
Data Analysis Made Simple with

Pharo DataFrame

Oleksandr Zaitsev, Cyril Ferlicot-Delbecque

March 12, 2024

Copyright 2017 by Oleksandr Zaitsev, Cyril Ferlicot-Delbecque.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations iii

1 Introduction 1

1.1 The DataFrame project . 1

1.2 Who is this booklet for? . 2

1.3 What is Pharo? . 2

1.4 The PolyMath project . 3

1.5 Terminology . 3

1.6 Structure of this booklet . 4

1.7 How to contribute? . 4

2 DataFrame by example 5

2.1 Weather dataset . 5

2.2 What are data frames and data series . 5

2.3 Installation . 7

2.4 Creating a data series . 7

2.5 Discovering the data series API . 9

2.6 at:transform: . 9

2.7 Enumerating the values of a data series . 10

2.8 Arithmetical operations . 11

2.9 Some useful mathematical functions . 12

2.10 Statistical operations . 13

2.11 Working with categorical values . 14

2.12 Handling nil values in a data series . 17

2.13 Creating a data frame . 19

2.14 Creating empty data frames . 21

2.15 Inspecting a data frame . 22

2.16 Data types . 22

2.17 Accessing data frame parameters . 23

2.18 Accessing rows and columns . 24

2.19 Adding rows and columns . 26

2.20 Removing rows and columns . 28

2.21 Enumerating rows of a data frame . 28

2.22 Aggregation and Grouping . 31

2.23 Handling nil values . 32

2.24 Reading from and writing to files . 36

i

Contents

2.25 Conclusion . 38

ii

Illustrations

2-1 Weather data frame and two data series extracted from it:

homogeneous series of temperature column and heterogeneous series

of the third row . 6

2-2 Inspecting a weather data frame . 22

iii

CHA P T E R 1
Introduction

Data frames are one of the essential parts of the data science toolkit. They
are the specialized data structures for tabular data sets that provide us with
a simple and powerful API for summarizing, cleaning, and manipulating a
wealth of data sources that are currently cumbersome to use.

A data frame is like a database inside a variable. It is an object which can be
created, modified, copied, serialized, debugged, inspected, and garbage col-
lected. It allows you to communicate with your data quickly and effortlessly,
using just a few lines of code. The DataFrame project is similar to the pan-
daslibrary in Python or the built-in data.frameclass in R.

This booklet serves as the main source of documentation for the DataFrame
project in Pharo. We’ll start by describing the complete API of the DataFrame
and DataSeries data structures, providing examples for each method. Then
we’ll show how data frames can be used in practice in a series of hands-on
tutorials.

1.1 The DataFrame project

DataFrame v1.0 was the first implementation of data frames in Pharo. It was
created by Oleksandr Zaitsev in 2017 as a Google Summer of Code project and
was presented at the 25th International Smalltalk Joint Conference (ESUG
2017) in Maribor, Slovenia.

Thanks to the questions, requests, and suggestions of numerous people who
were using DataFrame, the API was improved, some major bugs were fixed,
several methods were aggressively optimized, and new features were added.
Now with this booklet, we are happy to present the cleaned, improved, and
updated DataFrame v2.0.

1

Introduction

1.2 Who is this booklet for?

DataFrame was designed for anyone working with tabular data in Pharo. Be-
ing designed by a data scientist, the emphasis is on the typical data analysis
that is commonly performed in a data science or machine learning workflow.
However, knowledge of machine learning or statistics is not required to read
this booklet or work with DataFrame.

On the other hand, familiarity with the Pharo programming language and
environment is a prerequisite. In the next section, we’ll briefly introduce
Pharo. But it is also strongly recommended to learn Pharo and make sure
that you are comfortable with it before you proceed to the following chap-
ters.

DataFrame was designed in the tradition of Smalltalk and with smalltalkers
in mind. If you come from a Python, R, or SQL background, some elements
of the API might seem strange to you. But stick around and you will come to
love the Smalltalk ways.

1.3 What is Pharo?

Pharo is a dynamic, purely object-oriented programming language (every-
thing is an object) in the tradition of Smalltalk. But it is also a powerful de-
velopment environment, focused on simplicity and immediate feedback. Its
entire syntax fits on a postcard, and coding can be done directly in the de-
bugger. Pharo has super cool tools that empower you and make you highly
efficient.

Pharo’s goal is to deliver a clean, innovative, free and open-source immersive
environment. By providing a stable and small core system, excellent devel-
opment tools, and maintained releases, Pharo is an attractive platform to
build and deploy mission-critical applications.

Pharo fosters a healthy ecosystem developed by both private and commer-
cial contributors who advance and maintain the core system and its external
packages. More information about Pharo is available at http://www.pharo.org/.
If you are new to Pharo, we suggest you take the Pharo MOOCor read the
Pharo by Examplebook.

DataFrame v2.0 was tested on stable versions of Pharo 6.1 and Pharo 7.0, as
well as on the development version of Pharo 8. Through continuous inte-
gration (CI) and 90% code coverage by unit tests, we try to make sure that
DataFrame is working well on every latest stable and development version of
Pharo on all major operating systems: Linux, Mac OS, and Windows, as well
as both 32-bit and 64-bit architectures.

So before moving on to the next chapter, go to https://pharo.org/download

and get yourself the latest Pharo. We strongly suggest that you try out all

2

https://pharo.org/download

1.4 The PolyMath project

the examples as you read this booklet. It will help you understand what data
frames are and how they can be used.

1.4 The PolyMath project

DataFrame was originally created as part of the PolyMath project - an open-
source initiative that brings the power of scientific computing to Pharo. It
started with the creation of the PolyMathlibrary - a general purpose numeri-
cal computation framework in Pharo, similar to the numpyand scipylibraries
in Python, as well as the SciRubylibrary and the built-in functionality of R and
Julia.

PolyMath provides two main data structures: PMMatrix and PMVector, and
covers topics such as statistical moments, polynomials, interpolations, inte-
gration, series (not to be confused with the data series that will be discussed
in the following chapters), vector algebra, ordinary differential equations,
complex numbers, quaternions, KD-trees, random number generation, arbi-
trary floating-point arithmetics, etc.

The original version of PolyMath was described in the book Numerical meth-
ods in Smalltalk by Didier Besset. Since then, PolyMath has changed a lot, and
now, thanks to many different contributors, it has grown into a fully func-
tional framework for numerical computations.

Besides PolyMath itself, the PolyMath organization on GitHub hosts other
projects, including DataFrame, described in this booklet, and libtensorflow-
pharo-bindings– a Pharo bridge to Google’s TensorFlowlibrary.

1.5 Terminology

At this point, you have probably noticed that, depending on the context, the
phrase ”data frame” can refer to several different things. It can be a data
structure, a class, a package, or this whole project. To remove these ambigu-
ities from our language, we propose the following terminology and stick to it
in this booklet:

data frame – a general reference to the tabular data structure (collection)
designed for data analysis.

data series – a general reference to a dictionary-like data structure that is
used to represent rows and columns of a data frame.

DataFrame – the class name of a data structure that models a data frame, or a
reference to the DataFrame package or project.

DataSeries – the class name of a data structure used to model a data series.

3

Introduction

We would also like to remind you that ”series” is both a singular and a plu-
ral form. We say ”a single data series was created” and ”two data series were re-
moved”.

1.6 Structure of this booklet

The rest of this booklet is structured in the following way:

• Chapter 1. DataFrame by example - this chapter will guide you through
the complete API of the DataFrame project using simple examples.

• Chapter 2. Tutorials - a series of short tutorials that will teach you
to work with data frames and demonstrate how they can be applied to
practical problems.

1.7 How to contribute?

DataFrame is an open-source project released under the MIT public license.
Although the original codebase was written by Oleksandr Zaitsev, the DataFrame
project is the collaborative effort of many people who helped by giving ad-
vice, sharing ideas, reporting issues, and suggesting how to resolve them.
There are many ways in which you can help make DataFrame better.

If you want to implement new features or improve existing functionality, you
can fork the DataFrame repository on GitHub, make your changes, and create
a pull request.

But contributions can be more simple and less time consuming. You can re-
port a bug, suggest a better API, or request new features for DataFrame. All
that can be done by creating dedicated issues in DataFrame’s repository on
GitHub.

Positive feedback is also very important. It is always very encouraging to
hear how people use your project. So if you want to share your experience
working or just playing with DataFrame, you can write about it on social me-
dia using the #Pharo and #PharoDataFrame hashtags. Also, feel free to con-
tact me by email at olk.zaytsev@gmail.com.

4

CHA P T E R2
DataFrame by example

In this chapter, we will guide you through the complete functionality of the
DataFrame project by showing examples of how each feature can be used.
This is the documentation of DataFrame written in a form of storytelling
with data.

2.1 Weather dataset

For demonstrational purposes, we have designed a simple dataset of meteo-
rological observations. Imagine that to study the weather in a certain area,
you are collecting data by measuring the temperature and logging the type
of precipitation (rain, snow etc.) every 20 minutes. The initial table contains
only 5 observations (rows) and 3 features (columns): temperature, precip-
itation, and type. You can see this table in the top left of Figure 2-1. As we
progress through this chapter, we will be modifying, adding, and removing
rows and columns of this dataset. Two additional columns that we will add
are humidity and wind.

2.2 What are data frames and data series

Before moving forward, you need to get a better understanding of the basic
data structures that we use to model tabular data. In this section, we will
explain the theoretical aspects of the data frame and data series collections.

Data frame is a table of data. Similar to an Excel spreadsheet or a relational
database, but implemented as a collection that can be stored in a variable,
such as an Array or Dictionary. This greatly simplifies the data analysis
workflow. Because, to answer questions such as ”What was the temperature at

5

DataFrame by example

Figure 2-1 Weather data frame and two data series extracted from it: homoge-

neous series of temperature column and heterogeneous series of the third row

01:30?” or ”What is the average temperature when it snows?”, we do not need to
set up a whole database. Instead, we can simply load our data into a variable
and query it - all in three lines of code (you will learn how to do it by reading
the rest of this chapter):

weather := DataFrame readFromCsv: 'weather.csv'.

"Question 1"
weather at: 01:30 at: #temperature.

"Question 2"
(weather group: #temperature by: #type aggregateUsing: #average) at:

#snow.

In the top left of Figure 2-1, you can see our weather dataset represented as
a data frame. It contains three columns: a Float column of temperatures, a
Boolean column which tells you whether or not there was any precipitation,
and a String column that specifies the type of precipitation. Data types of
the columns are represented with different background colors.

It is common to think of rows as observations and columns as features. There-
fore, columns are usually homogeneous - they contain values of a same data
type, and rows can be heterogeneous - containing values of different types,
such as Integer, Float, Boolean, and String.

Each row or column can be extracted as a DataSeries object - a dictionary
of key-value pairs with a name. The keys of a row are the column names and
for a column there are the row names of the data frame. This means that,
by having those keys and a name, every individual row or column contains
all the information that is needed to identify its precise location in a data
frame, as well as the meaning of each value. As a result, a data series is much
more interpretable than a simple array of values, which allows us to con-

6

2.3 Installation

struct more meaningful queries while analysing the dataset. We can add two
series together, multiply them by a number, calculate the variance or stan-
dard deviation of a series, select elements that satisfy a certain condition,
and do many other things that will be described in the following sections.

You can see an example of two data series in the top right and bottom of Fig-
ure 2-1. The temperature column is a homogeneous Float data series and
the row 01:50 is a heterogeneous series containing different types of values.

In the following section we will show you how to create a weather data frame
and analyse it in Pharo. But first you need to install DataFrame v2.0 and
make sure that all its tests are passing.

2.3 Installation

To install DataFrame, go to the Playground (Ctrl+O+W) in your fresh Pharo
image and execute the following Metacello script (select it and press the Do-
it button or Ctrl+D):

Metacello new
baseline: 'DataFrame';
repository: 'github://PolyMathOrg/DataFrame/src';
load.

For all keyboard shortcuts mentioned in this booklet the Ctrl key is for Win-
dows and Linux. On Mac OS, use Cmd instead.

Running the tests

The first thing you should do after installing DataFrame is open the DataFrame-
Tests package in the Test Runner (Ctrl+O+U) or System Browser (Ctrl+O+B)
and make sure that all tests are passing. DataFrame v2.0 is tested with 301
unit tests which provide 90% code coverage. If you see some failing tests,
please go to the DataFrame repository on GitHub and open a related issue.

2.4 Creating a data series

DataSeries behaves like an OrderedDictionary. You can create one by
providing keys, values, and a name:

DataSeries
withKeys: (#('01:10' '01:30' '01:50' '02:10' '02:30') collect:

#asTime)
values: #(2.4 0.5 -1.2 -2.3 3.2)
name: #temperature.

This creates the first column of our weather data frame.

7

DataFrame by example

temperature

1:10 am 2.4
1:30 am 0.5
1:50 am -1.2
2:10 am -2.3
2:30 am 3.2

If you don’t specify a name, it will be set to the default value '(no name)':

DataSeries
withKeys: #(temperature precipitation type)
values: #(0.5 true rain).

(no name)

temperature 0.5
precipitation true
type rain

You can also create a data series without keys, in which case they will be
filled with default values: numbers from 1 to the size of your data series:

temperature := DataSeries
withValues: #(2.4 0.5 -1.2 -2.3 3.2)
name: #temperature.

temperature

1 2.4
2 0.5
3 -1.2
4 -2.3
5 3.2

Or only with values:

DataSeries
withValues: #(2.4 0.5 -1.2 -2.3 3.2).

(no name)

1 2.4
2 0.5
3 -1.2
4 -2.3
5 3.2

That last expression has a shorter form which produces the same result:

#(2.4 0.5 -1.2 -2.3 3.2) asDataSeries.

8

2.5 Discovering the data series API

2.5 Discovering the data series API

DataSeries is an extended OrderedDictionary. It combines the API of both
Dictionary and SequenceableCollection, and adds some additional func-
tionality that can be useful for data analysis. This simple data structure does
not require a long introduction but it is still worthwhile to demonstrate
how it can be used. In this section, we briefly cover the public API of the
DataSeries class and describe the additional methods that are not present
in other Pharo collections.

Accessing and modifying values

In this aspect, DataSeries acts like an OrderedDictionary. You can access
an element at a certain key using the at: aKeymessage, you can modify
this element with at: aKey put: newValue. To remove an element, use
removeAt: aKey. If aKey is not present in the data series, a new element will
be created and added to the end. Alternatively, you can use methods such as
at: ifAbsent:, at: ifAbsentPut:, etc. to provide a custom block that will
be evaluated when aKey is not found.

You can also access elements by their index (rather than key) with the atIn-
dex:, atIndex: put:, and removeAtIndex: methods.

Here is an incomplete list of accessors provided by DataSeries. Many others
are inherited from the OrderedCollection class, which can come in handy
but will not be discussed in this booklet:

DataSeries >> at:
DataSeries >> at: ifAbsent:
DataSeries >> at: put:
DataSeries >> removeAt:
DataSeries >> atIndex:
DataSeries >> atIndex: put:
DataSeries >> removeAtIndex:

Now we present the non-traditional and powerful API of DataSeries.

2.6 at:transform:

DataSeries provides an additional set of at: transform: modifying acces-
sors. Consider a situation when you want to convert a certain value of the
temperature data series from Celsius to Fahrenheit. Having to specify the
key twice would make the whole expression overrly complex:

temperature at: '01:30' asTime put: (temperature at: '01:30' asTime)
* 9/5 + 32.

And since operations on data series (rows and columns) are the building
block of most data frame queries, we want them to be as short and read-

9

DataFrame by example

able as possible. To simplify complex queries, DataSeries provides a set of
methods that allow you to transform an element at a certain position using a
block:

DataSeries >> at: transform:
DataSeries >> at: transform: ifAbsent:
DataSeries >> atIndex: transform:

We can now rewrite the above expression as

temperature at: '01:30' asTime transform: [:x | x * 9/5 + 32].

2.7 Enumerating the values of a data series

As a combination of Dictionary and SequenceableCollection, DataSeries
understands the following methods for enumerating its values:

Value Value and key Value and index

do: withKeyDo: withIndexDo:
select: withKeySelect: withIndexSelect:
reject: withKeyReject: withIndexReject:
collect: withKeyCollect: withIndexCollect:
detect: withKeyDetect: withIndexDetect:
detect: ifNone: withKeyDetect: ifNone: withIndexDetect: ifNone:
inject: into: - -

For example, we can collect the Fahrenheit values of temperature into a
separate series:

fahrenheit := temperature collect: [:x | x * 9/5 + 32].

temperature

1 36.32
2 32.9
3 29.84
4 27.86
5 37.76

Notice that the name of this data series is still temperature, because that
was the name of the series from which the values were collected, and no
other name was provided by the collect: message. If needed, you can re-
name the fahrenheit series later:

fahrenheit name: #fahrenheit.

To see another example of enumerating the values of a data series, let’s now
find the first value of the fahrenheit series that is below 32 (zero on Celsius
scale):

10

2.8 Arithmetical operations

fahrenheit detect: [:x | x < 32].

The answer will be 29.84 - the third element of our series.

2.8 Arithmetical operations

Similar to other collections in Pharo, DataSeries responds to basic arith-
metical operations, such as +, -, *, /. You can apply these operations
on any of the following combinations: series-series, series-scalar, or scalar-
series (although, the last one is not supported for division).

In order to demonstrate the application of arithmetical operations, let’s cre-
ate two simple data series filled with numbers:

a := DataSeries withValues: #(0.5 2 -1 0) name: #a.
b := DataSeries withValues: #(-2 -0.5 1 3) name: #b.

When an operation is applied to a scalar and a series, it is performed on ev-
ery element of a series with the given scalar. For example, if you divide a
data series a by 2, each of its elements will be divided by 2:

a / 2.

a

1 0.25
2 1
3 -0.5
4 0

Similarly, if you subtract data series b from the number 1, you will get a
new series, in which each element is the difference between 1 and the cor-
responding element of series b:

1 - b.

b

1 3
2 1.5
3 0
4 -2

When an operation is applied to a pair of data series, it will be performed in
the elementwise manner. So, for example, if you want to add two data series
a and b, you will get a third series where the first element is the sum of the
first elements of a and b, the second element is the sum of the second ele-
ments, etc. In this case, both data series must be of the same size and must
have the same keys. The name of the resulting series will be the same as the
name of the first operand:

11

DataFrame by example

a + b.

a

1 -1.5
2 1.5
3 0
4 3

In fact, the conversion of a temperature series to the Fahrenheit scale, which
was demonstrated earlier in Section 2.7 with the collect: message, can be
done directly by applying arithmetical operations to the data series:

fahrenheit := temperature * 9/5 + 32.

The result will be the same as before.

2.9 Some useful mathematical functions

Although you can apply any operation to the elements of your series using
collect:, sometimes your code will be more readable if you send a message
to the whole data series to be performed on each of its elements. In the same
way as when we add 1 to a data series and get a new series with all the ele-
ments of the first series incremented by 1, we also want to say series exp
and expect a data series of exponents.

Here is the list of elementwise mathematical operations that are understood
by DataSeries:

DataSeries >> abs
DataSeries >> cos
DataSeries >> sin
DataSeries >> tan
DataSeries >> exp
DataSeries >> ln
DataSeries >> log
DataSeries >> log:
DataSeries >> sqrt
DataSeries >> **

The last one is the binary operator which takes a data series as the first operand
and raises all its elements to the power of the second operand.

Let’s find the exponent and the natural logarithm of the temperature series:

temperature exp.

12

2.10 Statistical operations

temperature

1 11.02
2 1.65
3 0.3
4 0.1
5 24.53

As we take the natural logarithm, the third and fourth elements in the re-
sulting data series are Float nan because logarithms are only defined for
positive numbers and those two temperatures are below zero:

temperature ln.

temperature

1 0.88
2 -0.69
3 Float nan
4 Float nan
5 1.16

Unlike most other programming languages and libraries for numerical com-
putations that define log as natural logarithm, Pharo defines it as a loga-
rithm with base 10. Natural logarithm is defined as ln and the parametrised
message log: can be used to get a logarithm with any other base, for exam-
ple: (1024 log: 2) = 10.0.

2.10 Statistical operations

In addition to the statistical methods understood by all collections, such as
average, min, or max, the DataSeries class provides more advanced meth-
ods that are commonly used when analysing quantitative columns. Here is
the complete list of statistical methods understood by DataSeries:

DataSeries >> min
DataSeries >> max
DataSeries >> range
DataSeries >> average
DataSeries >> median
DataSeries >> mode
DataSeries >> quantile:
DataSeries >> quartile:
DataSeries >> zerothQuartile
DataSeries >> firstQuartile
DataSeries >> secondQuartile
DataSeries >> thirdQuartile
DataSeries >> fourthQuartile
DataSeries >> interquartileRange

13

DataFrame by example

If any of these methods is applied to a non-numerical data series, it will sig-
nal an exception.

To demonstrate the application of statistical methods, let’s find the average,
median, standard deviation, and variance of the temperature column:

temperature average. "0.52"
temperature median. "0.5"
temperature stdev. "2.3253"
temperature variance. "5.407"

We can also check if the following equalities hold: zeroth quartile should be
the same as min, fourth quartile should be the same as max, second quartile
- same as median, interquartile range equals third quartile minus the first
one, range is max minus min, and variance is the square of the standard de-
viation:

temperature zerothQuartile = temperature min. "true"
temperature fourthQuartile = temperature max. "true"
temperature secondQuartile = temperature median. "true"
temperature interquartileRange = (temperature thirdQuartile -

temperature firstQuartile). "true"
temperature range = (temperature max - temperature min). "true"
temperature variance = (temperature stdev ** 2). "true"

Summarizing a DataSeries

You can get a quick summary of the distribution of a numerical data series
as a collection of its minimal and maximal values, first and third quartiles,
average value, and a median.

Let’s see how it works for the temperature series created in 2.4:

temperature summary.

temperature

Min -2.3
1st Qu. -1.2
Median 0.5
Average 0.52
3rd Qu. 2.4
Max 3.2

2.11 Working with categorical values

Categorical data series have a fixed dictionary of values. For example, a se-
ries sex which has values Male and Female, a boolean series with values
true and false, a series with sizes of clothes: XS, S, M, L, XL, etc. We can
not perform mathematical and statistical operations on categorical series

14

2.11 Working with categorical values

(except for mode, which only finds the most common value), however there
is still a lot of ways to analyse such data. In the rest of this section, we will
show you several methods of DataSeries that are especially useful for work-
ing with categorical values. The examples will be based on the precipita-
tion and type columns of the weather dataset. Here is a reminder about
how to create them:

keys := #('01:10' '01:30' '01:50' '02:10' '02:30') collect: #asTime.

precipitation := DataSeries
withKeys: keys
values: #(true true true false true)
name: #precipitation.

type := DataSeries
withKeys: keys
values: #(rain rain snow - rain)
name: #type.

removeDuplicates

The most basic operation that can be performed is removing the duplicate
values of the series:

precipitation removeDuplicates. "#(false true)"
type removeDuplicates. "#(#snow #rain #-)"

In the past, this method was named #uniqueValues to follow the naming of
Pandas. It got renamed to stay consistent with Pharo’s API. This allows us to
see the complete dictionary of values used in a data series.

valueCounts

Another thing you might want to know is how the values of your categorical
data series are distributed. How many times did it rain, according to your
dataset? How many times did it snow? The valueCountsmethod will give
you the counts of unique values in your data series:

type valueCounts.

type

rain 3
snow 1
- 1

The result will be a data series with unique values as keys and counts as val-
ues. It will be sorted by counts in descending order.

15

DataFrame by example

valueFrequencies

Sometimes, instead of counts, you want to see the relative frequencies of the
unique values in your data series:

type valueFrequencies.

type

rain (3/5)
snow (1/5)
- (1/5)

In fact, it is the same as dividing value counts by the size of your series:

type valueFrequencies = (type valueCounts / type size). "true"

crossTabulateWith:

Cross tabulation is a powerful way to analyse the correlation between two
categorical series. It creates a table with rows corresponding to the unique
values of the first series, columns corresponding to the unique values of the
second series, and each cell containing the count of those value pairs.

By cross tabulating the precipitation series with the type series, we can
see that they are closely correlated - when precipitation is false, the
type is always empty, and when precipitation is true, the type is either
rain or snow:

precipitation crossTabulateWith: type.

The result will be the data frame of cross tabulated values:

snow rain -

false 0 0 1
true 1 3 0

Categorising a DataSeries

It is often needed while manipulating numerical datas to categorise them.DataSeries
api provides 2 methods to help with this:

• #groupByBins:labelled: : Return a new data series whose values
will be a given label depending on the category found by the bins pro-
vided.

• #groupByBins: : Same as previous methods but using indexes starting
at 1 as labels

16

2.12 Handling nil values in a data series

Let’s say for example that in our usecase, we do not need to have specific
temperatures for our usecase but just some categorises. We can create a new
data series like this:

temperature groupByBins: { Float negativeInfinity . 0 . 3 . Float
infinity } labelled: #(#negative #very_cold #adequate).

The result will be a new DataSeries like this:

temperature

1 #very_cold
2 #very_cold
3 #negative
4 #negative
5 #adequate

2.12 Handling nil values in a data series

The DataSeries class provides methods specifically for handling nil values in
a data series. Consider this data series :

temperature := DataSeries
withValues: #(2.4 nil -1.2 nil 3.2)
name: #temperature.

Identifying nil values

The hasNilmethod returns true if the data series has at least one nil value.

temperature hasNil. "true"

Removing nil values

The removeNilsmethod removes elements with nil values from the data
series.

temperature removeNils.

key value

1 2.4
3 -1.2
5 3.2

Replacing nil values

Rather than simply removing nil values from the data series, nil values can
also be replaced by user defined or statistical alternatives.

17

DataFrame by example

• replaceNilsWith: anObject : Replaces all nil values in the data se-
ries with the provided object, anObject.

• replaceNilsWithAverage : Replaces all nil values in the data series
with the average value of the data series.

• replaceNilsWithMedian : Replaces all nil values in the data series
with the median of the data series.

• replaceNilsWithMode : Replaces all nil values in the data series with
the mode of the data series.

• replaceNilsWithNextValue : Replaces all nil values in the data series
with the value of the next non-nil element in the data series. If the last
value in the data series is nil, it will remain nil even after using this
method because there is no value after it which can replace it.

• replaceNilsWithPreviousValue : Replaces all nil values in the data
series with the value of the previous non-nil element in the data series.
If the first value in the data series is nil, it will remain nil even after
using this method because there is no value before it which can replace
it.

• replaceNilsWithZero : Replaces all nil values in the data series with
zero.

Suppose the user wants to replace all the nil values with 5.

temperature replaceNilsWith: 5.

key value

1 2.4
2 5
3 -1.2
4 5
5 3.2

If you want to replace nil values with a statistical value such as the median of
the data series :

temperature replaceNilsWithMedian.

key value

1 2.4
2 2.4
3 -1.2
4 2.4

18

2.13 Creating a data frame

5 3.2

You can also replace nil values with adjacent values (the non-nil value ap-
pearing before the nil value in this example) in the data series :

temperature replaceNilsWithPreviousValue.

key value

1 2.4
2 2.4
3 -1.2
4 -1.2
5 3.2

Counting nil values

You can count the number of nil values in a data series using countNils and
the number of non-nil values in a data series using countNonNils.

temperature countNils. "2"
temperature countNonNils. "3"

2.13 Creating a data frame

In this section, we will look at different ways of creating the weather data
frame described in Section 2.1. You will also learn to create empty data frames
that can be filled with values later.

Initializing a data frame with an array of rows

The most basic way to initialize a data frame is with an array (or any other
ordered collection) of rows where each row is a collection of elements. Let’s
create the weather data frame from its rows:

weather := DataFrame withRows: #(
(2.4 true rain)
(0.5 true rain)
(-1.2 true snow)
(-2.3 false -)
(3.2 true rain)).

Initializing a data frame with an array of columns

Alternatively, you can create a data frame by passing it a collection of columns.
This can be handy, for example, when engineering new features: DataFrame
withColumns: { income . income ** 2 . income log }. In our case,
we create the same weather data frame:

19

DataFrame by example

weather := DataFrame withColumns: #(
(2.4 0.5 -1.2 -2.3 3.2)
(true true true false true)
(rain rain snow - rain)).

Specifying column and row names

Both expressions in the two previous sections create the same data frame.

1 2 3

1 2.4 true rain
2 0.5 true rain
3 -1.2 true snow
4 -2.3 false -
5 3.2 true rain

Since the names of rows and columns were not specified, they were initial-
ized with their default values: (1 to: self numberOfRows) and (1 to:
self numberOfColumns). We can provide more meaningful names:

weather := DataFrame withColumns: #(
(2.4 0.5 -1.2 -2.3 3.2)
(true true true false true)
(rain rain snow - rain)).

weather columnNames: #(temperature precipitation type).
weather rowNames: (#('01:10' '01:30' '01:50' '02:10' '02:30')

collect: #asTime).

We would like to emphasize that names don’t have to be strings or numbers.
They can be any objects, and in this case they are instances of Time. Now the
data frame looks the same as the table in Figure 2-1 (A).

temperature precipitation type

1:10 am 2.4 true rain
1:30 am 0.5 true rain
1:50 am -1.2 true snow
2:10 am -2.3 false -
2:30 am 3.2 true rain

Compact methods for initializing data frames

The DataFrame class provides syntactic sugar that allows us to initialize it
with contents and (optionally) row and column names in a single line. Here
is the complete list of those initializers:

20

2.14 Creating empty data frames

DataFrame class >> withRows: columnNames:
DataFrame class >> withRows: rowNames:
DataFrame class >> withRows: rowNames: columnNames:
DataFrame class >> withColumns: columnNames:
DataFrame class >> withColumns: rowNames:
DataFrame class >> withColumns: rowNames: columnNames:

Whenever row or column names are not specified, they are initialized with
their default values.

2.14 Creating empty data frames

Sometimes we need to create an empty data frame that will be filled with
data later on. The easiest way of doing this is with

DataFrame new. "empty data frame with 0 rows and 0 columns"

This will create an empty data frame with no columns and rows. You can
also create an empty data frame of a given size by specifying it as a point
numberOfRows @ numberOfColumns. All the cells of such a data frame will
be empty (initialized with nil).

DataFrame new: 3@4. "empty data frame with 3 rows and 4 columns"

Similar to the syntactic sugar described in the previous section, the DataFrame
class has methods that allow us to create data frames by specifying only their
rows, columns, or both. Since we do not provide any data, such data frames
will be empty and their sizes will correspond to the provided arrays of rows
and columns. For example, if you create an empty data frame with columns
#(temperature precipitation type), its size will be 0@3. Here are the
methods that can be used to create an empty data frame with names:

DataFrame class >> withRowNames:
DataFrame class >> withColumnNames:
DataFrame class >> withRowNames: columnNames:

For example, we can initialize an empty weather data frame:

emptyWeather := DataFrame
withRowNames: (#('01:10' '01:30' '01:50' '02:10' '02:30') collect:

#asTime)
columnNames: #(temperature precipitation type).

temperature precipitation type

1:10 am nil nil nil
1:30 am nil nil nil

21

DataFrame by example

1:50 am nil nil nil
2:10 am nil nil nil
2:30 am nil nil nil

Although it is possible to create a data frame with no rows using DataFrame
class >> new or DataFrame >> withColumnNames: and add rows later by
pushing them one by one, this is not recommended. DataFrame is not opti-
mized for the insertion of new elements. It may be more efficient to first add
rows into an OrderedCollection and then initialize a data frame with it.

2.15 Inspecting a data frame

It is hard to work with data tables without being able to see them. Fortu-
nately, the Pharo environment provides a powerful inspector which allows
you to examine live objects and even modify them. If you inspect a data
frame object (select it anywhere in the code and press Ctrl+I or Ctrl+G if you
are in Playground), you will see a table similar to the one in Figure 2-2.

Figure 2-2 Inspecting a weather data frame

It is also possible to get info in a textual way by calling #info of the DataFrame:

weather info "'DataFrame: 5 entries
Data columns (total 3 columns):
| Column | Non-nil count | Dtype

1 | 1 | 5 non-nil | SmallFloat64
2 | 2 | 5 non-nil | Boolean
3 | 3 | 5 non-nil | Object
'"

2.16 Data types

When importing datas, DataFrame will infer the types of the elements in the
columns. In order to do that, all the elements of the colmun except nil val-

22

2.17 Accessing data frame parameters

ues will be scanned to determine their type, and the common superclass of
the elements will be selected as the type of the columns. If all elements are
strings, this means DataFrame was not able to determine any type and the
colmun will be classified as Object.

weather dataTypes "a Dictionary(1->SmallFloat64 2->Boolean
3->Object)"

It is possible to force a colmun type to be String be specifying it directly:

weather dataTypes at: 3 put: String.
weather dataTypes "a Dictionary(1->SmallFloat64 2->Boolean 3->String

)"

2.17 Accessing data frame parameters

Data frames are defined by their contents (table of data), as well as their col-
umn and row names. For simplicity, we provide access to some additional
parameters such as the dimensions of a data frame. In this section, we will
show you how to get other parameters such as names or sizes. In the fol-
lowing sections, we will discuss how to access rows and columns, as well as
individual cells.

Dimensions

Getting the number of rows and columns of a data frame is straightforward:

weather numberOfRows. "5"
weather numberOfColumns. "3"

You can also get both dimensions of a data frame as a Point:

weather dimensions. "5@3"

Row and column names

Every data frame has names associated with its rows and columns (either
used-defined or auto-generated). These names can be used for referencing
specific rows or columns (which you will learn in Section 2.18). Let’s get the
collection of all row and column names of our weather data frame:

weather rowNames.
weather columnNames.

Transposed DataFrame

Sometimes it is useful to transpose a data frame made out of columns and
rows into rows and columns. To do that, you can simply write:

23

DataFrame by example

weather transposed

The result will be a new data frame which looks like this:

1:10 am 1:30 am 1:50 am 2:10 am 2:30 am

temperature 2.4 0.5 -1.2 -2.3 3.2
precipitation true true true false true
type rain rain snow - rain

2.18 Accessing rows and columns

In this section, I will show you how to get the values of specific rows and
columns, as well as how to modify these values. Rows and columns of a data
frame can be accessed either by their names or their numeric indexes.

Accessing by name

You can get row 01:50 or the temperature column of the weather data
frame by writing:

weather row: '01:50' asTime.
weather column: #temperature.

Use methods row: put: and column: put: to modify the values stored in a
row or column:

weather row: '01:50' asTime put: #(10 true rain).
weather column: #temperature put: #(1.2 -2.1 3.4 -5.9 -0.4).

temperature precipitation type

1:10 am 1.2 true rain
1:30 am -2.1 true rain
1:50 am 3.4 true rain
2:10 am -5.9 false -
2:30 am -0.4 true rain

If you reference a row or column by a non-existing name you will get the
NotFoundError and if the array you provide is too big or too small, the SizeMis-
match error will be signaled. Notice that you can not add a new column using
dataFrame column: #newName put newArray. This is done with the add-
Column: set of methods that will be described in the following sections.

Accessing by index

Rows and columns can also be accessed by their numeric indices. You can get
the same row and column as in the previous example using:

24

2.18 Accessing rows and columns

weather rowAt: 3.
weather columnAt: 1.

To modify them, use rowAt: put: and columnAt: put:.

weather rowAt: 3 put: #(-1.2 true snow).
weather columnAt: 1 put: #(2.4 0.5 -1.2 -2.3 3.2).

temperature precipitation type

1:10 am 2.4 true rain
1:30 am 0.5 true rain
1:50 am -1.2 true snow
2:10 am -2.3 false -
2:30 am 3.2 true rain

Accessing multiple rows and columns

To access multiple rows or columns at the same time, you have to provide
an array of names or indices, or specify the range of indices. In the following
example, we get the three middle rows of the weather data frame:

weather rows: { '01:30' asTime . '01:50' asTime . '02:10' asTime}.
weather rowsAt: #(2 3 4).
weather rowsFrom: 2 to: 4.

The same can be done to access, for example, the last two columns:

weather columns: #(precipitation type).
weather columnsAt: #(2 3).
weather columnsFrom: 2 to: 3.

The result will be another data frame with only the requested rows or columns
in the order in which you ask for them. This means that you can ask for rows
3, 2, and 5 or the precipitation column followed by temperature:

weather rowsAt: #(3 2 5).
weather columns: #(precipitation temperature).

All the above methods can be used together with put: to replace the given
rows or columns with new ones:

DataFrame >> rows: put:
DataFrame >> rowsAt: put:
DataFrame >> rowsFrom: to: put:
DataFrame >> columns: put:
DataFrame >> columnsAt: put:
DataFrame >> columnsFrom: to: put:

25

DataFrame by example

Head and Tail

To understand the nature of a dataset with 100,000 rows, it helps if we can
take a look at its first or last 5 rows. This is called the head or tail of a dataset.
DataFrame allows you to get an arbitrary number of rows at its beginning or
end using the head: aNumber and tail: aNumbermethods. It also provides
the simpler methods head and tail which return 5 rows.

For example, if we want to get the first 2 rows from our weather data frame:

weather head: 2.

temperature precipitation type

1:10 am 2.4 true rain
1:30 am 0.5 true rain

Or the tail with the last 3 rows:

weather tail: 2.

temperature precipitation type

1:50 am -1.2 true snow
2:10 am -2.3 false -
2:30 am 3.2 true rain

Both head and tail return new data frames with only the corresponding
rows. DataSeries also implements the head/tailmethods, which allows you
to get the head or tail of a single row or column as a new data series with
only the first or last elements:

(weather column: #temperature) head: 2.

temperature

1:10 am 2.4
1:30 am 0.5

2.19 Adding rows and columns

You can add new rows and columns to a data frame by providing an array of
values, a name, and its position as an index:

weather
addColumn: #(86 79 23 16 90)
named: #humidity
atPosition: 2.

The above statement will modify the weather dataset by adding a humidity
column right after the temperature column:

26

2.19 Adding rows and columns

temperature humidity precipitation type

1:10 am 2.4 86 true rain
1:30 am 0.5 79 true rain
1:50 am -1.2 23 true snow
2:10 am -2.3 16 false -
2:30 am 3.2 90 true rain

You can omit the position using methods addRow:named: or addColumn:named:.
By default rows and columns will be added to the end of a data frame:

weather
addRow: #(2.0 81 true rain)
named: '2:50' asTime.

temperature humidity precipitation type

1:10 am 2.4 86 true rain
1:30 am 0.5 79 true rain
1:50 am -1.2 23 true snow
2:10 am -2.3 16 false -
2:30 am 3.2 90 true rain
2:50 am 2.0 81 true rain

Alternatively, you can add new rows or columns as data series. In this case
you do not need to provide a name because the data series already knows its
name.

wind := DataSeries
withValues: #(39 39 32 24 14 14)
name: #wind.

weather
addColumn: wind
atPosition: 2.

Notice that we did not specify the keys of the data series with wind measure-
ments. It was initialized with default keys. When adding new row or column
as a data series, DataFrame does not take keys into account.

temperature wind humidity precipitation type

1:10 am 2.4 39 86 true rain
1:30 am 0.5 39 79 true rain
1:50 am -1.2 32 23 true snow
2:10 am -2.3 24 16 false -
2:30 am 3.2 14 90 true rain

27

DataFrame by example

2:50 am 2.0 14 81 true rain

You can use addRow: or addColumn: without specifying a position, in which
case the new row or column will be added to the end.

Just as before, when we were modifying existing rows and columns, if you
try to add a new row or column which is too big or too small, DataFrame will
signal a SizeMismatch error.

2.20 Removing rows and columns

To remove a row or column from a data frame, you have to provide either its
name or index. In the previous section, we added two columns and one row
to the data frame. Now we can remove the wind column and the last row that
was added:

weather removeColumn: #wind.
weather removeRowAt: 6.

This gives us the same weather dataset as we had at the beginning, but with
an additional humidity column.

temperature humidity precipitation type

1:10 am 2.4 86 true rain
1:30 am 0.5 79 true rain
1:50 am -1.2 23 true snow
2:10 am -2.3 16 false -
2:30 am 3.2 90 true rain

If you try to remove a column or row by a name which does not exist or by an
index that is out of range, you will get the NotFoundError or SubscriptOut-
OfBounds.

2.21 Enumerating rows of a data frame

A DataFrame can be treated as an array of rows. You can enumerate them
in the same way you would enumerate any other sequenceable collection in
Smalltalk: do:, collect:, select:, reject:, and inject:into:.

do: aBlock

Evaluate aBlock for each row of the receiver data frame. Let us convert the
temperatures from Celsius to Fahrenheit:

weather do: [:row |
row at: #temperature transform: [:celsius |
celsius * 9/5 + 32]].

28

2.21 Enumerating rows of a data frame

temperature humidity precipitation type

1:10 am 36.32 86 true rain
1:30 am 32.9 79 true rain
1:50 am 29.84 23 true snow
2:10 am 27.86 16 false -
2:30 am 37.76 90 true rain

select: aBlock

Evaluate aBlock for each row of the receiver data frame. Collect into a new
data frame only those rows for which aBlock evaluates to true. Answer the
new data frame. We can select the records that are below freezing tempera-
ture:

weather select: [:row |
(row at: #temperature) < 32].

temperature humidity precipitation type

1:50 am 29.84 23 true snow
2:10 am 27.86 16 false -

reject: aBlock

Evaluate aBlock for each row of the receiver data frame. Collect into a new
data frame only those rows for which aBlock evaluates to false. Answer the
new data frame. Now, if we reject freezing temperatures, we will get all the
other records.

weather reject: [:row |
(row at: #temperature) < 32].

temperature humidity precipitation type

1:10 am 36.32 86 true rain
1:30 am 32.9 79 true rain
2:30 am 37.76 90 true rain

collect: aBlock

Evaluate aBlock for each row of the receiver data frame. Collect into a new
data frame the rows that were answered by aBlock. Therefore, aBlock is ex-
pected to return a data series of a certain size. This size can be different than
the number of columns in the original data frame, but the same for every an-
swered row. Keys of the answered data series will be set as column names of
the new data frame. For example, we can collect rows of the weather data
frame into a new data frame with the values of the humidity column con-
verted to the 0-1 scale and with the precipitation column removed:

29

DataFrame by example

weather collect: [:row |
row at: #humidity transform: [:percent | percent / 100].
row removeAt: #precipitation.
row].

The result will be a new data frame:

temperature humidity type

1:10 am 36.32 0.86 rain
1:30 am 32.9 0.79 rain
1:50 am 29.84 0.23 snow
2:10 am 27.86 0.16 -
2:30 am 37.76 0.9 rain

Remember that the original weather data frame is not modified.

detect: aBlock

Evaluate aBlock for each row of the receiver data frame. Answer the first
row for which aBlock evaluates to true. If none evaluates to true, report an
error. For example, we can detect the first row with a freezing temperature:

weather detect: [:row |
(row at: #temperature) < 32].

1:50 am

temperature 29.84
humidity 23
precipitation true
type snow

detect: aBlock ifNone: exceptionBlock

Evaluate aBlock for each row of the receiver data frame. Answer the first
row for which aBlock evaluates to true. If none evaluates to true, evaluate
exceptionBlock which must be a block requiring no arguments. For exam-
ple, since the weather dataset does not contain any observations (rows) with
temperatures lower than 20, the following expression will evaluate to the not
found string:

weather
detect: [:row | (row at: #temperature) < 20]
ifNone: ['not found'].

inject: thisValue into: binaryBlock

Evaluate binaryBlock once for each row in the receiver data frame. The
block has two arguments: the second one is the row from the receiver; the

30

2.22 Aggregation and Grouping

first one is the value of the previous evaluation of the block, starting with the
argument thisValue. Answer the final value of a block.

We can use it to sum up all values of the two numeric columns: temperature
and humidity:

(weather columns: #(temperature humidity))
inject: 0
into: [:sum :row | sum + row].

(no name)

temperature 164.68
humidity 294

Additionally, DataFrame provides special methods for enumerating by index.
The following table lists all enumeration methods understood by DataFrame:

Row Row and index

do: withIndexDo:
select: withIndexSelect:
reject: withIndexReject:
collect: withIndexCollect:
detect: -
detect: ifNone: -
inject: into: -

We do not need to enumerate rows with their names because each row is a
data series which already knows its name.

2.22 Aggregation and Grouping

Aggregation and grouping is among the most used operations in data anal-
ysis workflows. It allows us to first group rows of a data frame by a value of
some column and then aggregate each one of these groups into a single value
with some function or block, for example, average, sum, etc.

Let’s ask the weather data frame to answer the following question: ”What is
the average temperature when it rains, snows, or when there is no precipitation?”.
To do that, we group the values of temperature column by the type column
and then find the average value of each group.

weather
group: #temperature
by: #type
aggregateUsing: #average
as: #averageTemperature.

This gives us a data series of average temperature by precipitation type called
averageTemperature:

31

DataFrame by example

averageTemperature

- 27.86
rain 35.66
snow 29.84

You can omit the as: #averageTemperature part of that message, in which
case the answered data series will have the same name as the column that
was aggregated: temperature.

Values of data series are grouped into a data series of groups where each
group is also a data series. An aggregation function or block is then applied
to each one of these groups. Which means that the aggregation function can
be any selector understood by DataSeries. And the result of the aggregation
and grouping expression will be a data series of answers from your aggrega-
tion function or block (which can be scalar values or collections).

Let’s look at the total number of rows, lowest and highest temperature val-
ues, and average humidity in each group:

weather
groupBy: #type
aggregate: {
#temperature using: #size as: #count .
#temperature using: #min as: #minTemperature .
#temperature using: #max as: #maxTemperature .
#humidity using: #average as: #avgHumidity }.

Notice that the count column is constructed by aggregating groups of tem-
perature with the #sizemessage. In fact, any column can be used in place
of temperature.

count minTemperature maxTemperature avgHumidity

- 1 27.86 27.86 16
rain 3 32.9 37.76 85
snow 1 29.84 29.84 23

2.23 Handling nil values

DataFrames are a powerful tool for working with structured data in Pharo.
They allow us to organize, manipulate, and analyze data efficiently. How-
ever, real-world datasets often contain missing or undefined values, repre-
sented as ”nil” in Pharo. Handling nil values appropriately is crucial to en-
sure accurate and reliable data analysis. In this section, we will explore vari-
ous methods available in Pharo’s DataFrame package for handling nil values
effectively.

32

2.23 Handling nil values

Identifying nil values

Before we can handle nil values, it is essential to identify their presence
within a data frame. Pharo’s DataFrame package provides these methods
for detecting nil values:

• hasNils: This method returns true if there is at least one nil value in
the data frame.

• hasNilsByColumn : Returns a dictionary indicating the presence of
any nil values column-wise. The keys of the dictionary represent the
column names, and the values (true or false) indicate whether nil val-
ues exist in the corresponding column.

• numberOfNils : Returns a dictionary indicating the number of nil val-
ues column-wise. The keys of the dictionary represent the column
names, and the values represent the count of nil values in each col-
umn.

Suppose we had this data frame :

weather := DataFrame withRows: #(
(2.4 true rain)
(0.5 true nil)
(-1.2 true snow)
(-2.3 nil nil)
(3.2 true rain)).

weather columnNames: #(temperature precipitation type).

weather rowNames: #('01:10' '01:30' '01:50' '02:10' '02:30').

Since this is a small data frame, it can easily be seen that it has nil values,
however if the data frame is large, it will be difficult to physically check the
data frame for nil values. This is where hasNils becomes useful :

weather hasNils. "true"

You can also see in which columns these nil values are present :

weather hasNilsByColumn.

key value

precipitation true
type true
temperature false

You can even find out the number of nil values in each column :

weather numberOfNils.

33

DataFrame by example

key value

precipitation 1
type 2
temperature 0

Removing nil values

When dealing with nil values, it may be necessary to remove or filter out
rows or columns containing these values. It should be noted that usually in
Data Science and Machine Learning tasks, columns are removed only if there
are many nil values in that column or if the column doesn’t contain a lot of
information that helps your analysis and rows are removed if the number of
rows with nil values is very less compared to the total number of rows. The
following methods assist in removing nil values:

• removeColumnsWithNilsAtRow : Removes all columns with nil values
at a specified row number from the data frame.

• removeColumnsWithNilsAtRowNamed : Removes all columns with nil
values at a specified row name from the dataframe.

• removeRowsWithNils : Removes all rows from the data frame that
have at least one nil value.

• removeRowsWithNilsAtColumn : Removes all rows with nil values at a
specified column number from the data frame.

• removeRowsWithNilsAtColumnNamed : Removes all rows with nil val-
ues at a specified column name from the data frame.

If you want to remove all columns which have their second value as a nil
value :

weather removeColumnsWithNilsAtRow: 2.

temperature precipitation

1:10 am 2.4 true
1:30 am 0.5 true
1:50 am -1.2 true
2:10 am -2.3 nil
2:30 am 3.2 true

You can remove all rows from a data frame which have at least one nil value :

weather removeRowsWithNils.

34

2.23 Handling nil values

temperature precipitation type

1:10 am 2.4 true rain
1:50 am -1.2 true snow
2:30 am 3.2 true rain

If you want to remove rows which have nil values in the column ’precipita-
tion’ :

weather removeRowsWithNilsAtColumnNamed: 'precipitation'.

temperature precipitation type

1:10 am 2.4 true rain
1:30 am 0.5 true nil
1:50 am -1.2 true snow
2:30 am 3.2 true rain

Replacing nil values

In certain cases, it might be more appropriate to replace nil values with
meaningful alternatives. It is important to note that the choice of replace-
ment method depends on the nature of the data and the specific analysis
goals. Different replacement strategies can be applied based on the charac-
teristics and patterns of the missing data. Pharo’s DataFrame package pro-
vides various methods for replacing nil values with the user’s desired alter-
natives as well as statistical alternatives :

• replaceNilsWith: anObject : Replaces all nil values in the data
frame with the provided object, anObject.

• replaceNilsWithAverage : Replaces all nil values in the data frame
with the average value of the column in which they are present.

• replaceNilsWithMedian : Replaces all nil values in the data frame
with the median of the column in which they are present.

• replaceNilsWithMode : Replaces all nil values in the data frame with
the mode of the column in which they are present.

• replaceNilsWithNextRowValue : Replaces all nil values in the data
frame with the value of the next non-nil element in the same column.
If the last value of a column in the data frame is nil, it will remain nil
even after using this method because there is no value after it in the
column which can replace it.

• replaceNilsWithPreviousRowValue : Replaces all nil values in the
data frame with the value of the previous non-nil element in the same
column. If the first value of a column in the data frame is nil, it will re-
main nil even after using this method because there is no value before
it in the column which can replace it.

35

DataFrame by example

• replaceNilsWithZero : Replaces all nil values in the data frame with
zero.

If you want to replace all nil values in a data frame with ’value’ :

weather replaceNilsWith: 'value' .

temperature precipitation type

’01:10’ 2.4 true rain
’01:30’ 0.5 true value
’01:50’ -1.2 true snow
’02:10’ -2.3 value value
’02:30’ 3.2 true rain

You can replace all nil values in a column with a statistical value of that col-
umn, this example replaces nil values with the mode value of that column
:

weather replaceNilsWithMode .

temperature precipitation type

’01:10’ 2.4 true rain
’01:30’ 0.5 true rain
’01:50’ -1.2 true snow
’02:10’ -2.3 true rain
’02:30’ 3.2 true rain

If you want to replace nil values with the previous non-nil value in the same
column :

weather replaceNilsWithNextRowValue .

temperature precipitation type

’01:10’ 2.4 true rain
’01:30’ 0.5 true snow
’01:50’ -1.2 true snow
’02:10’ -2.3 true rain
’02:30’ 3.2 true rain

2.24 Reading from and writing to files

In practice, data frames are useful when you can load some data from an ex-
ternal source into a data frame, modify and analyse it, and then save the re-
sult. The external source can be a CSV or Excel file, a database connection,
or any other source of data. In this section, I will describe the DataFrame-IO
package of the DataFrame project which allows you to load and save data
frames.

36

2.24 Reading from and writing to files

DataFrame-IO provides two abstract classes: DataFrameReader and DataFrameWriter.
Each of them has only one abstract method: DataFrameReader >> read-
From: aLocation (expected to return a data frame) and DataFrameWriter
>> write: aDataFrame to: aLocation. To add support for some external
data source, you need to override those methods in your subclasses, provid-
ing the actual algorithm for reading and writing data. DataFrame has two
methods that allow you to read or write it using your reader or writer:

DataFrame class >> readFrom: aLocation using: aDataFrameReader
"Read data frame from a given location using a given

DataFrameReader. Location can be a file reference, a database
connection, or something else (depending on the implementation
of the reader)"

^ aDataFrameReader readFrom: aLocation

DataFrame >> writeTo: aLocation using: aDataFrameWriter
"Write data frame to a given location using a given

DataFrameWriter. Location can be a file reference, a database
connection, or something else (depending on the implementation
of the writer)"

aDataFrameWriter write: self to: aLocation

CSV support

CSV (comma-separated values) is the file format that is most commonly used
by data scientists to save and share tabular data. It is a simple text file in
which each row is written on a new line and values of a row are separated by
commas. You can use another character as the separator instead of comma;
for example, one common choice is tab.

The DataFrame-IO package comes with two subclasses of DataFrameReader
and DataFrameWriter: DataFrameCsvReader and DataFrameCsvWriter.
They override readFrom: and write:to: methods using NeoCSV and al-
low you to specify optional configurations, such as the separator charac-
ter (comma by default) or line end convention (either #cr, #lf, or #crlf -
defaults to OS convention). By default, DataFrameCsvReader will read all
columns of the CSV file as data frame columns and assign the default names
to rows - numbers from 1 to numberOfRows. However, you can configure it to
read the first column as row names by sending true to the DataFrameCsvReader
>> includeRowNames:. In this case aLocation parameter of readFrom: and
write:to: methods is expected to be a FileReference.

Because reading and writing CSV files is very common in a data analysis
workflow, DataFrame provides shortcuts for these methods:

DataFrame class >> readFromCsv:
DataFrame class >> readFromCsv: withSeparator:
DataFrame class >> readFromCsvWithRowNames:
DataFrame class >> readFromCsvWithRowNames: separator:

37

DataFrame by example

DataFrame >> writeToCsv:
DataFrame >> writeToCsv: withSeparator:

2.25 Conclusion

This chapter has guided you through the complete functionality of the DataFrame
project. It offered you examples of different methods without any logical
connection between them. In the following chapters you will find short tuto-
rials which demonstrate the application of data frames to real life problems.

38

	Illustrations
	Introduction
	The DataFrame project
	Who is this booklet for?
	What is Pharo?
	The PolyMath project
	Terminology
	Structure of this booklet
	How to contribute?

	DataFrame by example
	Weather dataset
	What are data frames and data series
	Installation
	Running the tests

	Creating a data series
	Discovering the data series API
	Accessing and modifying values

	at:transform:
	Enumerating the values of a data series
	Arithmetical operations
	Some useful mathematical functions
	Statistical operations
	Summarizing a DataSeries

	Working with categorical values
	removeDuplicates
	valueCounts
	valueFrequencies
	crossTabulateWith:
	Categorising a DataSeries

	Handling nil values in a data series
	Identifying nil values
	Removing nil values
	Replacing nil values
	Counting nil values

	Creating a data frame
	Initializing a data frame with an array of rows
	Initializing a data frame with an array of columns
	Specifying column and row names
	Compact methods for initializing data frames

	Creating empty data frames
	Inspecting a data frame
	Data types
	Accessing data frame parameters
	Dimensions
	Row and column names
	Transposed DataFrame

	Accessing rows and columns
	Accessing by name
	Accessing by index
	Accessing multiple rows and columns
	Head and Tail

	Adding rows and columns
	Removing rows and columns
	Enumerating rows of a data frame
	do: aBlock
	select: aBlock
	reject: aBlock
	collect: aBlock
	detect: aBlock
	detect: aBlock ifNone: exceptionBlock
	inject: thisValue into: binaryBlock

	Aggregation and Grouping
	Handling nil values
	Identifying nil values
	Removing nil values
	Replacing nil values

	Reading from and writing to files
	CSV support

	Conclusion

