Pharo Graphs

Sebastian Jordan Montafio and Stéphane Ducasse

March 12, 2024

Copyright 2017 by Sebastian Jordan Montafio and Stéphane Ducasse.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

* to Share: to copy, distribute and transmit the work,

+ to Remix: to adapt the work,
Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the shabook I5TgX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

1.1
1.2

1.3

2.1
2.2
2.3
2.4

3.1
3.2
33
3.4
35

41
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Contents

lllustrations iii
Introduction 1
Parismetroas graphexample. oL, 1
Abouttests L e e e e e e e 2
Howtoinstall o i i e e e e e e 3
Basic definitions 5
Typeof Graphs o o i e e e e 5
Graph Cycle e e e 7
Tree . o o e e e e e e e e e e e e e 10
Conclusion . . . v v o ot e e e e 10
Graph Representation 1
Graphdescription L e e e e e 1
Basicgraphelements 13
Aboutnodes L. e e e e e e e 13
Graph algorithm inheritancetree 14
CoNCIUSION & . v o o s e 15
Topological sorting 17
Example o e e e e e 17
Kahn'salgorithm o 18
Improving the implementation 19
Casestudy . . v v v it e e e e e e e e e e e 20
Conclusion . . . v v o o it e e 21
Shortest path problem 23
Examples e e e e e 23
Shortest path on unweighted graphs (BFS algorithm) 24
Casestudy . . . v v vt e e e e e e e e e e e e 26
Shortest path on weighted graphs (Dijkstra’s algorithm) 27
Casestudy . . . v v i i e e e e e e e e e e e e e e e e e e 29
Shortest path on Directed Acyclic Graphs (DAG) 29
DAG shortest path implementation 30
DAG shortestpathrefactored 31

5.9

5.10

5.11
5.12

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
73
7-4
7.5
7.6
77

8.1
8.2
8.3
8.4
8.5

Contents

Shortest path on weighted graphs with negative weights (Bellman-Ford

algorithm) e e e e e e e
Pharoimplementation. e
Longestpathproblem Lo Lo
Conclusion . . . v v o o ot e e e e

Minimum spanning trees

Motivatingscenario o o Lt e e e e e e e e e e e e e
Disjoint-Setdatastructure v v i it e e e e e e .
Kruskal'salgorithm
Kruskal's algorithm for maximum spanningtree
Casestudy . . . v v v v e e e e e e e e e e e e
Conclusion . . . v v ot e e e e e e e

Strongly Connected Components in a Graph

Motivatingexample L e e e e
Tarjan'salgorithm e
Tarjan'simplementation Lo
Casestudy . . . v v i v e e e e e e e e e e e e e e e e e e
Reducinga Graph o o i i i i
Casestudy . . . v v v v e e e e e e e e e e e e
Conclusion . . . v v o e e e e e e e

Link analysis

Hyperlink-Induced Topic Search (HITS) algorithm
HITS implementationo o it i it i
Casestudy . . . v v v e e e e e e e e e e e e e e
Weighted HITS o o oo e e e
Conclusion . . . v v o v i e e e e e e e e e e

1-1

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
29

2-10

2-11

2-12

2-13

3-1

3-2
3-3

5-5

lllustrations

Newly design parismetromaps. o v v v v v oo

Adirectedgraph. e
Anundirected graph. L e e e e
A weighted graph: edges haveaweight.
A connected graph: all the nodes are reachable from any others.
A disconnected graph: some nodes are not reachable from others.
ACycleinagraph. o o i i e
In a directed graph, direction is impacting cycle presence.
Adirected AcyclicGraph. o e
Astrongly connectedgraph. L Lo
Aweakly connectedgraph. oo
Graph with three strongly connected components
Atree: a connected graph withoutcycles.
Adirectedtree. e e e e

Basic graph object-oriented representation: two collections of elements.
Node hierarchy. e e e
Algorithm hierarchy. o e

A graph and one of its topological sorts.
Softwaremodules. L

Shortdistancegraph. e
Short distance withweights.
Short distance with negativeweights.
AgraphforBFS. e
Dijkstragraph. v o v e e e e e e e
DAG with weigthedpaths.

A negative weighted graph used for experimenting with Bellman-Ford

algorithm. e e

Connections costs between neighbourhoods.
Minimum spanning treewithCasroot.
Two Union-Findsets. o i i
Union-Find set: result of the unite operation between AandD.
Connections costs between neighbourhoods.

O OV OVW 0ON N OO0 O N

o a
o O

14
15

17
21

34

lllustrations

Minimum spanningtree. 0ot i e e e e e e 42
A social network: each node is a person and an edge a connection. 46
A social network: each node is a person and an edge a connection. 48
Reduced graph: a collection containing all the newnodes. 50
A graph to play with the HITS algorithm. 53

1.1

CHAPTER I .

Introduction

Graphs are everywhere and there is well-known algorithms to get the best
out of them. In this booklet the most common graph algorithms will be ex-
plained along with some case studies where these algorithms can be applied.
These algorithms are available in the Pharo Al graph-algorithms library avail-
able at: https://github.com/pharo-ai/graph-algorithms

This booklet will describe and implement this algorithms.

Paris metro as graph example

A typical example is a metro map as the one of Paris as shown in Figure 1-1.
What we see is that metro lines are connected by some stations for example
(Gare du Nord connects line 5 and 4) and some stations are real hub where
multiple lines meet such as Chatelet.

Metromap_1024.pdf width=100&label=paris)

When you visit Paris, you are often asking yourself:
+ what are the different possibilities to go to that place?
« are they straight connections?
« finding the fastest one?

« finding the one with the least stops (because RER is a fast kind of metro
but stopping only in certain places)

« finding the one with the least changes?

+ what are all the places that I can reach in 5 stops?

https://github.com/pharo-ai/graph-algorithms

1.2

Introduction

Figure 1-1 Newly design paris metro maps.

All such questions can be answered by modeling the metro of Paris as a graph
and applying algorithms to it.

Several graphs can be represented:

» we can have graph with only the shared stations and eliminate the sta-
tion in between (this would not be really useful for users because you
do not want to only used shared stations).

+ we can have a graph with the time between two stations.

About tests

To ensure that the algorithms are working properly, we have implemented
several tests for this library. We have a graph fixture in which we have im-

1.3

1.3 How to install

plemented different types of graphs. Each graph is implemented on a class
side method and the method has a link to a picture to see the graph visually.
Then, in each of the tests for each of the algorithms, we construct a graph
and check if the result after running the algorithm is the expected one.

Outline of the document

In this little book we will describe some algorithms that can be applied to
graphs. We will start with some basic definitions, then in subsequent chap-
ters we will describe the following algorithms: topological sort, shortest
path, Kruskal, Tarjan, HITS, ...

All the algorithms of the library have the same API to set the nodes and the
edges. The edges can be both weighted or unweighted. A detailed explana-
tion of how to use the API will be given on Chapter 3.

How to install

You can install the library executing the following code snippet:

Metacello new
repository: 'github://pharo-ai/graph-algorithms/src';
baseline: 'AIGraphAlgorithms';
load

2.1

CHAPTER

Basic definitions

There is a great set of mathematical problems that can be solved using graph
models. Graphs are vastly used in all kind of computer science problems.
Graphs are discrete mathematical structures that consist of a set of vertices
(also called nodes) and a set of edges that connect those vertices. In com-
puter science is more commonly used the term node instead of vertex. In this
booklet the term node is going to be the one used.

There are multiple types of graphs according if the edges are directed or
undirected, if the edges are weighted or unweighted and so on. In this chap-
ter, basic graph concepts and graphs types are going to be explained to ease
the following of the algorithms.

Type of Graphs

Directed Graph

A directed graph is a type of graph in which every edges has a direction: an
ingoing node and an outgoing node. The most commonly way of represent-
ing a graph is to draw it. A directed graph can de drawn like in Figure 2-1:

Undirected Graph

An undirected graph is a type of graph in which the edges does not have a
direction. They can be drawn without a line that does not have any arrow
heads. It is understood that the graph has no direction if the direction is not
specified explicitly as shown in Figure 2-2.

Basic definitions

O—O

Figure 2-1 A directed graph.

Figure 2-2 An undirected graph.

Weighted Graph

A weighted graph is a graph that each of its edges has an associated weight
(see Figure 2-3). In real life examples, the weights can represent several
things. For example, a graph can be a map in which the nodes represent
cities and the edges represent the distance between those cities.

Figure 2-3 A weighted graph: edges have a weight.

Connected Graph

A connected graph is an undirected graph in which exists a path for every
pair of nodes. For example, Figure 2-4 represents a connected graph because
from any node you can get to any node.

2.2 Graph Cycle

Figure 2-4 A connected graph: all the nodes are reachable from any others.

But, Figure 2-5 is a disconnected graph because the nodes F and G are iso-
lated from the rest.

Figure 2-5 A disconnected graph: some nodes are not reachable from others.

2.2 Graph Cycle

A graph cycle is a sequence of adjacent nodes in which all nodes are different
except of the first and the last one. That means, a graph cycle is a path that
ends and starts in the same node without repeating any other node and it
has a size grater than 3.

For example, in Figure 2-6 there is a cycle between nodes 4, B, D.

Figure 2-6 A Cycle in a graph.

Basic definitions
ina_graph.pdf width=40&label=cycle1)

But, in Figure 2-7 there is no cycle between from node A to C because the
node D has to be traveled twice. Nevertheless, there is a cycle between node

D,BandC.

0\

Figure 2-7 In a directed graph, direction is impacting cycle presence.

acycle.pdf width=52&label=cycle2)

Directed Acyclic Graph (DAG)

Like the name suggests, a directed acyclic graph is a directed graph that does
not have any cycles (as shown in Figure 2-8).

@{:\7@

Figure 2-8 A directed Acyclic Graph.

Strongly Connected Graph

Unlike the Connected Graph, a Strongly Connect is a directed graph in which
there is a path for every pair of nodes. Figure 2-9 is a strongly connected
graph.

connectedgraph.pdf width=30&label=strongly1)

Figure 2-10 is not strongly connected because it is not possible to reach node
D from node A. However, if the directions of the graph are deleted, the graph

becomes aundirected connected graph. For that reason, Figure 2-10 is called
a weakly connected graph.

2.2 Graph Cycle

?

Figure 2-9 A strongly connected graph.

il

Figure 2-10 A weakly connected graph.

stronglyconnected_graph.pdf width=30&label=strongly2)

Strongly Connected Component

A strongly connected component of a directed graph is the maximal sub-
graph that is strongly connected. In the figure there are three strongly con-

nected components in the graph:, , .
)

?—@

Figure 2-11 Graph with three strongly connected components

connectedcomponents.pdf width=50)

2.3

2.4

Basic definitions

Tree

A tree is a connected graph without cycles. That means that there is only one
path between every pair of vertices. But, in the computer science context,
normally a tree is represented as a directed graph. In that case, the defini-
tion will be that a directed tree is a directed acyclic graph in which every
node has only one incoming (parent) node (See Figure 2-13). If you remove
the direction of the directed acyclic graph the reaming graph has to be an
undirected tree (See Figure 2-12).

Figure 2-12 A tree: a connected graph without cycles.

Figure 2-13 A directed tree.

Conclusion
These definitions set the stage for the algorithms that we will now describe.

Identifying clearly the kind of graphs an algorithm is applied on is key be-
cause the working hypotheses are really important.

10

3.1

CHAPTER

Graph Representation

So far the graphs were represented as drawings. But, to program them we
need a data structure. The most used data structures to represent graphs
are:

¢ An adjacency matrix where connection between nodes is basically a
cross within a matrix whose entries are nodes. The cross can contain
information when we want to manipulate weighted graphs.

* An adjacency list where connection between nodes are given as a list of
pairs of nodes or triples in case of weighted edges.

Note that you can use an adjancency list to define a graph and use internally
a matrix to perform the computation. Basically the internal representation
should be seen more as a design choice and it should not impact the way we
express algorithms. Providing a good API to manipulate graph will make the
algorithm independent from the internal representation and let the devel-
oper implement optimizations when needed.

Graph description

In this library we use the adjacency list data structure to specify a graph.
For example, the following graph is created using the messages nodes: and
edges:from:to:. It also defines that the edges are coming from the first
element to the second one.
| graph |
graph := AIGraphAlgorithm new.
graph nodes: #($A $B $C).
graph edges: #(

#($A $B)

1

Graph Representation

#($A $C)
#($B $C))
from: [:each | each first]
to: [:each | each second].
graph run.

The previous snippet is a template in the sense that:
» First, we instantiate the graph algorithm (in this case an abstract one).

+ Then, we instantiate the nodes. And finally, we set the edges. Note that
for the edges we need to pass a list. The elements inside a list can be
any kind of object. In the above example the objects are also a list.

+ And then, we need to specific a block that is needed to obtain the from:
and to: relationships. In the example, the in node is the first element
of the list and the second one is the out node. So, we need only to send
the messages first and second.

We will often define our graphs this way.

Blocks and symbols.

Since we are a bit lazy to type, we pass directly the method names as symbol
that we want to apply on the edge to extract information.

[| graph
graph := AIGraphAlgorithm new.
graph nodes: #($A $B $C).
graph edges: #(
#($A $B)
#($A $C)
#($B $C))
from: #first
to: #second.
graph run.

Weighted graphs

To represent weighted graphs we use the edges: from: to:weight: method.

[| graph
graph := AIGraphAlgorithm new.
graph nodes: #($A $B $C).
graph edges: #(
#($A $B 2)
#($A $C 4)
#($B $C 7))
from: [:each | each first]
to: [:each | each second]
weight: [:each | each third].

12

3.2

3.3

3.2 Basic graph elements

Lgraph run.

So in this case the library is going to take the third element as the weight for
each of the edges.

Basic graph elements

As shown by Fig. 3-1, a graph is basically a collection of edges and a collec-
tion of nodes. The nodes are entities that can contain some specific value
from the domain but also for the algorithm execution. This is why we get a
rich hierarchy of nodes as shown below.

IGraphAlgorithm

7

AlSpecificAlgorithm

IGrapl de AlGraphEdge
AlGraphSpecificNode AlGraphWeightedEdge

Figure 3-1 Basic graph object-oriented representation: two collections of ele-
ments.

About nodes

The graph algorithms of this library use different nodes. All the nodes in-
herit from the same abstract class called AIGraphNode and show below where
indentation represents inheritance (Fig. 3-2).

[AIGraphNode
AIBFSNode
AIDisjointSetNode
AINodeWithPrevious
AiHitsNode
AIWeightedHitsNode
AIPathDistanceNode
AIReducedGraphNode
AITarjanNode

We have different subclasses because a specific algorithm may need some
store some special state. But all the nodes share a common API.

The most important methods of the API are:

13

Graph Representation

AlGraphNode
JAN

AlPathDistanceNode

AlTarjanNode

AlReducedGraphNode

AIBFSNode

AlDisjointSetNode

AlINodeWithPrevious

AlHitsNode

AlWeightedHitsNode

Figure 3-2 Node hierarchy.

* node from:

* node from:edge:

* node adjacentNodes
* node model

* node model:

* node to:

* node to:edge:

3.4 Graph algorithm inheritance tree

All of the algorithms are subclasses of AIGraphAlgorithm as shown below
where indentation represents inheritance and shown in Fig. 3-3.

[AIGraphAlgorithm
AIBFS
AIBellmanFord
AIDijkstra
AIGraphReducer
AIHits

AIWeightedHits

14

3.5 Conclusion

AIKruskal
AIShortestPathInDAG
AlTarjan
AITopologicalSorting

AlGraphAlgorithm

AIBFS
AlBellmanFord
AlDijkstra

AlHits

i

AlWeightedHits

AlKruskal

AlShortestPathinDAG

AlTarjan

AlTopologicalSorting

Figure 3-3 Algorithm hierarchy.

As the nodes, all the graph algorithms of this library share a common API
also. The class AIGraphAlgorithm provides the common API to add nodes,
edges, searching the nodes, etc.

Some of the methods of the API are:

algorithm nodes:

algorithm nodes

algorithm edges

algorithm edges:from:to:
algorithm edges:from:to:weight:
algorithm findNode:

algorithm run

3.5 Conclusion

After this basic introduction we are ready to present and implement the al-
gorithms.

15

4.1

CHAPTER

Topological sorting

Let us start with our first algorithm: a topological sort. A topological sort
makes that a node is treated before the nodes that depend on it are treated.
If you consider tasks, it means that you want to do first a task before doing
the ones that depend on this one.

Topological sorting is a way of ordering a directed acyclic graph such that
for every directed edge from node to node , becomes first in the resulting
ordering.

We present here one algorithm named Khan’s algorithm.

JOmO]
Q@%G)

Figure 4-1 A graph and one of its topological sorts.

oscJofofo

sortvisual_example.pdf width=90&label=soft)

Example
The topological sorting can be applied to a graph in which its nodes repre-

sents software dependencies. For example to install a library, there are some
modules that need to be installed before others. So, in this case, a topologi-

17

Topological sorting

cal sort is useful to know which modules to install first (the one that has no
dependencies) and so on.

Now for a same graph multiple topological sorts are possible just because
since we treat first the nodes having no dependencies their traversal order
can be different and in addition the traversal order of their dependent can be
different too. Figure 4-2 shows one graph and one of the possible topological
sort.

4.2 Kahn's algorithm

To apply a topological sort to a graph, the graph must be a directed acyclic
graph (DAG). There is at least one topological possible order for a DAG.

The algorithm that is used in this library is the Kahn’s algorithm. It has a
time complexity of . The pseudocode taken from https://en.wikipedia.org/wiki/
Topological_sorting is the following one:

[L ¢ Empty list that will contain the sorted elements
S ¢ Set of all nodes with no incoming edge
while S is not empty do
remove a node n from S
add n to L
for each node m with an edge e from n to m do
remove edge e from the graph
if m has no other incoming edges then
insert m into S
if graph has edges then
return error (graph is not a DAG)
else
return L (a topologically sorted order)

This algorithm is implemented in the class AITopologicalSorting subclass
of AIGraphAlgorithm. The parent class (AIGraphAlgorithm) provides all
the mechanisms to handle the implementation of the graph data structure.
AITopologicalSorting has the only responsibility: to implement the logic
of the algorithm.

The following proposes a first implementation

[AITopologicalSorting >> run

topologicalSortedElements := OrderedCollection empty.
nodesWithNoIncomingEdges := LinkedList empty.

"Obtain all the nodes without incoming nodes"
nodesWithNoIncomingEdges addAll:
(nodes select: [:node | node incomingNodes isEmpty 1).

[nodeswithNoIncomingEdges isNotEmpty] whileTrue: [

18

https://en.wikipedia.org/wiki/Topological_sorting
https://en.wikipedia.org/wiki/Topological_sorting

4.3

4.3 Improving the implementation

| node |
node := nodesWithNoIncomingEdges removeFirst.
topologicalSortedElements addLast: node model.

"Remove all the edges of node from the graph"
node adjacentNodes do: [:adjacentNode |
adjacentNode incomingNodes remove: node.
adjacentNode incomingNodes ifEmpty: [
nodesWithNoIncomingEdges add: adjacentNode] 1.
node adjacentNodes: #() 1.

"If the graph still has edges"
(nodes anySatisfy: [:node | node adjacentNodes isNotEmpty 1)
ifTrue: [Error signal: 'Not a DAG (Directed Acyclic Graph)' 1.

"Return the topological order the first element being the node
without any dependencies"
topologicalSortedElements

A

Improving the implementation

The method run is a bit too long to our taste. The fact that we have to add
comments to separate its code logic is a call to define separate methods.

First we define two methods initializeElements and gatherNoIncom-
ingNodes. And we express the algorithm by redefining the method run as
follows:

AITopologicalSorting >> initializeElements

topologicalSortedElements := OrderedCollection new.
nodeswWithNoIncomingEdges := LinkedList new

Note that nodeswWithNoIncomingEdge uses a linked list because it has a bet-
ter time complexity for removing the first element.

EAITopologicalsorting >> gatherNoIncomingNodes
"Obtain all the nodes without incoming nodes"

nodesWithNoIncomingEdges addAll:
(nodes select: [:node | node isLeaf 1)

[AITopologicalSorting >> run

self initializeElements.

self gatherNoIncomingNodes.

[nodesWithNoIncomingEdges isNotEmpty] whileTrue: [
| node |
node := nodesWithNoIncomingEdges removeFirst.

19

4.4

Topological sorting

Then we continue by extracting the handling of node dependencies and ex-
tract the validation.

[AITopologicalSorting >> removeEdgesOf: node

node adjacentNodes do: [:adjacentNode |
adjacentNode incomingNodes remove: node.
adjacentNode incomingNodes ifEmpty: [
nodesWithNoIncomingEdges add: adjacentNode] 1.
node adjacentNodes: #()].

>AITopologicaISorting >> graphHasEdges

" nodes anySatisfy: [:node | node adjacentNodes isNotEmpty 1].

[AITopologicalSorting >> run

self initializeElements.

self gatherNoIncomingNodes.

[nodeswWithNoIncomingEdges isNotEmpty] whileTrue: [
| node |
node := nodesWithNoIncomingEdges removeFirst.
topologicalSortedElements addLast: node model.
self removeEdgesOf: node].

self graphHasEdges ifTrue: [
Error signal: 'Not a DAG (Directed Acyclic Graph)'].
topologicalSortedElements

A

Now the logic of the algorithm is clearer and at a nice level of abstraction.

In addition we can focus on the structure of the algorithm, treated nodes
are added one by one to the topologicalSortedElements collection while
dependents are added to the working list nodeswithNoIncomingEdges. And
the algorithm iterates until the working list gets empty.

Case study

Image that the graph shown in Figure 4-2 represents software dependencies.
You want to install the module G. But, to install that module you must install
all the other ones before in a topological order. You need to install module C
and A before installing module D. So in this case the topological sorting is the
algorithm that we need to solve the problem.

To solve this problem programatically we only need to declare the nodes, the
edges and the run the algorithm.

"First define the nodes and the edges"

nodes := #($A $B $C $D $E $F $G).

edges := #(#($A $B) #($A $C) #($B $E) #($C $£) #($C $D)
#($D $E) #($D $F) #($E $G) #($F $G)).

20

4.5 Conclusion

N

(D=

o

Figure 4-2 Software modules.

"Instantiate the graph algorithm"
topSortingAlgo := AITopologicalSorting new.
"Set the nodes and edges"
topSortingAlgo
nodes: nodes;
edges: edges from: #first to: #second.
"Run to obtain the result"
topologicalSortedElements := topSortingAlgo run.

Note that a DAG may have several topological orders which all of them are
correct. If we look at the result we get the order in which the software de-
pendencies need to be installed.

#($A $B $C $D $E $F $G)

4.5 Conclusion

Topological sorting is simple algorithm working with a working list, the

list where we add the next nodes to be treated. It shows that the algorithm
works until the list gets empty. This is the typical structure of iterating algo-
rithms based on working list.

21

5.1

CHAPTER

Shortest path problem

The shortest path problem consists on finding a path between two pairs of
nodes in which the sum of the weights is minimized. For a general graph this
problem is NP-hard. For some kind of graphs this problem can be solved in
linear time.

In this chapter we will present multiple algorithms:
+ A version implementing breath first traversal,
« Dijkstra’s algorithm for weighted nodes,
« an algorithm for Directed Acyclic Graphs and,

» Bellman-Ford algorithm for negative weighted graphs.

Examples

Let us take this graph as an example 5-1 As it is an unweighted graph, we can
calculate the distance between 2 nodes using the BFS algorithm.

O—C—R
Figure 5-1 Short distance graph.

23

5.2

Shortest path problem

example.pdf width=48&label=shortdistance_graph)

But, if we add weights to the graph, as in 5-2 we cannot no longer use BFS.
But we can find the shortest distance using the Dijkstra algorithm.

e
O
W 6 7
O O
Figure 5-2 Short distance with weights.

distancegraph_2)

The Dijkstra’s algorithm does not work on graphs with negative weights. So,
if we add negative weights to the graph, we must use the Bellman-Ford algo-
rithm to solve the problem. Figure 5-3

Figure 5-3 Short distance with negative weights.

path.pdf width=48&label=shortdistancegraph3)

If the graph has no cycles, a Directed Acyclic Graph (DAG) (like Figure 5-3),
we can use an algorithm based on topological sort to find the shortest dis-
tance. This algorithm works for both negative and positive weights as long
the graph has no cycles. This algorithm is better in terms of time complexity
but is more restricted as it only runs on DAG. On the other hand, Dijkstra’s
and Bellman-Ford both run in both cyclic and acyclic graphs.

Shortest path on unweighted graphs (BFS algorithm)
If the graph is unweighted or all edges have the same non-negative weight,

the shortest path can be found in linear time using Breadth First Search
(BFS) algorithm,

24

5.2 Shortest path on unweighted graphs (BFS algorithm)

BFS is an algorithm for traveling a graph in a traversal way. That means that
the algorithm will travel the children of the starting node always in order
ensuring that when the goal node, if exists, is founded the path will be the
shortest one possible.

BFS is a single source shortest path algorithm. That means that before run-
ning the algorithm it is needed to specify a starting node. Then, the algo-
rithm can tell us the shortest path between the starting node and all the
other nodes.

The algorithm is the following one:

[initialize a queue Q
mark start node as visited
Q.addLast(start)
while Q is not empty do:
node := Q.removeFist()
if node is the end then:
return node
for adjacent nodes of node do:
if adjacentNode is not visited then:
mark adjacentNode as visited
Q.addLast(adjacentNode)

In the Pharo implementation we use a linked list as a queue. We use a LinkedList
instead of an OrderedCollection because the removeFirst operation of
LinkedList takes constant time and for an OrderedCollection, it takes

linear time.

We define a new subclass of ALGraphAlgorithm named AIBFS. And we define
a new method run as follows:

[AIBFS >> run

| node neighbours |
queue := LinkedList with: start.
start visited: true.

[queue isNotEmpty] whileTrue: [
node := queue removeFirst.
neighbours := node adjacentNodes.

neighbours do: [:next |
next visited ifFalse: [
queue addLast: next.
next visited: true.
next previousNode: node]] 1]

After running the algorithm, to reconstruct the shortest path between the
start and the end node, we use the following method:

25

Shortest path problem

[AIBFS >> reconstructPath

| path previous |
"If no path exists between the start and the end node"
end previousNode ifNil: [" #() 1.

path := LinkedList empty.

previous := end.

path addFirst: end model.

[previous = start] whileFalse: [

previous := previous previousNode.
path addFirst: previous model 1].
~ path

5.3 Case study

—

2%

Figure 5-4 A graph for BFS.

For the BFS graph, the shortest path can be calculated using the class AIBFS
like shown in the following example.

[nodes := $a to: $i.
edges := #(#($a $b) #($b $c) #($c $d) #($d $e) #($e $a)
#($b $e) #($e $b) #($e $f) #($f $g) #($g $h)
#($h $f) #($g $1) #($1 $g)).
bfs := AIBFS new.
bfs
nodes: nodes;
edges: edges from: #first to: #second.

| path := bfs runFrom: $a to: $g

26

54

5.4 Shortest path on weighted graphs (Dijkstra’s algorithm)

The path variable contains all the nodes that are part of the path, if we in-
spect the variable we see:

[#($a $b $e $f $g)

If we want to get the shortest path between the same starting node A and
some other node, there is no need of re-running the algorithm. We only need
to change the end node and call the method reconstruct path.

bfs end: $d.
pathToD := bfs reconstructPath

Shortest path on weighted graphs (Dijkstra’s algorithm)

The Dijkstra’s algorithm is one of the most-know algorithms for calculating
the shortest path in a weighted graph. As BFS, this algorithm is also a single
source shortest path algorithm. In its naive implementation has a time com-
plexity of . But, it can be optimized using a heap or a Fibonacci’s heap as a
data structure to a time complexity of . If a Fibonacci heap is used we get the
best possible time complexity possible (at the moment). Dijkstra’s algorithm
can handle a graph with cycles. But, it cannot handle negative weights.

The algorithm idea is:
1. Mark all nodes as unvisited.

2. Assign to every node infinity as the distance value. Set it to zero for
the initial. Set the initial node as current.

3. Consider all of unvisited neighbours of the current node and calculate
their distances through the current node. Compare the newly calcu-
lated tentative distance to the current assigned value and assign the
smaller one.

4. When all of the unvisited neighbours of the current node are checked,
mark the current node as visited.

5. Select the unvisited node that is marked with the smallest tentative
distance, set it as the new “current node”, and go back to step 3.

Depending on the data structure that is chosen, the time complexity will

vary. Using an array is the most inefficient one because to get the most promis-
ing pair it is necessary to travel all the array . But with a heap, or a Fibonacci
heap, the time complexity for getting the most promising pair is in the loga-
rithmic order. Our implementation uses an array for now.

The implementation in Pharo is the following:

27

Shortest path problem

EAIDijkstra >> run

| pq |
pg := self newPriorityQueue.
pq add: start -> 0.

[pg isNotEmpty] whileTrue: [
| assoc node minweight |

assoc := self removeMostPromisingPair: pq.
node := assoc key.
minWeight := assoc value.

node visited: true.

"Skip if the path weight is less than the one obtained from the
Pq.
This is an optimization for not processing unnecessary nodes."
node pathDistance < minwWeight ifFalse: [
node outgoingEdges do: [:edge |
edge to visited ifFalse: [
| newDistance |
newDistance := node pathDistance + edge weight.

newDistance < edge to pathDistance ifTrue: [
self updateDistance: newDistance of: edge to
previousNode: node.
pq add: edge to -> newDistance] 1 1 1] 1]

EAIDijkstra >> updateDistance: newDistance of: aNode previousNode:
previousNode

aNode previousNode: previousNode.
aNode pathDistance: newDistance

In this implementation we will use an Oredered Collection as a data structure
for the priority queue.

EAIDijkstra >> newPriorityQueue
"This is the naive implementation of the data structure."”

~ OrderedCollection new

>AIDijkstra >> removeMostPromisingPair: aPriorityQueue
"This is the naive implementation of the data structure."

| minvalue |
minValue := aPriorityQueue detectMin: [:assoc | assoc value].
~ aPriorityQueue remove: minValue

28

5.5

5.6

nodes :

»shortestPathBToE :

5.5 Case study

Figure 5-5 Dijkstra graph.

Case study

In the graph shown in Figure 5-5, the shortest path between node A and B is
#($A $C $B). The shortest path between node A and node Fis #($A $C
$B $D $E $F)

$A to: $F.

#(O #($A $B 5) #($A $C 1) #($B $C 2) #($B $E 20)
#($B $D 3) #($C $B 3) #($C $E 12) #($D $C 3)
#($D $E 2) #($D $F 6) #($E $F 1)).

edges :

dijkstra := AIDijkstra new.
dijkstra nodes: nodes.
dijkstra

edges: edges

from: #first

to: #second

weight: #third.

shortestPathAToB :
pathDistanceAToB :

dijkstra runFrom: $A to: $B.
(dijkstra findNode: $B) pathDistance.

dijkstra end: $F.
shortestPathAToF
pathDistanceAToF :

dijkstra reconstructPath.
(dijkstra findNode: $F) pathDistance.

dijkstra reset.

dijkstra runFrom: $B to: $E.

Shortest path on Directed Acyclic Graphs (DAG)

If the graph is a directed acyclic weighted graph (DAG), we can calculate the
shortest path using an algorithm based on topological sort. Using this algo-
rithm we have a time complexity of .

This algorithm is also single source shortest path. The idea of the algorithm

29

Shortest path problem

is to order the nodes in a topological order, using the topological sort algo-
rithm. Then, keep track of the path weight from the start node to the other
nodes. Then, start popping the nodes in order and store in a collection the

ones that have the lowest path weight.

As this algorithm runs in graphs that has no cycles, it can handle negative
weights. The pseudocode is:

1. Initialize the initial distance to every node to be infinity and the dis-
tance of the start node to be 0.

2. Create a topological order of all nodes.
3. For every node u in topological order:
» Do following for every adjacent node v of u

+ IF (v pathWeight > u pathWeight weight(u, v)) THEN v pathWeight: u
pathWeight + weight(u, v)

5.7 DAG shortest path implementation

The Pharo implementation is as follows.

[AIShortestPathInDAG >> initializePathWeights

nodes do: [:node | node pathWeight: Float infinity 1.
start pathWeight: 0

[AIShortestPathInDAG >> run

| topSorter stack sortedNode |

self initializePathWeights.

topSorter := AITopologicalSorting new
addNodesFromDifferentGraph: nodes;
yourself.

topSorter run.

stack := topSorter topologicalSortedElements.

[stack isNotEmpty] whileTrue: [
sortedNode := self findNode: stack removeFirst.
sortedNode outgoingEdges do: [:nextEdge |
nextEdge to pathWeight >
(sortedNode pathWeight + nextEdge weight)
ifTrue: [
nextEdge to pathWeight: sortedNode pathWeight +
nextEdge weight.

nextEdge to previousNode: sortedNode]]]

30

5.8 DAG shortest path refactored

5.8 DAG shortest path refactored

Now we are ready to refactor our code.

[AIShortestPathInDAG >> run

| stack sortedNode |
self initializePathWeights.
stack := self topologicalSortedNodes.

[stack isNotEmpty] whileTrue: [
sortedNode := self findNode: stack removeFirst.

sortedNode outgoingEdges do: [:nextEdge |
nextEdge to pathDistance >
(sortedNode pathDistance + nextEdge weight)
ifTrue: [
self updatePathDistance: nextEdge previousNode: sortedNode

111
[AIShortestPathInDAG >> topologicalSortedNodes

| topSorter
topSorter := AITopologicalSorting new
addNodesFromDifferentGraph: nodes;
yourself.
topSorter run.
~ topSorter topologicalSortedElements.

[AIShortestPathInDAG >> updatePathDistance: edge previousNode:
previousNode

edge to pathDistance: previousNode pathDistance + edge weight.
edge to previousNode: previousNode

Case study

On this weighted DAG (See Figure 5-6), the following snippet calculates the
shortest path between node A and node F.

[nodes := $A to: $G.
edges := #(#($A $B 1) #($B $C 5) #($B $E 11) #($B $D 8)
#($D $E 6) #($E $F 7) #($G $D 4)).
shortestPathInDAG nodes: nodes.
shortestPathInDAG
edges: edges
from: #first
to: #second
weight: #third

| pathAtoF := shortestPathInDAG runFrom: $A to: $F.

31

Shortest path problem

Figure 5-6 DAG with weigthed paths.

5.9 Shortest path on weighted graphs with negative weights
(Bellman-Ford algorithm)
In the Dijkstra’s algorithm when a node is marked as visited, the algorithm
already found the best distance to it, because adding any positive numbers

will only increase the path distance. When we are dealing with negative
numbers the assumption is not true.

The Bellman-Ford algorithm can handle negative weighted graphs. It runs
in time. As the other algorithms of this chapter, this is also a single source
shortest path algorithm. The logic behind the algorithm is to perform at
worst times an edge relaxation. Relaxing an edge means to update the value
of the distance from the starting node to the node to which to edge goes.
Then, run the algorithm one more time, if an edge can reduce its distance
(be relaxed) means that the node to which the edge goes is part of a negative
cycle.

The algorithm works as follows:
1. Set the distance to every node to be infinity
2. Set the distance to the starting node to be 0
3. Perform V-1 times the edge relaxation

4. Run another V-1 times the edge relaxation, if an edge can be still re-
laxed means that is part of a negative cycle.
5.10 Pharo implementation

The Pharo implementation is:

AIBellmanFord >> run

start pathDistance: 0.
self relaxEdges.

32

5.10 Pharo implementation

"Run the algorithm one more time to detect if there is any
negative cycles.

The variation is if we can relax one more time an edge,

means that the edge is part of a negative cycle.

So, we put negative infinity as the path distance’

self relaxEdgesToNegativeInfinity

[AIBellmanFord >> relaxEdges

| anEdgeHasBeenRelaxed |

"Relax the edges V-1 times at worst case"

nodes size - 1 timesRepeat: [
anEdgeHasBeenRelaxed := false.

edges do: [:edge |
edge from pathDistance + edge weight < edge to pathDistance
ifTrue: [

edge to previousNode: edge from.
anEdgeHasBeenRelaxed := true]].

"If no edge has been relaxed means that we can stop the
iteration before V-1 times"
anEdgeHasBeenRelaxed ifFalse: [" self] 1]

[AIBellmanFord >> relaxEdgesToNegativeInfinity

"This method is called after a first relaxation has occurred
already.

The algorithm is the same as the previous one but with the only
difference that now if an edge can be relaxed we set the path
distance

as negative infinity because means that the edge is part of a
negative cycle."

| anEdgeHasBeenRelaxed |

"Relax the edges V-1 times at worst case"

nodes size - 1 timesRepeat: [
anEdgeHasBeenRelaxed := false.

edges do: [:edge |
edge from pathDistance + edge weight < edge to pathDistance

ifTrue: [
edge to pathDistance: Float negativeInfinity.
anEdgeHasBeenRelaxed := true]].

"If no edge has been relaxed means that we can stop the
iteration before V-1 times"
anEdgeHasBeenRelaxed ifFalse: [" self] 1]

edge to pathDistance: edge from pathDistance + edge weight.

33

5.11

Shortest path problem

Longest path problem

To calculate the longest path of a graph we can simply multiply all the nodes
weights by and then calculate the shortest path. If the graph is a DAG, then
we can use the topological sort based algorithm. If not, we can use Bellman-
Ford.

Case study

Figure 5-7 A negative weighted graph used for experimenting with Bellman-Ford
algorithm.

We multiply by the weight of the edges of the previous graph used as an
example for the DAG algorithm and then we calculate the shortest path be-
tween two nodes using the Bellman-Ford algorithm. Doing that, actually we
are calculating the longest path for the original graph.

[bellmanFord := AIBellmanFord new.
nodes := $A to: $F.
edges := #(#($A $B -1) #($B $C -5) #($B $E -11)
#($B $D -8) #($E $F -7) #($D $E -6)
#($G $D -4)).
bellmanFord nodes: nodes.
bellmanFord
edges: edges
from: #first
to: #second
weight: #third.

pathFromAtoF := bellmanFord runFrom: $A to: $F.
| pathDistanceFromAToF := (bellmanFord findNode: $F) pathDistance

If we look at the path between A and F, we see #($A $B $D $E $F) which
is actually the longest path of the original graph.

34

5.12

5.12 Conclusion

Conclusion

In this chapter we saw some of the most-know algorithms for calculating
the shortest (and longest) distance on graphs. Calculate the shortest path,
or distance, in a graph is not a trivial problem and it is a NP-Hard problem.
For some types of graphs, like trees or DAG (Directed Acyclic Graphs), we can
solve the problem in linear time.

35

6.1

CHAPTER

Minimum spanning trees

The minimum spanning tree is a subset of the edges of a undirected weighted
graph that connects all the nodes of the graph without any cycles and with
the total sum of the weights minimized. There are several algorithms for ob-
taining the minimum spanning tree of a weighted graph, the most famous is
the Kruskal’s algorithm. In the case of an disconnected graph, the algorithm
returns a minimum spanning forest (i.e., it will return a list a minimum span-
ning trees)

We will show you how to implement Kruskal but before that we have to in-
troduce a little data-structure called Disjoint-Set.

Motivating scenario

Imagine that you have a telecommunication company and you want to build
a connection between different neighbourhoods. Some of the connections
are more expensive than others. For example, one connection has to pass
under the ground or above some mountains. So, you have a graph in which
the nodes represent the different neighbourhoods and the edges represent
all the possible cables that can be built to make the connections between the
neighbourhoods. The weights represent the cost of actually building the con-
nection.

Imagine that we have the graph shown in Figure 6-2, we would like to get the
tree that allows us to get all the nodes of the graph without circle as shown
in Figure 6-2.

spanningtree.pdf width=35&label=spanningsmall)

37

6.2

Minimum spanning trees

Figure 6-1 Connections costs between neighbourhoods.

Figure 6-2 Minimum spanning tree with C as root.

Disjoint-Set data structure
A disjoint-set, also called union-find data structure, is a data structure that
stores disjoint sets. It provides two operations:

+ unite that groups two disjoint sets into one and

* find that returns two elements belong to the same disjoint set.

For example, in Figure 6-3 we have two sets of elements and . If we call the
operation find with A and D nodes, as they do not belong to the same set,
the operation will return false. With A and B nodes, the operation find will
return true. find.pdf width=35&label=unionfind_set)

But when we invoke the operation unite with A and D, it will join the two sets
to have only one set with all the elements, as in Figure 6-4.

oneset.pdf width=35&label=onlyoneset)

This data structure is used in Kruskal’s algorithm to detect if adding a new
edge creates a cycle in the minimum spanning tree that is being built.

The time complexity of both of the operations is , where is the amortized
time complexity. Each time that the find: method is invoked an operation

38

6.2 Disjoint-Set data structure

Figure 6-3 Two Union-Find sets.

Figure 6-4 Union-Find set: result of the unite operation between A and D.

called path compression. This is due to the path compression operation that
this data structure has an amortized linear time complexity.

In Pharo, this data structure represents a node in the Kruskal’s graph algo-
rithm.

[AIDisjointSetNode >> union: aDSNode

| rootl root2 |
rootl := aDSNode find.
root2 := self find.

rootl = root2 ifTrue: [
"The nodes already belong to the same component"

~ self 1.

rootl parent: root2

[AIDisjointSetNode >> find
"Return the root of the component but modifying the parent/child
structure during the process of finding a root."

| root next node |

node := self.
root := node.
[root = root parent] whileFalse: [root := root parent].

"Compress the path leading back to the root.
This is the path compression operation that gives the linear

39

6.3

Minimum spanning trees

amortized time complexity"
[node = root] whileFalse: [

next := node parent.
node parent: root.
node := next].

* root

Kruskal's algorithm

As said above, the Kruskal’s algorithm calculates the minimum spanning

tree (or forest) of an undirected weighted graph. The algorithm has a time
complexity of . This time complexity is achieved thanks to the Disjoint-Set
data structure. This algorithm uses the Disjoint-Set data structure to check if
adding an edge to the spanning tree creates a cycle.

The pseudocode is:

[1. Sort edges in ascending weight.
2. Pick the smallest edge.
Check if its two nodes are already unified.
If they are not, unified them and include the edge to the
spanning tree.
Else, discard it.
3. Repeat step 2 until there are all nodes are connected.

This is the implementation of the algorithm in Pharo:

[AIKruskal >> run

| treeEdges sortedEdges |
sortBlock := [:el :e2 | el weight < e2 weight].

treeEdges := OrderedCollection new.

nodes do: [:node | node makeSet].

sortedEdges := edges asSortedCollection: sortBlock.
sortedEdges

reject: [:edge |
"Only join the two nodes if they don't belong to the same
component”
edge from find = edge to find]
thenDo: [:edge |
edge from union: edge to.
treeEdges add: edge].
treeEdges

A

40

6.4 Kruskal's algorithm for maximum spanning tree

6.4 Kruskal’s algorithm for maximum spanning tree

As contrary to the minimum spanning tree, the maximum spanning tree of a
graph is a subset of edges of a graph that connects all nodes with the maxi-
mum possible distance.

This is exactly the same algorithm except that we have to order the edges in
descending weight instead of ascending.

1. Sort edges in descending weight.
2. Pick the biggest edge...

In the implementation we only need to change one line:

[sortBlock := [:el :e2 | el weight > e2 weight].

6.5 Case study

We can now apply our algorithm to the graph shown at the beginning of this
chapter in Figure 6-5.

Figure 6-5 Connections costs between neighbourhoods.

So, like in the other graph algorithms we only need to declare the nodes and
the edges an then call the method run to obtain the result.

[nodes := $A to: $3.

edges := #(#($A $B 25) #($A $D 8) #($A $F 11) #($B $A 25)
#($B $E 1) #($B $C 12) #($C $B 12) #($C $D 16)
#($C $F 6) #($C $G6 9) #($D $A 8) #($D $C 16)
#($E $B 1) #($E $G 14) #($F $A 11) #($F $C 6)
#($F $G6 5) #($F $3 4) #($G $F 5) #($G $C 9)
#($G $E 14) #($G $H 7) #($H $6 7) #($I $3 7)

41

kruskal := AIKruskal new.
kruskal nodes: nodes.
kruskal

edges: edges

from: #first

to: #second

weight: #third.
minimumSpanningTree := kruskal run

#($3 $F 4) #($31 3817)).

Minimum spanning trees

If we inspect the minimumSpanningTree variable, we get a collection the
edges of the minimum spanning tree.DSN means DisjointSetNode.

DSN $B -> DSN $E weight: 1
DSN $J -> DSN $F weight: &
DSN $F -> DSN $G weight: 5
DSN $F -> DSN $C weight: 6
DSN $I -> DSN $J weight: 7
DSN $H -> DSN $G weight: 7
DSN $A -> DSN $D weight: 8
DSN $A -> DSN $F weight: 11
DSN $C -> DSN $B weight: 12

Figure 6-6 Minimum spanning tree.

spanningtree.pdf width=55)

If we want to obtain the maximum spanning tree, we only need to call the
maxSpanningTree method when creating the graph algorithm.

[kruskal := AIKruskal new maxSpanningTree.

42

6.6

6.6 Conclusion

Conclusion

Data structures play a powerful role when it comes to algorithms. In this
specific case thank to the Disjoint-Set data structure we can detect cycles in
amortized linear time complexity with few lines of code. Also, the Kruskal
algorithm has many real life applications and it is an important algorithm in
the context of graph theory.

43

7.1

7.2

CHAPTER

Strongly Connected Components
in a Graph

A graph is strongly connected if every of its nodes are reachable from every
other node. That means, that from all nodes, you can reach any node of the
graph. The strongly connected component of a graph if the maximum subset
which itself forms also a strongly connected graph.

The most knew algorithms for finding the strongly connected components
of a graph are: Tarjan’s and Kosaraju’s algorithms. Both algorithms have a
time complexity of and are based on DFS (depth search first). But Tarjan’s
algorithm is faster on practice. Because Kosaraju’s algorithm does two passes
of DFS and Tarjan’s only one.

Motivating example

Finding strongly connected components in a graph has several real life ap-
plications. For example it is used on social media to find groups of friends to
suggest commonly liked pages (see Figure 7-1).

In Figure 7-1 we have 5 different strongly connected components that are
highlighted with colors.

connectedgraphwithcolors.pdf width=35&label=strongSituationSmall)

Tarjan’s algorithm

To find the strongly connected components of a graph, Tarjan’s algorithm
assigns a low-link value and an ID to each node. At the beginning, the low-

45

Strongly Connected Components in a Graph

©
@

|
©
oo

Figure 7-1 A social network: each node is a person and an edge a connection.

link value is the same as the node ID. Then, as the algorithm is running it
updates the low-link value to be the smallest index of any node known that
is reachable. It does a DFS pass to all the node to update low-link value. If

at the end of the DFS call the low link value of a node is the same as its ID,
means that that node is the beginning of a strongly connect component. The
pseudocode is:

1. Mark the as unvisited and without an ID nor a low-link value.

2. Start DFS. When visiting a node assign it an ID and a low-link
value same as the ID.

3. Mark current node as visited and add it to the stack.

4. On DFS callback,
First, min the current node's low-link value with the low-link
value of the adjacent node.
Then, if the adjacent node is on the stack

then min the current node's low-link with the adjacent

node's 1ID.

5. After visiting all adjacent nodes, if the current node has its ID
value as the same of its low-link value
Then it means that there is a strongly connected component.
So, pop all nodes from the stack until current node is reached.

The DFS callback is when we are going back from the recursion.

7.3 Tarjan's implementation
In the Pharo implementation a traverse: method is used. This is the DFS
call. All the magic happens in that method.

AITarjan >> run
"Initialize an empty array for the strongly connected components"

sccs := OrderedCollection new.
stack := Stack new.
runningIndex := 0.

46

7.3 Tarjan's implementation

nodes do: [:node |
node isTarjanUndefined ifTrue: [
"If the node has no low-link value set make a dfs call"
self traverse: node] 1].
* self stronglyConnectedComponents

EAITarjan >> traverse: aTarjanNode

aTarjanNode tarjanIndex: runningIndex.
aTarjanNode tarjanLowlink: runningIndex.
runningIndex := runningIndex + 1.

self putOnStack: aTarjanNode.

aTarjanNode adjacentNodes do: [:adjacentNode |
adjacentNode isTarjanUndefined
ifTrue: [
"If the adjacent node doesn't have a low link"
self traverse: adjacentNode.
aTarjanNode tarjanLowlink:
(aTarjanNode tarjanLowlink
min: adjacentNode tarjanLowlink)]
ifFalse: [
"If the adjacent node had already a low link value"
adjacentNode inStack ifTrue: [
aTarjanNode tarjanLowlink:
(aTarjanNode tarjanLowlink
min: adjacentNode tarjanIndex) 1] 1.

"If the node is the beginning of a strongly connected component"
(self isRootNode: aTarjanNode) ifTrue: [
self addNewSccForNode:: aTarjanNode]

[AITarjan >> putOnStack: aTarjanNode

stack push: aTarjanNode.
aTarjanNode inStack: true

EAITarjan >> addNewSccForNode: aTarjanNode

| currentNode stronglyConnectedComponent |
stronglyConnectedComponent := OrderedCollection empty.

[currentNode := stack pop.

currentNode inStack: false.

stronglyConnectedComponent add: currentNode]
doWhileFalse: [currentNode = aTarjanNode].

sccs add: stronglyConnectedComponent.
stronglyConnectedComponent do: [:each |

47

Strongly Connected Components in a Graph
L each cycleNodes: stronglyConnectedComponent]

The method stronglyConnectedComponents returns a list of group of ele-
ments. Each group represents a strongly connected component.

AITarjan >> stronglyConnectedComponents
sccs ifNil: [self run].

* sccs collect: [:component |
component collect: [:each | each model] 1]

7.4 Case study
The graph in Figure 7-2 represents a set of connected people on a social me-

dia. An edge represents a follow. One person can follow and can be followed.
We want to know which and how many strongly connected components the

social network has.

(o r—

Figure 7-2 A social network: each node is a person and an edge a connection.

connectedgraph.pdf width=35&label=strongSituation)

The code for solving the problem is similar to the other algorithms. We in-
stantiate the nodes, the edges and call the method run.

[nodes := $a to: $h.

edges := #(#($a $b) #($a $c) #($a $g) #($b $e) #($c $b)
#($c $d) #($d $f) #($f $c) #($g $h) #($g $d)
#($h $g)).

tarjan := AITarjan new.

tarjan

nodes: nodes;
edges: edges from: #first to: #second.
| stronglyConnectedComponents := tarjan run

If we inspect the stronglyConnectedComponents variable we see that that
is a collection that contains 5 elements. Each element is a list that contains
the nodes corresponding to the strongly connected component.

48

7.5 Reducing a Graph

an OrderedCollection($e)

an OrderedCollection($b)

an OrderedCollection($c $f $d)
an OrderedCollection($h $g)

an OrderedCollection($a)

So, our graph has 5 strongly connected components, which are: , , , ,

7.5 Reducing a Graph

If we want to collapse all strongly connected components of a graph into a
single one, we can use the Tarjan’s algorithm to help in the task. Note that
this algorithm for reducing a graph does not work on weighted graphs.

This is useful when we want to treat all the strongly connected components
as one node. For example in a telecommunication network it can be useful
for simplifying the analysis of costs.

To do that:

1. Find circuits using Tarjan’s algorithm (strongly connected components
which size is > 1).

Merge all nodes in circuit into one collapsed node.

Remove the nodes that were merged.

Ll

Add the new collapsed nodes.

5. Replace the old references to the merged nodes to reference the new
collapsed nodes.

7.6 Case study

We want to reduce the same graph collapsing all strongly connected compo-
nents into one node.

[nodes := $a to: $h.
edges := #(#($a $b) #($a $c) #($a $g) #($b $e) #($c $b)
#($c $d) #($d $f) #($f $c) #($g $h) #($g $d)
#($h $g)).
graphReducer := AIGraphReducer new.
graphReducer
nodes: nodes;
edges: edges from: #first to: #second.
| reducedGraph := graphReducer run

reducedGraph is a collection that contains all the new nodes of the graph.
We can see that now there is only 5 nodes (because the graph contained 5

49

7-7

Strongly Connected Components in a Graph

strongly connected components). Also, you can inspect the collapsed nodes
and you will see the new adjacencies.

Merged
Merged
Merged
Merged
Merged

nodes:
nodes:
nodes:
nodes:
nodes:

$a

$b

$e

$h, $g
$c, $f, $d

eao

Figure 7-3 Reduced graph: a collection containing all the new nodes.

Conclusion

Although Tarjan’s algorithm can be a bit complicated to understand a first
sight, once we understand the logic behind the updating the low-link values
it gets clearer. The strongly connected components can represent several
things in real life and the Tarjan algorithm is very useful because it runs on
linear time.

50

8.1

CHAPTER

Link analysis

Link analysis is a technique used to evaluate relationships between nodes.
Link analysis is used on several fields, such as search engines, fraud detec-
tion, among others. There is several algorithms of different kinds to per-
form link analysis. Here we are only going to focus on the Hyperlink-Induced
Topic Search (HITS) algorithm.

This algorithm was originally developed to rate web pages. But, nowadays
modern search engines do not use this algorithm since there is more ad-
vanced techniques. HITS has been also used to identify the important classes
that should be commented in a large software system or the classes that a
developer should read to get an insight of the key classes.

Hyperlink-Induced Topic Search (HITS) algorithm

Hyperlink-Induced Topic Search (HITS) algorithm, also knows as Hubs and
Authorities, is an algorithm that rates every the nodes of a graph. Every
node has a hub and a authority score. A hub is a node that may not be rel-
evant but references relevant nodes. An authority is a node that contains
relevant information.

The algorithm does the following:
1. Assign to each node a hub and an authority score equal to 1.
2. Run the authority update rule for each node.
3. Run the hub update rule for each.

4. Normalize the values by dividing each Hub score by the square root
of the sum of the squares of all Hub scores, and dividing each Author-

51

8.2

Link analysis

ity score by the square root of the sum of the squares of all Authority
scores.

5. Repeat from the second step as necessary.
The update rules are simple:

Authority update rule Update each node’s authority score to be equal to the
sum of the hub scores of each node that points to it.

Hub update rule Update each node’s hub score to be equal to the sum of the
authority scores of each node that it points to.

HITS implementation

The Pharo implementation is as follows. The k number is the number of
times that the scores are going to be updated. The default value is 20 but it
can also be set manually.

[AIHits >> run

self initializeNodes.

k timesRepeat: [

nodes do: [:node | self computeAuthoritiesFor: node].
nodes do: [:node | self computeHubsFor: node].

self normalizeScores].

nodes

A

[AIHits >> initializeNodes

"Here we are using float instead of int because of the
normalization."

nodes do: [:n |
n auth: 1.0.
n hub: 1.0]

[AIHits >> computeAuthoritiesFor: aNode

aNode auth:
(aNode incomingNodes
inject: 0

into: [:sum :node | sum + node hub 1)

[ATHits >> computeHubsFor: aNode

aNode hub:
(aNode adjacentNodes
inject: 0

into: [:sum :node | sum + node auth 1)

52

8.3 Case study

[AIHits >> normalizeScores
| authNorm hubNorm |
authNorm := 0.

hubNorm := 0.

nodes do: [:node |

authNorm := authNorm + node auth squared.
hubNorm := hubNorm + node hub squared].
authNorm := authNorm sqrt.
hubNorm := hubNorm sqrt.

"To avoid dividing by 0"
authNorm = 0 ifTrue: [authNorm := 1.0].
hubNorm = 0@ ifTrue: [hubNorm := 1.0].
nodes do: [:n |

n auth: n auth / authNorm.

n hub: n hub / hubNorm]

8.3 Case study

Here we calculate the hubs and authorities scores for all the nodes of the
graph shown in Figure 8-1 with 3 iterations.

Figure 8-1 A graph to play with the HITS algorithm.

[nodes := #('A' 'B' 'C' 'D').
edges := #(#('A' 'B') #('A' 'C') #('A" 'D') #('B' 'C')
#('B' 'D'") #(C 'Cc" 'A") #(C 'c’ 'D'") #('D" 'D')).
hits := AIHits new.
hits
nodes: nodes;
edges: edges from: #first to: #second;
k: 3.
nodes := hits run

Link analysis

If we inspect the nodes, these are the scores calculated after 3 iterations.

('A'" auth: 0.17 hub: 0.65)
('B' auth: 0.27 hub: 0.54)
('C' auth: 0.49 hub: 0.41)
('D' auth: 0.81 hub: 0.34)

8.4 Weighted HITS

There are cases where the Hits algorithm does not behave as expected and
sometimes the Hits algorithm puts 0 as values for the hubs and authorities.
Using weights in a graph helps in obtaining better results. Establishing the
weights is a responsibility of the user.

For more information, you can read these papers:

* Modifications of Kleinberg’s HITS Algorithm Using Matrix Exponentiation and
Web Log Records by Miller et al. %

» An Improved Weighted HITS Algorithm Based on Similarity andPopularity by
Zhang et al. %

In terms of implementation, it is only necessary to multiply the weights with
the scores in each iteration. That means changing computeAuthorities-
For: and computeHubsFor: methods. This is done in ATWeightedHits class.

[AIWeightedHits >> computeAuthoritiesFor: aNode

aNode auth: (aNode incomingEdges
inject: 0
into: [:sum :edge | sum + (edge weight * edge from hub) 1)

[AIWeightedHits >> computeHubsFor: aNode

aNode hub: (aNode outgoingEdges
inject: @
into: [:sum :edge | sum + (edge weight * edge to auth) 1)

8.5 Conclusion
Even if the HITS algorithm is not used anymore in the modern search en-

gines, it is a very good algorithm for having a first look on how to classify
links according to their relevance in the network.

54

	Illustrations
	Introduction
	Paris metro as graph example
	About tests
	Outline of the document

	How to install

	Basic definitions
	Type of Graphs
	Directed Graph
	Undirected Graph
	Weighted Graph
	Connected Graph

	Graph Cycle
	Directed Acyclic Graph (DAG)
	Strongly Connected Graph
	Strongly Connected Component

	Tree
	Conclusion

	Graph Representation
	Graph description
	Blocks and symbols.
	Weighted graphs

	Basic graph elements
	About nodes
	Graph algorithm inheritance tree
	Conclusion

	Topological sorting
	Example
	Kahn's algorithm
	Improving the implementation
	Case study
	Conclusion

	Shortest path problem
	Examples
	Shortest path on unweighted graphs (BFS algorithm)
	Case study
	Shortest path on weighted graphs (Dijkstra's algorithm)
	Case study
	Shortest path on Directed Acyclic Graphs (DAG)
	DAG shortest path implementation
	DAG shortest path refactored
	Case study

	Shortest path on weighted graphs with negative weights (Bellman-Ford algorithm)
	Pharo implementation
	Longest path problem
	Case study

	Conclusion

	Minimum spanning trees
	Motivating scenario
	Disjoint-Set data structure
	Kruskal's algorithm
	Kruskal's algorithm for maximum spanning tree
	Case study
	Conclusion

	Strongly Connected Components in a Graph
	Motivating example
	Tarjan's algorithm
	Tarjan's implementation
	Case study
	Reducing a Graph
	Case study
	Conclusion

	Link analysis
	Hyperlink-Induced Topic Search (HITS) algorithm
	HITS implementation
	Case study
	Weighted HITS
	Conclusion

