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CHA P T E R 1
Checking and transforming

programs with rewrite engine

Manipulating programs automatically is a really powerful tool. A refactoring
tool is a typical example. Another example is a rule checking engine.

In this book, we present the engine named ParseTreeRewriter on top of which
the Pharo refactoring engine and quality rule logic are built. The Parse-
TreeRewriter has been originally developed by J. Brant and D. Roberts.

This powerful engine allows you to define abstract expressions to match and
transform code. The engine is based on an abstract syntax tree kind of uni-
fication algorithm that matches meta-variable to abstract syntax tree nodes
and let you manipulate such meta-variables. We said that this is a kind of
unification because it is not fully true.

In this book, we will first present the notion of abstract syntax tree, then the
syntax of the parse tree rewriter expressions with practical examples.

We thanks for the following persons for their participation to this booklet
from close or far: Gisela Decuzzi, Camille Teruel, John Brant, Lukas Renggli,
Anne Etien, and Jean-Christophe Bach.

1.1 101 on AST and related sconcepts

An Abstract Syntax Tree (AST) is a tree data structure that represents source
code as a tree of nodes. While source code is just a string of characters, an
AST is a tree whose nodes correspond to the syntactic constructs of the parsed
language. In Pharo, an AST node can represent a method, a message, a vari-
able, a block, an assignment, etc.
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Checking and transforming programs with rewrite engine

Terminology point. Pharo ASTs are more concrete syntax trees in the sense
that they keep information about the syntactic characters such as parenthe-
ses, square bracket and pipe for temporaries definitions. We call them AST in
the following, but now you know that we are not fully correct.

Such a tree is much easier to process than a plain string. That is why this
data structure is used by most tools that have to deal with code.

Let’s met our first AST. Consider the following method.

Point >> < aPoint
"Answer whether the receiver is above and to the left of aPoint."

^x < aPoint x and: [y < aPoint y]

You can get the AST of this method with the following expression.

(Point >> #<) ast

The root of the AST is a method node whose child is a return node. This re-
turn node has a message node and this message node has a receiver (the AST
of the expression x < aPoint x), a selector (and:) and a block node as ar-
gument. Explore this AST to get familiar with its structure. You can also in-
spect the ASTs of other methods of the system.

Figure 1-1 An inspector on an AST.

Sending the message body body to the AST returns the body of the method
(as shown in Figure 1-1 and selector the method selector.

(Point >> #<) ast body

For example the AST of the following method is displayed in Figure ??.

selector: arg1 and: arg2
| temp1 temp2 |
temp1 := OrderedCollection new.
temp2 := arg1, arg2.
^ temp1 + temp2
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1.2 Basic knowledge on ProgramNode and its subclasses

Figure 1-2 The AST of the method selector:and:

1.2 Basic knowledge on ProgramNode and its subclasses

Different kinds of nodes correspond to different classes. These classes form
a hierarchy whose root is RBProgramNode. This class implements several
useful methods such as: parent, nodesDo:, isVariable.... Browse it and its
subclasses to discover the structure and the capabilities of Pharo ASTs. There
is a visitor class that supports the walking through ASTs.

Here is a view on the ProgramNode hierarchy showing the classes and their
instance variables. Of course, showing instance variables may be subject to
change in the future. We show them to provide an overview.

RBProgramNode
RBMethodNode
RBParseErrorNode
RBPragmaNode
RBReturnNode
RBSequenceNode
RBValueNode
RBArrayNode
RBAssignmentNode
RBBlockNode
RBCascadeNode

3



Checking and transforming programs with rewrite engine

RBLiteralNode
RBLiteralArrayNode
RBLiteralValueNode

RBMessageNode
RBVariableNode

RBArgumentNode
RBClassReference
RBSelfNode
RBSuperNode
RBTemporaryNode
RBThisContextNode

A SequenceNode is used by both a Block body and a MethodNode body.

1.3 About pattern matching

The pattern matching algorithm in the engine rewriter is the algorithm that
will match a given variable to a subtree. This algorithm takes as input a pat-
tern (that describes what we look for) and a tree (that could or not match the
pattern). A pattern is a tree containing special nodes called meta-variables.
A meta-variable is a variable whose value will be set by the pattern match-
ing algorithm. For example, a meta-variable can be used to match a variable
while another can be used to match messages.

The output of the algorithm is either false (there is no match found) or true.
If it is true, that means that at least one match has been found. A match is a
mapping from meta-variable to AST nodes of the input tree. These mappings
correspond to the values the meta-variables of the pattern should take for
the pattern to be equal to the input tree.

Let’s look at a few examples. If X and Y denote meta-variables, the pattern
self Xmatches self open with the mapping: X -> 'open'. The pattern X
Ymatches self open with the mapping: Y -> 'self’, Y -> 'open'. As a fail-
ing example, X X doesn’t match self open because X cannot be at the same
time ’self’ and ’open’.

1.4 Pattern syntax

The ` character (backquote) creates a variable to match. Several options can
be used to specify the search:

Keyword Meaning
@ the searched node is optional or can be repeated.

When applied to a variable, match any expression. When applied to a statement, match a list of statements. When applied to a message, match a list of arguments.
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1.5 Example

. the searched node is a statement in a sequence node.
# the searched node is a literal
{ } to match nodes that satisfies the enclosed code
‘ to search recursively: When a match is found recurse into the matched node.

Let’s explain each construct by using it in a concrete context

1.5 Example

Let us start with an example and we want to make sure that our example is
always correct to we will verify it using tests.

First we define a class to host

TestCase << #MMatcherTest
slots: { #searcher level };
package: 'myBecher-Matcher'

The instance variable searcher will refer to an instance of RBParseTreeSearcher
and level is just an instance variable to illustrate that we can match different
kind of nodes. We make sure that we want to reuse the logic as much as pos-
sible so we define a setUpmethod and some helpers.

MMatcherTest >> setUp
super setUp.
searcher := RBParseTreeSearcher new.

MMatcherTest >> search
searcher
executeTree: (MMatcherTest >> #level) ast
initialAnswer: OrderedCollection new.

Then we define a simple method named level as follows:

level
| current |
level := 0.
current := self resolve.
[ current isRoot ] whileFalse: [
level := level + 1.
current := current parent ].

^ level

We are now ready to check some searches.

1.6 Not using meta-variables

The first question is can ask to the searcher is to find an exact node. Here
we look for the node (a message node) that represents the message current
node.
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Checking and transforming programs with rewrite engine

testNoVariable

searcher
matches: 'current isRoot'
do: [ :aNode :answer | answer add: aNode ; yourself].

self search.
self assert: searcher answer first class equals: RBMessageNode.
self assert: searcher answer first printString equals:

'RBMessageNode(current isRoot)'

For example, the pattern current isRootmatches the single occurrence of
the parse-tree node of current isRoot.

testNoVariableMultipleMatches

searcher
matches: 'current'
do: [ :aNode :answer | answer add: aNode ; yourself].

self search.
self assert: searcher answer size equals: 4.
self assert: (searcher answer collect: [ :each | each start ])

asArray equals: #(34 62 116 127)

Looking for the nodes that matches current we get four different tempo-
rary nodes each with its own source locations. It shows that the temporary
definition is not part of the matches.

testNoVariableLevelMultipleMatches

searcher
matches: 'level'
do: [ :aNode :answer | answer add: aNode ; yourself].

self search.
self assert: searcher answer size equals: 4

The previous test shows that we can match instance variables.

1.7 A first meta-variable

The following test illustrates what will happen when we define a meta-variable
matching unary messages sent to the current variable.

The pattern current `selector all the unary message sends to the receiver
current. We obtain the two message nodes current isRoot and current
parent.

testSelectorToCurrent

searcher
matches: 'current `selector'
do: [ :aNode :answer | answer add: aNode ; yourself].

6



1.8 Examples of transformations

self search.
self assert: searcher answer size equals: 2.
self
assert: searcher answer printString
equals: 'an OrderedCollection(RBMessageNode(current isRoot)
RBMessageNode(current parent))'

To be able to match binary messages we will indicate that we can have an
optional number of argument using the expression `@arg. In the following
we match the message node level + 1.

testSelectorToLevel
searcher
matches: 'level `selector: `@arg'
do: [ :aNode :answer | answer add: aNode ; yourself].

self search.
self assert: searcher answer size equals: 1.
self
assert: searcher answer printString
equals: 'an OrderedCollection(RBMessageNode(level + 1))'

1.8 Examples of transformations

| `@Temps | ``@.Statements. ``@Boolean ifTrue: [^false]. ^true
| `@Temps | ``@.Statements. ^``@Boolean not
``@object not ifTrue: ``@block
``@object ifFalse: ``@block.

RBParseTreeRewriter new
replace: '``@aDictionary at: ``@key
ifAbsent:

[| `@Temps |
``@.Statements.
``@aDictionary at: ``@key put: ``@value]' with:

'``@aDictionary at: ``@key
ifAbsentPut:

[| `@Temps |
``@.Statements.
``@value]';

yourself

rule := RBUnderscoreAssignmentRule new.
environment := BrowserEnvironment new forPackageNames: #('PackageA'
'PackageB' ...).
SmalllintChecker runRule: rule onEnvironment: environment.
rule open
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Checking and transforming programs with rewrite engine

1.9 Example of the globals message

Let’s start it with an example, imagine that we want to identify all the places
where we have anObject globals at:. We want to identify message as the
ones in the configurationClassmethod below.

configurationClass
^ Smalltalk globals at: self configurationName asSymbol

First try to look for the senders of the message globals. You will see that
you get couple hundreds of them and plenty of them are not sending at: but
at:ifAbsent: or at:put: or even nothing to do with at:.

1.10 Let’s write a matching pattern.

First you want any object, it could be Smalltalk or another one so we use the
` operation to create a (meta)variable that we name anObject. A meta vari-
able is a variable that we will unified against the AST elements.

So we get

`anObject

Then since we want the message globals we add it and obtain.

`anObject globals

Note here that we do not annotate it with an operator because we do not
want any message selector but just globals. We redo the same for at: so
we obtain the following pattern.

`anObject globals at:

But this expression is not complete and it is missing an argument to be a full
Pharo expressions. So we add another meta-variable that will match any-
thing.

`anObject globals at: `anything

1.11 Executing the rule

Now we have the pattern but we should execute it to get the matches. For
now we will use a nice extension of the Refactoring rule engine called Flamel.

TO BE CHANGED:No more flamel

FlamelRule new
matchingExpression: '`anObject globals at: `anything';
matchExpression;
run;
result

8



1.12 Refining the scope

Execute and inspect the result. It may take some minutes because it is match-
ing all the methods of the system. You get an RBParseTreeEnvironment and
the results are in classSelectors and metaSelectors.

Let us explain the script, once the rule object is created we specify the ex-
pression using matchingExpression:, then we specify that we want to match
an expression (and not a complete method as we will explain in Section *Match-
ingMethods*, then we run the rule and ask for its results.

1.12 Refining the scope

Sometimes you do not want to look in the complete system but in a restricted
environment. To do so we use the message scope:

TO BE CHANGED: no more flamel

FlamelRule new
matchingExpression: '`anObject globals at: `anything';
matchExpression;
scope: (RBPackageEnvironment packageName: 'Kernel');
run;
result

Now if we want to restrict the search to a subset of the environment.

1.13 Running your transformation

searchPattern

^ '`selector
| expr source |
expr := RBParser parseExpression: `#input.
configurationSelector := `#configuration.
`@.st1.
self assert: source equals: `#output'

targetPattern

^ '`selector
| source |
configurationSelector := `#configuration.
source := self formatExpression: `#input.
self assert: source equals: `#output'! !

rewrite: aCompiledMethod
"self new rewrite"
| rewriter ok |
rewriter := RBParseTreeRewriter new.
rewriter replaceMethod: self searchPattern with: self

9



Checking and transforming programs with rewrite engine

targetPattern.
ok := rewriter executeTree: aCompiledMethod parseTree.
ok ifFalse: [ ^ 'did not work' ].
Author
useAuthor: 'Refactoring'
during: [

aCompiledMethod origin
compile: rewriter tree formattedCode
classified: aCompiledMethod protocol ]

10



CHA P T E R2
Revisting the DSL

In this chapter we describe the DSL with many examples.

• single node (e.g., `@node)

• multiple nodes (e.g., `.@statements)

2.1 Single variables

• A single backquote ` introduces the most basic meta-variable.

• foo‘ only matches single variable.

Examples:

The following code enables to define a method node in which we want to find
the pattern. An RBParseTreeSearcher enables to define a pattern contain-
ing the meta-variables. The resulting substitutions are gathered into the an-
swer variable:

| methodNode searcher |
methodNode := OpalCompiler new parse: 'test
x bar'.
searcher := RBParseTreeSearcher new.
searcher

matches: '`foo bar'
do: [ :aNode :answer | answer add: aNode ; yourself].

searcher executeTree: methodNode initialAnswer: Set new.
searcher answer.

In the following tables, only the code corresponding to the method node is
changed.

11



Revisting the DSL

foo bar‘matches the following expressions:

12



2.2 Literal variables

Input Result Explanation
x bar { foo=x } x is a variable
self bar { foo=self } self is a RBSelfNode, that is considered as a variable
OrderedCollection bar { foo=OrderedCollection } OrderedCollection is considered as a variable
x toto ; bar { foo=x } x toto; bar is a RBCascadeNode composed of two message nodes x toto and x bar
x bar. y bar { foo=x, foo=y } x and y are variables.
self x bar. y bar { foo=y } y is variable and self x is not a single variable

`foo bar does not match the following expressions:

Input Explanation
bar The pattern must contain one and only variable on which the bar selector is called
3 bar 3 is a literal (not a variable)
#(2 3) bar #(2 3) is a literal array
{2. 3} bar {2. 3} is an array
#at bar #at is a literal
[true] bar [true] is a block
(x:=1) bar (x:=1) is a statement
self x bar self x is a RBMessageNode

2.2 Literal variables

`#litmatches literals, e.g. numbers, string, literal arrays, booleans.

In this part, the following snippet of code is used. The matching expression is
changed to `#lit bar:

| methodNode searcher |
methodNode := OpalCompiler new parse: 'test
3 bar'.
searcher := RBParseTreeSearcher new.
searcher

matches: '`#lit bar'
do: [ :aNode :answer | answer add: aNode ; yourself].

searcher executeTree: methodNode initialAnswer: Set new.
searcher answer.

`#lit barmatches the following expressions:

Input Result Explanation
3 bar { lit=3 } 3 is a number
’foo’ bar { lit='foo' } 'foo' is a string
#at bar {lit=#at} #at is a ByteSymbol
#(a b c) bar { lit=#(a b c)} #(a b c) is a literal array

13



Revisting the DSL

true bar {lit=true} true is a boolean

`#lit bar does not match the following expressions:

Input Explanation
{ 1. 2. 3 } bar {1. 2. 3} is a collection
(1/2) bar (1/2) is a message (and not considered as a number)
(1=1) bar (1=1) is a message (and not considered as a boolean)

2.3 Statements

`.stmtmatches a single statement.

`.stmt barmatches the following expressions:

! Input ! Result
3 { stmt=3 }
x:=1 { stmt=x:=1 }
x ifTrue: [ doSomething] {stmt=x ifTrue: [ doSomething]}
x:=1. ^x { stmt=x:=1, stmt=^x}

2.4 Conditional matching

`{ :node | ''conditionOnNode'' }matches a node satisfying ”condi-
tionOnNode” which is expressed in Pharo. The parsed code being not exe-
cuted, the condition concerns the characteristic of the node but cannot refer
to computed values of this code.

The following snippets of code illustrate the conditional matching:

methodNode := OpalCompiler new parse: 'test
a := 1.
^a'.
searcher := RBParseTreeSearcher new.
searcher
matches: '`{ :node | node name = #a}'
do: [ :aNode :answer | answer add: aNode ; yourself].

searcher executeTree: methodNode initialAnswer: OrderedCollection
new.

searcher answer.

Figure 2-1 shows the inspector on answer. Two nodes match the condition:
the left-hand side of the assignment and the returned variable.

If the condition is changed as following:

methodNode := OpalCompiler new parse: 'test
a := 1.
^a'.
searcher := RBParseTreeSearcher new.

14



2.5 List variables

Figure 2-1 Inspector on answer

searcher
matches: '`{ :node | node value = 1}'
do: [ :aNode :answer | answer add: aNode ; yourself].

searcher executeTree: methodNode initialAnswer: OrderedCollection
new.

searcher answer.

Only one node matches the condition: the right-hand side of the assignment.
Since the code of the parsed method is not executed, nodes corresponding to
a variable are not matched.

The condition can for example be used to only select node of a specific type
(node isInstance enables to select instance variables).

2.5 List variables

`@subtreematches any subtree. This construct can only be used in first po-
sition. For instance, bar @subtree‘ is not a valid pattern.

`@subtree barmatches the following expressions:

Input Result
self bar {subtree=self}
3 bar {subtree=3}
#(2 3) bar {subtree=#(2 3)}
{2. 3} bar {subtree={2. 3}}
#at bar {subtree=#at}
[true] bar {subtree=[true]}

15



Revisting the DSL

(x:=1) bar {subtree=(x:=1)}
self foo bar {subtree=self foo}

`@subtree bar does not match the following expressions:

Input Explanation
bar The empty node is not a subtree

2.6 Recursive search

It is possible to elaborate more complex patterns. For instance self `msg:
`argmatches any one-argument message sent to self:

self as: Array
self instVarAt: 2

2.7 Matching a list of zero or more nodes

`@nodes To match a list of zero or more nodes (like message args or temps).

Examples:

`@receiver foomatches

self foo
self size foo
(self at: 1) foo

self `@msg: `@argsmatches any message sent to self:

self class
self at: 4
self perform: #at: with: 4

2.8 Recursive search

`` supports recursive search. For example, `@receiver parent matchesx
parent parent‘ twice:

• the first time with the mapping: receiver -> x

• the second time eith the mapping: receiver -> x parent

methodNode := OpalCompiler new parse: 'test
x parent parent.'.
searcher := RBParseTreeSearcher new.
searcher
matches: '``receiver parent'
do: [ :aNode :answer | answer add: aNode ; yourself].

16



2.8 Recursive search

searcher executeTree: methodNode initialAnswer: OrderedCollection
new.

searcher answer.

The following table summarizes the use of `, @ and `` with a concrete input:

Pattern Input Result

‘r parent x parent { x }

‘@r parent x parent { x }

“@r parent x parent { x }

“r parent x parent { x }

‘r parent x parent parent { x }

‘@r parent x parent parent { x parent }

“@r parent x parent parent { x, x parent }

‘r parent | x parent parent | Matches with x as r

“r parent x parent parent { x }
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CHA P T E R3
Expressing and executing Rules

-

Before start you should choose if you want to: perform a search do a match

Implement your rules because all of them are abstract, probably you will end
up using the Tree rules because are more automatics and powerfull than to
basics.

When you are defining your rule:

• give a name for it

• define if you will use a method or an expression type pattern (use
matches: or matchesMethod:)

• write your patterns and add them to the rule

• if you are in a search rule to the matcher

• if you are in a transformation rule rewriteRule

• define what to do with a result

• run your rule

An example

We want to match, so let’s create an object that extends: RBParseTreeLin-
tRule:
RBParseTreeLintRule << #SearchGlobalsAtUsage

package: 'Blog-example'

We have to implement the abstract methods:

19



Expressing and executing Rules

SearchGlobalsAtUsage >> name
^ 'Find all potential wrong usage in with globals'

I want to match an expression type because I do not care about the rest of
the method, I want everything that contains the messages: #globals #at:, we
also have to say what to do with the matching node in this example I will
open an inspector:

SearchGlobalsAtUsage >> initialize
super initialize.
self matcher
matches: '``@lotOfStuffBefore globals at: ``@lotOfStuffAfter'
do: [ :theMatch :theOwner | theMatch inspect ].

Now we should run the rule: WARNING: this can take a time because you will
check the whole system.

SearchGlobalsAtUsage new run.

To avoid this you can restrict the environment for your rule, an example:

rule := SearchGlobalsAtUsage new.
environment := RBClassEnvironment class: Result.
RBSmalllintChecker runRule: rule onEnvironment: (environment).

If you have matches then you will see the inspector.
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