
Commander20: a Command

Framework

Stéphane Ducasse and Julien Delplanque

March 12, 2024

Copyright 2017 by Stéphane Ducasse and Julien Delplanque.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations iii

1 Introduction 1

2 A Simple Contact Book 3

2.1 Contact book model . 3

2.2 A simple graphical user interface . 6

2.3 Conclusion . 9

3 Commander: a Powerful and Simple Command Framework 11

3.1 Commands . 11

3.2 Defining commands . 12

3.3 Adding some convenience methods . 13

3.4 Adding the remove contact command . 14

3.5 Turning commands into menu items . 15

3.6 Introducing groups . 16

3.7 Extending menus . 18

3.8 Managing icons and shortcuts . 19

3.9 Enabling shortcuts . 20

3.10 In place customisation . 21

3.11 Managing a menu bar . 22

3.12 Conclusion . 24

4 Tips and Tricks for Spec 25

4.1 Icon Provider . 25

4.2 PharoLauncher icon tricks . 25

4.3 Extra Spec behavior . 26

4.4 Contexts can be dynamic . 26

4.5 Toolbar . 27

4.6 Registration and navigation . 28

4.7 Conclusion . 28

i

Contents

5 For framework designers 29

5.1 Decorating commands . 29

5.2 Modular Spec command decoration . 30

5.3 Spec Commander user perspective . 32

5.4 Decorating group of commands . 32

5.5 Spec decoration . 32

5.6 Example of Visitor: toolbarBuilder . 33

5.7 Conclusion . 34

ii

Illustrations

2-1 A rudimentary contact book application. 3

2-2 A simple model for the contact book. 4

2-3 A rudimentary contact book application. 6

2-4 First version of the GUI without menus and toolbar. 8

2-5 Playing inside the inspector. 9

3-1 A simple command and its hierarchy. 12

3-2 With two menu items with groups. 16

3-3 With a context menu. 18

3-4 With menu extension. 20

3-5 With menu extension. 22

3-6 With menubar. 24

5-1 Commands and command decorators. 30

5-2 Spec decorations and use. 31

5-3 Group and group decorators. 33

5-4 Spec’s group and group decorators. 33

5-5 Full design: Core, UI support and Spec integration. 34

iii

CHA P T E R 1
Introduction

Commands are reification of actions. They can be used to implement actions
in many contexts such as text-editors, debuggers, web-browsers, etc. Since
recent versions, Pharo had no unified way to express commands and this
led to multiple implementation of the command design pattern spreading
across projects. Each project was re-implementing the design-pattern lead-
ing to slightly different version preventing the re-usability of common parts.
To solve this problem we started to analyze existing solutions. We designed
Commander20 framework that Pharo will use as canonical implementation of
the command design pattern. With time, all custom-implementations of the
command design pattern will be migrated to use Commander20. This booklet
describes how commands are expressed in Pharo using Commander20.

To set some stage we start by defining a simple domain and applications in
Spec20. Then we show how commands can be defined. In the final chapter
we discuss the design of the framework with more details.

The code used of the contact book is available at https://github.com/Ducasse/

EgContactBook. The code contains tests that are not listed in this booklet but
we encourage you to read them.

1

https://github.com/Ducasse/EgContactBook
https://github.com/Ducasse/EgContactBook

CHA P T E R2
A Simple Contact Book

In this chapter we develop a simple model for a contact book. Then we define
a user interface. This example will be used later in the book as an example to
explain concepts such as commands, applications, windows.

Now it is more a replay of the concept previously mentioned. We start by im-
plementing classes modeling the domain and then we will add a basic graphi-
cal user interface to obtain a little application as shown in Figure 2-1.

Figure 2-1 A rudimentary contact book application.

2.1 Contact book model

The model for the domain of our example is composed of two classes: Con-
tact and ContactBook as shown in Figure 2-2.

3

A Simple Contact Book

contacts
addContact:
removeContact:
findContact

ContactBook

name
phone

Contact

Figure 2-2 A simple model for the contact book.

Contact

The class modeling a contact is defined as follow.

Object subclass: #EgContact
instanceVariableNames: 'name phone'
classVariableNames: ''
package: 'EgContactBook'

It just defines a printOn: method and a couple of accessors.

EgContact >> printOn: aStream

super printOn: aStream.
aStream nextPut: $(.
aStream nextPutAll: name.
aStream nextPut: $).

EgContact >> name
^ name

EgContact >> phone
^ phone

EgContact >> name: aString
name := aString

EgContact >> phone: anObject
phone := anObject

EgContact >> hasMatchingText: aString
^ name includesSubstring: aString caseSensitive: false

EgContact class >> name: aNameString phone: aPhoneString
^ self new
name: aNameString;
phone: aPhoneString;
yourself

ContactBook

Now we define the class modeling the contact book. As for the contact class,
it is simple and quite straighforward.

4

2.1 Contact book model

Object subclass: #EgContactBook
instanceVariableNames: 'contacts'
classVariableNames: ''
package: 'EgContactBook'

EgContactBook >> initialize
super initialize.
contacts := OrderedCollection new

EgContactBook >> contacts
^ contacts

EgContactBook >> contacts: aColl
contacts := aColl

We add the possibility to add and remove a contact

EgContactBook >> addContact: aContact
contacts add: aContact

EgContactBook >> removeContact: aContact
contacts remove: aContact

EgContactBook >> addContact: newContact after: contactAfter
contacts add: newContact after: contactAfter

We add a simple testing method in case one want to write some tests (which
we urge you to do).

EgContactBook >> includesContact: aContact
^ contacts includes: aContact

And now we add a method to create a contact and add it to the contact book.

EgContactBook >> add: contactName phone: phone
| contact |
contact := EgContact new name: contactName; phone: phone.
self addContact: contact.
^ contact

Finally some facilities to query the contact book.

EgContactBook >> findContactsWithText: aText
^ contacts select: [:e | e hasMatchingText: aText]

EgContactBook >> size
^ contacts size

Pre-filling up the contact book

Since we want to have some contacts and we way to keep them without re-
sorting to a database or file we set some class instance variables.

We defined two class instance variables: family and coworkers and define
some class method accessors as follows:

5

A Simple Contact Book

EgContactBook class >> family
^family ifNil: [
family := self new

add: 'John' phone: '342 345';
add: 'Bill' phone: '123 678';
add: 'Marry' phone: '789 567';
yourself]

EgContactBook class >> coworkers
^coworkers ifNil: [
coworkers := self new

add: 'Stef' phone: '112 378';
add: 'Pavel' phone: '898 678';
add: 'Marcus' phone: '444 888';
yourself]

We add one method to be able to reset them if necessary. The <script>
pragma tells the system browser to add a small button to execute reset
method easily.

EgContactBook class >> reset
<script>
coworkers := nil.
family := nil

2.2 A simple graphical user interface

Now we define the graphical user interface (GUI) to expose the model to the
user. The targeted GUI is shown in Figure 2-3.

Figure 2-3 A rudimentary contact book application.

6

2.2 A simple graphical user interface

We define the class EgContactBookPresenter. It holds a reference to a con-
tact book and it is structured around a table.

SpPresenter subclass: #EgContactBookPresenter
instanceVariableNames: 'table contactBook'
classVariableNames: ''
package: 'EgContactBook'

We define an accessor for the contact book and the table.

EgContactBookPresenter >> contactBook
^ contactBook

EgContactBookPresenter >> table: anObject
table := anObject

EgContactBookPresenter >> table
^ table

Initializing the model

We specialize the method setModelBeforeInitialization: that is in-
voked by the framework to assign the contactBook instance variable to the
object passed during the execution of the expression (EgContactBookPre-
senter on: EgContactBook coworkers) openWithSpec.

EgContactBookPresenter >> setModelBeforeInitialization: aContactBook
super setModelBeforeInitialization: aContactBook.
contactBook := aContactBook

Layout

EgContactBookPresenter class >> defaultLayout
^ SpBoxLayout newTopToBottom add: #table; yourself

Widget initialization

We initialize the table to display two columns for the name and the phone.
The respective accessor messages will be sent to the elements to fill up the
columns. Finally the table contents is set using the contact book contents.

EgContactBookPresenter >> initializePresenters
table := self newTable.
table
addColumn: (StringTableColumn title: 'Name' evaluated: #name);
addColumn: (StringTableColumn title: 'Phone' evaluated: #phone).

table items: contactBook contents.

Now we can start opening the UI by executing the following snippet(EgContactBookPresenter
on: EgContactBook coworkers) openWithSpec

7

A Simple Contact Book

We define a class method to be able to easily re-execute the set up.

EgContactBookPresenter class >> coworkersExample
<example>
^ (self on: EgContactBook coworkers) openWithSpec

You should obtain the following GUI as shown in Figure 3-1.

Figure 2-4 First version of the GUI without menus and toolbar.

Interacting with user

We now implement the method that will open a window to ask the user to
create a new contact for the contact book.

EgContactBookPresenter >> newContact
| rawData splitted |
rawData := self
request: 'Enter new contact name and phone (split by comma)'
initialAnswer: ''
title: 'Create new contact'.

splitted := rawData splitOn: $,.
(splitted size = 2 and: [splitted allSatisfy: #isNotEmpty])
ifFalse: [SpInvalidUserInput signal: 'Please enter contact name
and phone (split by comma)'].

^ EgContact new
name: splitted first;
phone: splitted second;
yourself

To test it, we can get access to the presenter as follows

(EgContactBookPresenter on: EgContactBook coworkers)
openWithSpec presenter inspect

8

2.3 Conclusion

and you can send the newContactmessage as shown in Figure 2-5.

Figure 2-5 Playing inside the inspector.

Some extra methods

We will also define the methods isContactSelected and selectedContact
to know if a contact is currently selected and to return it. It will help us later
to add contact just after the currently selected contact.

EgContactBookPresenter >> isContactSelected
^ self table selectedItems isNotEmpty

EgContactBookPresenter >> selectedContact
^ table selection selectedItem

2.3 Conclusion

We have a little contact book manager now that we can use to explain other
topics.

9

CHA P T E R3
Commander: a Powerful and

Simple Command Framework

Commander was a library originally developed by Denis Kudriashov. Com-
mander 2.0 is the second iteration of such a library. It has been designed and
developed by Julien Delplanque and Stéphane Ducasse. Note that Comman-
der 2.0 is not compatible with Commander but this is really easy to migrate
from Commander to Commander 2.0. We describe Commander 2.0 in the
context of Spec 2.0, the user interface building framework. From then on,
when we mention Commander we refer to Commander 2.0. In addition we
show how to extend Commander to other needs.

3.1 Commands

Commander models application actions as first class objects following the
Command design pattern. With Commander, you express commands and use
them to generate menus, toolbar but also to script an application from the
command line (the associated decorator has not been yet developed).

Every action is implemented as a separate command class (subclass of Cm-
Command) with an executemethod and all state required for execution. The
superclass defines the context in which the command should be executed.
Then the class CmCommand introduces name and description.

We will show later that for UI framework, we need more information such as
an icon and shortcut description. In addition we will present how commands
can be decorated with extra functionality in an extensible way.

11

Commander: a Powerful and Simple Command Framework

name
description

CmCommand

execute
context
canBeExecuted

CmAbstractCommand

execute
EgAddContactCommand

Figure 3-1 A simple command and its hierarchy.

A little example.

Here is a sketch of the logic of instantiating and executing a command.

(EgAddContactCommand new context: aPresenter) execute

We instantiate the command class and pass the presenter (in the case of a UI
command) to which the command applies using the message context:. Note
that a context can be an object, such as a presenter in the case of Spec but
also be a block. Passing a block is interesting to give the command access to
objects that depend on an execution that did not happen yet. And we send to
the command the message execute to trigger its execution. This last point
will often be done by the user interaction via toolbar or menuitems.

3.2 Defining commands

A command is a simple object instance of a subclass of the class CmCommand.
It has a description, a name (this name can be either static or dynamic as
we will shown later on). In addition, it has a context from which it extracts
information to execute itself. In its basic form there is not much more than
that.

Let us have a look at examples. We will define some commands for the Con-
tactBook application and illustrate how they can be turned into menu and
menubar.

Note that we will present how Commander supports Spec menu and menubar
creations. However such functionalities are not in the core of Commander.
We show them because first this is important to illustrate how to build user
interfaces elements with Commander but also because such functionalities

12

3.3 Adding some convenience methods

show that Commander can be extended in a way that end-users do not have
to feel they are using special extensions. We will come back to such point in
the last chapter of this book to show to potential extenders of Commander
that they can get inspiration from the Spec extensions.

3.3 Adding some convenience methods

For convenience reasons, we define a common superclass named EgCon-
tactBookCommand to all the commands of the contact book application.

CmCommand subclass: #EgContactBookCommand
instanceVariableNames: ''
classVariableNames: ''
package: 'EgContactBook'

We define a simple helper method to make the code more readable

EgContactBookCommand >> contactBookPresenter
^ self context

For the same reason, we define another helper to access the contact book
and the selected item.

EgContactBookCommand >> contactBook
^ self contactBookPresenter contactBook

EgContactBookCommand >> selectedContact
^ self contactBookPresenter selectedContact

Using such helper methods we define the method hasSelectContract as
follows:

EgContactBookCommand >> hasSelectedContact
^ self contactBookPresenter isContactSelected

Adding the add contact command

We define a new subclass named EgAddContactCommand to define the com-
mand that represents the addition of a contact.

EgContactBookCommand subclass: #EgAddContactCommand
instanceVariableNames: ''
classVariableNames: ''
package: 'EgContactBook'

CmAddContactCommand >> initialize
super initialize.
self
basicName: 'New contact';
basicDescription: 'Creates a new contact and add it to the
contact book.'

13

Commander: a Powerful and Simple Command Framework

CmAddContactCommand >> execute
| contact |
contact := self contactBookPresenter newContact.
self hasSelectedContact
ifTrue: [self contactBook

addContact: contact
after: self selectedContact]

ifFalse: [self contactBook addContact: contact].
self contactBookPresenter updateView

We should define the method updateView to refresh the contents of the ta-
ble.

EgContactBookPresenter >> updateView
table items: contactBook contacts

Now in the inspect pane we can simply execute the command as follows:

(EgAddContactCommand new context: self) execute

Excuting the command should ask you to give a name and a phone number
and will get added to the list.

We can also execute the following snippet.

| presenter cmd |
presenter := EgContactBookPresenter on: EgContactBook coworkers.
cmd := EgAddContactCommand new context: presenter.
cmd execute

3.4 Adding the remove contact command

We define now another command to remove a command. This example is
interesting because it does not involve any UI interaction. It shows that a
command is not necessarily linked to UI interaction.

EgContactBookCommand subclass: #EgRemoveContactCommand
instanceVariableNames: ''
classVariableNames: ''
package: 'EgContactBook'

EgRemoveContactCommand >> initialize
super initialize.
self
name: 'Remove';
description: 'Removes the selected contact from the contact
book.'

This command definition illustrates how we can control when a command
should or not be executed. The method canBeExecuted allows one to specify
such condition.

14

3.5 Turning commands into menu items

EgRemoveContactCommand >> canBeExecuted
^ self context isContactSelected

The method execute is straightforward.

EgRemoveContactCommand >> execute
self contactBook removeContact: self selectedContact.
self contactBookPresenter updateView

The following test validates the correct execution of the command.

EgContactCommandTest >> testRemoveContact
self assert: presenter contactBook size equals: 3.
presenter table selectIndex: 1.
(EgRemoveContactCommand new context: presenter) execute.
self assert: presenter contactBook size equals: 2

3.5 Turning commands into menu items

Now that we have our commands we would like to reuse them and turn them
into menus. In Spec, commands that are transformed into menu items are
structured into a tree of command instances. The classmethod buildCom-
mandsGroupWith:forRoot: of SpPresenter is a hook to let presenters pop-
ulate the root of the command instance tree.

A command is transformed into a command for Spec using the message for-
Spec. We will show later that we can add UI specific information to a com-
mand such as an icon and a shortcut.

The method buildCommandsGroupWith:forRoot: registers commands to
which the presenter instance is passed as context. Note that here we just add
plain commands, but we can also create groups. This is also in this method
that we will specify toolbar.

EgContactBookPresenter class >>
buildCommandsGroupWith: presenter
forRoot: rootCommandGroup

rootCommandGroup
register: (EgAddContactCommand forSpec context: presenter);
register: (EgRemoveContactCommand forSpec context: presenter)

We have now have to attach the root of the command tree to the table. This
is what what we do with the new line in the initializePresentersmethod.
Notice that we have the full control and as we will show we could select a
subpart of the tree (using the message /) and defining as root for given com-
ponent.

15

Commander: a Powerful and Simple Command Framework

EgContactBookPresenter >> initializePresenters
table := self newTable.
table
addColumn: (SpStringTableColumn title: 'Name' evaluated: #name);
addColumn: (SpStringTableColumn title: 'Phone' evaluated:
#phone).

table contextMenu: [self rootCommandsGroup beRoot asMenuPresenter
].

table items: contactBook contacts.

Reopening the interface (EgContactBookPresenter on: EgContactBook
coworkers) openWithSpec you should see the menu items as shown in Fig-
ure 3-2. As we will show later we could even replace a menu item by another
one, changing its name, or icon in place.

Figure 3-2 With two menu items with groups.

3.6 Introducing groups

Commands can be managed in groups and such groups can be turned into
corresponding menu item sections or submenus. The key hook method is
the class method named buildCommandsGroupWith: aPresenterInstance
forRoot:.

Here we give an example of such a grouping as menu section (beDisplayedAsGroup).

We create two methods creating each a simple group: one for adding and
one for removing contracts. Each of the method could contain multiple com-
mands. Here we just add one using the message register:.

16

3.6 Introducing groups

EgContactBookPresenter class >> buildAddingGroupWith: presenter
^ (CmCommandGroup named: 'Adding') asSpecGroup

description: 'Commands related to contact addition.';
register: (EgAddContactCommand forSpec context: presenter);
beDisplayedAsGroup;
yourself

Note that the message asSpecGroup sent to a group.

EgContactBookPresenter class >> buildRemovingGroupWith: presenter
^ (CmCommandGroup named: 'Removing') asSpecGroup

description: 'Commands related to contact removal.';
register: (EgRemoveContactCommand forSpec context: presenter);
beDisplayedAsGroup;
yourself

We group the previously defined groups together under contextual menu for
example.

EgContactBookPresenter class >> buildContextualMenuGroupWith:
presenter

^ (CmCommandGroup named: 'Context Menu') asSpecGroup
register: (self buildAddingGroupWith: presenter);
register: (self buildRemovingGroupWith: presenter);
yourself

Finally we revisit the hook buildCommandsGroupWith:forRoot: to register
the last group to the root command group.

EgContactBookPresenter class >>
buildCommandsGroupWith: presenter
forRoot: rootCommandGroup

rootCommandGroup
register: (self buildContextualMenuGroupWith: presenter)

Reopening the interface (EgContactBookPresenter on: EgContactBook
coworkers) openWithSpec you should see the menu items inside a 'Con-
text Menu' as shown in Figure 3-3.

To show you that we can also select a part of the command tree we select the
'Context Menu' group and we declare it as the root of the table menu. In
such case you will not see the 'Context Menu' anymore.

EgContactBookPresenter >> initializePresenters

table := self newTable.
table
addColumn: (SpStringTableColumn title: 'Name' evaluated: #name);
addColumn: (SpStringTableColumn title: 'Phone' evaluated:
#phone).

17

Commander: a Powerful and Simple Command Framework

Figure 3-3 With a context menu.

table contextMenu: [(self rootCommandsGroup / 'Context Menu')
beRoot asMenuPresenter].

table items: contactBook contacts

3.7 Extending menus

Building menu is nice, but sometimes we need to place an extra menu into an
existing one, when we load a separate package. Commander supports this via
a dedicated pragma, called <extensionCommands> that identifies extensions
as we show it now.

Imagine that we have a new functionality that we want to add to the contact
book and that this behavior is packaged in another package, here, EgContactBook-
Extensions. First we will define a new command and second we will show
how we can extend the existing menu to add a new menu item.

EgContactBookCommand subclass: #EgChangePhoneCommand
instanceVariableNames: 'newPhone'
classVariableNames: ''
package: 'EgContactBook-Extensions'

EgChangePhoneCommand >> newPhone: anObject
newPhone := anObject

EgChangePhoneCommand >> newPhone
^ newPhone

EgChangePhoneCommand >> initialize
super initialize.
self
name: 'Change phone';
description: 'Change the phone number of the contact.'

18

3.8 Managing icons and shortcuts

EgChangePhoneCommand >> execute
self selectedContact phone: self contactBookPresenter newPhone.
self contactBookPresenter updateView

We add ContactBookPresenter with the method newPhone the presenter to
support the definition of the new phone number. The point here is not that
this is method is or not packaged with the new command.

EgContactBookPresenter >> newPhone
| phone |
phone := self
request: 'New phone for the contact'
initialAnswer: self selectedContact phone
title: 'Set new phone for contact'.

(phone matchesRegex: '\d\d\d\s\d\d\d')
ifFalse: [

SpInvalidUserInput signal: 'The phone number is not well
formated.

Should match "\d\d\d\s\d\d\d"'].
^ phone

The last missing piece is the declaration of the extension. This one is done
using the pragma <extensionCommands> on the class side of the presenter
class as follows:

Here we see that using slash (/), we can select the group in which we want
to add the item.

EgContactBookPresenter class >>
changePhoneCommandWith: presenter
forRootGroup: aRootCommandsGroup

<extensionCommands>

(aRootCommandsGroup / 'Context Menu')
register: (EgChangePhoneCommand forSpec context: presenter)

3.8 Managing icons and shortcuts

By default a command does not know about Spec specific behavior, this is be-
cause a command does not have to be linked to UI. Now obviously you want
to have icons and shortcut bindings when you are designing an interactive
application.

Commander supports the addition of icons and shortcut key to commands.
Let us see how it works from a user perspective. The framework offers two
methods to set icon and shortcut key iconName: and shortcutKey: and we
should specialize the method aSpecCommand as follows:

19

Commander: a Powerful and Simple Command Framework

Figure 3-4 With menu extension.

EgRemoveContactCommand >> asSpecCommand
^ super asSpecCommand

iconName: #removeIcon;
shortcutKey: $x meta;
yourself

EgRemoveContactCommand >> asSpecCommand
^ super asSpecCommand

shortcutKey: $n meta;
iconName: #changeAdd;
yourself

Note that the commands are created using the message forSpec and this is
this message that takes care about the calling of asSpecCommand.

3.9 Enabling shortcuts

To the time of this chapter writing, Commander management of shortcuts
has not been pushed to Spec to avoid dependency to Commander. It is then
the responsibility of your presenter to manage shortcuts as shown in the fol-
lowing method. Using the method installShortcutsIn:, we tell the com-
mand group to install the shortcut handler in the window.

EgContactBookPresenter >> initializeWindow: aWindowPresenter

super initializeWindow: aWindowPresenter.
self rootCommandsGroup installShortcutsIn: aWindowPresenter

20

3.10 In place customisation

3.10 In place customisation

Commander supports also the reuse and in place customisation of commands.
It means that the instance representing a command can be reused and mod-
ified on the spot: for example its name or description can be adapted to the
exact use context.

Here is an example that shows that we adapt twice the same command. We
will

• define a basic command (inspect)

• instantiated it with two different contexts, contexts that are dynamic –
we will pass blocks as contexts.

• change the description of the two commands.

Let us define a really simple and generic command which will simply inspect
the object.

EgContactBookCommand subclass: #EgInspectCommand
instanceVariableNames: ''
classVariableNames: ''
package: 'EgContactBook-Extensions'

EgInspectCommand >> initialize
super initialize.
self
name: 'Inspect';
description: 'Inspect the context of this command.'

EgInspectCommand >> execute
self context inspect

Using a block the context is computed at the moment the command is exe-
cuted and the name and description can be adapted for its specific usage as
shown in Figure 3-6.

EgContactBookPresenter class >>
extraCommandsWith: presenter
forRootGroup: aRootCommandsGroup

<extensionCommands>

aRootCommandsGroup / 'Context Menu'
register:

((CmCommandGroup named: 'Extra') asSpecGroup
description: 'Extra commands to help during development.';
register:

((EgInspectCommand forSpec context: [presenter
selectedContact])

name: 'Inspect contact';
description: 'Open an inspector on the selected

21

Commander: a Powerful and Simple Command Framework

contact.';
iconName: #smallFind;
yourself);

register:
((EgInspectCommand forSpec context: [presenter

contactBook])
name: 'Inspect contact book';
description: 'Open an inspector on the contact book.';
yourself);

yourself)

Figure 3-5 With menu extension.

3.11 Managing a menu bar

In addition to contextual menu creation sending the message asMenuPre-
senter to a group), commander supports menu bar and toolbar creation
sending the message asMenuBarPresenter or asToolbarPresenter to a
group. The logic is the same than for contextual menus : we define a group
and register it under a given root and we specify to the presenter to use this
group as a menubar.

Defining a print command.

Imagine that we have a new command to print the contact.

EgContactBookCommand subclass: #EgPrintContactCommand
instanceVariableNames: ''
classVariableNames: ''
package: 'EgContactBook'

EgPrintContactCommand >> initialize
super initialize.
self
name: 'Print';

22

3.11 Managing a menu bar

description: 'Print the contact book in Transcript.'

EgPrintContactCommand >> execute

Transcript open.
self contactBook contacts do: [:contact | self traceCr: contact

name , ' - ' , contact name]

Menu bar group.

We create a simple group that we call ’MenuBar’ (but it could be called any-
thing).

EgContactBookPresenter class >> buildMenuBarGroupWith: presenter
^ (CmCommandGroup named: 'MenuBar') asSpecGroup
register: (EgPrintContactCommand forSpec context: presenter);
yourself

We modify the root to get the menu bar group in addition the previous ones.

EgContactBookPresenter class >>
buildCommandsGroupWith: presenter
forRoot: rootCommandGroup

rootCommandGroup
register: (self buildMenuBarGroupWith: presenter);
register: (self buildContextualMenuGroupWith: presenter)

And we hook it into the widget as the last line of the initializePresenters
method. Notice the use of the message asMenuBarPresenter and the addi-
tion of a new instance variable called menuBar. We have to do it to give the
possibility to manage the menubar presenter as any other presenters.

EgContactBookPresenter >> initializePresenters
table := self newTable.
table
addColumn: (SpStringTableColumn title: 'Name' evaluated: #name);
addColumn: (SpStringTableColumn title: 'Phone' evaluated:
#phone).

table contextMenu: [(self rootCommandsGroup / 'Context Menu')
beRoot asMenuPresenter].

table items: contactBook contents.
menuBar := (self rootCommandsGroup / 'MenuBar') asMenuBarPresenter.

Finally to get the menu bar you should declare it in the layout.

EgContactBookPresenter class >> defaultLayout

^ SpBoxLayout newTopToBottom
add: #menuBar
withConstraints: [:constraints | constraints height: self

toolbarHeight];

23

Commander: a Powerful and Simple Command Framework

add: #table;
yourself

Figure 3-6 With menubar.

3.12 Conclusion

In this chapter we saw how you can define a simple command, execute it in
a given context. We show how you can turn command into menu item in
Spec20 by sending the message forSpec. You learned how we can reuse and
customize commands. We presented groups of commands as a way to struc-
ture menus and menubars.

In the next chapter we will provide more details about certain UI aspects.

24

CHA P T E R4
Tips and Tricks for Spec

In this chapter we will detail some APIs that can be useful and some tips and
tricks.

4.1 Icon Provider

The Commander’ Spec extension (Commander for short in the rest of the
chapter) has no preconcieved idea about where to look for icons. By default
it uses internally the fonctionality provided by Spec presenters.

Now Commander lets you also specify your own source of icon provider us-
ing the messageiconProvider:.

This way you can manage your own icon set without having to register in the
global icon manager system.

4.2 PharoLauncher icon tricks

You may want to do a specific treatment on your icon form before displaying
them. Here is a typical example made in the PharoLauncher to get a greyed
icon. The command redefine the method iconNamed: and apply an effect
before returning it.

PhLaunchImageCommand2 >> iconNamed: aName

^ (super iconNamed: aName) asGrayScaleWithAlpha

25

Tips and Tricks for Spec

4.3 Extra Spec behavior

The integration of Commander into Spec20 allows one to access features that
are only available for menu items. We can define the way a menu should be
managed when it cannot be executed: it can either be hidden (message be-
HiddenWhenCantBeRun) or disabled (message beDisabledWhenCantBeRun).
The last one is the default.

Therefore, when you specialize canBeExecuted to specify conditions under
which a menu is executable, the command uses the specify strategy to show
the fact that a menu item cannot be executed.

Similarly for there is the possibility to define where the command should
be displayed this is particularly useful for toolbar with the message beDis-
playedOnRightSide and beDisplayedOnLeftSide.

4.4 Contexts can be dynamic

If you want your command to work on a context that will change at execu-
tion, pass a block as argument of the context: message. The previous chap-
ter showed such usage. We show the example in the following method:

EgContactBookPresenter class >>
extraCommandsWith: presenter
forRootGroup: aRootCommandsGroup

<extensionCommands>

aRootCommandsGroup / 'Context Menu'
register:

((CmCommandGroup named: 'Extra') asSpecGroup
description: 'Extra commands to help during development.';
register:

((EgInspectCommand forSpec context: [presenter
selectedContact])

name: 'Inspect contact';
description: 'Open an inspector on the selected

contact.';
iconName: #smallFind;
yourself);

register:
((EgInspectCommand forSpec context: [presenter

contactBook])
name: 'Inspect contact book';
description: 'Open an inspector on the contact book.';
yourself);

yourself)

26

4.5 Toolbar

4.5 Toolbar

Commands can also be turned into a toolbar using the message asToolbarP-
resenter sent to a group of commands. If we take the same as the one pre-
sented for menu bar in the previous chapter.

We just have to use of the message asToolbarPresenter. We have to do it
to give the possibility to manage the menubar presenter as any other presen-
ters.

EgContactBookPresenter >> initializePresenters
table := self newTable.
table
addColumn: (SpStringTableColumn title: 'Name' evaluated: #name);
addColumn: (SpStringTableColumn title: 'Phone' evaluated:
#phone).

table contextMenu: [(self rootCommandsGroup / 'Context Menu')
beRoot asMenuPresenter].

table items: contactBook contents.
menuBar := (self rootCommandsGroup / 'MenuBar') asToolbarPresenter.

Finally to get the menu bar you should declare it in the layout.

EgContactBookPresenter class >> defaultLayout

^ SpBoxLayout newTopToBottom
add: #menuBar
withConstraints: [:constraints | constraints height: self

toolbarHeight];
add: #table;
yourself

An example taken from the Pharo tools, illustrates the use withi the method
asToolbarPresenterWith:.
StPlayground >> buildToolbar

^ self toolbarActions
asToolbarPresenterWith: [:presenter |

presenter
displayMode: self application toolbarDisplayMode;
addStyle: 'stToolbar']

StPlayground >> toolbarActions

^ CmCommandGroup forSpec
register: (CmCommandGroup forSpec
register: (StPlaygroundDoItCommand forSpecContext: self);
register: (StPlaygroundPublishCommand forSpecContext: self);
register: (StPlaygroundBindingsCommand forSpecContext: self);
register: (StPlaygroundPagesCommand forSpecContext: self);
yourself);

27

Tips and Tricks for Spec

yourself

4.6 Registration and navigation

Commands are often grouped together to act as menu groups. In the previ-
ous chapter we show that a group is structured as a composite tree of groups
and commands. Adding elements to such composite is done via the messages
register: aGroupOrCommand. You can register as many as commands or
groups as you need as shown by the previous toolbarActionsmethod

We already show that the message / navigates the tree and let you access the
corresponding subtree.

The Spec extension supports also the notion of order and substitution as fol-
lows:

• registerFirst: aGroupOrCommand registers the argument as first.

• registerLast: aGroupOrCommand registers the argument as last

• register: aGroupOrCommand after: another and register:aGroupOr-
Command before: another registers the argument relative to another
element.

• register: aGroupOrCommand insteadOf: another replace an ele-
ment by another.

• unregister: removes the element from the tree.

4.7 Conclusion

In this short chapter we saw some tips and tricks around Spec and Comman-
der. The next chapter shows the design of commander and the extensibility
mechanisms to that framework builder can simply reuse Commander instead
of reinventing yet another command pattern framework.

28

CHA P T E R5
For framework designers

The design of Commander favors strong extensibility while keeping its use
simple. The extensibility is brought in by using a simple decorator pattern.
The idea is to propose a simple API to users while giving the possibility to
modularly extend the framework. In this chapter, we explain the key aspects
of Commander so that developers of other frameworks can use it as the root
of their solution. We show the integration of Commander and Spec as a con-
crete use case.

5.1 Decorating commands

By default a command does not know about Spec specific behavior. It can be
used in other contexts such as scripting libraries as this was the case with
Gofer (Gofer was a scripting API to script monticello). The design of Com-
mander supports the following scenario: the idea is that the core behavior of
PharoLauncher should be able to be exposed as Clap command-line using the
fact that PharoLauncher define commands.

The Spec project extends Commander so that we use commands with spe-
cific aspects related to Spec. It uses the fact that Commander allows us to
decorate commands with decoration that are polymorphic to commands as
shown in Figure 5-1.

Let us describe Figure 5-1:

• The common abstract root class CmAbstractCommand defines way to
manage the context and execute a command.

• The class CmBlockCommand is a generic command whose behavior is
specified using a block.

29

For framework designers

name
description
decorateWith:

CmCommand

icon
shortcutKey
beDisabledWhenCantBeRun
beDisplayedOnLeftSide

CmUICommand

execute
context
canBeExecuted
acceptVisitor:
forContext:

CmAbstractCommand

decorated

name
description
block:
canBeExecutedBlock:

CmBlock
Command name

description
context
decoratedCommand

CmCommandDecorator

Figure 5-1 Commands and command decorators.

• The class CmCommand is the main root class of commands. Users will
usually subclass it. For example, EgAddContactCommand subclasses it
as shown in Figure 5-2.

Without Spec integration, the class CmCommand does not have any behavior
related to Spec. The only interesting extension point is the decorateWith:
method that is an extension hook as we show later.

• The class CmCommandDecorator is the root of command decorators. It
merely delegates to a decorated command. It supports dynamic name
and descriptions (to be able to get more specialized and dynamically
updated commands). At runtime, decorators will be created to wrap a
command and as such provide more information.

• The class CmUICommand is a decorator of command dedicated for UI
related state and actions. Note that it is not linked per se to Spec. It
offers some general functionalities related to UI, as we saw in previous
chapters:

– State: icon, shortcutKey

– Behavior: defining icon, and shorcutKey

Now we are ready to study the Spec integration.

5.2 Modular Spec command decoration

Figure 5-2 shows how Commander is extended to support Spec specific be-
havior and this in a modular way. First the class SpCommand is a Spec specific

30

5.2 Modular Spec command decoration

decorator. For example, it contains logic how to turn a command into a but-
ton presenter. Second, the package containing the Spec related code extends
the class CmCommand with the asSpecCommandmethod. The method asSpec-
Command decorates a command to define extra behavior responsible for the
addition of ui related functionality and state.

name
description
decorateWith:
asSpecCommand

CmCommand

icon
shortcutKey
beDisabledWhenCantBeRun
beDisplayedOnLeftSide

CmUICommand

execute
context
canBeExecuted
acceptVisitor:
forContext:

CmAbstractCommand

decorated

asSpecCommand
execute

EgAddContactCommand

name
description
block:
canBeExecutedBlock:

CmBlock
Command name

description
context
decoratedCommand

CmCommandDecorator

asButtonPresenter
SpCommand

Spec
Spec
Usage

UI

Core

Figure 5-2 Spec decorations and use.

The implementation is the following one

CmCommand >> asSpecCommand
^ self decorateWith: SpCommand

It means that the base command will be decorated by an instance of the class
SpCommand.

Remember that the method asSpecCommand is directly or indirectly used by
the developer to build commands that he will register to the command root
of its presenter. The following method shows a typicall command instantia-
tion.

EgContactBookPresenter >> buildAddingGroupWith: presenter
^ (CmCommandGroup named: 'Adding') asSpecGroup

description: 'Commands related to contact addition.';
register: (EgAddContactCommand forSpec context: presenter);
beDisplayedAsGroup;
yourself

The method forSpec is a handy creation class method.

CmCommand class >> forSpec
^ self new asSpecCommand

31

For framework designers

5.3 Spec Commander user perspective

What is interesting to note is that as an end-user the developer defining the
command has just to define the method asSpecCommand without having to
worry about the details of the implementation. Here is the command defini-
tion for the command of adding a contact in our contact book application.

EgAddContactCommand >> asSpecCommand
^ super asSpecCommand
shortcutKey: $n meta;
iconName: #changeAdd;
yourself

The command EgAddContactCommand is a subclass of CmCommand and not
SpCommand. If the execute method does not perform or use UI specific behav-
ior this makes sense and it makes possible to use the command without such
constraints. Now if your commands are UI specific you can also define them
as subclass of SpCommand.

SpCommand is a decorator so inheriting from it would be a mistake because
the state and behavior of command would not be available since there would
be no decorated command.

5.4 Decorating group of commands

Commander uses the same logic for group of commands as shown by Figure
5-3. Let us describe the hierarchy.

• The class CmAbstractCommandGroup is an abstract root defining ele-
mentary operation of group.

• The class CmCommandGroup is the central class from an end-user point
of view.

• The class CmCommandGroupDecorator is just a decorator.

On top of this the class CmUICommandGroup extends the basic decorator with
ui related behavior as shown in Figure 5-4.

5.5 Spec decoration

The Spec extension then is based on the definition of a specific decorator
SpCommandGroup and the method asSpecGroup defined as follows:

CmCommandGroup >> asSpecGroup
^ self decorateWith: SpCommandGroup

The class SpCommandGroup defines methods that are producing Spec object
often using the

32

5.6 Example of Visitor: toolbarBuilder

/
register:
unregister:
acceptVisitor:

CmAbstractCommand
Group

register:before:
register:instead:

CmCommandGroup

/
register:
unregister:
acceptVisitor:

CmCommandGroup
Decorator

decorated

Figure 5-3 Group and group decorators.

SpCommandGroup >> asMenuPresenter
^ SpMenuPresenterBuilder new
visit: self;
menuPresenter

/
register:
unregister:
acceptVisitor:

CmAbstractCommand
Group

register:before:
register:instead:
…
asSpecGroup

CmCommandGroup

/
register:
unregister:
acceptVisitor:

CmCommandGroup
Decorator

decorated

beDisplayedAsSubMenu
beDisplayedAsGroup
icon:

CmUICommandGroup

asToolbarPresenter
asMenuPresenter
asKMCategory

SpCommandGroup

Figure 5-4 Spec’s group and group decorators.

5.6 Example of Visitor: toolbarBuilder

Commander defines a simple visitor. This visitor is used in many places.
Here we present the SpToolBarPresenterBuilder responsible for turning

33

For framework designers

groups into a toolbar.

SpCommandGroup >> asToolbarPresenter
^ SpToolBarPresenterBuilder new
visit: self;
toolbarPresenter

SpvisitCommand: aCmCommandEntry
aCmCommandEntry positionStrategy
addButton: (SpToolBarButton new

label: aCmCommandEntry name;
help: aCmCommandEntry description;
icon: aCmCommandEntry icon;
action: [aCmCommandEntry execute];
yourself)

toToolbar: self toolbarPresenter

/
register:
unregister:
acceptVisitor:

CmAbstractCommand
Group

register:before:
register:instead:
…
asSpecGroup

CmCommandGroup

/
register:
unregister:
acceptVisitor:

CmCommandGroup
Decorator

decorated

beDisplayedAsSubMenu
beDisplayedAsGroup
icon:

CmUICommandGroup

asToolbarPresenter
asMenuPresenter
asKMCategory

SpCommandGroup

visit:
visitGroup:
visitCommand:

CmVisitor

name
description
decorateWith:
asSpecCommand

CmCommand

icon
shortcutKey
beDisabledWhenCantBeRun
beDisplayedOnLeftSide

CmUICommand

execute
context
canBeExecuted
acceptVisitor:
forContext:

CmAbstractCommand

decorated

asSpecCommand
execute

EgAddContactCommand

name
description
block:
canBeExecutedBlock:

CmBlock
Command name

description
context
decoratedCommand
dynamicName
dynamicDescription

CmCommandDecorator

asButtonPresenter
SpCommand

C
O
RE

U
I

Spec toolbarPresenter
visitCommand:

SpToolBarPresenterBu
ilder

Figure 5-5 Full design: Core, UI support and Spec integration.

5.7 Conclusion

To conclude this chapter Figure 5-5 gives a full overview of the design and
layers supported by Commander. We show that Commander proposes a sim-
ple way for user to express commands while at the same time commands can
be modularly decorated to add extra behavior. Commander20 is a central
piece of Pharo infrastructure and all the other commands solutions will be
ported to it.

34

	Illustrations
	Introduction
	A Simple Contact Book
	Contact book model
	Contact
	ContactBook
	Pre-filling up the contact book

	A simple graphical user interface
	Initializing the model
	Layout
	Widget initialization
	Interacting with user
	Some extra methods

	Conclusion

	Commander: a Powerful and Simple Command Framework
	Commands
	A little example.

	Defining commands
	Adding some convenience methods
	Adding the add contact command

	Adding the remove contact command
	Turning commands into menu items
	Introducing groups
	Extending menus
	Managing icons and shortcuts
	Enabling shortcuts
	In place customisation
	Managing a menu bar
	Defining a print command.
	Menu bar group.

	Conclusion

	Tips and Tricks for Spec
	Icon Provider
	PharoLauncher icon tricks
	Extra Spec behavior
	Contexts can be dynamic
	Toolbar
	Registration and navigation
	Conclusion

	For framework designers
	Decorating commands
	Modular Spec command decoration
	Spec Commander user perspective
	Decorating group of commands
	Spec decoration
	Example of Visitor: toolbarBuilder
	Conclusion

