fastRG
quickly samples a broad class of network models known as
generalized random dot product graphs (GRDPGs). In particular, for
matrices fastRG
samples a matrix
fastRG
has two primary use cases:
- Sampling enormous sparse graphs that cannot feasibly be sampled with existing samplers, and
- validating new methods for random dot product graphs (and variants).
fastRG
makes the latent parameters of random dot product graphs
readily available to users, such that simulation studies for community
detection, subspace recovery, etc, are straightforward.
You can install the released version of fastRG from CRAN with:
install.packages("fastRG")
And the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("RoheLab/fastRG")
There are two stages to sampling from generalized random dot product
graphs. First, we sample the latent factors fastRG
mimics this two-stage
sample structure. For example, to sample from a stochastic blockmodel,
we first create the latent factors.
library(fastRG)
#> Loading required package: Matrix
set.seed(27)
sbm <- sbm(n = 1000, k = 5, expected_density = 0.01)
#> Generating random mixing matrix `B` with independent Uniform(0, 1) entries. This distribution may change in the future. Explicitly set `B` for reproducible results.
You can specify the latent factors and the mixing matrix Uniform[0, 1]
entries and nodes were assigned
randomly to communities with equal probability of falling in all
communities. Printing the result object gives us some additional
information:
sbm
#> Undirected Stochastic Blockmodel
#> --------------------------------
#>
#> Nodes (n): 1000 (arranged by block)
#> Blocks (k): 5
#>
#> Traditional SBM parameterization:
#>
#> Block memberships (z): 1000 [factor]
#> Block probabilities (pi): 5 [numeric]
#> Factor model parameterization:
#>
#> X: 1000 x 5 [dgCMatrix]
#> S: 5 x 5 [dgeMatrix]
#>
#> Poisson edges: TRUE
#> Allow self loops: TRUE
#>
#> Expected edges: 4995
#> Expected degree: 5
#> Expected density: 0.01
Now, conditional on this latent representation, we can sample graphs.
fastRG
supports several different output types, each of which is
specified by the suffix to sample_*()
functions. For example, we can
obtain an edgelist in a tibble
with:
sample_edgelist(sbm)
#> # A tibble: 4,985 × 2
#> from to
#> <int> <int>
#> 1 111 127
#> 2 86 109
#> 3 43 97
#> 4 61 94
#> 5 22 143
#> 6 4 89
#> 7 30 159
#> 8 119 210
#> 9 41 197
#> 10 145 175
#> # ℹ 4,975 more rows
but we can just as easily obtain the graph as a sparse matrix
A <- sample_sparse(sbm)
A[1:10, 1:10]
#> 10 x 10 sparse Matrix of class "dsCMatrix"
#>
#> [1,] . . . . . . . . . .
#> [2,] . . . . . . . . . .
#> [3,] . . . . . . . . . .
#> [4,] . . . . . . . . . .
#> [5,] . . . . . . . . . .
#> [6,] . . . . . . . . . .
#> [7,] . . . . . . . . . .
#> [8,] . . . . . . . . . .
#> [9,] . . . . . . . . . .
#> [10,] . . . . . . . . . .
or an igraph object
sample_igraph(sbm)
#> IGRAPH 3386a61 UN-- 1000 5033 --
#> + attr: name (v/c)
#> + edges from 3386a61 (vertex names):
#> [1] 63 --76 135--215 59 --182 21 --134 180--218 53 --189 138--139 21 --78
#> [9] 49 --70 76 --127 6 --139 64 --214 31 --132 56 --93 75 --144 9 --185
#> [17] 33 --150 115--165 163--213 6 --53 47 --179 25 --26 7 --51 10 --55
#> [25] 120--183 43 --152 25 --34 84 --216 114--191 34 --127 152--164 178--189
#> [33] 106--181 28 --38 41 --89 34 --139 6 --213 24 --153 32 --173 47 --111
#> [41] 157--205 108--133 98 --116 26 --117 18 --194 18 --32 74 --209 18 --128
#> [49] 13 --127 12 --26 1 --133 52 --72 128--213 13 --173 61 --214 33 --142
#> [57] 22 --111 163--191 191--205 5 --108 9 --72 6 --217 113--122 90 --154
#> + ... omitted several edges
Note that every time we call sample_*()
we draw a new sample.
A <- sample_sparse(sbm)
B <- sample_sparse(sbm)
all(A == B) # random realizations from the SBM don't match!
#> [1] FALSE
If you would like to obtain the singular value decomposition of the population adjacency matrix conditional on latent factors, that is straightforward:
s <- eigs_sym(sbm)
s$values
#> [1] 5.0999835 1.8365365 0.6679806 -0.5241303 -0.8109449
Note that eigendecompositions and SVDS (for directed graphs) use
RSpectra
and do not require explicitly forming large dense population
adjacency matrices; the population decompositions should be efficient in
both time and space for even large graphs.
There are several essential tools to modify graph sampling that you should know about. First there are options that affect the latent factor sampling:
-
expected_degree
: Set the expected average degree of the graph by scaling sampling probabilities. We strongly, strongly recommend that you always set this option. If you do not, it is easy accidentally sample from large and dense graphs. -
expected_density
: Set the expected density of the graph by scaling sampling probabilities. You cannot specify bothexpected_degree
andexpected_density
at the same time.
In the second stage of graph sampling, the options are:
-
poisson_edges
: EitherTRUE
orFALSE
depending on whether you would like a Bernoulli graph or a Poisson multi-graph. Scaling viaexpected_degree
assumes a Poisson multi-graph, with some limited exceptions. -
allow_self_edges
: Whether nodes should be allowed to connect to themselves. EitherTRUE
orFALSE
.
igraph
allows users to sample SBMs (in
You can find the original research code associated with fastRG
here. There is also a Python
translation of the original code in Python
here.
Both of these implementations are bare bones.
[1] Rohe, Karl, Jun Tao, Xintian Han, and Norbert Binkiewicz. 2017. “A Note on Quickly Sampling a Sparse Matrix with Low Rank Expectation.” Journal of Machine Learning Research; 19(77):1-13, 2018. https://www.jmlr.org/papers/v19/17-128.html