
[Team 32] Sarcasm Detection in News Headlines
Meenakshi Madugula(mmadugu), Roshani Narasimhan(rnarasi2), Sankalp Gaharwar(ssgaharw)

Abstract—Sarcasm detection within news headlines can serve
as an important metric, not only for gauging how relevant
a news article is, but also for indicating the quality of the
news agency who publishes the article. We aim to identify and
classify sarcastic news headlines. Sarcasm detection needs us
to perform the task of encoding the prior context associated
with the words, in tandem with the set of reference words. The
prospect of using the historical states for classification lends itself
brilliantly to the use of Neural Network architectures. Thus,
we build a LSTM model and a transfer- learning-based BERT
model for our Sarcasm Detection tasks. We explore how the
associated parameters for each of the model need to be tuned
for being able to perform the classification tasks with maximum
accuracy. Finally, we empirically compare the performance for
the best implementations of our models and suggest the most apt
approach for the Sarcasm Detection task. The dataset is taken
from Kaggle [4].

I. MODEL TRAINING AND SELECTION

A. The Model

Long short-term memory(LSTM) models are widely popu-
lar in dealing with text-based data mining tasks as they are
designed to exploit the inherent sequence present in textual
data. LSTM which is a modified RNN, can also remember the
context of the data [3]. LSTM were however developed with
the goal of solving the vanishing gradient problem, which were
predominant in traditional RNNs. An LSTM unit consists of a
cell and three gates, namely - an input gate, an output gate and
a forget gate. The cell retains values it has seen previously,
for arbitrary intervals of time. Three gates are responsible
for regulating the flow of information across the cell. All
gates use the sigmoid activation. The input gate determines
which value from input should be used to modify the cell’s
hidden state. The output gate uses the input and the memory
of the unit to decide the output. The forget gate decides what
information should be kept based on the information passed
from the previous hidden state and the current input. The tanh
activation helps in bringing the values provided to it, to the
range of -1 to 1.

We believe the use of LSTM [7] model will facilitate us by
retaining the context of the comments in memory, to determine
whether a headline is sarcastic or not. Due to their property of
being able to selectively remember patterns for long duration
of time, LSTMs have an edge over conventional feed-forward
neural networks and RNNs.

We used a tokenizer from Keras [1] to convert the data to
a format that is suitable for the LSTM model. The tokenizer
assigns a unique token for all the words present in the training
dataset and converts every sentence to a sequence of numeric
tokens. The maximum vocabulary of the tokenizer could be
tuned to allow the model to train faster, however since we

focused on getting better accuracy, we decided to not have a
lower limit for the maximum number of words than the words
present in the training dataset. The sequences generated by
the tokenizer were same length as that of the sentences (one
token per word). In order to make all the sequences of uniform
length, we used zero padding and limited the length of each
sequence to a maximum sequence length of 32. We decided
on the value 32, since most headlines in the entire dataset
consisted of less than 32 words.

We used the GloVe [6] embedding as the first layer of
our LSTM model, to facilitate it to perform better. GloVe
is an unsupervised learning algorithm for obtaining vector
representations for words. Training is performed on aggregated
global word-word co-occurrence statistics from a corpus, and
the resulting representations showcase interesting linear sub-
structures of the word vector space. We used the pre-trained
word vectors which were generated based on Wikipedia 2014
+ Gigaword 5 corpora. There were three sets of word vectors
of embedding dimension 100, 200 and 300 respectively, with
larger dimensions capturing more information. Thus the em-
bedding dimension is a hyper parameter - higher dimension of
the vector for each word leads to capturing more information.
We provide the tokens generated by the tokenizer as input this
embedding layer, thus each input sequence is of length 32 and
the vector corresponding to each token is generated based on
GloVe. We allowed the pre-trained embedding layer also to
learn during the training process.

We added a spatial dropout layer with a dropout value
of 0.4 which helps in promoting independence between one
dimensional feature maps instead of the individual elements.
Then we added the LSTM layer with 196 units and tried
different values of dropout, recurrent dropout (used for back
propagation) and activation functions. The output dense layer
is activated using a softmax function. The model summary is
shown in Figure 1. The hyperparameters for an LSTM model
are the number of units in the LSTM, number of epochs,
activation function, learning rate, optimizer, dropout rate and
recurrent dropout rate. We would be focussing on tuning these
hyperparameters for our task.

Another model we use is BERT [2] - a transfer-learning
based technique developed by Google, which has been pre-
trained on Book Corpus and the Wikipedia database. It has
been trained on two tasks - next word prediction and next
sentence entailment. Since the BERT model is capable of
understanding language, we hypothesize that it can grasp the
inherent sarcasm of a headline efficiently. The fine tuned pre-
trained BERT model uses transfer learning to predict if the
sentence is sarcastic. We chose BERT base uncased model for
our experiments. It has 12 layers with a hidden size of 768 per



Fig. 1. LSTM Model Architecture

layer. BERT expects input in a specified format. The sentences
are preceeded with a special [CLS] token. This token will be
used to make the final prediction. The sentence is then padded
by a [PAD] token to matain a uniform sequence length across
sentences. The model architecture is shown in Figure - 2. The
output from the [CLS] token shown as class label in the figure
is passed through a dense softmax layer. The probabilities from
the softmax layer are used to predict a 0 or 1. Hyper parameter
tuning was performed to select the optimal sequence length of
a sentence and the optimal number of epochs. Since BERT is
computationally expensive, the fine tuning with our dataset
takes about 5-6 hours to train for 3 epochs.

Fig. 2. BERT Model Architecture

B. Baseline

For our baseline model, we are using the Naive Bayes
Classifier that is built using the concepts of the Bayes The-
orem. The premise for choosing this model is that it allows
us to map the posterior probability distribution for the context
information data within our corpus. By building predictors that
are independent of each other in terms of the features that
they consider for classification. Naive Bayes helps us to build
a Sarcasm Detection model that is not only quite accurate,

but fairly speedy in terms of computation time as well. We
implement a Gaussian Naive Bayes classifier that is built using
a Normally-Distributed probability distribution for the features
within our Sarcasm Detection data set. For building the model,
we use the Sci-Kit Learn library within Python.

We find that the Naive Bayes classifier does not give us
much options to perform hyper-parameter-tuning and hence
does not perform classification tasks in a manner that is
competitive with the Neural Network Architectures such as
LSTM and Transfer-learning approaches such as BERT. Both
BERT and LSTM give us ample scope for performing hyper-
parameter tuning and thus, we are able to adapt our model’s
parameters for improving the classification accuracy. Among
the two, we expect the BERT model to perform better than
the LSTM model since it is much more adapted to Language-
oriented classification tasks and hence, we can model our
Sarcasm Detection classifiers on the features within our data
set.

II. EXPERIMENTAL SECTION

A. Metrics

Since our aim is to filter sarcastic comments, it is important
that our model does not filter out legit comments. Hence the
main focus is on the precision of (particularly label ”1”) rather
than accuracy. To get a complete idea how the model performs,
we supplement the precision metric with F1 score to evaluate
the model. Additionally, metrics such as recall, accuracy and
auc-roc score are reported along with the confusion matrix.

B. Model Selection

The Naive Bayes Model is basic and not hyper parameter
tuned. The performance of the model was not satisfactory.
Hence we decided to tune a LSTM model to be considered as
a baseline.

We split the data into training plus validation and test data in
the ratio 7:3. Train plus validation data was split in the ratio
7:3 to make the final training and validation data. We used
the same datasets for our experiment with the BERT model as
well.

The hyper parameters for the LSTM layer were dropout
values, learning rate, optimizer, activation function and number
of epochs. A separate validation dataset and grid search
method was used to select the best parameters. The different
optimizers tried were SGD, RMSprop and Adam. While using
SGD, the loss and accuracy values did not change over the
epochs. The model froze and resulted in vanishing gradients
as there was no improvement over the epochs. RMSprop and
Adam performed almost the same in terms of the validation
accuracy. Since Adam internally uses RMSprop, Adam was
selected. Learning rate values [1e-1,1e-2] were tried but the
loss function was unstable and jumping around. Hence we
decided to try [1e-3,1e-4], out of this 1e-3 was observed to
perform well as the curve was smooth.

Activation functions [’tanh’, ’relu’, ’sigmoid’] and Dropout
[0,0.2,0.5,0.7] were combined and tried. A few of the model
architectures and their results are listed in the table I. The



results listed are with an embedding layer, followed by 196
LSTM units and a softmax layer. If the validation and training
accuracy are far apart it means that there is over fitting. From
the table I we can see that the first model has a training
accuracy of 0.99 but only 0.81 validation accuracy. Hence
increasing the dropout values should help over come this. This
is observed as a trend in the first 3 rows of the table where the
activation is ’relu’ function as both the accuracy values move
closer to each other. The next 3 rows of the table correspond
to the ’sigmoid’ function. However there is overfitting again
without dropout (Row 4 of the table). The same trend is
followed here as well as the dropout values increases. It is
also seen for the ’tanh’ function as well. Overall the ’sigmoid’
performs worse on the validation accuracy. But there is not
much difference between the ’tanh’ and the ’relu’ function.
However, the loss function curve of ’relu’ was found to be
smoother than that of ’tanh’. Observing the dropout values
from the table overfitting is slightly overcome with a dropout
of 0.5 (’relu’) with train accuracy at 95 and validation accuracy
at 82. The loss values are also close enough. The trends in the
table are consistent to show that having a dropout helps the
model to perform better.

To select the number of epochs, the learning curve for
accuracy and loss was plotted for all the models. This was
implemented using the history object returned by the Keras [1]
fit method. The validation and training loss and accuracy were
plotted against 20 epochs. The curves are shown in Figure - 3
and Figure - 4. From the graphs, there are signs of overfitting
as both curves are farther apart. Hence we decided to increase
the dropout to 0.7 and also decrease the dimensions of the
embedding to 100. The performance of this model is shown
in the last row of Table I. We can see that the train accuracy is
0.87 and validation accuracy is 0.81. The gap between them is
further reduced. The corresponding learning curves are shown
in Figure 5 and Figure 6. It can clearly been seen from the
figures that the gap has been bridged between the training and
validation accuracy as well as loss.The curves are found to be
flat after the first few epochs, Hence 10 was selected as the
optimal number of epochs. Hence the model with embedding
layer of dimension 100, ’relu’ activation, 196 hidden units in
LSTM layer and dropout of 0.7 was selected as the best model.
This model also acted as the baseline for our language model.

Since the BERT [2] model is pre-trained, there were only a
few parameters to tune. Since running BERT is computation-
ally expensive we did only a few runs. The hyper parameters
were sequence length, batch size, learning rate and number of
epochs. The maximum sentence length for our data was around
34. Hence 32 was selected as the maximum sequence length.
The batch size of 32, 64 and 128 was tested. The optimal
results were found were of size 32. Learning rate was tried
in the ranges [1e-3,1e-5,2e-5]. 2e-5 was found to be optimal.
The maximum epochs tested were for 5, however the optimal
number to avoid over fitting was found to be 3.

Fig. 3. Learning curve for accuracy with 300 Embedding & 0.5 dropout

Fig. 4. Learning curve for loss with 300 Embedding & 0.5 dropout

Fig. 5. Learning curve for accuracy with 100 Embedding & 0.7 dropout



TABLE I
MODELS PERFORMANCE COMPARISON

Dropout Activation Train Acc, Loss Valid Acc, Loss

No relu 0.99, 0.02 0.81, 0.75
0.2 relu 0.97, 0.06 0.82, 0.57
0.5 relu 0.95, 0.1 0.83, 0.46
No sigmoid 0.98, 0.04 0.79, 0.73
0.2 sigmoid 0.97, 0.07 0.79, 0.64
0.5 sigmoid 0.94, 0.13 0.80, 0.52
No tanh 0.99, 0.02 0.81, 0.77
0.2 tanh 0.97, 0.05 0.82, 0.64
0.5 tanh 0.94, 0.12 0.83, 0.53
0.7 relu (100 Embed Dim) 0.87, 0.28 0.81, 0.39

Fig. 6. Learning curve for loss with 100 Embedding & 0.7 dropout

C. Performance and Comparison to Baseline

The models were evaluated for Precision, Recall, F1 Score
and Accuracy metrics. We also looked at the confusion matrix.
The metrics of all the three models - Naive Bayes, LSTM
(tuned as per previous section) and BERT are listed in Table -
II, Table - III and Table IV respectively. Their corresponding
Confusion matrices are shown in Table - V, Table - VI and
Table VII respectively. We used the classification report and
confusion matrix function of the sklearn package [5].

From Table II the precision of label 1 seems high but the F1
score for the label 1 is only 23%. Label 0 seems to perform
well. From Table V many very few sentences were predicted
as sarcastic, hence the precision is high but there is a hit in the
recall and F1. Since this was one of the baseline models, let us
compare it with the other models. There is a jump in precision,
recall and F1 for label 1 from Naive Bayes to LSTM model.
This can be observed from table II and III. Since sarcastic
classification is a difficult problem that requires more than
the probabilities of the words, Naive Bayes does not perform
well. LSTM is able to classify sentences better by using its
inherent properties. It archives a precision of 84% and F1 of
80% for label 1. The confusion matrix for LSTM (Table VI)
show that only 435 samples were misclassified for label 1.

BERT outperforms both the baseline models as it is a language
model and is able to better understand sarcastic contexts.
BERT archives a 95% precision for label 1 with a F1 of 92%
(Table - IV). It has a significant increase in performance from
the LSTM model. From the confusion matrix (Table VII) it
can be seen that very few examples are misclassified compared
to the LSTM and Naive Bayes model. Hence we can conclude
that the pre-trained language model can boost the performance
of sarcastic comment classification task.

TABLE II
NAIVE BAYES PERFORMANCE METRICS

Labels Precision Recall F1 Score Support

0 0.54 0.95 0.69 3113
1 0.71 0.14 0.23 2897
Macro Avg 0.63 0.54 0.46 6010
Weighted Avg 0.62 0.56 0.47 6010

TABLE III
LSTM PERFORMANCE METRICS

Labels Precision Recall F1 Score Support

0 0.80 0.86 0.83 3113
1 0.84 0.77 0.80 2897
Macro Avg 0.82 0.81 0.81 6010
Weighted Avg 0.82 0.82 0.81 6010

TABLE IV
BERT PERFORMANCE METRICS

Labels Precision Recall F1 Score Support

0 0.91 0.95 0.93 3113
1 0.95 0.89 0.92 2897
Macro Avg 0.93 0.92 0.92 6010
Weighted Avg 0.93 0.92 0.92 6010

TABLE V
NAIVE BAYES CONFUSION MATRIX

True—Pred 0 1

0 2955 158
1 2504 393

TABLE VI
LSTM CONFUSION MATRIX

True—Pred 0 1

0 2678 435
1 675 2222

REFERENCES

[1] F. Chollet et al. Keras. https://keras.io, 2015.
[2] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training

of deep bidirectional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

https://keras.io


TABLE VII
BERT CONFUSION MATRIX

True—Pred 0 1

0 2964 149
1 305 2592

[3] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9:1735–80, 12 1997.

[4] R. Misra and P. Arora. Sarcasm detection using hybrid neural network.
arXiv preprint arXiv:1908.07414, 2019.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[6] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for
word representation. pages 1532–1543, 2014.

[7] A. Sherstinsky. Fundamentals of recurrent neural network (rnn) and long
short-term memory (lstm) network. “Elsevier ”Physica D: Nonlinear
Phenomena” journal, Volume 404, March 2020: Special Issue on Machine
Learning and Dynamical Systems”, abs/1810.04805, 2018.


	Model Training and Selection
	The Model
	Baseline

	Experimental section
	Metrics
	Model Selection
	Performance and Comparison to Baseline

	References

