
[DRAFT/WIP] The Pharo Virtual

Machine Explained

The Pharo team

July 5, 2024



Copyright 2017 by The Pharo team.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode


Contents

Illustrations iii

1 Preamble 1

2 Object Representation 3

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Object Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Immediate Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Object Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Methods, Bytecode and Primitives 19

3.1 Compiled Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Stack Bytecode and the Sista Bytecode Set Overview . . . . . . . . . . . . . 22

3.3 Primitive Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Bytecode Encoding and Optimizations . . . . . . . . . . . . . . . . . . . . 25

3.5 The Sista Bytecode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Calling conventions 29

4.1 Passing arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Returning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Shared state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 The Spur Memory Manager Overview 33

5.1 Spur features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Memory Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Memory Growing and Segments . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Memory Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5 Spur Generational Garbage Collection . . . . . . . . . . . . . . . . . . . . 36

5.6 The Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.8 The New Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.9 New Space Memory Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.10 The Scavenger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.11 Example of a Scavenger pass . . . . . . . . . . . . . . . . . . . . . . . . . 39

i



Contents

5.12 to be continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.13 The Old Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.14 The Free List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.15 Free cells in memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.16 Free list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.17 Free Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Weak Objects 43

6.1 Strong and Weak references . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Strong and Weak Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 Weak reference collection during scavenging . . . . . . . . . . . . . . . . . 44

6.4 Weak list structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Ephemerons 47

8 JIT Vocabulary 49

9 Looking at Stack Structure 51

9.1 Stack/Context Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9.2 Cog Stack Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10 Adding Static Methods 53

10.1 Bytecode table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

10.2 About method execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

10.3 Study 128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

10.4 A first version of sendStaticLiteralMethod . . . . . . . . . . . . . . . . . . . 55

10.5 Compiling the VM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

10.6 Getting a compiled method . . . . . . . . . . . . . . . . . . . . . . . . . . 56

10.7 Fixing some Pharo logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

10.8 Extending the IRBuilder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

10.9 Study the Translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

10.10 Translator extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10.11 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10.12 The case of recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

10.13 Better sendStaticLiteralMethodBytecode . . . . . . . . . . . . . . . . . . . 62

10.14 Bench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

10.15 Limits and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography 67

ii



Illustrations

2-1 Word size and Alignment on 32 and 64 bits architectures. . . . . . . . . . . 4

2-2 16rFEDCBA987654321 in 64-bits Little and Big-Endian. . . . . . . . . . . . . 6

2-3 Object Layout and Alignment on 32 and 64 bits Architectures. . . . . . . . . 8

2-4 References to heap-allocated objects are pointers to an object’s base header. 9

2-5 64 bits immediate objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2-6 32 bits immediate objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2-7 On 64 bits, SmallInteger are encoded on 61 bits. . . . . . . . . . . . . . . . 12

2-8 64 bits SmallFloat immediate. . . . . . . . . . . . . . . . . . . . . . . . 13

2-9 Base Object Header. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2-10 Extracting the number of data slots in an object . . . . . . . . . . . . . . . 15

3-1 Source code with several literals . . . . . . . . . . . . . . . . . . . . . . . 21

3-2 Pseudo-bytecode performing 2+7 . . . . . . . . . . . . . . . . . . . . . . . 23

3-3 The SmallInteger addition method is a primitive method . . . . . . . . . . . 24

5-1 Memory Map: a new space followed by an old space. . . . . . . . . . . . . 34

5-2 A young object is an object located below the newSpaceLimit . . . . . . . . 35

5-3 The NewSpace structure composed of the eden, and two past and future

regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5-4 The Old Space with two segments. . . . . . . . . . . . . . . . . . . . . . . 40

5-5 Free cells of size 5 in the memory. . . . . . . . . . . . . . . . . . . . . . . 41

5-6 Free list view is a table of linked-lists of free objects. . . . . . . . . . . . . . 42

iii





CHA P T E R 1
Preamble

Most of the design of the Pharo Virtual Machine has been made by E. Miranda
and we are very grateful for this. On this basis, we are working on improving
its design and create new generation virtual machine. This book is the result
of an effort to understand, document, and structure the knowledge of the in-
ternals of the Pharo VM. Our objective is to increase the amount of people
who understand and improve it in the future. This work re-used some previ-
ously existing materials such as blog posts of C. Béra.

Now, it may happen that we wrote something wrong. If you spot something
wrong, please let us know.

Readers may also be interested in other booklets. The booklet on concur-
rent programming in Pharo also describes some VM primitives and provide
some specific information. A booklet on the Pharo compiler is also a work in
progress.

Acknowledgements. This work is supported by Ministry of Higher Education
and Research, Nord-Pas de Calais Regional Council, CPER Nord-Pas de Calais/FEDER
DATA Advanced data science and technologies 2015-2020. The work is sup-
ported by I-Site ERC-Generator Multi project 2018-2022. We gratefully ac-
knowledge the financial support of the Métropole Européenne de Lille. This
work is also supported by the Action Exploratoire Alamvic led by G. Polito
and S. Ducasse.

1





CHA P T E R2
Object Representation

Before delving inside the internals of the VM execution, it is important to
understand the data it manipulates, in our case, Pharo objects. This chapter
presents in-depth how objects are represented in memory. This will allow us
to understand in further chapters how objects are created and mutated, how
dynamic type checks are performed, and the different memory optimizations
employed.

The Pharo VM uses since a couple of years the Spur memory model, designed
and implemented by Eliot Miranda for the OpenSmalltalk VM [2]. This model
greatly improved the Garbage Collector (GC) and the complexity of JIT-compiled
machine code.

2.1 Background

This section sets up some terminology necessary to understand this chapter,
such as word, nibble, or alignment. It is important to set up a common vocabu-
lary because some of these terms are used differently by different technolo-
gies, and the Pharo VM terminology is not an exception.

Data Units: Words and Bytes

Objects are stored in memory, thus it is important to understand the basics
of memory organization. Such an organization depends on the chosen com-
puter architecture, which encompasses the memory and the processor. One
trait that characterizes a computer architecture and strongly influences the
memory organization is its bit width i.e., the number of bits used to repre-
sent the main processing unit in a processor. For example, 64-bit machines
are machines that have a bit width of 64. Since the most common machines

3



Object Representation

nowadays are 64-bit machines, we will focus our presentation on them. How-
ever, the Pharo VM also supports 32-bit machines for compatibility with
smaller devices.

32-bits architecture 64-bits architecture

1 word = 8 bytes

aligned
addresses

0

4

8

12

16

1 word = 4 bytes

8 bits = 1 byte 0

8

16

Figure 2-1 Word size and Alignment on 32 and 64 bits architectures.

Memory is conceptually divided into cells of 1-byte length, each byte using 8
bits. Data is manipulated in units that group many bytes together. A word is
a fixed unit of data with as many bits as the processor bit width. This means
a word is 64 bits long –or 8 bytes long– in 64-bit processors, and 32 bits long
–or 4 bytes long– in 32-bit processors. Figure 2-1 shows the memory layout
on both 32 and 64-bit architectures. The main difference between these two
architectures is their word size.

Each 1-byte memory cell has an address, a unique identifier that can be used
to read and write into that memory cell. Addresses are typically restricted to
fit in a word. Memory addresses form a sequence ranging from 0 to the high-
est integer that can be represented in a word. On 64-bits, for example, the
maximum address is 2^64, thus it can address 2^64 different bytes. Memory
cells are said to be contiguous if their addresses are contiguous. Note that
Figure 2-1 only shows addresses that are multiple of a word, although each 1-
byte cell also has an address. Representing memory addresses as data is what
is commonly referred to as pointers.

Processors usually define also concepts such as half-word and double-word. We
believe that such notations are confusing because they require context (Am I
in a 32-bit architecture? 64-bit?), and thus we will not use them in this book.
Instead, when referring to a sub-word unit, we will use the exact number of
bits. For example, we will use 16-bit integer instead of short or half-word.

Moreover, when useful we will use the term nibble to refer to half a byte, or 4
bits. A byte’s high nibble and low nibble are the most and least representative
halves of a byte respectively. Interestingly, when a byte is written in hexadec-
imal it gets a two-digit representation, where each digit represents the value

4



2.1 Background

of each nibble. For example, the byte 193 is represented as 16rC1 in hexadec-
imal. Its high nibble has a value of 16rC (12 in decimal). The low nibble has a
value of 1.

Alignment

A processor’s ISA (Instruction Set Architecture) generally provides instruc-
tions that read or write data from an address with different granularity. For
example, there are instructions to read/write individual bytes or entire words.
Although ISAs give a lot of freedom to developers, modern architectures and
micro-architectures (how CPUs are implemented internally) behave better
when data-access are consistent and predictable. Particularly, address align-
ment, i.e., its relative position in memory, is a property exploited by micro-
architectures, compilers and programming languages for optimization.

A read/write to an address is said to be aligned when the address is a mul-
tiple of the accessed element size, in bytes. 1-byte reads are always aligned
because all addresses are multiples of 1. 8-byte reads are aligned when the
address is multiple of 8.

We will see later in this chapter how the Pharo VM exploits alignment to im-
plement tagged pointers, and optimize the read of object header meta-data.

Most and Least Significant Bytes and Bits

Wementioned before that memory cells are ordered. Moreover, the individ-
ual bits within a single cell are ordered too.

We say that the most significant bit in a byte is the bit that has most value in a
byte, and conversely for the least significant bit. We can define the most and
least significant bytes in a word in the same way. For example, the bit string
00000101 represents the number 5 in binary, and its least significant bit is
represented by the rightest bit with value 1.

While we usually represent bytes from left-to-right (most-to-least signifi-
cant), this is only the case with some architectures. The order in which indi-
vidual bytes of a word are stored in memory is again a trait of the computer
architecture: the endianness. An architecture is said to be little-endian if
data bytes are stored from the least significant to the most significant, and
big-endian otherwise. Understanding endianness is important when reading
and writing values smaller than a word.

Nowadays, the most popular architectures out there are little-endian. This
means that a 64-bit word with the value 16rFEDCBA987654321 is stored back-
ward. Let’s imagine that the word is stored at address a.

• The lowest address -a- contains the least significant byte -16r21-.

• The highest address -a+7- contains the most significant byte -16r0F-
(see Fig. 2-2).

5



Object Representation

If we wanted to read the bytes in most-to-least significance order, then we
need to iterate it backward: from a+7 to a.

21

43

65

87

A9

CB

ED

0F

...

16r FEDCBA987654321

addresses

a
a+1
a+2
a+3

a+4
a+5
a+6
a+7

a+8

16r FEDCBA987654321

Litte-endian

0F

ED

CB

A9

87

65

43

21

...

Big-endian

Figure 2-2 16rFEDCBA987654321 in 64-bits Little and Big-Endian.

2.2 Object Layout

Pharo programs are made of objects which are, for the most part, allocated in
memory and occupy space. We call these objects heap-allocated because they
reside in a memory region managed by the VM called the heap, that we will
explore in later chapters.

Object Formats

Pharo objects contain slots that store the object’s data. Objects come in differ-
ent kinds, determining the number of slots they contain and how their slot
contents is interpreted. The following table summarizes the most common
types of objects and their variations.

Type/Format # slots Slot type Slot size Variations

Fixed fixed reference word Ephemeron
Variable variable reference word Weak
Byte indexable variable byte 1/2/4/8 bytes -
CompiledMethod variable reference+byte word + 1 byte -

Fixed and variable slots. The number of slots in an object is either fixed,
variable or a combination of both. Fixed slots are those decided statically. For
example, an instance of class Point declaring variables x and y has two fixed
slots. Variable slots are those determined at allocation time. The simplest
example of variable slots are arrays, whose number of slots is specified as

6



2.2 Object Layout

argument of the method new:. Some objects may contain a combination of
fixed and variable slots, as it is the case of the instances of Context.

Slot type. Slots contain either object references or plain data bytes. Object
references are pointers that reference other objects forming a graph, further
explained in 2.6. Plain data is stored as raw bytes in a slot, typically repre-
senting low-level data-types such as integers or floats.

Slot size. The different slots in an object have a size that limits their con-
tents. Reference slots store an address, and thus are a word long. Byte slots
store a sequence of bytes, and thus element size can be 1, 2, 4 or 8 bytes. All
fixed slots in an object are of type reference. All variable slots in an object are
of the same type and are defined by its class. For example, instances of the
class ByteArray have 1-byte slots, and instances of FloatArray have 8-byte
slots containing IEEE-754 double precision floating-point numbers.

Weak and Ephemeron. Weak and Ephemeron object formats are variations
of the types described above, extending them with special semantics for
the memory manager. Weak objects are objects whose variable slots work
as weak references (in contrast with strong references). That is, they don’t
prevent the garbage collection of the referenced object. Ephemeron objects
are fixed objects representing a key-value mapping whose value is refer-
enced strongly as long as the key is referenced by objects other than the
ephemeron. These special objects will be further discussed in the chapters
about memory management.

CompiledMethod. Compiled methods are variable objects that do not follow
the conventions above. They contain a word sized variable part storing object
literals, followed by a 1-byte variable part storing bytecode instructions.

Representing Objects in Memory

Objects in Pharo are represented as a contiguous memory region with space
for a header and data slots. The header contains meta-data used for decoding
the object internals, such as the size, its type and its class. The data slots con-
tain the object slots. Figure 2-3 illustrates the layout of a 3-slot object in both
32 and 64 bits.

Each object has a mandatory base header that contains common information
such as its class, its size and mutable bits for the Garbage Collector. When
objects are more than 254 words long, they are considered large, and their
actual size is stored in an overflow header that precedes the base header. The
base and overflow headers have each a fixed size of 8 bytes (64 bits). Headers
are discussed in-depth in Section 2.4.

Data slots contain the different slots in an object. However, there is not a one-
to-one mapping between an object slots and its underlying data slots. Data
slots are always 1 word long each and their number is chosen to accommo-
date all the slots of the object. Each reference slot occupies one data slot.

7



Object Representation

32-bits architecture 64-bits architecture
aligned

addresses
on 8 bytes

0

4

8

12

16

20

24

28

32

0

8

16

24

32

base header

slot 1

slot 2

slot 3

padding

base header

slot 1

slot 2

slot 3

1 object with :
1 header

+
3 slots

Figure 2-3 Object Layout and Alignment on 32 and 64 bits Architectures.

Byte slots, however, may occupy less than a data slot. For example, in a 64-
bit system, a data slot can accommodate 8 1-byte-long slots, 4 2-byte-long
slots, 2 4-byte-long slots or 1 8-byte-long slots.

A special case arises when byte slots do not entirely fill an object data slots.
For example, a 3-slot byte array occupies 3 bytes in a word-long data slot. In
such a case, the Pharo VM introduces padding i.e., filling space. Such unused
filler is used to guarantee that the next object is aligned to the 8-byte bound-
ary, a property that can be exploited for both performance and the represen-
tation of immediate objects explained in Section 2.3

References and Ordinary Object Pointers

Objects reference each other forming a directed graph. Nodes in the graph
are objects themselves, edges in the graph are usually called object references.
In the Pharo VM, object references are called ordinary object pointers, or oops
for short. There are two kinds of oops: object pointers to other objects and
immediate objects. Pointers work as normal pointers in low-level languages.

8



2.3 Immediate Objects

Immediate objects are objects encoded in invalid object pointers using a tech-
nique called tagged pointers that takes advantage of pointer alignment.

Every object in Pharo has an address in memory, which is the memory ad-
dress of its base header. An object A references an object B with an absolute
pointer to B’s base header stored in one if As reference slots. Figure 2-4 shows
two objects forming a cycle. Each object has a single reference slot pointing
to the other. References point to the object base header.

Header slot 1 Header slot 1...

Figure 2-4 References to heap-allocated objects are pointers to an object’s base

header.

2.3 Immediate Objects

The object representation presented so far imposes a non-negligible over-
head on small objects, because of the space taken by its header. This prob-
lem becomes more visible with types that tend to have a large number of in-
stances. Integers, for example, are in theory infinite and are used very often
by even the simplest programs to drive the execution of loops. Represent-
ing integer objects as heap-allocated objects very fast becomes a bottleneck
in an application. Instead, Pharo uses a common optimization called tagged
pointers to represent integers and other common simple-valued immutable
objects of the like.

Alignment and Padding

Pointer tagging exploits the alignment property of pointers. In the Pharo
VM, all objects are stored in memory aligned to 8 bytes. That is, an object ad-
dress, and thus its header, is stored always at the 8-byte boundary, regardless
of the architecture. Note that since an object header is always 8 bytes long,
this means that the first data slot of an object is also always aligned. Further,
since all data slots are a word long, each subsequent data slot is also aligned
too.

To guarantee that objects always are aligned to the 8-byte boundary, the allo-
cator inserts a padding at the end of an object filling it up to the next 8-byte
boundary. This happens in two cases: byte objects in general and potentially
all objects in 32-bit architectures. Byte objects may contain a number of slots

9



Object Representation

that does not entirely fill a data slot, as shown in Section 2.2, thus requiring
padding to fill a data slot. Moreover, data slots in 32-bit architectures are 4
bytes long, and thus an odd number of data slots requires 4-bytes of padding.
Figure 2-3 shows an example of how an object with 1 header and 3 slots in
laid out both in 32-bits and 64-bits architectures.

• in 64-bit architectures, the object occupies 4 words, for a total of 32
bytes. 1 base header of 8 bytes, 3 slots of 1 word each. The next free
address (32 on the Figure) is aligned and thus an object can start there.

• in 32-bit architectures, the object occupies 5 words, for a total of 20
bytes: 1 base header of 2 words (8 bytes / 4 bytes per word), 3 slots of
1 word each. The next free address (20 on the Figure) is not aligned. In
this case, the allocator inserts a 4 byte padding to align the following
object to the 8-byte boundary.

Padding represents wasted memory and could be avoided in 32-bit archi-
tectures by requiring an alignment to a word. However, enforcing the same
alignment in all architectures allows an overall code simplification by unify-
ing the 64-bit and 32-bits implementations.

Pointer Tagging

Pointer tagging is a technique to represent a set of values without the need
to perform an allocation. Pointer tagging works by encoding (and disguising)
such values within the pointer. Such a technique is possible thanks to object
alignment.

Since all Pharo objects are aligned to 8 bytes, all object references will be
multiple of 8 and have the form xxx...xxx000 in binary, where its 3 lower
bits are zero. Pointer tagging exploits this property by encoding data within
the least significant bits of a pointer. With these three bits, we can encode
up to 7 different tags (111, 110, ... 001) that tell us how to interpret the most
significant bits.

The main advantage of this technique is to save storage space for common
objects, which indirectly improves on data locality and CPU cache behavior.
Its main drawback is the overhead incurred by runtime type checks: we need
to verify if a pointer is tagged or not before operating on data.

Another consideration for tagged pointers is that they significantly reduce
the number of values that can be represented. For example, tagged integers
in the described schema have a maximum precision of 61 bits (+ 3 bits of tag
= 64 bits). In the following sections we explain variable-sized tags and boxed
values. Variable-sized tags help us mitigate this problem in 32-bit architec-
tures, in which the loss is of 10% (3 bits out of 32). Moreover, a combination
of pointer tagging and boxed values allows us to represent larger numbers by
assuming that such larger numbers will be less common.

10



2.3 Immediate Objects

Currently, Pharo supports integers, characters and floating-point numbers as
immediate objects. In 64 bits they use the tags 001, 010 and 100 respectively,
as shown in Figure 2-5. In 32 bits floats are not represented as immediate ob-
jects, integers present a 1-bit tag 1 while characters are represented with the
2-bit tag 10, as shown in Figure 2-6.

0 0 0
pointer to an object in the heap

0 0 1
a SmallInteger instance (61 bits signed int)

0 1 0
a character instance 

  

1 0 0
a SmallFloat instance 

  

Figure 2-5 64 bits immediate objects.

0 0
pointer to an object in the heap

1
a SmallInteger instance (31 bits signed int)

1 0
a character instance 

Figure 2-6 32 bits immediate objects.

Immediate Characters and Integers in 64-bits

In 64 bits, all immediate objects are represented as 61 bits of value and 3 bits
of tag. In Pharo, immediate integers are instances of the class SmallInteger,
and immediate characters are instances of the class Character. SmallInte-
ger immediate objects range is between [-2^60,2^60-1] and are represented
in two’s complement. For example, the binary value 2r1010001 represents
the untagged value 2r1010 which has the decimal value 10.

Immediate characters encode in the 61 value bits the character’s Unicode
codepoint. This is, so far, enough to represent all Unicode codepoints: the
maximum valid codepoint nowadays is 16r10FFFF, which requires only 21
bits.

11



Object Representation

Listing 2-7 On 64 bits, SmallInteger are encoded on 61 bits.

SmallInteger minVal == (2**60) negated
>>> true

SmallInteger maxVal == (2**60-1)
>>> true

32-bit Immediate Integers and Variable Tags

In 32-bit architectures using 3 bits of tag would leave 29 bits left to represent
integers. Instead of choosing this fixed tag representation, the 32-bit VM uses
variable tagging. That is, different values use a different number of bits for
tagging. Thus, tagging is carefully designed to avoid conflicts and ambigui-
ties.

Immediate integers are tagged with a single bit and use the remaining 31 bits
to encode a signed integer in two’s complement. The range of immediate in-
tegers is [-2^30,2^30-1]. For example: 2r10101 represents untagged binary
number 2r1010 which has the decimal value 10.

Figure 2-6 illustrates the entire 32-bit tagging schema, with tag bits grayed
out:

• 00 is an aligned address and therefore an object pointer in the heap.

• *1 tag immediate integers.

• 10 tag immediate characters.

64-bit Immediate Floats

In 64-bit architectures, the Pharo VM represents floats as immediate objects
with the tag 100. The tagged value is an IEEE-754 64-bit double-precision
floating-point number accommodated in 61 bits. However, to accommodate
the 64 bits into 61 bits, immediate floats give up 3 bits in the exponent offset,
storing only 8 out of 11 bits of exponent. The VM verifies that only immedi-
ate floats that do not lose information in this format are encoded as immedi-
ates. For floats that do not satisfy this constraint, floats use a boxed represen-
tation as explained in Section 2.3.

Figure 2-8 shows the structure of a SmallFloat. The sign bit is moved to the
lowest bit of the tagged value, and the highest 3 bits of the exponent are lost.

Boxed Native Objects

Numbers that cannot be encoded as immediates need to either gracefully fail
or implement a fallback mechanism. After arithmetics, if a number does not
fit in the 61 bits of a tagged pointer the runtime creates a boxed object with

12



2.4 Object Header

s 1 0 0

a SmallFloat instance 

e e e e e e e e   

52 bits mantissa

sign bit
immediate float tag

8 bits exponent

Figure 2-8 64 bits SmallFloat immediate.

the result. Boxed numbers are byte objects that contain the native number
encoded in their byte slots.

Boxed numbers in Pharo include large integers (instances of LargePosi-
tiveInteger and LargeNegativeInteger) and boxed floats (instances of
BoxedFloat64). Large integers implement variable-sized integers and repre-
sent arbitrary large integers as a string of bytes. Boxed floats are instead of
fixed size: they represent IEEE-754 double-precision floating-point numbers,
and store 8 bytes the corresponding float.

2.4 Object Header

Each heap-allocated object has a header that describes it. The header is made
of a mandatory base header, and in the case of large objects, an overflow
header that includes the object size. This section explains the overall design
of the object header and each of its fields in detail.

Base Object Header

The base object header contains meta-data that the Virtual Machine uses for
several purposes such as decoding an object contents, maintaining garbage
collection state, or even doing runtime type checks. Regardless of the archi-
tecture, the base header is 64 bits length, which means it is 2 words in 32 bits
and 1 word in 64 bits as shown in Figure 2-9.

s s s s s s s s X X h h h h h h h h h h h h h h h h h h h h h h
X X X o o o o o X X c c c c c c c c c c c c c c c c c c c c c c

s Xo object format free bitfield number c class index h object hash

Figure 2-9 Base Object Header.

This header is composed of several fields, marked with different colors in the
figure. From the most significant to the least significant bits, the fields are as
follows:

13



Object Representation

• Object size (s). This field contains the number of data slots in the ob-
ject, padding included. For example, the object size of a byte array of 14
byte slots is 2 data slots. Padding is computed from the object format
field below. Objects with more than 254 slots are considered large, are
given 255 as object size and an overflow header as explained in Section
2.4.

• Object hash (h). This field contains 22 bits representing the identity
hash of the object.

• Object format. (o) This field contains an enumerated value that identi-
fies the format of the object as described previously in Section 2.2. The
exact values of this field are explained in Section 2.4.

• Class index (c). This field contains the index at which the object’s class
is found in the class table.

• Miscellaneous (x). The remaining 7 bits illustrated with a green X are
reserved for different reasons:

– 1 bit is reserved for immutability.

– 1 bit is reserved to mark the object as pinned. Basically, a pinned
object is an object that cannot be moved in memory by the GC.

– 3 bits are reserved for the GC: isGray (for tri-color marking), is-
Remembered (for the remembered table from old space to young
space) and isMarked (for the GC mark phasis).

– 2 bits are free.

Notice that the fields of the header are not all contiguous: miscellaneous bits
are interleaved in between them. The header has been designed so commonly-
accessed fields are aligned to a byte or 2-byte boundary. This design largely
simplifies the decoding of the header, which boils down to a load and a bit-
and instruction sequence. This simplifies the JIT compiler and generates
better-quality machine code.

Large Objects and the Overflow Header

The object size field is 8 bits long and cannot store values larger than 255. It
is, however, desirable to have large arrays or strings with thousands of ele-
ments. For this purpose, large objects contain an extra header, namely the
overflow header, preceding the base header i.e., it is placed contiguous to the
base header but in a lower address. The address of an object is always the one
of its base header regardless if it has an extra header or not. The overflow
header is 8 bytes long and contains the object size. It allows for very large ob-
jects with sizes of up to 2^64 words, which is largely sufficient. When an ob-
ject has an overflow header, the object size field in the base header is marked
with the value 255. Listing 2-10 pseudo-code shows how to obtain the number
of data slots of an object.

14



2.4 Object Header

Listing 2-10 Extracting the number of data slots in an object

numSlotsOf: objOop
numSlots := self baseNumSlotsOf: objOop.
^numSlots = 255
ifTrue: [ self readOverflowHeaderOf: objOop]
ifFalse: [ numSlots ]

Class References and Class Table

Each object includes a reference to its class in its header. However, for space
reason, an object does not store the absolute address. An arbitrary address
requires an entire word, which would add a non-negligible memory over-
head. Instead, classes are stored in a table, and objects store the index of the
class in the class table. The only exception to this is immediate objects that
do not contain a header: the object tag is used as its class index.

Since programs are expected to have a low number of classes, class indexes
are limited to 22 bits. 22 bits of class index support a maximum of 4 million of
classes, which will be largely sufficient for most applications for a long time.

The class table is organized into 4096 pages of 1024 elements. The 12 most
significant bits in the class index indicate the page index. The 10 least signifi-
cant bits in the class index indicate the index of the class within the page.

Each class stores its own index as its hash. This allows the VM to get the in-
dex of a class without iterating the entire class table, and to guarantee a
unique identity hash per class.

Encoding of the Object Format Field

The object format field contains 5 bits that are used to identify the object’s
format explained in Section 2.2. An object’s format is encoded as a 5-bit inte-
ger:

• 0: 0 sized object e.g., nil, true, false

• 1: fixed size object e.g., Point

• 2: variable-sized object with no instance variables e.g., Array

• 3: variable-sized object with instance variables e.g., Context

• 4: weak variable sized object with instance variables e.g., WeakArray

• 5: ephemeron object

• 7: forwarder object

• 9 : 64 bits indexable

• 10 - 11: 32 bits indexable

• 12 - 15: 16 bits indexable

15



Object Representation

• 16 - 23: 8 bits indexable

• 24 - 31: compiled methods

• 6 and 8 : unused

From the list above notice that zero-sized objects, instances of classes that
define no instance variables, have their own format identifier. Variable ob-
jects with instance variables are marked separately from those without in-
stance variables.

Special attention needs to be given to byte objects, where format 9 identifies
byte objects with 64-bit slots, formats 10 and 11 identify byte objects with 32-
bit slots, and so on. All byte objects having slots smaller than a word encode
their padding in the format: the first format in each category (10, 12, 16, 24)
is used for objects that require no padding. Subtracting the format to the
base format returns the number of padding bytes. For example, a byte array
with format 21 has 21-16 = 5 bytes of padding.

The object format and its padding are necessary to compute the number of
actual slots in the object. For example, given a byte array with format 21 and
slot size 10, we can compute its size as 10 data slots * 8 bytes - 5 padding bytes
= 75 bytes.

CompiledMethods are similar to byte arrays in terms of padding. However,
they use a different format so the runtime can differentiate them from nor-
mal byte arrays.

2.5 Conclusion

In this chapter, we explored how Pharo objects are represented in memory
using the Spur memory model supporting both 32 and 64 bits. From a user
perspective, objects have a set of fixed and variable slots. Slots contain refer-
ences to objects or plain byte data.

Under the hood, most objects are allocated in the heap and possess a header
with meta-data. Object slots are stored in word-large data slots, and padding
is inserted so that all objects are aligned to the 8-byte boundary. We exploit
object alignment to implement integers, floats, and characters as tagged
pointers. Tagged pointers use the least significant bits of a pointer to encode
a type, and the most significant bits to encode a value. Thus, tagged pointers
help us represent objects without the overhead of a memory header.

2.6 References

• Spur http://www.mirandabanda.org/cogblog/2013/09/05/a-spur-gear-for-cog/

• https://clementbera.wordpress.com/category/spur/

16

http://www.mirandabanda.org/cogblog/2013/09/05/a-spur-gear-for-cog/
https://clementbera.wordpress.com/category/spur/


2.6 References

• https://clementbera.wordpress.com/2018/11/09/64-bits-immediate-floats/

• https://clementbera.wordpress.com/2014/01/16/spurs-new-object-format/

• https://clementbera.wordpress.com/2014/02/06/7-points-summary-of-the-spur-memory-manager/

• http://www.mirandabanda.org/cogblog/category/spur/page/3/

17

https://clementbera.wordpress.com/2018/11/09/64-bits-immediate-floats/
https://clementbera.wordpress.com/2014/01/16/spurs-new-object-format/
https://clementbera.wordpress.com/2014/02/06/7-points-summary-of-the-spur-memory-manager/
http://www.mirandabanda.org/cogblog/category/spur/page/3/




CHA P T E R3
Methods, Bytecode and

Primitives

This chapter explains the basics of Pharo execution: methods and how they
are internally represented. Methods execute one after the other, and call each
other by means of message send operations. Methods execute under the hood
using a stack machine. A stack holds the current calls and their values. Byte-
code instructions and primitives manipulate this stack with push and pop
operations.

In this chapter we explain in detail how methods are modelled using the sista
bytecode set[?]. We explain how bytecode and primitive instructions are ex-
ecuted using a conceptual stack. The bytecode interpreter and the call stack
are introduced in a following chapter.

3.1 Compiled Methods

Pharo users write methods in Pharo syntax. However, Pharo source code is
just text and is not executable. Before executing those methods, a bytecode
compiler processes the source code and translates it to an executable form
by performing a sequence of transformations until it generates a Compiled-
Method instance. A parsing step translates the source code into a tree data
structure called an abstract syntax tree, a name resolution step attaches se-
mantic to identifiers, a lowering step creates a control flow graph representa-
tion, and finally a code generation step produces the CompiledMethod object
containing the code and meta-data required for execution.

19



Methods, Bytecode and Primitives

Intermezzo: Variables in Pharo

To understand how Pharo code works, it is useful to do a quick reminder on
how do variables work. In this chapter we will deal with the low-level repre-
sentation of variables (how read/writes are implemented). For a more com-
plete overview on variables and their usage, please refer yourselves to Pharo
by Example[1].

Pharo supports three main kind of variables. Each kind of variable is stored
differently in memory and has different lifetime and behavior i.e., they are
allocated and deallocated at different moments in time.

Temporary variables and parameters: A method has a list of formal pa-
rameters and a list of manually declared temporary variables. Temporary
variables and parameters are only accessible within the method that defines
them and live during the entire method’s execution. In other words, they are
allocated when a method execution starts and deallocated when a method
returns. Each method invocation has its own set of temporary variables and
parameters, property allowing recursion and concurrency (understanding
why is left as an exercise for the reader).

Temporary variables and parameters have each a unique 0-based index per
method. Moreover, they share the same index namespace, meaning that no
two temporaries or parameters can have the same index. For example, as-
suming a method with N parameters and M temporary variables, its param-
eters are indexed from 0 to N, and its temporary variables are indexed from
N+1 to N+M.

Instance variables: Instance variables are variables declared in a class, and
allocated on each of its instances. That is, each instance has its own set (or
copy) of the instance variables declared in its class, and can directly access
only its own instance variables. Instance variables live as long as its contain-
ing object. Instance variables are allocated as part of an object slots, occu-
pying a reference slot, and are deallocated as soon as an object is garbage
collected.

Instance variables have also a unique 0-base index per ascending hierarchy,
because an instance contains all the instance variables declared in its class
and all its superclasses. For example, given the class Class declaring N in-
stance variables and having a superclass Super declaring M instance variables,
the variables declared in Super have indexes from 0 to M, the variables de-
clared in Class have indexes from M+1 to M+N.

Literal variables: Literal variables are variables declared either as Class Vari-
ables, Shared Variables or Global Variables. These variables have a larger visi-
bility than the two other kind of variables. Class variables are visible by all
classes and instances of a hierarchy. Shared variables work like class variables
but can be imported in different hierarchies. Global variables are globally vis-
ible. Literal variables live as long as the program, or a developer decides to
explicitly undeclare them.

20



3.1 Compiled Methods

Listing 3-1 Source code with several literals

MyClass >> exampleMethod
self someComputation > 1
ifTrue: [ ^ #() ]
ifFalse: [ self error: 'Unexpected!' ]

Literal variables do not have an index: they are represented as an association
(a key-value object) and stored in dictionaries. Methods using literal vari-
ables store the corresponding associations in their literal frame, as we will
see next.

Literals and the Literal Frame

Pharo code includes all sort of literal values that need to be known and ac-
cessed at runtime. For example, the code below shows a method using inte-
gers, arrays and strings.

In Pharo, literal values are stored each in different a reference slot in a method.
The collection of reference slots in a method is called the literal frame. Re-
member from the object representation chapter, that CompiledMethod in-
stances are variable objects that contain a variable reference part and a vari-
able byte indexable part.

Commonly, the literal frame contains references to numbers, characters,
strings, arrays and symbols used in a method. In addition, when referenc-
ing globals (and thus classes), class variables and shared variables, the lit-
eral frame references their corresponding associations. Finally, the literal
frame references also runtime meta-data such as flags or message selectors
required to perform message-sends.

It is worth noticing that the literal frame poses no actual limitation to what
type of object it references. Such capability is exploited in rare cases when a
method’s behavior cannot be expressed in Pharo syntax. This is for eample
the case of foreign function interface methods that are compiled by a sepa-
rate compiler and stores foreign function meta-data as literals.

Method Header

All methods contain at least one literal named the method header, referencing
an immediate integer representing a mask of flags.

• Encoder: a bit indicating if the method uses the default bytecode set or
not.

• Primitive: a bit indicating if the method has a primitive operation or
not.

• Number of parameters: 4 bits representing the number of parameters
of the method.

21



Methods, Bytecode and Primitives

• Number of temporaries: 6 bits representing the number of temporary
variables declared in the method.

• Number of literals: 15 bits representing the number of literals con-
tained in the method.

• Frame size: 1 bit representing if the method will require small or large
frame sizes.

The encoder and primitive flags will be covered later in this chapter. The
frame size will be explored in the context reification chapter.

Method Trailer

Following the method literals, a CompiledMethod instance contains a byte-
indexable variable part, containing bytecode instructions. However, it is
of common usage in Pharo to make this byte-indexable part slightly larger
to contain trailing meta-data after a method’s bytecode. Such meta-data is
called themethod trailer.

The method trailer can be arbitrarily long, encoding binary data such as in-
tegers or encoded text. Pharo usually uses the trailer to encode the offset of
the method source code in a file. It has, however, also been used to encode a
method source code in utf8 encoding, or zipped.

3.2 Stack Bytecode and the Sista Bytecode Set Overview

Pharo encodes bytecode instructions using the Sista bytecode set[?]. The
Sista bytecode set defines a set of stack instructions with instructions that
are one, two or three bytes long. Instructions fall into five main categories:
pushes, stores, sends, returns, and jumps.

This section gives a general description of each bytecode category. Later we
present the different optimizations, the bytecode extensions and the detailed
bytecode set.

A Stack Machine

Pharo bytecode works by manipulating a stack, as opposed to registers. Typi-
cally, an operation accesss its operands from the stack, operates on them, and
places the result back on the stack. We will call this stack the value stack or
operand stack, to differentiate it from the call stack that will be studied in a
later chapter.

For example, the following code shows the tree stack instructions required
to evaluate the expression 2+7. First, two push instructions push the val-
ues 2 and 7 to the stack. Second, the + instruction pops the two top values
in the stack, operates on them producing the number 9, and finally pushes
that value to the stack.

22



3.2 Stack Bytecode and the Sista Bytecode Set Overview

Listing 3-2 Pseudo-bytecode performing 2+7

push 2
push 7
+

Push Instructions

Push instructions are a family of instructions that read a value and add it to
the top of the value stack. Different push instructions are:

• push the current method receiver (self)

• push an instance variable of the receiver

• push a temporary/parameter

• push a literal

• push the value of a literal variable

• push the top of the stack, duplicating the stack top

Store Instructions

Store instructions are a family of instructions that write the value on the top
of the stack to a variable. Different store instructions are:

• store into an instance variables of the receiver

• store into a temporary variable

• store into a literal variable

Control Flow Instructions – Send and Return

Send instructions are a family of instructions that perform a message send,
activating a new method on the call stack. Send instructions are annotated
with the selector and number of arguments, and will conceptually work as
follow:

• pop receiver and arguments from the value stack

• lookup the method to execute using the receiver and message selector

• execute the looked-up method

• push the result to the top of the stack

Conversely to send instructions, return instructions are a family of instruc-
tions that return control to the caller method, providing the return value to
be pushed to the caller’s value stack.

23



Methods, Bytecode and Primitives

Listing 3-3 The SmallInteger addition method is a primitive method

SmallInteger >> + addend
<primitive: 1>
^super + addend

Control Flow Instructions – Jumps

Control flow instructions are a family of instructions that change the sequen-
tial order in which instructions naturally execute. Different jump instruc-
tions are:

• conditional jumps pop the top of the value stack and transfer the con-
trol flow to the target instruction if the value is either true or false

• unconditional jumps transfer the control flow to the target instruction
regardless of the values on the value stack

3.3 Primitive Methods

Some operations such as integer arithmetics or bitwise manipulation cannot
be expressed by means of message sends and methods. Pharo express such
operations through primitives: low-level functions implementing essential or
optimized operations.

Primitives are exposed to Pharo through primitivemethods. A primitive method
is a bytecode method that has a reference to a primitive function. For exam-
ple, the method SmallInteger>>#+ defining the addition of immediate inte-
gers is marked to as primitive number 1.

Primitives are implemented as stack operations having only access to the
value stack. When a primitive function is executed, the value stack contains
the method arguments.

A key difference between primitive functions and bytecode instructions is
that primitives can fail. When a primitive method is executed, it executes
first the primitive function. If the primitive function succeeds, the primitive
method returns the result of the primitive function. If the primitive funciton
fails, the primitive method executes falls back to the method’s bytecode. For
example, in the case above, if the primitive 1 fails, the statement ^ super +
addend will get executed.

Design Note: fast vs slow paths. The failure mechanism of primitives is gen-
erally used to separate fast paths from slow paths. For example, integer ad-
dition has a very compact and fast implementation if we assume that both
operands are immediate integers. However, Pharo by design needs to support
the arithmetics between different types such as immediate integers, boxed
large integers, floats, fractions, scaled decimals. In this scenario, a primi-
tive is used to cover the fast and common case: adding up two immediate

24



3.4 Bytecode Encoding and Optimizations

integers. The primitive performs a runtime type check: it verifies that both
operands are immediate integers. If the check succeeds, the primitive per-
forms its operation and returns without executing the fallback bytecode. This
first execution path is the fast path. If the check fails, the primitive fails and
the method’s fallback bytecode implements the slower type conversion for
the other type combinations.

3.4 Bytecode Encoding and Optimizations

The instructions of a method are encoded as bytes, that need to be decoded
to either interpret them, JIT compile them or decompile them. Each instruc-
tion is made of an opcode, or operation identifier, followed by zero or more
arguments. For example, the instruction push instance variable 42 is
encoded with bytes #[226 42], where 226 is the opcode identifying the push
instance variable, and the second byte (42) is the index of the instance
variable to read.

Variable-length Bytecode Encoding

Pharo encodes bytecode instructions using a variable-length encoding: in-
structions are encoded using one, two or three bytes. The encoding is de-
signed for compactness and ease of interpretation. Commonly used instruc-
tions are encoded with less bytes, rarely used instructions use more bytes.

The variable-length bytecode design has two consequences:

1. Compact representation of bytecode methods. Using shorter byte-
code sequences for common instructions works as a compression mech-
anism. This allows the virtual machine to fetch less bytes during inter-
pretation, and to use less space to encode methods.

2. Ambiguity during decoding. Bytecode in a method needs to be de-
coded for reasons such as debugging or decompilation. However, de-
coding cannot start from any arbitrary point in a variable-length en-
coding. Consider a two-byte bytecode. If we start decoding bytecode in-
structions from the second byte, the decoder will interpret this byte as
the first byte of an instruction. In the best case, the decoder will even-
tually fail. In the worst case, the decoder succeeds and returns a wrong
decoding.

In the following section we will go into how such optimizations take place
concretely in the Pharo’s bytecode set.

Optimising for Common Bytecode Instructions

As we said before, the variable-length bytecode encoding allows for shorter
bytecode sequences for common instructions. For example, we can take the

25



Methods, Bytecode and Primitives

most common bytecode from the Pharo12 release (build 1521) using the script
that follows. The script takes all the compiled code (methods and blocks), de-
codes all their instructions and groups them by their bytes.

((CompiledCode allSubInstances flatCollect: [ :e | e
symbolicBytecodes ])

groupedBy: [ :symBytecode | symBytecode bytes ])
associations

sorted: [ :a :b | a value size > b value size ]

From that list, the 5 most common bytecode are:

Instruction Count

Pop 209537
Push self 201567
Push first temp/arg 163965
Send message in 1st literal 77767
Method return 77090

We see in this list that the first three are largely more numerous than the
two last. This tendency continues in the entire list of bytecode following an
exponential decay. The first fifty instructions happen tenths of thousands of
times, while the vast majority appear less than a thousand.

This observation is enough motivation to optimize such *very common*
cases. Indeed, amongst the 255 most common instructions, 183 are already
encoded as a 1 byte instruction.

Encoding of Single-byte instructions

Instructions such as pop or push self are single instructions that do not
need any parameter. The encoding of these instructions is straight forward:
they are given a single byte. For example, pop is encoded as 216, while push
self is encoded as 76.

There are however other common instructions that have parameters. This is
the case, for example, of the push instance variable bytecode that is pa-
rameterized with the index of the reference slot in the receiver (the instance
variable) to push. To encode this instruction as a single byte, the index is en-
coded within the instruction. That is, the bytecode push instance vari-
able at 1 is encoded as 0, the bytecode push instance variable at 2 is
encoded as 1.

Single-byte parametrized bytecode instructions are organized in ranges, of-
ten of a size that is a power of 2. For example, 1-byte push instance vari-
able instruction is organized in a range of 16 instructions (2^4). 1-byte push
instance variable instructions are encoded with bytes from 0 to 15, pa-
rameterized with indexes from 1 to 16 respectively.

26



3.4 Bytecode Encoding and Optimizations

An alternative way of seeing this encoding is to see that an instruction op-
code is not the byte on itself but the most significant bits of the byte. If we
consider again the range of bytecodes push instance variable, the most
significant nibble remains always zero regardless of the bytecode, while the
lowest part always changes following the index to push.

"The most significant nibble is always 0 for this range of bytecode"
0 to: 15 do: [ :e | self assert: ((e >> 4) bitAnd: 16rF) = 0 ].
"The least significant nibble is always the index to push"
0 to: 15 do: [ :e | self assert: (e bitAnd: 16rF) = e ]

Optimising for Common Bytecode Sequences

Besides common instructions, another useful observation is that many in-
structions are usually combined together. Consider for example the state-
ment ^ self, which is commonly used to perform an early exit from a method,
and inserted at the end of every method that does not have an explicit return.
A naïve translation of ^self could use the following sequence of instructions.

push self
return top

Using two instructions requires – at least – two bytes, and forces the inter-
preter to pay twice the cost of instruction fetch/decode. Pharo optimizes
such common sequences using a single (often also single-byte) instruction to
do the entire operation, often called (static) super instructions in the litera-
ture [3].

Optimising for Common Messages and Literals

Another source of overhead happens on the over-reliance on literals. In Pharo,
each method has its own literal frame: literals and constants are not shared
between methods, causing a potential redundancy and memory inefficiency.

One way to minimize such overhead is to design special instructions for well-
known constants. Constants such as nil, true, false need to be known by
the VM for several tasks such as initializing instance variables, or interpret
conditional jumps. The VM benefits from this knowledge to provide special-
ized instructions such as push true that do not fetch the true object from
the method literal frame but from the pool of constants known from the VM.

In the same venue, immediate objects can be crafted by the VM on the fly,
avoiding the storage in the literal frame. Instructions such as push 0, en-
coded as 80, represent the usage of constants that appear often, for example,
in loops. When executing those instructions, the VM create an immediate
object by tagging a well-known value.

Finally, another variation of this optimization happens on common message
sends *e.g.,* arithmetic and comparisons selectors. These selectors happen

27



Methods, Bytecode and Primitives

so often, that instead of storing the selector in the method’s literal frame,
they are stored in a global table of selectors called special selectors. The
Pharo bytecode set defines send special selector instructions.

3.5 The Sista Bytecode

Bytecode Extensions

Some of the bytecodes take extensions. An extension is one or two bytes fol-
lowing the bytecode that further specify the instruction. An extension is not
an instruction on its own, it is only a part of an instruction.

28



CHA P T E R4
Calling conventions

A calling convention dictates how two procedures communicate. This has two
main aspects:

• first, how arguments are passed between caller and callee (by refer-
ence, by copy...), how the procedure returns

• second, how limited resources such as registers are maintained.

The principle is that procedures are black boxes. A procedure does not know
the shape of its caller, nor the shape of its callee. The caller may be optimized
differently, use a different/unconventional set of registers. This means that a
procedure must be written to be called from anywhere and to call procedures
that can do anything.

4.1 Passing arguments

The calling convention dictates how arguments are passed, and where they
are stored. This way, the convention decouples procedures from their imple-
mentations. For example, the Smalltalk-80 calling convention dictates that
upon a message send, the receiver and all arguments are pushed to the stack.
Then the method executed, which knows it has N arguments by construction,
can access the receiver (self) by skipping the N top elements of the stack.

4.2 Returning

Low-level architectures store the current program counter in a special CPU
register. The program counter register is unique, and can only hold a sin-
gle instruction pointer, which for efficiency reasons is made the program

29



Calling conventions

counter of the Low-level architectures store the current program counter in a spe-
cial CPU register. The program counter register is unique, and can only hold a single
instruction pointer, which for efficiency reasons is made the program counter of the
currentlyLow-level architectures store the current program counter in a special CPU
register. The program counter register is unique, and can only hold a single instruc-
tion pointer, which for efficiency reasons is made the program counter of the __cur-
rently executing procedure. This means that the program counters of all the
procedures active on the call stack must be stored somewhere, and restored
when control returns to those procedures.

A calling convention dictates how the current program counter is stored
when a procedure is called, how the control is passed to the called procedure,
and how the program counter is restored when the procedure returns. There
are two main families of solutions for this aspect in low-level ISAs (Instruc-
tion set architectures).

• In CISC (complex instruction set architectures) machines, the In CISC
(complex instruction set architectures) machines, the call procedureIn CISC
(complex instruction set architectures) machines, the __call procedure instruc-
tion will push the current program counter to the stack and transfer
the control to the procedure. The return instruction will do the in-
verse. In pseudocode:

call procedure
=>
push IP
IP := procedure

return
=>
IP := pop

• In RISC (reduced instruction set architectures) machines, the In RISC
(reduced instruction set architectures) machines, the call procedureIn RISC
(reduced instruction set architectures) machines, the __call procedure in-
struction will copy the current program counter to the link register
and transfer the control to the procedure. The return instruction will
do the inverse. This register must be saved by the callee explicitly if
needed.

call procedure
=>
LR := IP
IP := procedure

return
=>
IP := LR

30



4.3 Shared state

4.3 Shared state

When procedure A calls procedure B, A does not know what potential effects
B will produce. In general, the problem lies in the usage of registers and the
call stack. If procedure A was using registers R0 and R1, it cannot know if pro-
cedure B will read from those registers or write on them. Thus, procedure A
should make sure that its state before the call is preserved after the call re-
turns.

Keeping registers

Calling conventions dictate how such preserving must be done. In general,
registers are split into two sets: Calling conventions dictate how such preserving
must be done. In general, registers are split into two sets: caller savedCalling conven-
tions dictate how such preserving must be done. In general, registers are split into two
sets: __caller saved registers, and Calling conventions dictate how such preserving
must be done. In general, registers are split into two sets: __caller saved__ registers,
and callee savedCalling conventions dictate how such preserving must be done. In
general, registers are split into two sets: __caller saved__ registers, and __callee saved
registers.

• A A caller-savedA __caller-saved register is a register that the caller must
preserve before the call and restore after the call.

• A A callee savedA __callee saved register is a register that the callee must
preserve when it’s called and restore before it returns.

Preserving and restoring a register is usually done by saving the values in
predictable memory positions, usually on a stack.

Keeping the call stack

The same problem arises with the call stack. A procedure calling another pro-
cedure must not only assume that the registers it was using were not modi-
fied, but also it must assume that the stack was preserved. This is particularly
important when calling high-order functions, closures, or polymorphic pro-
cedures. Otherwise, if each procedure leaves the registers and the stack in
different states, the caller will not be able to continue correctly.

31





CHA P T E R5
The Spur Memory Manager

Overview

The Pharo virtual machine implements an object memory manager named
Spur. An object memory manager is a memory manager whose allocation
units are objects. In contrast to the operating system memory manager that
manipulates raw memory, the Spur memory manager manipulates only ob-
jects. For example, the lowest-level allocation operation is to allocate an ob-
ject specifying the desired number of slots, format and class index. We saw
in the previous chapters the object format, and what these three arguments
mean.

memoryManager
allocateSlots: numberOfSlots
format: instanceSpecification
classIndex: classIndex

The virtual machine tracks the life-cycle of all objects it allocates. The mem-
ory manager implements an automatic garbage collection mechanism. It de-
tects when an object has no more incoming references, and deallocates it.
The garbage collector of Spur is precise and generational. It is precise be-
cause it distinguishes non-ambiguously object pointers from randommem-
ory adresses. It is generational because it categorizes objects by age, treating
them differently depending on their age.

In this chapter we do an overview of the Spur memory manager, and the con-
cepts behind it. We will study how the memory is organized, how object gen-
erations impacts this organization, and how objects grow old in this genera-
tional setup.

33



The Spur Memory Manager Overview

5.1 Spur features

The Spur memory model supports the following features:

- Support both 32 and 64 bits. - Performance improvement. Several decisions
led to a much faster system (new GC, large hash, immediate characters). -
Variable sized and segmented memory. The memory allocated in the oper-
ating system by the virtual machine can grow and shrink according to the
image size. Pharo images as large as several Gb are possible. - Incremental
and efficient garbage collector. As we describe in the following chapters, the
GC is now. - Fast become: the model introduces forwarders are special objects
that avoid to walk the complete heap to swap references. - Ephemerons: the
model introduces advanced weak structures called Ephemeron. An Ephemeron
is an object which refers strongly to its contents as long as the Ephemeron’s
key is not garbage collected, and weakly from then on. - Pinned objects. Pinned
objects will not be moved by the garbage collector. This is an important point
for Foreign Function Interface - as you can read in the corresponding book.

5.2 Memory Structure Overview

The Spur memory manager layouts its memory in two main sections: the new
space and the old space. The new space contains objects considered young
i.e., objects that have been recently created. The old space contains objets
that did survive in the new space for some time, and were promoted as adults
in the old space.

At startup, the memory manager requests the operating system a chunk of
raw memory to store the new space and the old space. The memory manager
uses the first part of this memory as the new space, and the rest as old space.
Figure 5-1 depicts how the two spaces are laid-out in memory, considering
that lower addresses are at the left, and higher addresses are at the right.

Space for old objects.

Big and unfrequently collected.

Space for newly created objects.

Small and frequently collected.

Old SpaceNew Space
newSpaceStart newSpaceLimit

Addresses grow to the right

Figure 5-1 Memory Map: a new space followed by an old space.

Addresses in the new space are lower than those in the old space. This way,
the VM easily determines if an object is old or young by comparing its ad-

34



5.3 Memory Growing and Segments

Listing 5-2 A young object is an object located below the newSpaceLimit

memoryManager newSpaceStart.
memoryManager newSpaceLimit.

SpurMemoryManager >> isYoung: oop
<api>
"Answer if oop is young."
^(self isNonImmediate: oop)
and: [self oop: oop isLessThan: newSpaceLimit]

dress against the limit of the new space. The memory manager stores the
limits of the new space as newSpaceStart and newSpaceLimit. It defines
that an object is young if its address is less than the new space limit.

5.3 Memory Growing and Segments

The new space remains fixed once initialized i.e., it does not grow after its
allocation. On the contrary, the old space is organized in one or more mem-
ory segments, and it can grow dynamically by adding new segments to it. The
new space and first segment of the old space are allocated in single contigu-
ous chunk of memory as we have seen above. Newly added segments do not
require to be contiguous, but they need to be at higher addresses than the
first segment.

When a new segment is added, a bridge is added to the end of its previous
segment. A bridge is a fake object that fills the gap between the two seg-
ments. Bridge objects have the format of a byte array simulating a size equals
to the gap between the two segments. They give the Spur memory manager
and its garbage collector the illusion of an old space made of a single contigu-
ous chunk of memory. Bridge objects are not visible from the program and do
not move during garbage collection.

5.4 Memory Initialization

When the virtual machine starts, it requires memory from the operating sys-
tem to store both the new space and the first segment of the old space. The
size of the new space is computed from a parameter stored in the image file
header. The image file, storing all objects in previous sessions, is loaded into
the first segment of the old space. The size of this first segment is computed
as the addition of the image size and a free space headroom to fit objects
coming from the new space.

35



The Spur Memory Manager Overview

5.5 Spur Generational Garbage Collection

Spur implements a generational automatic garbage collector based on an
heuristic named the generational hypothesis. The generational hypothesis
states that most objects die young, specially true in highly-interactive appli-
cations, so young objects are stored separately than old objects. This is why
the Pharo VM uses two different garbage collector algorithms: one for new
objects implementing a generation scavenger, and one for old objects imple-
menting a mark and compact.

The memory manager allocates by default objects in the new space. When
the new space has little space left, it is garbage collected using a copy col-
lection algorithm named generation scavenger, that we will explore in detail
in a following chapter. The new space is much smaller than the old space, so
garbage collecting it is fast, producing unnoticeable application pauses. If the
generational hypothesis holds, unused young objects are reclaimed shortly
after their instantiation and never moved to the old space.

Objects that are not reclaimed during a garbage collection are called sur-
vivors. As objects survive several new space garbage collections they grow
old. Eventually, objects old-enough are tenured: they are moved to the old
space. The old space is several times bigger than the new space, thus garbage
collecting it is expensive and creates long application pauses. Most objects
are collected during new space collections, so collect the old space is not of-
ten required.

When the old space has little space left, a mark and compact collection algo-
rithm reclaims unused objects. This algorithm first marks all used objects,
and then scans the entire old space freeing unmarked objects and compact-
ing the memory.

5.6 The Stack

The stack (both Pharo and C) resides in the lower address of the memory. This
is the stack used by the C code and also the stack pages are allocated in this
stack. All the execution of a process stores the information in the stack. The
stack is the real representation of the contexts in the image. The frames are
in a sequence in the stack. Each frame knows the calling frame with a pointer.
Objects referenced into stack frames are retained i.e., never garbage col-
lected.

5.7 Conclusion

We sketch a first overview of the memory architecture of Pharo.

36



5.8 The New Space

5.8 The New Space

The new space is the region where young objects are allocated. It is the place
where the generational garbage collector is taking place. it is commonly
named a scavenger.

Minimal objects: Liliputians

\textbf{Note:}
In Spur, the minimum size of an object is the size of its header and one slot.
This means that an object without slots will contain one extra hidden slot.
In 64 bits, the smallest object is 16 bytes long: 8 bytes of header + 8 bytes of one slot.
In 32 bits, the smallest object is also 16 bytes long: 8 bytes of header + 8 bytes of since it is padded on 64 bits too.

This minimum size for any object is important for some features of the VM
(GC, become). For example, when the VM needs to move an object in memory,
it ensures that there is always enough space to put a forwarder object at the
previous object position. A forwarder object is a 2 words value that encodes
the new position of the moved object.

5.9 New Space Memory Layout

The new space is divided into three areas (eden, future and past) as shown by
Figure 5-3. The Eden (5/7 of the new space) and two other areas (1/7 of the
new space each) that alternatively play the role of past and future space. The
VM always allocates new objects into the Eden space if there is enough space.

New Space

Eden
Past/

Future
Space

Past/
Future
Space

Figure 5-3 The NewSpace structure composed of the eden, and two past and

future regions.

5.10 The Scavenger

The scavenger is a copy-collector responsible to manage the new space mem-
ory region. The scavenger is periodically triggered on some events such as:

37



The Spur Memory Manager Overview

the eden is full i.e., left space reached a predefined threshold. There are mul-
tiple scavenger policies:

• TenureByAge: it is the default policy. It consists in copying surviving
objects either in future space or old space depending on a threshold
(cf SpurGenerationScavenger>>shouldBeTenured:). Surviving ob-
jects in past space with addresses below this threshold are tenured i.e.,
copied to the old space instead of future space. Initially, the threshold
value is 0 meaning that the scavenger will not tenure any surviving ob-
jects, they are copied to future space. At the end of the scavenge, the
scavenger updates the treshold if the future space is filled at more than
90%. The next scavenge will then tenure objects.

• TenureByClass: this policy consists in tenuring objects instance of a
specific class.

• TenureToShrinkRT: this policy consists in tenuring objects to shrink
the remember table i.e., minimizing objects in the old space that refer-
ence objects in the new space.

• DontTenure: this policy consists in not tenuring any objects i.e., thresh-
old is fixed at 0.

• MarkOnTenure: the full mark and sweep GC of the old space calls the
scavenger with this policy. The threshold will be 0.

The VM allocates new objects in the eden space. When a newly allocated ob-
ject address in the eden space reaches the scavenge threshold, the scavenger
is triggered. To free some space in the eden, the scavenger does not iterate
over all objects it contains. It computes surviving objects i.e., referenced by
root objects. There are three kind of roots:

• objects referenced in the stack i.e., used as receivers or parameters;

• objects stored in the remembered set. This set contains all objects allo-
cated in the old space that contains at least one reference to an object
in the new space;

• special objects known by the VM such as: nil, true, false, class table, etc.

Add a picture with pointers from the oldspace to the newspace (and that are
in the remembered set) The scavenger starts by copying roots references allo-
cated into Eden or past spaces into the future space. Then, it traverses these
copied objects and copies their referenced objects that reside into Eden or
past space into the future space. At the same time, traversed references are
fixed to correctly reference the copied objects. Similarly, root objects refer-
ences are also updated. Finally, the future space contains all reachable objects
from roots that were present into the Eden and past spaces. Moreover, all
their references have been updated to correctly point to objects into the fu-
ture space. If the future space is filled during the scavenge, some objects are
tenured i.e., copied into the old space.

38



5.11 Example of a Scavenger pass

There are multiple strategies regarding the tenuring of objects:

• By age, using the addresses in the past (older objects have smaller ad-
dresses).

• Tenure to shrink the remembered table, it is used when the remem-
bered set is too big.

• Instances of a given class, it is used by the someInstance primitive be-
fore its execution making all instances available into the old space.

Once the scavenge is finished, the future and past spaces are switched; it just
means that the future space is now considered as the past space and vice-
versa. Add a figure showing the switch

5.11 Example of a Scavenger pass

Roots references: A, C

B -> D
C -> A
A -> B
A -> C
E

• Step 1: copy roots references

future space: A, C

• Step 2: We go over first surviving object (A)

future space: A, C, B
(C was already copied, so we just update the reference)

• Step 3: We go over second surviving object (C)

future space: A, C, B
(C points to A, but A was already copied, so we just update the

reference)

• Step 4: We go over next surviving object (B)

future space: A, C, B, D

• Step 5: We go over next surviving object (D)

Nothing to do, and nothing new in future space

• Step 6: exchange past and future spaces

39



The Spur Memory Manager Overview

5.12 to be continued

5.13 The Old Space

At startup, the VM allocates a memory map as depicted on Figure 5-1. Ini-
tially the OldSpace has only one segment but it can then vary dynamically by
allocating and freeing segments. Figure 5-4 shows an example of an old space
with two segments.

Eden
Past/

Future
Space

Past/
Future
Space

nil tru
e

fa
lse

Old SpaceNew SpaceStack

cla
ss

 ta
bl

e
re

m
em

be
re

d 
se

t

br
id

ge
by

te
 a

rra
y

m
em

or
y 

zo
ne

 
us

ed
 b

y 
th

e 
O

S

segment1 segment2

br
id

ge
by

te
 a

rra
y

Figure 5-4 The Old Space with two segments.

The first segment of the old space stores at least these objects:

• nil

• true

• false

• classTable i.e. an array of all the classes in the image; in its header, an
object does not directly store a reference to its class but the index of its
class in this table.

• remember set

• freeTree

• freeLists

• bridge byte array

5.14 The Free List

When a new object should be allocated, the VM checks first if there is an ob-
ject that was already allocated and garbage collection of the given size that
can be reused. Else it allocates a new object by ”cutting” and splitting a large
free object. The management of such used cells is managed by the Free List
and its companion the Free Table. The Free List manages chunks of memory
below numFreeLists (i.e., 63 in 64 bits architecture). The Free Table manages
larger chunks of memory.

40



5.15 Free cells in memory

5.15 Free cells in memory

The free list is a structure that keeps information about the memory that
can be used to allocate objects. It refers to free cells (which are special ob-
ject tagged as Free class). The minimum size of a free cell is two words: one
for the object header and the next. Such minimal cells are used to allocate an
object with one single slots (because one slot is for the header and the second
one is for the slot).

The free cells stays in the memory where they are allocated as shown in Fig-
ure 5-5. In Figure 5-5, there are two objects of size 5 word is free. Such objects
are structured in a linked-list of objects of the same size. A free cell is an el-
ement of a linked-list. The first object then points to the next free object of
the same size. The second object is the last one of this size so its next slot
is empty. In addition when the size allows it, the free object has a previous
pointer in addition to the next one (implementing a double linked list).

falsenil 0…

aPoint

0

a free object of 5 chunks a free object of 5 chunks

next free object of size 5

previous free object of size 5

another object

header

header

…

0 63

Free List

…

Free Tree

Free List

header

1 2 3 4 5

Figure 5-5 Free cells of size 5 in the memory.

5.16 Free list

The free list is a structure that keeps tracks of free cell objects based on their
size. Figure 5-5 shows that the free list linked-lists are built using the free
objects.

On 64 bits, the free list has 63 slots to keep a free cell linked list per number
of slots of the object. The first element of the free list is a pointer to the free
tree (a tree structure that manages chunk of memory larger than 63 words).

The free list first element is a pointer to the tree table, the next elements are
pointers to linked-list of free objects, one linked-list per object size.

41



The Spur Memory Manager Overview

0 63

… …

Free List

Free Tree

header

0
header

next

previous

header

0

header

0

0

Size 2
chunk list

1 2 3 n

Size 3
chunk list

Size 63
chunk list

header

header

0

4

Size 4
chunk list

header

Figure 5-6 Free list view is a table of linked-lists of free objects.

5.17 Free Table

42



CHA P T E R6
Weak Objects

References to Objects are actually devided in two categories: strong and
weak.

6.1 Strong and Weak references

Strong references are visited by the garbage collector, and they are used
to calculate the reachability of an object. An object that is not reachable
through a path of strong references from any of the given roots will be col-
lected.

Weak references are not visited by the garbage collector, and they are not an-
alyzed by the garbage collector. An object referenced only by weak references
will be garbage collected.

In PharoVM, a reference is a pointer. This pointer does not encode the strong/weak
information. The reference is considered to be strong or weak depending on
which object is holding it. An Object has a specific format which defines if its
references are all strong or all weak (see ?? for a special case). We cannot mix
strong and weak references in an object. Therefore normal objects have all
strong references. We call weak objects the objects that have all weak refer-
ences.

6.2 Strong and Weak Objects

The format of an object encodes the instance specification (instSpec). The
format of an object is stored in its header ??. The instSpec of a weak object is
4. This instance specification describes a layout that contains both fixed part
(instances variables) and variable part. Every reference contained by this

43



Weak Objects

object will be weak. An example of this are the instances of the WeakArray
class.

While an object referenced by a weak object is reachable, the reference in the
weak object will be valid, and will point to the object. A weak object is col-
lected as any other. When the garbage collector collects an object referenced
by a weak object, the reference in the weak object will be set to nil.

If during garbage collection a weak reference is set to nil, a semaphore is sig-
naled to allow the image to handle it. This semaphore is used in the image
side to implement a finalization process. The semaphore is registered in the
SpecialObjectArray ?? in the 42th position.

6.3 Weak reference collection during scavenging

The handling of weak references is done during the execution of the garbage
collector. In this subsection we will focus on the garbage collection of the
New space: the scavenge. The scavenger copies the weak objects but does
not scan the references it contains. When we scavenge an object, only the
strong references are visited. A weak object only has weak references, so the
references are not visited. Once the weak object is copied, a reference to it is
kept in a data structure that we will call the weak list. The number of strong
references in an Object is calculated from its format (SpurMemoryManager »
#numStrongSlotsOf:format:ephemeronInactiveIf:).

After all the Eden and the Past spaces have been scanned, weak list is iter-
ated. For each of the objects in the weak list, the scavenger attempts to up-
date each of its references. If the reference is pointing to a object in the Eden
or Past space that has been forwarded, the scavenge follows the forwarder
and update the reference to the new address in the Future space or in the Old
space, because the refered object could have been tenured. If the reference
points to an object that has not been copied to the Future space nor been
tenured (ergo it’s not a forwarder), the reference in the weak object is set to
nil. If any reference was set to nil for a given weak object, it will be counted
as pending finalization (instanceVariable : StackInterpreter » #pendingFi-
nalizationSignals). This variable is checked in the StackInterpreter » #check-
ForEventsMayContextSwitch: and if there is pending finalization, it signals
the TheFinalizationSemaphore. Then the variable is cleared.

TODO: #diagram SpurGenerationScavenge » #processWeakLinks.

During the copy of a weak object, this object may have been tenured. If an
object in the weak list has been tenured, it is also checked to see if it should
be in the remembered set. If a weak object’s referenced object have been
tenured, this weak object may be removed from the remembered set as well.

Objects in the Old space that reference objects in the new space are kept in
the remembered set. Objects in the remembered set are roots of the scaveng-

44



6.4 Weak list structure

ing process. Therefore the remembered objects in the remembered set need
to update their references. For weak objects in the remembered set, the ref-
erences are updated or set to nil.

If the old object in the remembered set does not have any more the refer-
ences to objects in the New space, it is removed from the remembered set.

6.4 Weak list structure

When copying an object, the scavenger leaves a forwarder to the new loca-
tion. When copying a weak object, the scavenger leaves a corpse. The weak
list is a linked list of the corpses. Each corpse contains the address to the new
location of the weak object and a reference to the next corpse in the weak list.

A corpse is a normal forwarder. The memory format guarantees that every
single object has at least one slot. This slot is used to hold the forwarded
reference. It also guarantees that there is a 64 bits header. As there is no
waranty that the object than more than one slot, the address of the next
corpse in the weak list has to be encoded in the object’s header.

All the addresses of the corpses, including the one in the weakList instance
variable (in the SpurGenerationScavenger), are offsets from the start of the
New space. This offset is expressed in allocationUnits size (8 bytes). The off-
set starts in 1 to detect if the list has ended, a zero value for the offset is not a
valid corpse marking the end of the link list.

This offset is encoded in 27 bits of the object header (22 bits of the hash and 5
bits of the format). The remaining part of the header’s informations are used
by the scavenger. For example, the class index is used to know which objects
are forwarders. With this trick, we can address objects inside the new space
of a maximum size of one gigabyte. The current calculation of the VM to find
the next corpse from the current one is the following:

allocationUnit = 8.
offset = (formatBits + (hashbit << 5)) * allocationUnit.
nextCorpseAddress = offset - 1 + newSpaceStart.

The corpses are added to the list in the beginning of the list. The head of the
list is the last added corpse. This allows the scavenger not to traverse the
whole list to add a new corpse.

The weak list is built in the scavenging and it is discarded after it ends.

45





CHA P T E R7
Ephemerons

Let’s start with an example: An open File object uses a operating system han-
dler. When opening a File object, a file is opened in the operating system.
This is a limited and should be given back to the system as soon as it is not
used anymore. If the File object is collected without being closed, the sys-
tem won’t be able to close the file. Therefore we need an additional mecan-
ism to detect when a file object is collected. One such mechanism is called
Ephemerons.

47





CHA P T E R8
JIT Vocabulary

A Jitted method is a function/routine that was translated to native code at
runtime from a bytecode method (I know you know this, just putting this to
contrast with what is below). An intrinsic is a function/routine defined by
the compiler that is not a method.

Intrinsics are defined by compilers for things that cannot generally be ex-
pressed in the host language (nor Smalltalk nor C), because for example you
want to do some strange register usage.

For example, trampolines are intrinsics of our JIT compiler, they are not
methods. Other intrinsics in our VM are routines to expose the Stack Pointer,
or the machine code implementation of pushThisContext, which is a separate
function. When the JIT compiler starts, it will define all intrinsics these as
little assembly functions. Intrinsics are never garbage collected.

49





CHA P T E R9
Looking at Stack Structure

9.1 Stack/Context Terminology

Since Pharo reifies the notation of execution stack we have two separate con-
cepts and different relationships.

• A stack frame is a frame in the native execution stack.

• A context is the reified causally connected frame available in the image
as an object.

A frame can be in the following states:

• Single: They don’t have matching reified context in the image.

• Married: It has a matching context in the image.

A context can be in the following states:

• Single: there is not matching context in the image for a given frame.

• Married: There is a matching context in the image and a corresponding
frame in the stack.

• Widowed: There is a context in the image, but the frame in the stack
has returned.

TODO: EXPLAIN THE DIVORCE MECHANISM

• -

9.2 Cog Stack Structure

Frameless method activation looks like

51



Looking at Stack Structure

receiver
args
sp-> ret pc.

Format of a stack frame in a frameful activation. Word-sized indices relative
to the frame pointer.

Stacks grow down:

receiver for method activations/closure for block activations
arg0
...
argN
caller's saved ip/this stackPage (for a base frame)
fp-> saved fp
method
context (initialized to nil)
frame flags (interpreter only)
saved method ip (initialized to 0; interpreter only)
receiver
first temp
...
sp-> Nth temp

In an interpreter frame, frame flags hold

• the backward jump count (see ifBackwardsCheckForEvents)

• the number of arguments (since argument temporaries are above the
frame)

• the flag for a block activation

• and the flag indicating if the context field is valid (whether the frame is
married).

saved method ip holds the saved method ip when the callee frame is a ma-
chine code frame. This is because the saved method ip is actually the ceRe-
turnToInterpreterTrampoline address.

In a machine code frame

• the flag indicating if the context is valid is the least significant bit of
the method pointer

• the flag for a block activation is the next most significant bit of the
method pointer

Interpreter frames are distinguished from method frames by the method
field which will be a pointer into the heap for an interpreter frame and a
pointer into the method zone for a machine code frame.

The first frame in a stack page is the baseFrame and is marked as such by a
saved fp being its stackPage, in which case the first word on the stack is the
caller context (possibly hybrid) beneath the base frame.

52



CHA P T E R 10
Adding Static Methods

In this chapter we will show how you can develop a prototype version of
static methods in Pharo. A static method is a method with no lookup. It means
that the call site defines the exact class where the method is defined. The VM
has just to grab the method from such a class.

For this introduction, we will

• define a new bytecode

• extend the bytecode builder

• extend the bytecode interpreter to handle this bytecode

10.1 Bytecode table

Since we will add a bytecode we start to have a look at the bytecode table.
You will find it in the method StackInterpreter class >> #initialize-
BytecodeTableForSistsV1

This table links a bytecode and the method that defines its behavior.

What you can see is that the bytecodes 246 and 247 are free.

...
(243 extStoreReceiverVariableBytecode)
(244 extStoreLiteralVariableBytecode)
(245 longStoreTemporaryVariableBytecode)

(246 247 unknownBytecode)

"3 byte bytecodes"
(248 callPrimitiveBytecode)

53



Adding Static Methods

(249 extPushFullClosureBytecode)
...

We will use the bytecode 246. Once we will have extended the interpreter we
will come back and modify such a table.

10.2 About method execution

Let us study a bit the normal message send bytecodes. For a default late bound
message

• the receiver and args are on the stack

• the method selector is stored in the method literal frame

(128 143 sendLiteralSelector0ArgsBytecode)
(144 159 sendLiteralSelector1ArgBytecode)
(160 175 sendLiteralSelector2ArgsBytecode)

The table tells us that send bytecodes range from 128 to 175. Such bytecodes
are compact in the sense that they encode their number of arguments. In
addition, they encode the place in the literal frame where the selector of the
method to be looked up is placed.

For example, 128 means that the selector is located in the first place of the
literal frame.

128 bitAnd: 16rF
> 0

10.3 Study 128

The interpreter method associated to bytecode 128 is sendLiteralSelec-
tor0ArgsBytecode

StackInterpreter >> sendLiteralSelector0ArgsBytecode
"Can use any of the first 16 literals for the selector."

| rcvr |
messageSelector := self literal: (currentBytecode bitAnd: 16rF).
argumentCount := 0.
rcvr := self stackValue: 0.
lkupClassTag := objectMemory fetchClassTagOf: rcvr.
self assert: lkupClassTag ~= objectMemory nilObject.
self commonSendOrdinary

What we see is that

• The message selector is extracted from literal frame using the the byte-
code encoding.

54



10.4 A first version of sendStaticLiteralMethod

• Then it sets the number of argument, here to zero

• It then looks the class up.

• And finally executes the method commonSendOrdinary

StackInterpreter >> commonSendOrdinary
"Send a message, starting lookup with the receiver's class."
"Assume: messageSelector and argumentCount have been set, and that
the receiver and arguments have been pushed onto the stack,"
"Note: This method is inlined into the interpreter dispatch loop."

<sharedCodeInCase: #extSendBytecode>
self sendBreakpoint: messageSelector receiver: (self stackValue:

argumentCount).
self doRecordSendTrace.
self findNewMethodOrdinary.
self executeNewMethod: false.
self fetchNextBytecode

Once the method is found, it is executed by executeNewMethod: false. The
argument means that the method should not be compiled by the JIT compiler.
Then the interpreter fetches the next bytecode to be executed.

10.4 A first version of sendStaticLiteralMethod

The bytecode 246 is a two byte bytecode. Let us start to define a new method
sendStaticLiteralMethodBytecode that defines the behavior of the static
send. Since we want to avoid performing a method lookup we decide that the
compiled method the send will execute should be stored in the method literal
frame.

StackInterpreter >> sendStaticLiteralMethodBytecode
"two bytecodes
opecode
literal offset "

| methodLiteralOffset |
methodLiteralOffset:= self fetchByte.
newMethod := self literal: methodLiteralOffset.
self executeNewMethod: true. "could be compiled"
self fetchNextBytecode

This is a first version because the interpreter may use the values of other
global variable such as the argument count. We will refine this definition
later.

Now we declare that the bytecode 246 is defined by sendStaticLiteral-
Method

55



Adding Static Methods

...
(243 extStoreReceiverVariableBytecode)
(244 extStoreLiteralVariableBytecode)
(245 longStoreTemporaryVariableBytecode)

(246 sendStaticLiteralMethodBytecode)
(247 unknownBytecode)

"3 byte bytecodes"
(248 callPrimitiveBytecode)
(249 extPushFullClosureBytecode)

...

10.5 Compiling the VM

Let us check that our additions do not break the VM build - so far we nearly
do anything that could but this way you can practice. Note that we only com-
pile the VM interpreter without the JIT compiler.

• First save your code, the build will take the current branch has input.

• Go to the iceberg folder in the pharo-local folder and execute the fol-
lowing. Here we asked to grab the binaries of external projects to make
the compilation faster.

cmake -S iceberg/pharo-vm -B build -DFLAVOUR=StackVM
-DPHARO_DEPENDENCIES_PREFER_DOWNLOAD_BINARIES=TRUE

Then we compile the Vm and the result will be in the build folder.

cmake --build build --target=install

We can now launch the resulting VM to execute your image as follows:

./build/build/dist/Pharo.app/Contents/MacOS/Pharo ../YourImage.image
--interactive

Note that you will have to rebuild the VM in the following. Before recompil-
ing to not forget to save your code and remember that the build is taking the
current branch as input.

10.6 Getting a compiled method

In this hands on, we focus on the virtual machine logic therefore we do not
want to modify the syntax of Pharo. Still we need a way to get compiled meth-
ods with the new bytecode.

56



10.6 Getting a compiled method

The Pharo compiler supports a bytecode builder, using the pragma opal-
BytecodeMethod we can create the body of a method has the compiler would
do.

For example the following method exampleIRBuilder just returns 2.

MyXP >> exampleIRBuilder

<opalBytecodeMethod>
^ IRBuilder buildIR: [:builder |

builder
pushLiteral: 2;
returnTop ]

Now we can just execute the method.

MyXP new exampleIRBuilder
> 2

Here is the definition of factorial, we call it lateBoundFactorial since we
will define alternate versions using static message sends later.

Integer >> lateBoundFactorial

<opalBytecodeMethod>

^ IRBuilder buildIR: [ :builder |
builder

pushReceiver;
pushLiteral: 1;
send: #'<=';
jumpAheadTo: #gogogo if: false;

"Base case"
pushLiteral: 1;
returnTop;

"Recursive case"
jumpAheadTarget: #gogogo;
pushReceiver;
pushReceiver;
pushLiteral: 1;
send: #-;
send: #lateBoundFactorial;
send: #*;
returnTop ]

Notice that here this is the default method passing message semantics.

To support static calls, we will define a new IR instruction in addition to the
bytecode to be able to define static sends.

57



Adding Static Methods

10.7 Fixing some Pharo logic

Before continuing we should fix the method refersToLiteral: because it
can loop if if literal frame contains a compiled method and this is what we
want to do for our solution.

CompiledCode >> refersToLiteral: aLiteral [
"Answer true if any literal in this method is literal,
even if embedded in array structure."

1 to: self numLiterals - self literalsToSkip do: [ :index |
"exclude selector or additional method state (penultimate slot)
and methodClass or outerCode (last slot)"
(self literalAt: index) == self ifFalse: [

((self literalAt: index) refersToLiteral: aLiteral) ifTrue: [
^ true ] ] ].

^ false
]

10.8 Extending the IRBuilder

We extend the builder with the new message sendStatic:.

IRBuilder >> sendStatic: aMethod
^ self add: (IRSendStatic sendStatic: aMethod )

We define a new instruction subclass of IRInstruction. This instruction will
refer to the invoked method.

IRInstruction << #IRSendStatic
slots: { #calledMethod };
tag: 'IR-Nodes';
package: 'OpalCompiler-Core'

IRSendStatic >> calledMethod
^ calledMethod

IRSendStatic >> calledMethod: aCompiledMethod
calledMethod := aCompiledMethod

We also define a class method

IRSendStatic class >>

We define the corresponding methods to support the interaction with the
Visitors who are responsible for compilation.

IRSendStatic >> accept: visitor

visitor visitStaticSend: self

58



10.9 Study the Translator

Visitor >> visitStaticSend: anIRStaticSend

self subclassResponsibility

IRPrinter >> visitStaticSend: send

stream nextPutAll: 'staticSend: '.
send calledMethod selector printOn: stream.

10.9 Study the Translator

Before we extend the code translator to generate the adequate bytecode, let
us get inspiration from the method visitSend:.

We see that visitSend: is basically gen send: send selector.

IRTranslator >> visitSend: send

send superOf
ifNil: [ gen send: send selector ]
ifNotNil: [ :behavior | gen send: send selector toSuperOf:
behavior ]

The send: method of the IRBytecodeGenerator uses the selector to send
adequate information to the bytecode encoder.

IRBytecodeGenerator >> send: selector
| nArgs |
nArgs := selector numArgs.
stack pop: nArgs.
...
encoder genSend: (self literalIndexOf: selector) numArgs: nArgs

The method send: is basically a send to genSend:numArgs:.

EncoderForSistaV1 >> genSend: selectorLiteralIndex numArgs: nArgs

...
(selectorLiteralIndex < 16 and: [nArgs < 3]) ifTrue:
["128-143 1000 iiii Send Literal Selector #iiii With 0
Argument
144-159 1001 iiii Send Literal Selector #iiii With 1

Arguments
160-175 1010 iiii Send Literal Selector #iiii With 2

Arguments"
stream nextPut: 128 + (nArgs * 16) + selectorLiteralIndex.
^ self].

...

59



Adding Static Methods

10.10 Translator extension

Wemake sure that the IRFix visitor does not raise an error by defining the
method visitStaticSend: doing nothing.

IRFix >> visitStaticSend: anIRStaticSend

We extend the translator by adding the following visitStaticSend:

IRTranslator >> visitStaticSend: anIRStaticSend

gen sendStatic: anIRStaticSend calledMethod

We define the method sendStatic:as follows:

IRBytecodeGenerator >> sendStatic: aMethod

| nArgs |
nArgs := aMethod numArgs.
stack pop: nArgs.
encoder genSendStatic: (self literalIndexOf: aMethod)

We finally emit the new bytecode: it basically emits the bytecode 246 fol-
lowed by the literal frame offset in which the compiled method is stored. A
better version should do a bit of validation.

EncoderForSistaV1 >> genSendStatic: methodLiteralOffset

stream
nextPut: 246;
nextPut: methodLiteralOffset

10.11 Testing

Now we define a simple method using a static send. This method adds one to
the receiver.

Integer >> staticPlus

<opalBytecodeMethod>

^ IRBuilder buildIR: [ :builder |
builder

pushReceiver;
pushLiteral: 1;
sendStatic: (SmallInteger >> #'+');
returnTop ]

1 staticPlus
> 2

60



10.12 The case of recursion

10.12 The case of recursion

Since we are compiling a recursive method (factorial), we need a way so that
the literal frame of this method refers to the compiled method itself.

For this as a temporarily solution we will introduce a placeholder that later
we will patch. Here is a definition of factorial where the recursive call is static.

Integer >> staticBoundRecursiveFactorial

<opalBytecodeMethod>
1halt.
^ IRBuilder buildIR: [ :builder |

builder
pushReceiver;
pushLiteral: 1;
send: #'<=';
jumpAheadTo: #gogogo if: false;

"Base case"
pushLiteral: 1;
returnTop;

"Recursive case"
jumpAheadTarget: #gogogo;
pushReceiver;
pushReceiver;
pushLiteral: 1;
send: #-;
sendStatic: (StaticRecursiveMethodPlaceHolder new selector:

#staticBoundRecursiveFactorial);
send: #*;
returnTop ]

We have to define the class StaticRecursiveMethodPlaceHolder.

Object << #StaticRecursiveMethodPlaceHolder
slots: {#selector};
...

StaticRecursiveMethodPlaceHolder >> numArgs

^ selector numArgs

StaticRecursiveMethodPlaceHolder >> selector: aString
selector := aString

Now we patch the generate: method to substitute the placeholder by the
compiled method.

61



Adding Static Methods

IRMethod >> generate: trailer

| irTranslator |
irTranslator := IRTranslator context: compilationContext trailer:
trailer.

irTranslator
visitNode: self;
pragmas: pragmas.

compiledMethod := irTranslator compiledMethod.
compiledMethod literals doWithIndex: [ :e :index |
(e isKindOf: StaticRecursiveMethodPlaceHolder)

ifTrue: [ compiledMethod literalAt: index put: compiledMethod
] ].

self sourceNode
ifNotNil: [

compiledMethod classBinding: self sourceNode methodClass
binding.
compiledMethod selector: self sourceNode selector ]

ifNil: [
compiledMethod classBinding: UndefinedObject binding.
compiledMethod selector: #UndefinedMethod ].

^ compiledMethod

10.13 Better sendStaticLiteralMethodBytecode

The first definition of sendStaticLiteralMethodBytecode was brittle. In-
deed the interpreter has some invariants and use about global variables that
we did not reset correctly.

This is the case for argumentCount. It is used by primitives to check how to
access the stack and know how many elements to pop, and generally to check
that the stack gets balanced after execution.

The second case is primitiveIndex and primitiveFunctionPointer.primitieIndex
should be loaded for each interpreted method. The function executeNewMethod:
assumes that this index is set during lookup. Thus, if we don’t set it, the value
will be the one of the last method/primitive called leading to strange bugs.

Here is the new version of the static send bycode logic.

StackInterpreter >> sendStaticLiteralMethodBytecode

"2 Byte Bytecode
1st Byte: opcode
2nd Byte: literal offset of the method"

| methodLiteralOffset primitiveIndex |
methodLiteralOffset := self fetchByte.
newMethod := self literal: methodLiteralOffset.

62



10.14 Bench

"argumentCount is used by primitives to
- check how to access the stack and
- know how many elements to pop,

and generally to check that the stack gets balanced after
execution"

argumentCount := self argumentCountOf: newMethod.

"primitiveFunctionPointer needs to be loaded for each method
interpreted.

executeNewMethod: assumes that this is set during lookup
Thus, if we don't set it, the value will be the one of the last

method/primitive called"
primitiveIndex := self primitiveIndexOf: newMethod.
primitiveFunctionPointer := self functionPointerFor:

primitiveIndex inClass: nil.

self executeNewMethod: true.
self fetchNextBytecode

https://github.com/evref-inria/pharo-vm/pull/2/files

10.14 Bench

Here are the three different versions of factorial that we can now benchmark.

Integer >> lateBoundRecursiveFactorial

<opalBytecodeMethod>
^ IRBuilder buildIR: [ :builder |

builder
pushReceiver;
pushLiteral: 1;
send: #'<=';
jumpAheadTo: #gogogo if: false;

"Base case"
pushLiteral: 1;
returnTop;

"Recursive case"
jumpAheadTarget: #gogogo;
pushReceiver;
pushReceiver;
pushLiteral: 1;
send: #-;
send: #lateBoundRecursiveFactorial;
send: #*;
returnTop ]

63



Adding Static Methods

Integer >> staticBoundRecursiveFactorial

<opalBytecodeMethod>
1halt.
^ IRBuilder buildIR: [ :builder |

builder
pushReceiver;
pushLiteral: 1;
send: #'<=';
jumpAheadTo: #gogogo if: false;

"Base case"
pushLiteral: 1;
returnTop;

"Recursive case"
jumpAheadTarget: #gogogo;
pushReceiver;
pushReceiver;
pushLiteral: 1;
send: #-;
sendStatic: (StaticRecursiveMethodPlaceHolder new selector:

#staticBoundRecursiveFactorial);
send: #*;
returnTop ]

Integer >> staticBoundRecursiveFactorialHardcore

<opalBytecodeMethod>
^ IRBuilder buildIR: [ :builder |

builder
pushReceiver;
pushLiteral: 1;
sendStatic: (SmallInteger >> #'<=');
jumpAheadTo: #gogogo if: false;

"Base case"
pushLiteral: 1;
returnTop;

"Recursive case"
jumpAheadTarget: #gogogo;
pushReceiver;
pushReceiver;
pushLiteral: 1;
sendStatic: (SmallInteger >> #'-');
sendStatic: (StaticRecursiveMethodPlaceHolder new selector:

#staticBoundRecursiveFactorial);
sendStatic: (SmallInteger >> #'*');
returnTop ]

64



10.15 Limits and conclusion

Need more discussions

[17 lateBoundRecursiveFactorial.] bench. "'2774597.961 per second'"
[17 staticBoundRecursiveFactorial.] bench. "'3693598.280 per

second'"
[17 staticBoundRecursiveFactorialHardcore.] bench. "'2170939.636 per

second'"

Note that the staticBoundRecursiveFactorialHardcore is slower because the
primitives *, -, + are extremely optimized by the VM and do not result in mes-
sage sends.

10.15 Limits and conclusion

There is clearly some more effort to obtain a full working solution. For exam-
ple, managing the code changes and recompilation of the methods.

This tutorial misses

• syntax support

• JIT support

• invalidation if the called method changes

• indirect recursion support

65





Bibliography

[1] S. Ducasse, D. Zagidulin, N. Hess, D. C. O. written by A. Black, S. Ducasse,
O. Nierstrasz, D. P. with D. Cassou, and M. Denker. Pharo by Example 5.
Square Bracket Associates, 2017.

[2] E. Miranda, C. Béra, E. G. Boix, and D. Ingalls. Two decades of Smalltalk
VM development: live VM development through simulation tools. In
Proceedings of International Workshop on Virtual Machines and Intermediate
Languages (VMIL’18), pages 57–66. ACM, 2018.

[3] I. Piumarta and F. Riccardi. Optimizing direct threaded code by selective
inlining. In Proceedings of the ACM SIGPLAN 1998 Conference on Programming
Language Design and Implementation, PLDI ’98, pages 291–300, New York,
NY, USA, 1998. Association for Computing Machinery.

67


	Illustrations
	Preamble
	Object Representation
	Background
	Data Units: Words and Bytes
	Alignment
	Most and Least Significant Bytes and Bits

	Object Layout
	Object Formats
	Representing Objects in Memory
	References and Ordinary Object Pointers

	Immediate Objects
	Alignment and Padding
	Pointer Tagging
	Immediate Characters and Integers in 64-bits
	32-bit Immediate Integers and Variable Tags
	64-bit Immediate Floats
	Boxed Native Objects

	Object Header
	Base Object Header
	Large Objects and the Overflow Header
	Class References and Class Table
	Encoding of the Object Format Field

	Conclusion
	References

	Methods, Bytecode and Primitives
	Compiled Methods
	Intermezzo: Variables in Pharo
	Literals and the Literal Frame
	Method Header
	Method Trailer

	Stack Bytecode and the Sista Bytecode Set Overview
	A Stack Machine
	Push Instructions
	Store Instructions
	Control Flow Instructions – Send and Return
	Control Flow Instructions – Jumps

	Primitive Methods
	Bytecode Encoding and Optimizations
	Variable-length Bytecode Encoding
	Optimising for Common Bytecode Instructions
	Encoding of Single-byte instructions
	Optimising for Common Bytecode Sequences
	Optimising for Common Messages and Literals

	The Sista Bytecode
	Bytecode Extensions


	Calling conventions
	Passing arguments
	Returning
	Shared state
	Keeping registers
	Keeping the call stack


	The Spur Memory Manager Overview
	Spur features
	Memory Structure Overview
	Memory Growing and Segments
	Memory Initialization
	Spur Generational Garbage Collection
	The Stack
	Conclusion
	The New Space
	Minimal objects: Liliputians

	New Space Memory Layout
	The Scavenger
	Example of a Scavenger pass
	to be continued
	The Old Space
	The Free List
	Free cells in memory
	Free list
	Free Table

	Weak Objects
	Strong and Weak references
	Strong and Weak Objects
	Weak reference collection during scavenging
	Weak list structure

	Ephemerons
	JIT Vocabulary
	Looking at Stack Structure
	Stack/Context Terminology
	Cog Stack Structure

	Adding Static Methods
	Bytecode table
	About method execution
	Study 128
	A first version of sendStaticLiteralMethod
	Compiling the VM
	Getting a compiled method
	Fixing some Pharo logic
	Extending the IRBuilder
	Study the Translator
	Translator extension
	Testing
	The case of recursion
	Better sendStaticLiteralMethodBytecode
	Bench
	Limits and conclusion

	Bibliography

