
Methods

• Data: We obtained 897 high-resolution (0.7x0.7x0.7mm) T1-weighted
volumes from the Human Connectome Project 900 dataset (Van et al.,
2013). We used 30 images for training and the rest for validation.

• Preprocessing and LR generation: We set the maximum value by
clipping the upper 0.1% value, and normalized the data by adjusting the
data range from 0 to 1. We downsampled the original HR volume to LR
volume in factor of 2.

• Tensor feature extraction from volume patch: We computed the

gradient matrix 𝐆 ∈ ℝ9
3×3 that represents gradients for each axis from

9×9×9 volume patch. Then we defined the ‘image-gradient tensor’

𝐃 = 𝐆k
T𝐖𝐆k ∈ ℝ

3×3 , where 𝐖 is a Gaussian weighting matrix.
(Romano et al., 2017). We extracted tensor shape and orientation
components from each tensor (Gahm et al., 2014).

• Clustering and training: The tensor shape and orientation features
were clustered using expectation maximization. For each combination
of two centroid (label), we established the mapping between the LR
patches and center HR intensities of the patches as a filter by linear
regression.

• Testing: In test stage, for each voxel, a tensor was constructed from the
surrounding patch. We selected a filter by finding the nearest label
from the learned clustering models. We applied the filter to the patch
to predict the HR intensity for the voxel.

We developed a novel fully 3D super-resolution method for MRI by
constructing tensors from volume patches and establishing the
mapping between LR patches and HR intensities using the tensor
features. We demonstrated that our proposed method achieved much
better recovery of the HR details than the conventional methods,
effectively reducing the training time. In future work, we will extend
our work in different modalities of brain imaging.

Conclusions

Introduction

• Motivation: Magnetic resonance imaging (MRI) with high spatial
resolution provides abundant anatomical information for diagnostic
decisions. However, high spatial resolution MRI acquisition yields
longer acquisition time, smaller spatial coverage and lower signal-to-
noise ratio (SNR) because of hardware capacity limitations. Taking
advantage of the single image super resolution (SISR), high-resolution
(HR) image can be obtained by recovering super-resolution (SR) from
low-resolution (LR) reducing MRI acquisition time.

• Goal: In this study, we propose a fully 3D SISR method for human
brain MRI that constructs image gradient-based tensor and uses
several linear filter models based on the features of the tensor.
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• Figure 2 shows an example of 3D MRI SR using tricubic, SRCNN and
our proposed method. The proposed method and SRCNN (d, c)
better recovered the HR details (a) especially in the gray-white
matter boundary than the interpolation method (b).

• We measured the peak signal-to-noise ration (PSNR) – our method
(35.97± 0.88, mean± std) significantly outperformed the
interpolation method (32.17± 0.58) by 11.8%, and was slightly
better than SRCNN (35.80± 0.84). Our method produced the
structural similarity index measure (SSIM) (0.9827± 0.0041) that is
1.7% higher than the interpolation method (0.9664± 0.0054), and
comparable to SRCNN (0.9833± 0.0038).

Results

Figure 2. Visual comparison in axial view with interpolation and SRCNN methods in the upscaling factor of 2. (a) Original HR image, (b) Interpolated 

image from downscaled (a) (c) applied SRCNN from (b)

Figure 1. Overall flowchart of the proposed method


