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CHA P T E R 1
The Language: ObjVlisp

We are going to write a programming language interpreter. And this raises
the questions: what language are we going to interpret? A language that
is too-complex would take ages to implement, the book would be too long.
Think of implementing any programming language you know: how many
features does it have? Complex languages have a lot of accidental complexity
(think C, C++, Java).

In this book we have made a choice: ObjVlisp. ObjVLisp is small enough to be
implementable in a couple of afternoons. And it is large enough to be inter-
esting, as we will show you next.

1.1 ObjVlisp: a language kernel

ObjVlisp is an object-oriented programming language originally published in
1986 when the foundation of object-oriented programming was still emerg-
ing. Actually, ObjVlisp is not a typical programming language, but a language
kernel. ObjVlisp is not a programming language because it does not have an
associated syntax: we will attach one to it later, don’t worry. ObjVlisp is a
language kernel because it defines the core concepts of the programming
language, and their associated semantics.

A bit of History:

ObjVlisp was inspired from the kernel of Smalltalk-78. The IBM SOM-DSOM
kernel is similar to ObjVLisp while implemented in C++. ObjVlisp is a subset
of the reflective kernel of CLOS (Common Lisp Object System) since CLOS rei-
fies instance variables, generic functions, and method combination.
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The Language: ObjVlisp

Why ObjVlisp?

ObjVlisp has the following properties that make it interesting to study and
learn:

• It unifies the concepts of class and instance (there is only one data
structure to represent all objects, classes included),

• It is composed of only two classes Class and Object (it relies on ex-
isting elements such as booleans, arrays, and string of the underlying
implementation language),

• It raises the question of meta-circular infinite regressions (a class is an
instance of another class that is an instance of yet another class, etc.)
and how to resolve it,

• It requires consideration of allocation, class and object initialization,
message passing as well as the bootstrap process,

• It can be implemented in less than 30 methods in Pharo.

Another important point: this kernel is self-described. This does not mean
that we are going to *write* ObjVlisp in itself (we cannot because ObjVLisp
does not have a syntax). What this means is that some of its concepts are
recursive: for example, classes are objects in ObjVlisp, which means that
classes are instances of classes. See? We will start by explaining some as-
pects, but since everything is linked, you may have to read the chapter twice
to fully get it.

1.2 ObjVLisp’s six postulates

The original ObjVlisp kernel is defined by six postulates. Some of them look
a bit dated by modern standards, and the 6th postulate is simply wrong as
we will explain later (a solution is simple to design and implement). Here
are the six postulates as stated in the original paper for the sake of historical
perspective.

1. An object represents a piece of knowledge and a set of capabilities.

2. The only protocol to activate an object is message passing: a message
specifies which procedure to apply (denoted by its name, the selector)
and its arguments.

3. Every object belongs to a class that specifies its data (attributes called
fields) and its behavior (procedures called methods). Objects will be
dynamically generated from this model; they are called instances of
the class. Following Plato, all instances of a class have same structure
and shape, but differ through the values of their common instance
variables.

2



1.3 ObjVLisp Model Overview

4. A class is also an object, instantiated by another class, called its meta-
class. Consequently (P3), to each class is associated a metaclass which
describes its behavior as an object. The initial primitive metaclass is
the class Class, built as its own instance.

5. A class can be defined as a subclass of one (or many) other class(es).
This subclassing mechanism allows sharing of instance variables and
methods, and is called inheritance. The class Object represents the
most common behavior shared by all objects.

6. If the instance variables owned by an object define a local environ-
ment, there are also class variables defining a global environment
shared by all the instances of a same class. These class variables are de-
fined at the metaclass level according to the following equation: class
variable [an-object] = instance variable [an-object’s class].

1.3 ObjVLisp Model Overview

Contrary to a real uniform language kernel, ObjVlisp does not consider ar-
rays, booleans, strings, numbers or any other elementary objects as part
of the kernel as this is the case in a real bootstrap such as the one of Pharo.
ObjVLisp’s kernel focuses on understanding the core relationships between
classes and objects.

Figure 1-1 shows the two core classes of the kernel:

• Object is the root of the inheritance graph and is an instance of Class.

• Class is the first class and root of the instantiation tree and instance
of itself as we will see later.

class
error
initialize

Object
new
allocate
initialize

Class

instance of inherits from

Figure 1-1 The ObjVlisp kernel: a minimal class-based kernel.

Now imagine we wanted to implement a class Workstation (which means *a
really old computer*, you can look it up online ;)). Figure 1-2 shows how that
could take place in this abstract model. The class Workstation is an instance
of the class Class since it is a class. It inherits from Object, meaning that it
has the default behavior that objects exhibit.

3



The Language: ObjVlisp

Moreover, we can do something really cool in ObjVlisp: we can change how
classes work using *metaclasses*. The class WithSingleton is an instance
of the class Class (as any other class) but differently from our Workstation
it inherits from Class. This means that WithSingleton will *behave* like
a class! This means that this class we just created is not just a normal but
a metaclass: its instances are classes. Metaclasses change the behavior of
classes. Could you guess by the name how the instances of WithSingleton
are supposed to behave?

Finally, suppose we implement a class named SpecialWorkstation as an in-
stance of the class WithSingleton and inheriting from Workstation. This
structure illustrates the different roles of instantiation and inheritance. Our
SpecialWorkstation will behave as a class WithSingleton, and it’s in-
stances will behave as defined by SpecialWorkstation and its superclass
Workstation.

originate: aPacket
accept: aPacket

Workstation

aWorkstation (BigMac)

instance of

WithSingleton

SpecialWorkstation

Minna

class
error
initialize

Object
new
allocate
initialize

Classinstance of

inherits from

Figure 1-2 The kernel with specialized metaclasses.

The two diagrams 1-1 and 1-2 will be explained step by step throughout this
chapter.

Note: We will see later that understanding such an architecture is impor-
tant to understand message passing and how methods get executed. Message
passing always looks up methods in the class of the receiver of the message
and then follows the inheritance chain (See Figure 1-3) thus following first
the instantiation link, then the inheritance link! Figure 1-3 illustrates two
main cases:

• When we send a message to BigMac or Minna, the corresponding method
is looked up in their corresponding classes Workstation or Special-
Workstation and follows the inheritance link up to Object.

• When we send a messsage to the classes Workstation or Special-

4



1.4 Modelling Instances and Classes

new

new

new
    uniqueInstance isNil
        ifTrue: [uniqueInstance := super new].
    ^ uniqueInstance

originate: aPacket
accept: aPacket

Workstation

aWorkstation (BigMac)

instance of

new
WithSingleton

SpecialWorkstation

Minna

class
error
initialize

Object
new
allocate
initialize

Class instance of

inherits from

method lookup

Figure 1-3 Understanding metaclasses using message passing.

Workstation, the corresponding method is looked up in their class,
the class Class and up to Object.

1.4 Modelling Instances and Classes

In this kernel, classes and objects are linked by the instantiation link, as
shown by Figure 1-4:

• Terminal instances are obviously objects: a workstation named mac1 is
an instance of the class Workstation, a point 10@20 is instance of the
class Point.

• Classes are also objects (instances) of other classes: the class Worksta-
tion is an instance of the class Class, the class Point is an instance of
the class Class.

Things to think about: What could be the class of the class Class and why?

A class defines an ordered sequence of instance variables definitions. Each
variable definition is just the name of the variable. All instances of a class
share the same variable definitions. However, each instance will have its own
specific value for each variable definition. For example, Figure 1-5 shows
that instances of Workstation have two values: a name and a next node.

In our diagrams, we represent terminal instances as rounded rectangles. In-
side each rectangle, there is a list of the values of its instance variables. Since
classes are objects, when we want to stress that classes are objects we will later
use a different graphical convention.
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The Language: ObjVlisp

'mac1'
mac2

| mac1 mac2 |
mac1 := Workstation new 
                     name: #mac2 nextNode: nil.
mac1 := Workstation new 
                     name: #mac1 nextNode: mac2

new

superclass
methodDict
...

Class

P1 & P3

P4

an instance of Workstation

The class Workstation

The class Point
instance of 

instance of 

10
20

send: aPacket
accept: aPacket

name 
nextNode

Workstation

10@20

instance of 

instance of 
distFrom:

x
y

Point

The class Class

Point new setX: 10 setY: 20

Figure 1-4 Chain of instantiation: classes are objects, too.

mac1
/

some instances of Workstation

instance of 

send: aPacket
accept

name
nextNode

Workstation

mac2
mac3

mac3
mac1

Figure 1-5 Instances of Workstation have two values: their names and their

next node.

Notice also that an object has a reference to its class. As we will see when
we discuss inheritance later on, every object possesses an instance variable
class (inherited from Object) that references to its class. We will not add
that extra instance variable in the diagrams, because it is redundant with the
arrow.

Things to think about:

• How is this model different so far from languages such as Pharo and
Java? And what about Python and Javascript? Do these languages have
classes too?

• What about the instance variables? How are they declared? Are they
fixed or can be dynamically added? What about types?

• A bit more complex: Are classes objects too in those languages? Do
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1.5 A Brief Introduction to Messages and Methods

they have metaclasses?

1.5 A Brief Introduction to Messages and Methods

So far we have defined the structural part of our language kernel: the enti-
ties that make part of it and the relationships between themselves. But let’s
remember that we define a programming language so we can automate com-
putations with it: we want to execute some code!

This kernel presents a single operation to perform computation: message
passing. Message passing is the act of one object (the sender) to send a mes-
sage to another object (the receiver). When an object receives a message,
it must search for a method to execute, a mechanism we will call *method
lookup*. In ObjVlisp, the *method lookup* will be as in most traditional
object-oriented programming languages: when an object receives a message,
it will search for the method in the class hierarchy starting from its class.

The ObjVlisp kernel represents how methods are stored and looked up as
follows. Methods belong to a class and are stored into a dictionary that asso-
ciates method names (the selectors) with the method bodies containing the
code to execute. Since methods are stored in a class, the method dictionary
should be described in the metaclass. Therefore, the method dictionary of a
class is the value of the instance variable methodDict defined on the meta-
class Class. Each class will have its own method dictionary.

ObjVlisp does not specify how methods are represented, we will choose and
attach a representation in the following chapters.

1.6 Conclusion

We presented a small kernel composed of two classes: Object, the root of the
inheritance tree and Class, the first metaclass root of the instantiation tree.
We briefly revisited the ideas behind message passing. In the next chapter
we propose to you how to implement such a kernel.

Further readings

The kernel presented in this chapter is a kernel with explicit metaclasses
and as such it is not a panacea. Indeed it results in problems with metaclass
composition as explained in Bouraqadi et al.’s excellent article or .

7





CHA P T E R2
Representing Code with Abstract

Syntax Trees

To execute actual code on top of our ObjVlisp kernel, we need code to exe-
cute. And since ObjVlisp does not force a way to represent code, we need to
choose one oneselves.

Probably the simplest way to represent code we can think about are strings.
That is actually what we write in editors: strings. However, strings are not
the easiest to *manipulate* when we want to execute code. Instead of ma-
nipulating strings, we are going to transform strings into a more practical
data structure using a parser. However, in this book we are not interested in
getting into the problems of parsing (lots of books do a very fine job on that
already). We will use an already existing parser and we will borrow a syntax
to not define our own: Pharo’s parser and Pharo’s syntax.

Now that we have decided what syntax we will have at the surface of our lan-
guage, we need to choose a data structure to represent our code. One fancy
way to represent code is using abstract syntax trees, or in short, ASTs. An
abstract syntax tree is a tree data structure that represents a program from
the syntax point of view. In other words, each node in the tree represents an
element that is written in a program such as variables, assignments, strings,
and message sends. To illustrate it, consider the piece of Pharo code below
that assigns into a variable named variable the result of sending the ,mes-
sage to a 'constant' string, with self message as argument.

variable := 'constant' , self message

This chapter presents ASTs by looking at the existing AST implementation in
Pharo, the RBAST. RBAST is the AST implementation used currently (Pharo
11.0) by many tools in Pharo’s tool-chain, such as the compiler, the syntax-
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highlighter, the auto-completion, the code quality engine and the refactor-
ing engine. As so, it’s an interesting piece of engineering, and we will find it
provides most of what we will need for our journey to have fun with inter-
preters.

In the following chapter we will study (or re-study, for those who already
know it) the Visitor design pattern. To be usable by the many tools named
before, RBASTs implement a visitor interface. Tools performing complex
operations on ASTs may then define visitor classes with their algorithms. As
we will see in the chapters after this one, one such tool is an interpreter, thus
mastering ASTs and visitors is essential.

2.1 Pharo Abstract Syntax Trees

An abstract syntax tree is a tree data structure that represents a program
from the syntax point of view. In the tree, nodes represent the syntactic ele-
ments of the program. The edges in the tree represent how those nodes are
related. To make it concrete, Figure 2-1 shows the AST that represents the
code of our previous example: variable := 'constant' , self message.
As we will see later, each node in the tree is represented by an object, and
different kind of nodes will be instances of diferent classes, forming a com-
posite.

:=

variable

constant

,

self

message

Figure 2-1 AST representing the code of variable := 'constant' , self
message.

The Pharo standard distribution comes with a pretty complete AST imple-
mentation that is used by many tools. To get our hands over an AST, we
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could build it ourselves manually, or as we will do in this chapter, we ask a
parser to parse some text and build an AST for us. Fortunately, Pharo also
includes a parser that does exactly this: the RBParser. The RBParser class
implements a parser for Pharo code. It has two main modes of working: pars-
ing expressions and parsing methods.

For the Purists: abstract vs concrete trees

People tend to make the distinction between abstract and concrete syntax
trees. The difference is the following: an abstract syntax tree does not con-
tain information about syntactic elements per se. For example an abstract
syntax does not contain information about parentheses since the structure
of the tree itself reflects it. This is similar for variable definition delimiters
(pipes) or statement delimieters (periods) in Pharo. A concrete tree on the
other hand keeps such information because tools may need it. From that
perspective, the Pharo AST is in between both. The tree structure contains
no information about the concrete elements of the syntax, but these infor-
mations are remembered by the nodes so the source code can be rebuilt as
similar as the original code as possible. However, we make a bit of language
abuse and we refer to them as ASTs.

2.2 Parsing Expressions

Expressions are constructs that can be evaluated to a value. For example, the
program 17 max: 42 is the message-send max: to receiver 17 with argument
42, and can be evaluated to the value 42 (since it is bigger than 17).

| expression |
expression := RBParser parseExpression: '17 max: 42'.
expression receiver formattedCode
>>> 17

expression selector
>>> #max

expression arguments first formattedCode
>>> 42

Expressions are a natural instances of the composite pattern, where expres-
sions can be combined to build more complex expressions. In the following
example, the expression 17 max: 42 is used as the receiver of another mes-
sage expression, the message asString with no arguments.

| expression |
expression := RBParser parseExpression: '(17 max: 42) asString'.
expression receiver formattedCode
>>> (17 max: 42)
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expression selector
>>> #asString

expression arguments
>>> #()

Of course, message sends are not the only kind of expressions we have in
Pharo. Another kind of expression that appeared already in the examples
above are literal objects such as numbers.

| expression |
expression := RBParser parseExpression: '17'.
expression formattedCode
>>> 17

Pharo is a simple language, the number of different nodes that can compose
the method ASTs is structured in a class hiearchy. Figure 2-2 shows the node
inheritance hierarchy of Pharo rendered as a textual tree.

RBNode #()
RBComment #(#contents #start #parent)
RBProgramNode #(#parent #properties)

RBMethodNode #(#scope #selector #keywordsPositions #body #source 
#arguments #pragmas #replacements #nodeReplacements #compilationContext #bcToASTCache)
                                 RBPragmaNode #(#selector #keywordsPositions #arguments #left #right)

RBPatternPragmaNode #(#isList)
RBReturnNode #(#return #value)
RBSequenceNode #(#leftBar #rightBar #statements #periods #temporaries)
RBValueNode #(#parentheses)

RBArrayNode #(#left #right #statements #periods)
RBAssignmentNode #(#variable #assignment #value)
RBBlockNode #(#left #right #colons #arguments #bar #body #scope)
RBCascadeNode #(#messages #semicolons)
RBLiteralNode #(#start #stop)

RBLiteralArrayNode #(#isByteArray #contents)
RBLiteralValueNode #(#value #sourceText)

RBMessageNode #(#receiver #selector #keywordsPositions #arguments)
 RBParseErrorNode #(#errorMessage #value #start)

RBVariableNode #(#name #start)
RBArgumentNode #()
RBGlobalNode #()
RBInstanceVariableNode #()
RBSelfNode #()
RBSuperNode #()
RBTemporaryNode #()
RBThisContextNode #()

Figure 2-2 Overview of the method node hierarchy (TODO: remove RBPattern-

PragmaNode - Add RBSelectorNode). Indentation implies inheritance.

2.3 Literal Nodes

Literal nodes represent literal objects. A literal object is an object that is not
created by sending the newmessage to a class. Instead, the developer writes
directly in the source code the value of that object, and the object is created
automatically from it (could be at parse time, at compile time, or at runtime,
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depending on the implementation). Literal objects in Pharo are strings, sym-
bols, numbers, characters, booleans (true and false), nil and literal arrays
(#()).

Literal nodes in Pharo are instances of the RBLiteralValueNode, and un-
derstand the message value which returns the value of the object. In other
words, literal objects in Pharo are resolved at parse time. Notice that the
valuemessage does not return a string representation of the literal object,
but the literal object itself.

From now on we will omit the declaration of temporaries in the code snip-
pets for the sake of space.

integerExpression := RBParser parseExpression: '17'.
integerExpression value
>>> 17

trueExpression := RBParser parseExpression: 'true'.
trueExpression value
>>> true

"Remember, strings need to be escaped"
stringExpression := RBParser parseExpression: '''a string'''.
stringExpression value
>>> 'a string'

A special case of literals are literal arrays, which have their own node: RBLit-
eralArrayNode. Literal array nodes understand the message value as any
other literal, returning the literal array instance. However, it allows us to
access the sub collection of literals using the message contents.

arrayExpression := RBParser parseExpression: '#(1 2 3)'.
arrayExpression value
>>> #(1 2 3)

arrayExpression contents first
>>> RBLiteralValueNode(1)

In addition to messages and literals, Pharo programs can contain variables.

The Variable Node, Self and Super Nodes

Variable nodes in the AST tree are used when variables are used or assigned
to. Variables are instances of RBVariableNode and know their name.
variableExpression := RBParser parseExpression: 'aVariable'.
variableExpression name
>>> 'aVariable'

Variable nodes are used to equally denote temporary, argument, instance,
class or global variables. That is because at parse-time, the parser cannot dif-
ferentiate when a variable is of one kind or another. This is especially true
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when we talk about instance, class and global variables, because the con-
text to distinguish them has not been made available. Instead of complex-
ifying the parser with this kind of information, the Pharo toolchain does it
in a pipelined fashion, leaving the tools using the AST decide on how to pro-
ceed. The parser generates a simple AST, later tools annotate the AST with
semantic information from a context if required. An example of this kind of
treatment is the compiler, which requires such contextual information to
produce the correct final code.

For the matter of this book, we will not consider nor use semantic analysis,
and we will stick with normal RBVariableNode objects. The only exception
to this are self, super and thisContext special variables. Special variables
are variables that are recognised at parse-time, and generating special nodes
RBSelfNode, RBSuperNode and RBThisContextNode for them. These special
nodes inherit from RBVariableNode and work as normal variable nodes for
the purposes of this book.

2.4 Assignment Nodes

Assignment nodes in the AST represent assignment expressions using the :=
operator. In Pharo, following Smalltalk design, assignments are expressions:
their value is the value of the variable after the assignment. This allows to
chain assignments. We will see in the next chapter, when implementing an
evaluator, why this is important.

An assignment node is an instance of RBAssignmentNode. If we send it the
variablemessage, it answers the variable it assigns to. The message value
returns the expression at the right of the assignment.

assignmentExpression := RBParser parseExpression: 'var := #( 1 2 )
size'.

assignmentExpression variable
>>> RBVariableNode(var)

assignmentExpression value
>>> RBMessageNode(#(1 2) size)

2.5 Message Nodes

Message nodes are the core of Pharo programs, and they are the most com-
mon composed expression nodes we find in the AST. Messages are instances
of RBMessageNode and they have a receiver, a selector and a collection of
arguments, obtained through the receiver, selector and argumentsmes-
sages. We say that message nodes are composed expressions because the re-
ceiver and arguments of a message are expressions in themselves, which
can be as simple as literals or variables, or other composed messages too.
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messageExpression := RBParser parseExpression: '17 max: 42'.
messageExpression receiver
>>> RBLiteralValueNode(17)

Note that arguments is a normal collection of expressions - in the sense that
there is not special node class to represent such a sequence.

messageExpression arguments
>>> an OrderedCollection(RBLiteralValueNode(42))

And that the message selector returns also just a symbol.

messageExpression selector
>>> #max:

A note on message nodes and precedence

For those readers that already master the syntax of Pharo, you remember
that there exist three kind of messages: unary, binary and keyword mes-
sages. Besides their number of parameters, the Pharo syntax accords an or-
der of precedence between them too, i.e., unary messages get to be evaluated
before binary messages, which get to be evaluated before keyword messages.
Only parentheses override this precedence. Precedence of messages in ASTs
is resolved at parse-time. In other words, the output of RBParser is an AST
respecting the precedence rules of Pharo.

Let’s consider a couple of examples illustrating this, illustrated in Figure 2-3.
If we feed the RBParser with the expression below, it will create a RBMes-
sageNode as we already know it. The root of that message node is the key-
word: message, and its first argument is the argument + 42 unaryMessage
subexpression. That subexpression is in turn another message node with the
+ binary selector, whose first argument is the 42 unaryMessage subexpres-
sion.

variable keyword: argument + 42 unaryMessage

Now, let’s change the expression adding extra parenthesis as in:

variable keyword: (argument + 42) unaryMessage

The resulting AST completely changed! The root is still the keyword: mes-
sage, but now its first argument is the unaryMessage sent to a (now in paren-
thesis) (argument + 42) receiver.

Finally, if we modify the parenthesis again to wrap the keyword message, the
root of the resulting AST has changed too. It is now the + binary message.

(variable keyword: argument) + 42 unaryMessage

RBParser is a nice tool to play with Pharo expressions and master prece-
dence!

15



Representing Code with Abstract Syntax Trees

keyword:

variable

argument

+

unaryMes
age

42

:keyword:

variable

argument

+

42

unaryMess
age

variable keyword: (argument + 42) unaryMessage variable keyword: argument + 42 unaryMessage

Figure 2-3 Different precedence results in different ASTs.

2.6 Cascade Nodes

Cascade nodes represent cascaded message expressions, i.e., messages sent
to the same receiver. Cascaded messages are messages separated by semi-
colons (;) such as in the following example.

OrderedCollection new
add: 17;
add: 42;
yourself

This cascade is, in practical terms, equivalent to a sequence of messages to
the same receiver:

t := OrderedCollection new.
t add: 17.
t add: 42.
t yourself

However, in contrast with the sequence above, cascades are expressions:
their value is the value of the last message in the cascade.

A cascade node is an instance of RBCascadeNode. A cascade node under-
stands the receivermessage, returning the receiver of the cascade. It also
understands the messagesmessage, returning a collection with the messages
in the cascade. Note that the messages inside the cascade node are normal
RBMessageNode and have a receiver too. They indeed share the same re-
ceiver than the cascade. In the following chapters we will have to be careful
when manipulating cascade nodes, to avoid to wrongly manipulate twice the
same receiver.
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cascadeExpression := RBParser parseExpression: 'var msg1; msg2'.
cascadeExpression receiver
>>> RBVariableNode(var)

cascadeExpression messages
>>> an OrderedCollection(RBMessageNode(var msg1) RBMessageNode(var

msg2))

2.7 Dynamic Literal Array Nodes

Pharo has dynamic literal arrays. A dynamic literal array differs from a lit-
eral array in that its elements are calculated at runtime instead of at parse
time. To delay the execution of the elements in the dynamic array, a dy-
namic array node contains expressions, separated by dots.

{ 1 + 1 . self message . anObject doSomethingWith: anArgument + 3 }

Dynamic literal arrays nodes are instances of RBArrayNode. To access the ex-
pressions inside a dynamic array node, they understand the message chil-
dren
arrayNode := RBParser parseExpression: '{

1 + 1 .
self message .
anObject doSomethingWith: anArgument + 3 }'.

arrayNode children.
>>> an OrderedCollection(

RBMessageNode((1 + 1))
RBMessageNode(self message)
RBMessageNode((anObject doSomethingWith: anArgument + 3)))

2.8 Method and Block Nodes

Now that we have studied the basic nodes representing expressions, we can
build up methods from them. Methods are represented as instances of RB-
MethodNode and need to be parsed with a variant of the parser we have used
so far, a method parser. The RBParser class fulfills the role of a method
parser when we use the message parseMethod: instead of parseExpres-
sion:. For example, the following piece of code returns a RBMethodNode
instance for a method named myMethod.

methodNode := RBParser parseMethod: 'myMethod
1+1.
self'

A method node differs from the expression nodes that we have seen before
by the fact that method nodes can only be roots in the AST tree. Method

17



Representing Code with Abstract Syntax Trees

nodes cannot be children of other nodes. This differs from other program-
ming languages in block in which method definitions are indeed expressions
or statements that can be nested. In Pharo method definitions are not state-
ments: like class definitions, they are top level elements. This is why Pharo
is not a block structure language, even if it has closures (named blocks) that
can be nested, passed as arguments or stored.

Method nodes have a name or selector, accessed through the selectormes-
sage, a list of arguments, accessed through the argumentsmessage, and as
we will see in the next section they also contain a body with the list of state-
ments in the method.

methodNode selector
>>> #myMethod

2.9 Sequence Nodes

Method nodes have a body, represented as a RBSequenceNode. A sequence
node is a sequence of instructions or statements. All expressions are state-
ments, including all nodes we have already seen such as literals, variables,
arrays, assignments and message sends. We will introduce later two more
kind of nodes that can be included as part of a sequence node: block nodes
and return nodes. Block nodes are expressions that are syntactically and
thus structurally similar to methods. Return nodes, representing the return
instruction ^, are statement nodes but not expression nodes, i.e., they can
only be children of sequence nodes.

If we take the previous example, we can access the sequence node body of
our method with the bodymessage.

methodNode := RBParser parseMethod: 'myMethod
1+1.
self'.

methodNode body
>>> RBSequenceNode(1 + 1. self)

And we can access and iterate the instructions in the sequence by asking it
its statements.

methodNode body statements.
>>> an OrderedCollection(RBMessageNode(1 + 1) RBSelfNode(self))

Besides the instructions, sequence nodes also are the ones defining tempo-
rary variables. Consider for example the following method defining a tempo-
rary.
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myMethod
| temporary |
1+1.
self'

In an AST, temporary variables are defined as part of the sequence node and
not the method node. This is because temporary variables can be defined in-
side a block node, as we will see later. We can access the temporary variables
of a sequence node by asking it for its temporaries.

methodNode := RBParser parseMethod: 'myMethod
| temporary |
1+1.
self'.

methodNode body temporaries.
>>> an OrderedCollection(RBVariableNode(temporary))

2.10 Return Nodes

AST return nodes represent the instructions that are syntactically identified
by the caret character ^. Return nodes, instances of RBReturnNode are not
expression nodes, i.e., they can only be found as a direct child of sequence
nodes. Return nodes represent the fact of returning a value, and that value is
an expression, which we is accessible through the valuemessage.

methodNode := RBParser parseMethod: 'myMethod
1+1.
^ self'.

returnNode := methodNode body statements last.
>>>RBReturnNode(^ self)

returnNode value.
>>>RBSelfNode(self)

Note that as in Pharo return statements are not mandatory in a method, they
are not mandatory in the AST either. Indeed, we can have method ASTs with-
out return nodes. In those cases, the semantics of Pharo specifies that self
is implicitly returned. It is interesting to note that the AST does not contain
semantics but only syntax: we will add semantics to the AST when we eval-
uate it in a subsequent chapter. In Pharo this is the compiler that ensures
that a method always return self when return statements are absent in some
execution paths.

Also, as we said before, return nodes are not expressions, meaning that we
cannot write any of the following:

x := ^ 5

{ 1 . ^ 4 }
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Block Nodes

Block nodes represent block closure expressions. A block closure is an object
syntactically delimited by square brackets [] that contains statements and
can be evaluated using the valuemessage and its variants. The block node is
the syntactic counter-part of a block closure: it is the expression that, when
evaluated, will create the block object.

Block nodes work by most means like method nodes: they have a list of argu-
ments and a sequence node as body containing temporaries and statements.
They differentiate from methods in two aspects: first, they do not have a se-
lector, second, they are expressions (and thus can be parsed with parseEx-
pression:). They can be stored in variables, passed as message arguments
and returned by messages.

blockNode := RBParser parseExpression: '[ :arg | | temp | 1 + 1.
temp ]'.

blockNode arguments
>>>an OrderedCollection(RBVariableNode(arg))

blockNode body temporaries
>>>an OrderedCollection(RBVariableNode(temp))

blockNode body statements
>>>an OrderedCollection(RBMessageNode(1 + 1) RBVariableNode(temp))

2.11 Basic ASTs Manipulations

We have already covered all of Pharo AST nodes, and how to access the in-
formation in them. Those knowing ASTs for other languages, would have
noticed that we have indeed few nodes. This is because in Pharo, control-
flow statements such as conditionals or loops are expressed as messages, so
no special case for them is required in the syntax. Because of this, Pharo’s
syntax fits in a post-card.

In this section we will explore some core-messages of Pharo’s AST, that allow
common manipulation for all nodes: iterating the nodes, storing meta-data
and testing methods. Most of these manipulations are rather primitive and
simple. In the next Chapter we will see how the visitor pattern in conjunc-
tion with ASTs empowers us, and gives us the possibility to build more com-
plex applications such as concrete and abstract evaluators as we will see in
the next chapters.

Iterating over an AST

ASTs are indeed trees, and we can traverse them as any other tree. RBASTs
provide several protocols for accessing and iterating any AST node in a generic
way.
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• aNode children: returns a collection with the direct children of the
node.

• aNode allChildren: returns a collection with all recursive children
found from the node.

• aNode nodesDo: aBlock: iterates over allChildren applying aBlock
on each of them.

• aNode parent: returns the direct parent of the node.

• aNode methodNode: returns the method node that is the root of the
tree. For consistency, expressions nodes parsed using parseExpres-
sion: are contained within a method node too.

Storing Properties

Some manipulations require storing meta-data associated to AST nodes.
Pharo ASTs provide a set of messages for storing arbitrary properties inside
a node. Properties stored in a node are indexed by a key, following the API of
Pharo dictionaries.

• aNode propertyAt: aKey put: anObject: inserts anObject at aKey,
overriding existing values at aKey.

• aNode hasProperty: aKey: returns a boolean indicting if the node
contains a property indexed by aKey.

• aNode propertyAt: aKey: returns the value associated with aKey. If
aKey is not found, fails with an exception.

• aNode propertyAt: aKey ifAbsent: aBlock: returns the value as-
sociated with aKey. If aKey is not found, evaluates the block and re-
turns its value.

• aNode propertyAt: aKey ifAbsentPut: aBlock: returns the value
associated with aKey. If aKey is not found, evaluates the block, inserts
the value of the block at aKey and returns the value.

• aNode propertyAt: aKey ifPresent: aPresentBlock ifAbsent:
anAbsentBlock: Searches for the value associated with aKey. If aKey
is found, evaluates aPresentBlock with its value. If aKey is not found,
evaluates the block and returns its value.

• aNode removeProperty: aKey: removes the property at aKey. If aKey
is not found, fails with an exception.

• aNode removeProperty: aKey ifAbsent: aBlock: removes the
property at aKey. If aKey is not found, evaluates the block and returns
its value.
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Testing Methods

ASTs provide a testing protocol that can be useful for small applications and
writing unit tests. All ASTs answer the messages isXXX with a boolean true
or false. A first set of methods allow us to ask a node if it is of a specified
type:

• isLiteralNode

• isLiteralArray

• isVariable

• isAssignment

• isMessage

• isCascade

• isDynamicArray

• isMethod

• isSequence

• isReturn

And we can also ask a node if it is an expression node or not:

• isValue

2.12 Exercises

Draw the AST of the following code, indicating what kind of node is each.
You can help yourself by parsing and inspecting the expressions in Pharo.

Exercises on expressions

1. Draw the AST of expression true.

2. Draw the AST of expression 17.

3. Draw the AST of expression #( 1 2 true ).

4. Draw the AST of expression self yourself.

5. Draw the AST of expression a := b := 7.

6. Draw the AST of expression a + #( 1 2 3 ).

7. Draw the AST of expression a keyword: 'message'.

8. Draw the AST of expression (a max: 1) min: 17.

9. Draw the AST of expression a max: (1 min: 17).
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10. Draw the AST of expression a max: 1 min: 17.

11. Draw the AST of expression a asParser + b asParser parse: 'some-
text' , somethingElse .

12. Draw the AST of expression (a asParser + b asParser) parse:
('sometext' , somethingElse) .

13. Draw the AST of expression (a asParser + b asParser parse:
'sometext') , somethingElse .

14. Draw the AST of expression ((a asParser + b) asParser parse:
'sometext') , somethingElse .

Exercises on Blocks

1. Draw the AST of block [ 1 ].

2. Draw the AST of block [ :a ].

3. Draw the AST of block [ :a | a ].

4. Draw the AST of block [ :a | a + b ].

5. Draw the AST of block [ :a | a + b . 7 ].

6. Draw the AST of block [ :a | [ b ] . 7 ].

7. Draw the AST of block [ :a | | temp | [ ^ b ] . ^ 7 ].

Exercises on Methods

1. Draw the AST of method

someMethod
"this is just a comment, ignored by the parser"

1. Draw the AST of method

unaryMethod
self

1. Draw the AST of method

unaryMethod
^ self

1. Draw the AST of method

+ argument
argument > 0 ifTrue: [ ^ argument ].
^ self

1. Draw the AST of method
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+
strange indentation

1. Draw the AST of method

foo: arg1 bar: arg2
| temp |
temp := arg1 bar: arg2.
^ self foo: temp

Exercises on Invalid Code

Explain why the following code snippets (and thus their ASTs) are invalid:

1. Explain why this expression is invalid (a + 1) := b.

2. Explain why this expression is invalid a + ^ 81.

3. Explain why this expression is invalid a + ^ 81.

Exercises on Control Flow

As we have seen so far, there is no special syntax for control flow statements
(i.e., conditionals, loops...). Instead, Pharo uses normal message-sends for
them (ifTrue:, ifFalse:, whileTrue: ...). This makes the ASTs simpler,
and also turns control flow statements into control flow expressions.

1. Give an example of an expression using a conditional and its corre-
sponding AST

2. Give an example of an expression using a loop and its corresponding
AST

3. What do control flow expressions return in Pharo?

2.13 Conclusion

In this chapter we have studied AST, short for abstract syntax trees, an object-
oriented representation of the syntactic structure of programs. We have
also seen an implementation of them: the RB ASTs. RB provides a parser for
Pharo methods and expressions that transforms a string into a tree repre-
senting the program. We have seen how we can manipulate those ASTs. Any
other nodes follow a similar principal. You should have now the basis to un-
derstand the concept of ASTs and we can move on to the next chapter.
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CHA P T E R3
Manipulating ASTs with the

Visitor Pattern

In the previous Chapter we have seen how to create and manipulate AST
nodes. The RBParser class implements a parser of expressions and meth-
ods that returns AST nodes for the text given as argument. With the AST ma-
nipulation methods we have seen before, we can already write queries on
an AST. For example, counting the number of message-sends in an AST is as
simple as the following loop.

count := 0.
aNode nodesDo: [ :n |

n isMessage
ifTrue: [ count := count + 1 ] ].

count

However, more complex manipulations do require more than an iteration
and a conditional. When a different operation is required for each kind of
node in the AST, potentially with special cases depending on how nodes are
composed, one object-oriented alternative is to implement it using the Visi-
tor design pattern.

In this section we start reviewing the visitor pattern, and we then apply it for
a single task: searching a string inside the tree.

3.1 The Visitor Pattern

The Visitor pattern is one of the original design patterns from Gamma et al. ,
. The main purpose of the Visitor pattern is to externalize an operation from
a data structure. For example, let’s consider a file system implemented with
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the composite pattern, where nodes can be files or directories. This com-
posite forms a tree, where file nodes are leaf nodes and directory nodes are
non-leaf nodes.

Object subclass: #FileNode
instanceVariableNames: 'size'
package: 'VisitorExample'

Object subclass: #DirectoryNode
instanceVariableNames: 'children'
package: 'VisitorExample'

Using this tree, we can take advantage of the Composite pattern and the
polymorphism between both nodes to calculate the total size of a node im-
plementing a polymorphic sizemethod in each class.

FileNode >> size [
^ size

]

DirectoryNode >> size [
^ children sum: [ :each | each size ]

]

Now, let’s consider the users of the file system library want to extend it with
their own operations. If the users have access to the classes, they may ex-
tend them just by adding methods to them. However, chances are users do
not have access to the library classes. One way to open the library classes
is to implement the visitor protocol: each library class will implement a
generic acceptVisitor: aVisitormethod that will perform a re-dispatch
on the argument giving information about the receiver. For example, when a
FileNode receives the acceptVisitor: message, it will send the argument
the message visitFileNode:, identifying itself as a file node.

FileNode >> acceptVisitor: aVisitor [
^ aVisitor visitFileNode: self

]

DirectoryNode >> acceptVisitor: aVisitor [
^ aVisitor visitDirectoryNode: self

]

In this way, we can re-implement a SizeVisitor that calculates the total
size of a node in the file system as follows. When a size visitor visits a file, it
asks the file for its size. When it visits a directory, it must iterate the chil-
dren and sum the sizes. However, it cannot directly ask the size of the chil-
dren, because only FileNode instances do understand it but directories do
not. Because of this, we need to make a recursive call and re-ask the child
node to accept the visitor. Then each node will again dispath on the size visi-
tor.
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SizeVisitor >> visitFileNode: aFileNode [
^ aFileNode size

]

SizeVisitor >> visitDirectoryNode: aDirectoryNode [
^ aDirectoryNode children sum: [ :each | each acceptVisitor: self ]

]

As the file system library forms trees that we can manipulate with a visitor,
ASTs do so too. RBASTs are already extensible through visitors: its nodes
implement acceptVisitor: methods on each of the nodes. This means we
can introduce operations on the AST that were not foreseen by the original
developers. In such cases, it is up to us to implement a visitor object with the
correct visitXXX:methods.

3.2 Introducing AST visitors: measuring the depth of the

tree

To introduce how to implement an AST visitor on RBASTs, let’s implement
a visitor that returns the max depth of the tree. That is, a tree with a single
node has a depth of 1. A node with children has a depth of 1 + the maximum
depth amongst all its children. Let’s call that visitor DepthCalculatorVisi-
tor.

Object subclass: #DepthCalculatorVisitor
instanceVariableNames: ''
classVariableNames: ''
package: 'VisitorExample'

Pharo’s AST nodes implement already the visitor pattern. They have an ac-
ceptVisitor: method that will dispatch to the visitor with corresponding
visit methods.

This means we can already use our visitor but we will have to define some
methods else it will break on a visit.

Visiting message nodes

Let’s start by calculating the depth of the expression 1+1. This expression is
made of a message node, and two literal nodes.

expression := RBParser parseExpression: '1+1'.
expression acceptVisitor: DepthCalculatorVisitor new.
>>> Exception! DepthCalculatorVisitor does not understand

visitMessageNode:

If we execute the example above, we get a debugger because DepthCalcula-
torVisitor does not understand visitMessageNode:. We can then proceed
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to introduce that method in the debugger using the button create or by cre-
ating it in the browser. We can implement the visit method as follows, by
iterating the children to calculate the maximum depth amongst the children,
and then adding 1 to it.

DepthCalculatorVisitor >> visitMessageNode: aRBMessageNode [
^ 1 + (aRBMessageNode children

inject: 0
into: [ :max :node | max max: (node acceptVisitor: self) ])

]

Visiting literal nodes

As soon as we restart the example, it will stop again with an exception again,
but this time because our visitor does not know how to visit literal nodes.
We know that literal nodes have no children, so we can implement the visit
method as just returning one.

DepthCalculatorVisitor >> visitLiteralValueNode: aRBLiteralValueNode
[

^ 1
]

Calculating the depth of a method

A method node contains a set of statements. Statements are either expres-
sions or return statements. The example that follows parses a method with
two statements whose maximum depth is 3. The first statement, as we have
seen above, has a depth of 2. The second statement, however, has depth of
three, because the receiver of the +message is a message itself. The final
depth of the method is then 5: 1 for the method node, 1 for the sequence
node, and 3 for the statements.

method := RBParser parseMethod: 'method
1+1.
self factorial + 2'.

method acceptVisitor: DepthCalculatorVisitor new.
>>> Exception! DepthCalculatorVisitor does not understand

visitMethodNode:

To calculate the above, we need to implement three other visiting methods:
visitMethodNode:, visitSequenceNode: and visitSelfNode:. Since for
the first two kind of nodes we have to iterate over all children in the same
way, let’s implement these similarly to our visitMessageNode:. Self nodes
are variables, so they are leafs in our tree, and can be implemented as simi-
larly to literals.
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DepthCalculatorVisitor >> visitMethodNode: aRBMethodNode [
^ 1 + (aRBMethodNode children

inject: 0
into: [ :max :node | max max: (node acceptVisitor: self) ])

]

DepthCalculatorVisitor >> visitSequenceNode: aRBSequenceNode [
^ 1 + (aRBSequenceNode children

inject: 0
into: [ :max :node | max max: (node acceptVisitor: self) ])

]

DepthCalculatorVisitor >> visitSelfNode: aSelfNode [
^ 1

]

3.3 Refactoring the implementation

This simple AST visitor does not actually require different implementation
for each of its nodes. We have seen above that we can differentiate the nodes
between two kinds: leaf nodes that do not have children, and internal nodes
that have children. A first refactoring to avoid the repeated code in our so-
lution may extract the repeated methods into a common ones: visitNode-
WithChildren: and visitLeafNode:.

DepthCalculatorVisitor >> visitNodeWithChildren: aNode [
^ 1 + (aNode children

inject: 0
into: [ :max :node | max max: (node acceptVisitor: self) ])

]

DepthCalculatorVisitor >> visitMessageNode: aRBMessageNode [
^ self visitNodeWithChildren: aRBMessageNode

]
[[[
DepthCalculatorVisitor >> visitMethodNode: aRBMethodNode [

^ self visitNodeWithChildren: aRBMethodNode
]

DepthCalculatorVisitor >> visitSequenceNode: aRBSequenceNode [
^ self visitNodeWithChildren: aRBSequenceNode

]

DepthCalculatorVisitor >> visitLeafNode: aSelfNode [
^ 1

]

DepthCalculatorVisitor >> visitSelfNode: aSelfNode [
^ self visitLeafNode: aSelfNode

]
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DepthCalculatorVisitor >> visitLiteralValueNode: aRBLiteralValueNode
[

^ self visitLeafNode: aRBLiteralValueNode
]

3.4 Second refactoring

As a second step, we can refactor further by taking into account a simple in-
tuition: leaf nodes do never have children. This means that aNode children
always yields an empty collection for leaf nodes, and thus the result of the
following expression is alwaysa program that zero:

(aNode children
inject: 0
into: [ :max :node | max max: (node acceptVisitor: self) ])

In other words, we can reuse the implementation of visitNodeWithChil-
dren: for both nodes with and without children, to get rid of the duplicated
1+.

Let’s then rename the method visitNodeWithChildren: into visitNode:
and make all visit methods delegate to it. This will allow us also to remove
the, now unused, visitLeafNode:.

DepthCalculatorVisitor >> visitNode: aNode [
^ 1 + (aNode children

inject: 0
into: [ :max :node | max max: (node acceptVisitor: self) ])

]

DepthCalculatorVisitor >> visitMessageNode: aRBMessageNode [
^ self visitNode: aRBMessageNode

]

DepthCalculatorVisitor >> visitMethodNode: aRBMethodNode [
^ self visitNode: aRBMethodNode

]

DepthCalculatorVisitor >> visitSequenceNode: aRBSequenceNode [
^ self visitNode: aRBSequenceNode

]

DepthCalculatorVisitor >> visitSelfNode: aSelfNode [
^ self visitNode: aSelfNode

]

DepthCalculatorVisitor >> visitLiteralValueNode: aRBLiteralValueNode
[

^ self visitNode: aRBLiteralValueNode
]
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3.5 Refactoring: A common Visitor superclass

If we take a look at our visitor above, we see a common structure has ap-
peared. We have a lot of little visit methods per kind of node where we could
do specific per-node treatments. For those nodes that do not do anything
specific, with that node, we treat them as a more generic node with a more
generic visit method. Our generic visit methods could then be moved to a
common superclass named BaseASTVisitor defining the common structure,
but making a single empty hook for the visitNode: method.

Object subclass: #BaseASTVisitor
instanceVariableNames: ''
classVariableNames: ''
package: 'VisitorExample'

BaseASTVisitor >> visitNode: aNode [
"Do nothing by default. I'm meant to be overridden by subclasses"

]

BaseASTVisitor >> visitMessageNode: aRBMessageNode [
^ self visitNode: aRBMessageNode

]

BaseASTVisitor >> visitMethodNode: aRBMethodNode [
^ self visitNode: aRBMethodNode

]

BaseASTVisitor >> visitSequenceNode: aRBSequenceNode [
^ self visitNode: aRBSequenceNode

]

BaseASTVisitor >> visitSelfNode: aSelfNode [
^ self visitNode: aSelfNode

]

BaseASTVisitor >> visitLiteralValueNode: aRBLiteralValueNode [
^ self visitNode: aRBLiteralValueNode

]

And our DepthCalculatorVisitor is then redefined as a subclass of it:

BaseASTVisitor subclass: #DepthCalculatorVisitor
instanceVariableNames: ''
classVariableNames: ''
package: 'VisitorExample'

DepthCalculatorVisitor >> visitNode: aNode [
^ 1 + (aNode children

inject: 0
into: [ :max :node | max max: (node acceptVisitor: self) ])

]
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A more elaborate visitor could provide many more hooks. For example, in
our example above we could have differentiated RBSelf nodes from RBVari-
ableNodes, defining the following.

BaseASTVisitor >> visitSelfNode: aRBSelfNode [
^ self visitVariableNode: aRBSelfNode

]

BaseASTVisitor >> visitVariableNode: aRBVariableNode [
^ self visitNode: aRBVariableNode

]

Fortunately for us, Pharo’s ASTs already provide RBProgramNodeVisitor a
base class for our visitors, with many hooks to override in our specific sub-
classes.

3.6 Searching the AST for a Token

Calculating the depth of an AST is a pretty naïve example for a visitor be-
cause we do not need special treatment per node. It is however a nice exam-
ple to introduce the concepts, learn some common patterns, and it further-
more forced us to do some refactorings and understanding a complex visitor
structure. Moreover, it was a good introduction for the RBProgramNodeVis-
itor class.

In this section we will implement a visitor that does require different treat-
ment per node: a node search. Our node search will look for a node in the
tree that contains a token matching a string. For the purposes of this exam-
ple, we will keep it scoped to a begins with search, and will return all nodes
it finds, in a depth-first in-order traversal. We leave as an exercise for the
reader implementing variants such as fuzzy string search, traversing the AST
in different order, and being able to provide a stream-like API to get only the
next matching node on demand.

Let’s then start to define a new visitor class SearchVisitor, subclass of
RBProgramNodeVisitor. This class will have an instance variable to keep
the token we are looking for. Notice that we need to keep the token as part
of the state of the visitor: the visitor API implemented by Pharo’s ASTs do
not support additional arguments to pass around some extra state. This
means that this state needs to be kept in the visitor.

RBProgramNodeVisitor subclass: #SearchVisitor
instanceVariableNames: 'token'
classVariableNames: ''
package: 'VisitorExample'

SearchVisitor >> token: aToken [
token := aToken

]
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The main idea of our visitor is that it will return a collection with all match-
ing nodes. If no matching nodes are found, an empty collection is returned.

Searching in variables nodes

Let’s then start implementing the visit methods for variable nodes.RBProgramNodeVisitor
will already treat special variables as variable nodes, so a single visit method
is enough for all four kind of nodes. A variable node matches the search if its
name begins with the searched token.

SearchVisitor >> visitVariableNode: aNode [
^ (aNode name beginsWith: token)

ifTrue: [ { aNode } ]
ifFalse: [ #() ]

]

Searching in message nodes

Message nodes will match a search if their selector begins with the searched
token. In addition, to follow the specification children of the message need
to be iterated in depth first in-order. This means the receiver should be iter-
ated first, then the message node itself, finally the arguments.

SearchVisitor >> visitMessageNode: aNode [
^ (aNode receiver acceptVisitor: self),
((aNode selector beginsWith: token)

ifTrue: [ { aNode } ]
ifFalse: [ #() ]),

(aNode arguments gather: [ :each | each acceptVisitor: self ])
]

Searching in literal nodes

Literal nodes contain literal objects such as strings, but also booleans or
numbers. To search in them, we need to transform such values as string and
then perform the search within that string.

SearchVisitor >> visitLiteralNode: aNode [
^ (aNode value asString beginsWith: token)

ifTrue: [ { aNode } ]
ifFalse: [ #() ]

]

The rest of the nodes

The rest of the nodes do not contain strings to search in them. Instead the
contain children we need to search. We can then provide a common imple-
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mentation for them by simply redefining the visitNode: method.

SearchVisitor >> visitNode: aNode [
^ aNode children gather: [ :each | each acceptVisitor: self ]

]

Another design would be to store the collection holding the rest inside the
visitor and to avoid the temporary copies. We let you refactor your code to
implement it.

3.7 Exercises

Exercises on the Visitor Pattern

1. Implement mathematical expressions as a tree, to for example model
expressions like 1 + 8 / 3, and two operations on them using the
composite pattern: (a) calculate their final value, and (b) print the tree
in pre-order. For example, the result of evaluating the previous ex-
pression is 3, and printing it in pre-order yields the string '/ + 1 8
3'.

2. Re-implement the code above using a visitor pattern.

3. Add a new kind of node to our expressions: raised to. Implement it in
both the composite and visitor implementations.

4. About the difference between a composite and a visitor. What happens
to each implementation if we want to add a new operation? And what
happens when we want to add a new kind of node?

Exercises on the AST Visitors

1. Implement an AST lineariser, that returns an ordered collection of all
the nodes in the AST (similar to the pre-order exercise above).

2. Extend your AST lineariser to handle different linearisation orders:
breadth-first, depth-first pre-order, depth-first post-order.

3. Extend the Node search exercise in the chapter to have alternative
search orders. E.g., bottom-up, look not only if the strings begin with
them.

4. Extend the Node search exercise in the chapter to work as a stream:
asking next repeatedly will yield the next occurrence in the tree, or
nil if we arrived to the end of the tree. You can use the linearisations
you implemented above.
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3.8 Conclusion

In this chapter we have reviewed the visitor design pattern first on a simple
example, then on ASTs. The visitor design pattern allows us to extend tree-
like structures with operations without modifying the original implementa-
tion. The tree-like structure, in our case the AST, needs only to implement
an accept-visit protocol. RB ASTs implement such a protocol and some handy
base visitor classes.

Finally, we implemented two visitors for ASTs: a depth calculator and a node
searcher. The depth calculator is a visitor that does not require special ma-
nipulation per-node, but sees all nodes through a common view. The search
visitor has a common case for most nodes, and then implements special
search conditions for messages, literals and variables.

In the following chapters we will use the visitor pattern to implement AST
interpreters: a program that specifies how to evaluate an AST. A normal
evaluator interpreter yields the result of executing the AST. However, we
will see that abstract interpreters will evaluate an AST in an abstract way,
useful for code analysis.
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CHA P T E R 4
Representing Objects and

Memory

4.1 Class as an object

Here is the minimal information that a class should have:

• A list of instance variables to describe the values that the instances will
hold,

• A method dictionary to hold methods,

• A superclass to look up inherited methods.

This minimal state is similar to that of Pharo: the Pharo Behavior class has a
format (compact description of instance variables), a method dictionary, and
a superclass link.

In ObjVLisp, we have a name to identify the class. As an instance factory, the
metaclass Class possesses four instance variables that describe a class:

• name, the class name,

• superclass, its superclass (we limit to single inheritance),

• i-v, the list of its instance variables, and

• methodDict, a method dictionary.

Since a class is an object, a class has the instance variable class inherited
from Object that refers to its class as any object.
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The class Point

Class
'Point'
Object

'x y'
methods...

is instance of Class
named Point
inherits from Object
has instance variables
defines some methods

Figure 4-1 Point class as an object.

Example: class Point

Figure 4-1 shows the class Point as an instance with all the values taken in
its instance variables. This graphical representation is the same to the one
we used for terminal objects before, except that each variable is now anno-
tated with its meaning. The values we show here are those declared by the
programmer just before class initialization and inheritance take place.

• It is an instance of class Class: indeed this is a class.

• It is named 'Point'.

• It inherits from class Object.

• It has two instance variables: x and y. After inheritance it will be three
instance variables: class, x, and y.

• It has a method dictionary.

The class Class

Class
'Class'
Object

'name super i-v 
methodDict'

methods...

is instance of Class
named Class
inherits from Object
has instance variables

defines some methods

Figure 4-2 Class as an object.

Example: class Class

Figure 4-2 describes the class Class itself. Indeed it is also an object.

• It is an instance of class Class: indeed this is a class.

• It is named 'Class'.

• It inherits from class Object
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• It has four locally defined instance variables: name, superclass, i-v,
and methodDict.

• It has a method dictionary.

The class Class

Class
'Class'
Object

'class name super i-v 
methodDict'

methods(new  
allocate..)

instance of 

Class
'Workstation'

Object
'class name nextNode'

methods(accept: 
send:..

The class Workstation

Class
'Point'
Object

'class x y'
methods(distance:...)

The class Point

Workstation
mac1

/
some instances of Workstation

instance of 

Workstation
mac2
mac3

instance of 

Figure 4-3 Through the prism of objects.

Everything is an object

Figure 4-3 describes a typical situation of terminal instances, class and meta-
classes when viewed from an object perspective. We see three levels of in-
stances: terminal objects (mac1 and mac2 which are instances of Worksta-
tion), class objects (Workstation and Point which are instances of Class)
and the metaclass (Class which is instance of itself).

4.2 Object creation

Now we are ready to understand the creation of objects. In this model there
is only one way to create instances: we should send the message new to the
class with a specification of the instance variable values as argument.

4.3 Creation of instances of the class Point

The following examples show several point instantiations. What we see is
that the model inherits from the Lisp tradition of passing arguments using
keys and values, and that the order of arguments is not important.
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Object

accept:
...

id
nextNode

Node

send:

 
Workstation

accept: aPacket
  ^ aPacket target = id
         ....

accept: aPacket

2- execution on
receiver

1- lookup

aWork
station 

Figure 4-4 Sending a message is two-step process: method lookup and execu-

tion.

Point new :x 24 :y 6
>>> aPoint (24 6)
Point new :y 6 :x 24
>>> aPoint (24 6)

When there is no value specified, the value of an instance variable is initial-
ized to nil. CLOS provides the notion of default values for instance variable
initialization. It can be added to ObjVlisp as an exercise and does not bring
conceptual difficulties.

Point new
>>> aPoint (nil nil)

When the same argument is passed multiple times, then the implementation
takes the first occurrence.

Point new :y 10 :y 15
>>> aPoint (nil 10)

We should not worry too much about such details: The point is that we can
pass multiple arguments with a tag to identify them.

4.4 Creation of the class Point instance of Class

Since the class Point is an instance of the class Class, to create it, we should
send the message new to the class as follows:
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Class new
:name 'Point'
:super 'Object'
:ivs #(x y)

>>> aClass

What is interesting to see here is that we use exactly the same way to create
an instance of the class Point as the class itself. Note that the possibility to
have the same way to create objects or classes is also due to the fact that the
arguments are specified using a list of pairs.

An implementation could have two different messages to create instances
and classes. As soon as the same new, allocate, or initializemethods are
involved, the essence of the object creation is similar and uniform.

Instance creation: Role of the metaclass

The following diagram (Figure 4-5) shows that despite what one might ex-
pect, when we create a terminal instance the metaclass Class is involved in
the process. Indeed, we send the message new to the class, to resolve this
message, the system will look for the method in the class of the receiver
(here Workstation) which is the metaclass Class. The method new is found
in the metaclass and applied to the receiver, the class Workstation. Its ef-
fect is to create an instance of the class Workstation.

new accept:
send:

Workstation

mac1

instance of 

new
allocate
initialize

name
superclass
iv
methodDict

Class

instance of 

accept:
send:

Workstation

instance of 

instance of 

new
allocate
initialize

name
superclass
iv
methodDict

Class

Figure 4-5 Metaclass role during instance creation: Applying plain message reso-

lution.

The same happens when creating a class. Figure 4-6 shows the process. We
send a message, now this time, to the class Class. The system makes no ex-
ception and to resolve the message, it looks for the method in the class of the
receiver. The class of the receiver is itself, so the method new found in Class
is applied to Class (the receiver of the message), and a new class is created.

new = allocate and initialize

Creating an instance is the composition of two actions: a memory allocation
allocatemessage and an object initialisation message initialize.
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[ Class new
    :name 'Workstation'
    :superclass Object
    :iv #()
    :methods (send: ....)]

instance of 
new
allocate
initialize

name
superclass
iv
methodDict

Class

accept:
send:

Workstation

instance of 
new
allocate
initialize

name
superclass
iv
methodDict

Class

instance of 

Figure 4-6 Metaclass role during class creation: Applying plain message resolu-

tion - the self instantiation link is followed.

In Pharo syntax it means:

aClass new: args = (aClass allocate) initialize: args

We should see the following:

• The message new is a message sent to a class. The method new is a class
method.

• The message allocate is a message sent to a class. The method allo-
cate is a class method.

• The message initialize: will be executed on any newly created
instance. If it is sent to a class, a class initialize: method will be
involved. If it is sent to a terminal object, an instance initialize:
method will be executed (defined in Object).

Object allocation: the message allocate

Allocating an object means allocating enough space to the object state but
there’s more: instances should be marked with their class name or id. There
is an invariant in this model and in general in object-oriented programming
models. Every single object must have an identifier to its class, else the sys-
tem will break when trying to resolve a message.

Object allocation should return a newly created instance with:

• empty instance variables (pointing to nil for example);

• an identifier to its class.

In our model, the marking of an object as instance of a class is performed by
setting the value of the instance variable class inherited from Object. In
Pharo this information is not recorded as an instance variable but encoded in
the internal object representation in the virtual machine.

42
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The allocatemethod is defined on the metaclass Class. Here are some ex-
amples of allocation.

Point allocate
>>> #(Point nil nil)

A point allocation allocates three slots: one for the class and two for x and y
values.

Class allocate
>>>#(Class nil nil nil nil nil)

The allocation for an object representing a class allocates six slots: one for
class and one for each of the class instance variables: name, super, iv, key-
words, and methodDict.

Object initialization

Object initialization is the process of passing arguments as key/value pairs
and assigning the value(s) to the corresponding instance variable(s).

This is illustrated in the following snippet. An instance of class Point is cre-
ated and the key/value pairs (:y 6) and (:x 24) are specified. The instance is
created and it received the initialize: message with the key/value pairs.
The initialize: method is responsible for setting the corresponding vari-
ables in the receiver.

Point new :y 6 :x 24
>>> #(Point nil nil) initialize: (:y 6 :x 24)]
>>> #(Point 24 6)

When an object is initialized as a terminal instance, two actions are per-
formed:

• First we should get the values specified during the creation, i.e., get
that the y value is 6 and the x value is 24,

• Second we should assign the values to the corresponding instance vari-
ables of the created object.

Class initialization

During its initialization a class should perform several steps:

• First as with any initialization it should get the arguments and assign
them to their corresponding instance variables. This is basically imple-
mented by invoking the initializemethod of Object via a super call,
since Object is the superclass of Class.

• Second the inheritance of instance variables should be performed. Be-
fore this step the class iv instance variable just contains the instance
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variables that are locally defined. After this step the instance variable
iv will contain all the instance variables inherited and local. In partic-
ular this is where the class instance variable inherited from Object is
added to the instance variables list of the subclass of Object.

• Third the class should be declared as a class pool or namespace so that
programmers can access it via its name.

4.5 The Class class

Now we get a better understanding of what is the class Class:

• It is the initial metaclass and initial class.

• It defines the behavior of all the metaclasses.

• It defines the behavior of all the classes.

In particular, metaclasses define three messages related to instance creation.

• The newmessage, which creates an initialized instance of the class.
It allocates the instance using the class message allocate and then
initializes it by sending the message initialize: to this instance.

• The allocatemessage. Like message new, it is a class message. It allo-
cates the structure for the newly created object.

• Finally the message initialize:. This message has two definitions,
one on Object and one on Class.

There is a difference between the method initialize: executed on any
instance creation and the class initialize: method only executed when
the created instance is a class.

• The first one is a method defined on the class of the object and poten-
tially inherited from Object. This initialize: method just extracts
the values corresponding to each instance variable from the argument
list and sets them in the corresponding instance variables.

• The class initialize: method is executed when a new instance rep-
resenting a class is executed. The message initialize: is sent to the
newly created object but its specialization for classes will be found
during method lookup and it will be executed. Usually this method
invokes the default ones, because the class parameter should be ex-
tracted from the argument list and set in their corresponding instance
variables. But in addition, instance variable inheritance and class dec-
laration in the class namespace is performed.
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offsetFromClassOfInstanceVariable: #x

>>> 2

#(
    #ObjClass 
    #ObjPoint 
    #ObjObject 
    #(class x y) 
    #(:x :y) 
    nil 
)

Figure 4-7 Instance variable offset asked to the class.

4.6 Accessing object instance variable values

A first simple method.

The following test illustrates the behavior of the message offsetFromClas-
sOfInstanceVariable:
ObjTest >> testIVOffset

"(self selector: #testIVOffset) run"

self assert: ((pointClass offsetFromClassOfInstanceVariable: #x)
= 2).

self assert: ((pointClass offsetFromClassOfInstanceVariable:
#lulu) = 0)

Your job.

In the protocol 'iv management' define a method called offsetFromClas-
sOfInstanceVariable: aSymbol that returns the offset of the instance
variable represented by the symbol given in the parameter. It returns 0 if
the variable is not defined. Look at the tests #testIVOffset of the class Ob-
jTest.

Hints: Use the Pharo method indexOf:. Pay attention that such a primitive
is applied to an objClass as shown in the test.

Make sure that you execute the test method: testIVOffset

A second simple method.

The following test illustrates the expected behavior

ObjTest >> testIVOffsetAndValue
"(self selector: #testIVOffsetAndValue) run"
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offsetFromObjectOfInstanceVariable: #x

>>> 2

#( #ObjClass #ObjPoint #ObjObject #(class 
x y) #(:x :y)  nil )

#(Point 100 200)

Figure 4-8 Instance variable offset asked to the instance itself.

self assert: ((aPoint offsetFromObjectOfInstanceVariable: #x) =
2).

self assert: ((aPoint valueOfInstanceVariable: #x) = 10)

Your job.

Using the previous method, define in the protocol 'iv management':

1. the method offsetFromObjectOfInstanceVariable: aSymbol that
returns the offset of the instance variable. Note that this time the
method is applied to an objInstance presenting an instance and not a
class (as shown in Figure 4-8).

2. the method valueOfInstanceVariable: aSymbol that returns the
value of this instance variable in the given object as shown in the test
below.

Note that for the method offsetFromObjectOfInstanceVariable: you can
check that the instance variable exists in the class of the object and else raise
an error using the Pharo method error:.

Make sure that you execute the test method: testIVOffsetAndValue and it
passes.

4.7 Object allocation and initialization

The creation of an object is the composition of two elementary operations:
its allocation and its initialization. We now define the primitives that allow us
to allocate and initialize an object. Remember that:

• allocation is a class method that returns a nearly empty structure,
nearly empty because the instance represented by the structure should
at least know its class, and
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• initialization is an instance method that given a newly allocated in-
stance and a list of initialization arguments fill the instance.

Instance allocation

As shown in the class ObjTest, if the class ObjPoint has two instance vari-
ables: ObjPoint allocateAnInstance returns #(#ObjPoint nil nil).

ObjTest >> testAllocate
"(self selector: #testAllocate) run"
| newInstance |
newInstance := pointClass allocateAnInstance.
self assert: (newInstance at: 1) = #ObjPoint.
self assert: (newInstance size) = 3.
self assert: (newInstance at: 2) isNil.
self assert: (newInstance at: 3) isNil.
self assert: (newInstance objClass = pointClass)

Your job.

In the protocol 'instance allocation' implement the primitive called
allocateAnInstance that sent to an objClass returns a new instance whose
instance variable values are nil and whose objClassId represents the objClass.

Make sure that you execute the test method: testAllocate

47





CHA P T E R 5
Implementing an Evaluator

An evaluator is a kind of interpreter that executes a program. For example
a Pharo evaluator is an interpreter that takes as input a Pharo program and
executes each one of its statements, finally returning the result of the ex-
ecution. In this chapter and the following ones we will implement a Pharo
evaluator as an AST interpreter, using the Visitor pattern we have seen be-
fore, meaning that the input of our evaluator will be AST nodes of a program
to evaluate.

For presentation purposes, we will develop the evaluator in several stages,
each in a different chapter. First, in this chapter, we will show how to im-
plement a structural evaluator, i.e., an evaluator that reads and writes the
structures of objects, starting the presentation from constant values. Later
chapters will incrementally add support for other language features that de-
serve a chapter for themselves such as messages and blocks.

This chapter is presented in a somehow-relaxed TDD (test driven develop-
ment) style. For each new feature we first define the scenario we want to
cover. Since we are developing an evaluator, each scenario will be some code
to execute and an expected result. We then define a test for the scenario and
we make it pass. Before going to the next scenario, we do some refactorings
to enhance the quality of our code.

During this process we will define and refine an AST visitor. Note that we
will write the visitor from scratch but we will reuse the node of the Pharo
AST and their functionalities.
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5.1 Setting Up the Stage

To start writing our Pharo evaluator in TDD style, we will start by creating
out test class CHInterpreterTest. Our class names are prefixed with CH
because we named the package of the interpreter Champollion.

TestCase subclass: #CHInterpreterTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Champollion-Tests'

This class will, until a change is imperative, host all our test methods.

Preparing the Scenarios

Our scenarios, made out of classes and methods to be interpreted, need to be
written somewhere too. We could store those scenarios in strings in our test
class, that we will then need to parse and give to our interpreter as input.
However, for simplicity, and because in this book we do not want to center
ourselves in parsing issues, we will write our scenarios as normal Pharo code,
in normal Pharo classes. This solution is simple enough and versatile to sup-
port more complex situations in the future.

We will host our first scenarios as methods in a new class named CHInter-
pretable.

Object subclass: #CHInterpretable
instanceVariableNames: ''
classVariableNames: ''
package: 'Champollion-Test'

5.2 Evaluating Literals: Integers

Testing our evaluator requires that we test and assert some observable be-
havior. In Pharo there are two main observable behaviors: either side-effects
through assignments or results of methods through return statements. We
have chosen to use return statements, to introduce variables and assign-
ments later. To start, our first scenario is a method returning an integer, as
in the code below:

CHInterpretable >> returnInteger [
^ 5

]

Executing such a method should return an integer with value 5.
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5.3 Making the test pass: a First Literal Evaluator

Writing a Red Test

Our first test implements what our scenario defined above: executing our
method should return 5. This first test specifies not only part of the behaviour
of our interpreter, but also helps us in defining the part of its API: we want
our interpreter to be able to start executing from some method’s AST. Below
we define a first test for it: testReturnInteger.

CHInterpreterTest >> testReturnInteger [
| ast result |
ast := (CHInterpretable >> #returnInteger) parseTree.
result := self interpreter execute: ast.
self assert: result equals: 5

]

This first test is worth one comment: since our evaluator is an AST inter-
preter, it requires an AST as input. In other words, we need to get the AST
of the returnIntegermethod. Instead of invoking the parser to get an AST
from source code, we will use Pharo’s reflective API to get the AST of an al-
ready existing method.

5.3 Making the test pass: a First Literal Evaluator

Executing our first test fails first because our test does not understand in-
terpreter, meaning we need to implement a method for it in our test class.
We implement it as a factory method in our test class, returning a new in-
stance of CHInterpreter, and we define the class CHInterpreter as follows.

CHInterpreterTest >> interpreter [
^ CHInterpreter new

]

Object subclass: #CHInterpreter
instanceVariableNames: ''
classVariableNames: ''
package: 'Champollion-Core'

The class CHInterpreter is the main entry point for our evaluator, and it
will implement a visitor pattern over the Pharo method ASTs. Note that it
does not inherit from the default Pharo AST Visitor. The Pharo AST visitor
already implements generic versions of the visitXXX:methods that will do
nothing instead of failing. Not inheriting from it allows us to make it clear
when something is not yet implemented: we will get problems such as does
not understand exceptions that we will be able to implement them step by
step in the debugger. We nevertheless follow the same API as the default AST
visitor and we use the nodes’ accept: visiting methods.

At this point, re-executing the test fails with a new error: our CHInter-
preter instance does not understand the message execute:. We implement
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execute: to call the visitor main entry point, i.e., the method visitNode:.

CHInterpreter >> execute: anAST [
^ self visitNode: anAST

]

CHInterpreter >> visitNode: aNode [
^ aNode acceptVisitor: self

]

Since we evaluate a method AST, when we reexecute the test, the execution
halts because of the missing visitMethodNode:. A first implementation for
this method simply continues the visit on the body of the method.

CHInterpreter >> visitMethodNode: aMethodNode [
^ self visitNode: aMethodNode body

]

Execution then arrives to a missing visitSequenceNode:. Indeed, the body
of a method is a sequence node containing a list of temporary variable defini-
tions and a list of statements. Since our scenario has only a single statement
with no temporary variables, a first version of visitSequenceNode: ignores
temporary declarations and handles all the statements paying attention that
the last statement value should be returned. So we visit all the statements
except the last one, and we then visit the last one and return its result.

CHInterpreter >> visitSequenceNode: aSequenceNode [
"Visit all but the last statement without caring about the result"

aSequenceNode statements allButLast
do: [ :each | self visitNode: each ].

^ self visitNode: aSequenceNode statements last
]

Then the visitor visits the return node, for which we define the visitRe-
turnNode: method. This method simply visits the contents of the return
node (invoking recursively the visitor) and returns the obtained value. At the
point, the value is not yet covered by the visitor.

CHInterpreter >> visitReturnNode: aReturnNode [
^ self visitNode: aReturnNode value

]

Finally, the contents of the return node, the integer 5 is represented as a lit-
eral value node. To handle this node, we define the method visitLiteral-
ValueNode:. The implementation just returns the value of the node, which is
the integer we were looking for.

CHInterpreter >> visitLiteralValueNode: aLiteralValueNode [
^ aLiteralValueNode value

]
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5.4 Evaluating Literals: Floats

Our first test is now green and we are ready to continue our journey.

5.4 Evaluating Literals: Floats

For completeness, let’s implement support for literal floats. Since we already
have integer constants working, let’s consider next a method returning a
float literal. We can see such scenario in the code below:

CHInterpretable >> returnFloat [
^ 3.14

]

Executing such method should return 3.14.

Writing a Test

Testing this case is straight forward, we should test that evaluating our method
should return 3.14. We already defined that our interpreter understands the
execute: message, so this test can follow the implementation of our previ-
ous test.

CHInterpreterTest >> testReturnFloat [
| ast result |
ast := (CHInterpretable >> #returnFloat) parseTree.
result := self interpreter execute: ast.
self assert: result equals: 3.14

]

Two discussions come from writing this test. First, this test is already green,
because the case of floating point constants and integer constants exercise
the same code, so nothing is to be done on this side. Second, some would ar-
gue that this test is somehow repeating code from the previous scenario: we
will take care of this during our refactoring step.

5.5 Refactor: Improving the Test Infrastructure

Since we will write many tests with similar structure during this book, it
comes handy to share some logic between them. The two tests we wrote so
far show a good candidate of logic to share as repeated code we can extract.

The method executeSelector: extracts some common logic that will make
our tests easier to read and understand: it obtains the AST of a method from
its selector, evaluates it, and returns the value of the execution.

CHInterpreterTest >> executeSelector: aSymbol [
| ast |
ast := (CHInterpretable >> aSymbol) parseTree.
^ self interpreter execute: ast

]
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And we can now proceed to rewrite our first two tests as follows:

CHInterpreterTest >> testReturnInteger [
self
assert: (self executeSelector: #returnInteger)
equals: 5

]

CHInterpreterTest >> testReturnFloat [
self
assert: (self executeSelector: #returnFloat)
equals: 3.14

]

We are ready to efficiently write tests for the other constants.

5.6 Evaluating booleans

Boolean literals are the objects false and true, typically used for condition-
als and control flow statements. In the previous sections we implemented
support for numbers, now we introduce support for returning boolean values
as follows:

CHInterpretable >> returnBoolean [
^ false

]

Evaluating such a method should return false. We define a test for our
boolean scenario. Note that here we do not use deny:, because we want to
make the result explicit for the reader of the test.

CHInterpreterTest >> testReturnBoolean [
"Do not use deny: to make explicit that we expect the value false"
self
assert: (self executeSelector: #returnBoolean)
equals: false

]

If everything went ok, this test will be automatically green, without the need
for implementing anything. This is because booleans are represented in the
AST with literal value nodes, which we have already implemented.

5.7 Evaluating Literals: Arrays

Now that we support simple literals such as booleans and numbers, let’s
introduce literal arrays. Literal arrays are arrays that are defined inline in
methods with all their elements being other literals. Literals refer to the fact
that such objects are created during the parsing of the method code and now
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by sending a message. For this scenario, let’s define two different test sce-
narios: an empty literal array and a literal array that has elements.

CHInterpretable >> returnEmptyLiteralArray [
^ #()

]

CHInterpretable >> returnRecursiveLiteralArray [
^ #(true 1 #('ahah'))

]

These two methods should return the respective arrays.

Writing a Red Test

Writing tests to cover these two scenarios is again straight forward:

CHInterpreterTest >> testReturnEmptyLiteralArray [
self
assert: (self executeSelector: #returnEmptyLiteralArray)
equals: #()

]

CHInterpreterTest >> testReturnRecursiveLiteralArray [
self
assert: (self executeSelector: #returnRecursiveLiteralArray)
equals: #(true 1 #('ahah'))

]

Making the test pass: visiting literal array nodes

We have to implement the method visitLiteralArrayNode: to visit literal
arrays. Literal arrays contain an array of literal nodes, representing the el-
ements inside the literal array. To make our tests pass, we need to evaluate
a literal array node to an array where each element is the value of its corre-
sponding literal node. Moreover, literal arrays are recursive structures: an
array can contain other arrays. In other words, we should handle the visit of
literal arrays recursively. Here we return the values returned by the inter-
pretation of the elements.

CHInterpreter >> visitLiteralArrayNode: aLiteralArrayNode [
^ aLiteralArrayNode contents

collect: [ :literalNode | self visitNode: literalNode ]
as: Array

]

This makes our tests pass, and so far there is nothing else to refactor or clean.
Up until now we did not consider any form of variable and we should handle
them.
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5.8 Conclusion

In this chapter we have used the visitor pattern over AST nodes to imple-
ment a first version of a structural evaluator. This evaluator covers the basic
literals: integers, floats, booleans and arrays. Although we have not talked
about it explicitly, we also implemented a first version of the visit of state-
ments and return nodes.

We leave for the reader the exercise of extending this prototype with sup-
port for dynamic arrays (e.g., { self expression. 1+1 }).
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CHA P T E R6
Variables and Name Resolution

In the previous Chapter we wrote a first version of an evaluator managing
literals: integers, floats, arrays and booleans. This chapter introduces in our
evaluator the capability of evaluating variables. Variables are, using a very
general definition, storage location associated with a name. For example, a
global variable in Pharo is stored in a global dictionary of key-value associ-
ations, where the association’s key is the name of the variable and its value
is the value of the variable respectively. Instance variables, on their side, are
storage locations inside objects. Instance variables in Pharo have each a lo-
cation in the object, specified by an index, and that index corresponds to the
index of the variable’s name in its class’ instance variable list.

In this chapter we will study how variables are resolved. Since basically vari-
able nodes contain only their name, this involves a ”name resolution” step:
finding where the variable is located, and access it accordingly following the
lexical scoping (or static scoping) rules. Name resolution using lexical scop-
ing discovers variables using the nesting hierarchy of our code, where each
nesting level represents a scope. For example, classes define a scope with
variables visible only by their instances; the global scope defines variables
that are visible everywhere in the program, and classes are nested within the
global scope.

In this chapter we will implement name resolution by modelling the pro-
gram scopes. Scope objects will act as adapters for the real storage locations
of variables, giving us a polymorphic way to read and write variables. More-
over, scopes will be organized in a chain of scopes, that will model the lexical
organization of the program.
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6.1 Starting up with self and super

To start working with variables, we begin with a method returning self as
the one below. There is now a big difference between this scenario and the
previous ones about literals. Previous scenarios did always evaluate to the
same value regardless how or when they were executed. In this case, how-
ever, evaluating this method will return a different object if the receiver of
the message changes.

CHInterpretable >> returnSelf [
^ self

]

Writing a Red Test

To properly test how self behaves we need to specify a receiver object,
and then assert that the returned object is that same object with an identity
check. For this purpose we use as receiver a new object instance of Object,
which implement equality as identity, guaranteeing that the object will be
not only equals, but also the same. We use an explicit identity check in our
test to convey our intention.

CHInterpreterTest >> testReturnSelf [
| receiver |
receiver := Object new.
"Convey our intention of checking identity by using an explicit

identity check"
self assert: (self

executeSelector: #returnSelf
withReceiver: receiver)

== receiver
]

Introducing Support to Specify a Receiver

In this section we implement a first version of an execution context to in-
troduce receiver objects. This first support will get us up and running to im-
plement initial variable support, but it will run short to properly implement
message sends. This set up will be extended in later chapters to support to
message sends and block temporaries.

This initial support requires that the evaluator gets access to the object that
is the receiver in the current method execution. For now we add an instance
variable in our evaluator called receiver.
Object subclass: #CHInterpreter
instanceVariableNames: 'receiver'
classVariableNames: ''
package: 'Champollion-Core'
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We define an accessor so that we can easily adapt when we will introduce
a better way representation later. This instance variable is hidden behind
this accessor, allowing us to change later on the implementation without
breaking users.

CHInterpreter >> receiver [
^ receiver

]

Then we replace the existing implementation of execute: in CHInter-
preter by execute:withReceiver: which allows us to specify the receiver.

CHInterpreter >> execute: anAST withReceiver: anObject [
receiver := anObject.
^ self visitNode: anAST

]

And finally, since that change break all our tests, we will create a new helper
method in our tests executeSelector:withReceiver: and then redefine
the method executeSelector: to use this new method with a default re-
ceiver.

CHInterpreterTest >> executeSelector: aSymbol [
^ self executeSelector: aSymbol withReceiver: nil

]

CHInterpreterTest >> executeSelector: aSymbol withReceiver:
aReceiver [

| ast |
ast := (CHInterpretable >> aSymbol) parseTree.
^ self interpreter execute: ast withReceiver: aReceiver

]

Now we have refactored our code, introduced the possibility to specify a
message receiver, and still keep all our previous tests passing. Our new test is
still red, but we are now ready to make it pass.

Making the test pass: visiting self nodes

The interpretation of self is done in the method visitSelfNode:. The
Pharo parser resolves self and super nodes statically and creates special
nodes for them, avoiding the need for name resolution. Implementing it is
simple, it just returns the value of the receiver stored in the interpreter.
Note that this method does not access the receiver variable directly, but
uses instead the accessor, leaving us the possibility of redefining that method
without breaking the visit.

CHInterpreter >> visitSelfNode: aNode [
^ self receiver

]
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Introducing super

Following the same logic as for self, we improve our evaluator to support
super. We start by defining a method using super and its companion test.

CHInterpretable >> returnSuper [
^ super

]

CHInterpreterTest >> testReturnSuper [
| receiver |
receiver := Object new.
"Convey our intention of checking identity by using an explicit

identity check"
self assert: (self

executeSelector: #returnSuper
withReceiver: receiver)

== receiver
]

What the interpretation of super shows is that this variable is also the re-
ceiver of the message. Contrary to a common and wrong belief, super is not
the superclass or an instance of the superclass. It simply is the receiver:

CHInterpreter >> visitSuperNode: aNode [
^ self receiver

]

6.2 Introducing Lexical Scopes

Variables in Pharo are of different kinds: instance variables represent vari-
able stored in the evaluated message receiver, temporaries and arguments
are variables visible only within a particular method evaluation, shared vari-
ables and global variables are variables that are in the global scope and inde-
pendent of the receiver.

All these ”contexts” definining variables are also named scopes, because they
define the reach of variable definitions. At any point during program execu-
tion, we can organize scopes in a hierarchy of scopes following a parent re-
lationship. When a method evaluates, the current scope is the method scope
with all the arguments and temporary variables defined in the method. The
parent of a method scope is the instance scope that defines all the variables
for an instance. The parent of the instance scope is the global scope that de-
fines all the global variables.

Notice that in this scope organization we are not explicitly talking about
classes. The instance scope takes care of that resolving all instance variables
in the hierarchy of the receiver object. A class scope could be added later to
resolve class variables, and class pools.
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6.3 Evaluating Variables: Instance Variable Reads

The basic structure of our lexical scope implementation introduces the method
scopeDefining: in our interpreter, that returns the scope defining the
given name. The method scopeDefining: forwards the search to the cur-
rent scope, obtained through currentScope. Finally, we will extend our
interpreter with visitVariableNode: and visitAssignmentNode: to
handle variable reads and writes. Reads (and writes) obtain the scope for
the read (written) variable and delegate the read (write) to it. This means
our scope objects need to define methods scopeDefining: and read: and
write:withValue:.

CHInterpreter >> scopeDefining: aName [
^ self currentScope scopeDefining: aName

]

CHInterpreter >> currentScope [
^ ...

]

CHInterpreter >> visitVariableNode: aVariableNode [
^ (self scopeDefining: aVariableNode name) read: aVariableNode name

]

CHInterpreter >> visitAssignmentNode: anAssignmentNode [
| value |
value := self visitNode: anAssignmentNode value.
(self scopeDefining: anAssignmentNode variable name)
write: anAssignmentNode variable name
withValue: value.

^ value
]

6.3 Evaluating Variables: Instance Variable Reads

The first step is to support instance variable reads. Since such variables are
evaluated in the context of the receiver object, we need a receiver object that
has instance variables. We already had such a class: CHInterpretable. We
then add an instance variable and a getter and setter for it to be able to con-
trol the values in that instance variable.

Object subclass: #CHInterpretable
instanceVariableNames: 'x'
classVariableNames: ''
package: 'Champollion-Tests'

CHInterpretable >> returnX [
^ x

]
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CHInterpretable >> x: anInteger [
x := anInteger

]

To test the correct evaluation of the instance variable read, we check that
the getter returns the value in the instance variable, which we can previ-
ously set.

CHInterpreterTest >> testReturnInstanceVariableRead [
| receiver |
receiver := CHInterpretable new.
receiver x: 100.
self
assert: (self executeSelector: #returnX withReceiver: receiver)
equals: 100

]

Our test is failing so we are ready to make it work.

Creating an Instance Scope

To make our tests go green, we need to implement instance scopes and the
CHInterpreter>>currentScopemethod. We will model instance scopes
with a new class. This class will know the receiver object, extract the list of
instance variables from it, and know how to read and write from/to it.

Object subclass: #CHInstanceScope
instanceVariableNames: 'receiver'
classVariableNames: ''
package: 'Champollion-Core'

CHInstanceScope >> receiver: anObject [
receiver := anObject

]

CHInstanceScope >> scopeDefining: aString [
(self definedVariables includes: aString)
ifTrue: [ ^ self ].

^ self parentScope scopeDefining: aString
]

CHInstanceScope >> definedVariables [
^ receiver class allInstVarNames

]

CHInstanceScope >> read: aString [
^ receiver instVarNamed: aString

]
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We then can define our currentScopemethod as follows.

CHInterpreter >> currentScope [
^ CHInstanceScope new

receiver: self receiver;
yourself

]

All our tests should now pass!

6.4 Refactor: Improving our Tests setUp

Let’s simplify how receivers are managed in tests. Instead of having to ex-
plicitly create and manage a receiver object, we add the receiver as an in-
stance variable to the CHInterpreterTest.

TestCase subclass: #CHInterpreterTest
instanceVariableNames: 'interpreter receiver'
classVariableNames: ''
package: 'Champollion-Tests'

We can then redefine the setUpmethod to create a new instance of CHIn-
terpretable and assign it to the variable receiver.

CHInterpreterTest >> setUp [
super setUp.
receiver := CHInterpretable new

]

And now we use this new instance variable in executeSelector: as the de-
fault receiver instead of nil.
CHInterpreterTest >> executeSelector: aSymbol [

^ self executeSelector: aSymbol withReceiver: receiver
]

And finally we rewrite all our test methods using an explicit receiver:

CHInterpreterTest >> testReturnSelf [
"Convey our intention of checking identity by using an explicit

identity check"
self assert: (self
executeSelector: #returnSelf
withReceiver: receiver)

== receiver
]

CHInterpreterTest >> testReturnSuper [
"Convey our intention of checking identity by using an explicit

identity check"
self assert: (self
executeSelector: #returnSelf
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withReceiver: receiver)
== receiver

]

CHInterpreterTest >> testReturnInstanceVariableRead [
receiver x: 100.
self
assert: (self executeSelector: #returnX)
equals: 100

]

6.5 Instance Variable Writes

Now that we have support for instance variable reads, we keep on going with
instance variable writes. In our scenario, a method writes a literal integer
into an instance variable x and then returns the value of the assignment.
This scenario has two observable behaviors that we will be tested separately.
First, such an assignment should be observable from the outside by reading
that variable. Second, an assignment is an expression whose value is the as-
signed value, thus the return value should also be the assigned value.

CHInterpretable >> store100IntoX [
^ x := 100

]

To test this behavior, we evaluate the method above and then we validate
that effectively the instance variable was mutated. To make sure the value
was modified, we set an initial value to the variable before the evaluation.
After the evaluation we should not keep that value. The case of the return is
similar to our previous tests.

CHInterpreterTest >> testStore100IntoX [
receiver x: 17.
self executeSelector: #store100IntoX.
self assert: receiver x equals: 100

]

CHInterpreterTest >> testAssignmentReturnsAssignedValue [
self
assert: (self executeSelector: #store100IntoX)
equals: 100

]

And finally, we implement a getter for the x variable. This getter is used to
extract the value in the tests.

CHInterpretable >> x [
^ x

]
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To make this tests pass, let’s first see in detail our method visitAssign-
mentNode.

CHInterpreter >> visitAssignmentNode: anAssignmentNode [
| value |
value := self visitNode: anAssignmentNode value.
(self scopeDefining: anAssignmentNode variable name)
write: anAssignmentNode variable name
withValue: value.

^ value
]

Evaluating an assignment node with the form variable := expression
requires that we evaluate the expression of the assignment, also called the
right hand side of the assignment, and then set that value to the left-side
variable. Notice that the variable we are assigning into does not need to be
evaluated/visited: the evaluation of a variable is equivalent to reading its
value. And in the left part of an assignment, we do not care about the value
of the variable, but about the location of the variable. Our visit method then
looks as follows: we recursively visit the right-side of the assignment (got
through the value accessor), we set that value to the variable by delegating
to the scope, and we finally return the stored value. To set the value to the
variable, we implement write:withValue: in our instance scope.

CHInstanceScope >> write: aString withValue: anInteger [
receiver instVarNamed: aString put: anInteger

]

Now the tests should pass.

6.6 Evaluating Variables: Global Reads

We finish this chapter with the reading of global variables, which cover two
cases: proper global variables, and the access to classes. To better control
our testing environment, we decided to not use the Pharo environment by
default. Instead, the interpreter will know its global scope in an instance
variable and lookup globals in it using a simple API, making it possible to
use the system’s global environment instead if we wanted to. We also leave
outside of the scope of this chapter the writing to global variables. The case
of global variable writing is similar to the instance variable assignment.

Our first testing scenario, similar to the previous ones, is as follows: we de-
fine a method returnGlobal reads and returns the global named Global.
When defining such method in Pharo, the IDE will ask what Global is, be-
cause such a variable does not exist: select to create it as a global variable.
Such a detail is only necessary to keep Pharo itself happy and it does not
have any impact in our implementation. Remember that we are writing our
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own Pharo implementation in the interpreter, and we will decide what to do
with Global ourselves.

CHInterpretable >> returnGlobal [
^ Global

]

We define a test which specifies that the interpreter’ environment has a
binding whose key is #Global and value is a new object.

CHInterpreterTest >> testReturnGlobal [
| globalObject |
globalObject := Object new.
interpreter globalEnvironmentAt: #Global put: globalObject.
self assert: (self executeSelector: #returnGlobal) equals:

globalObject
]

We introduce a new global scope class CHGlobalScope, and an instance vari-
able named globalScope in the class CHInterpreter initialized to a global
scope.

Object subclass: #CHGlobalScope
instanceVariableNames: 'globalsDictionary'
classVariableNames: ''
category: 'Champollion-Core'

CHGlobalScope >> initialize [
super initialize.
globalsDictionary := Dictionary new

]

CHGlobalScope >> globalsDictionary: anObject [
globalsDictionary := anObject

]

CHGlobalScope >> at: aKey ifAbsent: aBlock [
^ globalsDictionary at: aKey ifAbsent: aBlock

]

Object subclass: #CHInterpreter
instanceVariableNames: 'globalScope'
classVariableNames: ''
category: 'Champollion-Core'

CHInterpreter >> initialize [
super initialize.
globalScope := CHGlobalScope new

]

CHInterpreter >> globalEnvironment [
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^ globalScope
]

We define the method globalEnvironmentAt:put: to easily add new glob-
als from our test.

CHInterpreter >> globalEnvironmentAt: aSymbol put: anObject [
globalScope at: aSymbol put: anObject

]

CHGlobalScope >> at: aKey put: aValue [
globalsDictionary at: aKey put: aValue

]

We decided that trying to access a global that is not defined will raise an
error in the interpreter and halt the interpretation. An alternative design
would return a default value instead such as nil. A more complex design
would have been to throw an exception in the interpreted program. For the
moment, halting the interpreter with an error suffices for our job.

CHInterpreter >> visitGlobalVariableNode: aRBGlobalNode [
^ self globalEnvironment

at: aRBGlobalNode name
ifAbsent: [ self error: aRBGlobalNode name, ' not found' ]

]

Finally, we need to chain the global scope to the instance scope, and define a
scopeDefining: and a read: method in our global scope.

CHInterpreter >> currentScope [
^ CHInstanceScope new
receiver: self receiver;
parentScope: globalScope;
yourself

]

CHInstanceScope >> parentScope: anObject [
parentScope := anObject

]

CHInstanceScope >> parentScope [
^ parentScope

]

CHGlobalScope >> scopeDefining: aString [
"I'm the root scope..."
^ self

]

CHGlobalScope >> read: aString [
^ globalsDictionary at: aString
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]

6.7 Conclusion

In this chapter we introduced support for variables and name resolution,to
support instance variables and global variables. This first evaluator serves as
basis for implementing the execution of the main operations in Pharo: mes-
sages. The following chapters will start by decomposing message resolution
into method-lookup and apply operations, introduce the execution stack,
the management of temporary variables and argument, and ’super’ message-
sends.

We further invite the reader to explore changing the language semantics
by modifying this simple evaluator: How could we implement read-only ob-
jects? Log all variable reads and writes?
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CHA P T E R 7
Implementing Message Sends:

Calling Infrastructure

In the previous chapter we focused on structural evaluation: reading literal
objects and reading and writing values from objects and globals. However,
the key abstraction in object-oriented programming and in Pharo in particu-
lar is message-sending. The work we did in the previous chapter is neverthe-
less important to set up the stage: we have a better taste of the visitor pat-
tern, we started a first testing infrastructure, and eventually message-sends
need to carry out some work by using literal objects or reading and writing
variables.

Message-sends deserve a chapter on their own because they introduce many
different concerns. On the one hand, each message-send is resolved in two
steps: first the method-lookup searches in the receiver’s hierarchy the method
to be executed, and second that method is applied on the receiver (i.e., it is
evaluated with self bound to the receiver). On the other hand, each method
application needs to set up an execution context to store the receiver, argu-
ments and temporary variables for that specific method execution. These
execution contexts form the execution stack or call-stack. Sending a message
pushes a new context in the call-stack, returning from a method pops a con-
text from the call-stack. This is mechanics that we will cover in this chapter,
so that in the following chapter we can implement logic and support late-
binding.
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7.1 Introduction to Stack Management

The way we managed the receiver so far is overly simplistic. Indeed, each
time a program will send a message to another object, we should change the
receiver and when a method execution ends, we should restore the previous
receiver. Moreover, the same happens with method arguments and tempo-
raries. Therefore to introduce the notion of message-send we need a stack.
And each element in the stack needs to capture all the execution state re-
quire to come back to it later on when a message-send will return. Each ele-
ment in the call-stack is usually named a stack frame, an activation record,
or in Pharo’s terminology a context. For the rest of this book we will refer
to them as frames, for shortness, and to distinguish them from the reified
contexts from Pharo.

A first step to introduce stack management without breaking all our previous
tests is to replace the single receiver instance variable with a stack that will
be initialized when the evaluator is created. The top of the stack will repre-
sent the current execution, and thus we will take the current receiver at each
moment from the stack top. Moreover, each time we tell our interpreter to
execute something we need to initialize our stack with a single frame.

As an example, let us consider Figure 7-1, which presents a call-stack with
two methods. The first method in the stack (at its bottom) is method foo.
Method foo calls method bar and thus it follows it in the stack. The current
method executing is the one in the top of the stack. When a method returns,
we can restore all the state of the previous method just by popping the top
of the stack.

CHInterpretable	>>	foo
				^	self	bar

method: foo
receiver: someObject
arguments: …
temporaries: …

method: bar
receiver: someObject
arguments: …
temporaries: …

someObject

method

receiver

receiver

Stack
grows up

stack bottom

stack top

Figure 7-1 A call-stack with two frames, executing the method foo which calls

bar.
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Listing 7-2 Replace the receiver instance variable by a stack

Object subclass: #CHInterpreter
instanceVariableNames: 'stack'
classVariableNames: ''
package: 'Champollion-Core'

CHInterpreter >> initialize [
super initialize.
stack := CTStack new.

]

With this new schema, we can now rewrite the access to the receiver to just
access the value of #self of the top frame.

CHInterpreter >> receiver [
^ self topFrame receiver

]

CHInterpreter >> topFrame [
^ stack top

]

The final step is to set up a frame when the execution starts, which hap-
pened so far in our method execute:withReceiver:. We extend the ex-
ecute:withReceiver: to create a new frame and define the receiver as
#self in the top frames before start the evaluation.

CHInterpreter >> execute: anAST withReceiver: anObject [
self pushNewFrame.
self topFrame receiver: anObject.
^ self visitNode: anAST

]

The last piece in the puzzle is the method pushNewFrame, which creates a
new frame and pushes it on the top of the stack. Since methods define a
scope with their temporary variables and arguments, we represent frames
using a new kind of scope: a method scope. The method scope will for now
store the current receiver, and later its parent scope, and a set of key-value
pairs representing the variables defined in the current method execution:
the arguments and temporaries.

CHInterpreter >> pushNewFrame [
| newTop |
newTop := CHMethodScope new.
stack push: newTop.
^ newTop

]

Object subclass: #CHMethodScope
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instanceVariableNames: 'receiver variables'
classVariableNames: ''
package: 'Champollion-Core'

CHMethodScope >> receiver: aCHInterpretable [
receiver := aCHInterpretable

]

CHMethodScope >> receiver [
^ receiver

]

This refactor kept all the test green, and opened the path to introduce message-
sends. As the reader may have observed, this stack can only grow. We will
take care of popping frames from the stack later when we revisit method re-
turns.

7.2 Evaluating a First Message Send

Let’s start as usual by defining a new method exhibiting the scenario we
want to work on. In this case, we want to start by extending our evaluator
to correctly evaluate return values of message sends.

Our scenario method sendMessageReturnX does a self message-send and
returns the value returned by this message send. On the one hand, we want
that in our scenario the receiver of both messages is the same. On the other
hand, we want that the message send is correctly evaluated to the return
value of the activated method.

CHInterpretable >> sendMessageReturnX [
^ self returnX

]

Notice that our method sendMessageReturnX and the implementation of the
message it sends returnX live in the same class. This means that in this first
scenario we can concentrate on the stack management and return value of
the message sends, without caring too much about the details of the method
lookup algorithm. For this first version we will define a simple and incom-
plete yet useful method lookup algorithm. SD-Guille I do not get the follow-
ing paragraph - I could not really understand and I could not fix it. In our
first test we want to ensure that in a selfmessage-send, the receiver of both
the called and callee methods is the same. One way to do that is with a side-
effect: if we write one instance variable in one method with some value x
(say and we access that value from the other method, we should get the same
value x (say). This will show that the object represented by self is the same
and that we did not push for example nil.
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CHInterpreterTest >> testSelfSend [
receiver x: 100.
self
assert: (self executeSelector: #sendMessageReturnX)
equals: 100

]

To make this test green, we need to implement the method visitMessageN-
ode:. Evaluating a message node requires that we recursively evaluate the
receiver node, which may be a literal node or a complex expression such as
another message-send. From such an evaluation we obtain the actual re-
ceiver object. Starting from the receiver, we will lookup the method with
the same selector as the message-send. In our first implementation we will
just fetch the desired method’s AST from the receiver’s class. Finally, we can
activate this method with the receiver using execute:withReceiver: the
activation will push a new frame to the call-stack with the given receiver,
evaluate the method, and eventually return with a value.

CHInterpreter >> visitMessageNode: aMessageNode [
| newReceiver method |
newReceiver := self visitNode: aMessageNode receiver.
method := (newReceiver class compiledMethodAt: aMessageNode

selector) ast.
^ self execute: method withReceiver: newReceiver

]

7.3 Balancing the Stack

We mentioned earlier that when the execution of a method is finished and
the execution returns to its caller method, its frame should be also discarded
from the stack. The current implementation clearly does not do it. Indeed,
we also said that our initial implementation of the stack only grows: it is
clear by reading our code that we never pop frames from the stack.

To solve this issue, let us write a test showing the problem first. The idea of
this test is that upon return, the frame of the caller method should be re-
stored and with its receiver. If we make that the caller and callee methods
have different receiver instances, then this test can be expressed by calling
some other method, ignore its value and then return something that depends
only on the receiver. In other words, this test will fail if calling a method on
some other object modifies the caller!

The following code snippet shows an scenario that fulfills these require-
ments: it sets an instance variable with some value, sends a message to an
object other than self and upon its return it accesses its instance variable
again before returning it. Assuming the collaborator object does not mod-
ify self, then the result of evaluating this message should be that 1000 is
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returned.

CHInterpretable >> setXAndMessage [
x := 1000.
collaborator returnX.
^ x

]

Our test testBalancingStack executes the message setXAndMessage that
should return 1000.

CHInterpreterTest >> testBalancingStack [
self
assert: (self executeSelector: #setXAndMessage)
equals: 1000

]

We then finish our setup by extending CHInterpretable to support delegat-
ing to a collaborator object. We add a collaborator instance variable to the
class CHInterpretable with its companion accessors. This way we will be
able to test that the correct object is set and passed around in the example.

Object subclass: #CHInterpretable
instanceVariableNames: 'x collaborator'
classVariableNames: ''
package: 'Champollion-Core'

CHInterpretable >> collaborator [
^ collaborator

]

CHInterpretable >> collaborator: anObject [
collaborator := anObject

]

And in the setUpmethod we pass a collaborator to our initial receiver.

CHInterpreterTest >> setUp [
super setUp.
receiver := CHInterpretable new.
receiver collaborator: CHInterpretable new

]

Making the test pass

Executing this test breaks because the access to the instance variable x re-
turns nil, showing the limits of our current implementation. This is due to
the fact that evaluating message send returnX creates a new frame with
the collaborator as receiver, and since that frame is not popped from of the
stack, when the method returns, the access to the x instance variable ac-
cesses the one of the uninitialized collaborator instead of the caller object.
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To solve this problem, we should pop the frame when a method activation
finishes. This way the stack is balanced. This is what the new implementa-
tion of executeMethod:withReceiver: does.

CHInterpreter >> executeMethod: anAST withReceiver: anObject [
self pushNewFrame.
self topFrame receiver: anObject.
result := self visitNode: anAST.
self popFrame.
^ result

]

CHInterpreter >> popFrame [
stack pop

]

7.4 Ensuring the receiver is correctly set: an Extra Test

Our previous tests did ensure that messages return the correct value, acti-
vate the correct methods, and that the stack grows and shrinks. However,
we did not ensure yet that the receiver changes correctly on a message send,
and since we do not lose any opportunity to strenghten our trust in our im-
plementation with a new test, let’s write a test for it.

The scenario, illustrated in changeCollaboratorX will ask the collaborator
to store100IntoX, implemented previosly. In this scenario, we must ensure
that the state of the receiver and the collaborator are indeed separate and
that changing the collaborator will not affect the initial receiver’s state.

CHInterpretable >> changeCollaboratorX [
collaborator store100IntoX

]

Our test for this scenario is as follows. If we give some value to the receiver
and collaborator, executing our method should change the collaborator but
not the initial receiver.

CHInterpreterTest >>
testInstanceVariableStoreInMethodActivationDoesNotChangeSender [

receiver x: 200.
collaborator x: 300.

"changeCollaboratorX will replace collaborator's x but not the
receiver's"

self executeSelector: #changeCollaboratorX.

self assert: receiver x equals: 200.
self assert: collaborator x equals: 100

]
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To make our test run, we will store as a convenience the collaborator object
in an instance variable of the test too.

TestCase subclass: #CHInterpreterTest
instanceVariableNames: 'receiver collaborator'
classVariableNames: ''
package: 'Champollion-Tests'

CHInterpreterTest >> setUp [
super setUp.
receiver := CHInterpretable new.
collaborator := CHInterpretable new.
receiver collaborator: collaborator

]

This test passes, meaning that our implementation already covered correctly
this case. We are ready to continue our journey in message-sends.

7.5 Supporting Message Arguments

So far we have worked only with unary messages. Unary messages have no
arguments, so the number of programs we can express with them only is
rather limited. The next step towards having a full-blown interpreter is to
support message arguments, which will open us the door to support binary
and keyword messages. From the evaluator point of view, as well as from the
AST point of view, we will not distinguish between unary, binary and key-
word messages. The parser already takes care about distinguishing them and
handling their precedence. Indeed, message nodes in the AST are the same
for all kind of messages, they have a selector and a collection of argument
nodes. Precedence is then modelled as relationships between the AST nodes.

In addition of simply passing the arguments, from an evaluator point of view,
we need to care about evaluation order too. This is particularly important
because Pharo is an imperative language where messages can trigger side
effects. Evaluating two messages in one order may not have the same result
as evaluating them in a different order. Arguments in Pharo are evaluated
eagerly after evaluating the receiver expression, but before evaluating the
message, from left to right. Once all expressions are evaluated, the resulting
objects are send as part of the message-send.

Initial Argument Support

To implement some initial support for arguments, our first scenario is to
simply send a message with an argument. For our scenario we already count
with one message with an argument: the x: setter. We can then define a
method changeCollaboratorWithArgument which uses it.
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CHInterpretable >> changeCollaboratorWithArgument [
collaborator x: 500

]

In the test, we verify that the method evaluation effectively modifies the col-
laborator object as written in changeCollaboratorWithArgument, and not
the initial receiver object.

CHInterpreterTest >> testArgumentAccess [

receiver x: 200.
collaborator x: 300.

self executeSelector: #changeCollaboratorWithArgument.

self assert: receiver x equals: 200.
self assert: collaborator x equals: 500

]

Since we have not implemented any support for arguments yet, this test
should fail.

Implementing argument support requires two main changes:

• On the caller side, we need to evaluate the arguments in the context of
the caller method and then store those values in the new frame.

• On the callee side, when an argument access is evaluated, those ac-
cesses will not re-evaluate the expressions in the caller. Instead, ar-
gument access will just read the variables pre-stored in the current
frame.

Let’s start with the second step, the callee side, and since all variable reads
are concentrated on the scope lookup, we need to add the method scope in
the scope chain, and define a read: method for it.

CHInterpreter >> execute: anAST withReceiver: anObject [
| result |
self pushNewFrame.

"Set up the scope chain"
self topFrame parentScope: (CHInstanceScope new
receiver: anObject;
parentScope: globalScope;
yourself);

yourself.

self topFrame receiver: anObject.
result := self visitNode: anAST.
self popFrame.
^ result
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]
CHInterpreter >> currentScope [
^ self topFrame

]

CHMethodScope >> scopeDefining: aString [
(variables includesKey: aString)
ifTrue: [ ^ self ].

^ self parentScope scopeDefining: aString
]

CHMethodScope >> read: aString [
^ variables at: aString

]

Then we need to update visitMessageNode: to compute the arguments
by doing a recursive evaluation, and then use those values during the new
method activation.

CHInterpreter >> visitMessageNode: aMessageNode [
| newReceiver method args |
args := aMessageNode arguments collect: [ :each | self visitNode:

each ].
newReceiver := self visitNode: aMessageNode receiver.
method := (newReceiver class compiledMethodAt: aMessageNode

selector) ast.
^ self executeMethod: method withReceiver: newReceiver

andArguments: args
]

To include arguments in the method activation, let’s add a new arguments
parameter to our method execute:withReceiver: to get execute:withRe-
ceiver:withArguments:.

In addition to adding the receiver to the new frame representing the execu-
tion, we add a binding for each parameter (called unfornately arguments in
Pharo AST) with their corresponding value in the argument collection. We
use the message with:do: to iterate both the parameter list and actual argu-
ments as pairs.

CHInterpreter >> execute: anAST withReceiver: anObject andArguments:
aCollection [

| result |
self pushNewFrame.

"Set up the scope chain"
self topFrame parentScope: (CHInstanceScope new
receiver: anObject;
parentScope: globalScope;
yourself);
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yourself.

self topFrame receiver: anObject.
anAST arguments
with: aCollection
do: [ :arg :value | self topFrame at: arg name put: value ].

result := self visitNode: anAST.
self popFrame.
^ result

]

Instead of just removing the old executeMethod:withReceiver: method,
we redefine it calling the new one with a default empty collection of argu-
ments. This method was used by our tests and is part of our public API, so
keeping it will avoid migrating extra code and an empty collection of argu-
ments seems like a sensible and practical default value.

CHInterpreter >> executeMethod: anAST withReceiver: anObject [
^ self
executeMethod: anAST
withReceiver: anObject
andArguments: #()

]

Our tests should all pass now.

7.6 Refactoring the Terrain

Let’s now refactor a bit the existing code to clean it up and expose some ex-
isting but hidden functionality. Let us extract the code that accesses self
and the frame parameters into two other methods that make more intention
revealing that we are accessing values in the current frame.

CHInterpreter >> tempAt: aSymbol put: anInteger [
self topFrame at: aSymbol put: anInteger

]

CHInterpreter >> execute: anAST withReceiver: anObject andArguments:
aCollection [

| result |
self pushNewFrame.

"Set up the scope chain"
self topFrame parentScope: (CHInstanceScope new
receiver: anObject;
parentScope: globalScope;
yourself);

yourself.

self topFrame receiver: anObject.
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anAST arguments
with: aCollection
do: [ :arg :value | self tempAt: arg name put: value ].

result := self visitNode: anAST.
self popFrame.
^ result

]

7.7 Handling Temporaries

Temporary variables, or local variables, are variables that live within the
scope of a method’s execution. Memory for such variables is allocated when
a method is activated, and released when the method returns. Because of
this property, temporary variables are also called automatic variables in lan-
guages like C.

The usual way to implement such temporary variables is to allocate them
in the method execution’s frame. This way, when the method returns, the
frame is popped and all the values allocated in temporaries are discarded and
can be reclaimed. In other words, we will manage temporaries the same way
as we manage arguments.

Our first scenario introducing temporaries will verify the default value of
temporaries. Indeed when temporaries are allocated in Pharo, the execution
engine (in this case our evaluator) should make sure these variables are cor-
rectly initialized to a default value, in this case nil.

Notice that temporaries cannot be observed from outside the execution of a
method unless we halt the evaluation of a method in the middle of the evalu-
ation. Since our testing approach is more like a black-box approach, we need
to make our scenarios visible from the outside somehow. Because of these
reasons, our tests will rely on returns again, as we did before with literal ob-
jects.

CHInterpretable >> returnUnassignedTemp [
| temp |
^ temp

]

The companion test verifies that the value of a uninitialized temporary is
nil.
CHInterpreterTest >> testUnassignedTempHasNilValue [
self
assert: (self executeSelector: #returnUnassignedTemp)
equals: nil

]

The current subset of Pharo that we interpret does not contain blocks and
their local/temporary variables (We will implement blocks and more com-
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plex lexical scopes in a subsequent chapter). Therefore the temporary vari-
able management we need to implement so far is rather simple.

To make our test pass, we modify the execute:withReceiver:andArgu-
ments: method to define the temporaries needed with nil as value.

CHInterpreter >> executeMethod: anAST withReceiver: anObject
andArguments: aCollection [

| result thisFrame |
self pushNewFrame.
self topFrame parentScope: (CHInstanceScope new
receiver: anObject;
parentScope: globalScope;
yourself);

yourself.

self topFrame receiver: anObject.
anAST arguments with: aCollection do: [ :arg :value | self tempAt:

arg name put: value ].
anAST temporaryNames do: [ :tempName | self tempAt: tempName name

put: nil ].
result := self visitNode: anAST body.
self popFrame.
^ result

]

The tests should be pass.

7.8 Implementing Temporary Variable Writes

Finally we test that writes to temporary variables are working too. We define
our scenario method writeTemporaryVariable, which defines a temporary
variable, assigns to it and returns it. An optimizing compiler for this code
would be smart enough to do constant propagation of the literal integer and
then realize that the temporary is dead code and remove it, leaving us with
a method body looking like ^ 100 . However, since the parser does not do
such optimizations by itself, we are sure that the AST we get contains both
the temporary definition, the assignment, and the temporary return.

CHInterpretable >> writeTemporaryVariable [
| temp |
temp := 100.
^ temp

]

Its companion test checks that evaluating this method does effectively re-
turn 100, meaning that the temporary variable write succeeded, and that
tempmeans the same variable in the assignment and in the access.
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CHInterpreterTest >> testWriteTemporaryVariable [
self
assert: (self executeSelector: #writeTemporaryVariable)
equals: 100

]

Since temporary variable name resolution is already managed by our method
scopes, we just need to implement write:withValue: in it to make all our
tests pass.

CHMethodScope >> write: aString withValue: aValue [
variables at: aString put: aValue

]

7.9 Evaluation Order

The last thing we need to make sure is that arguments are evaluated in the
correct order. The evaluation order in Pharo goes as follows: before evalu-
ating a message, the receiver and all arguments are evaluated. The receiver
is evaluated before the arguments. Arguments are evaluated in left-to-right
order.

Testing the evaluation order in a black-box fashion as we were doing so far
is rather challenging with our current evaluator. Indeed, our evaluator does
not yet handle arithmetics, allocations nor other kind of primitive, so we are
not able to easily count! A simple approach to test is to make a counter out
of Peano Axiomshttps://en.wikipedia.org/wiki/Peano_axioms. The main idea is to implement
numbers as nested sets, where the empty set is the zero, the set that contains the zero is one,
the set that contains a one is a two, and so on. The only support we need for this is to extend our
literal support for dynamic array literals. The code illustrating the idea follows.

CHInterpretable >> initialize [
super initialize.
current := { "empty" }.

]

CHInterpretable >> next [
| result |
"Implement a stream as an increment in terms of Peano axioms.
See https://en.wikipedia.org/wiki/Peano_axioms"
result := current.
"We increment the counter"
current := { current }.
"We return the previous result"
^ result

]

CHInterpreterTests >> peanoToInt: aPeanoNumber [
"Helper method to transform a peano number to a normal Pharo

integer"
^ aPeanoNumber
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ifEmpty: [ 0 ]
ifNonEmpty: [ 1 + (self peanoToInt: aPeanoNumber first) ]

]

Using this support, we can express our evaluation order scenario and test as follows. We will add
a new instance variable to CHInterpretable to store its evaluation order. Then, we are going to
send a message with many arguments, evaluating for each argument self next. The message
receiving the arguments will receive as argument three generated peano values, that we will
return as dynamic literal array. If evaluation order is right, the evaluation order of the receiver
should be 0, the evaluation of the first argument should be 1, and so on.

Object subclass: #CHInterpretable
instanceVariableNames: 'x collaborator evaluationOrder'
classVariableNames: ''
package: 'Champollion-Core'

CHInterpretable >> evaluationOrder [
^ evaluationOrder

]

CHInterpretable >> evaluateReceiver [
evaluationOrder := self next.
^ self

]

CHInterpretable >> returnEvaluationOrder [
^ self evaluateReceiver

messageArg1: self next
arg2: self next
arg3: self next

]

CHInterpretable >> messageArg1: arg1 arg2: arg2 arg3: arg3 [
^ {arg1 . arg2 . arg3}

]

CHInterpreterTests >> testEvaluationOrder [
| argumentEvaluationOrder |
argumentEvaluationOrder := self executeSelector:

#returnEvaluationOrder.

self assert: (self peanoToInt: receiver evaluationOrder) equals: 0.
self
assert: (argumentEvaluationOrder collect:
[ :peano | self peanoToInt: peano])
equals: #(1 2 3)

]

To make this test green we need to implement previously some new support in our interpreter:
writing to temporary variables and dynamic literal arrays.

CHInterpreter >> visitArrayNode: aRBArrayNode [
^ aRBArrayNode statements
collect: [ :e | self visitNode: e ]
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as: Array
]

At this point our test will fail because the evaluation order is wrong! The receiver was evaluated
4th, after all arguments. This is solved by changing the order of evaluation in visitMessageN-
ode:.

CHInterpreter >> visitMessageNode: aMessageNode [
| newReceiver method args |
newReceiver := self visitNode: aMessageNode receiver.
args := aMessageNode arguments collect: [ :each | self visitNode:

each ].
method := (newReceiver class compiledMethodAt: aMessageNode

selector) ast.
^ self executeMethod: method withReceiver: newReceiver

andArguments: args
]

7.10 About Name Conflict Resolution

Inside the scope of a method, statements have access to parameters, temporaries, instance and
global variables. A name conflict appears when two variables that should be visible in a method
share the same name. In a conflict scenario the language developer needs to device a resolution
strategy for these problems, to avoid ambiguities.

For example, consider a method m: that has an argument named integer and defines a tem-
porary variable also named integer. How should values of that name be resolved? How are
assignments resolved? A conflict resolution strategy provides a set of deterministic rules to an-
swer these questions and let developers understand what their program do in a non-ambiguous
way.

A first simple strategy to avoid conflicts is preventing them at construction time. That is, the
language should not allow developers to define variables if they generate a name conflict. For
example, a method should not be able to define a temporary variable with the same name as
an instance variable of its class. Usually these validations are done once at compile time, and
programs that do not follow this rules are rejected.

Another strategy to solve this problem is to allow shadowing. That is, we give each variable in
our program a priority, and then the actual variable to read or write is looked-up using this pri-
ority system. Typically priorities in these schemas are modelled as lexical scopes. Lexical scop-
ing divides a program in a hierarchy of scopes. Each scope defines variables and all but the top
level scope have a parent scope. For example, the top level scope defines global variables, the
class scope defines the instance variables, the method scope defines the parameters and tem-
poraries. In this way, variable visibility can be defined in terms of a scope: the variables visible
in a scope are those defined in the scope or in the parents of the scope. Moreover, scoping also
gives a conflict resolution strategy: variables defined closer to the current scope in the scope
hierarchy have more priority than those defined higher in the scope hierarchy.

7.11 About Return

As a reader you may wonder why we did not do anything for return expression and this is an in-
teresting question. Up to now interpreting a return is just return the value of the interpretation
of the return expression. In fact up until now a method execution has a single path of execu-
tion: it means that the complete method body should be executed and that we did not introduce
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different condition control flow. This is when we will introduce block closure and conditional
control flow that we will have to revisit the interpretation of return.

7.12 Conclusion

Supporting message sends and in particular method execution is the core of the computation in
an object-oriented language and this is what this chapter covered.

Implementing messages implied modelling the call-stack and keeping it balanced on method
returns. We have seen that a call-stack is made up of frames, each frame representing the acti-
vation of a method: it stores the method, receiver, arguments, and temporaries of the method
that is executing. When a message takes place, receiver and arguments are evluated in order
from left to right, a new frame is created and all values are stored in the frame.
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Late Binding and Method

Lookup

Method lookup deserves a chapter on its own: it represents the core internal logic of late-
binding and it the first part of sending a message. The method-lookup algorithm needs to sup-
port normal message-sends as well as ’super’ message-sends. We will implement method lookup
for message send to an object. Then we will present message send to super and we will finish by
looking at how to support error (message doesNotUnderstand:).

8.1 Method Lookup Introduction

So far we have concentrated on method evaluation and put aside method lookup. Our current
solution fetches methods from the class of the receiver, without supporting inheritance. In this
section we address this problem and implement a proper method lookup algorithm.

To implement and test the method lookup, we will extend our scenario classes with a class hier-
archy. We introduce two superclasses above CHInterpretable: CHInterpretableSecondSu-
perclass and its subclass CHInterpretableSuperclass. With this setup we will be able to test
all interesting situations, even the ones leading to infinite loops if our method lookup is wrongly
implemented.

Object subclass: #CHInterpretableSecondSuperclass
instanceVariableNames: ''
classVariableNames: ''
package: 'Champollion-Core'

CHInterpretableSecondSuperclass subclass: #CHInterpretableSuperclass
instanceVariableNames: ''
classVariableNames: ''
package: 'Champollion-Core'
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CHInterpretableSecond
Superclass

methodNotInSubclass

CHInterpretableSuperclass

sendMessageInSuperclass

CHInterpretablesendMessageInSuperclass
  ^ self methodInSuperclass

methodNotInSubclass
  ^ 5

Figure 8-1 A simple hierarchy for self-send lookup testing.

CHInterpretableSuperclass subclass: #CHInterpretable
instanceVariableNames: 'x collaborator evaluationOrder current'
classVariableNames: ''
package: 'Champollion-Core'

Our first scenario for method lookup will check that sending a message climbs up the inheri-
tance tree when a method is not found in the receiver’s class class. In the code below, we define
a method in CHInterpretable that does a selfmessage whose method is implemented in its
CHInterpretableSuperclass superclass. Executing the first method should send the message,
find the superclass method, and evaluate it.

CHInterpretableSuperclass >> methodInSuperclass [
^ 5

]

CHInterpretable >> sendMessageInSuperclass [
^ self methodInSuperclass

]

CHInterpreterTest >> testLookupMessageInSuperclass [
self assert: (self executeSelector: #sendMessageInSuperclass)

equals: 5
]
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8.2 Implement a First Lookup

The test should fail with our evaluator as is, because the evaluation of the message send will not
find the method in the receiver’s class. A first step towards implementing the lookup is to refac-
tor the method visitMessageNode: and extract the wrong code into a lookup:fromClass:
method.

CHInterpreter >> visitMessageNode: aMessageNode [
| newReceiver method args |
newReceiver := self visitNode: aMessageNode receiver.
args := aMessageNode arguments collect: [ :each | self visitNode:

each ].
method := self lookup: aMessageNode selector fromClass:

newReceiver class.
^ self execute: method withReceiver: newReceiver andArguments: args

]

CHInterpreter >> lookup: aSelector fromClass: aClass [
^ (aClass compiledMethodAt: aMessageNode selector) ast.

]

The method lookup:fromClass: is now the place to implement the method lookup algorithm:

• if the current class defines the method returns the corresponding AST;

• if the current class does not define the method and we are not on the top of the hierar-
chy, we recursively lookup in the class’ superclass;

• else when we are on top of the hierarchy and the lookup:fromClass: returns nil to
indicate that no method was found.

The method lookup:fromClass: does not raise an error because this way the visitMessageN-
ode: method will be able to send the doesNotUnderstand: message to the receiver, as we will
see later in this chapter.

CHInterpreter >> lookup: aSymbol fromClass: aClass [
"Return the AST of a method or nil if none is found"

"If the class defines a method for the selector, return the AST
corresponding to the method"

(aClass includesSelector: aSymbol)
ifTrue: [ ^ (aClass compiledMethodAt: aSymbol) ast ].

"Otherwise lookup recursively in the superclass.
If we reach the end of the hierarchy return nil"
^ aClass superclass
ifNil: [ nil ]
ifNotNil: [ self lookup: aSymbol fromClass: aClass superclass ]

]

We should call the method lookup:fromClass: from the visitMessageNode: and our test will
pass.
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8.3 The Case of Super

Many people gets confused by the semantics of super. The super variable has two different
roles in the execution of an object-oriented language. When the super variable is read, its value
is the receiver of the message as we saw it in the first chapter, it has the same value as self.

The second role of the super variable is to alter the method lookup when super is used as the
receiver of the message send. When super is used as the receiver of a message send, the method
lookup does not start at the class of the receiver, but at the class where the method is installed
instead, allowing it to go up higher and higher in the hierarchy.

We define a method doesSuperLookupFromSuperclass below. It is not really good since it uses
super while it is not needed. The handling of overridden messages will present better tests.

CHInterpretableSuperclass >> isInSuperclass [
^ true

]

CHInterpretable >> isInSuperclass [
^ false

]

CHInterpretable >> doesSuperLookupFromSuperclass [
^ super isInSuperclass

]

CHInterpretableSecond
Superclass

isInSuperclass

CHInterpretableSuperclass

doesSuperLookupFromSuperclass
isInSuperclass

CHInterpretable

doesSuperLookupFromSuperclass
    ^ super isInSuperclass

isInSuperclass
    ^ true

isInSuperclass
    ^ false

Figure 8-2 A simple hierarchy for super-send lookup testing.

Once these methods defined, we can now test that the isInSuperclassmessage activates the
method in the superclass, returning true.

CHInterpreterTest >> testLookupSuperMessage [
self assert: (self executeSelector: #doesSuperLookupFromSuperclass)

]
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The super variable changes the method lookup described previously. When the receiver is su-
per, the lookup does not start from the class of the receiver, but from the superclass of the class
defining the method of the current frame. This implies that we need a way to access the method
that is being currently executed, and the class where it is defined.

We can again store this information in the current frame during the method’s activation. We
add it for now as a fake temporary variable in the frame, with the name ___method. By prefixing
the variable’s name with ___ we make it less probable this fake variable creates a conflict with
a real variable. If we would have just named it e.g., method, any method with a normal normal
temporary called method would be broken.

CHInterpreter >> executeMethod: anAST withReceiver: anObject
andArguments: aCollection [

| result |
self pushNewFrame.
self tempAt: #___method put: anAST.
self tempAt: #self put: anObject.
anAST arguments with: aCollection do: [ :arg :value | self tempAt:

arg name put: value ].
result := self visitNode: anAST body.
self popFrame.
^ result

]

We also define a convenience accessor method currentMethod, to get the current method
stored in the current frame. In the future, if we want to change this implementation, we will
have less places to change if we hide the access to the method behind an accessor.

CHInterpretable >> currentMethod [
^ self tempAt: #___method

]

Note that using the current frame to store the current method will work, even if we have several
messages in sequence. When a message is sent a new frame is pushed with a new method, and
upon return the frame is popped along with its method. So the top frame in the stack will be
always contain the method it executes. Finally, we redefine the visitMessageNode: method to
change class where to start looking for the method.

CHInterpreterTest >> visitMessageNode: aMessageNode [

| newReceiver method args lookupClass pragma |
newReceiver := self visitNode: aMessageNode receiver.
args := aMessageNode arguments collect: [ :each | self visitNode:

each ].

lookupClass := aMessageNode receiver isSuper
ifTrue: [ self currentMethod methodClass superclass ]
ifFalse: [ newReceiver class ].

method := self lookup: aMessageNode selector fromClass:
lookupClass.

^ self executeMethod: method withReceiver: newReceiver
andArguments: args

]

91



Late Binding and Method Lookup

8.4 Overridden Messsages

We have made sure that sending a message to super starts looking methods in the superclass of
the class defining the method. Now we would like to make sure that the lookup works even in
presence of overridden methods.

Let’s define the method overriddenMethod in a superclass returning a value, and in a subclass
just doing a super send with the same selector.

CHInterpretableSuperClass >> overriddenMethod [
^ 5

]

CHInterpretable >> overriddenMethod [
^ super overriddenMethod

]

If our implementation is correct, sending the overriddenMethodmessage to our test receiver
should return 5. If it is not, the test should fail, or worse, loop infinitely.

Then we check that our test returns the correct value. If the test loops infinitely the test will
timeout.

CHInterpreterTest >> testLookupRedefinedMethod [
self assert: (self executeSelector: #overriddenMethod) equals: 5

]

If our previous implementation was correct, this test should pass.

8.5 Checking Correct Semantics

To ensure that the method lookup is correctly implemented, especially in the presence of super
messages, we need to verify an extra condition. Lot of material wrongly defines that supermes-
sages look up methods starting from the superclass of the class of the receiver. This definition,
illustrated in the code snippet below, is incorrect: it only works when the inheritance depth
is limited to two classes, a class and its superclass. In other cases, this definition will create an
infinite loop.

CHInterpreter >> visitMessageNode: aMessageNode [
| newReceiver method args lookupClass |
newReceiver := self visitNode: aMessageNode receiver.
args := aMessageNode arguments collect: [ :each | self visitNode:

each ].

lookupClass := aMessageNode receiver isSuper
ifTrue: [ newReceiver class superclass ]
ifFalse: [ newReceiver class ].

method := self lookup: aMessageNode selector fromClass:
lookupClass.

^ self executeMethod: method withReceiver: newReceiver
andArguments: args

]
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A scenario showing such a problem is shown in Figure 8-3. In this scenario, our inheritance
depth is of three classes and we create two methods with the same selector. In the highest class,
the method returns a value. In the middle class, the first method is overridden doing a super
send.

redefinedMethod

CHInterpretableSecond
Superclass

redefinedMethod

CHInterpretableSuperclass

CHInterpretable

redefinedMethod
  ^ 5

redefinedMethod
  ^ super redefinedMethod

Figure 8-3 A simple situation making wrongly defined super loop endlessly:

sending the message redefinedMethod to an instance of the class CHInter-
pretable loops forever.

CHInterpretableSecondSuperClass >> redefinedMethod [
^ 5

]

CHInterpretableSuperClass >> redefinedMethod [
^ super redefinedMethod

]

To finish our scenario, we create an instance of the lower subclass in the hierarchy, and we send
it a message with the offending selector.

CHInterpreterTest >> testLookupSuperMessageNotInReceiverSuperclass [
self assert: (self executeSelector: #redefinedMethod) equals: 5

]

With the incorrect semantics, our test will start by activating CHInterpretableSuperclass>>#re-
definedMethod. When the interpreter finds the super send, it will start the lookup from the
superclass of the receiver’s class: CHInterpretableSuperclass. Starting the lookup from this
class will again find and activate CHInterpretableSuperclass>>#redefinedMethod, which
will lead to activating the same method over and over again...

Coming back to our previous correct definition, it works properly, and makes our test pass:
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CHInterpreterTest >> visitMessageNode: aMessageNode [

| newReceiver method args lookupClass pragma |
newReceiver := self visitNode: aMessageNode receiver.
args := aMessageNode arguments collect: [ :each | self visitNode:

each ].

lookupClass := aMessageNode receiver isSuper
ifTrue: [ self currentMethod methodClass superclass ]
ifFalse: [ newReceiver class ].

method := self lookup: aMessageNode selector fromClass:
lookupClass.

^ self executeMethod: method withReceiver: newReceiver
andArguments: args

]

8.6 Does not understand and Message Reification

To finish this chapter we will implement support for the doesNotUnderstand: feature. In
Pharo, when an object receives a message for which the lookup does not find a corresponding
method, it sends instead the doesNotUnderstand: message to that object, with the ”original
message” as argument. The same mechanism exists in many other languages. This original mes-
sage is not only the selector but it comprises the arguments too. The interpreter should take se-
lector and arguments to create an object representation of the message. We say the interpreter
reifies the message.

About Reification.

Reification is the process of making concrete something that was not. In the case of the inter-
preter of a programming language, many of the operations of the language are implicit and
hidden in the interpreter execution. For example, the implementation of message-sends and
assignments are hidden to the developer in the sense that the developer cannot manipulate
assignments for example to count the number of time an assignment has been used during pro-
gram execution. While information hiding in interpreters is important to make languages safe
and sound, the language has no way to manipulate those abstractions. Reifications enter in the
game to enable those manipulations: interpreter concepts are concretized as objects in the in-
terpreted language, they are ”lifted-up” from the interpreter level to the application.

Reifications are a powerful concept that allow us to manipulate implementation concerns from
the language itself. In this case, the does not understand mechanism allows us to intercept the
failing message-lookup algorithm and to implement in our program a strategy to handle the
error. There exist in Pharo many different reifications such as classes and methods. In the scope
of interpreters, we will see in the chapters that follow other kind of reification: context objects
representing execution frames.

A word is to be said about the performance implications of reifications. Reifications add levels of
indirection in the execution. In addition it allocates objects and this adds a significant overhead
in the interpretation, and increases the pressure in the garbage collector. Production inter-
preters try to minimize this cost to delay reifications as much as possible, and avoid them when
they are not necessary. This is what we will do with message reifications: we will create them
when a method-lookup effectively fails and not before, penalizing only the execution of does not
understand messages.
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8.7 Implementing doesNotUnderstand:
To implement the does not understand feature, let’s start by setting up our testing scenario: a
method sending a not understood messageIDoNotUnderstandWithArg1:withArg:2message.
This message should be looked-up and not found, so the interpreter should send a doesNotUn-
derstand: message to the same receiver with the message reification. For the message reifica-
tion, we are going to follow Pharo’s behaviour and expect an instance of Message that should
have the selector and an array with all the arguments.

CHInterpretable >> doesNotUnderstand: aMessage [
^ aMessage

]

CHInterpretable >> sendMessageNotUnderstood [
^ self messageIDoNotUnderstandWithArg1: 17 withArg2: 27

]

CHInterpreterTest >> testDoesNotUnderstandReifiesMessageWithSelector
[

self
assert: (self executeSelector: #sendMessageNotUnderstood)
selector
equals: #messageIDoNotUnderstandWithArg1:withArg2:

]

CHInterpreterTest >>
testDoesNotUnderstandReifiesMessageWithArguments [

self
assert: (self executeSelector: #sendMessageNotUnderstood)
arguments
equals: #( 17 27 )

]

These two tests will fail in the interpreter, because the method lookup will return nil, which
will fail during method activation. To fix it, we need to handle this problem and send the does-
NotUnderstand: message, as we said before.

CHInterpreter >> visitMessageNode: aMessageNode [

| newReceiver method args lookupClass |
newReceiver := self visitNode: aMessageNode receiver.
args := aMessageNode arguments collect: [ :each |
self visitNode: each ].

lookupClass := aMessageNode receiver isSuperVariable
ifTrue: [ self currentMethod methodClass superclass ]
ifFalse: [ newReceiver class ].

method := self lookup: aMessageNode selector fromClass:
lookupClass.

method ifNil: [ | doesNotUnderstandMethod messageReification |
"Handle does not understand:
- lookup the #doesNotUnderstand: selector
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- reify the message
- activate"

doesNotUnderstandMethod := self lookup: #doesNotUnderstand:
fromClass: lookupClass.
messageReification := Message

selector: aMessageNode selector
arguments: args asArray.

^ self
execute: doesNotUnderstandMethod
withReceiver: newReceiver
andArguments: { messageReification } ].

^ self execute: method withReceiver: newReceiver andArguments: args
]

Note that reifying does not understand requires that our interpreter knows two new things
about our language: what selector is used for #doesNotUnderstand:, and what class is used to
reify Message. In this case we are implementing a Pharo evaluator that runs in the same en-
vironment as the evaluated program: they share the same memory, classes, global variables.
Because of this we make use of the existing selector and classes in Pharo. In contrast, imple-
menting an evaluator that runs on a different environment than the evaluated program (e.g., a
Pharo evaluator implemented in C), such dependencies need to be made explicit through a clear
language-interpreter interface. This is for this reason that the Pharo virtual machine needs to
know the selector of the message to be sent in case of message not understood.

8.8 Refactoring Time

As a final step, we refactor our visitMessageNode: to avoid repeating some code. We extract
the method activation and send, separating it from the decision of the class to start the lookup.

CHInterpreter >> send: aSelector receiver: newReceiver
lookupFromClass: lookupClass arguments: arguments [

"Lookup a selector from a class, and activate the method.
Handle does not undertand case and message reification on demand

if lookup fails."

| method |
method := self lookup: aSelector fromClass: lookupClass.
method ifNil: [ | messageReification |
"Handle does not understand:
- lookup the #doesNotUnderstand: selector
- reify the message
- activate"

messageReification := Message
selector: aSelector
arguments: arguments.

^ self
send: #doesNotUnderstand:
newReceiver: receiver
lookupFromClass: lookupClass
arguments: { messageReification } ].
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^ self execute: method withReceiver: newReceiver andArguments:
arguments

]

And then make use of it in visitMessageNode:.

CHInterpreter >> visitMessageNode: aMessageNode [

| newReceiver args lookupClass |
newReceiver := self visitNode: aMessageNode receiver.
args := aMessageNode arguments collect: [ :each |

self visitNode: each ].

lookupClass := aMessageNode receiver isSuperVariable
ifTrue: [ self currentMethod methodClass superclass ]
ifFalse: [ newReceiver class ].

^ self
send: aMessageNode selector
receiver: newReceiver
lookupFromClass: lookupClass
arguments: args asArray

]

8.9 Conclusion

In this chapter, we extended our interpreter to evaluate messages. Messages are the arguably
the most important part of our interpreter, as operations in object-oriented languages are ex-
pressed in terms of them. It is also the most complex part that we have implemented so far.

At the end of this chapter we have seen the method lookup algorithm to resolve what method
to execute given a receiver and a selector. We have also seen the particularities of self and
super sends. Finally we have shown how the doesNotUnderstand: feature is implemented, by
handling the lookup error, and we introduced the concept of reification to concretize and lift-up
the failing message from our evaluator to the language.
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Our interpreter does not handle yet any essential behavior such as basic number operations.
This prevents us to evaluate complex programs. This chapter introduces the concept of primi-
tive methods in Pharo. We call primitive behavior the behaviour that needs to be implemented
in the interpreter or evaluator because it cannot be purely expressed in the programming lan-
guage, Pharo in this case. Let’s consider for example the operation of adding up two numbers
(+). We cannot express in a pure and concise way a normal method executing an addition. Along
with arithmetics, other examples of primitive operations are object allocation and reflective ob-
ject access. Such primitive behavior is expressed as special methods, namely primitive methods
in Pharo, whose behavior is defined in the interpreter.

Differently from languages such as Java or C, that express arithmetics as special operators that
are compiled/interpreted differently, Pharo maintains the message-send metaphore for primi-
tive behavior. Indeed, in Pharo + is a message, which triggers a look-up and a method activation.
This separation makes redefining operators as simple as implementing a method with the selec-
tor + in our own class, without the need for special syntax for it.

In addition of essential behavior, primitive behavior is often used to implement performance-
critical code in a much more efficient way, since primitives are implemented in the implementa-
tion language and do not suffer the interpretation overhead.

In this chapter we will study how primitive methods work, and how they should be properly
implemented, including the evaluation of their fallback code (i.e., what happens when a primi-
tive fails). We will then visit some of the essential primitives we need to make work to execute
complex examples.

9.1 Primitives in Pharo

In Pharo the design of primitives is split in three different parts: messages, primitive methods (the
Pharo method that is annotated), and the primitive itself which is provided by the interpreter
(in our case this is a method that implements the primitive behavior. In the case of a Virtual
Machine it would be a C function).

Primitives invoked as Messages. The first thing to note is that in Pharo programs primitive
behavior is invoked through standard message sends. Indeed sending the message 1 + 2 is
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handled as a message, but the method + on Integer is a primitive (during Pharo execution it
calls primitive functions transparently from the developer).

This management of primitives as messages allows developers to define operators such as + as
non-primitives on their own classes, by just implementing methods with the corresponding
selectors and without any additional syntax.

With some terminology abuse we could think of this as ”operator redefinition”, although it is
no such, it is just a standard method re/definition. This operator redefinition feature is useful
for example when creating internal domain specific languages (DSLs), or to have polymorphism
between integers and floats.

This is why in Pharo it is possible to define a new method + on any class as follows:

MyClass >> + anArgument [
"Redefine +"
...

]

Primitive annotation. To define primitive behavior, Pharo relies on special methods called
primitive methods: Primitive methods are normal Pharo methods with a primitive annotation.
This annotation identifies that the method is special.

For example, let us consider the method SmallInteger>>+method below:

SmallInteger >> + aNumber [
<primitive: 1>
^ super + aNumber

]

This method looks like a normal method with selector +, and with a normal method body doing
^super + aNumber. The only difference between this method and a normal one is that this
method also has an annotation, or pragma, indicating that it is the primitive number 1.

The body if the method is normally not executed. In its place the primitive 1 is executed. The
method body is only executed if the primitive failed.

Interpreter primitives. Before diving into how primitive methods are executed, let us introduce
the third component in place: the interpreter primitives. A primitive is a piece of code (another
method) defined in the interpreter that will be executed when a primitive method is executed.

To make parallel between our interpreter and the Pharo virtual machine, the virtual machine is
executing a C-function is executed when a primitive method is executed.

The interpreter defines a set of supported primitives with unique ids. In our case, for example,
the primitive with id 1 implements the behavior that adds up two integers.

When a primitive method is activated, it first looks-up what primitive to execute based on its
primitive id number, and executes it. The primitive performs some validations if required, ex-
ecutes the corresponding behavior, and returns either with a success if everything went ok, or
a failure if there was a problem. On success, the method execution returns with the value com-
puted by the primitive. On failure, the body of the method is executed instead. Because of this,
the body of a primitive method is also named the ”fall-back code”.

Note that in Pharo some primitives called essential such as the object allocation cannot be exe-
cuted from Pharo. For such primitive, implementors added a method body to describe what the
primitive is doing if it could be written in Pharo.
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9.2 Infrastructure for Primitives

To implement primitives in our evaluator we only need to change how methods are activated.
Indeed, as we have seen above, the method lookup nor other special nodes are required for the
execution of primitives, and the AST already supports pragma nodes, from which we need to
extract the method’s primitive id.

We will extend the method evalution in a simple way: During the activation of a primitive
method, we need to look for the primitive to execute, and check for failures. Therefore we need
to map primitive ids to primitive methods.

We implement such a mapping using a table with the form <id, evaluator_selector>. The
primitives instance variable is initialized to a dictionary as follows:

CHInterpreter >> initialize [
super initialize.
stack := Stack new.
primitives := Dictionary new.
self initializePrimitiveTable.

]

Then we define the method initializePrimitiveTable to initialize the mapping between the
primitive id and the Pharo method to be executed.

CHInterpreter >> initializePrimitiveTable [
primitives at: 1 put: #primitiveSmallIntegerAdd

]

Let’s start by setting up our testing scenario: adding up two numbers. We make sure to work
with small enough numbers in this test, to not care about primitive failures yet. Doing 1 + 5 the
primitive should always be a success and return 6.

CHInterpretable >> smallintAdd [
^ 1 + 5

]

CHInterpreterTests >> testSmallIntAddPrimitive [
self
assert: (self executeSelector: #smallintAdd)
equals: 6

]

9.3 Primitives Implementation

In our first iteration we will not care about optimizing our evaluator, for which we had already
and we will have tons of opportunities. To have a simple implementation to work on, we execute
the primitive after the method’s frame creation, in the visitMethodNode: method. This way
the primitive has a simple way to access the receiver and the arguments by reading the frame.
We leave primitive failure management for our second iteration.

Upon primitive method execution, we extract the primitive id from the pragma, get the selector
of that id from the table, and use perform: method on the interpreter with that selector to
execute the primitive.
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CHInterpreter >> executePrimitiveMethod: anAST [
| primitiveNumber |
primitiveNumber := anAST pragmas
detect: [ :each | each isPrimitive ]
ifFound: [ :aPragmaPrimitive | aPragmaPrimitive arguments first
value ]
ifNone: [ self error: 'Not a primitive method' ].

^ self perform: (primitives at: primitiveNumber)
]

We also need to take care of sending the receiver and arguments of the message to the primitive,
so it can manipulate them.

CHInterpreter >> visitMethodNode: aMethodNode [
aMethodNode isPrimitive ifTrue: [
"Do not handle primitive failures for now"
^ self executePrimitiveMethod: aMethodNode ].

^ self visitNode: aMethodNode body
]

We define the primitive primitiveSmallIntegerAdd as follows:

CHInterpreter >> primitiveSmallIntegerAdd [
| receiver argument |
receiver := self receiver.
argument := self argumentAt: 1.
^ receiver + argument

]

CHInterpreter >> argumentAt: anInteger [
^ self tempAt: (self currentMethod arguments at: anInteger) name

]

9.4 Primitive Failures and Fallback Code

Let’s now consider what should happen when a primitive fails. For example, following Pharo’s
specification, primitive 1 fails when the receiver or the argument are not small integers, or
whenever their sum overflows and does not fit into a small integer anymore.

To produce one of such failing cases, we can implement primitive 1 in our CHInterpretable
class, which should fail because the receiver should be a small integer. When it fails, the fallback
code should execute.

We define two methods failingPrimitive and callingFailingPrimitive to support the test
of failing primitive.

CHInterpretable >> failingPrimitive [
<primitive: 1>
^ 'failure'

]

CHInterpretable >> callingFailingPrimitive [
^ self failingPrimitive
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]

CHInterpreterTests >> testFailingPrimitive [
self
assert: (self executeSelector: #callingFailingPrimitive)
equals: 'failure'

]

To add primitive failures in a clean way, we introduce them as exceptions. We define a new
subclass of Exception named CHPrimitiveFail

In the primitive primitiveSmallIntegerAdd, if we detect a failure condition, we raise a CH-
PrimitiveFail error. Note that this the primitive is incomplete since we should also test that
the argument and the result is small integer as shown in the following sections.

CHInterpreter >> primitiveSmallIntegerAdd [
| receiver argument |
receiver := self receiver.
receiver class = SmallInteger
ifFalse: [ CHPrimitiveFail signal ].

argument := self argumentAt: 1.
^ receiver + argument

]

We then need to modify the way we evaluate methods to handle CHPrimitiveFail exceptions
and continue evaluating the body.

CHInterpreter >>visitMethodNode: aMethodNode [
[ aMethodNode isPrimitive ifTrue: [
"Do not handle primitive failures for now"
^ self executePrimitiveMethod: aMethodNode ]]
on: CHPrimitiveFail do: [ :err |

"Nothing, just continue with the method body" ].

^ self visitNode: aMethodNode body
]

With these changes, everything should work fine now.

9.5 Typical Primitive Failure Cases

For primitives to work properly, and for Pharo to be a safe language, primitives should properly
do a series of checks. This is particularly important when the interpreter fully controls all other
aspects of the language, such as the memory. In such cases, primitives, as well as the other parts
of the evaluator, have full power over our objects, potentially producing memory corruptions.

Among the basic checks that primitives should do, they should not only verify that arguments
are of the primitive’s expected type, as we have shown above. In addition a general check is that
the primitive was called with the right number of arguments. This check is particularly impor-
tant because developers may wrongly define primitives such as we did before, where we have
defined a unary method while the primitive was expecting one argument. If we don’t properly
check the arguments trying to access it could cause an interpreter failure, while the proper be-
haviour should be to just fail the primitive and let the fallback code carry on the execution.
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In the following sections, we implement a series of essential primitives taking care of typical
failure cases. With such primitives, it will be possible to execute a large range of Pharo pro-
grams.

9.6 Essential Primitives: Arithmetic

The basic arithmetic primitives are small integer addition, substraction, multiplication, and di-
vision. They all require a small integer receiver, a small integer argument, and that the result is
also a small integer. Division in addition fails in case the argument is 0. The following code snip-
pet illustrates integer addition and division. For space reason, we do not include substraction
and multiplication, their implementation is similarly to the one of addition.

CHInterpreter >> initializePrimitiveTable [
...
primitives at: 1 put: #primitiveSmallIntegerAdd.
primitives at: 2 put: #primitiveSmallIntegerMinus.
primitives at: 9 put: #primitiveSmallIntegerMultiply.
primitives at: 10 put: #primitiveSmallIntegerDivide.
...

]

The addition primitive now checks that the receiver, argument and result are small integers.

CHInterpreter >> primitiveSmallIntegerAdd [
| receiver argument result |
self numberOfArguments < 1
ifTrue: [ CHPrimitiveFail signal ].

receiver := self receiver.
receiver class = SmallInteger
ifFalse: [ CHPrimitiveFail signal ].

argument := self argumentAt: 1.
argument class = SmallInteger
ifFalse: [ CHPrimitiveFail signal ].

result := receiver + argument.
result class = SmallInteger
ifFalse: [ CHPrimitiveFail signal ].

^ result
]

CHInterpreter >> primitiveSmallIntegerDivide [
| receiver argument result |
self numberOfArguments < 1
ifTrue: [ CHPrimitiveFail signal ].

receiver := self receiver.
receiver class = SmallInteger
ifFalse: [ CHPrimitiveFail signal ].
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argument := self argumentAt: 1.
(argument class = SmallInteger
and: [ argument ~= 0 ])

ifFalse: [ CHPrimitiveFail signal ].

result := receiver / argument.
result class = SmallInteger
ifFalse: [ CHPrimitiveFail signal ].

^ result
]

9.7 Essential Primitives: Comparison

Comparison primitives span in two different sets. The first set contains the primitives imple-
menting number comparisons such as less than or greater or equals than. The second set con-
tains the primitives for object identity comparison: identity equals to and identity not equals to.
All number comparisons all require a small integer receiver, a small integer argument. Identity
comparisons only require that the primitive receives an argument to compare to. The follow-
ing code snippet illustrates both kind of methods with small integer less than and object idenity
equality.

CHInterpreter >> initializePrimitiveTable [
...
primitives at: 3 put: #primitiveSmallIntegerLessThan.
primitives at: 4 put: #primitiveSmallIntegerGreaterThan.
primitives at: 5 put: #primitiveSmallIntegerLessOrEqualsThan.
primitives at: 6 put: #primitiveSmallIntegerGreaterOrEqualsThan.

primitives at: 7 put: #primitiveSmallIntegerEqualsThan.
primitives at: 8 put: #primitiveSmallIntegerNotEqualsThan.

primitives at: 110 put: #primitiveIdentical.
primitives at: 111 put: #primitiveNotIdentical.
...

]

CHInterpreter >> primitiveSmallIntegerLessThan [
| receiver argument result |
self numberOfArguments < 1
ifTrue: [ CHPrimitiveFail signal ].

receiver := self receiver.
receiver class = SmallInteger
ifFalse: [ CHPrimitiveFail signal ].

argument := self argumentAt: 1.
argument class = SmallInteger
ifFalse: [ CHPrimitiveFail signal ].

^ receiver < argument
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]

CHInterpreter >> primitiveIdentical [
self numberOfArguments < 1
ifTrue: [ CHPrimitiveFail signal ].

^ self receiver == (self argumentAt: 1)
]

9.8 Essential Primitives: Array Manipulation

So far our interpreter is able to manipulate only objects with instance variables, but not arrays
or their variants e.g., strings. Arrays are special objects whose state is accessed with primitives,
usually in methods named at: and at:put: and size. Array access primitives check that the
receiver is of the right kind and that the index arguments are integers within bounds of the
array. The following code snippet illustrates Array access primitives for general Arrays, and
Strings.

CHInterpreter >> initializePrimitiveTable [
...
primitives at: 60 put: #primitiveAt.
primitives at: 61 put: #primitiveAtPut.
primitives at: 62 put: #primitiveSize.
primitives at: 63 put: #primitiveStringAt.
primitives at: 64 put: #primitiveStringAtPut.
...

]

The primitive primitiveSize verifies that the receiver is an object supporting the notion of
size.

CHInterpreter >> primitiveSize [
self receiver class classLayout isVariable
ifFalse: [ CHPrimitiveFail signal ].

^ self receiver basicSize
]

The primitive primitiveAt verifies that the receiver is an object supporting the notion of size
and in addition that the index is an integer in the range of the size of the receiver.

CHInterpreter >> primitiveAt [
self numberOfArguments < 1
ifTrue: [ CHPrimitiveFail signal ].

self receiver class classLayout isVariable
ifFalse: [ CHPrimitiveFail signal ].

((self argumentAt: 1) isKindOf: SmallInteger)
ifFalse: [ CHPrimitiveFail signal ].

"Bounds check"
self receiver size < (self argumentAt: 1)
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ifTrue: [ CHPrimitiveFail signal ].

^ self receiver basicAt: (self argumentAt: 1)
]

The primitive primitiveStringAt verifies that the receiver is from a class whose elements are
bytes.

CHInterpreter >> primitiveStringAt [
self numberOfArguments < 1
ifTrue: [ CHPrimitiveFail signal ].

self receiver class classLayout isBytes
ifFalse: [ CHPrimitiveFail signal ].

((self argumentAt: 1) isKindOf: SmallInteger)
ifFalse: [ CHPrimitiveFail signal ].

"Bounds check"

self receiver size < (self argumentAt: 1)
ifTrue: [ CHPrimitiveFail signal ].

^ self receiver at: (self argumentAt: 1)
]

9.9 Essential Primitives: Object Allocation

Object allocation is implemented by primitives new and new:. The method new allocates a new
object from a fixed-slot class. The method new: allocates a new object from a variable-slot class
such as Array, using the number of slots specified as argument.

Both these primitives validate that the receiver are classes of the specified kinds. In addition
new: does check that there is an argument, it is a small integer.

CHInterpreter >> initializePrimitiveTable [
...
primitives at: 70 put: #primitiveBasicNew.
primitives at: 71 put: #primitiveBasicNewVariable.
...

]

CHInterpreter >> primitiveBasicNew [
self receiver isClass
ifFalse: [ CHPrimitiveFail signal ].

^ self receiver basicNew
]

CHInterpreter >> primitiveBasicNewVariable [
self numberOfArguments < 1
ifTrue: [ CHPrimitiveFail signal ].

self receiver isClass
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ifFalse: [ CHPrimitiveFail signal ].
self receiver class classLayout isVariable
ifFalse: [ CHPrimitiveFail signal ].

((self argumentAt: 1) isKindOf: SmallInteger)
ifFalse: [ CHPrimitiveFail signal ].

^ self receiver basicNew: (self argumentAt: 1)
]

9.10 Conclusion

This chapter presented primitive behavior, implementing behaviour that cannot be purely ex-
pressed in the evaluated language. Primitive behaviour is accessed through primitive methods,
which are methods marked with a primitive: pragma. When a primitive method executes, it
first executes the primitive behavior associated with the primitive id. If it fails, the body of the
method is executed as in non-primitive methods.

We have then discussed about primitive failures and verifications, and presented a short list of
essential primitives that are required to execute more interesting Pharo programs.
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CHA P T E R 10
Block Closures and Control Flow

Statements

In this chapter we will extend our evaluator to manage block closures. Block closures, also
named lexical closures, or just blocks in Pharo, are an important concept in most modern pro-
gramming languages, including Pharo. A lexical closure is an anonymous functions that cap-
tures its definition environment.

Closures allow developers to abstract general algorithms from their particular details. For ex-
ample, a sorting algorithm can be separated from its sorting criteria by making the sorting
criteria a block closure passed as argument to it. This allows developers to have the sorting
algorithm defined and tested in a single place, and being able to reuse it with multiple criterion
in different contexts.

In Pharo, blocks are lexical closures i.e., basically functions without a name that capture the en-
vironment in which they are defined. Lexical closures are at the center of the Pharo language,
because Pharo leverages closures to define its control-flow instructions: conditionals, iterations,
and early returns. This means that implementing block closures is enough to support all kind
of control flow statements in Pharo. Moreover, Pharo libraries make usage of block closures to
define library-specific control flow instructions, such as the do: and select: messages under-
stood by collections. Pharo developers often use closures in the Domain Specific languages that
they design. Developers are also encouraged to define their own control flow statements, to hide
implementation details of their libraries from their users.

This chapter starts by explaining what blocks are and how they are evaluated. Block evaluation,
being a core part of the language definition, is a service that is requested to the evaluator/inter-
preter through a primitive. We then dive into the lexical capture feature of blocks: when a block
closure is created, it captures its defining context, namely its enclosing context (i.e., the visi-
ble variables that the block can see). This makes blocks able to read and write not only its own
temporary variables but also all the variables accessible to its enclosing context and to maintain
such a link even when passed around. Finally, we implement non-local returns: return instruc-
tions that return to the block definition context instead of the current one. Non-local returns are
really important in Pharo since they are used to express early returns (the fact that the execu-
tion of a method can be stopped at a given point) a frequent language feature similar to break
statements in other languages. Without non-local return it would difficult to quit the current
execution.
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10.1 Representing a Block Closure

When a block expression is executed [ 1+2 ], the instructions inside the block definition are
not executed. Instead, a block object is created, containing those instructions. The execution of
those instructions is delayed until we send the message value to the block object.

This means that from the evaluator point of view, the evaluation of the closure will be different
from the evaluation of its execution. Evaluating a block node will return a block object, and the
method value will require a primitive to request the interpreter the block’s execution. This
means that we need a way to represent a closure object in our evaluator, and that closure should
store the code it is supposed to evaluate later when receiving the valuemessage.

Let us define the class CHBlock to represent a block. It has an instance variable code to hold the
block’s AST, instance of the RBBlockNode class. Notice that we do not use the existing Block-
Closure class from Pharo, since this class is tied up with the Pharo bytecode. For the sake of
simplicity, we will not reconciliate bytecode and AST implementations, meaning that we need
our own AST-based block implementation.

Object subclass: #CHBlock
instanceVariableNames: 'code'
classVariableNames: ''
package: 'Champollion-Core'

CHBlock >> code: aRBBlockNode [
code := aRBBlockNode

]

CHBlock >> code [
^ code

]

did we explain before that a method with no return returns self? I think we did not, we should
add it! :)

10.2 Blocks Return their last Expression

Differently from the execution of a method that implicitly returns self when it has no explicit
return statement, a block without return statement implicitly returns the result of its last ex-
pression.

Let us write a testing scenario for this case: evaluating the following block should return 5 as it
is its last expression.

CHInterpretable >> returnBlockValue [
^ [ 1 . 5 ] value

]

CHInterpreterTest >> testBlockValueIsLastStatementValue [
self assert: (self executeSelector: #returnBlockValue) equals: 5

]

When the interpreter encounters a block node, it creates a block object for it. We define the
method visitBlockNode: as follows:
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CHInterpreter >> visitBlockNode: aRBBlockNode [
^ CHBlock new
code: aRBBlockNode;
yourself

]

Closures are executed when they receive the message value or one of its variants such as value
value:, value:value:... On the reception of such messages, their bodies should be executed.

We follow the design of Pharo and we add a new primitive responsible for the block body execu-
tion. We define the method value on the class CHBlock as a primitive number 201.

CHBlock >> value [
<primitive: 201>
"If the fallback code executes it means that block evaluation

failed.
Return nil for now in such case."
^ nil

]

We now need to implement the new primitive in the evaluator. A first version of it is to just visit
the body of the block’s code. Remember that primitives are executed in their own frame already,
so the block’s body will share the frame created for the primitive method.

CHInterpreter >> initializePrimitiveTable [
...
primitives at: 201 put: #primitiveBlockValue.
...

]

CHInterpreter >> primitiveBlockValue [
^ self visitNode: self receiver code body

]

So far we implemented only a simple version of closures. We will extend it in the following sec-
tions.

10.3 Closure temporaries

Our simplified closure implementation does not yet have support for closure temporaries. In-
deed, a closure such as the following will fail with an interpreter failure because temp is not
defined in the frame.

[ | temp | temp ] value

To solve this we need to declare all block temporaries when activating the block, as we did pre-
viously for methods. As a first attempt to make our test green, let’s declare block temporaries
once the block is activated:

CHInterpreter >> primitiveBlockValue [
"Initialize all temporaries to nil"
aSequenceNode temporaryNames do: [ :e | self tempAt: e put: nil ].
^ self visitNode: self receiver code body

]
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We are now able to execute the following expression

[ | a b |
a := 1.
b := 2.
a + b ] value

10.4 Removing Logic Repetition

The handling of temporaries in primitiveBlockValue is very similary to a sequence of mes-
sages we wrote when activating a normal method in method executeMethod:withReceiver:an-
dArguments: below:

CHInterpreter >> executeMethod: anAST withReceiver: anObject
andArguments: aCollection [

| result |
self pushNewFrame.
self tempAt: #self put: anObject.
anAST arguments with: aCollection do: [ :arg :value | self tempAt:

arg name put: value ].
anAST temporaryNames do: [ :tempName | self tempAt: tempName name

put: nil ].
result := self visitNode: anAST body.
self popFrame.
^ result

]

We solve this repetition by moving temporary initialization to the visitSequenceNode: method,
since both method nodes and block nodes have sequence nodes inside them.

CHInterpreter >> visitSequenceNode: aSequenceNode [
"Initialize all temporaries to nil"

aSequenceNode temporaryNames do: [ :e | self tempAt: e put: nil ].

"Visit all but the last statement without caring about the result"
aSequenceNode statements allButLast
do: [ :each | self visitNode: each ].

"Return the result of visiting the last statement"
^ self visitNode: aSequenceNode statements last

]

CHInterpreter >> primitiveBlockValue [
^ self visitNode: self receiver code body

]

CHInterpreter >> executeMethod: anAST withReceiver: anObject
andArguments: aCollection [

| result |
self pushNewFrame.
self tempAt: #self put: anObject.
anAST arguments with: aCollection do: [ :arg :value | self tempAt:
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arg name put: value ].
result := self visitNode: anAST body.
self popFrame.
^ result

]

The resulting code is nicer and simpler. This is a clear identication that the refactoring was a
good move.

10.5 Capturing the Defining Context

As we stated before, a closure is not just a function, it is a function that captures the context (set
of variables that can be accessible) of its definition. Block closures capture their defining context
or enclosing context, i.e., the context in which they are created. Blocks are able to read and
write their own temporary variables, but also all the variables accessible to its enclosing context
such as a temporary variable accessible during the block definition.

In this section we evolve our closure execution infrastructure to support closure temporaries
and to provide access to the enclosing environment.

The defining execution context gives the closure access to that context’s receiver, arguments
and temporaries. Moreover, it is a fairly common mistake to think that the captured context is
the caller context, and not the defining context. This is the case, in the example above, where
the context where the block closure is defined is both the defined and the caller. However, as
soon as we work on more complex scenarios, where blocks are sent as arguments of methods, or
stored in temporary variables, this does not hold anymore.

A first scenario to check that our block properly captures the defining context is to evaluate
self inside a block. In our current design, the receiver specified in the block’s frame is the block
itself. Indeed, the expression [ ... ] value is a message send where the block is the message
receiver and value is the message. However, the self variable should be bound to the instance
of CHInterpretable.

CHInterpretable >> readSelfInBlock [
^ [ self ] value

]

CHInterpreterTest >> testReadSelfInBlock [
self assert: (self executeSelector: #readSelfInBlock) equals:

receiver
]

To make this test pass, we need to implement two different things in the evaluator.

• First we need to capture the defining context at block definition time in visitBlockN-
ode:.

• Second we need to use that captured context to resolve variables.

Capturing the defining context is as simple as storing the current topFrame at the moment of
the method creation.

We extend CHBlock with a definingContext instance variable and corresponding accessors
(omitted here after).
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Object subclass: #CHBlock
instanceVariableNames: 'code definingContext'
classVariableNames: ''
package: 'Champollion-Core'

Since a block is created when the block node is visited we extend the previous block creation
to store the current context. Note that this is this context that will be let block access to the
temporaries and arguments is use at the moment the block is created.

CHInterpreter >> visitBlockNode: aRBBlockNode [
^ CHBlock new
code: aRBBlockNode;
definingContext: self topFrame;
yourself

]

10.6 Accessing Captured Receiver

Resolving the block variables is a trickier case, as it can be resolved in many different ways. For
now we choose to set the correct values and override the incorrect ones in the current frame
upon block activation. SD: unclear to me.

This solution will work as far as this primitive does not fail. We leave for the reader to think
what happens in such a case.

The first variable we want to provide access to from a block is self which is the original re-
ceiver of the method at the time the block was created. The following method is worth explain-
ing

• First we grab the block itself. It is simple since the method primitiveBlockValue is
executed during the evaluation of the message value sent to a block. Therefore self
receiver returns the block currently executed.

• Second remmeber that self in a block refers to the receiver of the method at the time the
block was created. So we need to set as receiver the receiver that we found in the context
of the block creation. This is what theBlock definingContext receiver is returning.

• Finally we are evaluating the block body.

CHInterpreter >> primitiveBlockValue [
| theBlock |
theBlock := self receiver.
self receiver: theBlock definingContext receiver.
^ self visitNode: theBlock code body

]

CHInterpreter >> receiver: aValue [
^ self tempAt: #self put: aValue

]

Note that in the primitiveBlockValue we use the frame of message value execution. The
evaluation of the block body uses this frame. When the evaluation is done such frame is simply
pop as any other method evaluations (See executeMethod:withReceiver:andArguments:),
therefore there is no worries to be made when we changed the value of receiver.receiver is not
a state of the interpreter but refer to the current frame.

Now that we can correctly resolve the receiver, instance variable reads and writes should work
properly too. We leave as an exercise for the reader to verify their correctness.
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10.7 Looking up Temporaries in Lexical Contexts

A problem we have not solved yet involves the reads and writes of temporary variables that
are not part of the current frame. This is the case when a block tries to access a temporary of
a parent lexical scope, such as another surrounding scope, or the home method. The method
increaseEnclosingTemporary is an example of such a situation: the block [ temp := temp
+ 1 ] will access during its execution the temporary variable that was defined outside of the
block. Note that the execution of the block could happen in another method and still be block
should be able to access the temporary variable temp.

Our next scenario checks that blocks can correctly read and write temporaries of their enclosing
contexts. In our test, the enclosing environment creates a temporary. The block reads that value
and increases it by one. When the block executes and returns, the value of its temporary should
have been updated from 0 to 1.

CHInterpretable >> increaseEnclosingTemporary [
| temp |
temp := 0.
[ temp := temp + 1 ] value.
^ temp

]

CHInterpreterTest >> testIncreaseEnclosingTemporary [
self assert: (self executeSelector: #increaseEnclosingTemporary)

equals: 1
]

should add some diagrams here This scenario is resolved by implementing a temporary variable
lookup in the block’s defining context. Of course, a block could be defined inside another’s block
context, so our lookup needs to be lookup through the complete context chain. The lookup
should stop when the current lookup context does not have a defining context i.e., it is a method
and not a block.

To simplify temporary variable lookup we define first a helper method lookupFrameDefin-
ingTemporary: that returns the frame in which a temporary is defined. This method returns a
frame. It has to walk from a frame to its defining frame up to a method. However, so far the only
object in our design knowing the defining frame is the block (via its instance variable defining-
Context), and we do not have any way to access a block from its frame.

One possibility is to store a block reference in its frame when it is activated, and then go from a
frame to its block to its defining frame and continue the lookup. Another possibility, which we
will implement, is to directly store the defining context in the frame when the block is activated.

CHInterpreter >> primitiveBlockValue [
| theBlock |
theBlock := self receiver.
self receiver: (theBlock definingContext at: #self).
self tempAt: #__definingContext put: theBlock definingContext.
^ self visitNode: theBlock code body

]

CHInterpreter >> lookupFrameDefiningTemporary: aName [
| currentLookupFrame |
currentLookupFrame := self topFrame.
[ currentLookupFrame includesKey: aName ]
whileFalse: [ currentLookupFrame := currentLookupFrame at:
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#__definingContext ].
^ currentLookupFrame

]

should add some diagrams here Now we need to redefine temporary reads and writes. Tempo-
rary reads need to lookup the frame where the variable is defined and read the value from it.
This is what what the method visitTemporaryNode: does.

CHInterpreter >> visitTemporaryNode: aTemporaryNode [
| definingFrame |
definingFrame := self lookupFrameDefiningTemporary: aTemporaryNode

name.
^ definingFrame at: aTemporaryNode name

]

Temporary writes are similar to read. We need to lookup the frame where the variable is defined
and write the value to it.

CHInterpreter >> visitAssignmentNode: aRBAssignmentNode [
| rightSide |
rightSide := self visitNode: aRBAssignmentNode value.
aRBAssignmentNode variable variable isTempVariable
ifTrue: [ | definingFrame |

definingFrame := self
lookupFrameDefiningTemporary: aRBAssignmentNode variable

name.
definingFrame at: aRBAssignmentNode variable name put:

rightSide ]
ifFalse: [ aRBAssignmentNode variable variable

write: rightSide
to: self receiver ].

^ rightSide
]

10.8 Block Non-Local Return

We have seen so far that blocks implicitly return the value of their last expression. For example
the method lastExpression will return 43.

CHInterpretable >> lastExpression
| tmp |
tmp := 1.
tmp := true ifTrue: [ tmp := 42. tmp := tmp + 1].
^ tmp

Now this is a complete different story when a block contains an explicit return statement. Re-
turn statements, instead, break the execution of the defining method, namely the home method,
and return from it. For example, let’s consider a method using ifTrue: to implement a guard
which should stop the method execution if the guard fails:

CHInterpretable >> methodWithGuard
true ifTrue: [ ^ nil ].
^ self doSomethingExpensive
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put a figure here to show the stack, the blocks, their relationships. When executing this method,
the message doSomethingExpensive will never be executed. The execution of the method
methodWithGuard will be stopped by the return statement in the block [^ nil].

More precisely, the block is not activated by methodWithGuard. methodWithGuard executes
the message ifTrue: which in turn activates the [^ nil]. Still, this block knows the context
of methodWithGuard as its defining context. When the block executes, the return statement
should not return nil to the ifTrue: context: it should return from methodWithGuard with the
nil value, as if it was the return value of the method. Because of this, we call such return inside
blocks ”non-local returns”, because they return from a non-local context, its home context.

The block may have been passed around, when the block executes a return statement, it will re-
turn from the method that created the block. We say that the execution quits the home context
of the block (the context of the method that defined it).

To implement non-local returns, we will first start by defining a new helper method: home-
FrameOf: that returns the home frame of a frame. The home frame is the frame that has a
defining context. Note that the home frame of a normal method frame is itself.

CHInterpreter >> homeFrame [
| currentLookupFrame |
currentLookupFrame := self topFrame.
[ currentLookupFrame includesKey: #__definingContext ]
whileTrue: [ currentLookupFrame := currentLookupFrame at:
#__definingContext ].

^ currentLookupFrame
]

add a diagram A simple way to implement non-local returns in Pharo is by using exceptions: ex-
ceptions unwind automatically the call-stack, thus short-circuiting the execution of all methods
automatically.

We define a new exception called CHReturn. It refers to the home frame and a value.

Error subclass: #CHReturn
instanceVariableNames: 'value homeFrame'
classVariableNames: ''
package: 'Champollion-Core'

CHReturn >> homeFrame [
^ homeFrame

]

CHReturn >> homeFrame: aFrame [
homeFrame := aFrame

]

CHReturn >> value [
^ value

]

CHReturn >> value: aValue [
value := aValue

]

When we activate a method we then need to prepare ourselves to catch the exception indicating
a return, and only manage it if the return is targetting the current method’s context:
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SD: we should explain more the returnFrom homeFrame = thisFrame

CHInterpreter >> execute: anAST withReceiver: anObject andArguments:
aCollection [

| result thisFrame |
thisFrame := self pushNewFrame.

self tempAt: #__method put: anAST.
self tempAt: #self put: anObject.
anAST arguments with: aCollection
do: [ :arg :value | self tempAt: arg name put: value ].

result := [ self visitNode: anAST ]
on: CHReturn "A return statement was executed"
do: [ :return |

return homeFrame = thisFrame
ifTrue: [ return value ]
ifFalse: [ return pass ] ].

self popFrame.
^ result

]

When we visit a return we raise a return exception and we pass the context. SD: need more
explanation.

CHInterpreter >> visitReturnNode: aReturnNode [
CHReturn new
value: (self visitNode: aReturnNode value);
homeFrame: self homeFrame;
signal

]

10.9 Conclusion

In this chapter we have extended our evaluator with block closures. Our block closure imple-
mentation required adding a kind of object to our runtime, CHBlock, to represent blocks con-
taining some AST. Then we refined our evaluator to define a block evaluation primitive, and
correctly set up the lexical context. Our lexical context implementation gives blocks access to
the defining context’s receiver and temporaries. We then shown a first implementation of non-
local returns, using exceptions to unwind the stack.
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