




Concurrent Programming in

Pharo

Stéphane Ducasse and Guillermo Polito

March 12, 2024



Copyright 2023 by Stéphane Ducasse and Guillermo Polito.

The contents of this book are protected under the Creative Commons Attribution-
NonCommercial-NoDerivs CC BY-NC-ND
You are free to:

Share — copy and redistribute the material in any medium or format

The licensor cannot revoke these freedoms as long as you follow the license terms. Un-
der the following conditions:

Attribution. — You must give appropriate credit, provide a link to the license, and indi-
cate if changes were made. You may do so in any reasonable manner, but not in
any way that suggests the licensor endorses you or your use.

NonCommercial. — You may not use the material for commercial purposes.

NoDerivatives. — If you remix, transform, or build upon the material, you may not dis-
tribute the modified material.

No additional restrictions. — You may not apply legal terms or technological measures
that legally restrict others from doing anything the license permits.

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Keepers of the lighthouse
Édition : BoD - Books on Demand,
12/14 rond-point des Champs-Élysées,75008 Paris
Impression : Books on Demand GmbH, Norderstedt, Allemagne
ISBN: xxx
Dépôt légal : xx/2023

Layout and typography based on the sbabook LATEX class by Damien Pollet.

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode


Contents

1 Concurrent programming in Pharo 3

1.1 Studying an example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Process lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Creating processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 First look at ProcessorScheduler . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Process priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.8 ProcessScheduler rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.9 Let us trace better what is happening . . . . . . . . . . . . . . . . . . . . . . 10

1.10 Yielding the computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.11 Important API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Semaphores 15

2.1 Understanding semaphoress . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 wait and signal interplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 A key question about signal . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Prearmed semaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Semaphore forMutualExclusion . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Deadlocking semaphores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Mutex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 Implementation: the language perspective . . . . . . . . . . . . . . . . . . . 24

2.10 Implementation: the VM perspective . . . . . . . . . . . . . . . . . . . . . . 26

2.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Scheduler’s principles 29

3.1 Revisiting the class Process . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Looking at some core process primitives . . . . . . . . . . . . . . . . . . . . 31

3.3 Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 signal and preemption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Understanding yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 yield illustrated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

i



Contents

3.7 Considering UI processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 About the primitive in yield method . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 About processPreemption settings . . . . . . . . . . . . . . . . . . . . . . . 41

3.10 Comparing the two semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.11 Second example: preempting P1 . . . . . . . . . . . . . . . . . . . . . . . . 42

3.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Some examples of semaphores at work 45

4.1 Promise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Promise implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 SharedQueue: a nice semaphore example . . . . . . . . . . . . . . . . . . . 48

4.6 About Rendez-vous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ii



Contents

This book describes the low-level abstractions available in Pharo for concur-
rent programming. It explains pedagogically different aspects. Now, if you
happen to create many green threads (called Process in Pharo) we suggest that
you have a look at TaskIt. TaskIt is an extensible library to manage concurrent
processing at a higher level of abstraction. You should definitely have a look at
it.

We did several iterations and integrated many feedback and we want to thank
all the reviewers. Still, we are interested in typos, English corrections, poten-
tial mistakes or any kind of feedback.

You can simply contact us at stephane.ducasse@inria.fr

18 February 2020.

Thanks DiagProf, Eliot Miranda, Sven Van Caekenberghe, and Ben Coman for
their feedback, ideas, and suggestions. Thank you again. Special thanks to Di-
agProf for his patience in fixing typos. Special thanks to Ben Coman for the
great examples.

1





CHA P T E R 1
Concurrent programming in

Pharo

Pharo is a sequential language since at one point in time there is only one
computation carried on. However, it has the ability to run programs concur-
rently by interleaving their executions. The idea behind Pharo is to propose a
complete OS and as such a Pharo run-time offers the possibility to execute dif-
ferent processes in Pharo lingua (or green threads in other languages) that are
scheduled by a process scheduler defined within the language.

Pharo’s concurrency is priority-based preemptive and collaborative. It is preemp-
tive because a process with higher priority interrupts (preempts) processes of
lower priority. It is collaborative because the current process should explicitly
release the control to give a chance to the other processes of the same priority
to get executed by the scheduler.

In this chapter, we present how processes are created and their lifetime. We
will show how the process scheduler manages the system.

In a subsequent chapter, we will present the semaphores in detail and revisit
scheduler principles then later we will present other abstractions such as Mu-
tex, Monitor, and Delay.

1.1 Studying an example

Pharo supports the concurrent execution of multiple programs using indepen-
dent processes (green threads). These processes are lightweight processes as
they share a common memory space. Such processes are instances of the class

3



Concurrent programming in Pharo

Process. Note that in operating systems, processes have their own memory
and communicate via pipes supporting strong isolation. In Pharo, a process is
what is usually called a (green) thread or fiber in other languages. They have
their own execution flow but share the same memory space and use concur-
rent abstractions such as semaphores to synchronize with each other.

1.2 A simple example

Let us start with a simple example. We will explain all the details in subse-
quent sections. The following code creates two processes using the message
fork sent to a block. In each process, we enumerate numbers: the first process
from 1 to 10 and the second one from 101 to 110. During each loop step, using
the expression Processor yield, the current process mentions the sched-
uler that it can relinquish the CPU to give a chance to other processes with the
same priority to get executed. We say that the active process relinquishes its
execution.

[ 1 to: 10 do: [ :i |
i trace; trace: ' '.
Processor yield ] ] fork.

[ 101 to: 110 do: [ :i |
i trace; trace: ' '.
Processor yield ] ] fork

The output is the following:

1 101 2 102 3 103 4 104 5 105 6 106 7 107 8 108 9 109 10 110

We see that the two processes run concurrently, each outputting a number at
a time and not producing two numbers in a row. We also see that a process has
to explicitly give back the execution control to the scheduler using the expres-
sion Processor yield. We will explain this in more detail in the following.
Let us look at what a process is.

1.3 Process

In Pharo, a process (green thread) is an object like anything else. A process is
an instance of the class Process. Pharo follows the Smalltalk naming and from
a terminology point of view, this class should be called a Thread as in other
languages. It may change in the future.

A process is characterized by three pieces of information:

• A process has a priority (between 10 lowest and 80 highest). Using this
priority, a process will preempt other processes having lower priority

4



1.4 Process lifetime

and it will be managed by the process scheduler in the group of pro-
cesses with the same priority as shown in Figure 1-2.

• when suspended, a process has a suspendedContext which is a stack
reification of the moment of the suspension.

• when runnable, a process refers to one of the scheduler priority lists
corresponding to the process’ priority. Such a list is also called the run
queue to which the process belongs.

1.4 Process lifetime

A process can be in different states depending on its lifetime (runnable, sus-
pended, executing, waiting, terminated) as shown in Figure 1-1. We look at
such states now.

suspended

runnable

executing waiting

terminated

resume

signal*

wait*

terminate

* sent to a Semaphore

scheduled
 by VM

suspend

suspend

preempted by 
a higher priority

process          

Figure 1-1 Process states: A process (green thread) can be in one of the following

states: runnable, suspended, executing, waiting, terminated.

We define the states in which a process can be:

• executing - the process is currently executing.

• runnable - the process is scheduled. This process is in one of the prior-
ity lists of the scheduler.

• terminated - the process has run and finished its execution. It is not
managed anymore by the scheduler. It cannot be executed anymore.

• suspended - the process is not managed by the scheduler: This process
is not in one of the scheduler lists or in a semaphore list. The process
can become runnable by sending it the resumemessage.

5



Concurrent programming in Pharo

• waiting - the process is waiting on a semaphore waiting list. It is not
managed by the scheduler. The process can become runnable when the
semaphore releases it.

We will use systematically this vocabulary in the rest of the book.

1.5 Creating processes

Let us now write some code snippets.

Creating a process without scheduling it

We create a process by sending the message newProcess to a block defining
the computation that should be carried in such process. This process is not
immediately scheduled, it is suspended. Then later on, we can schedule the
process by sending it the message resume: the process will become runnable.

The following creates a process in a suspended state, it is not added to the list
of the scheduled processes of the process scheduler.

| pr |
pr := [ 1 to: 10 do: [ :i | i traceCr ] ] newProcess.
pr inspect

To be executed, this process should be scheduled and added to the list of sus-
pended processes managed by the process scheduler. This is simply done by
sending it the message resume.

In the inspector opened by the previous expression, you can execute self re-
sume and then the process will be scheduled. It means that it will be added to
the priority list corresponding to the process priority of the process scheduler
and that the process scheduler will eventually schedule it.

self resume

Note that by default the priority of a process created using the message new-
Process is the active priority: the priority of the active process.

Passing arguments to a process

You can also pass arguments to a process with the message newProcessWith:
anArray as follows:

| pr |
pr := [ :max |

1 to: max do: [ :i | i crTrace ] ] newProcessWith: #(20).
pr resume

6



1.5 Creating processes

The arguments are passed to the corresponding block parameters. It means
that in the snippet above, max will be bound to 20.

Suspending and terminating a process

A process can also be temporarily suspended (i.e., stopped from executing) us-
ing the message suspend. A suspended processed can be rescheduled using the
message resume that we saw previously. We can also terminate a process using
the message terminate. A terminated process cannot be scheduled anymore.
The process scheduler terminates the process once its execution is done.

| pr |
pr := [ :max |

1 to: max do: [ :i | i crTrace ] ] newProcessWith: #(20).
pr resume.
pr isTerminated
>>> true

Creating and scheduling in one go

We can also create and schedule a process using a helper method named: fork.
It is basically sending the newProcessmessage and a resumemessage to the
created process.

[ 1 to: 10 do: [ :i | i trace ] ] fork

This expression creates an instance of the class Process whose priority is the
one of the calling process (the active process). The created process is runnable.
It will be executed when the process scheduler schedules it as the current run-
ning process and gives it the flow of control. At this moment the block of this
process will be executed.

Here is the definition of the method fork.

BlockClosure >> fork
"Create and schedule a Process running the code in the receiver."

^ self newProcess resume

Creating a waiting process

As you see in Figure 1-1 a process can be in a waiting state. It means that the
process is blocked waiting for a change to happen (usually waiting for a semaphore
to be signaled). This happens when you need to synchronize concurrent pro-
cesses. The basic synchronization mechanism is a semaphore and we will cover
this deeply in subsequent chapters.

7



Concurrent programming in Pharo

1.6 First look at ProcessorScheduler

Pharo implements time sharing where each process (green thread) has access
to the physical processor during a given amount of time. This is the respon-
sibility of the ProcessorScheduler and its unique instance Processor to
schedule processes.

The scheduler maintains priority lists, also called run queues, of pending pro-
cesses as well as the currently active process (See Figure 1-2). To get the run-
ning process, you can execute: Processor activeProcess. Each time a pro-
cess is created and scheduled it is added at the end of the run queue corre-
sponding to its priority. The scheduler will take the first process and executes
it until a process of higher priority interrupts it or the process gives back con-
trol to the processor using the message yield.

Processor

<<uniqueInstance>>

quiescentProcessLists 
activeProcess

ProcessorScheduler

priority 80

priority i

P1P2P3

priority 10
pending process lists

P0

quiescentProcessLists

activeProcess

PzPkPp

Figure 1-2 The scheduler knows the currently active process as well as the lists of

runnable processes based on their priority.

1.7 Process priorities

At any time only one process is executing. First of all, the processes are being
run according to their priority. This priority can be given to a process with
the priority: message, or forkAt: message sent to a block. By default, the
priority of a newly created process is the one of the active process. There are
a couple of priorities predefined and can be accessed by sending specific mes-
sages to Processor.

For example, the following snippet is run at the same priority as background
user tasks.

8



1.7 Process priorities

[ 1 to: 10 do: [ :i | i trace ] ]
forkAt: Processor userBackgroundPriority

The scheduler has process priorities from 10 to 80. Only some of these are
named. The programmer is free to use any priority within that range that
they see fit. The following table lists all the predefined priorities together with
their numerical value and purpose.

Priority Name or selector

80 timingPriority
For processes that are dependent on real time.
For example, Delays (see later).

70 highIOPriority
The priority at which the most time critical input/output
processes should run. An example is the process handling input from a
network.

60 lowIOPriority
The priority at which most input/output processes should run.
Examples are the process handling input from the user (keyboard,
pointing device, etc.) and the process distributing input from a network.

50 userInterruptPriority
For user processes desiring immediate service.
Processes run at this level will preempt the ui process and should,
therefore, not consume the Processor forever.

40 userSchedulingPriority
For processes governing normal user interaction.
The priority at which the ui process runs.

30 userBackgroundPriority
For user background processes.

20 systemBackgroundPriority
For system background processes.
Examples are an optimizing compiler or status checker.

10 lowestPriority
The lowest possible priority.

Here is an example showing that how to use such named priorities.

[3 timesRepeat: [3 trace. ' ' trace ]] forkAt: Processor
userBackgroundPriority.

[3 timesRepeat: [2 trace. ' ' trace ]] forkAt: Processor
userBackgroundPriority + 1.

9



Concurrent programming in Pharo

1.8 ProcessScheduler rules

The scheduler knows the currently active process as well as the lists of pend-
ing processes based on their priority. It maintains an array of linked lists per
priority as shown in Figure 1-2. It uses the priority lists to manage processes
that are runnable in the first-in-first-out way.

There are simple rules that manage process scheduling. We will refine the
rules a bit later:

• Processes with higher priority preempt (interrupt) lower priority pro-
cesses if they have to be executed.

• Assuming an ideal world where processes could execute in one shot, pro-
cesses with the same priority are executed in the same order they were
added to the scheduled process list. (See below for a better explanation).

Here is an example showing that process execution is ordered based on prior-
ity.

[3 timesRepeat: [3 trace. ' ' trace ]] forkAt: 12.
[3 timesRepeat: [2 trace. ' ' trace ]] forkAt: 13.
[3 timesRepeat: [1 trace. ' ' trace ]] forkAt: 14.

The execution outputs:

1 1 1 2 2 2 3 3 3

It shows that the process of priority 14 is executed prior to the one of priority
13.

1.9 Let us trace better what is happening

Let us define a little trace that will show the current process executing code.
It will help to understand what is happening. Now when we execute again the
snippet above but slightly modified:

| trace |
trace := [ :message | ('@{1} {2}' format: { Processor activePriority.

message }) crTrace ].
[3 timesRepeat: [ trace value: 3 ]] forkAt: 12.
[3 timesRepeat: [ trace value: 2 ]] forkAt: 13.
[3 timesRepeat: [ trace value: 1 ]] forkAt: 14.

We get the following output, which displays the priority of the executing pro-
cess.

10



1.10 Yielding the computation

@14 1
@14 1
@14 1
@13 2
@13 2
@13 2
@12 3
@12 3
@12 3

1.10 Yielding the computation

Now we should see how a process relinquishes its execution and lets other pro-
cesses of the same priority perform their tasks. Let us start with a small exam-
ple based on the previous example.

| trace |
trace := [ :message | ('@{1} {2}' format: { Processor activePriority.

message }) crTrace ].
[3 timesRepeat: [ trace value: 3. Processor yield ]] forkAt: 12.
[3 timesRepeat: [ trace value: 2. Processor yield ]] forkAt: 13.
[3 timesRepeat: [ trace value: 1. Processor yield ]] forkAt: 14.

Here the result is the same.

@14 1
@14 1
@14 1
@13 2
@13 2
@13 2
@12 3
@12 3
@12 3

What you should see is that the message yield was sent, but the scheduler
rescheduled the process of the highest priority that did not finish its execu-
tion. This example shows that yielding a process will never allow a process of
lower priority to run.

Between processes of the same priority

Now we can study what is happening between processes of the same priority.
We create two processes of the same priority that perform a loop displaying
numbers.

11



Concurrent programming in Pharo

| p1 p2 |
p1 := [ 1 to: 10 do: [:i| i trace. ' ' trace ] ] fork.
p2 := [ 11 to: 20 do: [:i| i trace. ' ' trace ] ] fork.

We obtain the following output:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

This is normal since the processes have the same priority. They are scheduled
and executed one after the other.p1 executes and displays its output. Then it
terminates and p2 gets the control and executes. It displays its output and gets
terminated.

During the execution of one of the processes, nothing forces it to relinquish
computation. Therefore it executes until it finishes. It means that if a process
has an endless loop it will not release the execution except if it is preempted
by a process of higher priority (see Chapter scheduler’s principle).

Using yield

We modify the example to introduce an explicit return of control to the pro-
cess scheduler.

| p1 p2 |
p1 := [ 1 to: 10 do: [:i| i trace. ' ' trace. Processor yield ] ] fork.
p2 := [ 11 to: 20 do: [:i| i trace. ' ' trace. Processor yield ] ]

fork.

We obtain the following trace showing that each process gave back the control
to the scheduler after each loop step.

1 11 2 12 3 13 4 14 5 15 6 16 7 17 8 18 9 19 10 20

We will come back to yield in future chapters.

Summary

Let us revisit what we learned in this chapter.

• Processes with the same priority are executed in the same order they
were added to the scheduled process list. In fact, processes within the
same priority should collaborate to share the execution amongst them-
selves. In addition, we should pay attention since a process can be pre-
empted by a process of higher priority, the semantics of the preemption
(i.e., how the preempted process is rescheduled) has an impact on the
process execution order. We will discuss this in-depth in the following
chapters.

12



1.11 Important API

• Processes should explicitly give back the computation to give a chance
to other pending processes of the same priority to execute. The same re-
mark as above works here too.% Imagine a long process not yielding its
execution, this process may be interrupted by a process of higher prior-
ity, and depending on the semantics of the preemption this process may
not be the one that will continue to be executed.

• A process should use Processor yield to give an opportunity to run
to the other processes with the same priority. In this case, the yielding
process is moved to the end of the list to give a chance to execute all the
pending processes (see below Scheduler’s principles).

1.11 Important API

The process creation API is composed of messages sent to blocks.

• [ ] newProcess creates a suspended (unscheduled) process whose code
is the receiver bloc. The priority is one of the active process.

• [ ] newProcessWith: anArray same as above but pass arguments (de-
fined by an array) to the block.

• priority: defines the priority of a process.

• [ ] fork creates a newly scheduled process having the same priority as
the process that spawns it. It receives a resumemessage so it is added to
the queue corresponding to its priority.

• [ ] forkAt: same as above but with the specification of the priority.

• ProcessorScheduler yield releases the execution from the current
process and give a chance to processes of the same priority to execute.

1.12 Conclusion

We presented the notion of process (green thread) and process scheduler. We
presented briefly the concurrency model of Pharo: preemptive and collabora-
tive. A process of higher priority can stop the execution of processes of lower
ones. Processes at the same priority should explicitly return control using the
yieldmessage.

In the next chapter, we explain semaphores since we will explain how the
scheduler uses delays to perform its scheduling.

13





CHA P T E R2
Semaphores

Often we encounter situations where we need to synchronize processes. For
example, imagine that you only have one pen and that there are several writ-
ers wanting to use it. A writer will wait for the pen and once the pen is free. He
will be able to access and use it concurrently. Now since multiple people can
wait for the pen, the waiters are ordered on a waiting list associated with the
pen. When the current writer does not need the pen anymore, he will say it
and the next writer in the queue will be able to use it. Writers needing to use
the pen just register to the pen: they are added at the end of the waiting list.
In fact, this pen is a semaphore.

Semaphores are the basic bricks for concurrent programming and even the
scheduler itself uses them. A great book proposes different synchronization
challenges that are solved with Semaphore: The Little Book of Semaphores. It is
clearly a nice further reading.

2.1 Understanding semaphoress

A semaphore is an object used to synchronize multiple processes. A semaphore
is often used to make sure that a resource is only accessed by a single process
at the time. It is also said that the semaphore protects the resource.

A process that wants to access a resource will declare it to the semaphore
protecting the resource by sending to the semaphore the message wait. The
semaphore will add this process to its waiting list. A semaphore keeps a list
of waiting processes that want to access the resource it protects. When the
process currently using the resource does not use it anymore, it signals it to

15



Semaphores

the semaphore sending the message signal. The semaphore resumes the first
waiting process which is added to the suspended list of the scheduler.

Here are the steps illustrating a typical scenario:

1. The semaphore protects a resource: P0 is using the resource. Processes
P1, P2, P3 are waiting for the resource (Fig. 2-1). They are queued in the
semaphore waiting list.

2. The process P4 wants to access the resource: it sends wait to the semaphore
(Fig. 2-2).

3. P4 is added to the waiting list (Fig. 2-3) - it passes from the executing to
the waiting state.

4. P0 has finished using the resource: it sends the message signal to the
semaphore (Fig. 2-4).

5. The semaphore resumes the first waiting process of its pending queue,
here P1 (Fig. 2-5).

6. The resumed process, P1, becomes runnable and will be scheduled by the
scheduler.

semaphore waiting list

P1P2P3

P0

P0 is using the resource

Figure 2-1 The semaphore protects a resource: P0 is using the resource, P1...2 are

waiting for the resource.

semaphore waiting list

P1P2P3

P0

P0 is using the resource

P4 wait

Figure 2-2 The process P4 wants to access the resource: it sends the message

wait to the semaphore.

16



2.1 Understanding semaphoress

semaphore waiting list

P1P2P   3

P0

P0 is using the resourceP4

Figure 2-3 P4 is added to the waiting list.

semaphore waiting list

P1P2P3

P0

P0 does not
 use the resource

signal

P4 resume

Figure 2-4 P0 has finished using the resource: it sends the message signal it to

the semaphore. The semaphore resumes the first pending process.

Processor

priority x
pending process lists

PzPkPpP1

Figure 2-5 The resumed process, P1, is added to the scheduled list of process of

the ProcessScheduler: it becomes runnable.

Details

A semaphore will only release as many processes from waitmessages as it has
received signalmessages. When a semaphore receives a waitmessage for
which no corresponding signal has been sent, the process sending the wait is
suspended. Each semaphore maintains a linked list of suspended processes. It
releases them on a first–in first–out basis.

Unlike the ProcessorScheduler, a semaphore does not pay attention to the
priority of a process, it dequeues processes in the order in which they waited
on the semaphore. The dequeued process is resumed and as such it is added to
the waiting list of the scheduler.

17



Semaphores

When a process sends a waitmessage to the semaphore, if the waiting list is
empty then the process is directly scheduled.

2.2 An example

Before continuing, let us play with semaphores. Open a transcript and inspect
the following piece of code: It schedules two processes and makes them both
wait on a semaphore.

| semaphore |
semaphore := Semaphore new.

[ "Do a first job ..."
'Job1 started' crTrace.
semaphore wait.
'Job1 finished' crTrace
] fork.

[ "Do a second job ..."
'Job2 started' crTrace.
semaphore wait.
'Job2 finished' crTrace
] fork.

semaphore inspect

You should see in the transcript the following:

'Job1 started'
'Job2 started'

What you see is that the two processes stopped. They did not finish their job.
When a semaphore receives a waitmessage, it suspends the process sending
the message and adds the process to its pending list.

Now in the inspector on the semaphore execute self signal. This schedules
one of the waiting processes and one of the jobs will finish its task. If we do not
send a new signalmessage to the semaphore, the second waiting process will
never be scheduled.

2.3 wait and signal interplay

To understand the interplay between wait and signal we propose the following
example. Can you guess what is the displayed information?

18



2.3 wait and signal interplay

| semaphore p1 p2 p3 |
semaphore := Semaphore new.
p1 := [ ' Pharo ' trace ] forkAt: 30.

p2 := [' is ' trace.
semaphore wait.
' super ' trace.
semaphore signal.
' p2 finished ' trace ] forkAt: 35.

p3 := [' really ' trace.
semaphore signal.
' cool ' trace.
semaphore wait.
' and powerful! ' trace ] forkAt: 33

You should obtain is really super p2 finished cool and powerful!
Pharo

Let us describe what’s happened:

• The three processes are created and scheduled.

• The process with the highest priority, p2, is executed. It prints is and
waits on the semaphore.

• p2 is not runnable anymore.

• The next highest priority process, p3, is scheduled, it prints really and
signals the semaphore.

• The semaphore is signaled so it schedules its waiting process p2. Since
p2 has a higher priority than p3, it is executed.

• p2 prints super, and it signals the semaphore.

• There is no process waiting on the semaphore and in addition, p2 is the
highest priority process so it continues to execute, prints p2 finished
and terminates.

• p3 is then resumed and it prints cool, then it sends the message wait
to the semaphore but since there was no waiting process, p3 continues,
prints and powerful! and terminates.

• Finally p1 is executed, prints Pharo, and terminates.

We really suggest playing with different priorities and predicting the behavior.
Note that this scenario pays attention that the processes are at a lower priority
that the UI process that is refreshing the display. In addition, as we will see
later, we do not have processes with the same priority since the preemption
may impact the order of execution.

19



Semaphores

2.4 A key question about signal

Let us imagine that we have the following two processes of different priorities
and one semaphore. We would like to show the influence of signal on the
scheduling of such processes.

| trace semaphore p1 p2 |
semaphore := Semaphore new.
trace := [ :message | ('@{1} {2}' format: { Processor activePriority.

message }) crTrace ].
p1 := [
trace value: 'Process 1a waits for signal on semaphore'.
semaphore wait.
trace value: 'Process 1b received signal and terminates' ] forkAt:

20.
p2 := [
trace value: 'Process 2a up to signaling semaphore'.
semaphore signal.
trace value: 'Process 2b continues and terminates' ] forkAt: 30.

Here the higher priority process (p2) produces a trace, signals the semaphore,
and finishes. Then the lower priority process produces a trace, waits, and since
the semaphore has been signaled, it executes and terminates.

@30 Process 2a up to signaling semaphore
@30 Process 2b continues and terminates
@20 Process 1a waits for signal on semaphore
@20 Process 1b received signal and terminates

Now let us swap the priority.

| trace semaphore p1 p2 |
semaphore := Semaphore new.
trace := [ :message | ('@{1} {2}' format: { Processor activePriority.

message }) crTrace ].
p1 := [
trace value: 'Process 1a waits for signal on semaphore'.
semaphore wait.
trace value: 'Process 1b received signal and terminates' ] forkAt:

30.
p2 := [
trace value: 'Process 2a up to signaling semaphore'.
semaphore signal.
trace value: 'Process 2b continues and terminates' ] forkAt: 20.

Here the higher priority process (p1) produces a trace and waits on the semaphore.p2
is then executed: it produces a trace, then signals the semaphore. This signal
message reschedules p1 and since it is of higher priority, it is executed first

20



2.5 Prearmed semaphore

preempting (p2) and it terminates. Then p2 terminates.

@30 Process 1a waits for signal on semaphore
@20 Process 2a up to signaling semaphore
@30 Process 1b received signal and terminates
@20 Process 2b continues and terminates

There is a subtle point that the second example does not illustrate but that is
worth that we discuss: while the lowest priority process signaled the semaphore
it gets preempted by the higher priority ones. This raises the question of what
is the process to be rescheduled after preemption. The example does not show
it because we got only one process of priority 20. We will go over this point in
the next Chapter.

2.5 Prearmed semaphore

A process wanting a resource protected by a semaphore does not have to be
systematically put on the waiting list. There are situations where the system
would be blocked forever because no process can signal the semaphore: no
pending process would be resumed.

To handle such a case, a semaphore can be prearmed: it can be signaled (re-
ceives signalmessages) before receiving waitmessages. In such a case, a
process requesting to access the resource will just proceed and be scheduled
without first being queued to the waiting list.

As an implementation note, a semaphore holds a counter of the signals that
it received but did not lead to a process execution. It will not block a pro-
cess sending a waitmessage if it has got signalmessages that did not lead
to scheduling a waiting process.

Example

Let us modify slightly the previous example. We send a signalmessage to the
semaphore prior to creating the processes. The semaphore is then prearmed.

| trace semaphore p1 p2 |
semaphore := Semaphore new.
semaphore signal.
trace := [ :message | ('@{1} {2}' format: { Processor activePriority.

message }) crTrace ].
p1 := [

trace value: 'Process 1a waits for signal on semaphore'.
semaphore wait.
trace value: 'Process 1b received signal and terminates' ] forkAt:
30.

p2 := [

21



Semaphores

trace value: 'Process 2a up to signaling semaphore'.
semaphore signal.
trace value: 'Process 2b continues and terminates' ] forkAt: 20.

The previous example produces the following trace:

@30 Process 1a waits for signal on semaphore
@30 Process 1b received signal and terminates
@20 Process 2a up to signaling semaphore
@20 Process 2b continues and terminates

This example illustrates that a process does not have to systematically wait on
a semaphore.

This is important to make sure that on certain concurrency synchronization,
all the processes are waiting, while the first one could do its task and send a
signal to schedule others.

We can ask a semaphore whether if it is prearmed using the message isSig-
naled.
sema := Semaphore new.
sema signal.
sema isSignaled
>>> true

2.6 Semaphore forMutualExclusion

Sometimes we need to ensure that a section of code is executed by only a sin-
gle process at a time i.e., no other process will enter it. We want to make sure
that only one process at a time executes a section of code. This code section is
called a critical section.

The class Semaphore offers the message critical: aBlock to define a critical
code section for the block passed as an argument. It evaluates aBlock only if
the receiver is not currently in the process of running the critical: message.
If the receiver is currently executed, aBlock will be executed after the other
critical: message is finished.

To use a critical section, first the semaphore should be prearmed using the
class creation message forMutualExclusion. It makes sure that the first exe-
cution of the critical section will pass without getting blocked (i.e., put on the
semaphore waiting list and waiting for a signalmessage).

Here is an example of critical section use: The memory logger makes sure that
when several processes work concurrently, the execution of the different pro-
cesses does not mess up the recording of the item addition. Similarly, the log-
ger makes sure that when only one process can reset the recordings.

22



2.7 Deadlocking semaphores

MemoryLogger >> nextPut: aSignal
mutex critical: [
recordings add: aSignal ].

self announcer announce: aSignal

MemoryLogger >> reset
mutex critical: [
recordings := OrderedCollection new ]

Now the previous code uses a mutex and not a semaphore.

2.7 Deadlocking semaphores

Pay attention that a semaphore critical section cannot be nested. A semaphore
gets blocked (waiting) when being called from a critical section it protects.

| deadlockSem |
deadlockSem := Semaphore new.
deadlockSem critical: [ deadlockSem critical: [ 'Nested passes!'

crTrace] ]

Mutexes (also named RecursionLock) solve this problem. This is why a Mutex
and a Semaphore are not interchangeable. So let’s see what is a Mutex.

2.8 Mutex

A Mutex (MUTual EXclusion) is a semaphore with more information: the cur-
rent process running held in the owner instance variable. As such a Mutex is
an object that protects a shared resource. A Mutex can be used when two or
more processes need to access a shared resource concurrently. A Mutex grants
ownership to a single process and will suspend any other process trying to ac-
quire the Mutex while in use. Waiting processes are granted access to the mu-
tex in the order the access was requested. An instance of the class Mutex will
make sure that only one thread of control can be executed simultaneously on a
given portion of code using the message critical:.

Nested critical sections

A Mutex is also more robust to nested critical calls than a semaphore. For ex-
ample, the following snippet will not deadlock, while a semaphore will. This is
why a mutex is sometimes called a recursionLock.

| mutex |
mutex := Mutex new.
mutex critical: [ mutex critical: [ 'Nested passes!' crTrace] ]

23



Semaphores

The same code gets blocked on a deadlock with a semaphore. A Mutex and a
semaphore are not interchangeable from this perspective.

Mutex implementation

Object subclass: #Mutex
instanceVariableNames: 'semaphore owner'
classVariableNames: ''
package: 'Kernel-Processes'

The initializemethod makes sure that the semaphore is prearmed for mu-
tual exclusion. Remember it means that the first waiting process will directly
proceed and not get added to the waiting list.

Mutex >> initialize
super initialize.
semaphore := Semaphore forMutualExclusion

The key method is the method critical:. It checks if the owner of the mutex
is the current thread. In such case, it executes the protected block, and re-
turns. Else it means that the process waits on the critical section and when the
semaphore resumes it it sets the process as the owner of the section and makes
sure that the owner is reset once the critical section is passed through.

Mutex >> critical: aBlock
"Evaluate aBlock protected by the receiver."

| activeProcess |
activeProcess := Processor activeProcess.
activeProcess == owner ifTrue: [ ^aBlock value ].
^ semaphore critical: [

owner := activeProcess.
aBlock ensure: [ owner := nil ]]

2.9 Implementation: the language perspective

We propose to have a look at the implementation of semaphores. In the first
reading, you can skip the following sections. We take two perspectives: how
the Semaphore class is defined within Pharo and later how the virtual machine
defines the primitives mandatory for the semaphore implementation. Let us
start with the language level definition.

Pharo’s implementation.

A semaphore keeps the number of excess signals: the number of signals that
did not lead to scheduling a waiting process. The message wait and signal

24



2.9 Implementation: the language perspective

maintain this information: as the implementation below shows, a signal will
increase the excess number, and a wait will decrease it.

If the number of waiting processes on a semaphore is smaller than the num-
ber allowed to wait, sending a waitmessage is not blocking and the process
continues its execution. On the contrary, the process is stored at the end of the
pending list and we will be scheduled when the semaphore will have received
enough signals.

The fact that the semaphore waiting list is a linked list has an impact on the
semaphore semantics. It makes sure that waiting processes are managed in a
first in first out manner.

While conceptually a semaphore has a list and a counter. At the Pharo imple-
mentation level, the class Semaphore inherits from the class LinkedList, so
the waiting process list is ’directly’ the semaphore itself. Since Process inher-
its from Link (elements that can be added to a linked list), they can be directly
added to the semaphore without being wrapped by an element object. This is a
simplification for the virtual machine.

Here is the implementation of signal and wait in Pharo.

Signal implementation.

The signalmethod shows that if there is no waiting process, the excess signal
is increased, else when there are waiting processes, the first one is scheduled
(i.e., the process scheduler resumes the process).

Semaphore >> signal
"Primitive. Send a signal through the receiver. If one or more

processes
have been suspended trying to receive a signal, allow the first one

to
proceed. If no process is waiting, remember the excess signal."

<primitive: 85>
self primitiveFailed

"self isEmpty
ifTrue: [excessSignals := excessSignals+1]
ifFalse: [Processor resume: self removeFirstLink]"

Wait implementation.

The waitmethod shows that when a semaphore has some signals on excess,
waiting is not blocking, it just decreases the number of signals on excess. On

25



Semaphores

the contrary, when there is no signals on excess, then the process is suspended
and added to the semaphore waiting list.

Semaphore >> wait
"Primitive. The active Process must receive a signal through the

receiver
before proceeding. If no signal has been sent, the active Process

will be
suspended until one is sent."

<primitive: 86>
self primitiveFailed

"excessSignals > 0
ifTrue: [excessSignals := excessSignals - 1]
ifFalse: [self addLastLink: Processor activeProcess suspend]"

2.10 Implementation: the VM perspective

Here we look at the virtual machine definition of the primitives. We show for
quick reference the StackInterpreter code since it is a little simpler than the
JIT version.

As we saw previously two primitives are defined: one for wait and one for
signal.

StackInterpreter class >> initializePrimitiveTable
...
"Control Primitives (80-89)"
(85 primitiveSignal)
(86 primitiveWait)
...

We see that the wait primitive checks the number of signals of the semaphore.
When such a number is positive, it is decreased and the process is not sus-
pended. On the contrary, it grabs the active process, adds it to the semaphore
list, and gives back the control to the highest process.

InterpreterPrimitives >> primitiveWait
| sema excessSignals activeProc |
sema := self stackTop. "rcvr"
excessSignals := self fetchInteger: ExcessSignalsIndex ofObject:

sema.
excessSignals > 0

ifTrue:
[self storeInteger: ExcessSignalsIndex ofObject: sema withValue:

excessSignals - 1]

26



2.11 Conclusion

ifFalse:
[activeProc := self activeProcess.
self addLastLink: activeProc toList: sema.
self transferTo: self wakeHighestPriority]

InterpreterPrimitives >> primitiveSignal [
"Synchronously signal the semaphore.
This may change the active process as a result."

self synchronousSignal: self stackTop "rcvr"

Here if the semaphore list is empty, the signal primitive is incrementing the
signal count of the semaphore. Else, the first pending process is resumed.

StackInterpreter >> synchronousSignal: aSemaphore
"Signal the given semaphore from within the interpreter.
Answer if the current process was preempted."

| excessSignals |
(self isEmptyList: aSemaphore) ifTrue:
["no process is waiting on this semaphore"
excessSignals := self fetchInteger: ExcessSignalsIndex ofObject:
aSemaphore.
self storeInteger: ExcessSignalsIndex

ofObject: aSemaphore
withValue: excessSignals + 1.

^false].
objectMemory ensureSemaphoreUnforwardedThroughContext: aSemaphore.
^ self
resume: (self removeFirstLinkOfList: aSemaphore)
preemptedYieldingIf: preemptionYields

We will explain the preemptionYields used in the last line in a future chap-
ter.

2.11 Conclusion

Semaphore is the lowest-level synchronization mechanism. Pharo offers other
abstractions to synchronize such as Mutexes (also named recursion locks),
Monitors, shared queues, and atomic queues.

27





CHA P T E R3
Scheduler’s principles

In this chapter, we revisit the way to scheduler works and present some im-
plementation aspects. In particular, we show how yield is implemented. The
Pharo scheduler is a cooperative, preemptive across priorities, non-preemptive
within priorities scheduler. But let us start with the class Process.

3.1 Revisiting the class Process

A process has the following instance variables:

• priority: holds an integer to represent the priority level of the process.

• suspendedContext: holds the execution context (stack reification) at the
moment of the suspension of the process.

• myList: the process scheduler list of processes to which the suspended
process belongs to. This list is also called it run queue and it is only for
suspended processes.

You can do the following tests to see the state of a process.

The first example opens an inspector in which you can see the state of the exe-
cuted process.

| pr |
pr := [ 1 to: 1000000 do: [ :i | i traceCr ] ] forkAt: 10.
pr inspect

29



Scheduler’s principles

It shows that while the process is executing the expression self suspend-
ingList is not nil, while that when the process terminates, its suspending list
is nil.

The second example shows that the process suspendedContext is nil when a
process is executing.

Processor activeProcess suspendedContext isNil.
>>> true

Now a suspended process suspended context should not be nil, since it should
have a stack of the suspended program.

([ 1 + 2 ] fork suspend ; suspendedContext) isNotNil

Implementation details.

The class Process is a subclass of the class Link. A link is an element of a
linked list (class LinkedList). This design is to make sure that processes can
be elements in a linked list without wrapping them in a Link instance. Note
that this process linked list is tailored for the process scheduler logic. This pro-
cess linked list is for internal usage. If you need a linked link, better uses an-
other one if you need one.

States

We saw previously the different states a process can be in. We also saw that
semaphores suspend and resume suspended processes. We revisit the different
states of a process by looking at its interaction with the process scheduler and
semaphores as shown in 3-1 :

• executing - the process is currently executing.

• runnable - the process is scheduled. This process is in one of the prior-
ity lists of the scheduler. It may be turned into the executing state by the
scheduler.

• terminated - the process ran and finished its execution. It is not man-
aged anymore by the scheduler. It cannot be executed anymore.

• suspended - the process is not managed by the scheduler: This pro-
cess is not in one of the scheduler lists or in a semaphore list. The pro-
cess can become runnable sending it the resumemessage. This state is
reached when the process received the message suspend.

• waiting - the process is waiting on a semaphore waiting list. It is not
managed by the scheduler. The process can become runnable when the
semaphore releases it.

30



3.2 Looking at some core process primitives

P4

Processor’s priority list

PrPePk

P0

an active process

semaphore waiting list

P1P2P3

wait

signal

waiting

executing

runnable

suspended

P7

resume

suspend

terminated

terminate

Figure 3-1 Revisiting process (green thread) lifecycle and states.

3.2 Looking at some core process primitives

It is worth looking at the way Process key methods are implemented.

The method suspend is a primitive and implemented at the VM level. Since
the process list (myList) refers to one of the scheduler priority lists in which
it is, we see that the message suspend effectively remove the process from the
scheduler list.

Process >> suspend
"Stop the process that the receiver represents in such a way
that it can be restarted at a later time (by sending the receiver the
message resume). If the receiver represents the activeProcess,

suspend it.
Otherwise remove the receiver from the list of waiting processes.
The return value of this method is the list the receiver was

previously on (if any)."

<primitive: 88>

31



Scheduler’s principles

| oldList |
myList ifNil: [ ^ nil ].
oldList := myList.
myList := nil.
oldList remove: self ifAbsent: [ ].
^ oldList

The resumemethod is defined as follows:

Process >> resume
"Allow the process that the receiver represents to continue. Put
the receiver in line to become the activeProcess. Check for a nil
suspendedContext, which indicates a previously terminated Process

that
would cause a vm crash if the resume attempt were permitted"

suspendedContext ifNil: [ ^ self primitiveFailed ].
^ self primitiveResume

Process >> primitiveResume
"Allow the process that the receiver represents to continue. Put
the receiver in line to become the activeProcess. Fail if the

receiver is
already waiting in a queue (in a Semaphore or ProcessScheduler)."

<primitive: 87>
self primitiveFailed

Looking at the virtual machine definition shows that the resumed process does
not preempt processes having the same priority and that would be executing.

InterpreterPrimitives >> primitiveResume
"Put this process on the scheduler's lists thus allowing it to

proceed next time there is
a chance for processes of its priority level. It must go to the
back of its run queue so

as not to preempt any already running processes at this level. If
the process's priority

is higher than the current process, preempt the current process."
| proc |
proc := self stackTop. "rcvr"
(objectMemory isContext: (objectMemory fetchPointer:

SuspendedContextIndex ofObject: proc)) ifFalse:
[^self primitiveFail].

self resume: proc preemptedYieldingIf: preemptionYields

Now we can have a look at the implementation of newProcess. The method
newProcess creates a process by reifying a new block as a stack representa-
tion. The responsibility of this new block is to execute the receiver and termi-

32



3.3 Priorities

nates the process.

BlockClosure >> newProcess
"Answer a Process running the code in the receiver. The process is

not
scheduled."

<primitive: 19>
^ Process
forContext:

[ self value.
Processor terminateActive ] asContext

priority: Processor activePriority

3.3 Priorities

A runnable process has a priority. It is always executed before a process of an
inferior priority. Remember the examples of previous chapters:

| trace |
trace := [ :message | ('@{1} {2}' format: { Processor activePriority.

message }) crTrace ].
[3 timesRepeat: [ trace value: 3. Processor yield ]] forkAt: 12.
[3 timesRepeat: [ trace value: 2. Processor yield ]] forkAt: 13.
[3 timesRepeat: [ trace value: 1. Processor yield ]] forkAt: 14.

@14 1
@14 1
@14 1
@13 2
@13 2
@13 2
@12 3
@12 3
@12 3

This code snippet shows that even if processes relinquish execution (via a mes-
sage yield), the processes of lower priority are not scheduled before the pro-
cess of higher priority got terminated. In the case of a higher priority level
process preempting a process of lower priority, when the preempting process
releases the control, the question is then what is the next process to resume:
the interrupted one or another one? Currently in Pharo, the interrupted pro-
cess is put at the end of the waiting queue, while an alternative is to resume
the interrupted process to give it a chance to continue its task.

33



Scheduler’s principles

3.4 signal and preemption

In the previous chapter, we presented this example:

| trace semaphore p1 p2 |
semaphore := Semaphore new.
trace := [ :message | ('@{1} {2}' format: { Processor activePriority.

message }) crTrace ].
p1 := [

trace value: 'Process 1a waits for signal on semaphore'.
semaphore wait.
trace value: 'Process 1b received signal and terminates' ] forkAt:
30.

p2 := [
trace value: 'Process 2a up to signaling semaphore'.
semaphore signal.
trace value: 'Process 2b continues and terminates' ] forkAt: 20.

Here the higher priority process (p1) produces the trace and waits on the
semaphore.p2 is then executed: it produces a trace, then signals the semaphore.
This signal reschedules p1 and since it is of higher priority, it preempts (p2)
and it terminates. Then p2 terminates.

@30 Process 1a waits for signal on semaphore
@20 Process 2a up to signaling semaphore
@30 Process 1b received signal and terminates
@20 Process 2b continues and terminates

Now we add a second process of lower priority to understand what may hap-
pen on preemption.

| trace semaphore p1 p2 p3 |
semaphore := Semaphore new.
trace := [ :message | ('@{1} {2}' format: { Processor activePriority.

message }) crTrace ].
p1 := [

trace value: 'Process 1a waits for signal on semaphore'.
semaphore wait.
trace value: 'Process 1b received signal and terminates' ] forkAt:
30.

p2 := [
trace value: 'Process 2a up to signalling semaphore'.
semaphore signal.
trace value: 'Process 2b continues and terminates' ] forkAt: 20.
p3 := [
trace value: 'Process 3a works and terminates'. ] forkAt: 20.

Here is the produced trace. What is interesting to see is that p2 is preempted
by p1 as soon as it is signaling the semaphore. Then p1 terminates and the

34



3.5 Understanding yield

scheduler does not schedule p2 but p3.

@30 Process 1a waits for signal on semaphore
@20 Process 2a up to signalling semaphore
@30 Process 1b received signal and terminates
@20 Process 3a works and terminates
@20 Process 2b continues and terminates

This behavior can be surprising. In fact the Pharo virtual machine offers two
possibilities as we will show later. In one, when a preempting process ter-
minates, the preempted process is managed as if an implicit yield happened,
moving the preempted process to the end of its run queue on preemption re-
turn and scheduling the following pending process. In another one, when a
preempting process terminates, the preempted process is the one that get
scheduled (it does not move at the end of the pending list). By default, Pharo
uses the first semantics.

3.5 Understanding yield

As we mentioned in the first chapter, Pharo’s concurrency model is preemp-
tive between processes of different priorities and collaborative among pro-
cesses of the same priority. We detail how the collaboration occurs: a process
has to explicitly give back its execution. As we show in the previous chapter, it
does it by sending the message yield to the scheduler.

Now let us study the implementation of the method yield itself. It is really el-
egant. It creates a process whose execution will signal a semaphore and the
current process will wait on such a semaphore until the created process is
scheduled by the processor. Since

ProcessScheduler >> yield
"Give other Processes at the current priority a chance to run."

| semaphore |
semaphore := Semaphore new.
[ semaphore signal ] fork.
semaphore wait

Note that this implementation implies that

The yieldmethod does the following:

1. The fork creates a new process. It adds it to the end of the active pro-
cess’s run queue (because fork creates a process whose priority is the
same as the active process).

2. The message wait in semaphore wait removes the active process from
its run queue and adds it to the semaphore list of waiting processes,

35



Scheduler’s principles

so the active process is now not runnable anymore but waiting on the
semaphore.

3. This allows the next process in the run queue to run, and eventually

4. allows the newly forked process to run, and

5. the signal in semaphore signal removes the process from the semaphore
and adds it to the back of the run queue, so

6. all processes at the same priority level as the process that sent the mes-
sage yield have run.

3.6 yield illustrated

yield only facilitates other processes having the same priority getting a chance
to run. It doesn’t put the current process to sleep, it just moves the process
to the back of its priority run queue. It gets to run again before any lower-
priority process gets a chance to run. Yielding will never allow a lower-priority
process to run.

Figure 3-2 illustrates the execution of the two following processes yielding
their computation.

P1 := [1 to: 10 do: [:i| i trace. ' ' trace. Processor yield ]] fork.
P2 := [11 to: 20 do: [:i| i trace. ' ' trace. Processor yield ]] fork.

Here is the output

1 11 2 12 3 13 4 14 5 15 6 16 7 17 8 18 9 19 10 20

Here are the steps:

1. Processes P1 and P2 are scheduled and in the list (run queue) of the pro-
cessor.

2. P1 becomes first active, it writes 1 and sends the message yield.

3. The execution of yield in P1 creates a Semaphore S1, a new process Py1
is added to the processor list after P2. P1 is added to S1’s waiting list.

4. P2 is active, it writes 11 and sends the message yield.

5. The execution of yield in P2 creates a Semaphore S2, a new process Py2
is added to the processor list after Py1. P2 is added to S2’s waiting list.

6. Py1 is active. S1 is signalled. Py1 finishes and is terminated.

7. P1 is scheduled. It moves from semaphore pending list to processor list
after Py2.

8. Py2 is active. S2 is signalled. Py2 finishes and is terminated.

36



3.7 Considering UI processes

processor waiting list

P1P2

P2

processor waiting list

P1
write: 1
yield

yiel
d

P2

processor waiting list

P1
s1 wait

Py1

S1 waiting list

P1
P2

processor waiting list

write: 11

Py1

processor waiting list

Py1Py2

S1 waiting list

P1

S2 waiting list

P2

Py1
S1 signal

processor waiting list

Py2

processor waiting list

Py2P1

S1 waiting list S2 waiting list

P2

Py2
S2 signal

processor waiting list

P1

yield

P2
s2 wait

Figure 3-2 Sequences of actions caused by two processes yielding the control to

the process scheduler.

3.7 Considering UI processes

We saw that the message signal does not transfer execution unless the wait-
ing process that received the signal has a higher priority. It just makes the
waiting process runnable, and the highest priority runnable process is the one
that is run. This respects the preemption semantics between processes of dif-
ferent priorities.

The following code snippet returns false since the forked process got the pri-
ority than the current process and the current process continued its execution
until the end. Therefore the yielded did not get a chance to be modified.

37



Scheduler’s principles

| yielded |
yielded := false.
[ yielded := true ] fork.
yielded
>>> false

Now let us imagine that would return true.

| yielded |
yielded := false.
[ yielded := true ] fork.
Processor yield.
yielded
>>> true

This expression returns true because fork creates a process with the same
priority and the Processor yield expression allows the forked process to
execute.

Now let us change the priority of the forked process to be lower than the ac-
tive one (here the active one is the UI process). The current process yields the
computation but since the forked process is of lower priority, the current pro-
cess will be executed before the forked one.

| yielded |
yielded := false.
p := [ yielded := true ] forkAt: Processor activeProcess priority - 1.
Processor yield.
yielded
>>> false

The following illustrates this point using the UI process. Indeed when you exe-
cute interactively a code snippet, the execution happens in the UI process (also
called UI thread) with a priority of 40.

| trace semaphore p1 p2 |
semaphore := Semaphore new.
trace := [ :message | ('@{1} {2}' format: { Processor activePriority.

message }) traceCr ].
p1 := [
trace value: 'Process 1a waits for signal on semaphore'.
semaphore wait.
trace value: 'Process 1b received signal and terminates' ] forkAt:

30.
p2 := [
trace value: 'Process 2a signals semaphore'.
semaphore signal.
trace value: 'Process 2b continues and terminates' ] forkAt: 20.

trace value: 'Original process pre-yield'.
Processor yield.

38



3.7 Considering UI processes

trace value: 'Original process post-yield'.

The following traces shows that Processor yield does not change the execu-
tion of higher-priority processes. Here the UI thread is executed prior to the
other and yielding does not execute processes of lower priorities.

@40 Original process pre-yield
@40 Original process post-yield
@30 Process 1a waits for signal on semaphore
@20 Process 2a signals semaphore
@30 Process 1b received signal and terminates
@20 Process 2b continues and terminates

Now if we make the UI thread wait for small enough time (but long enough
that the other processes get executed), then the other processes are run since
the UI process is not runnable but waiting.

| trace semaphore p1 p2 |
semaphore := Semaphore new.
trace := [ :message | ('@{1} {2}' format: { Processor activePriority.

message }) traceCr ].
p1 := [

trace value: 'Process 1a waits for signal on semaphore'.
semaphore wait.
trace value: 'Process 1b received signal' ] forkAt: 30.

p2 := [
trace value: 'Process 2a signals semaphore'.
semaphore signal.
trace value: 'Process 2b continues' ] forkAt: 20.

trace value: 'Original process pre-delay'.
1 milliSecond wait.
trace value: 'Original process post-delay'.

@40 Original process pre-delay
@30 Process 1a waits for signal on semaphore
@20 Process 2a signals semaphore
@30 Process 1b received signal and terminates
@20 Process 2b continues and terminates
@40 Original process post-delay

Yielding will never allow a lower-priority process to run. For a lower-priority
process to run, the current process needs to suspend itself (with the way to get
woken up later) rather than yield.

39



Scheduler’s principles

3.8 About the primitive in yield method

If you look at the exact definition of the yieldmessage in Pharo, you can see
that it contains an annotation mentioning that this is primitive. The primitive
is an optimization.

ProcessScheduler >> yield
| semaphore |
<primitive: 167>
semaphore := Semaphore new.
[semaphore signal] fork.
semaphore wait.

When this method is executed, either the primitive puts the calling process to
the back of its run queue, or (if the primitive is not implemented), it performs
what we explained earlier and that is illustrated by Figure 3-2.

Note that all the primitive does is circumvent having to create a semaphore, to
create, to schedule a process, and to signal and to wait to move a process to the
back of its run queue. This is worthwhile because most of the time a process’s
run queue is empty, it is the only runnable process at that priority.

| yielded |
yielded := false.
[ yielded := true ] fork.
Processor yield.
yielded
>>> true

In the previous snippet, the expression Processor yield gives a chance for
the created process to run. Note that the example does not show precisely if
the UI thread was executed first after the yield and that in its logic it yields
periodically to let lower processes run or if it was just put at the end of its run
queue.

Here is the code of the primitive: if the run queue of the active process priority
is empty nothing happens, else the active process is added as the last item in
the run queue corresponding to its priority, and the highest priority process is
run.

InterpreterPrimitives >> primitiveYield
"Primitively do the equivalent of Process>yield, avoiding the

overhead of a fork and a wait in the standard implementation."

| scheduler activeProc priority processLists processList |
scheduler := self schedulerPointer.
activeProc := objectMemory fetchPointer: ActiveProcessIndex

ofObject: scheduler.
priority := self quickFetchInteger: PriorityIndex ofObject:

40



3.9 About processPreemption settings

activeProc.
processLists := objectMemory fetchPointer: ProcessListsIndex

ofObject: scheduler.
processList := objectMemory fetchPointer: priority - 1 ofObject:

processLists.

(self isEmptyList: processList) ifFalse:
[self addLastLink: activeProc toList: processList.
self transferTo: self wakeHighestPriority]

3.9 About processPreemption settings

Now we will discuss a bit the settings of the VM regarding process preemption:
What exactly happens when a process is preempted by a process of a higher
priority, and which process is scheduled after the execution of a yieldmes-
sage. The following is based on an answer from E. Miranda on the VM mailing
list.

The virtual machine has a setting to change the behavior of process preemp-
tion and especially which process gets resumed once the preempting process
terminates.

In Pharo the setting is true. It means that the interrupted process will be added
to the end of the queue and it gives other processes a chance to execute them-
selves without having to have an explicit yield.

Smalltalk vm processPreemptionYields
>>> true

If Smalltalk vm processPreemptionYields returns false then when pre-
empted by a higher-priority process, the current process stays at the head
of its run queue. It means that it will be the first one of this priority to be re-
sumed.

Note that when a process waits on a semaphore, it is removed from its run
queue. When a process resumes, it always gets added to the back of its run
queue. The processPreemptionYields setting does not change anything.

3.10 Comparing the two semantics

The two following examples show the difference between the two semantics
that can be controlled by the processPreemptionYields setting.

41



Scheduler’s principles

First example: two equal processes

• Step 1. First, we create two processes at a lower priority than the active
process and at a priority where there are no other processes. The first
expression will find an empty priority level at a priority lower than the
active process.

• Step 2. Then create two processes at that priority and check that their
order in the list is the same as the order in which they were created.

• Step 3. Set the boolean to indicate that this point was reached and block
a delay, allowing the processes to run to termination. Check that the
processes have indeed terminated.

| run priority process1 process2 |
run := true.
"step1"
priority := Processor activePriority - 1.
[(Processor waitingProcessesAt: priority) isEmpty] whileFalse:
[priority := priority - 1].

"step2"
process1 := [[run] whileTrue] forkAt: priority.
process2 := [[run] whileTrue] forkAt: priority.
self assert: (Processor waitingProcessesAt: priority) first ==

process1.
self assert: (Processor waitingProcessesAt: priority) last == process2.
"step3"
run := false.
(Delay forMilliseconds: 50) wait.
self assert: (Processor waitingProcessesAt: priority) isEmpty

3.11 Second example: preempting P1

The steps 1 and 2 are identical. Now let’s preempt process1 while it is run-
ning, by waiting on a delay without setting run to false:

| run priority process1 process2 |
run := true.
"step1"
priority := Processor activePriority - 1.
[(Processor waitingProcessesAt: priority) isEmpty] whileFalse:
[priority := priority - 1].

"step2"
process1 := [[run] whileTrue] forkAt: priority.
process2 := [[run] whileTrue] forkAt: priority.
self assert: (Processor waitingProcessesAt: priority) first ==

process1.

42



3.11 Second example: preempting P1

self assert: (Processor waitingProcessesAt: priority) last == process2.

"Now block on a delay, allowing the first one to run, spinning in its
loop.

When the delay ends the current process (the one executing the code
snippet)

will preempt process1, because process1 is at a lower priority."

(Delay forMilliseconds: 50) wait.

Smalltalk vm processPreemptionYields
ifTrue:
"If process preemption yields, process1 will get sent to the back
of the run
queue (give a chance to other processes to execute without
explicitly yielding a process)"
[ self assert: (Processor waitingProcessesAt: priority) first ==
process2.
self assert: (Processor waitingProcessesAt: priority) last ==
process1 ]

ifFalse: "If process preemption doesn't yield, the processes retain
their order
(process must explicit collaborate using yield to pass control
among them."
[ self assert: (Processor waitingProcessesAt: priority) first ==
process1.
self assert: (Processor waitingProcessesAt: priority) last ==
process2 ].

"step3"
run := false.
(Delay forMilliseconds: 50) wait.
"Check that they have indeed terminated"
self assert: (Processor waitingProcessesAt: priority) isEmpty

Run the above after trying both Smalltalk vm processPreemptionYields:
false and Smalltalk processPreemptionYields: true.

What the setting controls is what happens when a process is preempted by
a higher-priority process. The processPreemptionYields = true does an
implicit yield of the preempted process. It changes the order of the run queue
by putting the preempted process at the end of the run queue letting a chance
for other processes to execute.

43



Scheduler’s principles

3.12 Conclusion

This chapter presents some advanced parts of the scheduler and we hope that
it gives a better picture of the scheduling behavior and in particular, the pre-
emption of the currently running process by a process of higher priority as
well as the way yielding the control is implemented.

44



CHA P T E R4
Some examples of semaphores

at work

Semaphores are low-level concurrency abstractions. In this chapter, we present
some abstractions built on top of semaphores: Promise, SharedQueue, and
discuss Rendez-vous.

4.1 Promise

Sometimes we have a computation that can take times. We would like to have
the possibility not be blocked waiting for it especially if we do not need imme-
diately. Of course there is no magic and we accept to only wait when we need
the result of the computation. We would like a promise that we will get the
result in the future. In the literature, such abstraction is called a promise or a
future. Let us implement a simple promise mechanism: our implementation
will not manage errors that could happen during the promise execution. The
idea behind the implementation is to design a block that

1. returns a promise and will get access to the block execution value

2. executes the block in a separated thread.

4.2 Illustration

For example, [ 1 + 2 ] promise returns a promise, and executes 1 + 2 in
a different thread. When the user wants to know the value of the promise it

45



Some examples of semaphores at work

sends the message value to the promise: if the value has been computed, it is
handed in, else it is blocked waiting for the result to be computed.

The implementation uses a semaphore to protect the computed value, it means
that the requesting process will wait for the semaphore until the value is avail-
able, but the user of the promise will only be blocked when it requests the
value of the promise (not on promise creation).

The following snippet shows that even if the promise contains an endless loop,
it is only looping forever when the promise value is requested - the variable
executed is true and the program loops forever.

| executed promise |
executed := false.
promise := [ endless loops ] promise.
executed := true.
promise value

4.3 Promise implementation

Let us write some tests: First we checks that a promise does not have value
when it is only created.

testPromiseCreation
| promise |
promise := [ 1 + 2 ] promise.
self deny: promise hasValue.
self deny: promise equals: 3

The second test, create a promise and shows that when its value is requested
its value is returned.

testPromise
| promise |
promise := [ 1 + 2 ] promise.
self assert: promise value equals: 3

It is difficult to test that a program will be blocked until the value is present,
since it will block the test runner thread itself. What we can do is to make the
promise execution waits on a semaphore before computing a value and to cre-
ate a second thread that waits for a couple of seconds and signals semaphore.
This way we can check that the execution is happening or not.

testPromiseBlockingAndUnblocking

| controllingPromiseSemaphore promise |
controllingPromiseSemaphore := Semaphore new.

46



4.4 Implementation

[ (Delay forSeconds: 2) wait.
controllingPromiseSemaphore signal ] fork.

promise := [ controllingPromiseSemaphore wait.
1 + 3 ] promise.

self deny: promise hasValue.

(Delay forSeconds: 5) wait.
self assert: promise hasValue.
self assert: promise value equals: 4

We have in total three threads: One thread created by the promise that is
waiting on the controlling semaphore. One thread executing the controlling
semaphore and one thread executing the test itself. When the test is executed,
two threads are spawned and the test will first check that the promise has not
been executed and wait more time than the thread controlling semaphore:
this thread is waiting some seconds to make sure that the test can execute the
first assertion, then it signals the controlling semaphore. When this semaphore
is signalled, the promise execution thread is scheduled and will be executed.

4.4 Implementation

We define two methods on the BlockClosure class: promise and promiseAt:.

BlockClosure >> promise
^ self promiseAt: Processor activePriority

promiseAt: creates and return a promise object. In addition, in a separate
process, it stores the value of the block itself in the promise.

BlockClosure >> promiseAt: aPriority
"Answer a promise that represents the result of the receiver

execution
at the given priority."

| promise |
promise := Promise new.
[ promise value: self value ] forkAt: aPriority.
^ promise

We create a class with a semaphore protecting the computed value, a value
and a boolean that lets us know the state of the promise.

Object subclass: #Promise
instanceVariableNames: 'valueProtectingSemaphore value hasValue'
classVariableNames: ''
package: 'Promise'

47



Some examples of semaphores at work

We initialize by simply creating a semaphore and setting that the value has not
be computed.

Promise >> initialize
super initialize.
valueProtectingSemaphore := Semaphore new.
hasValue := false

We provide on simple testing method to know the state of the promise.

Promise >> hasValue
^ hasValue

Nwo the method value wait on the protecting semaphore. Once it is execut-
ing, it means that the promise has computed its value, so it should not block
anymore. This is why it signals the protecting semaphore before returning the
value.

Promise >> value
"Wait for a value and once it is available returns it"

valueProtectingSemaphore wait.
valueProtectingSemaphore signal. "To allow multiple requests for the

value."
^ value

Finally the method value: stores the value, set that the value has been com-
puted and signal the protecting semaphore that the value is available. Note
that such method should not be directly use but should only be invoked by a
block closure.

Promise >> value: resultValue

value := resultValue.
hasValue := true.
valueProtectingSemaphore signal

4.5 SharedQueue: a nice semaphore example

A SharedQueue is a FIFO (first in first out) structure. It is often used when a
structure can be used by multiple processes that may access the same struc-
ture. The implementation of a SharedQueue uses semaphores to protect its
internal queue from concurrent accesses: in particular, a read should not hap-
pen when a write is under execution. Similarly two reads would not read ele-
ments in the correct order.

The definition in Pharo core is different because based on Monitor. A monitor
is a more advanced abstraction to manage concurrency situations.

48



4.5 SharedQueue: a nice semaphore example

Let us look at a possible definition. We define a class with the following in-
stance variables: a contents holding the elements of the queue, a read and
write position and two semaphores for reading and writing control.

Object subclass: #SharedQueue
instanceVariableNames: 'contentsArray readPosition writePosition

accessProtect readSynch '
package: 'Collections-Sequenceable'

accessProtect is a mutual exclusion semaphore used to synchronise write
operations while readSync is a semahore used for synchronizing read opera-
tions. These variables are instantiated in the initializemethod as follows:

SharedQueue >> initialize
super initialize.
accessProtect := Semaphore forMutualExclusion.
readSynch := Semaphore new

These two semaphores are used in the methods to access (next) and add ele-
ments (nextPut:). The idea is that a read should be blocked when there is no
element and adding an element will enable reading. In addition any modifica-
tion of the internal elements should happen within one single process at the
same time.

SharedQueue >> next
| value |
readSynch wait.
accessProtect
critical: [

readPosition = writePosition
ifTrue: [ self error: 'Error in SharedQueue synchronization'.

value := nil ]
ifFalse: [ value := contentsArray at: readPosition.

contentsArray at: readPosition put: nil.
readPosition := readPosition + 1 ]].

^ value

In the method next used to access elements, the semaphore readSynch guards
the beginning of the method (line 3). If a process sends the nextmessage
when the queue is empty, the process will be suspended and placed in the
waiting list of the semaphore readSync. Only the addition of a new element
will make this process executable (as shown in the nextPut: method below).
The critiical section managed by the accessProtect semaphore (lines 4 to 10)
ensures that queue elements cannot be interrupted by another process that
could be make the queue inconsistent.

In the method nextPut:, the critical section (lines 3 to 6) protects the con-
tents of the queue. After such a critical section, the readSyn semaphore is
signalled. This is makes sure that the waiting read processes can now work.

49



Some examples of semaphores at work

Again the modification of the internal queue is ensured to not be transversed
by different processes.

SharedQueue >> nextPut: value
accessProtect

critical: [
writePosition > contentsArray size

ifTrue: [self makeRoomAtEnd].
contentsArray at: writePosition put: value.
writePosition := writePosition + 1].
readSynch signal.
^ value

4.6 About Rendez-vous

As we saw, using wait and signal we can make sure that two programs run-
ning in separate threads can be executed one after the other in order.

The following example is freely inspired from ”The little book of semaphores
book. Imagine that we want to have one process reading from file and another
process displaying the read contents. Obviously we would like to ensure that
the reading happens before the display. We can enforce such order by using
signal and wait as following

| readingIsDone read file |
file := FileSystem workingDirectory / 'oneLineBuffer'.
file writeStreamDo: [ :s| s << 'Pharo is cool' ; cr ].
readingIsDone := Semaphore new.
[
'Reading line' crTrace.
read := file readStream upTo: Character cr.
readingIsDone signal.
] fork.
[
readingIsDone wait.
'Displaying line' crTrace.
read crTrace.
] fork.

Here is the output

'Reading line'
'Displaying line'
'Pharo is cool'

50



4.6 About Rendez-vous

Rendez-vous

Now a question is how can be generalize such a behavior so that we can have
two programs that work freely to a point where a part of the other has been
performed.

For example imagine that we have two prisoners that to escape have to pass a
barrier together (their order is irrelevant but they should do it consecutively)
and that before that they have to run to the barrier.

The following output is not permitted.

'a running to the barrier'
'a jumping over the barrier'
'b running to the barrier'
'b jumping over the barrier'

'b running to the barrier'
'b jumping over the barrier'
'a running to the barrier'
'a jumping over the barrier'

The following cases are permitted.

'a running to the barrier'
'b running to the barrier'
'b jumping over the barrier'
'a jumping over the barrier'

'a running to the barrier'
'b running to the barrier'
'a jumping over the barrier'
'b jumping over the barrier'

'b running to the barrier'
'a running to the barrier'
'b jumping over the barrier'
'a jumping over the barrier'

'b running to the barrier'
'a running to the barrier'
'a jumping over the barrier'
'b jumping over the barrier'

Here is a code without any synchronisation. We randomly shuffle an array
with two blocks and execute them. It produces the non permitted output.

{
['a running to the barrier' crTrace.
'a jumping over the barrier' crTrace ]
.
[ 'b running to the barrier' crTrace.

51



Some examples of semaphores at work

'b jumping over the barrier' crTrace ]
} shuffled do: [ :each | each fork ]

Here is a possible solution using two semaphores.

| aAtBarrier bAtBarrier |
aAtBarrier := Semaphore new.
bAtBarrier := Semaphore new.
{[ 'a running to the barrier' crTrace.
aAtBarrier signal.
bAtBarrier wait.
'a jumping over the barrier' crTrace ]
.
[ 'b running to the barrier' crTrace.
bAtBarrier signal.
aAtBarrier wait.
'b jumping over the barrier' crTrace ]
} shuffled do: [ :each | each fork ]

4.7 Conclusion

We presented the key elements of basic concurrent programming in Pharo and
some implementation details.

52


	Concurrent programming in Pharo
	Studying an example
	A simple example
	Process
	Process lifetime
	Creating processes
	Creating a process without scheduling it
	Passing arguments to a process
	Suspending and terminating a process
	Creating and scheduling in one go
	Creating a waiting process

	First look at ProcessorScheduler
	Process priorities
	ProcessScheduler rules
	Let us trace better what is happening
	Yielding the computation
	Between processes of the same priority
	Using yield
	Summary

	Important API
	Conclusion

	Semaphores
	Understanding semaphoress
	Details

	An example
	wait and signal interplay
	A key question about signal
	Prearmed semaphore
	Example

	Semaphore forMutualExclusion
	Deadlocking semaphores
	Mutex
	Nested critical sections
	Mutex implementation

	Implementation: the language perspective
	Pharo's implementation.
	Signal implementation.
	Wait implementation.

	Implementation: the VM perspective
	Conclusion

	Scheduler's principles
	Revisiting the class Process
	Implementation details.
	States

	Looking at some core process primitives
	Priorities
	signal and preemption
	Understanding yield
	yield illustrated
	Considering UI processes
	About the primitive in yield method
	About processPreemption settings
	Comparing the two semantics
	First example: two equal processes

	Second example: preempting P1
	Conclusion

	Some examples of semaphores at work
	Promise
	Illustration
	Promise implementation
	Implementation
	SharedQueue: a nice semaphore example
	About Rendez-vous
	Rendez-vous

	Conclusion


