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CHA P T E R 1
Introduction / Preface

This booklet contains a guide to the unified FFI framework (uFFI) for the
Pharo programming language. The aim of this booklet is not to be just an API
reference, but to thoroughly document uFFI in an ordered way for both be-
ginner and advanced users. We present the different concepts of uFFI, from
simple call-outs and marshalling up to how to memory is managed, all chap-
ters including examples of code and/or pictures to illustrate those concepts.

You’ll find the source code of this booklet stored in https://github.com/SquareBracketAssociates/

Booklet-uFFI, where it has a companion bug tracker and list of releases. As of
this first edition (v1.0.0), we cover the uFFI framework as it exists in Pharo
8.0, released in january 2020. Future editions will update this booklet for
future Pharo versions, and document new features as they appear. Do not
hesitate to open an issue if you find a problem.

Enjoy your reading, Guille

1.1 What is FFI?

A Foreign Function Interface (FFI) is a programming language mechanism
that allows software written in one language to use resources (functions and
data structures) that were written in and compiled with a different language.
These ”foreign” resources typically take the form of shared libraries, such
as DLL files in Windows (or ’.so’ files in Linux and Mac) and can include run-
time services made available by your operating system. A good example is
a driver library provided by a vendor of a computer peripheral, such as a
printer or a network card.

Code sharing and reuse via an FFI is fundamentally different from source
code ”includes”, calls to IDE libraries, or messages sent to the base classes
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Introduction / Preface

provided by your language’s development environment. In those cases, your
compiler can link function calls and share structured data while making con-
venient assumptions about the object code interface (known as the ABI, or
Application Binary Interface). This is familiar programming: We follow pub-
lished APIs (Application Programming Interfaces) as we write our code, and
the compiler takes care of the low-level connections for us transparently.

However, if the compiled resources to which we wish to link were built with
a different language (or even a different compiler of the same language),
the bits and bytes may not line up properly when we push arguments, make
calls, and retrieve results, due to the different standards that the other code’s
compiler followed when the borrowed code was produced. In this case, more
detailed bookkeeping must be employed by our language to make ABI trans-
lations and ensure that differences in data alignment, byte ordering, call-
ing conventions, garbage collection, pointer references, and so forth are all
accounted for. Without this, we risk not only getting incorrect results – we
could crash our process (or even the operating system).

While in theory FFI interfaces can be defined to link any pair of differing lan-
guages, most languages are designed to interact with libraries written in the
C language. This is because C has a long heritage and widespread use, and
(importantly) C has a predictable, standardized way to compile functions and
structures. So with Pharo also choosing C as an FFI target we gain two major
advantages: first, by basing ourselves on such ”standard” formats, we can
build tools that simplify interoperability with an extensive array of existing
C libraries. Second, since nearly every other language is doing the same, we
can simply join those mutual C-standard ABIs together to form a bridge be-
tween different systems – allowing us to program at the source level of a C
API.

1.2 Pharo, FFI and uFFI

From time to time it happens that we need to access a feature that is not
available in Pharo’s standard libraries, nor in a community package. In such
cases, we have the choice of implementing such a feature from scratch in
an entirely Pharo-written library, or to reuse some existing implementation
in another language. To choose a strategy, one may consider many criteria
such as personal taste, the ability to cope with the effort of implementing a
new library from scratch, or the maturity, documentation and community
of the existing libraries doing the job. Without FFI, the option of reusing an
external existing library would not exist, or it would be constrained to expert
developers extending the execution interpreter with modules like virtual
machine plugins.

This booklet shows the Unified FFI framework for Pharo (uFFI for short). The
Pharo uFFI is an API framework that eases communication between Pharo
code and code that follows a C-style interface, making it possible to easily in-
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1.3 How to read this booklet

teract with external C libraries. Given that ’calling functions’ is the ultimate
objective of someone using an FFI, you will see that uFFI also helps with sev-
eral other concerns, such as finding C function interfaces, transforming data
between the Pharo world and the C world, accessing C structures, defining
C-to-Pharo callbacks, and others.

1.3 How to read this booklet

We recommend beginners to read the booklet in order. Chapter 2 is a good
introduction to uFFI usage, introducing the concepts of callout and mar-
shalling. Chapter 3 dives into the details of marshalling and its rules, which
may be a bit overwhelming at the beginning, so do not hesitate to skip parts
and come back to it when you have acquired more experience. Chapter 4
explaines different complex types, and can be read as needed to deal with
particular data types. Chapter 5 discusses how developers can enhance and
organize their uFFI library bindings, so experience using uFFI is assumed.
Chapter 6 discusses the issues of memory management between Pharo man-
aged memory and C managed memory, which is important to avoid issues in
the long term.

We invite those users already comfortable with FFI and/or uFFI to jump
around as needed.

1.4 Acknowledgments

Pharo uFFI has been originally developed by E. Lorenzano, and was based
on many ideas on the NativeBoost framework by Igor Stasenko. uFFI has re-
ceived many contributions over the years from Pharo’s open source commu-
nity. The main backend of uFFI up to this day is the FFI implementation of
the OpenSmalltalk VM, with contributors such as Eliot Miranda. This booklet
was mainly written by Guille Polito and Pablo Tesone, with extensive reviews
and edits from Stéphane Ducasse, Ted Brunzie and Sean De Nigris.
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CHA P T E R2
Foreign Function Interface and

Call-Outs

This chapter presents a fair introduction to uFFI by introducing function
call-outs: calling out an external function. We start by defining a Pharo uFFI
binding to a C function. This example will guide us to how uFFI manages to
find and load libraries, and how it looks up functions in it. Finally, when ex-
ecuting the binding, the returned value should be transformed to a Pharo
object. Such transformation is called marshalling.

In the second part of this chapter, we refactor the initial example to extract
the library into a FFILibrary object. A library object can cope with platform
independent library lookup and smarther library searches.

2.1 Calling a simple external function

To illustrate the purpose and usage of uFFI, we will start with an example.
Suppose we want to know the amount of time the image has been running by
calling the underlying OS function named clock. This function is part of the
standard C library (libc). Its declaration in C is:

clock_t clock( void );

For the sake of simplicity, let’s treat clock()’s return type as an unsigned,
uint, instead of clock_t. (We will discuss types, conversions, and typedefs
in subsequent chapters.) This results in the following C function declaration:

uint clock( void );

To call clock() from Pharo using uFFI, we need to define a binding between
a Pharo method and the clock() function. uFFI bindings are classes and
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methods that provide an object-oriented means of accessing C libraries, im-
plementing all the glue required to join the Pharo world and the C world.

To write our first binding, let’s start by defining a new class, FFITutorial.
This class will act as a module and encapsulate not only the functions we
want to call but also any state we would like to persist. To access the clock()
function, we then define a method in our FFITutorial class using the ffi-
Call:library: message to specify the declaration of the C function and
indicate where it is defined. We will technically refer to this binding as a call-
out, since it calls a function in the outside world (the C world).

If our Pharo code is hosted on a Linux system, we define this class and (class-
side) method like so:

Object subclass: #FFITutorial
instanceVariableNames: ''
classVariableNames: ''
package: 'FFITutorial'

FFITutorial class >> ticksSinceStart [
^ self ffiCall: #( uint clock() ) library: 'libc.so.6'

]

where we have simply copied the C declaration into a Pharo Array literal,
then added 'libc.so.6' as a reference to the current version of its C shared
library on our Linux host system. (We can find out which version we have by
entering ls -1 /lib/*/libc.so* in a Linux terminal window.)

To define the same binding for other host platforms, we need to replace the
'libc.so.6' string by e.g., 'libc.dylib' if we’re running on MacOS, or
'msvcrt.dll' if we use Windows. The equivalent definitions for MacOS and
Windows are then:

FFITutorial class >> ticksSinceStart [
^ self ffiCall: #( uint clock() ) library: 'libc.dylib'

]

and

FFITutorial class >> ticksSinceStart [
^ self ffiCall: #( uint clock() ) library: 'msvcrt.dll'

]

Finally, we can use our freshly-created binding in a Pharo playground by
inspecting or printing the following expression:

FFITutorial ticksSinceStart

If everything works as expected, this expression will return the number of
native clock ticks since our Pharo process was launched.
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2.2 Analyzing the FFI Call-Out

2.2 Analyzing the FFI Call-Out

The simple example we ran in the previous section illustrates several impor-
tant uFFI concepts. For starters, let’s look at the binding definition again:

FFITutorial class >> ticksSinceStart [
^ self ffiCall: #( uint clock() ) library: 'libc.so.6'

]

This call-out binding, a Pharo method, is called ticksSinceStart and hap-
pens to be named differently than the C function we are calling. Indeed, uFFI
does not impose any restrictions as far as how to call your external func-
tions. This can come in handy for decoupling your methods from underlying
C-level implementation details.

We invoke the C function using the Pharo method ffiCall:library:, which
is defined by uFFI. We provide the message arguments it needs usually by
just copying and pasting the target C function declaration inside a Pharo
Array literal, then referencing the name of the library in which it’s defined
(which in general will depend on our host platform).

uFFI interprets the declaration and performs all the necessary work needed
to make the call-out and return the result. In general,

• uFFI searches for the specified library in the host system,

• On finding it, loads the C library into memory,

• Indexes the specified function within the library,

• Transforms and pushes Pharo arguments (if any) onto the stack,

• Performs the call to the C function,

• And finally transforms the return value into a Pharo object.

To form the first argument in our example, we render our C declaration for
clock() in Pharo as a literal string array, like so:

#( uint clock() )

The first element of our array is uint, which is the function return type. This
is followed by the function name, clock. Following the function name, we
embed another Pharo Array to list the formal arguments the C function ex-
pects, in order. In this case, clock() takes no arguments, so we must pro-
vide an empty Array.

Another way to think of the declaration argument is this: If we look past the
outer #( ) wrapper, what we see inside is our C function prototype, appear-
ing very similar to normal C syntax. This convenience is possible due to the
coincidental nature of Smalltalk syntax: our use of strings and array notation
in Pharo nicely mirrors how we write a C function declaration. uFFI was in-
tentionally designed to take advantage of this so that in most cases we can
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simply copy-paste a C function declaration taken from a header file or docu-
mentation, wrap it in #( ), and it’s ready for use!

Our ffiCall:library: message also needs a second argument ('libc.so.6'
in our Linux example), which is the name of the library in our host that con-
tains the function. In many cases we do not need to provide a full path to
the file in our host system. However, it should already be apparent that our
bindings can be platform dependent if the library we need is also platform
dependent. We will explore how to define bindings in a platform-independent
way in a following section.

2.3 Notes on Value Marshalling

To fully understand the previous example, we still need to explain how the
C uint return value (a non-object; a cluster of bytes popped off the stack)
gets transformed into a Pharo SmallInteger object. Remember, C does not
understand objects and does not do us the favor of returning values as at-
tributes encapsulated within an object. We must somehow create an appro-
priate type of Pharo object, then migrate the C return value to become its
value. Our code then receives this Pharo object.

This process of converting values between different internal representations
is called marshalling, and in most cases is managed automatically in Pharo by
uFFI. For example, uFFI internally maps the following standard C values to
Smalltalk objects:

• Types int, uint, long, ulong are marshalled into Pharo integers (small
or long integers, depending on the platform architecture).

• Types float and double are marshalled into Pharo floats.

Correct marshalling (and demarshalling) of values is therefore crucial for
correct behavior of the bindings, particularly because the C language is so
closely tied to underlying machine architecture. And yet, C values are merely
”naked” bits and bytes in registers and memory; they have no inherent con-
text or meaning. Consequently, they can be interpreted in many different
ways, including by the Pharo run-time engine. The correct interpretation,
involving such issues as byte ordering, type size, alignment requirements,
string length/termination, etc. must be knowable, known, and properly han-
dled. An object can tell you what it is, but a string of bits is just a string of
bits...

As an example, consider the C integer value 0x00000000 (four contiguous
’0x00’ bytes). This can be interpreted as the small integer zero, as the false
object, or as a null pointer – all depending on the marshalling rule selected
for the inferred type. This means that the developer coding the binding
method needs to carefully and correctly describe the types of argument bind-
ings so uFFI will then correctly interpret and transform those values. This is
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2.4 Libraries

programming at the ABI level (binary representations), so precision counts!
You are working side-by-side with the compiler, and inattention to detail can
lead to crashes (or strange behavior that can be difficult to diagnose).

In the following chapters we will explore the marshalling rules more in detail
and see how they apply not only for return values but also for arguments.
Moreover, we will learn how to define our own user-defined data types and
type mappings, allowing us to customize and fine-tune the marshalling rules
to fit our particular needs.

2.4 Libraries

We saw earlier that a call-out binding requires us to specify a library that
uFFI uses to locate and load the desired function. In our previous example,
we indicated to Pharo that the clock() function we need was inside the
standard C library, namely, the file libc.so.6. However, this form of the
library exists in Linux systems, but not in Windows.

So we could say that this solution is not portable enough: One of the hall-
mark qualities of Smalltalk is supposed to be platform independence. But if
we want to load and run this code on a different host platform, we are faced
with changing the library name to match the name on our new host system.
Worse, the libraries we need will all too often not have the same name, nor
be located in the same place on all platforms. Not only that, we would need
to be sure we catch every instance of these kinds of dependencies when we
perform this ”migration”. Ugh!

One way to overcome this issue would be to define a set of bindings, one per
platform, and decide which one to call based on which platform we detect at
run-time, as follows:

FFITutorial class >> ticksSinceStart [
self platform isUnix
ifTrue: [ ^ self ticksSinceStartUnix ].

self platform isOSX
ifTrue: [ ^ self ticksSinceStartOSX ].

self platform isWindows
ifTrue: [ ^ self ticksSinceStartWindows ].

self error: 'Non-supported platform'
]

FFITutorial class >> ticksSinceStartUnix [
^ self ffiCall: #( uint clock() ) library: 'libc.so.6'

]

FFITutorial class >> ticksSinceStartOSX [
^ self ffiCall: #( uint clock() ) library: 'libc.dylib'

]
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FFITutorial class >> ticksSinceStartWindows [
^ self ffiCall: #( uint clock() ) library: 'msvcrt.dll'

]

But this solution means our binding code (which is essentially the same in all
cases) gets repeated three times, and any changes to the binding design will
require changing all three binding methods. This may look simple enough
for our clock() binding, but repeating the code of complex bindings is likely
not an optimal solution...

uFFI solves this problem by allowing us to use library objects instead of plain
strings like we did earlier. A library object represents a library as an instance
of FFILibrary, abstracting away any platform dependencies. This library
class defines methods macModuleName, unixModuleName, and win32Mod-
uleName; uFFI internally selects the correct library name at run-time after
sensing the host platform. Bonus: This selection is a process, not a literal (a
string), so it can now include behavior, such as the ability to dynamically
search through different directories on your host system to locate the cor-
rect version of a library, as we will see shortly.

So for our example, we can now define such a library, MyLibC, as follows (be-
ing careful to note that the methods are instance side overrides):

FFILibrary subclass: #MyLibC
instanceVariableNames: ''
classVariableNames: ''
package: 'UnifiedFFI-Libraries'

MyLibC >> unixModuleName [
^ 'libc.so.6'

]

MyLibC >> macModuleName [
^ 'libc.dylib'

]

MyLibC >> win32ModuleName [
"While this is not a proper 'libc', MSVCRT has the functions we

need here."
^ 'msvcrt.dll'

]

To use this improved technique, we modify our original binding method (in
2.2) to substitute our library object (as a class) in place of the library name
string:

FFITutorial class >> ticksSinceStart [
^ self ffiCall: #( uint clock() ) library: MyLibC

]
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2.5 Library Searching

This version will run on all three platform types, and do so without us having
to repeat the same code multiple times.

2.5 Library Searching

The macModuleName, unixModuleName, and win32ModuleNamemethods al-
low us, as developers, to employ different strategies to search for libraries
and functions, depending on our host platform. If these methods return a
relative path, library searching starts in common/default library directo-
ries on the system, or adjacent to the virtual machine executable. If they re-
turn an absolute path, default system locations will not be searched; only the
specified path will be. In either case, if the library is not found or cannot be
loaded, an exception is raised.

For example, an alternative override for unixModuleName can limit the search
for libc to load only from the /usr/lib/ directory on the host this way:

MyLibC >> unixModuleName [
^ '/usr/bin/libc.so.6'

]

Moreover, we are not constrained to simply return a string containing a
path. The use of a method allows us to define and follow complex search
rules, potentially locating needed libraries dynamically.

To take a real-world example, let’s consider where the Cairo graphics library
installs its resources on Unix-type systems. Although they are generally
compatible, different ’*nix’ distros have evolved in ways that occasionally led
to divergence in their file system structure, the placement of operating sys-
tem files, and where they prefer to install packages the user may add. This
is especially true (for historical reasons) where structure was added to avoid
mixing 32-bit and 64-bit libraries. (Unix pre-dates the 8-bit micro-computer
age. It may be older than you are!)

In the example below, the Cairo library search method for Linux checks for
the existence of the library in each of /usr/lib/i386-linux-gnu, /us-
r/lib32, and /usr/lib, and if found, returns the absolute path to that file:

CairoLibrary >> unixModuleName [
"On different flavors of Linux, the path to the library may
differ, depending on the distro and whether the system is 32- or
64-bit."

#(
'/usr/lib/i386-linux-gnu/libcairo.so.2'
'/usr/lib32/libcairo.so.2'
'/usr/lib/libcairo.so.2' )

do: [ :path |
path asFileReference exists ifTrue: [ ^ path ] ].
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self error: 'Cannot locate Cairo library. Please check that it
is installed on your system.'

]

2.6 Sharing Libraries Between Bindings

To finish this chapter, let’s define a new binding to another function in the
same C library: time. The time function receives a (potentially null) C pointer
and returns the current calendar time (as seconds of epoch), which we will
once again assume is a uint for simplicity.

We can define our new binding as follows, providing a NULL pointer as the
function argument. (We leave it to the reader to look up the definition of the
C function and determine the purpose of this argument.)

FFITutorial class >> time [
^ self ffiCall: #( uint time( NULL ) ) library: MyLibC

]

Our new binding references the MyLibC library we defined earlier, so the
above structure couples that code to both our bindings. To avoid such unde-
sirable coupling, we can choose to refactor the class reference into a single
class method in our FFITutorial class that can be used instead in both bind-
ings.

To continue our example,

FFITutorial class >> myLibrary [
^ MyLibC

]

FFITutorial class >> ticksSinceStart [
^ self ffiCall: #( uint clock() ) library: self myLibrary

]

FFITutorial class >> time [
^ self ffiCall: #( uint time( NULL ) ) library: self myLibrary

]

This strategy, however, is still not as neat as we would like it to be. Further
refactoring could clean this up, but fortunately for us, uFFI provides the sup-
port we need for sharing library definitions between bindings.

Any class defining a binding also has the option of defining a default library
by overriding the ffiLibrary class method. Doing so allows us to omit a
library definition altogether in our call-out bindings. The library will be au-
tomatically referenced by uFFI via the default method definition.

Let’s see how this further simplies things for us:
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FFITutorial class >> ffiLibrary [
^ MyLibC

]

FFITutorial class >> ticksSinceStart [
^ self ffiCall: #( uint clock() )

]

FFITutorial class >> time [
^ self ffiCall: #( uint time( NULL ) )

]

Of course, bindings defining a library explicitly will necessarily override this
mechanism, so you still have the option of creating a class with bindings that
mix both mechanisms in any manner you wish.

2.7 Conclusion

In this chapter we have seen the basics of writing our own uFFI call-outs. We
declare an FFI binding to a C function by specifying the name of the function,
its return type, its arguments, and the library the function belongs to. uFFI
uses this information to load the library in memory, look up the function,
demarshall our Pharo arguments to C types and push them, call the function,
and marshall any C return values back into Pharo objects.

FFITutorial class >> time [
^ self ffiCall: #( uint time( NULL ) )

]

Since different platforms work differently, uFFI provides extensions to de-
fine a library as an object. Library objects define per-platform strategies to
search for C libraries in the host file system. By specifying relative paths we
let uFFI search for the library in a platform’s standard locations, while ab-
solute paths override such behavior. In addition, this mechanism allows de-
velopers to write bindings that can dynamically search for their libraries in
multiple locations.

The next chapter covers function arguments of various types. Although we
glossed over its details on purpose, the time binding described in the pre-
vious section has a literal NULL pointer argument. We will see how literal
arguments, which may be of different flavors, are very convenient syntac-
tic sugar for specifying default argument values. They are not, however, the
only means of conveying data from Pharo to the C world, as we can also send
Pharo objects. Of course, great care must be taken when sending objects into
the C world, so we shall revisit marshalling in more detail next.
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CHA P T E R3
Marshalling, Types and Function

Arguments

In the last chapter, we looked at the basics of FFI call-outs to define a Pharo
uFFI binding to a C function. These first examples introduced the concepts
of function lookup, library references, and marshalling of return values.
However, the idea of marshalling is not specific to the transformation of re-
turn values from C to Pharo: it also involves the transformation of argument
values from Pharo to C, and the sharing of values between the two environ-
ments.

This chapter presents marshalling in more detail, focusing on function ar-
guments. Our first examples show the capability of uFFI to use literals as
default argument values. We then advance to other basic data types, from
Strings and ByteArrays all the way to C pointers and how to manipulate
them within Pharo. This chapter finishes by presenting the different mar-
shalling rules in uFFI for basic types, particularly how to manage platform-
specific types.

3.1 A First Function Argument

Our previous clock() example was one of the simplest uFFI bindings pos-
sible, as it does not require passing any arguments, and because we could
easily tweak the binding to map the return value to an unsigned integer. To
understand how to deal with functions that require arguments, let’s consider
the C abs() function, which receives an integer argument and returns its ab-
solute value. As with clock(), abs() is another function in the standard C
library, so we will continue using our FFITutorial class to create its bind-
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ing. Its prototype is declared as follows:

int abs( int n );

Creating a binding for such a function requires that we provide an int ar-
gument in our binding – specifying both type and value. To ease the con-
struction of argument bindings, uFFI will attempt to match any parameter
names in our calling method to corresponding function parameters that
have the same names. In other words, we can define our binding for abs()
as a method with a single n keyword argument as follows (remembering that
our FFITutorial class now conveniently provides uFFI with the correct C
library for us):

FFITutorial class >> abs: n [
^ self ffiCall: #( int abs ( int n ) )

]

Creating this binding does not really add extra complexity to what we did in
our previous examples. We create a simple method that uses the ffiCall:
message, providing it an array argument enclosing a copy of the function’s
prototype, just as we did before. (And as with our earlier FFITutorial class
methods, we’re assuming the continued use of our ffiLibrary override to
eliminate the need to add the library: keyword).

The part that’s new here is the introduction of the n parameter and its C
type, but no additional work is needed on our part to transform the Pharo
object to a C value. Also notice that uFFI knows to distinguish the argument’s
declared type from its formal parameter name, while simultaneously match-
ing up the name with our Pharo method’s argument.

We might even rename the parameter to use a more Pharo-ish naming style,
such as ”anInteger”:

FFITutorial class >> abs: anInteger [
^ self ffiCall: #( int abs ( int anInteger ) )

]

Finally, we can call this binding with a Pharo SmallInteger by entering the
following in a playground:

FFITutorial abs: -42.
=> 42

3.2 Marshalling

As we saw regarding return values in Chapter 1, Pharo’s uFFI also manages
the transformation of function arguments for us. The syntax we used may
give the impression that uFFI simply copies the Pharo integer value to the
C stack; however, the marshalling rules that uFFI must follow are not that
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straight-forward. Pharo and C use different internal representations for
their data types, which must be modified in order to be exchanged, poten-
tially in different ways (usually depending on the host platform).

To illustrate how marshalling works, let’s consider the case of transforming
a Pharo SmallInteger to a C int type, as in our example. Internally, for effi-
ciency purposes, Pharo represents SmallIntegers directly in binary, rather
than as an object pointed to in the heap. Therefore, to differentiate integers
from object pointers, Pharo tags SmallInteger ”pointers” with an extra bit
to signify this special interpretation.

Consider the SmallInteger 2; this value is represented in binary as the
number 2r10, but is internally represented in Pharo as 2r101, where the
least significant bit (LSB) is shifted in as the added tag. Since all Pharo object
pointers are at least 32-bit aligned, we’re guaranteed that their least signif-
icant bit will always be zero. This makes a non-zero LSB a reliable indicator
that we’re dealing with a SmallInteger rather than a heap pointer. (This is
also why Pharo SmallIntegers are ”only” 31 bits in 32-bit images and 61 bits
in 64-bit images).

This representation mismatch requires that the uFFI transform SmallInte-
gers to C ints (and vice-versa) as follows (using the values in our particular
example):

• A Pharo SmallInteger value transformed to a C value needs to be logi-
cally shifted to the right, 2r101 >> 1, transforming 2r101 to 2r10.

• A C integer value (representable in 31/61 bits or less) transformed to a
Pharo SmallInteger needs to be shifted to the left and incremented,
(2r10 << 1) + 1, transforming 2r10 to 2r101.

Each type-to-type transformation has its own particular rule that uFFI fol-
lows to ensure that the correct representation is always maintained.

Pharo-to-C Demarshalling

When demarshalling Pharo objects to C values, uFFI decides which transfor-
mation rule to use depending on two pieces of information. First, it considers
the concrete type of the Pharo object, its class. Second, it considers the C type
defined in the function binding as the target transformation type. At run
time, when the binding method is executed, uFFI reads the type of the Pharo
argument and transforms the argument object into the indicated C type rep-
resentation (if possible), performing a type cast/coercion as necessary.

These transformation rules can have consequences, which we illustrate with
the following cases, using our previous abs: binding example:

• SmallIntegers in 32-bit Pharo images are transformed to ints as ex-
pected (since 31 bits cannot overflow into 32 bits):
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FFITutorial abs: -42.
=> 42

FFITutorial abs: SmallInteger maxVal negated.
=> 1073741823

• SmallIntegers in 64-bit Pharo images can overflow the size of a C
int (still 32 bits on most 64-bit hosts), and so are coerced by trun-
cating their value to fit, producing results similar to what a C pro-
gram would produce in a similar situation. Since the maxVal of a 64-bit
Pharo SmallInteger is 60 ’1’ bits (plus a sign bit), it truncates to 32 ’1’
bits, which, to C, is the two’s complement value -1. Hence,

FFITutorial abs: SmallInteger maxVal negated.
=> 1

• Pharo LargeIntegers, by contrast, are ”infinite precision” (no max-
Val), and do not have a corresponding C type to convert into. Conse-
quently, uFFI throws an error:

FFITutorial abs: SmallInteger maxVal * -10.
=> Error: Could not coerce arguments

• Pharo floats, when provided as C int arguments, will be truncated
(mathematically) to produce an integer:

FFITutorial abs: Float pi.
=> 3

• But if the Pharo float is too large for a C integer, strange values can
result due to coercion to 32 bits:

FFITutorial abs: SmallInteger maxVal * Float pi.
=> -2147483648 "in 32-bit Pharo images"

FFITutorial abs: SmallInteger maxVal * Float pi.
=> 2007355392 "in 64-bit Pharo images"

• Pharo objects that are incompatible with the C int type are rejected,
and an exception is thrown:

FFITutorial abs: Object new.
=> Error: Could not coerce arguments

C-to-Pharo Marshalling

A similar-yet-different story happens when marshalling C values to Pharo
objects. In this case, uFFI decides the marshalling rule based on just the spec-
ified return type. At run time, when the binding method is executed and the
C function returns, uFFI transforms the (expected) return value into the clos-
est Pharo type corresponding to the declared C type.
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For example, a delared int return type will cause uFFI to interpret the re-
turned value as either a SmallInteger or Large(Positive|Negative)In-
teger, depending on the size and sign of the data; a Cfloat or double type
will interpret the returned data as a Pharo Float.

For example, our above evaluation of the following in a 32-bit Pharo image,

FFITutorial abs: SmallInteger maxVal * Float pi.
=> -2147483648

returns a Pharo LargeNegativeInteger, since the binary return value, 2^31,
will not fit in a Pharo SmallInteger. It requires 32 bits, so uFFI selects the
object type it will fit in, which is a LargeNegativeInteger object.

Marshalling of Incorrectly Declared Types

The marshalling rules we have seen above show that the way in which we
specify function types is crucial to the correct behavior of our bindings, and
thus our applications. In other words, call-out bindings require that C types
are correctly specified, otherwise run-time errors – or even worse, viable but
incorrect value transformations – may happen.

Let’s consider as an example what happens if we create a companion abs:
binding to operate on a Float argument instead of an integer, but which still
uses the same C abs() function:

FFITutorial class >> floatAbs: aFloat [
^ self ffiCall: #( int abs ( float aFloat ) )

]

Now let’s we evaluate this version in a playground using a negative Float
value:

FFITutorial floatAbs: -1.0.
=> 1082130432 "in 32-bit Pharo images"

FFITutorial floatAbs: -1.0.
=> 0 "in 64-bit Pharo images"

Although we expected the message to evaluate to 1 (because the return value
is still of type int), this example returns 0 (in 64-bit images). To under-
stand this result, we need to realize that our bindings, and the way we ex-
press their C types, are independent of the actual function implementation we
are calling. In other words, even if we ’set’ the type of abs()’s argument to
float, the abs() function in our system remains built and compiled to work
only on C int values. We’re not compiling the C functions in Pharo, only at-
taching and calling them. So we must strictly and carefully adhere to their
documented function declarations.

What happens ”under the hood” in this example is that uFFI transforms our
-1.0 Pharo float into a C float, then pushes it on the stack and calls the
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abs() function. The function uses that value, but considers it to be an in-
teger. And it happens that C integers and floats have the same bit size (32
bits), but vastly different representations in C. This produces either hilarious
or dangerous results...

A similar problem arises if the return type of a function is incorrectly spec-
ified. Let’s take for example a slightly modified version of our original abs:
binding, this time declaring a C float return type:

FFITutorial class >> floatReturnAbs: anInteger [
^ self ffiCall: #( float abs ( int anInteger ) )

]

When this call returns, uFFI will interpret the returned value as a C float, and
try to marshall it to a Pharo Float:

FFITutorial floatReturnAbs: -3.
=> Float nan "in 32-bit Pharo images"

FFITutorial floatReturnAbs: -3.
=> -1.07374176e8 "in 64-bit Pharo images"

Since the implementation of abs() actually returns an int, the bits are wrongly
interpreted, producing not an error (at least not in the 64-bit case), but a
strange value – one that your application might not detect. And if this kind of
misinterpretation is only ”slightly off”, it can lead to buggy behavior that is
maddeningly difficult to diagnose.

So while writing library bindings with uFFI is fun and simple, the binding de-
veloper needs to make sure that the types are correctly declared, and that
the correct version of the library is being used. Fortunately, for mature li-
braries, most of the time it is sufficient to simply ”copy and paste the func-
tion declarations”.

3.3 Function Argument Bindings

We have seen in the earlier introductory example how to use method param-
eters as arguments when writing function bindings. In this section, we ex-
plore other ways to define arguments – in particular literal objects, instance
variables, and class variables.

Literal Object Arguments

From time to time we will find ourselves calling C functions that require
many more parameters than the ones we are actually interested in provid-
ing. For example, C functions may have extra parameters to select or control
certain options and configurations, or they may have parameters that are
only necessary in particular cases (and which are ignored in others).
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Although parameters such as these are deemed optional, we cannot leave
them out of our binding definition – they still need to be there for the C call
to execute correctly. To make it easier to deal with such optional parame-
ters, uFFI allows Pharo literal objects to be provided as function arguments.

To see how this works, let’s first imagine that for some reason we needed to
call the abs() function with the -42 argument exclusively. Using what we
have learned up to this point, a simple way to define such a binding would
be to define a normal Pharo method calling our binding with the hard-coded
value -42:

FFITutorial class >> absMinusFortyTwo [
^ self abs: -42

]

This approach is convenient when we want both abs: and absMinusFortyTwo
to be exposed to our user. It certainly benefits from the binding being de-
clared only once, allowing us to isolate potential marshalling mistakes in a
single location. However, we may not want to send the Pharo abs: message,
as we’re doing in this case. Instead, we want to provide -42 directly to the C
abs() function, as a literal (i.e. canned) value.

To provide for this, uFFI supports the use of literal arguments in C function
bindings. Rather than passing a method argument to the function binding,
we can specify a literal value following its C type declaration:

FFITutorial class >> absMinusFortyTwo [
^ self ffiCall: #( int abs ( int -42 ) )

]

Notice that we don’t just type in a Pharo integer for the expected argument
and expect uFFI to perform implicit type conversion. Even literal values such
as integers must be preceded by a C type declaration (int in the above ex-
ample). This type information is needed by uFFI to correctly determine how
to transform the Pharo integer, given the many different forms in which it
could be rendered.

Consider that, in the case of C integers, a number can be signed or unsigned,
and can occupy different sizes such as 8, 16, 32, or 64 bits. Pharo can’t guess;
the C function expects a specific type to be provided, and the Pharo object
containing the value doesn’t reflect this. We have to be explicit about the
literal’s ’type’.

Most of the literals accepted in Pharo code are accepted in uFFI call-outs too:
e.g., integers, floats, strings, arrays. We will present more detail about the
different data types and how they are marshalled by uFFI in a subsequent
section.
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Class Variables

In the method above, we used a literal number as an argument in a uFFI
call-out. Although handy, literal numbers fall into the category of so-called
”magic numbers”: Embedded literals in code that offer no explanation of
where they came from, why they were chosen, or how they were calculated.
(These are distinguished from manifest constants, which are more-or-less self-
explanatory, such as using pi in angle calculations or ’2’ when we need to
divide a quantity in half.)

Embedding magic numbers in methods is a code smell and should be avoided.
One way to handle these kinds of values is to parameterize them: assign
them names, usually as a variable or named constant. C libraries often de-
fine such constants using #define pre-processor statements such as:

#define MagicNumber -42

In Pharo, we can take a similar approach by defining such values in class
variables. We only need to change the definition of our FFITutorial class
to include a class variable such as MagicNumber (which is therefore capital-
ized), and then define a class-side initializemethod to set its value (and
explain why). Do not forget to execute this initializemethod, otherwise
the value won’t get set!

Object subclass: #FFITutorial
...
classVariableNames: 'MagicNumber'
...

FFITutorial class >> initialize [
"Set this to -42 because.. Life, the Universe, and Everything."
MagicNumber := -42.

]

Finally, we update our call-out binding to use our class variable, remember-
ing that we still need to provide its type explicitly:

FFITutorial class >> absMinusFortyTwo [
^ self ffiCall: #( int abs ( int MagicNumber) )

]

Just as with class variables, uFFI integrates transparently with variables de-
fined in shared pools. Shared pools are useful for grouping common con-
stants that need to be shared between different classes, bindings, or even
libraries.

The following code illustrates how we can modify our code to put our vari-
able in a shared pool. Notice that the only code that changes is the class
defining the variable. The binding using the variable remains unchanged.
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SharedPool subclass: #FFITutorialPool
...
classVariableNames: 'MagicNumber'
...

FFITutorialPool class >> initialize [
"Set this to -42 because.. Life, the Universe, and Everything."
MagicNumber := -42.

]

Object subclass: #FFITutorial
...
poolDictionaries: 'FFITutorialPool'
...

FFITutorial class >> absMinusFortyTwo [
^ self ffiCall: #( int abs ( int MagicNumber ) )

]

Using a shared pool does not change the normal Pharo usage of uFFI. If you
want to learn more about Pharo shared pools, we recommend you take a look
at Pharo by Example 8.0.

Instance Variables

uFFI also supports using instance variables as arguments to a C call-out.
When such a call-out is executed, the value of the instance variable is de-
marshalled to form the argument, using the type information in the binding
definition.

The use of instance variables in uFFI bindings can come in handy when defin-
ing object-oriented APIs to C libraries. Since objects hold values as well as
define behaviors, they can both encapsulate the state required to perform
the uFFI calls while masking the call-outs as normal messages.

We see that the syntax is essentially the same as what we saw for class vari-
ables. Note that we can can even hold the function name in a Pharo variable:

MyClass >> doSomething [
^ self ffiCall: #( int myFunctionNameInstVar ( int

myArgumentInstVar ) ) library: LibC
]

We will let you, the reader, experiment with these as an exercise.

Special Variables: The Case of self

We can also pass self as an argument to a C call. Suppose we want to add the
abs() function call to an extension of the class SmallInteger, in a method
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named absoluteValue. This would allow us to write expressions such as -50
absoluteValue.

To do this, we simply add an absoluteValuemethod to SmallInteger and
directly pass self as a (typed) argument. Though a pseudo-variable, Pharo
will demarshall self correctly as it does any instance variable:

SmallInteger >> absoluteValue [
^ self ffiCall: #( int abs ( int self ) ) library: LibC

]

Using self as an argument has many benefits beyond this simple example.
In combination with complex types such as C structs and opaque objects,
using self as argument is a powerful tool for writing OOP-flavored bindings
to C libraries.

3.4 Marshalling C Pointers

In Pharo, the objects we send as method arguments are always conceptually
”passed by reference”. This means that every time we provide an object as
an argument, the receiver and the sender hold references to the same ob-
ject: the argument object is shared. (One exception to this is the set of Pharo
SmallIntegers, which are Pharo primitives, and therefore passed by value.
However, this implementation detail is completely transparent to Pharo
code, and has no impact beyond the implementation of uFFI demarshalling
rules, as we saw earlier).

In contrast to Pharo, many function arguments in C are, by default, ”passed
by value”. For example, every time we send an integer or a float as an ar-
gument to a function, its value is copied (pushed onto the C stack) prior to
calling the function. Passing by value, while trivial for simple types such as
numbers, usually demands more consideration when dealing with complex
mutable types, such as arrays and structures. If an invoked function were to
modify a copy of data received as an argument, the original value held by the
caller would remain unmodified – which might not be the intended outcome.

Therefore, in addition to pass by value, C also supports passing arguments by
reference, in this case using pointers (a C type that equates to an address
in memory). Use of a C pointer as an argument is often denoted explicitly
in function declarations by prefixing the * character to a variable name (al-
though some C types are implicitly of pointer type).

For example, a function foo() that receives an int pointer as an argument
and returns a char pointer will have a function declaration similar to the
following:

char *foo ( int *arg );

24



3.4 Marshalling C Pointers

uFFI supports pointers by introducing a new kind of object: ExternalAd-
dress.ExternalAddresses are objects that represent memory addresses,
thus their possible values range from NULL to the maximum possible address
the host operating system allows, either 2^32 (for 32-bit) or 2^64 (for 64-bit
systems), respectively.

Obtaining an ExternalAddress

The most common way of obtaining an ExternalAddress is to receive it
as the return value of a called C function. A good example is the libc func-
tion malloc(), which takes an integer specifying the desired size of a heap
buffer, tries to allocate a contiguous block of memory of the size requested,
and, if successful, returns a pointer to the allocated region of memory.

The C declaration of such function reads as follows (from the libcmanual):

void *malloc( size_t size );

To create a uFFI binding to it, we only need to copy-paste the declaration as
follows:

FFITutorial class >> malloc: aSize [
^ self ffiCall: #( void * malloc ( size_t aSize ) ) library: LibC

]

Notice that this function returns a ”generic pointer”, of type void * (mean-
ing, what it points to in memory is untyped). In uFFI, this is marshalled to an
ExternalAddress object. In other words, our malloc() binding yields an
ExternalAddress in return (if successful).

For example, if we use the above binding to ask the system to allocate a buffer
of 200 bytes for us, then on return we should have an address that points
somewhere in the C heap:

FFITutorial malloc: 200
=> (void*)@ 16r7FFBDE0DE030

But if we ask for more memory than there is currently available, malloc()
will fail and return a NULL pointer instead:

FFITutorial malloc: SmallInteger maxVal
=> (void*)@ 16r00000000

Consequently, we must always check the return value in cases like this, lest
we invoke the infamous ”null pointer assignment” bug.

Pointers as Arguments

Pointers can appear as function arguments, too. Consider for example the
function free(), used to de-allocate a block of memory previously allocated
with, e.g., malloc(). As the complement to memory allocation functions,
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free() takes a memory pointer as an argument (which is required to have
originated from a memory allocation system call!), de-allocates the memory
pointed to by it, and returns nothing.

The declaration of free() looks like this:

void free( void *ptr );

As you might expect by now, uFFI supports pointer arguments by using C
pointer syntax directly in function bindings. And as expected, copy-pasting a
C function declaration is usually enough to create bindings to such functions:

FFITutorial class >> free: ptr [
^ self ffiCall: #( void free( void *ptr ) ) library: LibC

]

Naturally, pointer arguments accept ExternalAddress objects. We have
seen in the previous section that functions returning pointers provide us
with such ExternalAddresses. So we are now able to allocate memory using
a malloc() binding and give that memory back to the system using a free()
binding, as shown in this example:

anExternalAddress := FFITutorial malloc: 200.

FFITutorial free: anExternalAddress.

Warning: Always be careful when manipulating memory, especially when
accessing it and freeing it. For each malloc() that allocates memory, you
must eventually call a corresponding free() to release it back to the system.
Improper memory manipulation can lead to memory access errors and could
cause your process to die (or your system to crash).

Optional arguments, NULL pointers, and nil

In general when using uFFI, we will not need to craft any pointers manually,
other than NULL pointers.NULL pointers (which are interchangeable) can be
easily created with the following expression:

ExternalAddress null
=> @ 16r00000000

NULL pointers are useful because they are used in many libraries that have
optional arguments. For example, in the family of memory allocation func-
tions, the function realloc() takes two arguments: a pointer to a region
of memory and a size. This function tries to enlarge the allocated region of
memory to the requested size and returns the same pointer when success-
ful. However, if a NULL pointer is provided as argument, realloc() operates
instead like malloc() and just allocates a new region of memory.

The declaration of realloc() looks like this:

void *realloc( void *ptr, size_t size );
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And the uFFI binding to this function might look like:

FFITutorial class >> realloc: aPointer toSize: aSize [
^ self ffiCall: #( void * realloc ( void* aPointer, size_t aSize

) ) library: LibC
]

As noted above, we can use this binding for buffer allocation by providing a
NULL ExternalAddress as its first argument:

FFITutorial realloc: ExternalAddress null toSize: 200.
=> (void*)@ 16r7FFBDE0DE030

Finally, uFFI type marshalling allows us to use nil for arguments, too. When
a pointer is expected, nil will be demarshalled to a NULL pointer. Thus we
could write our previous example in this way, too:

FFITutorial realloc: nil toSize: 200.
=> (void*)@ 16r7FFBDE0DE030

3.5 Type Marshalling Rules for Basic Objects

In Pharo, basic objects (integer, floats, strings, booleans, characters) are
represented in memory differently than in C, thus each requiring special
marshalling. Moreover, not all values in one language are seamlessly rep-
resentable in the other. For example, while integers in Pharo can have arbi-
trary precision and will be enlarged on demand, integers in C overflow and
will simply be truncated. In this subsection, we go over all Pharo’s basic
types and explore all these rough corners of which a FFI developer should
be aware.

Integers

Integer types in C such as short, int, their long and unsigned versions, have
fixed size. For example, int’s are 32 bits long on 32-bit machines and 64 bits
long on 64-bit machines. This means that values that cannot be represented
in that size will be truncated to fit. To illustrate this behaviour, consider the
following two C functions: they initialize an integer value with the maximum
possible value they can store, and then add one to it.

void overflowing_int(){
int input=INT_MAX;
printf("Overflowing int: %d + 1 = %d\n", input, input + 1);

}

void overflowing_uint(){
unsigned int input=UINT_MAX;
printf("Overflowing unsigned int: %u + 1 = %u\n", input, input +

1);
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}

Which yield for example:

Overflowing int: 2147483647 + 1 = -2147483648
Overflowing unsigned int: 4294967295 + 1 = 0

We observe that the results of executing such functions are (when overflows
are admitted/defined behaviour by the compiler) mathematically incorrect.
To explain it briefly, such behavior is due to the fact that C integers (and
other numeric types) do not entirely follow mathematical semantics, but
are instead tightly coupled to the semantics and limitations of the under-
lying machine and processor. We will refrain from further discussing the
semantics of C, since they are outside the scope of this booklet, and may vary
depending on the C standard and compiler used.

On the other hand, integer values in Pharo have variable size. Indeed, Pharo
integers’ storage size is dynamically adjusted to fit the stored value. For ex-
ample, the following piece of code shows how we can obtain the maximum
SmallInteger value, and that adding one to it yields a LargePositiveIn-
teger. The former class is used to represent integers up to a fixed size (of
31 bits in 32-bit machines and 61 bits in 64-bit machines), while the latter is
used to represent integers that require more storage.

(SmallInteger maxVal + 1) class
=> LargePositiveInteger

While uFFI value marshalling takes care of most conversions (e.g., represen-
tation differences, two-complements...), the uFFI user still has to be careful
when exchanging integers between Pharo and a C library. This mostly boils
down to:

• the integer return type and the integer types of the arguments defined
in the uFFI callout should correspond to the actual types in the library.
E.g., mistaking a long by an int, or wrongly defining a signed int as
not signed will make uFFI interpret such values wrongly.

• Pharo integer values used as arguments should fit in the target argu-
ment type. Otherwise such value will be truncated.

Floating Point Numbers

Floating point numeric types in C such as float and double are also re-
stricted by the limitations of the underlying hardware. Since hardware is
not infinite, floating point numbers cannot be represented with infinite pre-
cision. The C type float is a precision floating point number, while double
is a double precision floating point number. The following example C code il-
lustrates how precision is lost: it first stores a floating point number in vari-
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ables of type float and double, it then prints it using the printf function
and requiring a precision of 18 digits after the decimal dot.

void printFloatingPointNumbers(){
//Both floating point numbers should have the same value
float x = 3.141592653589793238;
double y = 3.141592653589793238;

printf("Float is: %20.18f\n", x);
printf("Double is: %20.18f\n", y);

}

The example above prints the following to standard output. Although we
asked for a precision of 18 digits, and 18 digits were printed to the stdout,
not all of those 18 digits correspond to the original digits specified in our
code. Moreover, we see that using a single precision type loses more preci-
sion than does double precision.

Float is: 3.141592741012573242
Double is: 3.141592653589793116

Pharo floating point numbers are double precision floating point numbers as
explained above. uFFI marshalling will then take care of the following con-
versions:

• If a Pharo float is sent as a double argument, the Pharo double preci-
sion floating point number will be copied as is.

• If a Pharo float is sent as a float argument, Pharo float will be previ-
ously converted to a single precision float before.

• C floats returned by functions will be transformed to double precision
Pharo floats. If the function return type is float it will then add noisy
digits to complete its decimal representation.

Characters

Characters in C are represented using the char type which is, although un-
intuive, a numeric type and not a textual type. This means that a char value
does not actually represent a character, but some bytes encoding a character.
And the actual character value of those bytes depend on how those bytes are
actually interpreted.

The reason for this is that the C programming language predates the nowa-
days broadly-used text encoding standards such as Unicode and its encoding
formats such as utf-8 and utf-32. Historically, the char type stored 1 byte
values, and was used to store ascii character values. However, the ascii en-
coding is not sufficient to represent many languages which have more char-
acters than can possibly fit in a single byte.
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On the other hand, Pharo represents characters with their unicode code
point, i.e., a unique identifier assigned to each character by the unicode stan-
dard. Unicode codepoints are integer numbers that may not fit the typical
single byte of the C char type.

The uFFI marshalling rules for characters is as follows:

• A Pharo character sent as argument has its code point truncated and
copied to the function argument.

• A char return value is interpreted as a codepoint, and a Pharo Charac-
ter with such codepoint is returned.

However, care is needed with these conversions because the char type is
actually a numeric type, and it mismatches with the unicode codepoints
within Pharo. This turns the manipulation of character values into a poten-
tial source of bugs. We recommend that FFI developers carefully study how
char types are used in each target library. Some C libraries interpret char
values as ascii values, but unicode code points only match ascii values up to
127. For example, while in ascii the euro character (€) is represented with
the 0x80 value, its unicode code point is 0x20AC. Other libraries use char
values to represent raw bytes, which will be processed later by an encoding
such as utf-8.

Booleans

Since the C99 standard, C includes support for booleans with the bool type,
and its true and false values are defined in the stdbool.h header. Pharo
booleans are transformed to C booleans seamlessly when using the bool type
in the FFI callout signature.

void printBoolean(bool b){
printf("Boolean: %d\n", b);

}

FFITutorial class >> printBoolean: b [
^ self ffiCall: #( void printBoolean ( bool b ) )

]

3.6 More Predefined Data Types

uFFI includes a set of predefined data types that are accessible to all FFI li-
braries and call-outs. These data types represent all the data types defined in
the C standard, as well as some useful aliases.

We will categorize the data types as: fixed-size types, aliases and ABI depen-
dent types. The fixed-size have the same size in all the platforms, while the
ABI dependent types may change their size depending on the running plat-
form. Also, uFFI includes a set of useful aliases to ease the creation of FFI
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callouts by allowing a wider range of function signatures to simply be copy/-
pasted.

Fixed Size Types

uFFI includes a set of fixed size integer types. These types are platform inde-
pendent. They come in two flavours: signed and unsigned.

Type Byte Size Signed

int8 1 Yes
int16 2 Yes
int32 4 Yes
int64 8 Yes

Type Byte Size Signed

uint8 1 No
uint16 2 No
uint32 4 No
uint64 8 No

Floating-point Types

uFFI also provides data types for handling IEEE-754floating point data types.
The following table presents the data-types usable in FFI bindings.

Type IEEE 754 Mantissa Exponent Common Name

float16 binary16 11 bits 5 bits Half Precision
float32 binary32 24 bits 8 bits Single Precision
float64 binary64 53 bits 11 bits Double Precision
float128 binary128 113 bits 15 bits Quadruple precision

All of these types will be correctly translated to a Float instance in Pharo,
which has a precision equivalent to float64.

Platform Dependent Types

uFFI is designed to allow developers to write code that is portable across dif-
ferent platforms. As there are types with platform-dependent sizes, uFFI im-
plements the following platform dependant types.

These types are automatically handled correctly depending on the running
platform.
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Type 32 bits size Windows (64 bits) Linux (64 bits) OS X (64 bits)
size_t 4 8 8 8
long 4 4 8 8
ulong 4 4 8 8

Aliases

One of the nicest features of uFFI is the ability to implement the FFI callouts
by copy/pasting the definitions of C Functions.

To have more extensive support for copy/pasting definitions, uFFI includes a
series of aliases mapping commonly used data types to uFFI types.

The following table presents the integer aliases:

Alias Target Type

unsignedByte uint8
unsignedChar uint8
uchar uint8
byte uint8
sbyte int8
schar int8
signedByte int8
signedChar int8
unsignedShort uint16
ushort uint16
short int16
signedShort int16
uint uint32
int int32
signedLong int32
unsignedLong uint32
longlong int64
ulonglong uint64

Also there are aliases for floating point types:

Alias Target Type

shortFloat float16
float float32
double float64

3.7 Conclusion

In this chapter we have studied the basics of uFFI call-out arguments and
their marshalling. The arguments of a function can be the arguments of the
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method they are declared in, instance variables, class variables, self, or Pharo
literal objects. Arguments should declare a type, so uFFI knows how to trans-
form that object into a C equivalent. Failing to correctly declare the type can
lead to misbehaviours in an application due to incorrect transformation.

Basic types covered by uFFI include integer values, floating point values,
booleans, characters and pointers. Pointers are handled using the special
uFFI class ExternalAddress, and its special value NULL can be acquired with
the null class side message. Finally, other basic types have special mar-
shalling rules for transforming Pharo values into C values, which need to
be considered carefully. In particular, we have seen that integers can suffer
truncations and overflows in C, floating point numbers may suffer from loss
of precision, and characters in Pharo are interpreted as unicode code points
while each C library can interpret characters as they please.

The next chapter explores other data types that can be built from these basic
data types: arrays, structures, enumerations and opaque objects.
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CHA P T E R4
Complex Types

We have seen in the last two chapters that types are a big deal in FFI call-
outs, since they govern how values are marshalled between C and Pharo.
The previous chapter explored the marshalling rules of basic types such as
integers, floating point numbers, booleans and characters. But in addition
to these basic types, existing libraries may make use of more complex data-
types, i.e., data-types that are built from simpler data-types. This chapter
builds on top of the knowledge of previous chapters to introduce these more
complex types.

This chapter starts by showing how to define type aliases. Type aliases are
user-defined alternative names for other types, usually used to improve the
readability of the code. In addition, you’ll see further in this chapter how
uFFI exploits them to define more complex types.

uFFI provides support to map C complex data-types, such as arrays, struc-
tures, enumerations and unions. Arrays are data-types defining a bounded
sequence of values of a single data-type, e.g., a sequence of 10 integers. Struc-
tures are data-types defining a collection of values of heterogeneous data-
types, e.g., a group of an integer and two booleans. Enumerations are data-
types defining a finite set of named values, e.g., the characters between a and
z. Unions are data-types defining a single value that can be interpreted with
different internal representations, e.g., we may want to see a float as an int
to extract its mantissa.

4.1 Defining Type Aliases

A type alias is a user-defined alternative name for a type, which is useful in
many different scenarios. One example is improving code readability by cre-
ating domain specific types, e.g., age => unsigned int. As another example,
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external libraries can come with their own custom types and aliases, so hav-
ing the same aliases in our FFI bindings can simplify writing those bindings.

A first type alias

In uFFI, type aliases are created with class variables: the class variable name
is the alias name, while its value is the aliased type. For example, we define
our age => unsigned int alias as follows in our FFITutorial class, and then
execute the initialize method to make it run.

Object subclass: #FFITutorial
instanceVariableNames: ''
classVariableNames: 'Age'
package: 'FFITutorial'

FFITutorial class >> initialize
Age := #uint

Once our type alias is defined, and the class side initialize executed, we
can use that type alias anywhere in our bindings in the class hierarchy below
FFITutorial. For example, we can define our abs() binding as follows.

FFITutorial class >> abs: n [
^ self ffiCall: #( Age abs ( Age n ) )

]

Valid values for type aliases

As we have seen above, uFFI type aliases are defined by normal assignments
to class variables:

Age := #uint

uFFI type alias names, on the left of the assignment, can have any name
accepted as a class variable name. Although other names are technically
accepted in Pharo class definitions, the convention is that class variables
should be capitalized. The value of a type alias, on the right of the assign-
ment, could be either:

• a symbol with a type identifier to be resolved by uFFI, e.g., #'int', as
shown above or;

• an already resolved type object, which we will study in subsequent sec-
tions

Before executing a call-out, uFFI verifies all types used in the call-out can be
resolved to valid types, and will throw an exception if an error occurs while
resolving them.
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Sharing type aliases with shared pools

uFFI does not enforce how bindings should be structured by a developer.
A developer could choose to put all bindings in a single class, or organize
them in several classes, even amongst several packages. Regardless of how
the code is structured, it is usually useful to have user-defined type aliases
available in all classes using the bindings. For this purpose, uFFI supports
structuring type aliases in shared pools.

A typical usage of shared pools to define uFFI types is to define a MyLibrary-
Types shared pool as follows, as we did before to define constants:

Object subclass: #FFITutorialTypes
instanceVariableNames: ''
classVariableNames: 'Age'
package: 'FFITutorial'

FFITutorialTypes class >> initialize
Age := #uint

We can then import the type aliases in the shared pool by

Object subclass: #FFITutorial
...
poolDictionaries: 'FFITutorialTypes'
...

4.2 Arrays

Arrays are a bounded sequence of contiguous values. In Pharo, an array ob-
ject can contain any object, so a single array can contain objects of different
types. For example, the following code snippet shows how a single array can
contain integers, floats, strings and others.

anArray := Array new: 7.
anArray at: 1 put: 3.1415.
anArray at: 5 put: 42.
anArray at: 7 put: 'Hello World'.

anArray.
=> #(3.1415 nil nil nil 42 nil 'Hello World')

In addition, Pharo arrays can be safely accessed without producing buffer
over/underflows, because it performs bound checks on each array access. In
other words, accessing outside the bounds of a Pharo array yields an excep-
tion instead of accessing data outside the array.
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anArray := Array new: 1.

anArray at: 2
=> Out of Bounds Exception!

C arrays behave somewhat like Pharo arrays: they are contiguous sequences
of values. However, C arrays are constrained to contain values of a single
type, and accessing outside of their bounds is not checked before access, al-
lowing buffer over/underflows.

Because of these differences, and others in their internal representation,
uFFI does not automatically marshall Pharo arrays into C arrays. Instead,
uFFI provides a specialized array class to manipulate arrays: the FFIArray
class.

Creating FFIArrays

FFIArrays are created using the newType:size: or the externalNewType:size:
instance creation methods. The former will allocate an array in the Pharo
heap, while the latter one will allocate the array in the C heap.

"In the pharo heap"
array := FFIArray newType: #char size: 10.

"In the C heap"
array := FFIArray externalNewType: #char size: 10.

FFIArrays allocated in the C heap are not moved and their memory is not
released automatically. It is the developer’s responsibility to free it. On the
other hand, FFIArrays allocated in the Pharo heap can be moved by the
garbage collector, so they should be pinned in memory before being safely
used in FFI calls. Also, FFIArrays in the Pharo heap are managed by Pharo’s
garbage collector, and will be collected if no other Pharo objects reference
it. Be careful, an FFIArray in the Pharo heap referenced from the C heap
will still be garbage collected making the pointer in the C heap a dangling
pointer.

Manipulating FFIArray instances

The elements in an FFIArray are accessed as any other Pharo array, using
the #at: and #at:put: methods. Its size is accessed with the #sizemethod,
using 1-based indexes like in Pharo.

array at: 1 "for the first element".
array at: n "for the nth element".

If the array is allocated in the Pharo heap, array accesses will be bound checked
and throw an exception in case of out-of-bounds access. Otherwise, if the ar-
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ray is allocated in the C heap, array accesses may run into buffer over/under-
flows.

Reusable FFIArray types

From time to time, we need to create several array instances of the same
type and size. Besides instantiating single arrays, FFIArray can define ar-
ray types, using the newArrayType:size: method. An array type knows the
types of its elements and its size and we can simply allocate it using the new
or externalNewmessages to allocate it in the Pharo heap or the C heap re-
spectively.

char128Type := FFIArray newArrayType: #char size: 128.

"In Pharo heap"
newArrayOf128Chars := char128Type new.

"In C heap"
newArrayOf128Chars := char128Type externalNew.

FFIArrays created this way can be used like any other FFIArray. We will
see in the next section how this array definition is useful to combine arrays
inside structures.

4.3 Structures

A structure is a data-type that joins together a group of variables, so-called
fields. Each field of a structure has a name and a type. Structures are often
used to group related values, so they can be manipulated together. For exam-
ple, let’s consider a structure that models a fraction, i.e., a number that has
a numerator and a denominator. Both numerator and denominator can be
defined as fields of type int. Such a fraction structure data-type, and a func-
tion calculating its double precision floating point number equivalent, are
defined in C as follows:

typedef struct
{

int numerator;
int denominator;

} fraction;

double fraction_to_double(fraction* a_fraction){
return a_fraction -> numerator / (double)(a_fraction ->

denominator);
}
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Defining a structure with FFIStructure

Structures are declared in uFFI as subclasses of the FFIStructure class defin-
ing the same fields as defined in C. For example, defining our fraction struc-
ture is done as follows, defining a subclass of FFIStructure, a fieldsDesc
class-side method returning the specification of the structure fields, and fi-
nally sending the rebuildFieldAccessorsmessage to the structure class
we created.

FFIStructure subclass: #FractionStructure
instanceVariableNames: ''
classVariableNames: ''
package: 'FFITutorial'

FractionStructure class >> fieldsDesc [
^ #(
int numerator;
int denominator;
)

]

FractionStructure rebuildFieldAccessors.

Doing this will automatically generate some boilerplate code to manipulate
the structure. You will see that the structure class gets redefined as follows,
containing some auto-generated accessors.

FFIStructure subclass: #FractionStructure
instanceVariableNames: ''
classVariableNames: 'OFFSET_DENOMINATOR OFFSET_NUMERATOR'
package: 'FFITutorial'

FractionStructure >> denominator [
"This method was automatically generated"
^handle signedLongAt: OFFSET_DENOMINATOR

]

FractionStructure >> denominator: anObject [
"This method was automatically generated"
handle signedLongAt: OFFSET_DENOMINATOR put: anObject

]

FractionStructure >> numerator [
"This method was automatically generated"
^handle signedLongAt: OFFSET_NUMERATOR

]

FractionStructure >> numerator: anObject [
"This method was automatically generated"
handle signedLongAt: OFFSET_NUMERATOR put: anObject
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]

Once a structure type is defined, we can allocate structures from it using the
new and externalNewmessages, that will allocate it in the Pharo heap or the
external C heap respectively.

"In Pharo heap"
aFraction := FractionStructure new.

"In C heap"
aFraction := FractionStructure externalNew.

We read or write in our structure using the auto-generated accessors.

aFraction numerator: 40.
aFraction denominator: 7.

And we can use it as an argument in a call-out by using its type.

FFITutorial >> fractionToDouble: aFraction [
^ self ffiCall: #(double fraction_to_double(FractionStructure*

a_fraction))
]

FFITutorial new fractionToDouble: aFraction.
>>> 5.714285714285714

Structures by copy or by reference

Structures in C can be passed as an argument both by copy and by reference.
A structure passed by copy means that a copy of the entire structure has to
be made and sent to the calling function. A structure passed by reference
means that a pointer to the same structure is shared between the caller and
callee. In C, we can distinguish between these two in two cases: 1) by the ap-
pearance of the pointer type modifier * in type declarations, and 2) by the
need to explicitly send a pointer to a function expecting pointers.

int print_by_pointer(fraction* a_fraction_reference);
int print_by_copy(fraction a_fraction_copy);

...

fraction f;

//The function below requires a copy, so just send f, the compiler
takes care

print_by_copy(f);

//The function below requires a pointer, so dereference f
print_by_pointer(&f);
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In uFFI, such a difference is also reflected in FFI bindings by using a pointer
type (or not):

FFITutorial >> printByPointer: aFraction [
^ self ffiCall: #(int print_by_pointer(FractionStructure*

a_fraction))
]

FFITutorial >> printByCopy: aFraction [
^ self ffiCall: #(int print_by_copy(FractionStructure a_fraction))

]

However, in contrast with C, when supplying a structure object as an argu-
ment, Pharo does not require the developer to worry about dereferencing.
Just supply the structure object as an argument, and uFFI will take care of
dereferencing if needed.

"In C heap"
aFraction := FractionStructure externalNew.

aFraction numerator: 40.
aFraction denominator: 7.

"Both of these work"
FFITutorial new printByPointer: aFraction.
FFITutorial new printByCopy: aFraction.

Structures embedding arrays

Arrays in C can appear embedded in structures, like the one defined below,
which contains an array of four ints.

struct {
int some_array[4];

}

Unlike a struct containing a pointer to an array, structs created from the defi-
nition above will contain the entire array allocated within the struct. Choos-
ing between a struct that embeds an array or one that references an array
through a pointer is a responsibility of the author of the C library to which
we are binding, and it is outside the scope of this booklet. However, these
different structures will have to be defined differently in uFFI.

Defining the structure above in uFFI requires that we define an array type of
size 4 for our some_array field. We can define such a user-defined type as a
type alias in our type pool, import our pool into our structure class and then
use our type in our field definitions.
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FFITutorialTypes class >> initialize [
int4array := FFIArray newArrayType: #int size: 4.

]

FFIStructure subclass: #EmbeddingArrayStructure
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: 'FFITutorialTypes'
package: 'FFITutorial'

EmbeddingArrayStructure class >> fieldsDesc [
^ #(
int4array some_array;
)

]

EmbeddingArrayStructure rebuildFieldAccessors.

Structure Alignment

Structures are usually organised in memory as a contiguous region contain-
ing all fields in the order they were defined. However, compilers usually
align structure fields to simplify access to them, by adding some padding,
i.e., hidden fields that occupy some space to force subsequent fields to move
to the desired position.

For example, consider a structure with two fields a and b of types char and
int respectively. Although the char a field only occupies 1 byte, the second
field b starts in the fifth byte: it is aligned to 4 bytes. This means the com-
piled version of such a struct adds 3 bytes of padding between our two fields.

// We define
struct {

char a;
int b;

}

// The compiler defines
struct {

char a;
char padding1[3];
int b;

}

uFFI handles padding and alignments automatically, respecting the C stan-
dard behavior. We can define the structure above using uFFI as:
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FFIStructure subclass: #AlignmentExampleStructure
instanceVariableNames: ''
classVariableNames: ''
package: 'FFITutorial'

AlignmentExampleStructure class >> fieldsDesc [
^ #(
char a;
int b;
)

]

AlignmentExampleStructure rebuildFieldAccessors.

And then test that the fields are correctly aligned: a is the first byte, b is the
fifth:

AlignmentExampleStructure classPool at: #OFFSET_A.
>>> 1
AlignmentExampleStructure classPool at: #OFFSET_B.
>>> 5

Packed Structures

From time to time we will find libraries that use packed structures. Packed
structures are structures that are compiled without some or all of their padding.
For example, some compilers will use the pragma pack to tweak the align-
ment of structures.

#pragma pack(push) /* push current alignment to stack */
#pragma pack(1) /* set alignment to 1 byte boundary */

struct {
char a;
int b;

}

#pragma pack(pop) /* restore original alignment from stack */

Some other compilers will have directives to specify packing at the level of a
field:

struct {
char a;
int b __attribute__((packed));

}

uFFI provides support for mapping packed structures through the FFI-
PackedStructure class, which is a subclass of FFIStructure that redefines
how fields are aligned. FFIPackedStructure avoids all padding, creating
a single packed structure where each field follows the next one. Consider
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the example of FFIPackedStructure below, mapping our packed structure
above.

FFIPackedStructure subclass: #PackedAlignmentExampleStructure
instanceVariableNames: ''

classVariableNames: ''
package: 'FFITutorial'

PackedAlignmentExampleStructure class >> fieldsDesc [
^ #(
char a;
int b;
)

]

PackedAlignmentExampleStructure rebuildFieldAccessors.

Differently from the non-packed structure of a couple of sections ago, this
packed structure shows that both fields are contiguous: a is the first byte, b
is the second:

PackedAlignmentExampleStructure classPool at: #OFFSET_A.
>>> 1
PackedAlignmentExampleStructure classPool at: #OFFSET_B.
>>> 2

4.4 Enumerations

Enumerations are data-types defining a finite set of named values. For exam-
ple, let’s say we want to create a data-type to identify the different positions
of players in a football match: goalkeeper, defender, midfielder, forward.
Such a data-type can be defined in C as an enumeration as follows:

typedef enum {
goalkeeper,
defender,
midfielder,
forward

} position;

We can then use position as a type, and the values defined within it as valid
values for position.

position myPosition = defender;

The values of C enumerations

To better understand how to map C enumerations using uFFI, we must before
understand how C assigns values to each of the elements in the enumeration.
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Internally, C assigns to each of the elements of the enumeration a sequen-
cial numeric value starting from 0 (zero). In other words, goalkeeper has a
value of 0, defender has a value of 1, and so on. C allows developers to spec-
ify the values they want too, using an assignment-like syntax.

typedef enum {
goalkeeper = 42,
defender,
midfielder,
forward

} position;

We can explicitly assign values to any of the elements of the enumeration.
We may leave values without explicit values, in which case they will be auto-
matically assigned the value following the previous value. And finally, many
elements in the enumeration may have the same value. The example enu-
meration below shows these subtleties.

#include <assert.h>
#include <limits.h>

enum example {
example0, /* will have value 0 */
example1, /* will have value 1 */
example2 = 3, /* will have value 3 */
example3 = 3, /* will have value 3 */
example4, /* will have value 4 */
example5 = INT_MAX, /* will have value INT_MAX */
/* Defining a new value after this one will cause an overflow
error */

};

Defining an enumeration using FFIEnumeration

Enumerations are declared in uFFI as subclasses of the FFIEnumeration
class, which similarly define their elements and values. Note that in uFFI, a
value must be explicitly provided for each element. For example, defining
our example enumeration is done as follows, defining a subclass of FFIEnu-
meration, an enumDecl class-side method returning the specification of the
enumeration elements, and finally sending the initializemessage to the
enumeration class we created.

FFIEnumeration subclass: #ExampleEnumeration
instanceVariableNames: ''
classVariableNames: ''
package: 'FFITutorial'

ExampleEnumeration class >> enumDecl [
^ #(
example0 0
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example1 1
example2 3
example3 3
example4 4
example5 2147483647
)

]

ExampleEnumeration initialize.

Doing this will automatically generate some boilerplate code to manipulate
the enumeration. You will see that the enumeration class gets redefined as
follows, creating and initializing a class variable for each of its elements.

FFIEnumeration subclass: #ExampleEnumeration
instanceVariableNames: ''
classVariableNames: 'example0 example1 example2 example3 example4

example5'
package: 'FFITutorial'

To use the values of enumerations in our code, it is enough to import it as a
pool dictionary, since uFFI enumerations are shared pools.

Object subclass: #FFITutorial
...
poolDictionaries: 'ExampleEnumeration'
...

4.5 Unions

Unions are data-types defining a single value that can be interpreted with
different internal representations. For example, the next piece of C code de-
fines a type float_or_int that can be seen as a float or as an int.

typedef union {
float as_float;
int as_int;

} float_or_int;

float_or_int number;
number.as_float = 3.14f;

printf("Integer representation of PI: %d\n", number.as_int);

producing the next output:

Integer representation of PI: 1078523331
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Defining a union using FFIUnion

Similar to the way structures are handled, unions are declared in uFFI as sub-
classes of the FFIUnion class, defining the same fields as defined in C. For
example, defining our float_or_int union is done as follows, defining a
subclass of FFIUnion, a fieldsDesc class-side method returning the specifi-
cation of the union’s fields, and finally sending the rebuildFieldAccessors
message to the union class we created.

FFIUnion subclass: #FloatOrIntUnion
instanceVariableNames: ''
classVariableNames: ''
package: 'FFITutorial'

FloatOrIntUnion class >> fieldsDesc [
^ #(
float as_float;
int as_int;
)

]

FloatOrIntUnion rebuildFieldAccessors.

Doing this will automatically generate some boilerplate code to manipulate
the values inside the union. You will see that the union class gets redefined
like structures did, containing some auto-generated accessors.

FFIStructure subclass: #FloatOrIntUnion
instanceVariableNames: ''
classVariableNames: 'OFFSET_DENOMINATOR OFFSET_NUMERATOR'
package: 'FFITutorial'

FloatOrIntUnion >> as_float [
"This method was automatically generated"
^handle floatAt: 1

]

FloatOrIntUnion >> as_float: anObject [
"This method was automatically generated"
handle floatAt: 1 put: anObject

]

FloatOrIntUnion >> as_int [
"This method was automatically generated"
^handle signedLongAt: 1

]

FloatOrIntUnion >> as_int: anObject [
"This method was automatically generated"
handle signedLongAt: 1 put: anObject
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]

Using the defined union type

Once a union type is defined, we can create a union using the new and exter-
nalNewmessages, which will allocate it in the Pharo heap or the external C
heap respectively.

"In Pharo heap"
aFloatOrInt := FloatOrIntUnion new.

"In C heap"
aFloatOrInt := FloatOrIntUnion externalNew.

We read or write in our union using the auto-generated accessors.

foi as_float: 3.14.
foi as_int.
>>> 1078523331

And we can use it as an argument in a call-out by using its type.

FFITutorial >> firstByte: float_or_union [
^ self ffiCall: #(char float_or_int_first_byte(FloatOrIntUnion*

float_or_union))
]

4.6 Conclusion

In this chapter we have seen how complex C data-types can be mapped with
uFFI. In contrast with basic types, which are automatically marshalled be-
tween Pharo and C, uFFI does not automatically marshall complex data-
types. The reasoning behind this decision is that the memory layout of C
complex data-types is entirely different than Pharo objects. Instead of au-
tomatically marshalling Pharo objects into these complex data-types, uFFI
reifies them and allows developers to manipulate them through messages in
normal Pharo code.

uFFI provides representations for arrays, structures, enumerations and unions.
Moreover, these types can be combined, through the usage of type aliases.

In the next chapter, we will study how we can define FFI bindings in an object-
oriented fashion, using encapsulation, inheritance and delegation.
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CHA P T E R5
Designing with uFFI and FFI

Objects

In the previous chapters, we have studied the uFFI mechanics necessary to
bind an external C library. We have studied in particular how to call func-
tions, how basic types are marshalled, and how we can manipulate more
complex types. However, we have not yet discussed how those call-out bind-
ings and types should be structured in a project.

This chapter presents several ways to organize library bindings. The first
approach presented is the naïve-yet-simple single library object that organ-
ises the bindings as a façade. In addition, uFFI allows one to take a second
approach exploiting the object-oriented nature of Pharo, in particular split-
ting the binding into different objects and encapsulating the data they ma-
nipulate. For this, we exploit the concepts of external objects and opaque
objects.

5.1 First approach: single library façade object

The first approach for organizing external library bindings is to follow the
Façade design pattern. In other words, there is a single object that concen-
trates all bindings and types of our library. This approach is useful to see and
understand the bindings as a whole, since they are all together.

The FFILibrary as a single point of access

uFFI proposes an ideal place to apply this pattern: our library object (which
is a subclass of FFILibrary). We have seen in previous chapters that when
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defining a call-out, we need to specify the external library where the func-
tion is located, either in the definition of the call-out using the ffiCall:li-
brary: method:

FFITutorial >> abs: n [
self ffiCall: #( int abs (int n) ) library: MyLibC

]

Or by redefining the method ffiLibrary to specify the library for all call-
outs in the class, thereby avoiding the need to do so in every call-out.

FFITutorial >> abs: n [
self ffiCall: #( int abs (int n) )

]

FFITutorial >> ffiLibrary [
^ MyLibC

]

When we choose to use the Façade pattern for our bindings, uFFI provides a
convenience behaviour: for all subclasses of FFILibrary, the method ffiLi-
brary returns self:

FFILibrary >> ffiLibrary [
^ self

]

This convenience behaviour allows binding developers to place call-out bind-
ings inside the library object, and avoid declaring the ffiLibrary at all. By
using this pattern, the library object is not only the object that knows how to
find the external library and find its functions: it becomes also a reification
of the external library, including its functions.

Redefining MyLibC as a façade

Following the pattern explained above, we can now turn our MyLibC example
library from the first chapter into a Façade. We will move the call-out meth-
ods, ticksSinceStart and time, from the client class, FFITutorial, to our
library class and eliminate the need to explicitly specify the library at all in
the call-outs:

FFILibrary subclass: #MyLibC
instanceVariableNames: ''
classVariableNames: ''
package: 'UnifiedFFI-Libraries'

MyLibC >> unixLibraryName [
^ 'libc.so.6'

]

MyLibC >> macLibraryName [
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^ 'libc.dylib'
]

MyLibC >> win32LibraryName [
"While this is not a proper 'libc', MSVCRT has the functions we

need here."
^ 'msvcrt.dll'

]

MyLibC >> ticksSinceStart [
^ self ffiCall: #( uint clock() )

]

MyLibC >> time [
^ self ffiCall: #( uint time( NULL ) )

]

Which can be used as any normal object now:

MyLibC new time

We leave it as an exercise for the reader to explore the differences between
putting the call-out bindings as instance-side or class-side methods.

As the reader might assume, this approach is the strongest when we are
binding a small library or a small subset of a large library. The main advan-
tage is that the entire binding can be understood by taking a look at a sin-
gle class. However, as soon as bindings grow in complexity, we need to re-
structure and refactor our bindings into different objects, as we will see in
the following sections.

5.2 Extracting behaviour into objects

The FFI library façade object risks becoming an unwieldy god object when
the C library is big or complex. To cope with this inherent complexity, uFFI
provides several mechanisms to extract FFI call-outs into objects.External
objects have special marshalling rules which, combined with self argu-
ments, allow us to design nice object-oriented APIs. Also, uFFI provides sup-
port for Opaque objects, which are external objects whose internal imple-
mentation is not exposed by the FFI library.

External object marshalling rules

External objects are uFFI objects representing objects from the external li-
brary. We have already seen several external objects such as structures,
unions and enumerations, which require creating subclasses of FFIStruc-
ture, FFIUnion or FFIEnumeration respectively. uFFI external objects are
normal Pharo objects wrapping an external address, held in a handle instance
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variable. This handle instance variable is defined in ExternalObject, the
common superclass of all external objects.

Object subclass: #ExternalObject
instanceVariableNames: 'handle'
classVariableNames: ''
package: 'FFI-Kernel'

In the previous examples, we have also seen that we can use external ob-
jects in our call-outs by specifying their class name. Using external objects in
call-outs is possible because uFFI defines special marshalling rules for such
objects.

• When a uFFI external object is sent as an argument, uFFI will use its
handle in the call-out, thus passing the actual memory pointer.

• When a uFFI external object is expected as a return value, uFFI expects
that the returned value is a pointer and it instantiates an external ob-
ject of the specified type, setting that pointer as its handle.

An example of external object marshalling

To study how marshalling of external objects works, we will re-introduce the
fraction example from the last chapter. Consider the fraction structure, both
in C:

typedef struct
{
int numerator;
int denominator;

} fraction;

double fraction_to_double(fraction* a_fraction){
return a_fraction -> numerator / (double)(a_fraction ->

denominator);
}

And its uFFI binding in Pharo:

FFIStructure subclass: #FractionStructure
instanceVariableNames: ''
classVariableNames: ''
package: 'FFITutorial'

FractionStructure class >> fieldsDesc [
^ #(
int numerator;
int denominator;
)

]
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Marshalling external object arguments

As an example, let’s consider fraction_to_double above and its usage be-
low:

FFITutorial >> fractionToDouble: aFraction [
^ self ffiCall: #(double fraction_to_double(FractionStructure*

a_fraction))
]

FractionStructure rebuildFieldAccessors.
aFraction := FractionStructure externalNew.
aFraction numerator: 40.
aFraction denominator: 7.
FFITutorial new fractionToDouble: aFraction.
>>> 5.714285714285714

In the example above, we see that the call-out binding specifies a pointer to
our Pharo FractionStructure type. However, when using this binding, we
simply pass a normal Pharo object and uFFI handles the rest. Using external
object types as function arguments is actually uFFI syntax sugar for the fol-
lowing (not so nice) binding. This binding makes use of pointers with void*
argument types and breaks the encapsulation of our structure to access its
internal handle, coupling itself with the internals of uFFI.

FFITutorial >> fractionToDouble: aFraction [
^ self ffiCall: #(double fraction_to_double(void* a_fraction))

]

...
FFITutorial new fractionToDouble: aFraction handle.
>>> 5.714285714285714

Marshalling external object return values

External object types can be used as function return values, too. Consider the
following C function, which creates and returns a fraction struct, and its uFFI
binding. Using FractionStructure as the return type of our binding, we tell
uFFI to take the pointer returned from the function and create a Fraction-
Structure with that pointer as its handle.

fraction* make_fraction(int numerator, int denominator){
fraction* f = (fraction*)malloc(sizeof(fraction));
f -> numerator = numerator;
f -> denominator = denominator;
return f;

}
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FFITutorial >> newFractionWithNumerator: numerator denominator:
denominator [

^ self ffiCall: #(FractionStructure* make_fraction(int numerator,
int denominator))

]

aFraction := FFITutorial new newFractionWithNumerator: 40
denominator: 7.

FFITutorial new fractionToDouble: aFraction.
>>> 5.714285714285714

As with arguments, external object return types are actually uFFI syntax
sugar for the following (again not so nice) binding. This binding makes use
of a pointer with void* return type and manually initializes a structure from
it, coupling itself with the internals of uFFI.

FFITutorial >> newFractionWithNumerator: numerator denominator:
denominator [

^ self ffiCall: #(void* make_fraction(int numerator, int
denominator))

]

aFraction := FractionStructure fromHandle: (FFITutorial new
newFractionWithNumerator: 40 denominator: 7).

FFITutorial new fractionToDouble: aFraction handle.
>>> 5.714285714285714

Using self as an argument

To make our bindings more object-oriented, the next step is to move the be-
haviour manipulating our objects closer to those objects. In other words, de-
fine our call-outs in the classes they manipulate, e.g., ask a fraction to trans-
form itself into double.

aFraction asDouble.
>>> 5.714285714285714

A naïve, yet working, implementation of such a binding would be to simply
move our already-existing methods to the FractionStructure class:

FractionStructure >> asDouble [
^ self fractionToDouble: self

]

FractionStructure >> fractionToDouble: aFraction [
^ self ffiCall: #(double fraction_to_double(FractionStructure*

a_fraction))
]

However, uFFI allows us to enhance our bindings even further, combining
external objects with self arguments in our call-outs. Indeed, our asDouble
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and fractionToDouble: methods can be merged into a single method using
self as a literal argument to the function.

FractionStructure >> asDouble [
^ self ffiCall: #(double fraction_to_double(FractionStructure

*self))
]

5.3 Opaque Objects

Many libraries hide their internal representation using opaque data-types.
An opaque data-type is data-type whose internal representation is not ex-
posed to us. We can think of it as a structure whose fields are not visible to
us, with the caveat that it may not actually be a structure. Libraries using
such data-types restrict users to create values of such types and manipulate
them only through the library’s own functions, rendering an API similar to
encapsulated objects. uFFI provides support for opaque objects through the
FFIOpaqueObject class.

Defining an opaque type

Consider an external function which publishes its public API through a header
file with function definitions. This header file defines a type fraction al-
though we do not know how it is internally defined.

typedef struct str_fraction fraction;
fraction mk_fraction(int numerator, int denominator);
float fraction_to_float(fraction f);

The simplest way to map such definitions is through type aliases:

FFITutorial class >> initialize [
fraction := #FFIOpaqueObject.

]

FFITutorial class >> makeFractionFromNumerator: n denominator: d [
self ffiCall: #(fraction mk_fraction(int n, int d)).

]

FFITutorial >> fractionToFloat: aFraction [
self ffiCall: #(float fraction_to_float (fraction aFraction))

]

Opaque types are External Objects

To make the example above more object-oriented, opaque data-types can
be easily defined as external objects with the FFIOpaqueObject class. An
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FFIOpaqueObject is an external object that assumes nothing about its inter-
nal representation: it’s just a pointer to some external data. Moreover, we
can then define bindings inside that class, and use self as an argument to
simplify our bindings.

FFIOpaqueObject subclass: #OpaqueFraction
instanceVariableNames: ''
classVariableNames: ''
package: 'FFITutorial'

OpaqueFraction class >> makeFractionFromNumerator: n denominator: d [
self ffiCall: #(OpaqueFraction mk_fraction(int n, int d)).

]

OpaqueFraction >> toFloat [
self ffiCall: #(float fraction_to_float (self))

]

5.4 Conclusion

In this chapter we have seen two different strategies for mapping external
libraries: façades and external objects. Façades are the simplest approach,
and pretty straightforward for simple or small libraries: they are god-like
objects containing all the call-out definitions of our bindings. External ob-
jects allow us to distribute our bindings in a more object-oriented fashion,
putting the behaviour closer to the data, and exploiting encapsulation. Com-
plex data-types, as defined in the previous chapters (unions, structures, enu-
merations), are external objects in this sense. Moreover, we saw that we can
define complex data-types using opaque objects and type aliases. These two
strategies are not incompatible, so the same library mapping can mix-and-
match, extracting functions into external objects as desired.
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uFFI and memory management

Using uFFI requires developers to be conscious about how memory is man-
aged, because, unlike C, Pharo is a garbage-collected language. On the one
hand, most C libraries will require users to do manual bookkeeping of the
memory they use by explicitly allocating or de-allocating memory. On the
other hand, Pharo will automatically reclaim unused Pharo objects, or move
them around in memory if required.

uFFI developers need to be extra careful to manage these differences when
designing their bindings. Failing to do so will produce many bewildering ef-
fects such as incorrect memory accesses and memory leaks that are hard to
detect.

In this chapter we re-visit how external objects are allocated (and de-allocated)
in both Pharo and C memory. We see the case of Pharo objects sent by ref-
erence to C libraries, and we introduce the concept of pinned objects: ob-
jects that are guaranteed not to be moved in memory, yet are still garbage
collected. Finally, we introduce uFFI auto-released objects: Pharo external
objects that will automatically release their C counterpart when they are
garbage collected.

6.1 Pharo vs. C memory management: the basics

Memory in Pharo and C is managed in fundamentally different ways. Pharo
has automatic memory management where a garbage collector tracks used-
objects, moves them around and periodically reclaims unused objects. C re-
quires developers to manually manage their memory. This section intro-
duces the difference between these two models, and finally introduces the
subtleties of uFFI external objects which allow both of them.
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Memory in C

C programs organize their usage of memory in three different ways: static,
automatic and dynamic memory. Static memory is memory allocated when
the process starts and not released until the process finishes. How much
memory to allocate is known before the execution, typically calculated at
compile time. For example, static variable declarations in a C program tell
the compiler how much memory to pre-allocate for them.

static int pre_allocated_variable = 5;

Automatic memory is the memory allocated and released without explicit
developer intervention. For example, space for the local variables of func-
tions is automatically allocated when functions are called, and released when
functions return. Automatic memory is often managed using the stack, i.e.,
extra space is allocated in the stack on a function call, and automatically re-
leased on function return because the extra space is popped from the stack
when coming back to the caller function. How much extra memory has to be
allocated in the stack is generally calculated at compile time.

void some_function(){
// Automatic variable allocated in the stack
int t = 42;

}

Finally, dynamic memory is the memory that cannot be statically calculated,
so programs explicitly allocate and reclaim it. Dynamic memory is manipu-
lated through system libraries, for example with the functions malloc and
free. This kind of memory is said to be stored in the heap, since the mem-
ory allocated by the system is usually organized with a heap data-structure.
Memory dynamically allocated needs to be manually released, otherwise pro-
voking potential memory leaks.

//Allocate 17 bytes and grab a pointer to that memory region
int* pointer = (int*)malloc(17);
//Free that memory
free(pointer);

Objects in the Pharo Heap

Pharo programs feature automatic memory management: all objects need
to be explicitly allocated, and are automatically reclaimed by a garbage col-
lector when they are not used anymore. Objects are allocated in Pharo by
sending the new and new: messages to a class. Although there are several
kind of classes in Pharo, for the purpose of this booklet we will concentrate
on the two main kinds of classes: fixed-size and variable-size classes.

Fixed-size classes are classes with a fixed number of instance variables, in-
stantiated with the message new. When the VM is instructed to instantiate
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one of these classes, it calculates the amount of memory required for the in-
stance by looking at the class’ instance variables. This is the case of most of
the classes we create ourselves. For example, class Point is a fixed-size class
with two instance variables x and y.

Object subclass: #Point
instanceVariableNames: 'x y'
classVariableNames: ''
package: 'Kernel-BasicObjects'

Point new

Variable-size classes are classes whose instances have variable size. For ex-
ample, the Array class allows instances with 0 or many slots. These classes
are instantiated through the new: aSizemessage, specifying the number of
required slots at instantiation-time.

ArrayedCollection variableSubclass: #Array
instanceVariableNames: ''
classVariableNames: ''
package: 'Collections-Sequenceable-Base'

Array new: 20.

In contrast with C-managed memory, once instantiated, the life-cycle of a
Pharo object is automatically managed by the virtual machine. For the pur-
poses of this uFFI booklet, it is important to know two main properties of
Pharo’s garbage collector:

1. The storage of an object that is not used anymore will be automatically
reclaimed

2. The position of an object may change during execution to avoid mem-
ory fragmentation

Although these two properties are nice from a Pharo perspective, they re-
quire special attention for a uFFI developer, as she has one foot in the Pharo
world and one foot in the C world. We will see in the following section how
these properties affect programming with uFFI, and how Pharo and uFFI pro-
vide support to minimize the impact of these issues through auto-release and
pinning.

6.2 uFFI external objects in the C Heap

External objects such as structures, arrays or unions, support a special kind
of instantiation message: externalNew. This message allocates external ob-
jects in the C heap, similar to what the malloc function does.

myStructure := MyStructure externalNew.
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Using external allocation of external objects means that we need to do man-
ual deallocation too, using the message free.

myStructure := MyStructure externalNew.
" ... use my structure ... "
myStructure free.

External allocation is useful when we want to have full control over how and
when memory is allocated and deallocated. Moreover, since the allocated
memory exists outside of the control of Pharo’s garbage collector, external
allocation avoids problems such as moving objects, explained later in this
chapter.

Memory leaks in the C Heap

Allocating an external object using the message externalNew allocates the
required memory on the C heap and returns to our Pharo program an Ex-
ternalAddress to that external memory. This ExternalAddress is the only
reference to the external memory.

Pharo Heap
Process Memory

:ExternalObject

0xFFAA1123

Pharo Heap
Process Memory

:ExternalObject

0xFFAA1123

Figure 6-1 An External Address references an address outside the Pharo mem-

ory

In this setting, a memory leak can happen if our ExternalAddress object is
garbage collected: the memory occupied by the ExternalAddress object is
reclaimed, but the memory in the C heap remains allocated since there was
no call to free.

Of course, an avid reader would ask why not free the memory of an external ad-
dress as soon as it is garbage collected?. However, such automatic release cannot
be done blindly for all ExternalAddresses. On the one hand, during pro-
gram execution an alias to the external memory can be created with a new
ExternalAddress object, leading to two ExternalAddresses with the same
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Pharo Heap
Process Memory

:ExternalObject

0xFFAA1123

Pharo Heap
Process Memory

:ExternalObject

0xFFAA1123

Figure 6-2 A garbage collected External Address creates a memory leak

value. In this situation, the first free will succeed, while the second one will
cause a program failure. On the other hand, not all ExternalAddress ob-
jects contain addresses to externally allocated objects. Some ExternalAd-
dresses may have offsets, arbitrary pointers or other kind of references that
we should not free.

Pharo Heap
Process Memory

:ExternalObject

0xFFAA1123

Pharo Heap
Process Memory

:ExternalObject

0xFFAA1123

:ExternalObject

Figure 6-3 Two External Address referencing the same address are an alias:

freeing one makes the second invalid

The uFFI auto-release mechanism

For those external objects that we can automatically release on garbage col-
lection, uFFI supports an auto-release feature which does what was described
above: the memory of an external object is freed upon garbage collection.
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Using this feature requires a user to register an external object for auto-
releasing by sending it the autoReleasemessage. By default, auto-released
external objects will just call free on the reference they manage.

myStructure := MyStructure externalNew.
myStructure autoRelease.
" ... use my structure ... "
" ... dereference it so it will be collected ..."
myStructure := nil.

uFFI also supports extending the auto-release mechanism to implement our
own. The first extension point is the class method finalizeResourceData:
of external objects. User defined external objects can re-define the method
finalizeResourceData: on the class side to control how its instances are
deallocated. The default implementation looks like the following:

FFIExternalReference >> finalizeResourceData: handle [
handle isNull ifTrue: [ ^ self ].
handle free.
handle beNull

]

Indeed, upon garbage collection finalizeResourceData: does not receive
the (already garbage collected) external object but the handle it contained.
Overriding this method allows users to, for example: - call library-specific
free functions. For example, libraries such as SDL or libgit have their own
free functions that correctly free their internal data structures, - do aditional
Pharo-side cleaning. For example, unregistering the handle from some inter-
nal registry, and - do logging.

MyExternalStructure >> finalizeResourceData: handle [
handle isNull ifTrue: [ ^ self ].

"Logging the handle in the transcript for information"
('Freed ', handle asString) traceCr.

handle free.
handle beNull

]

In addition, uFFI provides a second extension point for auto-release: re-
sourceData. The method resourceData allows one to specify what data
to store and send as argument on finalizeResourceData:. By default this
method returns the handle of the external object.

FFIExternalReference >> resourceData [
^ self getHandle

]

However, we can modify both methods to have richer information at the
time the resource data is finalized. For example, the SDL library bindings use
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as resource data an Array containing both the handle of its windows and also
the window ID. When the external object is garbage collected, the method
#finalizeResourceData: receives the stored array and can act on it, as in
the following example.

SDL_Window class >> resourceData [
^ {self getHandle. self windowID }

]

SDL_Window class >> finalizeResourceData: aTuple [
| handle windowId |

handle := aTuple first.
handle isNull ifTrue: [ ^ self ].

windowId := aTuple second.
OSSDL2Driver current unregisterWindowWithId: windowId.
self destroyWindow: handle.
handle beNull

]

6.3 uFFI external objects in the Pharo Heap

We have seen in previous chapters that the different kinds of external ob-
jects such as structures, arrays or unions, can be instantiated as normal ob-
jects using the newmessage. This causes external objects to be allocated in
the Pharo heap.

myStructure := MyStructure new.

Allocating in the Pharo heap has a main advantage: we do not need to man-
ually track the life-cycle of the object and use functions like C’s free() to
manually release it. Instead, the object and the storage it occupies will be re-
leased automatically by the garbage collector as soon as our Pharo program
does not need it anymore, just like any other Pharo object.

myStructure := MyStructure new.
" ... use my structure ... "
" nil it and PLUF, eventually the object will be discarded "
myStructure := nil.

However, as objects in the Pharo heap and subject to the control of Pharo’s
garbage collector, the garbage collector might then wrongly decide to col-
lect objects that, seemingly unused from Pharo’s perspective, are used in a C
library; or decide to move them, leaving C dangling pointers. This situation
leads to memory corruptions and bizarre bugs.
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The problem of garbage collection and C dangling pointers

As soon as we send an external object as an argument of a C function, the C
function has the freedom to manipulate that external object as it pleases. In
particular, this can present some troubles when we send an object by refer-
ence using a pointer type, as illustrated in the following function binding:

FFITutorial >> myFunction: aStructure [
^ self ffiCall: #(void myFunction(MyStructure* aStructure))

]

Sending Pharo object references to external libraries introduces the problem
of dangling references. A Pharo-allocated external object sent by reference
sends the address of that object to the function. Such address is an unman-
aged object address: it is supposed to reference an object, but since it is now
in the C world, the garbage collector cannot inform C if the object is moved,
and it cannot know if that address is in use. In case the garbage collector de-
cides to move that object or collect it, the C library then finds itself using a
wrong address: a dangling pointer.

Pharo Heap
Process Memory

:ExternalObject

0xFFAA1123

Pharo Heap
Process Memory

0xFFAA1123

:ExternalObject

Figure 6-4 A dangling pointer is created when an external address points to a

garbage collected object

If we are lucky enough, dangling pointers will crash right away and we will
realize the cause of it: they will try to access an object that is not there any-
more and produce an error. However, it may happen that the dangling pointer
references seemingly valid data. In that case, the execution of the program
will continue for some time, probably reading and writing wrong values,
thus corrupting the memory. Such are the worst cases to debug, because the
cause of the bug is far away from the symptoms we see. Moreover, there are
no guarantees about the amount of time between when the garbage collec-
tor invalidates the object and the C library tries to access it. We will see in a
future chapter that multi-threaded FFI weakens such guarantees even more.
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To avoid such dangling pointers, no magic is available. Dangling pointers
caused by garbage reclamation need to be avoided by users making sure
their objects are not collected while in use. Dangling pointers caused by
moving objects can be solved by one of Pharo’s runtime features that we will
study in the next section: pinned objects.

Pinned Objects

Objects in use will not be garbage collected but may be moved in memory. To
cope with this problem of moving objects, the Pharo runtime supports pinned
objects. Pinned objects are objects that can be reclaimed but not moved by
the garbage collector, avoiding the problem of moving objects. To pin an ob-
ject in memory, we can use the message pinInMemory.

myStructure := MyStructure new.
myStructure pinInMemory.
" ... safely use my structure ... "
" nil it and PLUF, eventually the object will be discarded "
myStructure := nil.

If we later decide to unpin the object, we can do so by using unpinInMemory.

myStructure unpinInMemory.

For more fine grained control, external object also supports the messages
isPinnedInMemory and setPinnedInMemory: aBoolean. The former re-
turns a boolean specifying whether the object is pinned or not. The latter
allows changing the pinned property with a boolean. Remember that pinning
objects in memory does not prevent the garbage collector from reclaiming
those objects. Any pinned yet unused object will be garbage collected, possi-
bly creating memory corruptions.

6.4 Conclusion

In this chapter we have studied the differences between memory allocated in
Pharo and C. We have see the problems that may arise by exchanging point-
ers between them, especially when we allocate external objects: memory
leaks and dangling pointers.

Memory leaks are caused when we use external allocation and we do not cor-
rectly free this external memory during garbage collection. uFFI proposes
an auto-release mechanism that can be extended in two (composable) ways
to be able to free external memory when an external object is garbage col-
lected.

Dangling pointers are caused when we send a pharo-allocated object ref-
erence to a C program, since the garbage collector can move or collect the
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object, and the reference living on the C side will not get updated. uFFI sup-
ports pinning to prevent objects from being moved, but it is the user’s re-
sponsibility to prevent objects from being collected if they are still in usage
by C.
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CHA P T E R7
Non-Blocking Calls

This chapter presents how to use the non-blocking feature of uFFI. This fea-
ture allows to only block the Pharo process doing the FFI call. We start with
some concepts and clarifications, then we present how to use the non-blocking
calls, and finally, we talk a little about the impact with callbacks.

7.1 Definitions

For a more clear description of the Non-Blocking calls we need to define some
concepts:

• OS Thread: These are the threads provided by the operating system.
They can run in parallel and concurrently depending of the scheduling
of the OS.

• VM Execution Thread: This is the thread responsible for executing the
Pharo code. All Pharo processes run in this thread. Also, all the opera-
tions of the VM run in this thread e.g., Snapshotting, Garbage Collect,
and JIT Compiler.

• Pharo Process: a process is the multiprocessing unit of Pharo. Pro-
cesses are green threads handled by the VM. At all times, multiple pro-
cesses are running at the same time. They are planned and executed in
the VM Execution Thread.

• Blocking Calls: A blocking FFI call, is a call that is executed directly in
the VM Execution Thread. This call blocks the execution of all Pharo
code. Performing these calls is cheap and fast, but if the FFI call is long
will block the whole execution of the VM, and all Pharo processes with
it.
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• Non-Blocking Calls: A non-blocking FFI call is executed in an FFI Worker
thread. This call just blocks the worker thread and the Pharo process
performing the call. The VM Execution Thread continues executing
other Pharo Processes. This type of call allows us to execute long-
running FFI calls without freezing the whole Pharo image. However,
performing a Non-Blocking call is expensive as it is required to syn-
chronize and communicate two OS Threads, the one of the VM Execu-
tion and the one of the FFI Worker.

• FFI Runner (TFRunner): A FFI Runner is the object responsible for han-
dling the FFI Calls and Callbacks. It implements different strategies to
run them.

• FFI Worker Thread (TFWorker): This FFI Runner uses an OS thread to
execute FFI calls. It has an input queue where outgoing FFI calls are put
and a response queue that notifies the VM Execution Thread when an
FFI call has finished. A FFI Worker Thread performs only one call at a
time. If a call is being executed, it is blocked in this call. If it is required
to execute more than one call at a time in the worker, a second worker
should be created. There is always a default FFI Worker thread that is
available, but additional ones can be created and referred them by a
name.

• Same Thread Runner (TFSameThreadRunner): This FFI Runner is the
default FFI Runner used by the FFI Calls. It performs blocking calls
using the VM Execution Thread. It is fast and performant to use with
short FFI calls.

• Main Thread Runner (TFMainThreadRunner): This FFI Runner is a
special case of an FFI Runner. It works exactly as a FFI Runner with the
difference that uses the main thread of the OS Process to run the FFI
calls. It is useful when we require that FFI calls be performed in the
main thread of the application. This is a common require of UI frame-
works e.g., Cocoa. This Worker is only available if the Pharo VM is run
with the –worker option.

7.2 Using a Worker Thread to execute FFI calls

The selection of the FFI Runner to use is FFILibrary dependent. Each library
will say which FFI Runner to use. By default all libraries are using the TF-
SameThreadRunner. To select to use the default FFI Worker Thread we
should override the method #runner. For using the default TFWorker we
will do:

runner

^ TFWorker default
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If we want to use a different one just for this library we can use:

runner

^ TFWorker named:'myLibrary'

A same worker can be shared by many libraries, but only one call will be per-
formed at a time.

7.3 Mixing Same threads calls and Worker Thread calls

If we need to mix same thread and worker thread calls, an easy way is to
have a subclass of the library that overrides the runnermethod. As an ex-
ample, we will have the FFILibrary subclass calledMyFFILibrary with all the
information to lookup the dynamic libraries and the configuration that we
need. MyFFILibrary will use the default #runner implementation that re-
turns FFISameThreadRunner, so it will be used for fast blocking calls. Also,
we will have a subclass ofMyFFILibrary,MyFFILibraryUsingWorker that
just reimplemnets the #runnermethod returning the default TFWorker in-
stance. By doing so, FFI calls usingMyLibrary will be fast blocking, and the
ones usingMyFFILibraryUsingWorker will be non-blocking.

Next, we need to select which library to use, for doing so we are going to
use the #ffiCall:library: selector instead of #ffiCall:. For example having a
blocking call tomyShortFunction will be like

myFunction

^ self ffiCall: #(void myShortFunction()) library: MyLibrary

And a non-blocking version to a long running functionmyLongFunction is :

myFunction

^ self ffiCall: #(void myLongFunction()) library:
MyFFILibraryUsingWorker

7.4 Selecting FFI Calls to execute in a Worker

As said before, using a worker thread to execute a FFI call has a performance
penalty. Worker Thread calls are around 20 times slower than calls per-
formed with the Same Thread runner. The developer is responsible of se-
lecting the FFI calls that are worthy of being executed in a Thread Runner.
An easy metric to determine this could be average time taken by the called C
function. If the called C function takes more than some hundreds of millisec-
onds it will be useful to perform in a worker thread.
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7.5 Non Thread Safe Libraries

If the C library called using FFI is not thread safe, we need to guarantee that
all the calls to it are performed in the same thread. In this case, it is not pos-
sible to mix calls in different runners. The developer is responsible to know
if the library can be called from different threads.

A thread safe library not only will allow us to mix fast blocking and non-
blocking calls, but also it allows us to have different worker instances im-
plementing concurrent calls.

7.6 Callback considerations

To correclty handling the flow of FFI calls and the C stack, callbacks should
be handled in the same thread of the library. This is automatic when we are
using the Same Thread Runner. However, when using a Worker thread the
FFICallback should have the correct FFILibrary assigned to it.

To give the correct library to a callback we should set it through the #ffiL-
ibrary: message after creating the callback and before passing it to the C
library.

If we are using anonymous callbacks we should create the callback with the
message #newCallbackWithSignature:block:library:.
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