
Supplementary Material for Contrastive Learning of Musical Representations

A. AUDIO PREPROCESSING

In this paper, we used raw audio waveform data for training in both the pre-training and linear evaluation phases. The
default audio sample rate for all experiments is 22 050 Hz, except for the sample rate experiment in Section C.2. The
MagnaTagATune dataset contains monophonic 30-second audio fragments in MP3 format, sampled at 16 000 Hz. Some of
the audio fragments originate from the same song. We reconstructed the original song by concatenating the fragments into
a single file, to avoid occurances of fragments of the same song in the same batch of positive- and negative pairs, thereby
ensuring i.i.d. data for training.

The audio files from the Million Song Dataset were obtained from the 7digital service, which provides stereo 30-second
audio fragments in MP3 format sampled at 44 100 Hz.

All files were re-sampled to 22 000 Hz, 16 000 Hz and 8 000 Hz and decoded to the PCM format with ffmpeg, using
the following command:

ffmpeg -i {input_file}.mp3 -ar {target_sample_rate} {output_file}.wav

This is the only preprocessing step that we performed before training.

B. DATA AUGMENTATION DETAILS

The default pre-training setting, which we also used for our best models, uses 8 audio data augmentations. Not all aug-
mentations are necessarily applied to all inputs: each independent data augmentation is applied with a probability tuned
during hyperparameter gridsearch. The most effective augmentations and their probabilities are presented in Section 4.3.
The implementation details for each augmentation are provided below. We used the ‘torchaudio-augmentations‘ Python
package for all our experiments [45].

B.1 Random Crop

The audio is cropped with a number of samples s 2 {20 736, 43 740, 59 049} for sample rates 8 000, 16 000 and 22 050 Hz
respectively. To ensure that every sample in the batch is of the same size, the fragment’s window we can crop from with
original length S is adjusted to S � s.

B.2 Polarity inversion

The polarity of the audio signal is inverted by multiplying the amplitude of the signal by �1.

B.3 Additive White Gaussian Noise

White Gaussian noise is added to the complete signal with a signal-to-noise ratio (SNR) of 80 decibels.

B.4 Gain Reduction

The gain of the audio signal is reduced at random using a value drawn uniformly between -6 and 0 decibels. In our
implementation, we use the torchaudio.transforms.Vol interface.

B.5 Frequency Filter

A frequency filter is applied to the signal using the essentia library [46]. We process the signal with either the LowPass
or HighPass algorithm [47], which is determined by a coin flip.

For the low-pass filter, we draw the cut-off frequency from a uniform distributions between 2 200 and 4 000 Hz. All
frequencies above the drawn cut-off frequency are filtered from the signal.

Similarly for the high-pass filter, we draw the cut-off frequency from a uniform distributions between 200 and 1200 Hz.
All frequencies below the cut-off frequency are filtered from the signal.



B.6 Delay

The signal is delayed by a value chosen randomly between 200 and 500 milliseconds, in 50ms increments. Subsequently,
the delayed signal is added to the original signal with a volume factor of 0.5, i.e., we multiply the signal’s amplitude by 0.5.
An example implementation of this digital signal processing effect is given below in Python using PyTorch:

import random

import torch

import numpy as np

ms = random.choice(

np.arange(200, 500, 50)

)

offset = int(ms * (sample_rate / 1000))

beginning = torch.zeros(audio.shape[0], offset)

end = audio[:, :-offset]

delayed_signal = torch.cat((beginning, end), dim=1)

delayed_signal = delayed_signal * self.volume_factor

audio = (audio + delayed_signal) / 2

B.7 Pitch Shift

The pitch of the signal is shifted up or down, depending on the pitch interval that is drawn from a uniform distribution
between -5 and 5 semitones, i.e., up to a perfect fourth higher or lower than the original signal. We assume 12-tone equal
temperament tuning that divides a single octave in 12 semitones.

Pitch shifting is done using the libsox library, which is interfaced from the wavaugment Python library [34].

B.8 Reverb

To alter the original signal’s acoustics, we apply a Schroeder reverberation effect [48]. This is again done using the libsox
library that is interfaced from the wavaugment Python library [34].

C. ADDITIONAL EXPERIMENTAL RESULTS

C.1 Batch Size

The complexity of our contrastive learning approach increases with larger batch sizes, which may result in better represen-
tations. We pre-train from scratch until convergence with varying batch sizes and study its effect on the linear evaluation
performance in Table C.1. While our smallest model already shows competitive performance compared to fully supervised
models, the performance increased when using 96 examples per batch. Our largest model required more parameters to
score consistently higher than our middle-sized model (⇡25M parameters vs. 2.5M parameters). We hypothesise that the
task of inferring the positive pair of 2.6 second long raw musical audio fragments, in a pool of 254 negative examples
(2⇥ (128� 1)), may be simply too hard for a smaller encoder.

Tag Clip

Batch Size ROC-AUC PR-AUC ROC-AUC PR-AUC

128 89.7 37.0 94.0 70.0
96 88.7 35.6 93.0 69.2
48 87.9 34.6 92.9 68.8

Table C.1: Effect of the batch size used during self-supervised training on the linear music classification performance.

C.2 Sample Rates

We show in Table C.2 that there is a marginal penalty to the final scores for the self-supervised models when re-sampling
the audio to 8 000 Hz and 16 000 Hz respectively, which is in line with previous work [26]. Since re-sampling disturbs the
frequency spectrum, we isolate its contribution by disregarding additional augmentations, i.e., only apply random cropping.



Tag Clip

SR ROC-AUC PR-AUC ROC-AUC PR-AUC

8 000 84.8 29.8 90.6 62.9
16 000 85.5 30.4 91.0 64.1
22 050 85.8 30.5 91.3 64.8

Table C.2: Effect of varying the input audio’s sample rate on the linear music classification performance.

C.3 Additional Hidden Layer and Training Duration

After pre-training with the self-supervised objective, we performed a linear evaluation to test the expressivity of the rep-
resentations with a classifier of limited capacity. To further assess the representations’ usability, we add a single hidden
layer to our classifier and again measure the performance on the downstream task of music classification. The results of
this experiment are shown in Table C.3 for linear evaluation (left of the forward slashes) as well as when a hidden layer is
added (right of the slashes), for different pre-training durations measured in epochs.

Contrastive learning techniques also benefit from longer training compared to their supervised equivalent [17]. While
larger batch sizes increase the pretext task complexity as shown in Appendix C.1, training longer increases the number
of natural variations of the data, which is a diserable goal in representation learning [27], due to the random augmentation
scheme. We pre-train from scratch until convergence and set the batch size to 96. Table C.3 also shows that increasing the
self-supervised training duration improves downstream performance.

Tag Clip

Epochs ROC-AUC PR-AUC ROC-AUC PR-AUC

10 000 88.7 / 89.3 35.6 / 36.0 93.2 / 93.5 69.3 / 70.0
3 000 88.5 / 88.9 35.1 / 35.5 93.0 / 93.3 69.2 / 69.7
1 000 88.3 / 88.6 34.4 / 34.9 92.3 / 93.1 68.6 / 69.2
300 87.1 / 87.4 32.7 / 32.5 92.0 / 92.0 66.6 / 66.7
100 86.4 / 86.6 30.9 / 31.3 91.3 / 91.3 64.1 / 64.6

Table C.3: Performance difference of a linear classifier and when a single hidden layer is added to the classifier on the
downstream music classification performance, for different self-supervised pre-training durations.

C.4 Qualitative Results

Figure C.1 shows t-SNE visualisations [49] of our best self-supervised models representations hCLMR and hCPC, for a
randomly set of music tracks from the validation set. We show that both self-supervised models can cleanly seperate the
classes.

To get an understanding of what the self-supervised models capture from music, we show in Figure C.2 the magnitude
spectrum of the learned filters of the sample-level convolutional layers (layers 1, 4 and 6) for CLMR and CPC, pre-trained
on the MagnaTagATune dataset. We perform gradient ascent on a randomly initialised waveform of length 729, i.e., a value
that is close to a typical frame size and also interacts conveniently with the convolutional structure of the encoder network,
and subsequently calculate the magnitude spectrum. The x-axis plots the filter number, the y-axis the magnitude spectrum
for a filter number. Lastly, we sort the plot by the frequency of the peak magnitude.

In CLMR, the first layer is sensitive to a single, very small band of frequencies around 7500 Hz, while in higher layers
the filters spread themselves first linearly and then non-linearly across the full range. CPC shows a similar pattern in the
higher layers, but shows a strong activation of two frequencies that span an octave in the first layer. Conversely, the filters
of the supervised-trained encoder have a non-linearity that is found in frame-level end-to-end learning [36], as well as in
perceptual pitch scales such as mel or Bark scales [50, 51].

Figure C.3 shows the sorted tag-wise ROC-AUC scores for the top 50 tags in the MagnaTagATune dataset, reported for
linear evaluation of the trained self-supervised CLMR and CPC models, and the fully end-to-end-trained supervised model.
We show that no single tag loses more than 4% ROC-AUC when trained using self-supervised pre-training and fine-tuning
is only performed with a linear classifier, as compared to the supervised benchmark.



(a) hCLMR (b) hCPC

Figure C.1: t-SNE manifolds of the hidden vectors of music audio from a subset of 10 music tracks, i.e., in this case
classes, from the validation set. Each point represents a 2.67 second long music fragment belonging to a music track.



(a) CLMR(1)
MTAT (b) CLMR(4)

MTAT (c) CLMR(6)
MTAT

(d) CPC(1)
MTAT (e) CPC(4)

MTAT (f) CPC(6)
MTAT

(g) CLMR(1)
Billboard (h) CLMR(4)

Billboard (i) CLMR(6)
Billboard

(j) CPC(1)
Billboard (k) CPC(4)

Billboard (l) CPC(6)
Billboard

Figure C.2: Normalised magnitude spectrum of the filters of the self-supervised models in the sample-level convolution
layers, sorted by the frequency of the peak magnitude. Gradient ascent is performed on a randomly initialised waveform of
729 samples (close to typical frame size) and its magnitude spectrum is calculated subsequently. Each vertical line in the
graph represents the frequency spectrum of a different filter. The first three images are taken from a pre-trained, converged
CLMR model, the last three from a CPC model, on the MagnaTagATune or Billboard datasets



Figure C.3: Tag-wise ROC-AUC scores for the top-50 tags in the MagnaTagATune dataset, reported for linear, logis-
tic regression classifiers trained on representations of self-supervised models CLMR and CPC, and compared to a fully
supervised, end-to-end SampleCNN model.


