
Pharo Chosen Pieces

S. Ducasse

March 13, 2024

Copyright 2017 by S. Ducasse.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations ii

1 Blocks: a Detailed Analysis 1

1.1 Basics . 2

1.2 Some handy extensions . 2

1.3 Other messages . 3

1.4 Variables and blocks . 4

1.5 Some little experiments . 5

1.6 Experiment 1: Variable lookup. 5

1.7 Experiment 2: Changing a variable value 6

1.8 Experiment 3: Accessing a shared non-local variable. 7

1.9 Experiment 4: Variable lookup is done at execution time. 7

1.10 Experiment 5: For method arguments . 8

1.11 Experiment 6: self binding . 9

1.12 About temporary variables . 10

1.13 Block-local variables . 11

1.14 Variables can outlive their defining method 12

1.15 Returning from inside a block . 14

1.16 Experiment 7: Return’s exiting behavior . 14

1.17 Escaping behavior of non-local return . 15

1.18 Understanding return . 15

1.19 Accessing context information . 19

1.20 Couple more examples . 19

1.21 Non-local return blocks . 20

1.22 Contexts: representing method execution 21

1.23 Interacting with Contexts . 21

1.24 Block nesting and contexts . 23

1.25 Message execution . 24

1.26 Sending a message . 24

1.27 Sketch of implementation . 25

1.28 Implementation . 26

1.29 Full block implementation . 27

1.30 Conclusion . 28

i

Illustrations

1-1 Block definition . 2

1-2 Block Evaluation . 2

1-3 Non-local variables are looked up in the method activation context

where the block was created and not where it is executed. 6

1-4 blockLocalTemp execution: each block created during a loop step has

its own home context. 12

1-5 blockOutsideTemp execution: one context is shared by all the blocks

created in the loop step. 13

1-6 A block with non-local return execution returns to the method execution

that activated the block home context. Dashed bevelled rectangles

represent the same block at different execution points. 18

1-7 A method context where we can access the value of the temporary

variable temp at that given point of execution. 22

1-8 The pc variable holds 27 because the last (bytecode) instruction executed

was the message send inspect. 23

1-9 Relations between contexts and compiled methods. 26

1-10 A first understanding of closures. 26

1-11 How the VM stores remote variables so that they continue to leave when

a method returns. 27

ii

CHA P T E R 1
Blocks: a Detailed Analysis

This chapter is based on the chapter of Deep into Pharo written by S. Ducasse
with the participation of C. Béra.

Lexically-scoped block closures, blocks in short, are a powerful and essen-
tial feature of Pharo. Without them it would be difficult to have such a small
and compact syntax. The use of blocks is key to get conditionals and loops as
library messages and not hardcoded in the language syntax. This is why we
can say that blocks work extremely well with the message passing syntax of
Pharo.

In addition blocks are effective to improve the readability, reusability and ef-
ficiency of code. The precise dynamic runtime semantics of blocks, however,
is not well documented. For example, blocks in the presence of return state-
ments behave like an escaping mechanism and while this can lead to ugly
code when used to its extreme, it is important to understand it.

In this chapter you will learn about the central notion of context (objects
that represent point in program execution) and the capture of variables at
block creation time. You will learn how block returns can change program
flow. Finally to understand blocks, we describe how programs execute and
in particular we present contexts, also called activation records, which rep-
resent a given execution state. We will show how contexts are used during
the block execution. This chapter complements the one on exceptions (see
Chapter ??). In the Pharo by Example book, we presented how to write and
use blocks. On the contrary, this chapter focuses on deep aspects and their
runtime behavior.

1

Blocks: a Detailed Analysis

Listing 1-1 Block definition

[1 + 2]
>>> [1 + 2]

Listing 1-2 Block Evaluation

[1 + 2] value
>>> 3

[:x | x + 2] value: 5
>>> 7

1.1 Basics

What is a block? A block is a lambda expression that captures (or closes over)
its environment at creation-time. We will see later what it means exactly.
For now, imagine a block as an anonymous function or method. A block is a
piece of code whose execution is frozen and can be kicked in using messages.
Blocks are defined by square brackets.

If you execute and print the result of the following code, you will not get 3,
but a block. Indeed, you did not ask for the block value, but just for the block
itself, and you got it.

A block is executed by sending the message value to it. More precisely, blocks
can be executed using value (when no argument is mandatory), value:
(when the block requires one argument), value:value: (for two arguments),
value:value:value: (for three) and valueWithArguments: anArray (for
more arguments). These messages are the basic and historical API for block
execution. They were presented in the Pharo by Example book.

1.2 Some handy extensions

Beyond the valuemessages, Pharo includes some handy messages such as
cull: and friends to support the execution of blocks even in the presence of
more values than necessary.cull: will raise an error if the receiver requires
more arguments than provided.

The valueWithPossibleArgs: message is similar to cull: but takes an ar-
ray of parameters to pass to a block as argument. If the block requires more
arguments than provided, valueWithPossibleArgs: will fill them with nil.

[1 + 2] cull: 5
>>> 3
[1 + 2] cull: 5 cull: 6
>>> 3
[:x | 2 + x] cull: 5
>>> 7

2

1.3 Other messages

[:x | 2 + x] cull: 5 cull: 3
>>> 7
[:x :y | 1 + x + y] cull: 5 cull: 2
>>> 8
[:x :y | 1 + x + y] cull: 5
>>> error because the block needs 2 arguments.
[:x :y | 1 + x + y] valueWithPossibleArgs: #(5)
>>> error because 'y' is nil and '+' does not accept nil as a

parameter.

1.3 Other messages

Some messages are useful to profile execution:

• bench. Return how many times the receiver block can be executed in 5
seconds.

• durationToRun. Answer the duration (instance of class Duration)
taken to execute the receiver block.

• timeToRun. Answer the number of milliseconds taken to execute this
block.

Some messages are related to error handling (as explained in the Chapter ??.

• ensure: terminationBlock. Execute the termination block after
evaluating the receiver, regardless of whether the receiver’s evalua-
tion completes.

• ifCurtailed: onErrorBlock. Execute the receiver, and, if the eval-
uation does not complete, execute the error block. If evaluation of the
receiver finishes normally, the error block is not executed.

• on: exception do: catchBlock. Execute the receiver. If an excep-
tion exception is raised, execute the catch block.

• on: exception fork: catchBlock. Execute the receiver. If an ex-
ception exception is raised, fork a new process, which will handle
the error. The original process will continue running as if the receiver
evaluation finished and answered nil, i.e., an expression like: [self
error: 'some error'] on: Error fork: [:ex | 123] will al-
ways answer nil to the original process. The context stack, starting
from the context which sent this message to the receiver and up to
the top of the stack will be transferred to the forked process, with the
catch block on top. Eventually, the catch block will be executed in the
forked process.

Some messages are related to process scheduling. We list the most important
ones. Since this Chapter is not about concurrent programming in Pharo, we
will not go deep into them.

3

Blocks: a Detailed Analysis

• fork. Create and schedule a Process evaluating the receiver.

• forkAt: aPriority. Create and schedule a Process evaluating the
receiver at the given priority. Answer the newly created process.

• newProcess. Answer a Process evaluating the receiver. The process is
not scheduled.

1.4 Variables and blocks

A block can have its own temporary variables. Such variables are initialized
during each block execution and are local to the block. We will see later how
such variables are kept. Now the question we want to make clear is what is
happening when a block refers to other (non-local) variables. A block will
close over the external variables it uses. It means that even if the block is
executed later in an environment that does not lexically contain the vari-
ables used by a block, the block will still have access to the variables during
its execution. Later, we will present how local variables are implemented and
stored using contexts.

In Pharo, private variables (such as self, instance variables, method tempo-
raries and arguments) are lexically scoped: an expression in a method can
access to the variables visible from that method, but the same expression put
in another method or class cannot access the same variables because they
are not in the scope of the expression (i.e., visible from the expression).

At runtime, the variables that a block can access, are bound (get a value asso-
ciated to them) in the context in which the block that contains them is defined,
rather than the context in which the block is executed. It means that a block,
when executed somewhere else can access variables that were in its scope
(visible to the block) when the block was created. Traditionally, the context
in which a block is defined is named the block home context.

The block home context represents a particular point of execution (since this
is a program execution that created the block in the first place), therefore
this notion of block home context is represented by an object that represents
program execution: a context object in Pharo. In essence, a context (called
stack frame or activation record in other languages) represents information
about the current execution step such as the context from which the current
one is executed, the next instruction (byte code) to be executed, and tempo-
rary variable values. A context is a Pharo execution stack element. This is
important and we will come back later to this concept. A block is created in-
side a context (an object that represents a point in the execution) and it can
access variables that were accessible at creation time.

4

1.5 Some little experiments

1.5 Some little experiments

Let’s experiment a bit to understand how variables are bound in a block. De-
fine a class named BExp (for BlockExperiment) as a subclass of TestCase so
that we can define quickly some tests to make sure that our results are al-
ways correct.

TestCase subclass: #BExp
instanceVariableNames: ''
classVariableNames: ''
package: 'BlockExperiment'

1.6 Experiment 1: Variable lookup.

A variable is looked up in the block definition context. We define two meth-
ods: one that defines a variable t and sets it to 42 and a block [t] and one
that defines a new variable with the same name and executes a block defined
elsewhere.

BExp >> setVariableAndDefineBlock
| t |
t := 42.
^ self executeBlock: [t]

BExp >> executeBlock: aBlock
| t |
t := 33.
^ aBlock value

BExp new setVariableAndDefineBlock
>>> 42

The following test passes. Executing the BExp new setVariableAndDe-
fineBlock expression returns 42 .

BExp >> testSetVariableAndDefineBlock
self assert: self setVariableAndDefineBlock equals: 42

The value of the temporary variable t defined in the setVariableAndDe-
fineBlockmethod is the one used rather than the one defined inside the
method executeBlock: even if the block is executed during the execution of
this method. The variable t is looked up in the context of the block creation
(context created during the execution of the method setVariableAndDe-
fineBlock and not in the context of the block evaluation (method execute-
Block:).

Let’s look at it in detail. Figure 1-3 shows the execution of the expression
BExp new setVariableAndDefineBlock.

• During the execution of method setVariableAndDefineBlock, a vari-
able t is defined and it is assigned 42. Then a block is created and this

5

Blocks: a Detailed Analysis

block refers to the method activation context - which holds temporary
variables.

• The method executeBlock: defines its own local variable t with the
same name than the one in the block. This is not this variable, how-
ever, that is used when the block is executed. While executing the
method executeBlock: the block is executed, during the execution
of the expression t the non-local variable t is looked up in the home
context of the block i.e., the method context that created the block and
not the context of the currently executed method.

t : 42
setVariableAndDefineBlock

| t |
t := 42.
self executeBlock: [t]

t : 33
executeBlock: aBlock

| t |
t := 33.
aBlock value

in context
 italic: already executed
 bold: current execution
 plain: future

home
Context

sender

context

context

method

method

executeBlock Block: aBlock
| t |
t := 33.
aBlock value

setVariableAndDefineBlock
| t |
t := 42.
self executeBlock: [t traceCr]

[t]

1

2

blockClosure

Figure 1-3 Non-local variables are looked up in the method activation context

where the block was created and not where it is executed.

Non-local variables are looked up in the home context of the block (i.e., the
method context that created the block) and not the context executing the
block.

1.7 Experiment 2: Changing a variable value

Let’s continue our experiments. The method setVariableAndChanging-
VariableBlock shows that a non-local variable value can be changed during
the evaluation of a block. Executing BExp new setVariableAndChanging-
VariableBlock returns 2008, since 2008 is the last value of the variable t.

BExp >> setVariableAndChangingVariableBlock
| t |
t := 42.
^ self executeBlock: [t := 2008. t]

6

1.8 Experiment 3: Accessing a shared non-local variable.

The test verifies this behavior.

BExp >> testSetVariableAndChangingVariableBlock
self assert: self setVariableAndChangingVariableBlock equals: 2008

1.8 Experiment 3: Accessing a shared non-local variable.

Different blocks can share a non-local variable and they can modify the value
of this variable at different moments. To see this, let us define a new method
accessingSharedVariables as follows:

BExp >> accessingSharedVariables
| t |
^ String streamContents: [:st |
t := 42.
self executeBlock: [st print: t. st cr. t := 99. st print: t.
st cr].
self executeBlock: [st print: t. st cr. t := 66. st print: t.
st cr].
self executeBlock: [st print: t. st cr.]

]

The following test shows the results:

BExp >> testAccessingSharedVariables
self assert: self accessingSharedVariables equals: '42
99
99
66
66
'

BExp new accessingSharedVariables will print 42, 99, 99, 66 and 66. Here
the two blocks [st print: t. st cr. t := 99. st print: t. st cr
] and [st print: t. st cr. t := 66. st print: t. st cr] ac-
cess the same variable t and can modify it. During the first execution of
the method executeBlock: its current value 42 is printed, then the value
is changed and printed. A similar situation occurs with the second call. This
example shows that blocks share the location where variables are stored and
also that a block does not copy the value of a captured variable. It just refers
to the location of the variables and several blocks can refer to the same loca-
tion.

1.9 Experiment 4: Variable lookup is done at execution

time.

The following example shows that the value of the variable is looked up at
runtime and not copied during the block creation. First add the instance

7

Blocks: a Detailed Analysis

variable block to the class BExp.

Object subclass: #BExp
instanceVariableNames: 'block'
classVariableNames: ''
package: 'BlockExperiment'

Here the initial value of the variable t is 42. The block is created and stored
into the instance variable blockbut the value to t is changed to 69 before
the block is executed. And this is the last value (69) that is effectively printed
because it is looked up at execution-time in the home context of the block.
Executing BExp new variableLookupIsDoneAtExecution return '69' as
confirmed by the tests.

BExp >> variableLookupIsDoneAtExecution

^ String streamContents: [:st |
| t |
t := 42.
block := [st print: t].
t := 69.
self executeBlock: block]

BExp >> testVariableLookupIsDoneAtExecution
self assert: self variableLookupIsDoneAtExecution equals: '69'

1.10 Experiment 5: For method arguments

We can naturally expect that method arguments referred by a block are
bound in the context of the defining method. Let’s illustrate this point. De-
fine the following methods.

BExp >> testArg5: arg
^ String streamContents: [:st |
block := [st << arg].
self executeBlockAndIgnoreArgument: 'zork']

BExp >> executeBlockAndIgnoreArgument: arg
^ block value

BExp >> testArg5
self assert: (self testArg5: 'foo') equals: 'foo'

Executing BExp new testArg: 'foo' returns 'foo' even if in the method
executeBlockAndIgnoreArgument: the temporary arg is redefined. The
block execution looks for the value of arg is its definition context which
is the one where testArg5: ’ arg is bound to ’foo’ due to the execution of
method testArg5.

8

1.11 Experiment 6: self binding

1.11 Experiment 6: self binding

Now we may wonder if self is also captured in a block. It should be but let
us test it. To test we need another class. Let’s simply define a new class and a
couple of methods. Add the instance variable x to the class BExp and define
the initializemethod as follows:

Object subclass: #BExp
instanceVariableNames: 'block x'
classVariableNames: ''
package: 'BlockExperiment'

BExp >> initialize
x := 123.

Define another class named BExp2.

Object subclass: #BExp2
instanceVariableNames: 'x'
classVariableNames: ''
package: 'BlockExperiment'

BExp2 >> initialize
x := 69.

BExp2 >> executeBlockInAnotherInstance6: aBlock
^ aBlock value

Then define the methods that will invoke methods defined in BExp2.

BExp >> selfIsCapturedToo
^ String streamContents: [:st |

self executeBlockInAnotherInstance6: [st print: self ; print:
x]]

BExp >> executeBlockInAnotherInstance6: aBlock
^ NBexp2 new executeBlockInAnotherInstance6: aBlock

Finally we write a test showing that this is indeed the instance of BExp that is
bound to self even if it is executed in BExp2.

BExp >> testSelfIsCapturedToo
self assert: self selfIsCapturedToo equals:

'NBexp>>#testSelfIsCapturedToo123'

Now when we execute BExp new selfIsCapturedToo, we get NBexp>>#test-
SelfIsCapturedToo printed showing that a block captures self too, since
an instance of BExp2 executed the block but the printed object (self) is the
original BExp instance that was accessible at the block creation time. The
printing is NBexp>>#testSelfIsCapturedToo because BExp is subclass of
TestCase.

9

Blocks: a Detailed Analysis

Conclusion.

We show that blocks capture variables that are reached from the context in
which the block was defined and not where there are executed. Blocks keep
references to variable locations that can be shared between multiple blocks.

1.12 About temporary variables

Before looking at how block temporaries are managed we propose a little
review of temporary variable aspects in Pharo.

Temporaries cannot shadow other temporaries. The following expression is
not allowed by the compiler because the second tmp definition is illegal.

[
| tmp |
tmp := 2.
[
| tmp |
tmp := 3]]

Similarly a temporary cannot shadow a block or a method parameter. There-
fore the following expression is not allowed.

[:tmp |
| tmp |
tmp := 2]

The following method is not valid either.

with: arg
| arg |
^ arg

Finally parameters are read only. Therefore the following method is not
valid.

with: arg
arg := 42

As well as the following expression

[:tmp |
tmp := 2
]

We can say that inside a method the names of parameters, temporaries and
instance variables are flattened and use a single namespace.

10

1.13 Block-local variables

1.13 Block-local variables

As we saw previously a block is a lexical closure that is connected to the
place where it is defined. In the following, we will illustrate this connection
by showing that block local variables are allocated in the execution context
linked to their creation. We will show the difference when a temporary vari-
able is local to a block or to a method.

Block allocation

The following method blockLocalTemp stores in a collection a block refer-
encing a temporary for each index of the iteration. It is interesting since it
shows that each single block will have its own home context and allocation of
the temporary variable temp.

BExp >> blockLocalTemp
| collection |
collection := OrderedCollection new.
#(1 2 3) do: [:index |
| temp |
temp := index.
collection add: [temp]].

^ collection collect: [:each | each value]

Let’s comment this method:

• It creates a collection to store the results of the loop.

• It defines a loop that assigns the current index (a block argument) in
the temporary variable temp defined in the loop block.

• Then its stores a block that accesses this variable in the collection col-
lecting results.

• After the loop ends, it executex each of the stored blocks of the collec-
tion and return the collection of values.

Executing this method results in a collection with 1, 2 and 3.

BExp >> testBlockLocalTemp
self assert: self blockLocalTemp asArray equals: #(1 2 3)

This result shows that each block in the collection refers to a different temp
variable. This is due to the fact that a different execution context is created
for each block creation (at each loop step) and that the block [temp] is
stored in this context (see Figure 1-4).

Method allocation

Now let us create a new method that is the same as blockLocalTemp except
that the variable temp is a method variable instead of a block variable.

11

Blocks: a Detailed Analysis

collection : anOrderedCollection

blockLocalTemp

[:index | | temp |
temp := index.
collection add: [temp]].

loop first iteration

loop second iteration

[temp] value = 1

[:index | | temp' |
temp' := index.
collection add: [temp']].

[temp] value = 1
[temp'] value = 2

loop third iteration
[:index | | temp'' |

temp'' := index.
collection add: [temp'']].

[temp] value = 1
[temp'] value = 2
[temp''] value = 3

1

temp : 1
2

temp : 2
3

temp : 3
4

 executeBlock: aBlock
 | res |
 …
 …

nContext Block
[…
…
]

collection

home
context

home
context

home
context

home
context

Figure 1-4 blockLocalTemp execution: each block created during a loop step

has its own home context.

BExp >> blockOutsideTemp
| collection temp |
collection := OrderedCollection new.
#(1 2 3) do: [:index |
temp := index.
collection add: [temp]].

^ collection collect: [:each | each value]

BExp >> testBlockOutsideTemp
self assert: self blockOutsideTemp asArray equals: #(3 3 3)

When we execute the method blockOutsideTemp, we now get a collection
with 3, 3 and 3. This result shows that each block in the collection now refers
to a single variable temp allocated in the method blockOutsideTemp con-
text. This leads to the fact that temp is shared by the blocks (see Figure 1-5).

1.14 Variables can outlive their defining method

Non-block local variables referred to by a block continue to be accessible and
shared with other expressions even if the method execution terminated. We
say that variables outlive the method execution that defined them. Let’s look
at some examples.

We start with a simple example showing that a variable is shared between
a method and a block (as in the previous experiments in fact). Define the
following method foo which defines a temporary variable a.

12

1.14 Variables can outlive their defining method

collection : anOrderedCollection
temp :

blockOutsideTemp

[:index |
temp := index.
collection add: [temp]].

loop first iteration

loop second iteration

[temp] value = 3

[:index |
temp' := index.
collection add: [temp']].

[temp] value = 3
[temp] value = 3

loop third iteration
[:index |

temp'' := index.
collection add: [temp'']].

[temp] value = 3
[temp] value = 3
[temp] value = 3

1

2

3

4

 executeBlock: aBlock
 | res |
 …
 …

nContext Block
[…
…
]

collection

home
context

home
context

home
context

Figure 1-5 blockOutsideTemp execution: one context is shared by all the

blocks created in the loop step.

BExp >> sharing
| a |
[a := 0] value.
^ a

BExp new sharing
>>> 0

When we execute BExp new sharing, we get 0 and not nil. What you see
here is that the value is shared between the method body and the block. In-
side the method body we can access the variable whose value was set by the
block execution. Both the method and block bodies access the same tempo-
rary variable a.

Let’s make it slightly more complicated. Define the method twoBlockArray
as follows:

BExp >> twoBlockArray
| a |
a := 0.
^ {[a := 2] . [a]}

The method twoBlockArray defines a temporary variable a. It sets the value
of a to zero and returns an array whose first element is a block setting the
value of a to 2 and second element is a block just returning the value of the
temporary variable a.

Now we store the array returned by twoBlockArray and execute the blocks
stored in the array. This is what the following test is doing.

13

Blocks: a Detailed Analysis

BExp >> testTwoBlockArray
| array |
array := self twoBlockArray.
self assert: array second value equals: 0.

array first value.
self assert: array second value equals: 2

Let us step back and look at an important point. In the previous test when
the expressions array second value and array first value are exe-
cuted, the method twoBlockArray has already finished its execution - as
such it is not on the execution stack anymore. Still the temporary variable a
can be accessed and set to a new value.

This experiment shows that the variables referred to by a block may live
longer than the method which created the block that refers to them. We say
that the variables outlive the execution of their defining method.

You can see from this example that while temporary variables are some-
how stored in an activation context, the implementation is a bit more subtle
than that. The block implementation needs to keep referenced variables in
a structure that is not in the execution stack but lives on the heap. The com-
piler performs some analysis and when it detects that a variable may outlive
its creation context, it allocates the variables in a structure that is not allo-
cated on the execution stack.

1.15 Returning from inside a block

In this section we explain why it is not a good idea to have return statements
inside a block (such as [^ 33]) that you pass to other methods (except condi-
tional) or store into instance variables. A block with an explicit return state-
ment is called a non-local returning block.

Let us start illustrating some really basic points first. By default, the re-
turned value of a method is the receiver of the message i.e., self. A return
expression (the expression starting with the character ^) allows one to re-
turn a different value than the receiver of the message. In addition, the ex-
ecution of a return statement exits the currently executed method and re-
turns to its caller. This ignores the expressions following the return state-
ment.

1.16 Experiment 7: Return’s exiting behavior

Define the following method. Executing BExp new withExplicitReturn
returnn ’one’ and ’two’ but it will not print not printed, since the method
withExplicitReturn will have returned before.

14

1.17 Escaping behavior of non-local return

BExp >> withExplicitReturn
^ String streamContents: [:str |
str nextPutAll: 'one'; cr.
0 isZero ifTrue: [str nextPutAll: 'two'. ^ str contents].
str nextPutAll: 'not printed']

BExp >> testWithExplicitReturn
self assert: self withExplicitReturn equals: 'one
two'

Note that the return expression should be the last statement of a block body.

1.17 Escaping behavior of non-local return

A return expression behaves also like an escaping mechanism since the ex-
ecution flow will directly jump out to the current invoking method. Let us
define a new method jumpingOut as follows to illustrate this behavior.

BExp >> jumpingOut
#(1 2 3 4) do: [:each |

each = 3
ifTrue: [^ 3]].

^ 42

BExp >> testJumpingOut
self assert: self jumpingOut equals: 3

The expression BExp new jumpingOut will return 3 and not 42. The expres-
sion ^ 42 will never be reached. The expression [^3] could be deeply
nested, its execution jumps out all the levels and returns to the method caller.
Some old code (predating introduction of exceptions) passes non-local re-
turning blocks around leading to complex flows and difficult to maintain
code. We strongly suggest not using this style because it leads to complex
code and bugs. In subsequent sections we will carefully look at where a re-
turn is actually returning. A return in a method returns a value to the sender
of the method and stop executing the method containing the return. A non-
local return does the same even if the block is executed by another method.

1.18 Understanding return

Now to see that a return is really escaping the current execution, let us build
a slightly more complex call flow.

First we add and initialize an instance variable named: stream and some
helper methods to access the stream.

BExp >> initialize
x := 123.
stream := '' writeStream

15

Blocks: a Detailed Analysis

BExp >> traceCr: aString
stream nextPutAll: aString; cr

BExp >> contents
^ stream contents

We define four methods among which one (defineBlock) creates an escap-
ing block, one (arg:) executes this block and one (executeBlock:) that ex-
ecutes the block. Note that to stress the escaping behavior of a return we
defined executeBlock: so that it endlessly loops after executing its argu-
ment.

BExp >> start
| res |
self traceCr: 'start start'.
res := self defineBlock.
self traceCr: 'start end'.
^ res

BExp >> defineBlock
| res |
self traceCr: 'defineBlock start'.
res := self arg: [self traceCr: 'block start'.

1 isZero ifFalse: [^ 33].
self traceCr: 'block end'.].

self traceCr: 'defineBlock end'.
^ res

BExp >> arg: aBlock
| res |
self traceCr: 'arg start'.
res := self executeBlock: aBlock.
self traceCr: 'arg end'.
^ res

BExp >> executeBlock: aBlock
| res |
self traceCr: 'executeBlock start'.
res := self executeBlock: aBlock value.
self traceCr: 'executeBlock loops so should never print that one'.
^ res

Executing BExp new start; contents prints the following (indentation
added to stress the calling flow).

start start
defineBlock start

arg start
executeBlock start

block start
start end

16

1.18 Understanding return

What we see is that the calling method start is fully executed. The method
defineBlock is not completely executed. Indeed, its escaping block [^33] is
executed two calls away in the method executeBlock:. The execution of an
escaping block returns to the sender of its home context sender (i.e., the context
that invoked the method that created the block). In our example, the home
context of [^33] is the method defineBlock so its execution will return to
start.

When the return statement of the block is executed in the method execute-
Block:, the execution discards the pending computation and returns to the
method execution point that created the home context of the block. The block is de-
fined in the method defineBlock. The home context of the block is the acti-
vation context that represents the definition of the method defineBlock.
Therefore the return expression returns to the startmethod execution
just after the defineBlock execution. This is why the pending executions
of arg: and executeBlock: are discarded and why we see the execution of
the method start end.

Non local return [^ ...] returns to the sender of the block home context,
i.e., to the method execution point that called the one that created the block.
As shown by Figure 1-6, [^33] will return to the sender of its home con-
text.[^33] home context is the context that represents the execution of the
method defineBlock, therefore it will return its result to the method start.

• Step a represents the execution up to the invocation of the method
defineBlock. The trace 'start start' is printed.

• Step c represents the execution up to the block creation, which is done
in Step b. 'defineBlock start' is printed. The home context of the
block is the defineBlockmethod execution context.

• Step d represents the execution up to the invocation of the method
executeBlock:. 'arg start' is printed.

• Step e represents the execution up to the block evaluation. 'execute-
Block start' is printed.

• Step f represents the execution of the block up to the condition: 'block
start' is printed.

• Step g represents the execution up to the return statement.

• Step h represents the execution of the return statement. It returns to
the sender of the block home context, i.e., just after the invocation of
the method defineBlock in the method start. The execution contin-
ues and 'start end' gets printed.

17

returns to the method that
invoked the block's home
context method

 executeBlock: aBlock
| res |

 self traceCr: 'executeBlock: start'.
 res := self executeBlock: aBlock value.
 self traceCr: 'executeBlock: should never get here'.
 ^ res

 arg: aBlock
| res |
self traceCr: 'arg start'.
res := self executeBlock: aBlock.
self traceCr: 'arg end'.
^ res

 defineBlock
| res |
self traceCr: 'defineBlock start'.
res := self arg: [self traceCr: 'block start'.

 1 isZero ifFalse: [^ 33].
 self traceCr: 'block end'.].

self traceCr: 'defineBlock end'.
^ res

 start
| res |
self traceCr: 'start start'.
res := self defineBlock.
self traceCr: 'start end'.
^ res

[self traceCr: 'block
start'.
1 isZero ifFalse: [^ 33].
self traceCr: 'block end'.]

Code line legend:
 italic: already executed
 bold: current execution
 plain: future

[self traceCr: 'block
start'.
1 isZero ifFalse: [^ 33].
self traceCr: 'block end'.]

homeContext

sender

sender

sender

1

2

3

4

a

b
c

d

e
f g

h

 executeBlock: aBlock
 | res |
 …
 …

nContext Block
[…
…
]

Figure 1-6 A block with non-local return execution returns to the method execu-

tion that activated the block home context. Dashed bevelled rectangles represent

the same block at different execution points.

1.19 Accessing context information

1.19 Accessing context information

To manually verify and find the home context of a block we can do the fol-
lowing: Add the expression thisContext home inspect in the block of the
method defineBlock. We can also add the expression thisContext clo-
sure home inspect which accesses the closure via the current execution
context and gets its home context. Note that in both cases, even if the block
is executed during the execution of the method executeBlock:, the home
context of the block is the method defineBlock.

Note that such expressions will be executed during the block evaluation.

BExp >> defineBlock
| res |
self traceCr: 'defineBlock start'.
res := self arg: [thisContext home inspect.

self traceCr: 'block start'.
1 isZero ifFalse: [^ 33].
self traceCr: 'block end'.].

self traceCr: 'defineBlock end'.
^ res

To verify where the execution will end, you can use the expression thisCon-
text home sender copy inspect which returns a method context point-
ing to the assignment in the method start.

1.20 Couple more examples

The previous example shows that the method start was fully executed. The
following examples show that escaping blocks jump to sender of their home
contexts. We define valuePassingEscapingBlock on the class BlockClo-
sure as follows.

BlockClosure >> valuePassingEscapingBlock
self value: [^ nil]

We define the following method.

BExp >> testValueWithExitBreak
| val |
[:break |

1 to: 10 do: [:i |
val := i.
val = 4 ifTrue: [break value]]]

valuePassingEscapingBlock.
Transcript show: 'Passed here!'.
self assert: val equals: 4

This method defines a block whose argument break is executed as soon as
the step 4 of a loop is reached. We make sure that its value is 4. The test

19

Blocks: a Detailed Analysis

passes: the loop has been stopped, the ’Passed here!’ is printed to the tran-
script and the assert is validated.

Now let us change the message valuePassingEscapingBlock by value: [^
nil] in the testValueWithExitBreakmethod above, you will not get the
halt because the execution of the method testValueWithExitBreak will
exit when the block is executed. In this case, calling valuePassingEscap-
ingBlock is not equivalent to calling value: [^nil] because the home con-
text of the escaping block [^ nil] is different.

BExp >> testValueWithExitBreak2
| val |
[:break |

1 to: 10 do: [:i |
val := i.
val = 4 ifTrue: [break value]]] value: [^nil].

self halt.
self assert: val equals: 4

With the original valuePassingEscapingBlock, the home context of the
block [^ nil] is valuePassingEscapingBlock and not the method test-
ValueWithExitContinue itself. Therefore when executed, the escaping
block will change the execution flow to the valuePassingEscapingBlock
message in the method testValueWithExitBreak (similarly to the previ-
ous example where the flow came back just after the invocation of the de-
fineBlockmessage). The self halt before the assert: will not be exe-
cuted.

1.21 Non-local return blocks

As a block is always executed in its home context, it is possible to attempt to
return from a method execution which has already returned. This runtime
error condition is trapped by the VM.

BExp >> returnBlock
^ [^ self]

BExp new returnBlock value ~-> Exception

When we execute returnBlock, the method returns the block to its caller
(here the top level execution). When evaluating the block, because the method
defining it has already terminated and because the block is containing a re-
turn expression that should normally return to the sender of the block home
context, an error is signaled.

Blocks with non-local expressions ([^ ...]) return to the sender of the
block home context (the context representing the execution led to the block
creation).

20

1.22 Contexts: representing method execution

1.22 Contexts: representing method execution

We saw that blocks refer to the home context when looking for variables. So
now we will look at contexts. Contexts represent program execution. The
Pharo execution engine represents its current execution state with the fol-
lowing information:

1. the CompiledMethod whose bytecodes are being executed;

2. the location of the next bytecode to be executed in that Compiled-
Method. This is the interpreter’s program pointer;

3. the receiver and arguments of the message that invoked the Com-
piledMethod;

4. any temporary variable needed by the CompiledMethod;

5. a call stack.

In Pharo, the class MethodContext represents this execution information.
A MethodContext instance holds information about a specific execution
point. The pseudo-variable thisContext gives access to the current exe-
cution point.

1.23 Interacting with Contexts

Let us look at an example. Define the following method and execute it using
BExp new first: 33.

BExp>>first: arg
| temp |
temp := arg * 2.
thisContext copy inspect.
^ temp

You will get the inspector shown in Figure 1-7. Note that we copy the cur-
rent context obtained using thisContext because the Virtual Machine limits
memory consumption by reusing contexts.

MethodContext does not only represent activation context of method exe-
cution but also the ones for blocks. Let us have a look at some values of the
current context:

• sender points to the previous context that led to the creation of the
current one. Here when you executed the expression, a context was
created and this context is the sender of the current one.

• method points to the currently executing method.

• pc holds a reference to the latest executed instruction. Here its value is
27. To see which instruction is referred to, double click on the method

21

Blocks: a Detailed Analysis

Figure 1-7 A method context where we can access the value of the temporary

variable temp at that given point of execution.

instance variable and select the all bytecodes field, you should get
the situation depicted in Figure 1-8, which shows that the next instruc-
tion to be executed is pop (instruction 28).

• stackp defines the depth of the stack of variables in the context. In
most cases, its value is the number of stored temporary variables (in-
cluding arguments). But in certain cases, for example during a message
send, the depth of the stack is increased: the receiver is pushed, then
the arguments, lastly the message send is executed and the depth of
the stack goes back to its previous value.

• closureOrNil holds a reference to the currently executing closure or
nil.

• receiver is the message receiver.

The class MethodContext and its superclasses define many methods to get
information about a particular context. For example, you can get the values

22

1.24 Block nesting and contexts

Figure 1-8 The pc variable holds 27 because the last (bytecode) instruction exe-

cuted was the message send inspect.

of the arguments by sending the argumentsmessage and the value of a par-
ticular temporary variable by sending tempNamed:.

1.24 Block nesting and contexts

Now let us look at the case of block nesting and its impact on home contexts.
In fact, a block points to a context when it was created: it is its outer context.
Now depending on the situation the outer context of a block can be its home
context or not. This is not complex: Each block is created inside some con-
text. This is the block’s outer context. The outer context is the direct context
in which a block was created. The home context is the one at the method
level. If the block is not nested then the outer context is also the block home
context.

If the block is nested inside another block execution, then the outer context
refers to that block execution context, and the block execution’s outerCon-
text is the home context. There are as many outer context steps as there are
nesting levels.

Let’s look at the following example. When you execute, just press Ok to the
dialogs popping up.

23

Blocks: a Detailed Analysis

| homeContext b1 |
homeContext := thisContext.
b1 := [| b2 |

self assert: thisContext closure == b1.
self assert: b1 outerContext == homeContext.

self assert: b1 home = homeContext.
b2 := [self assert: thisContext closure == b2.

self assert: b2 outerContext closure outerContext
== homeContext].

self assert: b2 home = homeContext.
b2 value].

b1 value

• First we set in homeContext, the context before the block creation.
homeContext is the home context of the blocks b1 and b2 because they
are defined during this execution.

• thisContext closure b1 shows that the context inside the execution
of the block b1 has a pointer to b1. The outer context of b1 is homeCon-
text. Nothing new because b1 is defined during the execution starting
after the assignment. The home context of b1 is the same as its outer
context.

• Inside b2 execution, the current context points to b2 itself since it is
a closure. The outer context of the closure in which b2 is defined i.e.,
b1 points to homeContext. Finally the home context of b2 is homeCon-
text. This last point shows that all the nested blocks have a separate
outer context, but they share the same home context.

1.25 Message execution

The Virtual Machine represents execution state as context objects, one per
method or block currently executed (the word activated is also used). In Pharo,
method and block executions are represented by MethodContext instances.
In the rest of this chapter we survey contexts, method execution, and block
closure execution.

1.26 Sending a message

To send a message to a receiver, the VM has to:

• Find the class of the receiver using the receiver object’s header.

• Lookup the method in the class method dictionary. If the method is not
found, repeat this lookup in each superclass. When no class in the su-
perclass chain can understand the message, the VM sends the message
doesNotUnderstand: to the receiver so that the error can be handled
in a manner appropriate to that object.

24

1.27 Sketch of implementation

• When an appropriate method is found:

1. check for a primitive associated with the method by reading the method
header;

2. if there is a primitive, execute it;

3. if the primitive completes successfully, return the result object to the
message sender;

4. when there is no primitive or the primitive fails, continue to the next
step.

• Create a new context. Set up the program counter, stack pointer, home
contexts, then copy the arguments and receiver from the message
sending context’s stack to the new stack.

• Activate that new context and start executing the instructions in the
new method.

The execution state before the message send must be remembered because
the instructions after the message send must be executed when the message
returns. State is saved using contexts. There will be many contexts in the
system at any time. The context that represents the current state of execu-
tion is called the active context.

When a message send happens in the active context, the active context is
suspended and a new context is created and activated. The suspended con-
text retains the state associated with the original compiled method until that
context becomes active again. A context must remember the context that it
suspended so that the suspended context can be resumed when a result is
returned. The suspended context is called the new context’s sender. Figure
1-9 represents the relations between compiled methods and context. The
method points to the currently executed method.

The program counter points to the last instruction of the compiled method.
Sender points to the context that was previously active.

1.27 Sketch of implementation

Temporaries and arguments for blocks are handled the same way as in meth-
ods. Arguments are passed on the stack and temporaries are held in the cor-
responding context. Nevertheless, a block can access more variables than a
method: a block can refer to arguments and temporaries from the enclosing
method. As we have seen before, blocks can be passed around freely and acti-
vated at any time. In all cases, the block can access and modify the variables
from the method it was defined in.

Let us consider the example shown in Figure 1-10. The temp variable used in
the block of the exampleReadInBlockmethod is non-local or remote vari-
able.temp is initialized and changed in the method body and later on read in

25

Blocks: a Detailed Analysis

LIteral frame
Method header

Source Pointer

Bytecodes
Instruction pointer
sender

method
stack pointer

receiver
unused

temporaries
arguments

stackContents

Instruction pointer
sender

method
stack pointer

receiver
unused

temporaries
arguments

stackContents

CompiledMethodsMethodContexts

LIteral frame
Method header

Source Pointer

Bytecodes

Figure 1-9 Relations between contexts and compiled methods.

the block. The actual value of the variable is not stored in the block context
but in the defining method context, also known as home context. In a typi-
cal implementation the home context of a block is accessed through its clo-
sure. This approach works well if all objects are first-class objects, including
the method and block context. Blocks can be executed outside their home
context and still refer to remote variables. Hence all home contexts might
outlive the method activation.

Method

...
exampleReadInBlock
 | temp |
 temp := #temp.
 ^ [temp] value

value
<primitive: 201>
^self primitiveFailed

Stack

value
<primitive: 201>
^self primitiveFailed

...

...
...

MethodContext
 outerContext
 temp1=#temp

MethodContext
 outerContext

BlockContext
 closure
 outerContext

BlockClosure
 homeContext

Figure 1-10 A first understanding of closures.

1.28 Implementation

The previously mentioned approach for block contexts has disadvantages
from a low-level point of view. If method and block contexts are normal ob-
jects that means they have to be garbage collected at some point. Combined

26

1.29 Full block implementation

with the typical coding practice of using small methods that call many other
objects, Pharo can generate a lot of contexts.

The most efficient way to deal with method contexts is to not create them at
all. At the VM level, this is done by using real stack frames. Method contexts
can be easily mapped to stack frames: whenever we call a method we cre-
ate a new frame, whenever we return from a method we delete the current
frame. In that matter Pharo is not very different from C. This means when-
ever we return from a method the method context (stack frame) is immedi-
ately removed. Hence no high-level garbage collection is needed. Neverthe-
less, using the stack gets much more complicated when we have to support
blocks.

As mentioned before, method contexts that are used as home contexts might
outlive their activation. If method contexts work as we explained up to now
we would have to check each time for home contexts if a stack frame is re-
moved. This comes with a big performance penalty. Hence the next step in
using a stack for contexts is to make sure method contexts can be safely re-
moved when we return from a method.

The Figure 1-11 shows how non-local variables are no longer directly stored
in the home context, but in a separate remote array which is heap allocated.

Method Stack

value
<primitive: 201>
^self primitiveFailed

...

... ...
exampleReadInBlock
 | temp |
 temp := #temp.
 ^ [temp] value
value

<primitive: 201>
^self primitiveFailed

MethodContext
 closure=nil
 outerContext
 remotes

...

MethodContext
 closure=nil
 outerContext

MethodContext
 closure
 outerContext

BlockClosure
 homeContext

Array
 #temp
 ...

Figure 1-11 How the VM stores remote variables so that they continue to leave

when a method returns.

1.29 Full block implementation

The full block term refers to the new implementation of blocks made my C.
Béra and E. Miranda to avoid

CompilationContext bytecodeBackend: EncoderForSistaV1.
CompilationContext optionFullBlockClosure: true.
NBexp recompile: #blockLocalTemp.
(NBexp >> #blockLocalTemp) inspect

27

Blocks: a Detailed Analysis

blockLocalTemp
| collection |
collection := OrderedCollection new.
#(1 2 3) do: [:index |
| temp |
temp := index.
collection add: [temp]].

^ collection collect: [:each | each value]

65 <10> pushLit: OrderedCollection
66 <7C> send: new
67 <D0> popIntoTemp: 0
68 <21> pushConstant: #(1 2 3)
69 <40> pushTemp: 0
70 <F9 02 01> fullClosure:compiledBlockNumCopied: 1
73 <7B> send: do:
74 <D8> pop
75 <40> pushTemp: 0
76 <F9 03 00> fullClosure:compiledBlockNumCopied: 0
79 <94> send: collect:
80 <5C> returnTop

1.30 Conclusion

In this chapter we learned how to use blocks, also calledlexical closures, and
how they are implemented. We saw that we can use a block even if the method
defining it has returned. A block can access its own variables and also non lo-
cal variables: instance variables, temporaries and arguments of the defining
method.

We also saw how blocks can terminate a method and return a value to the
sender. We say that these blocks are non-local returning blocks and that some
care has to be taken to avoid errors: a block can not terminate a method that
has already returned.

Finally, we show what contexts are and how they play an important role with
block creation and execution. We show what the thisContext pseudo vari-
able is and how to use it to get information about the executing context and
potentially change it.

28

	Illustrations
	Blocks: a Detailed Analysis
	Basics
	Some handy extensions
	Other messages
	Variables and blocks
	Some little experiments
	Experiment 1: Variable lookup.
	Experiment 2: Changing a variable value
	Experiment 3: Accessing a shared non-local variable.
	Experiment 4: Variable lookup is done at execution time.
	Experiment 5: For method arguments
	Experiment 6: self binding
	Conclusion.

	About temporary variables
	Block-local variables
	Block allocation
	Method allocation

	Variables can outlive their defining method
	Returning from inside a block
	Experiment 7: Return's exiting behavior
	Escaping behavior of non-local return
	Understanding return
	Accessing context information
	Couple more examples
	Non-local return blocks
	Contexts: representing method execution
	Interacting with Contexts
	Block nesting and contexts
	Message execution
	Sending a message
	Sketch of implementation
	Implementation
	Full block implementation
	Conclusion

