106

8.15 Tree tables

Figure 8-14 A tree table with two columns: the first one is a composed column

with an icon and a string. %width=50&anchor=figTreeTable

You can try the following silly example which results in Figure ??.

| compositeColumn |
compositeColumn := SpCompositeTableColumn new title: 'Classes';

addColumn: (SpImageTableColumn evaluated: [:aClass |
self iconNamed: aClass systemIconName]);

addColumn: (SpStringTableColumn evaluated: [:each | each name]);
yourself.

SpTreeTablePresenter new
beResizable;
addColumn: (SpStringTableColumn new

title: 'Methods';
evaluated: [:class | class methodDictionary size asString]);

addColumn: compositeColumn;
roots: { Object };
children: [:aClass | aClass subclasses];
open

107

Lists, tables and trees

Figure 8-15 A tree table with two columns. % width=50&anchor=figTreeTableSilly

8.16 Conclusion

In this chapter, we presented important containers: lists, component lists, and
table presenters.

108

CHA P T E R9
Managing windows

So far we have described the reuse of SpPresenters, discussed the fundamen-
tal functioning of Spec, and presented how to layout the widgets of a user in-
terface. Yet what is still missing for a working user interface is showing all
these widgets inside of a window. In our examples until now we have only
shown a few of the features of Spec for managing windows, basically restrict-
ing ourselves to opening a window.

In this chapter, we provide a more complete overview of how Spec allows for
the management of windows. We will show opening and closing, the built-in
dialog box facility, the sizing of windows, and all kinds of window decoration.

9.1 A working example

To illustrate the window configuration options that are available, we use a sim-
ple WindowExamplePresenter class that has two buttons placed side by side.
These buttons do not have any behavior associated yet. The behavior will be
added in an example further down this chapter.

SpPresenter << #WindowExamplePresenter
slots: { #minusButton . #plusButton };
package: 'CodeOfSpec20Book'

WindowExamplePresenter >> initializePresenters

plusButton := self newButton.
minusButton := self newButton.
plusButton label: '+'.
minusButton label: '-'

109

Managing windows

Figure 9-1 A rather simple window on WindowExamplePresenter. %width=50&an-

chor=windowExample1

WindowExamplePresenter >> defaultLayout

^ SpBoxLayout newLeftToRight
add: #plusButton;
add: #minusButton;
yourself

9.2 Opening a window or a dialog box

A user interface can be opened as a normal window or opened as a dialog box,
i.e. without decoration and with ’Ok’ and ’Cancel’ buttons. We will show how
this is done, including the configuration options specific to dialog boxes. See
also Section 9.5 for more information about window decoration.

110

9.2 Opening a window or a dialog box

Opening a window

As we have shown in previous chapters, to open a user interface you have to
instantiate the SpPresenter for that interface and send the openmessage to
the instance. That results in the creation of an instance of SpWindowPresenter
which points to the window containing the user interface, and showing it in a
window on the screen.

We have also seen the openWithLayout: method that takes a layout (instance
of SpLayout subclasses) as an argument. Instead of using the default layout, the
opened UI will use the layout passed as an argument.

Below we show the two ways we can open a window for our WindowExampleP-
resenter. The code snippet opens two identical windows as shown in Figure
??.

| presenter |
presenter := WindowExamplePresenter new.
presenter open.
presenter openWithLayout: presenter defaultLayout

Opening a dialog box

Spec provides an easy way to open a UI as a simple dialog box with ’Ok’ and
’Cancel’ buttons. A dialog box does not have icons for resizing and closing, nor
a window menu. To open a dialog box, send the message openDialog:

| presenter dialog |
presenter := WindowExamplePresenter new.
dialog := presenter openDialog

The answer of sending openDialog, assigned to the dialog variable above, is
an instance of the SpDialogWindowPresenter class (a subclass of SpWindowP-
resenter).

The SpDialogWindowPresenter instance can be configured in multiple ways.
To execute code when the user clicks on a button, send it the okAction: or
cancelAction: message with a zero-argument block.

| presenter dialog |
presenter := WindowExamplePresenter new.
dialog := presenter openDialog

okAction: ['okAction' crTrace];
cancelAction: ['cancelAction' crTrace]

The message canceled sent to dialog will return true if the dialog is closed
by clicking on the ’Cancel’ button.

111

Managing windows

Figure 9-2 A rather simple dialog on WindowExamplePresenter. %width=50&an-

chor=windowDialog

9.3 Preventing window close

Spec provides a way to check if a window can effectively be closed when the
user clicks on the close box. SpWindowPresenter>>whenWillCloseDo: takes
a block that decides whether the window can be closed. We can change our
WindowExamplePresenter as follows:

WindowExamplePresenter >> initializeWindow: aWindowPresenter

aWindowPresenter whenWillCloseDo: [:announcement |
announcement denyClose]

The block has an announcement argument. It will be bound to an instance of
SpWindowWillClose. That class has two interesting methods: allowClose and
denyClose. The code snippet above sends denyClose to the announcement.
By doing so, we have effectively created an unclosable window!

To be able to close this window, we have to change the implementation of the
above method. By default a window can be closed, so the block should only
send denyClose in case the window cannot be closed. Let’s adapt the block

112

9.4 Acting on window close

to ask whether the user is sure about closing the window.

WindowExamplePresenter >> initializeWindow: aWindowPresenter

aWindowPresenter whenWillCloseDo: [:announcement |
(self confirm: 'Are you sure that you want to close the window?')

ifFalse: [announcement denyClose]]

Of course, the example method above is extremely simplistic and not very use-
ful. Instead, it should use application-dependent logic of what to check on win-
dow close.

9.4 Acting on window close

It is also possible to perform an action whenever a window is closed, both with
a plain window or a dialog window.

With a window

When you want to be notified that a window is closed, you should redefine the
initializeWindow: method in the class of your presenter as follows:

WindowExamplePresenter >> initializeWindow: aWindowPresenter

aWindowPresenter whenClosedDo: [self inform: 'When closed']

The following snippet programmatically opens and closes a window and you
should see the notification triggered on close.

| presenter window |
presenter := WindowExamplePresenter new.
window := presenter open.
window close

With a dialog window

When you want the same behavior with a dialog window you can either use
the mechanism as described previously (i.e. declare your interest in window
closing in the method initializeWindow:) or configure the dialog presenter
returned by the message openDialog.

| presenter dialog |
presenter := WindowExamplePresenter new.
dialog := presenter openDialog.
dialog

okAction: ['okAction' crTrace];
cancelAction: ['cancelAction' crTrace];

113

Managing windows

whenClosedDo: [self inform: 'Bye bye!']

Action with Window

withWindowDo: makes sure that the presenter that scheduled the window still
exists or is in a state that makes sense.

withWindowDo: [:window | window title: 'MyTitle']

9.5 Window size and decoration

Now we focus on sizing a window before and after opening it, and then de-
scribe removing the different control widgets that decorate the window.

Setting initial size and changing size

To set the initial size of a window when it opens, send the initialExtent:
message to the corresponding SpWindowPresenter before opening, for exam-
ple like this:

| windowPresenter |
windowPresenter := WindowExamplePresenter new asWindow.
windowPresenter initialExtent: 300@80.
windowPresenter open

The common way to specify the initial size of the window is to use the message
initialExtent: as follows:

WindowExamplePresenter >> initializeWindow: aWindowPresenter

aWindowPresenter initialExtent: 80@100

Note that you can also set an initial position using the message initialPosi-
tion:.

After a window is opened, it can also be resized by sending the resize: mes-
sage to the window of the UI. For example, we can change our example’s ini-
tializePresentersmethod so that the window resizes itself depending on
which button is clicked.

WindowExamplePresenter >> initializePresenters

plusButton := self newButton.
minusButton := self newButton.
plusButton label: '+'.
minusButton label: '-'.
plusButton action: [self window resize: 500@200].
minusButton action: [self window resize: 200@100]

114

9.5 Window size and decoration

You have also centered, centeredRelativeTo: and centeredRelativeTo-
TopWindow to help you place the windows relative to world/other windows.

Fixed size

The size of a window can be fixed, so that the user cannot resize it by dragging
the sides or corners as follows:

| presenter |
presenter := WindowExamplePresenter new open.
presenter window beUnresizeable

Removing window decoration

Sometimes it makes sense to have a window without decoration, i.e. without
control widgets. Currently, this configuration cannot be performed on the Sp-
WindowPresenter of that window, but the underlying widget library may allow
it. Below we show how to get the SpWindow of our example and instruct it to
remove the different control widgets:

| presenter |
presenter := WindowExamplePresenter new open.
presenter window

removeCollapseBox;
removeExpandBox;
removeCloseBox;
removeMenuBox

This window is still closable using the halo menus or by calling close on the
SpWindowPresenter instance (presenter in the example above).

Setting and changing the title

By default, the title of a new window is ’Untitled window’. Of course, this can
be changed. The first way is to specialize the method initializeWindow: to
send the message title: to the windowPresenter as follows:

WindowExamplePresenter >> initializeWindow: aWindowPresenter

aWindowPresenter title: 'Click to grow or shrink.'

In addition, you can set the title of any UI after it has been opened (even if it
specifies a titlemethod) by sending the title: message with the new title as
an argument to the window of the UI. An example is:

115

Managing windows

| presenter |
presenter := WindowExamplePresenter new.
presenter open.
presenter window title: 'I am different!'

Setting the about text

The about text of a window can be used by application developers to give a de-
scription of the application, and to list its contributors. The about text can be
opened by selecting ’About’ from the pop-up menu in the top-right corner of a
window, as shown in Figure ??.

Figure 9-3 Opening the about text of a window.% width=60&anchor=about

To set the about text of a window, either override the aboutTextmethod of the
corresponding SpPresenter so that it returns the new about text, or send the
instance the aboutText: message before opening, for example as below.

| windowPresenter |
windowPresenter := WindowExamplePresenter new asWindow.
windowPresenter aboutText: 'Click + to grow, - to shrink.'.
windowPresenter open

After opening the window with the code snippet above, and after choosing
’About’ from the window menu, the about window opens with the configured
about text, as shown in Figure ??.

116

9.6 Getting values from a dialog window

Figure 9-4 The about text of a window. % width=60&anchor=abouttext

9.6 Getting values from a dialog window

Sending the message openDialog to a presenter will return the dialog window
itself so you can easily ask it isOk. When isOk answers true, the dialog is in a
state to provide the data it has collected from the user.

Let’s look at an example. We will open a dialog to select some colors.

Configuring the UI makes up for the largest part of the code below, but the in-
teresting part is at the end. The canceled state is the default state of a dialog
so we have to tell the dialog that it is not canceled. We do that in the okAction
block, where the dialog receives the message beOk.

Then in the whenClosedDo: block, we send isOk to the dialog. If that message
answers true, it makes sense to process the selection of colors. For the sake of
simplicity of this example, we just inspect the selected colors.

| selectedColors presenter colorTable dialogPresenter |
selectedColors := Set new.
presenter := SpPresenter new.
colorTable := presenter newTable

items: (Color red wheel: 10);
addColumn: (SpCheckBoxTableColumn new
evaluated: [:color | selectedColors includes: color];

117

Managing windows

onActivation: [:color | selectedColors add: color];
onDeactivation: [:color | selectedColors remove: color];
width: 20;
yourself);

addColumn: (SpStringTableColumn new
evaluated: [:color | ''];
displayBackgroundColor: [:color | color];
yourself);

hideColumnHeaders;
yourself.

presenter layout: (SpBoxLayout newTopToBottom
add: colorTable;
yourself).

dialogPresenter := presenter openDialog.
dialogPresenter
title: 'Select colors';
okAction: [:dialog | dialog beOk];
whenClosedDo: [dialogPresenter isOk

ifTrue: [selectedColors inspect]]

9.7 Little modal dialog presenters

A modal dialog is a window that takes control of the entire Pharo user inter-
face, making it impossible for the user to select another window while it is
open.

Spec provides some little predefined dialogs to inform or request information
from the users. Most of them inherit from SpDialogPresenter. They offer a
builder API to configure them.

The simplest dialog is an alert.

SpAlertDialog new
title: 'Inform example';
label: 'You are seeing an inform dialog!';
acceptLabel: 'Close this!';
openModal

Confirm dialogs are created as follows:

SpConfirmDialog new
title: 'Confirm example';
label: 'Are you sure?';
acceptLabel: 'Sure!';
cancelLabel: 'No, forget it';
onAccept: [:dialog| dialog alert: 'Yes!'];
onCancel: [:dialog| dialog alert: 'No!'];
openModal

118

9.8 Placing a presenter inside a dialog window

The idiomatic way to use them is to access them via the application of your
presenter class:

self application newAlert
title: 'Inform example';
label: 'You are seeing an inform dialog!';
acceptLabel: 'Close this!';
openModal

SpApplication offers the following API: newConfirm, newAlert, newJobList,
newRequest, newSelect, newRequestText.

9.8 Placing a presenter inside a dialog window

Any presenter can be placed in a dialog window by specializing the method
SpAbstractPresenter>>initializeDialogWindow:, which is implemented
like this:

initializeDialogWindow: aDialogWindowPresenter
"Used to initialize the model in the case of the use into a dialog

window.
Override this to set buttons other than the default (Ok, Cancel)."

aDialogWindowPresenter
addButton: 'Cancel' do: [:presenter |

presenter triggerCancelAction.
presenter close];

addDefaultButton: 'Ok' do: [:presenter |
presenter triggerOkAction.
presenter close]

Override this method to define how your presenter will behave when it is open
in a dialog window

9.9 Conclusion

In this chapter, we treated the features of Spec that have to do with windows.
First we described opening and closing windows as well as how to open a win-
dow as a dialog box. That was followed by configuring the window’s size and its
decorating widgets. After highlighting small yet important details of the win-
dow like its title and the about text, the chapter ended with handling dialogs.

119

CHA P T E R 10
Layouts

In Spec, layouts are represented by instances of layout classes. The layout
classes encode different positioning of elements such as box, paned, or grid.
This chapter presents the available layouts, their definition, and how layouts
can be reused when a presenter reuses other presenters.

10.1 Basic principle reminder

Spec expects that layout objects, instances of the layout classes, are associated
with a presenter. Each presenter should describe the positioning of its subpre-
senters.

Contrary to Spec 1.0, where layouts were only defined at the class level, in Spec
2.0, to define the layout of a presenter you can:

• Define the defaultLayoutmethod on the instance side

• Use the message layout: in your initializePresentersmethod to set
an instance of layout in the current presenter.

defaultLayout returns a layout and layout: sets a layout, for example, an
instance of SpBoxLayout or SpPanedLayout. These two methods are the pre-
ferred way to define layouts.

Note that the possibility of defining a class-side accessor e.g. defaultLayout
remains for those who prefer it.

This new design reflects the dynamic nature of layouts in Spec, and the fact
that you can compose them using presenter instances directly, not forcing

121

Layouts

you to declare subpresenters in instance variables upfront, and then use their
names as it was done in Spec 1.0. It is, however, possible that there are cases
where you want a layout ”template”... so you can still do it.

10.2 A running example

To be able to play with the layouts defined in this chapter, we define a simple
presenter named TwoButtons.

SpPresenter << #TwoButtons
slots: { #button1 . #button2 };
package: 'CodeOfSpec20Book'

We define a simple initializePresentersmethod as follows:

TwoButtons >> initializePresenters

button1 := self newButton.
button2 := self newButton.
button1 label: '1'.
button2 label: '2'

10.3 BoxLayout (SpBoxLayout and SpBoxConstraints)

The class SpBoxLayout displays presenters in an ordered sequence of boxes. A
box layout can be horizontal or vertical and presenters are ordered left to right
and top to bottom respectively. A box layout can be composed of other layouts.

Let us define a first simple layout as follows and whose result is displayed in
Figure ??.

TwoButtons >> defaultLayout

^ SpBoxLayout newLeftToRight
add: button1;
add: button2;
yourself

What we see is that by default a subpresenter expands its size to fit the space of
its container.

An element in a vertical box will use all available horizontal space, and fill ver-
tical space according to the rules. This is inversed in a horizontal box.

We can refine this layout to indicate that the subpresenters should not expand
to their container using the message add:expand:. The result is shown in Fig-
ure ??.

122

10.3 BoxLayout (SpBoxLayout and SpBoxConstraints)

Figure 10-1 Two buttons placed horizontally from left to right. %anchor=TwoBut-

tonsLeftToRight&width=50

TwoButtons >> defaultLayout

^ SpBoxLayout newLeftToRight
add: button1 expand: false;
add: button2 expand: false;
yourself

The full message to add presenters is: add:expand:fill:padding:

• expand: argument - when true, the new child is to be given extra space
allocated to the box. The extra space is divided evenly between all chil-
dren that use this option.

• fill: argument - when true, the space given to a child by the expand
option is actually allocated to the child, rather than just padding it. This
parameter has no effect if expand is set to false.

• padding: argument - extra space in pixels to put between this child and
its neighbors, over and above the global amount specified by the spac-
ing property. If a child is a widget at one of the reference ends of the

123

Layouts

Figure 10-2 Two buttons placed from left to right, but not expanded.

%width=50&anchor=TwoButtonsLeftToRightExpanded

box, then padding pixels are also put between the child and the reference
edge of the box.

To illustrate this API a bit, we add another button to the presenter and change
the defaultLayoutmethod as follows. The result is shown in Fig 10-3. We
want to stress, however, that it is better not to use a fixed height or padding.

TwoButtons >> defaultLayout

^ SpBoxLayout newTopToBottom
spacing: 15;
add: button1 expand: false fill: true padding: 5;
add: button2 withConstraints: [:constraints |

constraints height: 80; padding: 5];
addLast: button3 expand: false fill: true padding: 5;
yourself

The annotations in the figure indicate the padding in red, the height of but-
ton2 in blue, and the spacing in green. Note that the padding of button2 is
included in the height of the button.

124

10.4 Box layout alignment

Figure 10-3 Three buttons placed from top to bottom playing with padding and fill

options.

The defaultLayoutmethod sends the message withConstraints: [:con-
straints | constraints height: 80; padding: 5]. This message al-
lows setting constraints when the often used messages add:, add:expand:,
and add:expand:fill:padding: do not cover your particular use case. The
constraints argument of the block is an instance of the SpBoxConstraints
class.

The defaultLayoutmethod adds button button3 to the box layout with add-
Last:expand:fill:padding:. For every method starting with add:, the Sp-
BoxLayout class provides a similar method starting with addLast:.

A box layout has two parts: a ”start” and an ”end”. Messages starting with
add:, add subpresenters to the ”start”. Messages starting with addLast:, add
subpresenters to the ”end”. As you can see in Figure 10-3, there is a large gap
between button2 and button3. For vertical box layouts, the ”start” part of a
box layout aligns to the top side of the box. The ”end” part aligns to the bot-
tom side of the box. The gap between the ”start” and the ”end” is all the excess
space not used by the subpresenters.

In this example with three buttons, the usefulness of the ”start” and ”end”
parts is not very clear. But it is very handy for button bars with buttons on the
left side and on the right side, such as in the Repositories browser of Iceberg,
as you can see in Figure ??. The bar has one button on the left side and two
buttons on the right side.

10.4 Box layout alignment

A box layout can be configured with horizontal and vertical alignment of the
children. These are the horizontal alignment options, which are messages that

125

Layouts

Figure 10-4 Buttons on the left side and on the right side. % width=60&an-

chor=Repositories

can be sent to a SpBoxLayout instance:

• hAlignStart

• hAlignCenter

• hAlignEnd

These are the vertical layout options:

• vAlignStart

• vAlignCenter

• vAlignEnd

Let’s see how this works in a small example. We will create a presenter with 9
subpresenters, which we will call ”tiles”, layed out in 3 rows with 3 columns.
Each subpresenter displays two label presenters with labels ’One’ and ’Two’.
The presenter class defines nine instance variables. The names refer to the
position of the content inside each tile.

SpPresenter << #AlignmentExample
slots: {

#northWest .
#north .
#northEast .

126

10.4 Box layout alignment

#west .
#center .
#east .
#southWest .
#south .
#southEast };

package: 'CodeOfSpec20Book'

As always, initializePresenters binds the instance variables that hold the
subpresenters. It uses a helper method newTile: to create the tiles.

AlignmentExample >> initializePresenters

northWest := self newTile: [:tileLayout |
tileLayout vAlignStart; hAlignStart].

north := self newTile: [:tileLayout |
tileLayout vAlignStart; hAlignCenter].

northEast := self newTile: [:tileLayout |
tileLayout vAlignStart; hAlignEnd].

west := self newTile: [:tileLayout |
tileLayout vAlignCenter; hAlignStart].

center := self newTile: [:tileLayout |
tileLayout vAlignCenter; hAlignCenter].

east := self newTile: [:tileLayout |
tileLayout vAlignCenter; hAlignEnd].

southWest := self newTile: [:tileLayout |
tileLayout vAlignEnd; hAlignStart].

south := self newTile: [:tileLayout |
tileLayout vAlignEnd; hAlignCenter].

southEast := self newTile: [:tileLayout |
tileLayout vAlignEnd; hAlignEnd]

Note that the block argument of the newTile: message has a titleLayout ar-
gument, which is bound to an instance of SpBoxLayout. Inside the nine blocks,
the alignment messages that we saw earlier are sent to configure the alignment
inside the tiles. For instance, for the top-left tile called ”northWest”, vAlign-
Start is sent to align to the top side of the tile, and hAlignStart is sent to
align to the left side of the tile.

AlignmentExample >> newTile: alignmentBlock

| tileLayout |
tileLayout := SpBoxLayout newTopToBottom
add: self newLabelOne;
add: self newLabelTwo;
yourself.

alignmentBlock value: tileLayout.
^ SpPresenter new

127

Layouts

layout: tileLayout;
addStyle: 'tile';
yourself

newTile: uses two other helper methods:

AlignmentExample >> newLabelOne

^ self newLabel
label: 'One';
yourself

AlignmentExample >> newLabelTwo

^ self newLabel
label: 'two';
yourself

The layout of the window is defined with:

AlignmentExample >> defaultLayout

^ SpBoxLayout newTopToBottom
spacing: 5;
add: (self rowWithAll: { northWest . north . northEast });
add: (self rowWithAll: { west . center . east });
add: (self rowWithAll: { southWest . south . southEast });
yourself

It answers a vertical box layout with three rows. It applies a spacing of 5 pixels
between the rows. It sends rowWithAll: three times to create horizontal box
layouts with three subpresenters each. rowWithAll: applies the same spacing
of 5 pixels between the tiles in a row.

AlignmentExample >> rowWithAll: tiles

| row |
row := SpBoxLayout newLeftToRight

spacing: 5;
yourself.

tiles do: [:tile | row add: tile].
^ row

For demonstration purposes, we apply a stylesheet to display tiles with a white
background and a black border.

AlignmentExample >> application

^ SpApplication new
addStyleSheetFromString: '.application [

128

10.4 Box layout alignment

.tile [
Container { #borderWidth: 2, #borderColor: #black },
Draw { #backgroundColor: #white }]

]';
yourself

Now we have all the code we need to open the window with:

AlignmentExample new open

The result is shown in Figure ??. Each tile displays the label presenters at an-
other location. The label presenters are positioned vertically.

Figure 10-5 Nine tiles with different alignment options. %width=60&anchor=Align-

mentExampleWithVerticalTiles

Let’s see what happens when we put the label presenters in a horizontal box
layout.

AlignmentExample >> newTile: alignmentBlock

| tileLayout |
tileLayout := SpBoxLayout newLeftToRight
add: self newLabelOne;

129

Layouts

add: self newLabelTwo;
yourself.

alignmentBlock value: tileLayout.
^ SpPresenter new

layout: tileLayout;
addStyle: 'tile';
yourself

Figure ?? shows the result of opening the window again. Now the labels are
positioned horizontally.

Figure 10-6 Nine tiles with the labels in a vertical box layout.%width=60&an-

chor=AlignmentExampleWithHorizontalTiles

10.5 Example setup for layout reuse

Before presenting some of the other layouts, we show an important aspect of
Spec presenter composition: a composite can declare that it wants to reuse a
presenter using a specific layout of a presenter.

Consider our artificial example of a two-button UI. Let us use two layouts as
follows. We define two class methods returning different layouts. Note that we

130

10.6 Opening with a layout

could define such methods on the instance side to. We define them on the class
side to be able to get the layouts without an instance of the class.

TwoButtons class >> buttonRow

^ SpBoxLayout newLeftToRight
add: #button1;
add: #button2;
yourself

TwoButtons class >> buttonColumn

^ SpBoxLayout newTopToBottom
add: #button1;
add: #button2;
yourself

Note that when we define the layout at the class level, we use a symbol whose
name is the corresponding instance variable. Hence we use #button2 to refer
to the presenter stored in the instance variable button2.

10.6 Opening with a layout

The message openWithLayout: lets you specify the layout you want to use
when opening a presenter. Here are some examples:

• TwoButtons new openWithLayout: TwoButtons buttonRow places
the buttons in a row.

• TwoButtons new openWithLayout: TwoButtons buttonColumn places
them in a column.

We define a defaultLayoutmethod which invokes one of the previously de-
fined methods so that the presenter can be opened without giving a layout.

TwoButtons >> defaultLayout

^ self class buttonRow

10.7 Better design

We can do better and define two instance level methods to encapsulate the lay-
out configuration.

TwoButtons >> beColumn

self layout: self class buttonColumn

131

Layouts

TwoButtons >> beRow

self layout: self class buttonRow

Then we can write the following script:

TwoButtons new
beColumn;
open

10.8 Specifying a layout when reusing a presenter

Having multiple layouts for a presenter implies that there is a way to specify
the layout to use when a presenter is reused. This is simple. We use the method
layout:. Here is an example. We create a new presenter named ButtonAn-
dListH.

SpPresenter << #ButtonAndListH
slots: { #buttons . #list };
package: 'CodeOfSpec20Book'

ButtonAndListH >> initializePresenters

buttons := self instantiate: TwoButtons.
list := self newList.
list items: (1 to: 10)

ButtonAndListH >> initializeWindow: aWindowPresenter

aWindowPresenter title: 'SuperWidget'

ButtonAndListH >> defaultLayout

^ SpBoxLayout newLeftToRight
add: buttons;
add: list;
yourself

This ButtonAndListH class results in a SuperWidget window as shown in Fig-
ure ??. It reuses the TwoButtons widget and places all three widgets in a hori-
zontal order because the TwoButtons widget uses the buttonRow layout method
by default.

Alternatively, we can create ButtonAndListV class as a subclass of Butto-
nAndListH and only change the initializePresentersmethod as below. It
specifies that the reused buttons widget should use the buttonColumn layout
method, and hence results in the window shown in Figure ??.

132

10.8 Specifying a layout when reusing a presenter

Figure 10-7 Buttons placed horizontally.% width=50&anchor=ButtonAndListH

ButtonAndListH << #ButtonAndListV
slots: {};
package: 'CodeOfSpec20Book'

ButtonAndListV >> initializePresenters

super initializePresenters.
buttons beColumn

Alternative to declare subcomponent layout choice

The alternative is to define a new method defaultLayout and to use the add:lay-
out: message. We define a different presenter.

ButtonAndListH << #ButtonAndListV2
slots: {};
package: 'CodeOfSpec20Book'

We define a new defaultLayoutmethod as follows:

133

Layouts

Figure 10-8 Buttons placed vertically. % width=50&anchor=ButtonAndListV

ButtonAndListV2 >> defaultLayout

^ SpBoxLayout newTopToBottom
add: buttons layout: #buttonColumn;
add: list;
yourself

Note the use of the message add:layout: with the selector of the method re-
turning the layout configuration: #buttonColumn. This is normal since we can-
not access the state of a subcomponent at this moment. Let’s open a window
with:

ButtonAndListV2 new open

That opens the window shown in Figure ??.

Dynamically changing a layout

It is possible to change the layout of a presenter dynamically, for example from
an inspector. Open the presenter with:

134

10.9 Grid layout (SpGridLayout)

Figure 10-9 Buttons and list placed vertically. % width=50&anchor=ButtonAn-

dListV2

ButtonAndListV new inspect open

That opens an inspector on the presenter, and a window with the buttons placed
vertically as shown in Figure ??.

Then select the ’buttons’ instance variable in the inspector and do self beRow.
The result is shown Figure ??.

10.9 Grid layout (SpGridLayout)

The class SpGridLayout arranges subpresenters in a grid according to certain
layout properties such as:

• A position is mandatory (columnNumber@rowNumber)

• A span can be added if desired (columnExtension@rowExtension)

The following example opens a window with a grid layout with several widgets,
as shown in Figure ??.

135

Layouts

Figure 10-10 Tweaking and playing interactively with layouts from the inspec-

tor.%width=100&anchor=InteractiveTweaking

SpPresenter << #GridExample
slots: { #promptLabel . #nameText . #suggestionsText . #submitButton

};
package: 'CodeOfSpec20Book'

GridExample >> initializePresenters

promptLabel := self newLabel
label: 'Please enter your name and your suggestions.';
yourself.

nameText := self newTextInput.
suggestionsText := self newText.
submitButton := self newButton

label: 'Submit';
yourself

GridExample >> defaultLayout

^ SpGridLayout new
add: #promptLabel at: 1@1 span: 3@1;
add: 'Name:' at: 1@2;
add: #nameText at: 2@2 span: 2@1;
add: 'Suggestions:' at: 1@3;
add: #suggestionsText at: 2@3 span: 2@1;
add: #submitButton at: 2@4 span: 1@1;
yourself

136

10.9 Grid layout (SpGridLayout)

The layout defines a grid with three columns. The prompt ’Please enter your
name and your suggestions.’ spans the three columns. The labels of the two
fields are put in the first column. The fields span the second and the third col-
umn. The button is put in the second column. The second field is a multi-line
text field. That is why it is higher than the first field, which is a single-line text
field.

Figure 10-11 A simple grid for a small form. % width=60&anchor=GridExample

Here is a list of options:

• columnHomogeneous: Whether presenters in a column will have the
same size.

• rowHomogeneous: Whether presenters a row will have the same size.

• colSpacing:: The horizontal space between cells.

• rowSpacing:: The vertical space between cells.

The defaultLayoutmethod of the example maybe hard to read, especially
when the grid contains a lot of presenters. The reader has to compute the posi-
tions and the spans of the subpresenters. We can use a SpGridLayoutBuilder
to make grid building easier. The class is not to be used directly. Instead send

137

Layouts

build: to a SpGridLayout. Below is an alternative defaultlayoutmethod
that produces the same result as before. By putting all presenters of one row
on one line, it is clear that there are four rows, and it is clear which subpresen-
ters are part of the same row.

GridExample >> defaultLayout

^ SpGridLayout build: [:builder |
builder

add: #promptLabel span: 3@1; nextRow;
add: 'Name:'; add: #nameText span: 2@1; nextRow;
add: 'Suggestions:'; add: #suggestionsText span: 2@1; nextRow;
nextColumn; add: #submitButton]

10.10 Paned layout (SpPanedLayout)

A paned layout is like a box layout, but restricted to two children, which are the
”panes”. It places children in a vertical or horizontal fashion and adds a split-
ter in between, that the user can drag to resize the panes. positionOfSlider:
indicates the original position of the splitter. It can be nil (then it defaults to
50%), or it can be a percentage (e.g. 70 percent), a Float (e.g. 0.7), or a Frac-
tion (e.g. 7/10).

Let’s look at this simple example:

SpPresenter << #PanedLayoutExample
slots: { #leftList . #rightList };
package: 'CodeOfSpec20Book'

PanedLayoutExample >> initializePresenters

leftList := self newList
items: (1 to: 10);
yourself.

rightList := self newList
items: ($a to: $z);
yourself

PanedLayoutExample >> defaultLayout

^ SpPanedLayout newLeftToRight
positionOfSlider: 70 percent;
add: #leftList;
add: #rightList;
yourself

Let’s open the presenter with:

138

10.11 Overlay layout (SpOverlayLayout)

PanedLayoutExample new open

Figure ?? shows the result. The left list takes 70% of the width of the window
and the right list takes 30%.

Figure 10-12 A paned layout with two lists. % width=50&anchor=PanedLayoutEx-

ample

10.11 Overlay layout (SpOverlayLayout)

An overlay layout allows overlaying one presenter by other presenters.

As an example, we will create a presenter that shows a button labeled ’Inbox’,
with a red indicator overlayed in the top-right corner. A use case could be indi-
cating that there are unread messages in the inbox.

SpPresenter << #OverlayLayoutExample
slots: { #button . #indicator };
package: 'CodeOfSpec20Book'

initializePresenters creates the button and the indicator. The latter is
a SpRoassalPresenter. We use a helper method to answer the shape that

139

Layouts

should be shown.

OverlayLayoutExample >> initializePresenters

button := self newButton
label: 'Inbox';
yourself.

indicator := (self instantiate: SpRoassalPresenter)
script: [:view | view addShape: self indicatorShape];
yourself

OverlayLayoutExample >> indicatorShape

^ RSBox new
extent: 10@10;
color: Color red;
yourself

To make the structure of the layout clear, we have three methods. The de-
faultLayout is the layout of the window. For demonstration purposes, we put
the button in the middle of the window. The button’s dimensions are 50 by 50
pixels.

OverlayLayoutExample >> defaultLayout

| buttonVBox |
buttonVBox := SpBoxLayout newTopToBottom

vAlignCenter;
add: self buttonLayout height: 50;
yourself.

^ SpBoxLayout newLeftToRight
hAlignCenter;
add: buttonVBox width: 50;
yourself

The defaultLayoutmethod sends buttonLayout to fetch the overlay layout
for the button and the indicator. The child is the presenter that we want to
overlay with the indicator. It is possible to add multiple overlays. In this ex-
ample, we have only one, which is defined by indicatorLayout. Note that
addOverlay:withConstraints: is used to configure where the overlay pre-
senter should be displayed. We choose to display it in the top-right corner, by
sending vAlignStart (top) and hAlignEnd (right).

OverlayLayoutExample >> buttonLayout

^ SpOverlayLayout new
child: button;
addOverlay: self indicatorLayout
withConstraints: [:constraints |

140

10.12 Conclusion

constraints vAlignStart; hAlignEnd];
yourself

The indicatorLayoutmethod defines the layout for the indicator. To apply a
vertical and a horizontal padding, we have to wrap a vertical box layout with a
horizontal box layout. We could have wrapped a horizontal box layout with a
vertical box layout to achieve the same result. We apply a padding of 2 pixels so
that the indicator does not overlap the border of the button.

OverlayLayoutExample >> indicatorLayout

| counterVBox |
counterVBox := SpBoxLayout newTopToBottom

add: indicator withConstraints: [:constraints |
constraints height: 12; padding: 2];

yourself.
^ SpBoxLayout newLeftToRight

add: counterVBox withConstraints: [:constraints |
constraints width: 12; padding: 2];

yourself

With all these methods in place, we can open the presenter.

OverlayLayoutExample new open.

That opens the window shown in Figure ??.

10.12 Conclusion

Spec offers several predefined layouts. Probably new ones will be added but in
a compatible way. An important closing point is that layouts can be dynam-
ically composed. It means that you are able to design applications that can
adapt to specific conditions.

141

Figure 10-13 An overlay layout with a button and a Roassal box. %width=50&an-

chor=OverlayLayoutExample

CHA P T E R 11
Dynamic presenters

Contrary to Spec 1.0, in Spec 2.0 all the layouts are dynamic. It means that you
can change the displayed elements on the fly. It is a radical improvement from
Spec 1.0 where most of the layouts were static and building dynamic widgets
was cumbersome.

In this chapter, we will show that presenters can be dynamically composed
using layouts. We will show a little interactive session. Then we will build a
little browser with dynamic aspects.

11.1 Layouts as simple as objects

Building dynamic applications using Spec is simple. In fact, any layout in Spec
is dynamic and composable. Let’s explore how that works. We start with the
following code snippet:

presenter := SpPresenter new.
presenter application: SpApplication new.

For this presenter, we will use the SpPanedLayout which can receive two pre-
senters (or layouts) and place them in one half of the window. If you want to
see all the available layouts in Spec, you can check the package Spec2-Layout.

presenter layout: SpPanedLayout newTopToBottom.
presenter open.

Of course, as shown in Figure ??, we are going to see an empty window because
we did not put anything in the layout.

143

Dynamic presenters

Figure 11-1 An empty layout. % width=40&anchor=layout1

Now, without closing the window, we can dynamically edit the layout of the
main presenter. We will add a button presenter by executing the following
lines:

button1 := presenter newButton.
presenter layout add: button1.
button1 label: 'I am a button'.

Now we can add another button. There is no need to close and reopen the win-
dow. Everything updates dynamically and without the need of rebuilding the
window. As we have instantiated the layout with newTopToBottom, the presen-
ters will be laid out vertically. See Figure ??.

button2 := presenter newButton.
presenter layout add: button2.
button2 label: 'I am another button'.

We can put an icon in the first button. See Figure ??.

button1 icon: (button1 iconNamed: #smallDoIt).

144

11.2 Creating a presenter that dynamically adds buttons with random numbers

Figure 11-2 Paned layout with one button. %width=40&anchor=layout2

Or we can delete one of the buttons from the layout, as shown in Figure ??.

presenter layout remove: button2.

What you see here is that all the changes happen simply by creating a new in-
stance of a given layout and sending messages to it. It means that programs
can define complex logic for the dynamic behavior of a presenter.

11.2 Creating a presenter that dynamically adds buttons

with random numbers

We will create a presenter in which we will add and remove buttons dynami-
cally. We will create a new class called DynamicButtons.

SpPresenter << #DynamicButtons
slots: { #addButton . #removeButton . #text };
package: 'CodeOfSpec20Book'

In initializePresenters, we add a button. When we click on it, it adds a new
button to the layout. We also want a button that will remove the last button

145

Dynamic presenters

Figure 11-3 Paned layout with two buttons. % width=40&anchor=layout3

that was added, if any. Finally, we add a read-only text presenter that cannot be
removed.

DynamicButtons >> initializePresenters

addButton := self newButton.
addButton

action: [self addToLayout];
label: 'Add a presenter to the layout';
icon: (self iconNamed: #smallAdd).

removeButton := self newButton.
removeButton

action: [self removeFromLayout];
label: 'Remove a presenter from the layout';
icon: (self iconNamed: #smallDelete);
disable.

text := self newText.
text

text: 'I am a text presenter.

146

11.2 Creating a presenter that dynamically adds buttons with random numbers

Figure 11-4 Paned layout with two buttons, one with an icon. % width=40&an-

chor=layout4

I will not be removed';
beNotEditable

Now we have to implement the methods addToLayout and removeFromLay-
out used in the action blocks of the buttons. Those methods, as their names
indicate, add and remove presenters dynamically.

Let’s start with the addToLayoutmethod. We will add a new button to the lay-
out. The label of the new button is a random number. We enable the remove
button so that the newly added button can be removed.

DynamicButtons >> addToLayout

| randomButtonName newButton |
removeButton enable.
randomButtonName := 'Random number: ', (Random new nextInteger:

1000) asString.
newButton := self newButton
label: randomButtonName;
icon: (self iconNamed: #smallObjects);

147

Dynamic presenters

Figure 11-5 Removing a button. % width=40&anchor=layout5

yourself.
self layout add: newButton expand: false

For removing a button from the layout, we will first check if there is a button
that we can remove. If yes, we will just remove the last button. Then, if there
are no more buttons left to remove, we will disable the remove button.

DynamicButtons >> removeFromLayout

self layout remove: self layout presenters last.
self layout presenters last = text ifTrue: [removeButton disable]

The only thing that is still missing is the default layout.

DynamicButtons >> defaultLayout

^ SpBoxLayout newTopToBottom
add: addButton expand: false;
add: removeButton expand: false;
add: text;
yourself

148

11.3 Building a little dynamic browser

Figure 11-6 A presenter that dynamically adds buttons. % width=40&anchor=lay-

out6

After opening the window with the following code snippet, we see the window
shown in Figure ??.

DynamicButtons new open

Figure ?? shows what the window looks like after clicking the add button four
times.

11.3 Building a little dynamic browser

With all of the knowledge gained so far, we are going to build a new mini ver-
sion of the System Browser as shown in Figure ??. We want to have:

• A tree that shows all the system classes.

• A list that shows all methods of the selected class.

• A text presenter that shows the code of a selected method.

• A button.

149

Dynamic presenters

Figure 11-7 Adding random buttons. % width=40&anchor=layout7

Initially, the code of the method will be in “Read-only” mode. When we press
the button, we are switching to “Edit” mode.

Let’s get started.

SpPresenter << #MyMiniBrowser
slots: { #classTree . #code . #methodList . #button };
package: 'CodeOfSpec20Book'

The initializePresentersmethod instantiates the tree presenter class. We
want the tree presenter to show all the classes that are present in the Pharo
image. We know that (almost) all subclasses inherit from Object, so that is go-
ing to be the only root of the tree. To get the children of a tree node, we can
send the message subclasses to a class. We want each of the tree nodes to
have a nice icon. We can fetch the icon of a class with the message systemI-
conName. Finally, we want to “activate” the presenter with only one click in-
stead of two.

150

11.3 Building a little dynamic browser

Figure 11-8 The mini browser in action. % width=60&anchor=layout8

MyMiniBrowser >> initializePresenters

classTree := self newTree
activateOnSingleClick;
roots: { Object };
children: [:each | each subclasses];
displayIcon: [:each | self iconNamed: each systemIconName];
yourself.

For the methods, we want to use a filtering list, so that we can search for method
selectors. Also, we want to display only the selector of the method and sort the
methods in an ascending way.

methodList := self newFilteringList display: [:method |
method selector].

methodList listPresenter sortingBlock:
[:method | method selector] ascending.

151

Dynamic presenters

We said that, initially, the code is going to be in “Read-only” mode. The label
of the button is going to be “Edit” to say that if we click on the button, we will
change to “Edit” mode. We also want to have a nice icon.

button := self newButton
label: 'Edit';
icon: (self iconNamed: #smallConfiguration);
yourself.

As the initial behavior will be read-only mode, the code will be a text presenter
that is not editable.

code := self newText.
code beNotEditable

Here is the complete code of the method:

MyMiniBrowser >> initializePresenters

classTree := self newTree
activateOnSingleClick;
roots: { Object };
children: [:each | each subclasses];
displayIcon: [:each | self iconNamed: each systemIconName];
yourself.

methodList := self newFilteringList display: [:method |
method selector].

methodList listPresenter sortingBlock:
[:method | method selector] ascending.

button := self newButton
label: 'Edit';
icon: (self iconNamed: #smallConfiguration);
yourself.

code := self newText.
code beNotEditable

Opening the presenter with the code below, opens the window shown in Figure
??.

MyMiniBrowser new open

11.4 Placing elements visually

We initialized our presenters, but we did not indicate how they need to be dis-
played.

We want the upper part of the layout to have the classes and the methods shown
in a horizontal way, like in the System Browser. To achieve that, we will create

152

11.4 Placing elements visually

Figure 11-9 A little browser in read-only mode. %width=60&anchor=layout9

another left-to-right layout, with a spacing of 10 pixels between the classes and
the methods.

We will add that layout to our main layout, which is a top-to-bottom layout.
We add the code and the button under the classes and the methods. We do not
want the code to expand. In addition, we want a separation of 5 pixels for this
layout.

MyMiniBrowser >> defaultLayout

| classesAndMethodsLayout |
classesAndMethodsLayout := SpBoxLayout newLeftToRight.
classesAndMethodsLayout
spacing: 10;
add: classTree;
add: methodList.

^ SpBoxLayout newTopToBottom
spacing: 5;
add: classesAndMethodsLayout;
add: code;
add: button expand: false;

153

Dynamic presenters

yourself

11.5 Connecting the flow

So far so good, but we did not add any behavior to the presenters. We have to
implement the connectPresentersmethod.

When we click on a class in the tree, we want to update the items of the method
list with the methods of the selected class. When we click on a method, we
want to update the text of the code with the source code of the method.

MyMiniBrowserPresenter >> connectPresenters

classTree whenActivatedDo: [:selection |
methodList items: selection selectedItem methods].
methodList listPresenter
whenSelectedDo: [:selectedMethod |

code text: selectedMethod ast formattedCode].
button action: [self buttonAction]

For now, we define the method buttonAction to do nothing.

MyMiniBrowserPresenter >> buttonAction

11.6 Toggling Edit/Read-only mode

When we click on the button we want several things. That is why it is better to
create a separate method.

1. We want to change the label of the button to alternate between “Edit”
and “Read only”.

2. We want to change the presenter of the code. If the Mini Browser is in
read-only mode, we want to have a text presenter that is not editable.
If the Mini Browser is in edit mode, we want to have a code presenter
that applies syntax coloring to the code and shows the line numbers. But
always the code is going to have the same text (the code of the selected
method).

MyMiniBrowserPresenter >> buttonAction

| newCode |
button label = 'Edit'

ifTrue: [
button label: 'Read only'.
newCode := self newCode
beForMethod: methodList selectedItem;

154

11.7 Conclusion

text: methodList selectedItem ast formattedCode;
yourself]

ifFalse: [
button label: 'Edit'.
newCode := self newText

text: methodList selectedItem ast formattedCode;
beNotEditable;
yourself].

self layout replace: code with: newCode.
code := newCode

As a last detail, because we love details, we do not want “Untitled window” as
the window title and we want a default extent. We define the initializeWin-
dow: method.

MyMiniBrowserPresenter >> initializeWindow: aWindowPresenter

aWindowPresenter
title: 'My Mini Browser';
initialExtent: 750@650

Voilà! We have a new minimal version version of the System Browser with a
read-only mode. When we run MyMiniBrowser new open, and we select a
class and a method, and we press the ’Edit’ button, we see the window in Fig-
ure ??.

11.7 Conclusion

With Spec we can build applications ranging from very simple to very sophis-
ticated. The dynamic layouts allow changing layouts on the fly. Layouts can be
configured in multiple ways, so have a look at their classes and the available
examples. Spec has lots of presenters that are ready to be used. Start digging
into the code to see which presenters are available, and to learn their API.

155

Figure 11-10 Our little browser in edit mode. % width=60&anchor=layout10

CHA P T E R 12
Menu and menuBar

status: definitively needed

Soon in the best theater...

12.1 Menu

contextMenu: self todoListContextMenu sets the context menu to what is
defined in the method todoListContextMenu. Let us study right now.

TodoListPresenter >> initializePresenters
| addButton |
todoListPresenter := self newTable
addColumn: ((SpCheckBoxTableColumn evaluated: [:task | task
isDone])

width: 20;
onActivation: [:task | task done: true];
onDeactivation: [:task | task done: false];
yourself);

addColumn: (SpStringTableColumn
title: 'Title'
evaluated: [:task | task title);

contextMenu: self todoListContextMenu;
yourself.

TodoListPresenter >> todoListContextMenu

^ self newMenu
addItem: [:item | item

157

Menu and menuBar

name: 'Edit...';
action: [self editSelectedTask]];

addItem: [:item | item
name: 'Remove';
action: [self removeSelectedTask]]

12.2 Menu Bar

12.3 ToolBar

How to create one that we can resue across components?

Attention un SpToolBarButton Family should be contained in a SpToolBar

Homemade toolbar with SpButton

158

CHA P T E R 13
Styling applications

In this chapter, we will describe how to use custom styles in Spec applications.
First we present styles and then we will build a little editor like the one dis-
played hereafter.

We will show that an application in Spec manages styles and lets you adapt the
look of a presenter as shown in Figure 13-1.

Figure 13-1 Building a little styling editor.

We give some basis before showing how to effectively use styles to enhance the
look and feel of an application.

159

Styling applications

13.1 How do styles work?

Styles in Spec work like CSS. They are stylesheets in which the properties for
displaying a presenter are defined. Properties such as colors, width, height,
font, and others. As a general principle, it is better to use styles instead of fixed
constraints, because your application will be more responsive.

TODO Pay attention. A stylesheet does not cover all aspects of a widget.

13.2 About stylesheets

Spec first collects the style for the presenter, then collects the styles for its sub-
presenters. ’application’ is the default root level.

A defined stylesheet always has a root element and this root element has to be
called '.application'.

Each style follows a cascading style, starting from .application like

.application.label.header

.application.link

.application.checkBox

There are two ways to express stylesheets: one for Morphic expressed using an
extended version of STON, and CSS for GTK.

13.3 STON notation

Morphic styles can be declared using STON. STON is a textual object notation.
It is described in a dedicated chapter in the Enterprise Pharo book available at
https://books.pharo.org.

Each style element can use specific properties defined by associated classes:

• Geometry: SpGeometryStyle

• Draw: SpDrawStyle

• Font: SpFontStyle

• Container: SpContainerStyle

• Text: SpTextStyle

Example:

160

https://books.pharo.org

13.3 STON notation

Geometry { #hResizing: true }
Draw { #color: Color { #red: 1, #green: 0, #blue: 0, #alpha: 1}}
Draw { #color: #blue}
Font { #name: "Lucida Grande", #size: 10, #bold: true }
Container { #borderColor: Color { #rgb: 0, #alpha: 0 }, #borderWidth:

2, #padding: 5 },

You can define your style globally, and add it to your specific presenter with
the addStyle: message, for example addStyle: 'section'.

This message is specific to the SpAbstractMorphicAdapter backend. Here are
two examples of stylesheets.

styleSheet
^ SpStyleSTONReader fromString: '
.application [
Font { #name: "Source Sans Pro", #size: 10 },
Geometry { #height: 25 },
.label [
Geometry { #hResizing: true },
.headerError [Draw { #color: Color{ #red: 1, #green: 0, #blue: 0,

#alpha: 1}}],
.headerSuccess [Draw { #color: Color{ #red: 0, #green: 1, #blue: 0,

#alpha: 1}}],
.header [
Draw { #color: Color{ #rgb: 622413393 }},
Font { #name: "Lucida Grande", #size: 10, #bold: true }],

.shortcut [
Draw { #color: Color{ #rgb: 622413393 } },
Font { #name: "Lucida Grande", #size: 10 }],

.fixed [
Geometry { #hResizing: false, #width: 100 }],

.dim [
Draw { #color : Color{ #rgb: 708480675 } }]

],
…
'

The next one extends the default stylesheet.

styleSheet
^ SpStyle defaultStyleSheet, (SpStyleSTONReader
fromString:
'

.application [
Draw { #backgroundColor: #lightRed},
.section [

Draw { #color: #green, #backgroundColor: #lightYellow},
Font { #name: "Verdana", #size: 12, #italic: true, #bold: true}],

161

Styling applications

.disabled [Draw { #backgroundColor: #lightGreen}],

.textInputField [Draw { #backgroundColor: #blue}],

.label [
Font { #name: "Verdana", #size: 10, #italic: false, #bold: true},
Draw { #color: #red, #backgroundColor: #lightBlue}]]

')

13.4 Anatomy of a style

The styles in Spec format are similar to CSS. We have to write the styles as a
string and then parse it as a STON file.

Here is an example that we will explain step by step.

'.application [
.lightGreen [Draw { #color: #B3E6B5 }],
.lightBlue [Draw { #color: #lightBlue }]]'

SpPropertyStyle has 5 subclasses: SpContainerStyle, SpDrawStyle, Sp-
FontStyle, SpTextStyle, and SpGeometryStyle. These subclasses define the
5 types of properties that exist. On the class side, the method stonName indi-
cates the name that we must put in the STON file. stonName above is unclear

• SpDrawStylemodifies the properties related to the drawing of the pre-
senter, such as the color and the background color.

• SpFontStylemanipulates properties related to fonts.

• SpGeometryStyle is for sizes, like width, height, minimum height, etc.

• SpContainerStyle is for the alignment of the presenters, usually with
property is changed on the main presenter, which is the one that con-
tains and arranges the other ones.

• SpTextStyle controls the properties of the SpTextInputFieldPresen-
ter.

If we want to change the color of a presenter, we need to create a string and
use the SpDrawStyle property, which STON name is Draw as shown below. For
setting the color, we can use either the hexadecimal code of the color or the
sender of Color class.

'.application [
.lightGreen [Draw { #color: #B3E6B5 }],
.lightBlue [Draw { #color: #lightBlue }]]'

Now we have two styles: lightGreen and lightBlue that can be applied to
any presenter.

162

13.5 Environmental variables

13.5 Environmental variables

We can also use environmental variables to get the values of the predefined
colors and fonts of the current theme. For example, we can create two styles
for changing the font of the text of a presenter:

'.application [
.codeFont [Font { #name: EnvironmentFont(#code) }],
.textFont [Font { #name: EnvironmentFont(#default) }]

]'

Also we can change the styles for all the presenters by default. For instance, we
can display all the text in bold by default.

'.application [
Font { #bold: true }

]'

unclear what is EnvironmentFont vs Font What are the environmental vari-
ables

13.6 Defining an application

To use styles we need to associate the main presenter with an application. The
class SpApplication already has default styles. To not redefine all the prop-
erties for all the presenters, we can concatenate the default styles (SpStyle
defaultStyleSheet) with our own.

To parse a string into a STON we use the class SpStyleVariableSTONReader.

presenter := SpPresenter new.
app := SpApplication new.
presenter application: app.

styleSheet := SpStyle defaultStyleSheet,
(SpStyleVariableSTONReader fromString:
'.application [

Font { #bold: true },
.red [Draw { #color: #red }],
.bgGray [Draw { #backgroundColor: #E2E2E2 }],

.blue [Draw { #color: #blue }]
]').

app styleSheet: styleSheet.

Now we can add styles to a presenter as follows, and whose result is shown in
Figure 13-2.

163

Styling applications

label := presenter newLabel.
presenter layout: (SpBoxLayout newTopToBottom

add: label;
yourself).

label label: 'I am a label'.
label addStyle: 'red'.
label addStyle: 'bgGray'.

presenter open

Figure 13-2 The stylesheet had been applied to the label.

13.7 Dynamically applying styles

We can also remove and add styles at runtime as shown in the following snip-
pet whose result is displayed in Figure 13-3.

label removeStyle: 'red'.
label removeStyle: 'bgGray'.
label addStyle: 'blue'.

13.8 Now using classes

Until now we just wrote scripts. Now we want to show how we can use styles
using presenter classes. To properly use styles, it is better to define a custom
application as a subclass of SpApplication. How do we associate an applica-
tion to a presenter?

SpApplication << #CustomStylesApplication
slots: {};
package: 'CodeOfSpec20Book'

164

13.8 Now using classes

Figure 13-3 After changing the style.

In the class, we override the method styleSheet to return our custom stylesheet
concatenated with the default one.

CustomStylesApplication >> styleSheet

| customStyleSheet |
customStyleSheet := SpStyleVariableSTONReader fromString:
'.application [

Font { #bold: true },
.lightGreen [Draw { #color: #B3E6B5 }],
.lightBlue [Draw { #color: #lightBlue }],
.container [Container { #padding: 4, #borderWidth: 2 }],
.bgOpaque [Draw { #backgroundColor: EnvironmentColor(#base) }],
.codeFont [Font { #name: EnvironmentFont(#code) }],
.textFont [Font { #name: EnvironmentFont(#default) }],
.bigFontSize [Font { #size: 20 }],
.smallFontSize [Font { #size: 14 }],
.icon [Geometry { #width: 30 }],
.buttonStyle [Geometry { #width: 110 }],
.labelStyle [

Geometry { #height: 25 },
Font { #size: 12 }]

]'.
^ SpStyle defaultStyleSheet , customStyleSheet

We can use different properties in the same style. For example, in labelStyle
we are setting the height of the presenter to 25 scaled pixels and the font size
to 12 scaled pixels. Also, we are using EnvironmentColor(#base) for obtain-
ing the default background color according to the current theme, because the
color will change according to the theme that is used in the image.

165

Styling applications

13.9 Defining a presenter for the editor

For the main presenter, we will build a mini text viewer in which we will be
able to change the size and font of the text that we are viewing.

SpPresenter << #CustomStyles
slots: { #text . #label . #zoomOutButton . #textFontButton .

#codeFontButton . #zoomInButton };
package: 'CodeOfSpec20Book'

In the initializePresentersmethod we will first initialize the presenters
and then set the styles for the presenters.

CustomStyles >> initializePresenters

self instantiatePresenters.
self initializeStyles

CustomStyles >> instantiatePresenters

zoomInButton := self newButton.
zoomInButton icon: (self iconNamed: #glamorousZoomIn).
zoomOutButton := self newButton.
zoomOutButton icon: (self iconNamed: #glamorousZoomOut).
codeFontButton := self newButton.
codeFontButton

icon: (self iconNamed: #smallObjects);
label: 'Code font'.

textFontButton := self newButton.
textFontButton

icon: (self iconNamed: #smallFonts);
label: 'Text font'.

text := self newText.
text

beNotEditable
clearSelection;
text: String loremIpsum.

label := self newLabel.
label label: 'Lorem ipsum'

CustomStyles >> defaultLayout

| buttonbar |
buttonbar := SpBoxLayout newLeftToRight

add: textFontButton expand: false;
add: codeFontButton expand: false;
addLast: zoomOutButton expand: false;
addLast: zoomInButton expand: false;
yourself.

166

13.10 Initializing styles

^ SpBoxLayout newTopToBottom
add: label expand: false;
add: buttonbar expand: false;
add: text;
yourself

Finally, we change the window title and size:

CustomStyles >> initializeWindow: aWindowPresenter

aWindowPresenter
title: 'Using styles';
initialExtent: 600 @400

Without setting the custom styles nor using our custom application in the pre-
senter, we obtain Figure 13-4, assuming that the ”Pharo Light” theme is in ef-
fect:

Figure 13-4 Styling.

13.10 Initializing styles

We do not want the black background color for the text presenter. We would
like to have a sort of multi-line label. We want the zoom buttons to be smaller
as they only have icons. We want to have the option to change the size and font
of the text inside the text presenter. Finally, we want to change the color of the
label, change its height and make it a little bit bigger.

167

Styling applications

CustomStyles >> initializeStyles
"Change the height and size of the label and the color as
ligthgreen"

label addStyle: 'labelStyle'.
label addStyle: 'lightGreen'.
"The default font of the text will be the code font and the font

size will be the small one."
text addStyle: 'codeFont'.
text addStyle: 'smallFontSize'.
"Change the background color."
text addStyle: 'bgOpaque'.
"Use a smaller width for the zoom buttons"
zoomInButton addStyle: 'icon'.
zoomOutButton addStyle: 'icon'.
codeFontButton addStyle: 'buttonStyle'.
textFontButton addStyle: 'buttonStyle'.
"As this presenter is the container, set to self the container style

to add a padding and border width."
self addStyle: 'container'

Figure 13-5 Styled editor.

Finally, we have to override the startmethod in the application. We are going
to set the application of the presenter and run the presenter from the applica-
tion.

CustomStylesApplication >> start

(self new: CustomStyles) open

Now, when we run CustomStylesApplication new start we will obtain Fig-
ure 13-5.

168

13.11 Wiring buttons

13.11 Wiring buttons

The only thing missing is to add the behavior of the buttons.

For example, if we click on the zoom-in button we want to remove the small-
FontStyle and add the bigFontSize. When we click on the text font button,
we want to remove the style codeFont and add the textFont style.

This is what we have to do in the connectPresentersmethod:

CustomStyles >> connectPresenters

zoomInButton action: [
text removeStyle: 'smallFontSize'.
text addStyle: 'bigFontSize'].

zoomOutButton action: [
text removeStyle: 'bigFontSize'.
text addStyle: 'smallFontSize'].

codeFontButton action: [
text removeStyle: 'textFont'.
text addStyle: 'codeFont'].

textFontButton action: [
text removeStyle: 'codeFont'.
text addStyle: 'textFont']

When we click on the the zoom-in button, the size of the text changes as shown
in Figure 13-6.

Figure 13-6 Zoomed styled editor.

When we click the ”Text font” button, the font of the text changes as shown in
Figure 13-7.

169

Styling applications

Figure 13-7 Styled editor with other font.

13.12 Spec implementation details

You can ask an adapter for its style name using the message styleName

SpMorphicLabelAdapter styleName
> Label

13.13 Conclusion

Using styles in Spec is great. It makes it easier to have a consistent design as we
can add the same style to several presenters. If we want to change some style,
we only edit the stylesheet. Also, the styles automatically scale if we change
the font size of all the images. These are the main reasons why in Spec we
have the notion of an application. We can dynamically change how a presen-
ter looks.

170

CHA P T E R 14
Using transmissions and ports

(Draft)

Transmissions are a more compact way to connect presenters than events as
shown previously.

14.1 What are transmissions?

Transmissions are a way to connect presenters, thinking about the “flow” of
information more than the way it is displayed. Each presenter defines output
ports (ports to send information) and input ports (ports to receive informa-
tion). There are at least one default input port and one default output port. A
transmission connects a presenter’s output port with a presenter’s input port.

For example, think on an overview-detail (O->D) relationship, when you navi-
gate the elements in the overview O, you want to see the detail D. This is typi-
cally solved by showing a list with list elements and a form with the detail of an
element. In Spec, this will be declared more or less like this:

list := self newList.
detail := self newText.

• Input ports define the transmission destination points of a presenter.
They handle an incoming transmission and transmit them properly to
the target presenter.

• An output port defines origin actions (and the possible data associated to
such action) to transmit to a destination (input) port. It also defines the

171

Using transmissions and ports (Draft)

transformations to apply to the output data before giving them to the
input port.

14.2 Transmitting from an output port to an input port

A transmission connects a presenter’s output port with a presenter’s input
port as shown in the following example:

list transmitTo: detail.

This connects the list presenter default output port with the detail presenter
default input port.

14.3 Transforming a transmission

The object transmitted from a presenter output port can be inadequate for
the input port. To solve this problem a transmission offers the possibility to
transform the transmitted object.

This is as simple as using the transform: protocol:

SD: is the method called trasmitTo:transform: or juts transmitTo:

list
transmitTo: detail
transform: [:aValue | aValue asString].

14.4 Transmitting from an output port to an arbitrary input

receiver

It is possible that the user requires to listen an output port, but instead trans-
mitting the value to another presenter, other operation is needed.

todo christophe I do not get the previous sentence

There is the transmitDo: protocol to handle this situation:

list transmitDo: [:aValue | aValue crTrace].

14.5 Acting after a transmission

Sometimes, after a transmission happens, the user needs to react to modify
something given the new status achieved by the presenter (like, pre-selecting

172

14.5 Acting after a transmission

something). The postTransmission: protocol allows you to handle that situa-
tion.

list
transmitTo: detail
postTransmission: [:fromPresenter :toPresenter :value |

"something to do here"
toPresenter enabled: value isEmptyOrNil not].

173

CHA P T E R 15
Integration of Athens in Spec

This chapter was originally written by Renaud de Villemeur. We thank him
for his contribution. It shows how you can integrate vector graphic drawing
within Spec components.

15.1 Introduction

There are two different computer graphics: vector and raster graphics. Raster
graphics represent images as a collection of pixels. Vector graphics is the use
of geometric primitives such as points, lines, curves, or polygons to represent
images. These primitives are created using mathematical equations.

Both types of computer graphics have advantages and disadvantages. The ad-
vantages of vector graphics over raster are:

• smaller size,

• ability to zoom indefinitely,

• moving, scaling, filling, and rotating do not degrade the quality of an
image.

Ultimately, pictures on a computer are displayed on a screen with a specific
display dimension. However, while raster graphic doesn’t scale very well when
the resolution differs too much from the picture resolution, vector graphics are
rasterized to fit the display they will appear on. Rasterization is the technique
of taking an image described in a vector graphics format and transforming it
into a set of pixels for output on a screen.

175

Integration of Athens in Spec

Note. You have the same concept when doing 3D programming with an API like
OpenGL. You describe your scene with points, vertices, etc, and in the end, you
rasterize your scene to display it on your screen.

Morphic is the way to do graphics with Pharo. However, most existing can-
vases are pixel-based, and not vector-based. This can be an issue with current
IT ecosystems, where the resolution can differ from machine to machine (desk-
top, tablet, phones, etc).

Enter Athens, a vector-based graphic API. Under the hood, it uses the Cairo
graphic library for the rasterization phase.

When you integrate Athens with Spec, you’ll use its rendering engine to create
your picture. It is transformed into a Form and displayed on the screen.

15.2 Hello world in Athens

We will see how to use Athens directly integrated with Morphic. This is why we
create a Morph subclass. Figure ?? shows the display of such a morph. It will be
the class we will use for all our experiments.

First, we define a class which inherits from Morph:

Morph << #AthensHello
slots: { #surface };
package: 'CodeOfSpec20Book'

During the initialization phase, we create an Athens surface:

AthensHello >> initialize

super initialize.
self extent: self defaultExtent.
surface := AthensCairoSurface extent: self extent

where defaultExtent is simply defined as

AthensHello >> defaultExtent

^ 400@400

The drawOn: method, mandatory in Morph subclasses, asks Athens to render
its drawing and it will then display it in a Morphic canvas as a Form (a bitmap
picture)

AthensHello >> drawOn: aCanvas

self renderAthens.
surface displayOnMorphicCanvas: aCanvas at: bounds origin

176

Figure 15-1 AthensHello new openInWindow. %width=60&label=athens

Integration of Athens in Spec

Our actual Athens code is located in the renderAthensmethod, and the result
is stored in the surface instance variable.

AthensHello >> renderAthens

| font |
font := LogicalFont familyName: 'Arial' pointSize: 10.
surface drawDuring: [:canvas |

surface clear.
canvas setPaint: ((LinearGradientPaint from: 0@0 to: self extent)
colorRamp: { 0 -> Color white. 1 -> Color black }).
canvas drawShape: (0@0 extent: self extent).
canvas setFont: font.
canvas setPaint: Color pink.
canvas pathTransform translateX: 20 Y: 20 + (font
getPreciseAscent); scaleBy: 2; rotateByDegrees: 25.
canvas drawString: 'Hello Athens in Pharo/Morphic']

Open the morph in a window with:

AthensHello new openInWindow

15.3 Handling resizing

You can already create the window and see a nice gradient with a greeting text.
However, you will notice that when resizing the window, the Athens content is
not resized. To fix this, we need one extra method.

AthensHello >> extent: aPoint

| newExtent |
newExtent := aPoint rounded.
(bounds extent closeTo: newExtent) ifTrue: [^ self].
bounds := bounds topLeft extent: newExtent.
surface := AthensCairoSurface extent: newExtent.
self layoutChanged.
self changed

Congratulations, you have now created your first morphic window where con-
tent is rendered using Athens.

15.4 Using the morph with Spec

Now that we have a morph, we can use it in a presenter as follows.

178

15.5 Direct integration of Athens with Spec

SpPresenter << #AthensHelloPresenter
slots: { #morphPresenter };
package: 'CodeOfSpec20Book'

We define a basic layout so that Spec knows where to place it.

AthensHelloPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: morphPresenter;
yourself

In initializePresenters we wrap the morph in a SpMorphPresenter.

AthensHelloPresenter >> initializePresenters

morphPresenter := self instantiate: SpMorphPresenter.
morphPresenter morph: AthensHello new

When we open the presenter it displays the morph:

AthensHelloPresenter new open

15.5 Direct integration of Athens with Spec

We can also achieve a direct integration without relying on a specific Morph
creation.

We first create a presenter named AthensExamplePresenter. This is the pre-
senter that will support the actual rendering using Athens.

SpPresenter << #AthensExamplePresenter
slots: { #paintPresenter };
package: 'CodeOfSpec20Book'

We define a simple layout to place the paintPresenter.

AthensExamplePresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: paintPresenter;
yourself

This presenter wraps an AthensPresenter as follows:

AthensExamplePresenter >> initializePresenters

paintPresenter := self instantiate: SpAthensPresenter.
paintPresenter surfaceExtent: 600@400.
paintPresenter drawBlock: [:canvas | self render: canvas]

179

Integration of Athens in Spec

It configures the AthensPresenter to draw with the render: message.

AthensExamplePresenter >> render: canvas

canvas
setPaint:

(canvas surface
createLinearGradient: {

0 -> Color white.
1 -> Color black }

start: 0@0
stop: canvas surface extent).

canvas drawShape: (0 @ 0 extent: canvas surface extent)

Executing AthensExamplePresenter new open produces Figure ??.

Figure 15-2 A Spec application with an Athens presenter. % width=60&la-

bel=athens2

This example is simple because we did not cover the rendering that may have
to be invalidated if something changes, but it shows the key aspect of the archi-
tecture.

180

15.6 Conclusion

15.6 Conclusion

This chapter illustrated clearly that Spec can take advantage of canvas-related
operations such as those proposed by Athens to open the door to specific visu-
als.

181

CHA P T E R 16
Customizing your Inspector

status: should do another pass status: spellchecked

An Inspector is a tool that is used to look at and interact with objects. In Pharo,
inspecting an object means opening this tool and interacting with your object.
It is a key tool when developing in Pharo. It allows one to navigate the object
structure, look at the state of the variables, change their value, or send mes-
sages. An inspector can show other information and you can extend it to dis-
play the information that is best suited for you. This is what we will see in this
chapter.

16.1 A first look at the inspector

You can inspect the result of an execution by selecting the code and using the
shortcut Cmd/ctrl + i or right-click + "Do & inspect it". This will
execute the code and open an inspector on the result.

By inspecting 1/3 we get the inspector shown in Figure ??.

There are three areas in an inspector. They are highlighted in Figure ??.

1. This text starts with the class of the inspected object. Here we have an
instance of Fraction.

2. This is the raw view on the object. It shows the internal state of the ob-
ject. Here the fraction has a numerator instance variable holding the
value 1, and a denominator instance variable holding the value 3.

3. The last area is the evaluator. In this area, you can write expressions and
evaluate them like you would in the playground. In an evaluator, self

183

Customizing your Inspector

Figure 16-1 An inspector with the Raw tab selected. % width=60&anchor=Inspec-

torWithRawTab

refers to the inspected object. This object can be seen in the raw view
above the evaluator showing the value of the self variable.

The raw view on the object is a tree list. By clicking the small grey triangle on
the left side, you can unfold the state of the object held by the instance vari-
able. By clicking on an instance variable, you open a new inspector pane.

This is recursive: if you click on more variables, more panes will open. By de-
fault, only the last two panes are visible at any time. You can use the small
rectangles at the bottom of the window to navigate between panes.

KDH: adding a GIF file does not work. We need an alternative or remove this
part

16.2 The inspector toolbar

Each inspector has the toolbar shown in Figure 16-3:

184

16.2 The inspector toolbar

Figure 16-2 Inspector areas. % width=60&anchor=InspectorWithThreeAreas

Figure 16-3 Toolbar.

• The triangle button is related to object-centric debugging. It allows
putting breakpoints on state access (read and/or write) of a specific ob-
ject.

• The circling arrows button allows refreshing the current view of the
object. Fields of an object are not updated live, so if the object is modified
from elsewhere, the new values will only show after this button is used.

• The green glasses button opens another inspector window on the cur-
rent object.

• The last button allows opening a browser on the class of the inspected
object. It can be used to check for available methods to use in the evalua-
tor.

185

Customizing your Inspector

16.3 The Breakpoints tab: managing breakpoints

KDH: this section was/is missing.

The following animation shows how to put a breakpoint on writing an instance
variable, the breakpoints listing on the current object, and how to deactivate
one.

KDH: adding a GIF file does not work. We need an alternative or remove this
part

16.4 The Meta tab: class hierarchy and searching methods

The Meta tab is the last one that is available for most objects. See Figure ??.
On the left, it shows the hierarchy of the current object’s class. On the right, it
shows the available methods. Clicking on parent classes in the hierarchy will
show methods implemented in this class on the right. Selecting a method will
display its source code at the bottom of the tab.

Figure 16-4 Meta tab. % width=60&anchor=InspectorMetaTab

186

16.5 Creating custom tabs

16.5 Creating custom tabs

If you used the inspector a bit, you may have noticed that some objects have
additional tabs showing up in the inspector. For example, both Floats and In-
tegers have their first tabs showing different representations of numbers, as
shown in Figure ??.

Figure 16-5 Inspecting numbers. % width=60&anchor=InspectorForNumbers

Another example is the FileReference class. When a file reference is inspected,
according to the type of the file, different tabs show up with relevant informa-
tion.

Creating a new tab is as simple as reusing existing Spec presenters or defining
new ones for your specific case. For example, you can define a tab displaying a
specific Roassal visualization.

The following sections will explain how to add a few additional tabs to instances
of OrderedCollection. This class already has a custom tab showing the list of
its items which is defined by its superclass Collection.

16.6 Adding a tab with text

Let’s add a first tab containing a text describing the first element of the collec-
tion. Define the following method:

187

Customizing your Inspector

OrderedCollection << inspectionFirstElement

<inspectorPresentationOrder: 1 title: 'First Element'>

^ SpTextPresenter new
text: 'The first element is ', self first asString;
beNotEditable;
yourself

<inspectorPresentationOrder: 1 title: 'First Element'> is a pragma
that is detected when creating an inspector on an object. When creating an in-
spector on an instance of OrderedCollection, this method will now be used
to generate a tab. The title of the tab will be First Element, it will have posi-
tion 1 in the order of tabs.

The content of the tab is returned by the method. Here we are creating a text
presenter (SpTextPresenter) with the content we want and we specify that it
should not be editable. This gives us the result shown in Figure 16-6.

Figure 16-6 First element tab.

Notice that our new tab is in the second position. This is because in Collec-
tion<<inspectionItems: (the method defining the Items tab) the order pa-
rameter is 0.

16.7 Adding a tab with a table and conditions on when to

display it

Let’s create a new tab that will display a table if the collection contains only
numbers. It will show each number and the result of multiplying that number

188

16.8 Adding a raw view of a specific element of the collection and removing the evaluator

with 2.

First let’s create the tab with the table:

OrderedCollection << inspectionMultipliedByTwo

<inspectorPresentationOrder: 10 title: 'Multiply by 2'>

| itemColumn multipliedByTwoColumn |
itemColumn := SpStringTableColumn
title: 'Item'
evaluated: #yourself.

itemColumn width: 30.
multipliedByTwoColumn := SpStringTableColumn
title: 'Multiply by 2'
evaluated: [:each | each * 2].

^ SpTablePresenter new
addColumn: itemColumn;
addColumn: multipliedByTwoColumn;
items: self;
beResizable;
yourself

When we inspect a collection of numbers we see the tabs shown in Figure ??.

However if the collection contains elements that are not numbers, the tab
crashes and looks like a red rectangle. By defining a method with the name
<name of the method defining the tab>Context: we can specify when
we want to activate a given tab. For example:

OrderedCollection << inspectionMultipliedByTwoContext: aContext

^ aContext active: self containsOnlyNumbers

OrderedCollection << containsOnlyNumbers

^ self allSatisfy: [:each | each isNumber]

These two methods will ensure that the tab will be displayed only when there
are only numbers in the collection.

16.8 Adding a raw view of a specific element of the collec-

tion and removing the evaluator

We can also add a tab showing the raw view of the max value:

189

Customizing your Inspector

Figure 16-7 Multiplied by 2 tab. % width=60&anchor=InspectorMultipliedByT-

woTab

OrderedCollection << inspectionMaxValue

<inspectorPresentationOrder: 5 title: 'Max Value'>

^ StRawInspectionPresenter on: self max

OrderedCollection << inspectionMaxValueContext: aContext

^ aContext active: self containsOnlyIntegers

However as we can see in Figure ??, the self in the evaluator does not match
the self in the max value, which is confusing. So we will hide the evaluator.

190

16.8 Adding a raw view of a specific element of the collection and removing the evaluator

Figure 16-8 Inspect max value tab. %width=60&anchor=InspectorMaxValueTab

OrderedCollection << inspectionMaxValueContext: aContext

aContext withoutEvaluator.
^ aContext active: self containsOnlyIntegers

By reinspecting the same collection we see the inspector in Figure ??.

Figure 16-9 Removing the evaluator. % width=60&anchor=InspectorWithoutEvalu-

ator

191

Customizing your Inspector

16.9 Adding Roassal charts

As said above, Roassal allows one to build visualizations. The library includes
some common graphs like a histogram. Let’s add a histogram of the values if
there are only numbers in the collection. Roassal 3 visualizations can be em-
bedded in a presenter by sending the asPresentermessage to an instance of
RSBuilder. In the code below, RSHistogramPlot is a subclass of RSBuilder.

OrderedCollection << inspectionIntegerHistogram

<inspectorPresentationOrder: -1 title: 'Histogram'>

| plot |
plot := RSHistogramPlot new x: self.
^ plot asPresenter

OrderedCollection << inspectionIntegerHistogramContext: aContext

aContext active: self containsOnlyIntegers.
aContext withoutEvaluator.

By inspecting { 1 . 1 . 3 . 2 . 5 . 2. 2 . 1. 9. 3 . 2. 2. 5 . 7 .
7 . 8 } asOrderedCollection we see the inspector shown in Figure ??.

16.10 Conclusion

In this chapter, we presented briefly the inspector and how you can special-
ize its tabs and evaluator to shape the way you can see and interact with your
objects. We presented how to define conditional tabs, as well as embed visual-
izations.

192

Figure 16-10 Histogram tab. %width=60&anchor=histogram

Part III

Working with Commands

CHA P T E R 17
A simple contact book

In this chapter, we develop a simple model for a contact book. Then we define
a user interface. This example will be used later in the book as an example to
explain concepts such as commands, applications, and windows.

Now it is more of a replay of the concepts previously mentioned. We start by
implementing classes modeling the domain and then we will add a basic graph-
ical user interface to obtain a little application as shown in Figure ??.

17.1 Contact book model

The model for the domain of our example is composed of two classes: Contact
and ContactBook as shown in Figure ??.

Contact

The class modeling a contact is defined as follows.

Object << #Contact
slots: {#name . #phone};
package: 'ContactBook'

It just defines a printOn: method and a couple of accessors (not shown in the
text).

Contact >> printOn: aStream

super printOn: aStream.
aStream nextPut: $(.

197

Figure 17-1 A rudimentary contact book application. % width=60&an-

chor=overview

contacts
addContact:
removeContact:
findContactsWithText:

ContactBook

name
phone

Contact

Figure 17-2 A simple model for the contact book. %width=60&anchor=contact-

model

17.1 Contact book model

aStream nextPutAll: name.
aStream nextPut: $).

Contact >> hasMatchingText: aString

^ name includesSubstring: aString caseSensitive: false

Contact class >> name: aNameString phone: aPhoneString

^ self new
name: aNameString;
phone: aPhoneString;
yourself

ContactBook

Now we define the class modeling the contact book. As for the contact class, it
is simple and quite straightforward.

Object << #ContactBook
slots: { #contacts };
package: 'ContactBook'

ContactBook >> initialize

super initialize.
contacts := OrderedCollection new

We add the possibility to add and remove a contact

ContactBook >> addContact: aContact

contacts add: aContact

ContactBook >> removeContact: aContact

contacts remove: aContact

ContactBook >> addContact: newContact after: contactAfter

contacts add: newContact after: contactAfter

We add a simple testing method in case one wants to write some tests (which
we urge you to do).

ContactBook >> includesContact: aContact

^ contacts includes: aContact

And now we add a method to create a contact and add it to the contact book.

199

A simple contact book

ContactBook >> add: contactName phone: phone

| contact |
contact := Contact new name: contactName; phone: phone.
self addContact: contact.
^ contact

Finally, some facilities to query the contact book.

ContactBook >> findContactsWithText: aText

^ contacts select: [:e | e hasMatchingText: aText]

ContactBook >> size

^ contacts size

ContactBook >> contents

^ contacts

Pre-filling up the contact book

Since we want to have some contacts and we want to keep them without resort-
ing to a database or file, we set some class instance variables.

We define a class instance variable coworkers and define a class method acces-
sor as follows:

ContactBook class >> coworkers

^coworkers ifNil: [
coworkers := self new

add: 'Stef' phone: '112 378';
add: 'Pavel' phone: '898 678';
add: 'Marcus' phone: '444 888';
yourself]

We add one method to be able to reset them if necessary. The <script> pragma
tells the system browser to add a small button to execute resetmethod easily.

ContactBook class >> reset

<script>
coworkers := nil

200

17.2 A simple graphical user interface

17.2 A simple graphical user interface

Now we define the graphical user interface (GUI) to expose the model to the
user. The targeted GUI is shown in Figure ??.

Figure 17-3 A rudimentary contact book application. %width=60&anchor=firstFul-

lUI

We define the class ContactBookPresenter. It holds a reference to a contact
book and it is structured around a table.

SpPresenter << #ContactBookPresenter
slots: { #table . #contactBook};
package: 'ContactBook'

We define an accessor for the contact book and the table.

ContactBookPresenter >> contactBook

^ contactBook

ContactBookPresenter >> table: anObject

table := anObject

201

A simple contact book

ContactBookPresenter >> table

^ table

Initializing the model

We specialize the method setModelBeforeInitialization: that is invoked
by the framework to assign the contactBook instance variable to the object
passed during the execution of the expression (ContactBookPresenter on:
ContactBook coworkers) open.

ContactBookPresenter >> setModelBeforeInitialization: aContactBook

super setModelBeforeInitialization: aContactBook.
contactBook := aContactBook

Layout

ContactBookPresenter >> defaultLayout

^ SpBoxLayout newVertical add: #table; yourself

Widget initialization

We initialize the table to display two columns for the name and the phone.
The respective accessor messages will be sent to the elements to fill up the
columns. Finally, the table content is set using the contact book contents.

ContactBookPresenter >> initializePresenters

table := self newTable.
table

addColumn: (StringTableColumn title: 'Name' evaluated: #name);
addColumn: (StringTableColumn title: 'Phone' evaluated:

#phone).
table items: contactBook contents.

Now we can open the UI by executing the snippet (ContactBookPresenter
on: ContactBook coworkers) open.

We define a class method to be able to easily re-execute the setup.

ContactBookPresenter class >> coworkersExample

<example>
^ (self on: ContactBook coworkers) open

You should obtain the GUI as shown in Figure ??.

202

17.2 A simple graphical user interface

Figure 17-4 First version of the GUI without menus and toolbar. % width=60&an-

chor=firstMenuToolbar

Interacting with user

We now implement the method that will open a window to ask the user to cre-
ate a new contact for the contact book.

ContactBookPresenter >> newContact
| rawData split |
rawData := self

request: 'Enter new contact name and phone (split by comma)'
initialAnswer: ''
title: 'Create new contact'.

split := rawData splitOn: $,.
(split size = 2 and: [split allSatisfy: [:each | each isNotEmpty
]])

ifFalse: [SpInvalidUserInput signal: 'Please enter contact
name and phone (split by comma)'].

^ Contact new
name: split first;
phone: split second;

203

A simple contact book

yourself

To test it, we can get access to the presenter with

(ContactBookPresenter on: ContactBook coworkers)
open presenter inspect

and you can send the newContactmessage to open the GUI shown in Figure ??.

Figure 17-5 Playing inside the inspector. % width=80&anchor=inspector

Some extra methods

We will also define the methods isContactSelected and selectedContact
to know if a contact is currently selected and to return it. It will help us later to
add a contact just after the currently selected contact.

ContactBookPresenter >> isContactSelected

^ table selectedItems isNotEmpty

ContactBookPresenter >> selectedContact

^ table selection selectedItem

204

17.3 Conclusion

17.3 Conclusion

Now we have a little contact book manager that we can use to explain other
topics.

205

CHA P T E R 18
Commander: A powerful and

simple command framework

Commander was a library originally developed by Denis Kudriashov. Comman-
der 2.0 is the second iteration of that library. It was designed and developed by
Julien Delplanque and Stéphane Ducasse. Note that Commander 2.0 is not com-
patible with Commander but it is really easy to migrate from Commander to
Commander 2.0. We describe Commander 2.0 in the context of Spec. From now
on, when we mention Commander we refer to Commander 2.0. In addition, we
show how to extend Commander to other needs.

18.1 Commands

Commander models application actions as first-class objects following the
Command design pattern. With Commander, you can express commands and
use them to generate menus and toolbars, but also to script applications from
the command line.

Every action is implemented as a separate command class (subclass of CmCom-
mand) with an executemethod and the state required for execution.

We will show later that for a UI framework, we need more information such as
an icon and shortcut description. In addition, we will present how commands
can be decorated with extra functionality in an extensible way.

207

Commander: A powerful and simple command framework

name
description

CmCommand

execute
context
canBeExecuted

CmAbstractCommand

execute
EgAddContactCommand

Figure 18-1 A simple command and its hierarchy.

18.2 Defining commands

A command is a simple object instance of a subclass of the class CmCommand. It
has a description, a name (this name can be either static or dynamic as we will
show later on). In addition, it has a context from which it extracts information
to execute itself. In its basic form, there is no more than that.

Let us have a look at examples. We will define some commands for the Con-
tactBook application and illustrate how they can be turned into menus and a
menubar.

18.3 Adding some convenience methods

For convenience reasons, we define a common superclass of all the commands
of the contact book application named ContactBookCommand.

CmCommand << #ContactBookCommand
package: 'ContactBook'

We define a simple helper method to make the code more readable

ContactBookCommand >> contactBookPresenter

^ self context

For the same reason, we define another helper to access the contact book and
the selected item.

208

18.3 Adding some convenience methods

ContactBookCommand >> contactBook

^ self contactBookPresenter contactBook

ContactBookCommand >> selectedContact

^ self contactBookPresenter selectedContact

Using the helper method isContactSelected we defined in the previous
chapter, the method hasSelectedContact can be implemented as:

ContactBookCommand >> hasSelectedContact

^ self contactBookPresenter isContactSelected

Adding the Add Contact command

We define a subclass to define the add a contact command.

ContactBookCommand << #AddContactCommand
package: 'ContactBook'

AddContactCommand >> initialize
super initialize.
self

basicName: 'New contact';
basicDescription: 'Creates a new contact and adds it to the

contact book.'

AddContactCommand >> execute

| contact |
contact := self contactBookPresenter newContact.
self hasSelectedContact

ifTrue: [self contactBook addContact: contact after: self
selectedContact]

ifFalse: [self contactBook addContact: contact].
self contactBookPresenter updateView

We define the method updateView to refresh the contents of the table.

ContactBookPresenter >> updateView
table items: contactBook contacts

Now in an inspector on an instance of ContactBookPresenter, we can simply
execute the command as follows:

(AddContactCommand new context: self) execute

Executing the command should ask you to give a name and a phone number
and the new contact will be added to the list.

209

Commander: A powerful and simple command framework

We can also execute the following snippet.

| presenter command |
presenter := ContactBookPresenter on: ContactBook coworkers.
command := AddContactCommand new context: presenter.
command execute

18.4 Adding the Remove Contact command

Now we define now another command to remove a contact. This example is
interesting because it does not involve any UI interaction. It shows that a com-
mand is not necessarily linked to UI interaction.

ContactBookCommand << #RemoveContactCommand
package: 'ContactBook'

RemoveContactCommand >> initialize
super initialize.
self

name: 'Remove';
description: 'Removes the selected contact from the contact

book.'

This command definition illustrates how we can control when a command
should or should not be executed. The method canBeExecuted allows speci-
fying such a condition.

RemoveContactCommand >> canBeExecuted
^ self context isContactSelected

The method execute is straightforward.

RemoveContactCommand >> execute
self contactBook removeContact: self selectedContact.
self contactBookPresenter updateView

The following test validates the correct execution of the command.

ContactCommandTest >> testRemoveContact

self assert: presenter contactBook size equals: 3.
presenter table selectIndex: 1.
(RemoveContactCommand new context: presenter) execute.
self assert: presenter contactBook size equals: 2

210

18.5 Turning commands into menu items

18.5 Turning commands into menu items

Now that we have our commands, we would like to reuse them and turn them
into menus. In Spec, commands that are transformed into menu items are
structured into a tree of command instances. The class method buildCom-
mandsGroupWith:forRoot: of SpPresenter is a hook to let presenters define
the root of the command instance tree.

A command is transformed into a command for Spec using the message for-
Spec.We will show later that we can add UI-specific information to a command
such as an icon and a shortcut.

The method buildCommandsGroupWith:forRoot: registers commands to
which the presenter instance is passed as context. Note that here we just add
plain commands, but we can also create groups. Later in this chapter we will
also specify a menu bar in this method.

ContactBookPresenter class >>
buildCommandsGroupWith: presenter
forRoot: rootCommandGroup

rootCommandGroup
register: (AddContactCommand forSpec context: presenter);
register: (RemoveContactCommand forSpec context: presenter)

Now we have to attach the root of the command tree to the table. This is what
we do with the new line in the initializePresentersmethod. Notice that
we have full control and as we will show we could select a subpart of the tree
(using the message /) and define it as root for a given component.

ContactBookPresenter >> initializePresenters
table := self newTable.
table

addColumn: (SpStringTableColumn title: 'Name' evaluated:
#name);

addColumn: (SpStringTableColumn title: 'Phone' evaluated:
#phone).
table contextMenu: [self rootCommandsGroup beRoot asMenuPresenter
].
table items: contactBook contacts.

When reopening the interface with (ContactBookPresenter on: Contact-
Book coworkers) open, you should see the menu items as shown in Figure
18-2. As we will show later, we could even replace a menu item with another
one, changing its name, or icon in place.

211

Commander: A powerful and simple command framework

Figure 18-2 With two menu items with groups.

18.6 Introducing groups

Commands can be managed in groups and such groups can be turned into cor-
responding menu item sections. The key hook method is the class method
named buildCommandsGroupWith: presenterInstance forRoot:.

Here we give an example of such grouping. Note that the message asSpec-
Group is sent to a group. We create two methods, each creating a simple group,
one for adding, and one for removing contracts.

ContactBookPresenter class >> buildAddingGroupWith: presenter

^ (CmCommandGroup named: 'Adding') asSpecGroup
description: 'Commands related to contact addition.';
register: (AddContactCommand forSpec context: presenter);
beDisplayedAsGroup;
yourself

ContactBookPresenter class >> buildRemovingGroupWith: presenter

^ (CmCommandGroup named: 'Removing') asSpecGroup
description: 'Commands related to contact removal.';
register: (RemoveContactCommand forSpec context: presenter);
beDisplayedAsGroup;
yourself

We group the previously defined groups together under the contextual menu:

212

18.6 Introducing groups

ContactBookPresenter class >> buildContextualMenuGroupWith: presenter

^ (CmCommandGroup named: 'Context Menu') asSpecGroup
register: (self buildAddingGroupWith: presenter);
register: (self buildRemovingGroupWith: presenter);
yourself

Finally, we revisit the hook buildCommandsGroupWith:forRoot: to register
the last group to the root command group.

ContactBookPresenter class >>
buildCommandsGroupWith: presenter
forRoot: rootCommandGroup

rootCommandGroup
register: (self buildContextualMenuGroupWith: presenter)

When reopening the interface with (ContactBookPresenter on: Contact-
Book coworkers) open, you should see the menu items inside a 'Context
Menu' as shown in Figure 18-3.

Figure 18-3 With a context menu.

To show that we can also select part of the command tree, we select the 'Con-
text Menu' group and declare it as the root of the table menu. Then you will
not see the 'Context Menu' anymore.

ContactBookPresenter >> initializePresenters

table := self newTable.
table

addColumn: (SpStringTableColumn title: 'Name' evaluated:
#name);

213

Commander: A powerful and simple command framework

addColumn: (SpStringTableColumn title: 'Phone' evaluated:
#phone).
table contextMenu: [(self rootCommandsGroup / 'Context Menu')
beRoot asMenuPresenter].
table items: contactBook contacts

Here we see that by sending the slash message (/), we can select the group in
which we want to add a menu iten.

18.7 Extending menus

Building menus is nice, but sometimes we need to add a menu to an existing
one. Commander supports this via a dedicated pragma, called <extension-
Commands> that identifies extensions.

Imagine that we have new functionality that we want to add to the contact
book and that this behavior is packaged in another package, here, ContactBook-
Extensions. First, we will define a new command and second, we will show
how we can extend the existing menu to add a new menu item.

ContactBookCommand << #ChangePhoneCommand
package: 'ContactBook-Extensions'

ChangePhoneCommand >> initialize

super initialize.
self

name: 'Change phone';
description: 'Change the phone number of the contact.'

ChangePhoneCommand >> execute

self selectedContact phone: self contactBookPresenter newPhone.
self contactBookPresenter updateView

We extend ContactBookPresenter with the method newPhone to let the pre-
senter decide how a user should provide a new phone number.

ContactBookPresenter >> newPhone

| phone |
phone := self

request: 'New phone for the contact'
initialAnswer: self selectedContact phone
title: 'Set new phone for contact'.

(phone matchesRegex: '\d\d\d\s\d\d\d')
ifFalse: [

SpInvalidUserInput signal: 'The phone number is not well
formatted.

214

18.8 Managing icons and shortcuts

Should match "\d\d\d\s\d\d\d"'].
^ phone

The last missing piece is the declaration of the extension. This is done using
the pragma <extensionCommands> on the class side of the presenter class as
follows:

ContactBookPresenter class >>
changePhoneCommandWith: presenter
forRootGroup: aRootCommandsGroup

<extensionCommands>

(aRootCommandsGroup / 'Context Menu')
register: (ChangePhoneCommand forSpec context: presenter)

Figure 18-4 With menu extension.

18.8 Managing icons and shortcuts

By default a command does not know about Spec-specific behavior, because a
command does not have to be linked to UI. Obviously you want to have icons
and shortcut bindings when you are designing an interactive application.

Commander supports the addition of icons and shortcut keys to commands.Let
us see how it works from a user perspective. The framework offers two meth-
ods to set an icon and a shortcut key: iconName: and shortcutKey:. We should
specialize the method asSpecCommand as follows:

215

Commander: A powerful and simple command framework

RemoveContactCommand >> asSpecCommand

^ super asSpecCommand
iconName: #removeIcon;
shortcutKey: $x meta;
yourself

AddContactCommand >> asSpecCommand

^ super asSpecCommand
shortcutKey: $n meta;
iconName: #changeAdd;
yourself

Note that the commands are created using the message forSpec. This message
takes care of the calling asSpecCommand.

18.9 Enabling shortcuts

At the time of writing this chapter, Commander management of shortcuts has
not been pushed to Spec to avoid dependency on Commander. It is then the
responsibility of your presenter to manage shortcuts as shown in the follow-
ing method. We ask the command group to install the shortcut handler in the
window.

ContactBookPresenter >> initializeWindow: aWindowPresenter

super initializeWindow: aWindowPresenter.
self rootCommandsGroup installShortcutsIn: aWindowPresenter

18.10 In-place customisation

Commander supports the reuse and in-place customisation of commands. It
means that a command can be modified on the spot: for example, its name or
description can be adapted to the exact usage context. Here is an example that
shows that we adapt the same command twice.

Let us define a really simple and generic command that will simply inspect the
object.

ContactBookCommand << #InspectCommand
package: 'ContactBook-Extensions'

InspectCommand >> initialize

super initialize.
self

216

18.11 Managing a menu bar

name: 'Inspect';
description: 'Inspect the context of this command.'

InspectCommand >> execute

self context inspect

By using a block, the context is computed at the moment the command is ex-
ecuted and the name and description can be adapted for its specific usage as
shown in Figure 18-5.

ContactBookPresenter class >>
extraCommandsWith: presenter
forRootGroup: aRootCommandsGroup

<extensionCommands>

aRootCommandsGroup / 'Context Menu'
register:

((CmCommandGroup named: 'Extra') asSpecGroup
description: 'Extra commands to help during

development.';
register:

((InspectCommand forSpec context: [presenter
selectedContact])

name: 'Inspect contact';
description: 'Open an inspector on the selected

contact.';
iconName: #smallFind;
yourself);

register:
((InspectCommand forSpec context: [presenter contactBook

])
name: 'Inspect contact book';
description: 'Open an inspector on the contact book.';
yourself);

yourself)

18.11 Managing a menu bar

Commander also supports menu bar creation. The logic is the same as for con-
textual menus: we define a group and register it under a given root, and we tell
the presenter to use this group as a menubar.

Imagine that we have a new command to print the contact.

ContactBookCommand << #PrintContactCommand
package: 'ContactBook'

217

Commander: A powerful and simple command framework

Figure 18-5 With menu extension.

PrintContactCommand >> initialize

super initialize.
self

name: 'Print';
description: 'Print the contact book in Transcript.'

PrintContactCommand >> execute

Transcript open.
self contactBook contacts do: [:contact | self traceCr: contact
name , ' - ' , contact name]

We create a simple group that we call ’MenuBar’ (but it could be called any-
thing).

ContactBookPresenter class >> buildMenuBarGroupWith: presenter

^ (CmCommandGroup named: 'MenuBar') asSpecGroup
register: (PrintContactCommand forSpec context: presenter);
yourself

Wemodify the root to add the menu bar group in addition to the previou one.

ContactBookPresenter class >>
buildCommandsGroupWith: presenter
forRoot: rootCommandGroup

rootCommandGroup
register: (self buildMenuBarGroupWith: presenter);
register: (self buildContextualMenuGroupWith: presenter)

We hook it into the widget as the last line of the initializePresentersmethod.

218

18.11 Managing a menu bar

Notice the use of the message asMenuBarPresenter and the addition of a new
instance variable called menuBar.

ContactBookPresenter >> initializePresenters

table := self newTable.
table

addColumn: (SpStringTableColumn title: 'Name' evaluated:
#name);

addColumn: (SpStringTableColumn title: 'Phone' evaluated:
#phone).
table contextMenu: [(self rootCommandsGroup / 'Context Menu')
beRoot asMenuPresenter].
table items: contactBook contents.
menuBar := (self rootCommandsGroup / 'MenuBar') asMenuBarPresenter.

Finally, to get the menu bar we declare it in the layout. We use SpAbstractP-
resenter class>>#toolbarHeight to specify the height of the menu bar.

ContactBookPresenter >> defaultLayout

^ SpBoxLayout newVertical
add: #menuBar
withConstraints: [:constraints | constraints height: self

toolbarHeight];
add: #table;
yourself

Figure 18-6 With a menubar.

219

Commander: A powerful and simple command framework

18.12 Conclusion

In this chapter, we saw how you can define a simple command and execute it
in a given context. We show how you can turn a command into a menu item
in Spec by sending the message forSpec. You learned how we can reuse and
customize commands. We presented groups of commands as a way to structure
menus and menu bars.

220

	Introduction
	Reuse of logic
	Spec 2.0
	Code
	Acknowledgements

	All Spec in One Example
	A 10 min small example
	A customer satisfaction UI
	Create the class of the UI
	Instantiate and configure subpresenters
	Presenter creation
	Presenter configuration
	Presenter interaction logic
	Specifying the presenter layout

	Define a title and window size, open and close the UI
	Conclusion

	Most of Spec in one example
	Application
	A basic film model
	List of films
	defaultLayout
	initializePresenters

	Filling up the film list
	Opening presenters via the application
	Improving the window
	An application manages icons
	FilmPresenter
	Better looking FilmPresenter
	Opening FilmPresenter in a modal dialog
	Customizing the modal dialog
	Invoking a presenter
	Embedding a FilmPresenter into the FilmListPresenter
	Define component communication
	Testing your application UI
	Adding more tests
	Changing layout
	Using transmissions
	Styling the application
	Conclusion

	Spec Essentials
	Spec core in a nutshell
	Spec architecture overview
	Spec core architecture overview
	Presenters
	Application
	Application configuration
	Using Morphic
	Using GTK theme and settings

	Layouts
	Styles and stylesheets
	Navigation between presenters
	Conclusion

	Testing Spec applications
	Testing presenters
	Spec architecture
	Three roles and concerns
	Spec user perspective

	Spec user example
	Tests
	Opening the default application
	Correct initialization
	Choosing a color
	Making the current color lighter
	Making the current color darker
	Verifying window properties

	Testing your application
	Known limitations and conclusion

	The dual aspects of presenters: Domain and interaction model
	About presenters on a model
	Example with SpPresenter
	SpPresenter vs. SpPresenterWithModel
	Example with SpPresenterWithModel
	User interface building: a model of UI presentation
	The initializePresenters method
	Subpresenter instantiation

	The connectPresenters method
	The defaultLayout method
	Using setter message layout:
	Multiple layouts for a widget

	Conclusion

	Reuse and composition at work
	First requirements
	Creating a basic UI to be reused as a widget
	Supporting reuse
	Combining two basic presenters into a reusable UI
	Live inspection of the widgets
	Writing tests
	Managing three widgets and their interactions
	Having different layouts
	Enhancing our API
	Changing the layout of a reused widget
	Changing layouts
	Considerations about a public configuration API
	New versus old patterns
	Conclusion

	Lists, tables and trees
	Lists
	Controlling item display
	Decorating elements
	About single/multiple selection
	Drag and drop
	Activation clicks
	Filtering lists
	Selectable filtering lists
	Component lists
	Trees
	Tables
	First table
	Sorting headers
	Editable tables
	Tree tables
	Conclusion

	Managing windows
	A working example
	Opening a window or a dialog box
	Opening a window
	Opening a dialog box

	Preventing window close
	Acting on window close
	With a window
	With a dialog window
	Action with Window

	Window size and decoration
	Setting initial size and changing size
	Fixed size
	Removing window decoration
	Setting and changing the title
	Setting the about text

	Getting values from a dialog window
	Little modal dialog presenters
	Placing a presenter inside a dialog window
	Conclusion

	Layouts
	Basic principle reminder
	A running example
	BoxLayout (SpBoxLayout and SpBoxConstraints)
	Box layout alignment
	Example setup for layout reuse
	Opening with a layout
	Better design
	Specifying a layout when reusing a presenter
	Alternative to declare subcomponent layout choice
	Dynamically changing a layout

	Grid layout (SpGridLayout)
	Paned layout (SpPanedLayout)
	Overlay layout (SpOverlayLayout)
	Conclusion

	Dynamic presenters
	Layouts as simple as objects
	Creating a presenter that dynamically adds buttons with random numbers
	Building a little dynamic browser
	Placing elements visually
	Connecting the flow
	Toggling Edit/Read-only mode
	Conclusion

	Menu and menuBar
	Menu
	Menu Bar
	ToolBar

	Styling applications
	How do styles work?
	About stylesheets
	STON notation
	Anatomy of a style
	Environmental variables
	Defining an application
	Dynamically applying styles
	Now using classes
	Defining a presenter for the editor
	Initializing styles
	Wiring buttons
	Spec implementation details
	Conclusion

	Using transmissions and ports (Draft)
	What are transmissions?
	Transmitting from an output port to an input port
	Transforming a transmission
	Transmitting from an output port to an arbitrary input receiver
	Acting after a transmission

	Integration of Athens in Spec
	Introduction
	Hello world in Athens
	Handling resizing
	Using the morph with Spec
	Direct integration of Athens with Spec
	Conclusion

	Customizing your Inspector
	A first look at the inspector
	The inspector toolbar
	The Breakpoints tab: managing breakpoints
	The Meta tab: class hierarchy and searching methods
	Creating custom tabs
	Adding a tab with text
	Adding a tab with a table and conditions on when to display it
	Adding a raw view of a specific element of the collection and removing the evaluator
	Adding Roassal charts
	Conclusion

	Working with Commands
	A simple contact book
	Contact book model
	Contact
	ContactBook
	Pre-filling up the contact book

	A simple graphical user interface
	Initializing the model
	Layout
	Widget initialization
	Interacting with user
	Some extra methods

	Conclusion

	Commander: A powerful and simple command framework
	Commands
	Defining commands
	Adding some convenience methods
	Adding the Add Contact command

	Adding the Remove Contact command
	Turning commands into menu items
	Introducing groups
	Extending menus
	Managing icons and shortcuts
	Enabling shortcuts
	In-place customisation
	Managing a menu bar
	Conclusion

