forked from LianjiaTech/BELLE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generation_html.py
59 lines (52 loc) · 1.67 KB
/
generation_html.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pandas as pd
import json
import argparse
def read_data(path):
datas = []
with open(path) as f:
for l in f.readlines():
datas.append(eval(l)) # json.loads(l) 在加载某些行数据存在问题,这里使用eval
return datas
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Finetune a transformers model on a causal language modeling task"
)
parser.add_argument(
"--prompt_path",
type=str,
default="eval_prompt.json",
)
parser.add_argument(
"--eval_set_path",
type=str,
default="eval_set.json",
)
parser.add_argument(
"--html_path",
type=str,
default="template_html/ChatGPT_Score.html.temp",
)
parser.add_argument(
"--output_html_path",
type=str,
default="ChatGPT_Score.html",
)
args = parser.parse_args()
prompt_path = args.prompt_path
eval_set_path = args.eval_set_path
output_html_path = args.output_html_path
html_path = args.html_path
prompt_data = read_data(prompt_path)
eval_set_data = read_data(eval_set_path)
eval_set_data = json.dumps(eval_set_data, ensure_ascii=False)
prompt_data = json.dumps(prompt_data, ensure_ascii=False)
eval_set_str = f"const eval_set = {eval_set_data}"
eval_prompt_str = f"const eval_prompt = {prompt_data}"
with open(html_path, "r") as f:
text = f.read()
text = text.replace("const eval_set = []", eval_set_str)
text = text.replace("const eval_prompt = []", eval_prompt_str)
with open(output_html_path, "w") as f:
f.write(text)