
RMG-Py API Reference
Release 3.1.0

William H. Green, Richard H. West, and the RMG Team

Apr 23, 2021





CONTENTS

1 RMG API Reference 3
1.1 Arkane (arkane) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Chemkin files (rmgpy.chemkin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Physical constants (rmgpy.constants) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Database (rmgpy.data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Kinetics (rmgpy.kinetics) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
1.6 Molecular representations (rmgpy.molecule) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
1.7 Pressure dependence (rmgpy.pdep) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
1.8 QMTP (rmgpy.qm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
1.9 Physical quantities (rmgpy.quantity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
1.10 Reactions (rmgpy.reaction) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
1.11 Reaction mechanism generation (rmgpy.rmg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
1.12 Reaction system simulation (rmgpy.solver) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
1.13 Species (rmgpy.species) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
1.14 Statistical mechanics (rmgpy.statmech) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
1.15 Thermodynamics (rmgpy.thermo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
1.16 RMG Exceptions (rmgpy.exceptions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Bibliography 247

Python Module Index 249

Index 251

i



ii



RMG-Py API Reference, Release 3.1.0

RMG is an automatic chemical reaction mechanism generator that constructs kinetic models composed of elementary
chemical reaction steps using a general understanding of how molecules react.

This is the API Reference guide for RMG. For instructions on how to use RMG, please refer to the User Guide.

For the latest documentation and source code, please visit http://reactionmechanismgenerator.github.io/RMG-Py/

CONTENTS 1

http://reactionmechanismgenerator.github.io/RMG-Py/


RMG-Py API Reference, Release 3.1.0

2 CONTENTS



CHAPTER

ONE

RMG API REFERENCE

This document provides the complete details of the application programming interface (API) for the Python version
of the Reaction Mechanism Generator. The functionality of RMG-Py is divided into many modules and subpackages.
An overview of these components is given in the table below. Click on the name of a component to learn more and
view its API.

Module Description
arkane Computing chemical properties from quantum chemistry calculations
rmgpy.chemkin Reading and writing models in Chemkin format
rmgpy.constants Physical constants
rmgpy.data Working with the RMG database
rmgpy.kinetics Kinetics models of chemical reaction rates
rmgpy.molecule Molecular representations using chemical graph theory
rmgpy.pdep Pressure-dependent kinetics from master equation models
rmgpy.qm On-the-fly quantum calculations
rmgpy.quantity Physical quantities and unit conversions
rmgpy.reaction Chemical reactions
rmgpy.rmg Automatic reaction mechanism generation
rmgpy.solver Modeling reaction systems
rmgpy.species Chemical species
rmgpy.statmech Statistical mechanics models of molecular degrees of freedom
rmgpy.thermo Thermodynamics models of chemical species
rmgpy.exceptions Custom RMG exception classes

1.1 Arkane (arkane)

The arkane subpackage contains the main functionality for Arkane, a tool for computing thermodynamic and kinetic
properties of chemical species and reactions.

3



RMG-Py API Reference, Release 3.1.0

1.1.1 Reading electronic structure software log files

Class Description
Log Base class for generic log files
GaussianLog Extract chemical parameters from Gaussian log files
MolproLog Extract chemical parameters from Molpro log files
OrcaLog Extract chemical parameters from Orca log files
QChemLog Extract chemical parameters from Q-Chem log files
TeraChemLog Extract chemical parameters from TeraChem log files

1.1.2 Input

Function Description
load_input_file() Load an Arkane job input file

1.1.3 Output

Function Description
PrettifyVisitor Custom Abstract Syntax Tree (AST) visitor class
prettify() Pretty formatting for a Python syntax string
get_str_xyz() Pretty formatting for XYZ coordinates
save_thermo_lib() Save an RMG thermo library
save_kinetics_lib() Save an RMG kinetics library

1.1.4 Job classes

Class Description
Arkane Main class for Arkane jobs
StatMechJob Compute the molecular degrees of freedom for a molecular conformation
ThermoJob Compute the thermodynamic properties of a species
KineticsJob Compute the high pressure-limit rate coefficient for a reaction using transition state theory
PressureDependenceJobCompute the phenomenological pressure-dependent rate coefficients 𝑘(𝑇, 𝑃 ) for a uni-

molecular reaction network
ExplorerJob Explore a potential energy surface starting from a source

1.1.5 Sensitivity analysis

Class Description
KineticsSensitivity Perform sensitivity analysis for a kinetics job
PDepSensitivity Perform sensitivity analysis for a pressure dependence job

4 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

1.1.6 Utility modules

Class Description
arkane.common Contains common.ArkaneSpecies and other commonly used functions
arkane.util Other utility functions

arkane.ess.Log

arkane.ess.GaussianLog

arkane.ess.MolproLog

arkane.ess.OrcaLog

arkane.ess.QchemLog

arkane.ess.TeraChemLog

Arkane input files

arkane.KineticsJob

arkane.Arkane

Saving Arkane output

This module contains helper functionality for writing Arkane output files.

class arkane.output.PrettifyVisitor(level=0, indent=4)
A class for traversing an abstract syntax tree to assemble a prettier version of the code used to create the tree.
Used by the prettify() function.

generic_visit(node)
Called if no explicit visitor function exists for a node.

visit(node)
Visit a node.

visit_Call(node)
Return a pretty representation of the class or function call represented by node.

visit_Dict(node)
Return a pretty representation of the dict represented by node.

visit_List(node)
Return a pretty representation of the list represented by node.

visit_Num(node)
Return a pretty representation of the number represented by node.

visit_Str(node)
Return a pretty representation of the string represented by node.

visit_Tuple(node)
Return a pretty representation of the tuple represented by node.

1.1. Arkane (arkane) 5



RMG-Py API Reference, Release 3.1.0

visit_UnaryOp(node)
Return a pretty representation of the number represented by node.

arkane.output.get_str_xyz(spc)
Get a string representation of the 3D coordinates from the conformer.

Parameters spc (Species) – A Species instance.

Returns A string representation of the coordinates

Return type str

arkane.output.prettify(string, indent=4)
Return a “pretty” version of the given string, representing a snippet of Python code such as a representation of
an object or function. This involves splitting of tuples, lists, and dicts (including parameter lists) onto multiple
lines, indenting as appropriate for readability.

arkane.output.save_kinetics_lib(rxn_list, path, name, lib_long_desc)
Save an RMG kinetics library.

Parameters

• rxn_list (list) – Entries are Reaction object instances for which kinetics will be saved.

• path (str) – The base folder in which the kinetic library will be saved.

• name (str) – The library name.

• lib_long_desc (str) – A multiline string with relevant description.

arkane.output.save_thermo_lib(species_list, path, name, lib_long_desc)
Save an RMG thermo library.

Parameters

• species_list (list) – Entries are Species object instances for which thermo will be
saved.

• path (str) – The base folder in which the thermo library will be saved.

• name (str) – The library name.

• lib_long_desc (str) – A multiline string with relevant description.

arkane.PressureDependenceJob

arkane.StatMechJob

arkane.ThermoJob

arkane.ExplorerJob

Sensitivity Analysis

This module contains classes for sensitivity analysis of kinetics and pressure-dependent jobs.

class arkane.sensitivity.KineticsSensitivity(job, output_directory)
The KineticsSensitivity class represents an instance of a sensitivity analysis job performed for a Kinetic-
sJob. The attributes are:

6 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

At-
tribute

Description

condi-
tions

A list of the conditions at which the sensitivity coefficients are calculated

job The KineticsJob object
f_rates A list of forward rates from job at the respective conditions in the appropriate units
r_rates A list of reverse rates from job at the respective conditions in the appropriate units
f_sa_rates A dictionary with Species as keys and each value is a list of forward rates from job at the respec-

tive conditions in the appropriate units after perturbing the corresponding Species’ E0
r_sa_rates Same as f_sa_rates, only for the reverse direction
f_sa_coefficientsA dictionary with Species keys and sensitivity coefficients in the forward direction as values
r_sa_coefficientsA dictionary with Species keys and sensitivity coefficients in the reverse direction as values

execute()
Execute the sensitivity analysis for a :class:KineticsJob: object

perturb(species)
Perturb a species’ E0

plot()
Plot the SA results as horizontal bars

save()
Save the SA results as tabulated data as well as in YAML format

unperturb(species)
Return the species’ E0 to its original value

class arkane.sensitivity.PDepSensitivity(job, output_directory, perturbation)
The Sensitivity class represents an instance of a sensitivity analysis job performed for a PressureDepen-
denceJob. The attributes are:

At-
tribute

Description

con-
di-
tions

A list of the conditions (each entry is a list of one T and one P quantities) at which the sensitivity
coefficients are calculated

job The PressureDependenceJob object
rates A dictionary with net_reactions as keys. Values are lists of forward rates from job for the respective

path reaction at the respective conditions in the appropriate units
sa_rates A dictionary with string representations of net_reactions as keys. Values are dictionaries with Wells

or TransitionStates as keys and each value is a list of forward rates from job at the respective condi-
tions after perturbing the corresponding well or TS’s E0

sa_coefficientsA dictionary with similar structure as sa_rates, containing the sensitivity coefficients in the forward
direction

execute()
Execute the sensitivity analysis for a :class:PressureDependenceJob: object

perturb(entry, unperturb=False)
Perturb E0 of entry which could be either a :class:TransitionState or a :class:Configuration In the latter
case, only the first species in the Configuration.species list is perturbed. The perturbation is done by
addition of the energy amount in self.perturbation. If unperturb is False, the perturbation is addition of the
energy amount in self.perturbation. If unperturb is False, this is done by subtracting.

1.1. Arkane (arkane) 7



RMG-Py API Reference, Release 3.1.0

plot(wells, transition_states)
Draw the SA results as horizontal bars

save(wells, transition_states)
Save the SA output as tabulated data as well as in YAML format

unperturb(entry)
A helper function for calling self.perturb cleanly when unperturbing

arkane.common

arkane.util

1.2 Chemkin files (rmgpy.chemkin)

The rmgpy.chemkin module contains functions for reading and writing of Chemkin and Chemkin-like files.

1.2.1 Reading Chemkin files

Function Description
load_chemkin_file() Load a reaction mechanism from a Chemkin file
load_species_dictionary() Load a species dictionary from a file
load_transport_file() Load a Chemkin transport properties file
read_kinetics_entry() Read a single reaction entry from a Chemkin file
read_reaction_comments() Read the comments associated with a reaction entry
read_reactions_block() Read the reactions block of a Chemkin file
read_thermo_entry() Read a single thermodynamics entry from a Chemkin file
remove_comment_from_line() Remove comment text from a line of a Chemkin file or species dictionary

1.2.2 Writing Chemkin files

Function Description
save_chemkin_file() Save a reaction mechanism to a Chemkin file
save_species_dictionary() Save a species dictionary to a file
save_transport_file() Save a Chemkin transport properties file
save_html_file() Save an HTML file representing a Chemkin mechanism
save_java_kinetics_library() Save a mechanism to a (Chemkin-like) kinetics library for RMG-Java
get_species_identifier() Return the Chemkin-valid identifier for a given species
mark_duplicate_reactions() Find and mark all duplicate reactions in a mechanism
write_kinetics_entry() Write a single reaction entry to a Chemkin file
write_thermo_entry() Write a single thermodynamics entry to a Chemkin file

8 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

Reading Chemkin files

Main functions

rmgpy.chemkin.load_chemkin_file()
Load a Chemkin input file located at path on disk to path, returning lists of the species and reactions in the
Chemkin file. The ‘thermo_path’ point to a separate thermo file, or, if ‘None’ is specified, the function will look
for the thermo database within the chemkin mechanism file

rmgpy.chemkin.load_species_dictionary()
Load an RMG dictionary - containing species identifiers and the associated adjacency lists - from the file located
at path on disk. Returns a dict mapping the species identifiers to the loaded species. Resonance isomers for each
species are automatically generated.

rmgpy.chemkin.load_transport_file()
Load a Chemkin transport properties file located at path and store the properties on the species in species_dict.

Helper functions

rmgpy.chemkin.read_kinetics_entry()
Read a kinetics entry for a single reaction as loaded from a Chemkin file. The associated mapping of labels to
species species_dict should also be provided. Returns a Reaction object with the reaction and its associated
kinetics.

rmgpy.chemkin.read_reaction_comments()
Parse the comments associated with a given reaction. If the comments come from RMG (Py or Java), parse
them and extract the useful information. Return the reaction object based on the information parsed from these
comments. If read if False, the reaction is returned as an “Unclassified” LibraryReaction.

rmgpy.chemkin.read_reactions_block()
Read a reactions block from a Chemkin file stream.

This function can also read the reactions.txt and pdepreactions.txt files from RMG-Java kinetics
libraries, which have a similar syntax.

rmgpy.chemkin.read_thermo_entry()
Read a thermodynamics entry for one species in a Chemkin file. Returns the label of the species and the
thermodynamics model as a NASA object.

Format specification at http://www2.galcit.caltech.edu/EDL/public/formats/chemkin.html

rmgpy.chemkin.remove_comment_from_line()
Remove a comment from a line of a Chemkin file or species dictionary file.

Returns the line and the comment. If the comment is encoded with latin-1, it is converted to utf-8.

Writing Chemkin files

Main functions

rmgpy.chemkin.save_chemkin_file()
Save a Chemkin input file to path on disk containing the provided lists of species and reactions. If
check_for_duplicates is False then we don’t check for unlabeled duplicate reactions, thus saving time (eg. if you
are sure you’ve already labeled them as duplicate).

1.2. Chemkin files (rmgpy.chemkin) 9

http://www2.galcit.caltech.edu/EDL/public/formats/chemkin.html


RMG-Py API Reference, Release 3.1.0

rmgpy.chemkin.save_species_dictionary()
Save the given list of species as adjacency lists in a text file path on disk.

If old_style==True then it saves it in the old RMG-Java syntax.

rmgpy.chemkin.save_transport_file()
Save a Chemkin transport properties file to path on disk containing the transport properties of the given list of
species.

The syntax is from the Chemkin TRANSPORT manual. The first 16 columns in each line of the database are
reserved for the species name (Presently CHEMKIN is programmed to allow no more than 16-character names.)
Columns 17 through 80 are free-format, and they contain the molecular parameters for each species. They are,
in order:

1. An index indicating whether the molecule has a monatomic, linear or nonlinear geometrical configuration.
If the index is 0, the molecule is a single atom. If the index is 1 the molecule is linear, and if it is 2, the
molecule is nonlinear.

2. The Lennard-Jones potential well depth 𝜖/𝑘𝐵 in Kelvins.

3. The Lennard-Jones collision diameter 𝜎 in Angstroms.

4. The dipole moment 𝜇 in Debye. Note: a Debye is 10−18𝑐𝑚3/2𝑒𝑟𝑔1/2.

5. The polarizability 𝛼 in cubic Angstroms.

6. The rotational relaxation collision number 𝑍𝑟𝑜𝑡 at 298K.

7. After the last number, a comment field can be enclosed in parenthesis.

rmgpy.chemkin.save_html_file()
Save an output HTML file from the contents of a RMG-Java output folder

rmgpy.chemkin.save_java_kinetics_library()
Save the reaction files for a RMG-Java kinetics library: pdepreactions.txt and reactions.txt given a list of reac-
tions, with species.txt containing the RMG-Java formatted dictionary.

Helper functions

rmgpy.chemkin.get_species_identifier()
Return a string identifier for the provided species that can be used in a Chemkin file. Although the Chemkin
format allows up to 16 characters for a species identifier, this function uses a maximum of 10 to ensure that all
reaction equations fit in the maximum limit of 52 characters.

rmgpy.chemkin.write_kinetics_entry()
Return a string representation of the reaction as used in a Chemkin file. Use verbose = True to turn on kinetics
comments. Use commented = True to comment out the entire reaction. Use java_library = True in order to
generate a kinetics entry suitable for an RMG-Java kinetics library.

rmgpy.chemkin.write_thermo_entry()
Return a string representation of the NASA model readable by Chemkin. To use this method you must have
exactly two NASA polynomials in your model, and you must use the seven-coefficient forms for each.

rmgpy.chemkin.mark_duplicate_reactions()
For a given list of reactions, mark all of the duplicate reactions as understood by Chemkin.

This is pretty slow (quadratic in size of reactions list) so only call it if you’re really worried you may have
undetected duplicate reactions.

10 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

1.3 Physical constants (rmgpy.constants)

The rmgpy.constants module contains module-level variables defining relevant physical constants relevant in
chemistry applications. The recommended method of importing this module is

import rmgpy.constants as constants

so as to not place the constants in the importing module’s global namespace.

The constants defined in this module are listed in the table below:

Table 1: Physical constants defined in the rmgpy.constants module
Symbol Constant Value Description
𝐸h E_h 4.35974434 × 10−18 J Hartree energy
𝐹 F 96485.3365 C/mol Faraday constant
𝐺 G 6.67384 × 10−11 m3/kg · s2 Newtonian gravitational constant
𝑁A Na 6.02214179 × 1023 mol−1 Avogadro constant
𝑅 R 8.314472 J/mol · K gas law constant
𝑎0 a0 5.2917721092 × 10−11 m Bohr radius
𝑐 c 299792458 m/s speed of light in a vacuum
𝑒 e 1.602176565 × 10−19 C elementary charge
𝑔 g 9.80665 m/s2 standard acceleration due to gravity
ℎ h 6.62606896 × 10−34 J · s Planck constant
~ hbar 1.054571726 × 10−34 J · s reduced Planck constant
𝑘B kB 1.3806504 × 10−23 J/K Boltzmann constant
𝑚e m_e 9.10938291 × 10−31 kg electron rest mass
𝑚n m_n 1.674927351 × 10−27 kg neutron rest mass
𝑚p m_p 1.672621777 × 10−27 kg proton rest mass
𝑚u amu 1.660538921 × 10−27 kg atomic mass unit
𝜋 pi 3.14159 . . .

1.4 Database (rmgpy.data)

1.4.1 General classes

Class/Function Description
Entry An entry in a database
Database A database of entries
LogicNode A node in a database that represents a logical collection of entries
LogicAnd A logical collection of entries, where all entries in the collection must match
LogicOr A logical collection of entries, where any entry in the collection can match
make_logic_node() Create a LogicNode based on a string representation

1.3. Physical constants (rmgpy.constants) 11



RMG-Py API Reference, Release 3.1.0

1.4.2 Thermodynamics database

Class Description
ThermoDepository A depository of all thermodynamics parameters for one or more species
ThermoLibrary A library of curated thermodynamics parameters for one or more species
ThermoGroups A representation of a portion of a database for implementing the Benson group additivity

method
ThermoDatabase An entire thermodynamics database, including depositories, libraries, and groups

1.4.3 Kinetics database

Class Description
DepositoryReaction A reaction with kinetics determined from querying a kinetics depository
LibraryReaction A reaction with kinetics determined from querying a kinetics library
TemplateReaction A reaction with kinetics determined from querying a kinetics group additivity or rate rules

method
ReactionRecipe A sequence of actions that represent the process of a chemical reaction
KineticsDepository A depository of all kinetics parameters for one or more reactions
KineticsLibrary A library of curated kinetics parameters for one or more reactions
KineticsGroups A set of group additivity values for a reaction family, organized in a tree
KineticsRules A set of rate rules for a reaction family
KineticsFamily A kinetics database for one reaction family, including depositories, libraries, groups, and

rules
KineticsDatabase A kinetics database for all reaction families, including depositories, libraries, groups, and

rules

1.4.4 Statistical mechanics database

Class Description
GroupFrequencies A set of characteristic frequencies for a group in the frequency database
StatmechDepository A depository of all statistical mechanics parameters for one or more species
StatmechLibrary A library of curated statistical mechanics parameters for one or more species
StatmechGroups A set of characteristic frequencies for various functional groups, organized in a tree
StatmechDatabase An entire statistical mechanics database, including depositories, libraries, and groups

12 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

1.4.5 Statistical mechanics fitting

Class/Function Description
DirectFit DQED class for fitting a small number of vibrational frequencies and hindered rotors
PseudoFit DQED class for fitting a large number of vibrational frequencies and hindered rotors

by assuming degeneracies for both
PseudoRotorFit DQED class for fitting a moderate number of vibrational frequencies and hindered

rotors by assuming degeneracies for hindered rotors only
fit_statmech_direct()Directly fit a small number of vibrational frequencies and hindered rotors
fit_statmech_pseudo()Fit a large number of vibrational frequencies and hindered rotors by assuming degen-

eracies for both
fit_statmech_pseudo_rotors()Fit a moderate number of vibrational frequencies and hindered rotors by assuming

degeneracies for hindered rotors only
fit_statmech_to_heat_capacity()Fit vibrational and torsional degrees of freedom to heat capacity data

rmgpy.data.base.Database

class rmgpy.data.base.Database(entries=None, top=None, label='', name='', solvent=None,
short_desc='', long_desc='', metal=None, site=None, facet=None)

An RMG-style database, consisting of a dictionary of entries (associating items with data), and an optional tree
for assigning a hierarchy to the entries. The use of the tree enables the database to be easily extensible as more
parameters are available.

In constructing the tree, it is important to develop a hierarchy such that siblings are mutually exclusive, to
ensure that there is a unique path of descent down a tree for each structure. If non-mutually exclusive siblings
are encountered, a warning is raised and the parent of the siblings is returned.

There is no requirement that the children of a node span the range of more specific permutations of the parent.
As the database gets more complex, attempting to maintain complete sets of children for each parent in each
database rapidly becomes untenable, and is against the spirit of extensibility behind the database development.

You must derive from this class and implement the load_entry(), save_entry(),
process_old_library_entry(), and generate_old_library_entry() methods in order to load
and save from the new and old database formats.

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

are_siblings(node, node_other)
Return True if node and node_other have the same parent node. Otherwise, return False. Both node and
node_other must be Entry types with items containing Group or LogicNode types.

descend_tree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

1.4. Database (rmgpy.data) 13



RMG-Py API Reference, Release 3.1.0

generate_old_tree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

get_entries_to_save()
Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

get_species(path, resonance=True)
Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)
Load an RMG-style database from the file at location path on disk. The parameters local_context and
global_context are used to provide specialized mapping of identifiers in the input file to corresponding
functions to evaluate. This method will automatically add a few identifiers required by all data entries, so
you don’t need to provide these.

load_old(dictstr, treestr, libstr, num_parameters, num_labels=1, pattern=True)
Load a dictionary-tree-library based database. The database is stored in three files: dictstr is the path to
the dictionary, treestr to the tree, and libstr to the library. The tree is optional, and should be set to ‘’ if not
desired.

load_old_dictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty
line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

load_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path.

load_old_tree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

match_node_to_child(parent_node, child_node)
Return True if parent_node is a parent of child_node. Otherwise, return False. Both parent_node and
child_node must be Entry types with items containing Group or LogicNode types. If parent_node and
child_node are identical, the function will also return False.

match_node_to_node(node, node_other)
Return True if node and node_other are identical. Otherwise, return False. Both node and node_other
must be Entry types with items containing Group or LogicNode types.

match_node_to_structure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure
at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

14 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.get_all_labeled_atoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

parse_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

remove_group(group_to_remove)
Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also
update the parent/child relationships

Returns the removed group

save(path)
Save the current database to the file at location path on disk.

save_dictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

save_old(dictstr, treestr, libstr)
Save the current database to a set of text files using the old-style syntax.

save_old_dictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

save_old_library(path)
Save the current database library to a text file using the old-style syntax.

save_old_tree(path)
Save the current database tree to a text file using the old-style syntax.

rmgpy.data.kinetics.DepositoryReaction

class rmgpy.data.kinetics.DepositoryReaction(index=- 1, reactants=None, products=None,
specific_collider=None, kinetics=None, re-
versible=True, transition_state=None, du-
plicate=False, degeneracy=1, pairs=None,
depository=None, family=None, entry=None)

A Reaction object generated from a reaction depository. In addition to the usual attributes, this class includes
depository and entry attributes to store the library and the entry in that depository that it was created from.

calculate_coll_limit(temp, reverse)
Calculate the collision limit rate in m3/mol-s for the given temperature implemented as recommended in
Wang et al. doi 10.1016/j.combustflame.2017.08.005 (Eq. 1)

calculate_microcanonical_rate_coefficient(e_list, j_list, reac_dens_states,
prod_dens_states, T)

Calculate the microcanonical rate coefficient 𝑘(𝐸) for the reaction reaction at the energies e_list in J/mol.
reac_dens_states and prod_dens_states are the densities of states of the reactant and product configurations

1.4. Database (rmgpy.data) 15



RMG-Py API Reference, Release 3.1.0

for this reaction. If the reaction is irreversible, only the reactant density of states is required; if the reaction
is reversible, then both are required. This function will try to use the best method that it can based on the
input data available:

• If detailed information has been provided for the transition state (i.e. the molecular degrees of free-
dom), then RRKM theory will be used.

• If the above is not possible but high-pressure limit kinetics 𝑘∞(𝑇 ) have been provided, then the
inverse Laplace transform method will be used.

The density of states for the product prod_dens_states and the temperature of interest T in K can also
be provided. For isomerization and association reactions prod_dens_states is required; for dissociation
reactions it is optional. The temperature is used if provided in the detailed balance expression to determine
the reverse kinetics, and in certain cases in the inverse Laplace transform method.

calculate_tst_rate_coefficient(T)
Evaluate the forward rate coefficient for the reaction with corresponding transition state TS at temperature
T in K using (canonical) transition state theory. The TST equation is

𝑘(𝑇 ) = 𝜅(𝑇 )
𝑘B𝑇

ℎ

𝑄‡(𝑇 )

𝑄A(𝑇 )𝑄B(𝑇 )
exp

(︂
− 𝐸0

𝑘B𝑇

)︂
where 𝑄‡ is the partition function of the transition state, 𝑄A and 𝑄B are the partition function of the
reactants, 𝐸0 is the ground-state energy difference from the transition state to the reactants, 𝑇 is the
absolute temperature, 𝑘B is the Boltzmann constant, and ℎ is the Planck constant. 𝜅(𝑇 ) is an optional
tunneling correction.

can_tst()
Return True if the necessary parameters are available for using transition state theory – or the microcanon-
ical equivalent, RRKM theory – to compute the rate coefficient for this reaction, or False otherwise.

check_collision_limit_violation(t_min, t_max, p_min, p_max)
Warn if a core reaction violates the collision limit rate in either the forward or reverse direction at the
relevant extreme T/P conditions. Assuming a monotonic behaviour of the kinetics. Returns a list with the
reaction object and the direction in which the violation was detected.

copy()
Create a deep copy of the current reaction.

degeneracy
The reaction path degeneracy for this reaction.

If the reaction has kinetics, changing the degeneracy will adjust the reaction rate by a ratio of the new
degeneracy to the old degeneracy.

draw(path)
Generate a pictorial representation of the chemical reaction using the draw module. Use path to specify
the file to save the generated image to; the image type is automatically determined by extension. Valid
extensions are .png, .svg, .pdf, and .ps; of these, the first is a raster format and the remainder are
vector formats.

ensure_species(reactant_resonance, product_resonance)
Ensure the reaction contains species objects in its reactant and product attributes. If the reaction is found
to hold molecule objects, it modifies the reactant, product and pairs to hold Species objects.

Generates resonance structures for Molecules if the corresponding options, reactant_resonance and/or
product_resonance, are True. Does not generate resonance for reactants or products that start as Species
objects.

fix_barrier_height(force_positive)
Turns the kinetics into Arrhenius (if they were ArrheniusEP) and ensures the activation energy is at least

16 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

the endothermicity for endothermic reactions, and is not negative only as a result of using Evans Polanyi
with an exothermic reaction. If force_positive is True, then all reactions are forced to have a non-negative
barrier.

fix_diffusion_limited_a_factor(T)
Decrease the pre-exponential factor (A) by the diffusion factor to account for the diffusion limit at the
specified temperature.

generate_3d_ts(reactants, products)
Generate the 3D structure of the transition state. Called from model.generate_kinetics().

self.reactants is a list of reactants self.products is a list of products

generate_high_p_limit_kinetics()
Used for incorporating library reactions with pressure-dependent kinetics in PDep networks. Only imple-
mented for LibraryReaction

generate_pairs()
Generate the reactant-product pairs to use for this reaction when performing flux analysis. The exact
procedure for doing so depends on the reaction type:

Reaction type Template Resulting pairs
Isomerization A -> C (A,C)
Dissociation A -> C + D (A,C), (A,D)
Association A + B -> C (A,C), (B,C)
Bimolecular A + B -> C + D (A,C), (B,D) or (A,D), (B,C)

There are a number of ways of determining the correct pairing for bimolecular reactions. Here we try a
simple similarity analysis by comparing the number of heavy atoms. This should work most of the time,
but a more rigorous algorithm may be needed for some cases.

generate_reverse_rate_coefficient(network_kinetics, Tmin, Tmax, surface_site_density)
Generate and return a rate coefficient model for the reverse reaction. Currently this only works if the
kinetics attribute is one of several (but not necessarily all) kinetics types.

If the reaction kinetics model is Sticking Coefficient, please provide a nonzero surface site density in
mol/m^2 which is required to evaluate the rate coefficient.

get_enthalpies_of_reaction(Tlist)
Return the enthalpies of reaction in J/mol evaluated at temperatures Tlist in K.

get_enthalpy_of_reaction(T)
Return the enthalpy of reaction in J/mol evaluated at temperature T in K.

get_entropies_of_reaction(Tlist)
Return the entropies of reaction in J/mol*K evaluated at temperatures Tlist in K.

get_entropy_of_reaction(T)
Return the entropy of reaction in J/mol*K evaluated at temperature T in K.

get_equilibrium_constant(T, type, surface_site_density)
Return the equilibrium constant for the reaction at the specified temperature T in K and reference sur-
face_site_density in mol/m^2 (2.5e-05 default) The type parameter lets you specify the quantities used in
the equilibrium constant: Ka for activities, Kc for concentrations (default), or Kp for pressures. This func-
tion assumes a reference pressure of 1e5 Pa for gas phases species and uses the ideal gas law to determine
reference concentrations. For surface species, the surface_site_density is the assumed reference.

get_equilibrium_constants(Tlist, type)
Return the equilibrium constants for the reaction at the specified temperatures Tlist in K. The type parame-

1.4. Database (rmgpy.data) 17



RMG-Py API Reference, Release 3.1.0

ter lets you specify the quantities used in the equilibrium constant: Ka for activities, Kc for concentrations
(default), or Kp for pressures. Note that this function currently assumes an ideal gas mixture.

get_free_energies_of_reaction(Tlist)
Return the Gibbs free energies of reaction in J/mol evaluated at temperatures Tlist in K.

get_free_energy_of_reaction(T)
Return the Gibbs free energy of reaction in J/mol evaluated at temperature T in K.

get_mean_sigma_and_epsilon(reverse)
Calculates the collision diameter (sigma) using an arithmetic mean Calculates the well depth (epsilon)
using a geometric mean If reverse is False the above is calculated for the reactants, otherwise for the
products

get_rate_coefficient(T, P, surface_site_density)
Return the overall rate coefficient for the forward reaction at temperature T in K and pressure P in Pa,
including any reaction path degeneracies.

If diffusion_limiter is enabled, the reaction is in the liquid phase and we use a diffusion limitation to correct
the rate. If not, then use the intrinsic rate coefficient.

If the reaction has sticking coefficient kinetics, a nonzero surface site density in mol/m^2 must be provided

get_reduced_mass(reverse)
Returns the reduced mass of the reactants if reverse is False Returns the reduced mass of the products if
reverse is True

get_source()
Return the database that was the source of this reaction. For a DepositoryReaction this should be a Kinet-
icsDepository object.

get_stoichiometric_coefficient(spec)
Return the stoichiometric coefficient of species spec in the reaction. The stoichiometric coefficient is
increased by one for each time spec appears as a product and decreased by one for each time spec appears
as a reactant.

get_surface_rate_coefficient(T, surface_site_density)
Return the overall surface rate coefficient for the forward reaction at temperature T in K with surface site
density surface_site_density in mol/m2. Value is returned in combination of [m,mol,s]

get_url()
Get a URL to search for this reaction in the rmg website.

has_template(reactants, products)
Return True if the reaction matches the template of reactants and products, which are both lists of
Species objects, or False if not.

is_association()
Return True if the reaction represents an association reaction A + B −−⇀↽−− C or False if not.

is_balanced()
Return True if the reaction has the same number of each atom on each side of the reaction equation, or
False if not.

is_dissociation()
Return True if the reaction represents a dissociation reaction A −−⇀↽−− B + C or False if not.

is_isomerization()
Return True if the reaction represents an isomerization reaction A −−⇀↽−− B or False if not.

18 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

is_isomorphic(other, either_direction, check_identical, check_only_label,
check_template_rxn_products, generate_initial_map, strict, save_order)

Return True if this reaction is the same as the other reaction, or False if they are different. The compar-
ison involves comparing isomorphism of reactants and products, and doesn’t use any kinetic information.

Parameters

• either_direction (bool, optional) – if False,then the reaction direction must
match.

• check_identical (bool, optional) – if True, check that atom ID’s match (used for
checking degeneracy)

• check_only_label (bool, optional) – if True, only check the string representation,
ignoring molecular structure comparisons

• check_template_rxn_products (bool, optional) – if True, only check isomor-
phism of reaction products (used when we know the reactants are identical, i.e. in gener-
ating reactions)

• generate_initial_map (bool, optional) – if True, initialize map by pairing atoms
with same labels

• strict (bool, optional) – if False, perform isomorphism ignoring electrons

• save_order (bool, optional) – if True, perform isomorphism saving atom order

is_surface_reaction()
Return True if one or more reactants or products are surface species (or surface sites)

is_unimolecular()
Return True if the reaction has a single molecule as either reactant or product (or both) A −−⇀↽−− B + C or
A + B −−⇀↽−− C or A −−⇀↽−− B, or False if not.

matches_species(reactants, products)
Compares the provided reactants and products against the reactants and products of this reaction. Both
directions are checked.

Parameters

• reactants (list) – Species required on one side of the reaction

• products (list, optional) – Species required on the other side

reverse_arrhenius_rate(k_forward, reverse_units, Tmin, Tmax)
Reverses the given k_forward, which must be an Arrhenius type. You must supply the correct units for the
reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).

reverse_sticking_coeff_rate(k_forward, reverse_units, surface_site_density, Tmin, Tmax)
Reverses the given k_forward, which must be a StickingCoefficient type. You must supply the correct
units for the reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).
The surface_site_density in mol/m^2 is used to evalaute the forward rate constant.

reverse_surface_arrhenius_rate(k_forward, reverse_units, Tmin, Tmax)
Reverses the given k_forward, which must be a SurfaceArrhenius type. You must supply the correct units
for the reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).

to_cantera(species_list, use_chemkin_identifier)
Converts the RMG Reaction object to a Cantera Reaction object with the appropriate reaction class.

If use_chemkin_identifier is set to False, the species label is used instead. Be sure that species’ labels are
unique when setting it False.

1.4. Database (rmgpy.data) 19



RMG-Py API Reference, Release 3.1.0

to_chemkin(species_list, kinetics)
Return the chemkin-formatted string for this reaction.

If kinetics is set to True, the chemkin format kinetics will also be returned (requires the species_list to
figure out third body colliders.) Otherwise, only the reaction string will be returned.

to_labeled_str(use_index)
the same as __str__ except that the labels are assumed to exist and used for reactant and products rather
than the labels plus the index in parentheses

rmgpy.data.base.Entry

class rmgpy.data.base.Entry(index=- 1, label='', item=None, parent=None, children=None,
data=None, reference=None, reference_type='', short_desc='',
long_desc='', rank=None, nodal_distance=None, metal=None,
facet=None, site=None, binding_energies=None, sur-
face_site_density=None)

A class for representing individual records in an RMG database. Each entry in the database associates a chemical
item (generally a species, functional group, or reaction) with a piece of data corresponding to that item. A
significant amount of metadata can also be stored with each entry.

The attributes are:

Malformed table. Text in column margin in table line 21.

=================== ========================================================
Attribute Description
=================== ========================================================
`index` A unique nonnegative integer index for the entry
`label` A unique string identifier for the entry (or '' if not used)
`item` The item that this entry represents
`parent` The parent of the entry in the hierarchy (or ``None`` if not used)
`children` A list of the children of the entry in the hierarchy (or ``None`` if
→˓not used)
`data` The data to associate with the item
`reference` A :class:`Reference` object containing bibliographic reference
→˓information to the source of the data
`reference_type` The way the data was determined: ``'theoretical'``, ``'experimental
→˓'``, or ``'review'``
`short_desc` A brief (one-line) description of the data
`long_desc` A long, verbose description of the data
`rank` An integer indicating the degree of confidence in the entry data, or
→˓``None`` if not used
`nodal_distance` A float representing the distance of a given entry from it's parent
→˓entry
For surface species thermo calculations:
`metal` Which metal the thermo calculation was done on (``None`` if not used)
`facet` Which facet the thermo calculation was done on (``None`` if not used)
`site` Which surface site the molecule prefers (``None`` if not used)
`binding_energies' The surface binding energies for C,H,O, and N
`surface_site_density` The surface site density
=================== ========================================================

get_all_descendants()
retrieve all the descendants of entry

20 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

rmgpy.data.statmech.GroupFrequencies

class rmgpy.data.statmech.GroupFrequencies(frequencies=None, symmetry=1)
Represent a set of characteristic frequencies for a group in the frequency database. These frequencies are stored
in the frequencies attribute, which is a list of tuples, where each tuple defines a lower bound, upper bound,
and degeneracy. Each group also has a symmetry correction.

generate_frequencies(count=1)
Generate a set of frequencies. For each characteristic frequency group, the number of frequencies returned
is degeneracy * count, and these are distributed linearly between the lower and upper bounds.

rmgpy.data.kinetics.KineticsDatabase

class rmgpy.data.kinetics.KineticsDatabase
A class for working with the RMG kinetics database.

extract_source_from_comments(reaction)

reaction: A reaction object containing kinetics data and kinetics data comments. Should be ei-
ther a PDepReaction, LibraryReaction, or TemplateReaction object as loaded from the
rmgpy.chemkin.load_chemkin_file function

Parses the verbose string of comments from the thermo data of the species object, and extracts the thermo
sources.

Returns a dictionary with keys of either ‘Rate Rules’, ‘Training’, ‘Library’, or ‘PDep’. A reaction can only
be estimated using one of these methods.

source = {‘RateRules’: (Family_Label, OriginalTemplate, RateRules), ‘Library’:
String_Name_of_Library_Used, ‘PDep’: Network_Index, ‘Training’: (Family_Label, Train-
ing_Reaction_Entry), }

generate_reactions(reactants, products=None, only_families=None, resonance=True)
Generate all reactions between the provided list of one or two reactants, which should be Molecule
objects. This method searches the depository, libraries, and groups, in that order.

generate_reactions_from_families(reactants, products=None, only_families=None, reso-
nance=True)

Generate all reactions between the provided list or tuple of one or two reactants, which can be either
Molecule objects or Species objects. This method can apply all kinetics families or a selected subset.

Parameters

• reactants – Molecules or Species to react

• products – List of Molecules or Species of desired product structures (optional)

• only_families – List of family labels to generate reactions from (optional) Default is
to generate reactions from all families

• resonance – Flag to generate resonance structures for reactants and products (optional)
Default is True, resonance structures will be generated

Returns List of reactions containing Species objects with the specified reactants and products.

generate_reactions_from_libraries(reactants, products=None)
Find all reactions from all loaded kinetics library involving the provided reactants, which can be either
Molecule objects or Species objects.

1.4. Database (rmgpy.data) 21



RMG-Py API Reference, Release 3.1.0

generate_reactions_from_library(library, reactants, products=None)
Find all reactions from the specified kinetics library involving the provided reactants, which can be either
Molecule objects or Species objects.

get_forward_reaction_for_family_entry(entry, family, thermo_database)
For a given entry for a reaction of the given reaction family (the string label of the family), return the
reaction with kinetics and degeneracy for the “forward” direction as defined by the reaction family. For
families that are their own reverse, the direction the kinetics is given in will be preserved. If the entry
contains functional groups for the reactants, assume that it is given in the forward direction and do noth-
ing. Returns the reaction in the direction consistent with the reaction family template, and the matching
template. Note that the returned reaction will have its kinetics and degeneracy set appropriately.

In order to reverse the reactions that are given in the reverse of the direction the family is defined, we
need to compute the thermodynamics of the reactants and products. For this reason you must also pass the
thermo_database to use to generate the thermo data.

load(path, families=None, libraries=None, depositories=None)
Load the kinetics database from the given path on disk, where path points to the top-level folder of the
families database.

load_families(path, families=None, depositories=None)
Load the kinetics families from the given path on disk, where path points to the top-level folder of the
kinetics families.

The families argument accepts a single item or list of the following:

• Specific kinetics family labels

• Names of family sets defined in recommended.py

• ‘all’

• ‘none’

If all items begin with a ! (e.g. [‘!H_Abstraction’]), then the selection will be inverted to families NOT in
the list.

load_libraries(path, libraries=None)
Load the listed kinetics libraries from the given path on disk.

Loads them all if libraries list is not specified or None. The path points to the folder of kinetics libraries
in the database, and the libraries should be in files like <path>/<library>.py.

load_old(path)
Load the old RMG kinetics database from the given path on disk, where path points to the top-level folder
of the old RMG database.

load_recommended_families(filepath)
Load the recommended families from the given file. The file is usually stored at ‘kinet-
ics/families/recommended.py’.

The old style was as a dictionary named recommendedFamilies containing all family names as keys with
True/False values.

The new style is as multiple sets with unique names which can be used individually or in combination.

Both styles can be loaded by this method.

react_molecules(molecules, products=None, only_families=None, prod_resonance=True)
Generate reactions from all families for the input molecules.

22 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

reconstruct_kinetics_from_source(reaction, source, fix_barrier_height=False,
force_positive_barrier=False)

Reaction is the original reaction with original kinetics. Note that for Library and PDep reactions this
function does not do anything other than return the original kinetics. . .

You must enter source data in the appropriate format such as returned from returned from
self.extract_source_from_comments, self-constructed. fix_barrier_height and force_positive_barrier will
change the kinetics based on the Reaction.fix_barrier_height function. Return Arrhenius form kinetics if
the source is from training reaction or rate rules.

save(path)
Save the kinetics database to the given path on disk, where path points to the top-level folder of the kinetics
database.

save_families(path)
Save the kinetics families to the given path on disk, where path points to the top-level folder of the kinetics
families.

save_libraries(path)
Save the kinetics libraries to the given path on disk, where path points to the top-level folder of the kinetics
libraries.

save_old(path)
Save the old RMG kinetics database to the given path on disk, where path points to the top-level folder of
the old RMG database.

save_recommended_families(path)
Save the recommended families to [path]/recommended.py. The old style was as a dictionary named
recommendedFamilies. The new style is as multiple sets with different labels.

rmgpy.data.kinetics.KineticsDepository

class rmgpy.data.kinetics.KineticsDepository(label='', name='', short_desc='', long_desc='',
metal=None, site=None, facet=None)

A class for working with an RMG kinetics depository. Each depository corresponds to a reaction family (a
KineticsFamily object). Each entry in a kinetics depository involves a reaction defined either by a real
reactant and product species (as in a kinetics library).

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

are_siblings(node, node_other)
Return True if node and node_other have the same parent node. Otherwise, return False. Both node and
node_other must be Entry types with items containing Group or LogicNode types.

descend_tree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

1.4. Database (rmgpy.data) 23



RMG-Py API Reference, Release 3.1.0

generate_old_tree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

get_entries_to_save()
Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

get_species(path, resonance=True)
Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)
Load an RMG-style database from the file at location path on disk. The parameters local_context and
global_context are used to provide specialized mapping of identifiers in the input file to corresponding
functions to evaluate. This method will automatically add a few identifiers required by all data entries, so
you don’t need to provide these.

load_entry(index, reactant1=None, reactant2=None, reactant3=None, product1=None, prod-
uct2=None, product3=None, specificCollider=None, kinetics=None, degeneracy=1, la-
bel='', duplicate=False, reversible=True, reference=None, referenceType='', shortDesc='',
longDesc='', rank=None, metal=None, site=None, facet=None)

Method for parsing entries in database files. Note that these argument names are retained for backward
compatibility.

load_old(dictstr, treestr, libstr, num_parameters, num_labels=1, pattern=True)
Load a dictionary-tree-library based database. The database is stored in three files: dictstr is the path to
the dictionary, treestr to the tree, and libstr to the library. The tree is optional, and should be set to ‘’ if not
desired.

load_old_dictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty
line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

load_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path.

load_old_tree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

match_node_to_child(parent_node, child_node)
Return True if parent_node is a parent of child_node. Otherwise, return False. Both parent_node and
child_node must be Entry types with items containing Group or LogicNode types. If parent_node and
child_node are identical, the function will also return False.

match_node_to_node(node, node_other)
Return True if node and node_other are identical. Otherwise, return False. Both node and node_other
must be Entry types with items containing Group or LogicNode types.

match_node_to_structure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure
at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

24 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.get_all_labeled_atoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

parse_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

remove_group(group_to_remove)
Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also
update the parent/child relationships

Returns the removed group

save(path)
Save the current database to the file at location path on disk.

save_dictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

save_entry(f, entry)
Write the given entry in the kinetics database to the file object f.

save_old(dictstr, treestr, libstr)
Save the current database to a set of text files using the old-style syntax.

save_old_dictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

save_old_library(path)
Save the current database library to a text file using the old-style syntax.

save_old_tree(path)
Save the current database tree to a text file using the old-style syntax.

rmgpy.data.kinetics.KineticsFamily

class rmgpy.data.kinetics.KineticsFamily(entries=None, top=None, label='', name='', re-
verse='', reversible=True, short_desc='', long_desc='',
forward_template=None, forward_recipe=None,
reverse_template=None, reverse_recipe=None,
forbidden=None, boundary_atoms=None,
tree_distances=None, save_order=False)

A class for working with an RMG kinetics family: a set of reactions with similar chemistry, and therefore similar
reaction rates. The attributes are:

1.4. Database (rmgpy.data) 25



RMG-Py API Reference, Release 3.1.0

Attribute Type Description
reverse string The name of the reverse reaction family
reversible Boolean Is family reversible? (True by default)
for-
ward_template

Reaction The forward reaction template

for-
ward_recipe

ReactionRecipe The steps to take when applying the forward reaction to a set of
reactants

re-
verse_template

Reaction The reverse reaction template

reverse_recipe ReactionRecipe The steps to take when applying the reverse reaction to a set of
reactants

forbidden ForbiddenStructures(Optional) Forbidden product structures in either direction
own_reverse Boolean It’s its own reverse?
‘bound-
ary_atoms’

list Labels which define the boundaries of end groups in backbone/end
families

tree_distances dict The default distance from parent along each tree, if not set default
is 1 for every tree

‘save_order’ Boolean Whether to preserve atom order when manipulating structures.
groups KineticsGroups The set of kinetics group additivity values
rules KineticsRules The set of kinetics rate rules from RMG-Java
depositories list A set of additional depositories used to store kinetics data from

various sources

There are a few reaction families that are their own reverse (hydrogen abstraction and intramolecular hydrogen
migration); for these reverseTemplate and reverseRecipe will both be None.

add_atom_labels_for_reaction(reaction, output_with_resonance=True)
Apply atom labels on a reaction using the appropriate atom labels from this reaction family.

The reaction is modified in place containing species objects with the atoms labeled. If out-
put_with_resonance is True, all resonance structures are generated with labels. If false, only the first
resonance structure sucessfully able to map to the reaction is used. None is returned.

add_entry(parent, grp, name)
Adds a group entry with parent parent group structure grp and group name name

add_reverse_attribute(rxn, react_non_reactive=True)
For rxn (with species’ objects) from families with ownReverse, this method adds a reverse attribute that
contains the reverse reaction information (like degeneracy)

Returns True if successful and False if the reverse reaction is forbidden. Will raise a KineticsError if
unsuccessful for other reasons.

add_rules_from_training(thermo_database=None, train_indices=None)
For each reaction involving real reactants and products in the training set, add a rate rule for that reaction.

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

apply_recipe(reactant_structures, forward=True, unique=True)
Apply the recipe for this reaction family to the list of Molecule objects reactant_structures. The atoms
of the reactant structures must already be tagged with the appropriate labels. Returns a list of structures
corresponding to the products after checking that the correct number of products was produced.

are_siblings(node, node_other)
Return True if node and node_other have the same parent node. Otherwise, return False. Both node and
node_other must be Entry types with items containing Group or LogicNode types.

26 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

calculate_degeneracy(reaction)
For a reaction with Molecule or Species objects given in the direction in which the kinetics are defined,
compute the reaction-path degeneracy.

This method by default adjusts for double counting of identical reactants. This should only be adjusted
once per reaction. To not adjust for identical reactants (since you will be reducing them later in the
algorithm), add ignoreSameReactants= True to this method.

clean_tree_groups()
clears groups and rules in the tree, generates an appropriate root group to start from and then reads training
reactions Note this only works if a single top node (not a logic node) can be generated

cross_validate(folds=5, template_rxn_map=None, test_rxn_inds=None, T=1000.0, iters=0, ran-
dom_state=1)

Perform K-fold cross validation on an automatically generated tree at temperature T after finding an ap-
propriate node for kinetics estimation it will move up the tree iters times. Returns a dictionary mapping
{rxn:Ln(k_Est/k_Train)}

cross_validate_old(folds=5, T=1000.0, random_state=1, estimator='rate rules',
thermo_database=None)

Perform K-fold cross validation on an automatically generated tree at temperature T Returns a dictionary
mapping {rxn:Ln(k_Est/k_Train)}

descend_tree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

distribute_tree_distances()
fills in nodal_distance (the distance between an entry and its parent) if not already entered with the value
from tree_distances associated with the tree the entry comes from

estimate_kinetics_using_group_additivity(template, degeneracy=1)
Determine the appropriate kinetics for a reaction with the given template using group additivity.

Returns just the kinetics, or None.

estimate_kinetics_using_rate_rules(template, degeneracy=1)
Determine the appropriate kinetics for a reaction with the given template using rate rules.

Returns a tuple (kinetics, entry) where entry is the database entry used to determine the kinetics only if it
is an exact match, and is None if some averaging or use of a parent node took place.

eval_ext(parent, ext, extname, template_rxn_map, obj=None, T=1000.0)
evaluates the objective function obj for the extension ext with name extname to the parent entry parent

extend_node(parent, template_rxn_map, obj=None, T=1000.0)
Constructs an extension to the group parent based on evaluation of the objective function obj

extract_source_from_comments(reaction)
Returns the rate rule associated with the kinetics of a reaction by parsing the comments.
Will return the template associated with the matched rate rule. Returns a tuple containing
(Boolean_Is_Kinetics_From_Training_reaction, Source_Data)

1.4. Database (rmgpy.data) 27



RMG-Py API Reference, Release 3.1.0

For a training reaction, the Source_Data returns:

[Family_Label, Training_Reaction_Entry, Kinetics_In_Reverse?]

For a reaction from rate rules, the Source_Data is a tuple containing:

[Family_Label, {'template': originalTemplate,
'degeneracy': degeneracy,
'exact': boolean_exact?,
'rules': a list of (original rate rule entry, weight in average)
'training': a list of (original rate rule entry associated with

→˓training entry, original training entry, weight in average)}]

where Exact is a boolean of whether the rate is an exact match, Template is the reaction template used,
RateRules is a list of the rate rule entries containing the kinetics used, and TrainingReactions are ones that
have created rules used in the estimate.

fill_rules_by_averaging_up(verbose=False)
Fill in gaps in the kinetics rate rules by averaging child nodes recursively starting from the top level root
template.

generate_old_tree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

generate_product_template(reactants0)
Generate the product structures by applying the reaction template to the top-level nodes. For reactants
defined by multiple structures, only the first is used here; it is assumed to be the most generic.

generate_reactions(reactants, products=None, prod_resonance=True)
Generate all reactions between the provided list of one, two, or three reactants, which should be either
single Molecule objects or lists of same. Does not estimate the kinetics of these reactions at this time.
Returns a list of TemplateReaction objects using Molecule objects for both reactants and products
The reactions are constructed such that the forward direction is consistent with the template of this reaction
family.

Parameters

• reactants (list) – List of Molecules to react.

• products (list, optional) – List of Molecules or Species of desired product struc-
tures.

• prod_resonance (bool, optional) – Flag to generate resonance structures for prod-
uct checking. Defaults to True, resonance structures are compared.

Returns List of all reactions containing Molecule objects with the specified reactants and prod-
ucts within this family. Degenerate reactions are returned as separate reactions.

generate_tree(rxns=None, obj=None, thermo_database=None, T=1000.0, nprocs=1,
min_splitable_entry_num=2, min_rxns_to_spawn=20, max_batch_size=800, out-
lier_fraction=0.02, stratum_num=8, max_rxns_to_reopt_node=100)

Generate a tree by greedy optimization based on the objective function obj the optimization is done by
iterating through every group and if the group has more than one training reaction associated with it a set
of potential more specific extensions are generated and the extension that optimizing the objective function
combination is chosen and the iteration starts over at the beginning

additionally the tree structure is simplified on the fly by removing groups that have no kinetics data associ-
ated if their parent has no kinetics data associated and they either have only one child or have two children
one of which has no kinetics data and no children (its parent becomes the parent of its only relevant child
node)

28 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

Parameters

• rxns – List of reactions to generate tree from (if None pull the whole training set)

• obj – Object to expand tree from (if None uses top node)

• thermo_database – Thermodynamic database used for reversing training reactions

• T – Temperature the tree is optimized for

• nprocs – Number of process for parallel tree generation

• min_splitable_entry_num – the minimum number of splitable reactions at a node in
order to spawn a new process solving that node

• min_rxns_to_spawn – the minimum number of reactions at a node to spawn a new
process solving that node

• max_batch_size – the maximum number of reactions allowed in a batch, most batches
will be this size the last will be smaller, if the # of reactions < max_batch_size the cascade
algorithm is not used

• outlier_fraction – Fraction of reactions that are fastest/slowest and will be automat-
ically included in the first batch

• stratum_num – Number of strata used in stratified sampling scheme

• max_rxns_to_reopt_node – Nodes with more matching reactions than this will not be
pruned

get_backbone_roots()
Returns: the top level backbone node in a unimolecular family.

get_end_roots()
Returns: A list of top level end nodes in a unimolecular family

get_entries_to_save()
Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

get_extension_edge(parent, template_rxn_map, obj, T)
finds the set of all extension groups to parent such that 1) the extension group divides the set of reactions
under parent 2) No generalization of the extension group divides the set of reactions under parent

We find this by generating all possible extensions of the initial group. Extensions that split reactions are
added to the list. All extensions that do not split reactions and do not create bonds are ignored (although
those that match every reaction are labeled so we don’t search them twice). Those that match all reactions
and involve bond creation undergo this process again.

Principle: Say you have two elementary changes to a group ext1 and ext2 if applying ext1 and ext2 results
in a split at least one of ext1 and ext2 must result in a split

Speed of this algorithm relies heavily on searching non bond creation dimensions once.

get_kinetics(reaction, template_labels, degeneracy=1, estimator='', return_all_kinetics=True)
Return the kinetics for the given reaction by searching the various depositories as well as generating a
result using the user-specified estimator of either ‘group additivity’ or ‘rate rules’. Unlike the regular
get_kinetics() method, this returns a list of results, with each result comprising of

1. the kinetics

2. the source - this will be None if from a template estimate

3. the entry - this will be None if from a template estimate

1.4. Database (rmgpy.data) 29



RMG-Py API Reference, Release 3.1.0

4. is_forward a boolean denoting whether the matched entry is in the same direction as the inputted
reaction. This will always be True if using rates rules or group additivity. This can be True or False if
using a depository

If return_all_kinetics==False, only the first (best?) matching kinetics is returned.

get_kinetics_for_template(template, degeneracy=1, method='rate rules')
Return an estimate of the kinetics for a reaction with the given template and reaction-path degeneracy.
There are two possible methods to use: ‘group additivity’ (new possible RMG-Py behavior) and ‘rate
rules’ (old RMG-Java behavior, and default RMG-Py behavior).

Returns a tuple (kinetics, entry): If it’s estimated via ‘rate rules’ and an exact match is found in the tree,
then the entry is returned as the second element of the tuple. But if an average is used, or the ‘group
additivity’ method, then the tuple returned is (kinetics, None).

get_kinetics_from_depository(depository, reaction, template, degeneracy)
Search the given depository in this kinetics family for kinetics for the given reaction. Returns a list of all
of the matching kinetics, the corresponding entries, and True if the kinetics match the forward direction
or False if they match the reverse direction.

get_labeled_reactants_and_products(reactants, products)
Given reactants, a list of Molecule objects, and products, a list of Molecule objects, return two new
lists of Molecule objects with atoms labeled: one for reactants, one for products. Returned molecules
are totally new entities in memory so input molecules reactants and products won’t be affected. If RMG
cannot find appropriate labels, (None, None) will be returned.

get_rate_rule(template)
Return the rate rule with the given template. Raises a ValueError if no corresponding entry exists.

get_reaction_matches(rxns=None, thermo_database=None, remove_degeneracy=False, es-
timate_thermo=True, fix_labels=False, exact_matches_only=False,
get_reverse=False)

returns a dictionary mapping for each entry in the tree: (entry.label,entry.item) : list of all training reactions
(or the list given) that match that entry

get_reaction_pairs(reaction)
For a given reaction with properly-labeled Molecule objects as the reactants, return the reactant-product
pairs to use when performing flux analysis.

get_reaction_template(reaction)
For a given reaction with properly-labeled Molecule objects as the reactants, determine the most specific
nodes in the tree that describe the reaction.

get_reaction_template_labels(reaction)
Retrieve the template for the reaction and return the corresponding labels for each of the groups in the
template.

get_root_template()
Return the root template for the reaction family. Most of the time this is the top-level nodes of the tree (as
stored in the KineticsGroups object), but there are a few exceptions (e.g. R_Recombination).

get_rxn_batches(rxns, T=1000.0, max_batch_size=800, outlier_fraction=0.02, stratum_num=8)
Breaks reactions into batches based on a modified stratified sampling scheme Effectively: The top and
bottom outlier_fraction of all reactions are always included in the first batch The remaining reactions are
ordered by the rate coefficients at T The list of reactions is then split into stratum_num similarly sized
intervals batches sample equally from each interval, but randomly within each interval until they reach
max_batch_size reactions A list of lists of reactions containing the batches is returned

get_sources_for_template(template)
Returns the set of rate rules and training reactions used to average this template. Note that the tree must be
averaged with verbose=True for this to work.

30 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

Returns a tuple of rules, training

where rules are a list of tuples containing the [(original_entry, weight_used_in_average), . . . ]

and training is a list of tuples containing the [(rate_rule_entry, training_reaction_entry,
weight_used_in_average),. . . ]

get_species(path, resonance=True)
Load the dictionary containing all of the species in a kinetics library or depository.

get_top_level_groups(root)
Returns a list of group nodes that are the highest in the tree starting at node “root”. If “root” is a group
node, then it will return a single-element list with “root”. Otherwise, for every child of root, we descend
until we find no nodes with logic nodes. We then return a list of all group nodes found along the way.

get_training_depository()
Returns the training depository from self.depositories

get_training_set(thermo_database=None, remove_degeneracy=False, estimate_thermo=True,
fix_labels=False, get_reverse=False)

retrieves all reactions in the training set, assigns thermo to the species objects reverses reactions as nec-
essary so that all reactions are in the forward direction and returns the resulting list of reactions in the
forward direction with thermo assigned

has_rate_rule(template)
Return True if a rate rule with the given template currently exists, or False otherwise.

is_entry_match(mol, entry, resonance=True)
determines if the labeled molecule object of reactants matches the entry entry

is_molecule_forbidden(molecule)
Return True if the molecule is forbidden in this family, or False otherwise.

load(path, local_context=None, global_context=None, depository_labels=None)
Load a kinetics database from a file located at path on disk.

If depository_labels is a list, eg. [‘training’,’PrIMe’], then only those depositories are loaded, and they are
searched in that order when generating kinetics.

If depository_labels is None then load ‘training’ first then everything else. If depository_labels is not None
then load in the order specified in depository_labels.

load_forbidden(label, group, shortDesc='', longDesc='')
Load information about a forbidden structure. Note that argument names are retained for backward com-
patibility with loading database files.

load_old(path)
Load an old-style RMG kinetics group additivity database from the location path.

load_old_dictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty
line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

load_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path.

load_old_template(path)
Load an old-style RMG reaction family template from the location path.

1.4. Database (rmgpy.data) 31



RMG-Py API Reference, Release 3.1.0

load_old_tree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

load_recipe(actions)
Load information about the reaction recipe.

load_template(reactants, products, ownReverse=False)
Load information about the reaction template. Note that argument names are retained for backward com-
patibility with loading database files.

make_tree(obj=None, regularization=<function KineticsFamily.simple_regularization>,
thermo_database=None, T=1000.0)

generates tree structure and then generates rules for the tree

match_node_to_child(parent_node, child_node)
Return True if parent_node is a parent of child_node. Otherwise, return False. Both parent_node and
child_node must be Entry types with items containing Group or LogicNode types. If parent_node and
child_node are identical, the function will also return False.

match_node_to_node(node, node_other)
Return True if node and node_other are identical. Otherwise, return False. Both node and node_other
must be Entry types with items containing Group or LogicNode types.

match_node_to_structure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure
at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.get_all_labeled_atoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

parse_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

prune_tree(rxns, thermo_database=None, max_rxns_to_reopt_node=100, fix_labels=True, ex-
act_matches_only=True, get_reverse=True)

Remove nodes that have less than maxRxnToReoptNode reactions that match and clear the regularization
dimensions of their parent This is used to remove smaller easier to optimize and more likely to change
nodes before adding a new batch in cascade model generation

regularize(regularization=<function KineticsFamily.simple_regularization>, keep_root=True,
thermo_database=None, template_rxn_map=None, rxns=None)

Regularizes the tree according to the regularization function regularization

32 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

remove_group(group_to_remove)
Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also
update the parent/child relationships

Returns the removed group

retrieve_original_entry(template_label)
Retrieves the original entry, be it a rule or training reaction, given the template label in the form
‘group1;group2’ or ‘group1;group2;group3’

Returns tuple in the form (RateRuleEntry, TrainingReactionEntry)

Where the TrainingReactionEntry is only present if it comes from a training reaction

retrieve_template(template_labels)
Reconstruct the groups associated with the labels of the reaction template and return a list.

save(path)
Save the current database to the file at location path on disk.

save_depository(depository, path)
Save the given kinetics family depository to the location path on disk.

save_dictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

save_entry(f, entry)
Write the given entry in the thermo database to the file object f.

save_generated_tree(path=None)
clears the rules and saves the family to its current location in database

save_groups(path)
Save the current database to the file at location path on disk.

save_old(path)
Save the old RMG kinetics groups to the given path on disk.

save_old_dictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

save_old_library(path)
Save the current database library to a text file using the old-style syntax.

save_old_template(path)
Save an old-style RMG reaction family template from the location path.

save_old_tree(path)
Save the current database tree to a text file using the old-style syntax.

save_training_reactions(reactions, reference=None, reference_type='', short_desc='',
long_desc='', rank=3)

This function takes a list of reactions appends it to the training reactions file. It ignores the existence of
duplicate reactions.

The rank for each new reaction’s kinetics is set to a default value of 3 unless the user specifies differently
for those reactions.

For each entry, the long description is imported from the kinetics comment.

simple_regularization(node, template_rxn_map, test=True)
Simplest regularization algorithm All nodes are made as specific as their descendant reactions Training
reactions are assumed to not generalize For example if an particular atom at a node is Oxygen for all of its

1.4. Database (rmgpy.data) 33



RMG-Py API Reference, Release 3.1.0

descendent reactions a reaction where it is Sulfur will never hit that node unless it is the top node even if
the tree did not split on the identity of that atom

The test option to this function determines whether or not the reactions under a node match the extended
group before adding an extension. If the test fails the extension is skipped.

In general test=True is needed if the cascade algorithm was used to generate the tree and test=False is ok
if the cascade algorithm wasn’t used.

rmgpy.data.kinetics.KineticsGroups

class rmgpy.data.kinetics.KineticsGroups(entries=None, top=None, label='', name='',
short_desc='', long_desc='', forwardTemplate=None,
forwardRecipe=None, reverseTemplate=None, re-
verseRecipe=None, forbidden=None)

A class for working with an RMG kinetics family group additivity values.

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

are_siblings(node, node_other)
Return True if node and node_other have the same parent node. Otherwise, return False. Both node and
node_other must be Entry types with items containing Group or LogicNode types.

descend_tree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

estimate_kinetics_using_group_additivity(template, reference_kinetics, degeneracy=1)
Determine the appropriate kinetics for a reaction with the given template using group additivity.

Returns just the kinetics.

generate_group_additivity_values(training_set, kunits, method='Arrhenius')
Generate the group additivity values using the given training_set, a list of 2-tuples of the form
(template, kinetics). You must also specify the kunits for the family and the method to use when
generating the group values. Returns True if the group values have changed significantly since the last
time they were fitted, or False otherwise.

generate_old_tree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

get_entries_to_save()
Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

get_reaction_template(reaction)
For a given reaction with properly-labeled Molecule objects as the reactants, determine the most specific
nodes in the tree that describe the reaction.

34 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

get_species(path, resonance=True)
Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)
Load an RMG-style database from the file at location path on disk. The parameters local_context and
global_context are used to provide specialized mapping of identifiers in the input file to corresponding
functions to evaluate. This method will automatically add a few identifiers required by all data entries, so
you don’t need to provide these.

load_entry(index, label, group, kinetics, reference=None, referenceType='', shortDesc='', longDesc='',
nodalDistance=None)

Method for parsing entries in database files. Note that these argument names are retained for backward
compatibility.

nodal_distance is the distance between a given entry and its parent specified by a float

load_old(dictstr, treestr, libstr, num_parameters, num_labels=1, pattern=True)
Load a dictionary-tree-library based database. The database is stored in three files: dictstr is the path to
the dictionary, treestr to the tree, and libstr to the library. The tree is optional, and should be set to ‘’ if not
desired.

load_old_dictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty
line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

load_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path.

load_old_tree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

match_node_to_child(parent_node, child_node)
Return True if parent_node is a parent of child_node. Otherwise, return False. Both parent_node and
child_node must be Entry types with items containing Group or LogicNode types. If parent_node and
child_node are identical, the function will also return False.

match_node_to_node(node, node_other)
Return True if node and node_other are identical. Otherwise, return False. Both node and node_other
must be Entry types with items containing Group or LogicNode types.

match_node_to_structure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure
at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

1.4. Database (rmgpy.data) 35



RMG-Py API Reference, Release 3.1.0

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.get_all_labeled_atoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

parse_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

remove_group(group_to_remove)
Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also
update the parent/child relationships

Returns the removed group

save(path)
Save the current database to the file at location path on disk.

save_dictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

save_old(dictstr, treestr, libstr)
Save the current database to a set of text files using the old-style syntax.

save_old_dictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

save_old_library(path)
Save the current database library to a text file using the old-style syntax.

save_old_tree(path)
Save the current database tree to a text file using the old-style syntax.

rmgpy.data.kinetics.KineticsLibrary

class rmgpy.data.kinetics.KineticsLibrary(label='', name='', solvent=None, short_desc='',
long_desc='', auto_generated=False)

A class for working with an RMG kinetics library.

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

are_siblings(node, node_other)
Return True if node and node_other have the same parent node. Otherwise, return False. Both node and
node_other must be Entry types with items containing Group or LogicNode types.

check_for_duplicates(mark_duplicates=False)
Check that all duplicate reactions in the kinetics library are properly marked (i.e. with their duplicate
attribute set to True). If mark_duplicates is set to True, then ignore and mark all duplicate reactions
as duplicate.

36 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

convert_duplicates_to_multi()
Merge all marked duplicate reactions in the kinetics library into single reactions with multiple kinetics.

descend_tree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

generate_old_tree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

get_entries_to_save()
Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

get_library_reactions()
makes library and template reactions as appropriate from the library comments and returns at list of all of
these LibraryReaction and TemplateReaction objects

get_species(path, resonance=True)
Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)
Load an RMG-style database from the file at location path on disk. The parameters local_context and
global_context are used to provide specialized mapping of identifiers in the input file to corresponding
functions to evaluate. This method will automatically add a few identifiers required by all data entries, so
you don’t need to provide these.

load_entry(index, label, kinetics, degeneracy=1, duplicate=False, reversible=True, refer-
ence=None, referenceType='', shortDesc='', longDesc='', allow_pdep_route=False,
elementary_high_p=False, allow_max_rate_violation=False, metal=None, site=None,
facet=None)

Method for parsing entries in database files. Note that these argument names are retained for backward
compatibility.

load_old(path)
Load an old-style RMG kinetics library from the location path.

load_old_dictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty
line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

load_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path.

load_old_tree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

1.4. Database (rmgpy.data) 37



RMG-Py API Reference, Release 3.1.0

mark_valid_duplicates(reactions1, reactions2)
Check for reactions that appear in both lists, and mark them as (valid) duplicates.

match_node_to_child(parent_node, child_node)
Return True if parent_node is a parent of child_node. Otherwise, return False. Both parent_node and
child_node must be Entry types with items containing Group or LogicNode types. If parent_node and
child_node are identical, the function will also return False.

match_node_to_node(node, node_other)
Return True if node and node_other are identical. Otherwise, return False. Both node and node_other
must be Entry types with items containing Group or LogicNode types.

match_node_to_structure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure
at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.get_all_labeled_atoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

parse_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

remove_group(group_to_remove)
Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also
update the parent/child relationships

Returns the removed group

save(path)
Save the current database to the file at location path on disk.

save_dictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

save_entry(f, entry)
Write the given entry in the kinetics library to the file object f.

save_old(path)
Save an old-style reaction library to path. This creates files named species.txt, reactions.txt,
and pdepreactions.txt in the given directory; these contain the species dictionary, high-pressure limit
reactions and kinetics, and pressure-dependent reactions and kinetics, respectively.

save_old_dictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

38 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

save_old_library(path)
Save the current database library to a text file using the old-style syntax.

save_old_tree(path)
Save the current database tree to a text file using the old-style syntax.

rmgpy.data.kinetics.KineticsRules

class rmgpy.data.kinetics.KineticsRules(label='', name='', short_desc='', long_desc='')
A class for working with a set of “rate rules” for a RMG kinetics family.

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

are_siblings(node, node_other)
Return True if node and node_other have the same parent node. Otherwise, return False. Both node and
node_other must be Entry types with items containing Group or LogicNode types.

descend_tree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

estimate_kinetics(template, degeneracy=1)
Determine the appropriate kinetics for a reaction with the given template using rate rules.

Returns a tuple (kinetics, entry) where entry is the database entry used to determine the kinetics only if it
is an exact match, and is None if some averaging or use of a parent node took place.

fill_rules_by_averaging_up(root_template, already_done, verbose=False)
Fill in gaps in the kinetics rate rules by averaging child nodes. If verbose is set to True, then exact sources
of kinetics are saved in the kinetics comments (warning: this uses up a lot of memory due to the extensively
long comments)

generate_old_tree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

get_all_rules(template)
Return all of the exact rate rules with the given template. Raises a ValueError if no corresponding entry
exists.

get_entries()
Return a list of all of the entries in the rate rules database, sorted by index.

get_entries_to_save()
Return a sorted list of all of the entries in the rate rules database to save.

get_rule(template)
Return the exact rate rule with the given template, or None if no corresponding entry exists.

get_species(path, resonance=True)
Load the dictionary containing all of the species in a kinetics library or depository.

1.4. Database (rmgpy.data) 39



RMG-Py API Reference, Release 3.1.0

has_rule(template)
Return True if a rate rule with the given template currently exists, or False otherwise.

load(path, local_context=None, global_context=None)
Load an RMG-style database from the file at location path on disk. The parameters local_context and
global_context are used to provide specialized mapping of identifiers in the input file to corresponding
functions to evaluate. This method will automatically add a few identifiers required by all data entries, so
you don’t need to provide these.

load_entry(index, kinetics=None, degeneracy=1, label='', duplicate=False, reversible=True, ref-
erence=None, referenceType='', shortDesc='', longDesc='', rank=None, nodalDis-
tance=None, treeDistances=None)

Method for parsing entries in database files. Note that these argument names are retained for backward
compatibility.

load_old(path, groups, num_labels)
Load a set of old rate rules for kinetics groups into this depository.

load_old_dictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty
line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

load_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path.

load_old_tree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

match_node_to_child(parent_node, child_node)
Return True if parent_node is a parent of child_node. Otherwise, return False. Both parent_node and
child_node must be Entry types with items containing Group or LogicNode types. If parent_node and
child_node are identical, the function will also return False.

match_node_to_node(node, node_other)
Return True if node and node_other are identical. Otherwise, return False. Both node and node_other
must be Entry types with items containing Group or LogicNode types.

match_node_to_structure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure
at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.get_all_labeled_atoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

40 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

parse_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

process_old_library_entry(data)
Process a list of parameters data as read from an old-style RMG thermo database, returning the corre-
sponding kinetics object.

remove_group(group_to_remove)
Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also
update the parent/child relationships

Returns the removed group

save(path)
Save the current database to the file at location path on disk.

save_dictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

save_entry(f, entry)
Write the given entry in the thermo database to the file object f.

save_old(path, groups)
Save a set of old rate rules for kinetics groups from this depository.

save_old_dictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

save_old_library(path)
Save the current database library to a text file using the old-style syntax.

save_old_tree(path)
Save the current database tree to a text file using the old-style syntax.

rmgpy.data.kinetics.LibraryReaction

class rmgpy.data.kinetics.LibraryReaction(index=- 1, reactants=None, products=None,
specific_collider=None, kinetics=None, net-
work_kinetics=None, reversible=True, tran-
sition_state=None, duplicate=False, degen-
eracy=1, pairs=None, library=None, al-
low_pdep_route=False, elementary_high_p=False,
allow_max_rate_violation=False, entry=None)

A Reaction object generated from a reaction library. In addition to the usual attributes, this class includes library
and entry attributes to store the library and the entry in that library that it was created from.

calculate_coll_limit(temp, reverse)
Calculate the collision limit rate in m3/mol-s for the given temperature implemented as recommended in
Wang et al. doi 10.1016/j.combustflame.2017.08.005 (Eq. 1)

calculate_microcanonical_rate_coefficient(e_list, j_list, reac_dens_states,
prod_dens_states, T)

Calculate the microcanonical rate coefficient 𝑘(𝐸) for the reaction reaction at the energies e_list in J/mol.
reac_dens_states and prod_dens_states are the densities of states of the reactant and product configurations
for this reaction. If the reaction is irreversible, only the reactant density of states is required; if the reaction
is reversible, then both are required. This function will try to use the best method that it can based on the
input data available:

1.4. Database (rmgpy.data) 41



RMG-Py API Reference, Release 3.1.0

• If detailed information has been provided for the transition state (i.e. the molecular degrees of free-
dom), then RRKM theory will be used.

• If the above is not possible but high-pressure limit kinetics 𝑘∞(𝑇 ) have been provided, then the
inverse Laplace transform method will be used.

The density of states for the product prod_dens_states and the temperature of interest T in K can also
be provided. For isomerization and association reactions prod_dens_states is required; for dissociation
reactions it is optional. The temperature is used if provided in the detailed balance expression to determine
the reverse kinetics, and in certain cases in the inverse Laplace transform method.

calculate_tst_rate_coefficient(T)
Evaluate the forward rate coefficient for the reaction with corresponding transition state TS at temperature
T in K using (canonical) transition state theory. The TST equation is

𝑘(𝑇 ) = 𝜅(𝑇 )
𝑘B𝑇

ℎ

𝑄‡(𝑇 )

𝑄A(𝑇 )𝑄B(𝑇 )
exp

(︂
− 𝐸0

𝑘B𝑇

)︂
where 𝑄‡ is the partition function of the transition state, 𝑄A and 𝑄B are the partition function of the
reactants, 𝐸0 is the ground-state energy difference from the transition state to the reactants, 𝑇 is the
absolute temperature, 𝑘B is the Boltzmann constant, and ℎ is the Planck constant. 𝜅(𝑇 ) is an optional
tunneling correction.

can_tst()
Return True if the necessary parameters are available for using transition state theory – or the microcanon-
ical equivalent, RRKM theory – to compute the rate coefficient for this reaction, or False otherwise.

check_collision_limit_violation(t_min, t_max, p_min, p_max)
Warn if a core reaction violates the collision limit rate in either the forward or reverse direction at the
relevant extreme T/P conditions. Assuming a monotonic behaviour of the kinetics. Returns a list with the
reaction object and the direction in which the violation was detected.

copy()
Create a deep copy of the current reaction.

degeneracy
The reaction path degeneracy for this reaction.

If the reaction has kinetics, changing the degeneracy will adjust the reaction rate by a ratio of the new
degeneracy to the old degeneracy.

draw(path)
Generate a pictorial representation of the chemical reaction using the draw module. Use path to specify
the file to save the generated image to; the image type is automatically determined by extension. Valid
extensions are .png, .svg, .pdf, and .ps; of these, the first is a raster format and the remainder are
vector formats.

ensure_species(reactant_resonance, product_resonance)
Ensure the reaction contains species objects in its reactant and product attributes. If the reaction is found
to hold molecule objects, it modifies the reactant, product and pairs to hold Species objects.

Generates resonance structures for Molecules if the corresponding options, reactant_resonance and/or
product_resonance, are True. Does not generate resonance for reactants or products that start as Species
objects.

fix_barrier_height(force_positive)
Turns the kinetics into Arrhenius (if they were ArrheniusEP) and ensures the activation energy is at least
the endothermicity for endothermic reactions, and is not negative only as a result of using Evans Polanyi
with an exothermic reaction. If force_positive is True, then all reactions are forced to have a non-negative
barrier.

42 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

fix_diffusion_limited_a_factor(T)
Decrease the pre-exponential factor (A) by the diffusion factor to account for the diffusion limit at the
specified temperature.

generate_3d_ts(reactants, products)
Generate the 3D structure of the transition state. Called from model.generate_kinetics().

self.reactants is a list of reactants self.products is a list of products

generate_high_p_limit_kinetics()
If the LibraryReactions represented by self has pressure dependent kinetics, try extracting the high pres-
sure limit rate from it. Used for incorporating library reactions with pressure-dependent kinetics in PDep
networks. Only reactions flagged as elementary_high_p=True should be processed here. If the kinet-
ics is a :class:Lindemann or a :class:Troe, simply get the high pressure limit rate. If the kinetics is a
:class:PDepArrhenius or a :class:Chebyshev, generate a :class:Arrhenius kinetics entry that represents the
high pressure limit if Pmax >= 90 bar . This high pressure limit Arrhenius kinetics is assigned to the
reaction network_kinetics attribute. If this method successfully generated the high pressure limit kinetics,
return True, otherwise False.

generate_pairs()
Generate the reactant-product pairs to use for this reaction when performing flux analysis. The exact
procedure for doing so depends on the reaction type:

Reaction type Template Resulting pairs
Isomerization A -> C (A,C)
Dissociation A -> C + D (A,C), (A,D)
Association A + B -> C (A,C), (B,C)
Bimolecular A + B -> C + D (A,C), (B,D) or (A,D), (B,C)

There are a number of ways of determining the correct pairing for bimolecular reactions. Here we try a
simple similarity analysis by comparing the number of heavy atoms. This should work most of the time,
but a more rigorous algorithm may be needed for some cases.

generate_reverse_rate_coefficient(network_kinetics, Tmin, Tmax, surface_site_density)
Generate and return a rate coefficient model for the reverse reaction. Currently this only works if the
kinetics attribute is one of several (but not necessarily all) kinetics types.

If the reaction kinetics model is Sticking Coefficient, please provide a nonzero surface site density in
mol/m^2 which is required to evaluate the rate coefficient.

get_enthalpies_of_reaction(Tlist)
Return the enthalpies of reaction in J/mol evaluated at temperatures Tlist in K.

get_enthalpy_of_reaction(T)
Return the enthalpy of reaction in J/mol evaluated at temperature T in K.

get_entropies_of_reaction(Tlist)
Return the entropies of reaction in J/mol*K evaluated at temperatures Tlist in K.

get_entropy_of_reaction(T)
Return the entropy of reaction in J/mol*K evaluated at temperature T in K.

get_equilibrium_constant(T, type, surface_site_density)
Return the equilibrium constant for the reaction at the specified temperature T in K and reference sur-
face_site_density in mol/m^2 (2.5e-05 default) The type parameter lets you specify the quantities used in
the equilibrium constant: Ka for activities, Kc for concentrations (default), or Kp for pressures. This func-
tion assumes a reference pressure of 1e5 Pa for gas phases species and uses the ideal gas law to determine
reference concentrations. For surface species, the surface_site_density is the assumed reference.

1.4. Database (rmgpy.data) 43



RMG-Py API Reference, Release 3.1.0

get_equilibrium_constants(Tlist, type)
Return the equilibrium constants for the reaction at the specified temperatures Tlist in K. The type parame-
ter lets you specify the quantities used in the equilibrium constant: Ka for activities, Kc for concentrations
(default), or Kp for pressures. Note that this function currently assumes an ideal gas mixture.

get_free_energies_of_reaction(Tlist)
Return the Gibbs free energies of reaction in J/mol evaluated at temperatures Tlist in K.

get_free_energy_of_reaction(T)
Return the Gibbs free energy of reaction in J/mol evaluated at temperature T in K.

get_mean_sigma_and_epsilon(reverse)
Calculates the collision diameter (sigma) using an arithmetic mean Calculates the well depth (epsilon)
using a geometric mean If reverse is False the above is calculated for the reactants, otherwise for the
products

get_rate_coefficient(T, P, surface_site_density)
Return the overall rate coefficient for the forward reaction at temperature T in K and pressure P in Pa,
including any reaction path degeneracies.

If diffusion_limiter is enabled, the reaction is in the liquid phase and we use a diffusion limitation to correct
the rate. If not, then use the intrinsic rate coefficient.

If the reaction has sticking coefficient kinetics, a nonzero surface site density in mol/m^2 must be provided

get_reduced_mass(reverse)
Returns the reduced mass of the reactants if reverse is False Returns the reduced mass of the products if
reverse is True

get_source()
Return the database that was the source of this reaction. For a LibraryReaction this should be a Kinetic-
sLibrary object.

get_stoichiometric_coefficient(spec)
Return the stoichiometric coefficient of species spec in the reaction. The stoichiometric coefficient is
increased by one for each time spec appears as a product and decreased by one for each time spec appears
as a reactant.

get_surface_rate_coefficient(T, surface_site_density)
Return the overall surface rate coefficient for the forward reaction at temperature T in K with surface site
density surface_site_density in mol/m2. Value is returned in combination of [m,mol,s]

get_url()
Get a URL to search for this reaction in the rmg website.

has_template(reactants, products)
Return True if the reaction matches the template of reactants and products, which are both lists of
Species objects, or False if not.

is_association()
Return True if the reaction represents an association reaction A + B −−⇀↽−− C or False if not.

is_balanced()
Return True if the reaction has the same number of each atom on each side of the reaction equation, or
False if not.

is_dissociation()
Return True if the reaction represents a dissociation reaction A −−⇀↽−− B + C or False if not.

is_isomerization()
Return True if the reaction represents an isomerization reaction A −−⇀↽−− B or False if not.

44 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

is_isomorphic(other, either_direction, check_identical, check_only_label,
check_template_rxn_products, generate_initial_map, strict, save_order)

Return True if this reaction is the same as the other reaction, or False if they are different. The compar-
ison involves comparing isomorphism of reactants and products, and doesn’t use any kinetic information.

Parameters

• either_direction (bool, optional) – if False,then the reaction direction must
match.

• check_identical (bool, optional) – if True, check that atom ID’s match (used for
checking degeneracy)

• check_only_label (bool, optional) – if True, only check the string representation,
ignoring molecular structure comparisons

• check_template_rxn_products (bool, optional) – if True, only check isomor-
phism of reaction products (used when we know the reactants are identical, i.e. in gener-
ating reactions)

• generate_initial_map (bool, optional) – if True, initialize map by pairing atoms
with same labels

• strict (bool, optional) – if False, perform isomorphism ignoring electrons

• save_order (bool, optional) – if True, perform isomorphism saving atom order

is_surface_reaction()
Return True if one or more reactants or products are surface species (or surface sites)

is_unimolecular()
Return True if the reaction has a single molecule as either reactant or product (or both) A −−⇀↽−− B + C or
A + B −−⇀↽−− C or A −−⇀↽−− B, or False if not.

matches_species(reactants, products)
Compares the provided reactants and products against the reactants and products of this reaction. Both
directions are checked.

Parameters

• reactants (list) – Species required on one side of the reaction

• products (list, optional) – Species required on the other side

reverse_arrhenius_rate(k_forward, reverse_units, Tmin, Tmax)
Reverses the given k_forward, which must be an Arrhenius type. You must supply the correct units for the
reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).

reverse_sticking_coeff_rate(k_forward, reverse_units, surface_site_density, Tmin, Tmax)
Reverses the given k_forward, which must be a StickingCoefficient type. You must supply the correct
units for the reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).
The surface_site_density in mol/m^2 is used to evalaute the forward rate constant.

reverse_surface_arrhenius_rate(k_forward, reverse_units, Tmin, Tmax)
Reverses the given k_forward, which must be a SurfaceArrhenius type. You must supply the correct units
for the reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).

to_cantera(species_list, use_chemkin_identifier)
Converts the RMG Reaction object to a Cantera Reaction object with the appropriate reaction class.

If use_chemkin_identifier is set to False, the species label is used instead. Be sure that species’ labels are
unique when setting it False.

1.4. Database (rmgpy.data) 45



RMG-Py API Reference, Release 3.1.0

to_chemkin(species_list, kinetics)
Return the chemkin-formatted string for this reaction.

If kinetics is set to True, the chemkin format kinetics will also be returned (requires the species_list to
figure out third body colliders.) Otherwise, only the reaction string will be returned.

to_labeled_str(use_index)
the same as __str__ except that the labels are assumed to exist and used for reactant and products rather
than the labels plus the index in parentheses

rmgpy.data.base.LogicNode

class rmgpy.data.base.LogicNode(items, invert)
A base class for AND and OR logic nodes.

class rmgpy.data.base.LogicAnd(items, invert)
A logical AND node. Structure must match all components.

match_to_structure(database, structure, atoms, strict=False)
Does this node in the given database match the given structure with the labeled atoms?

Setting strict to True makes enforces matching of atomLabels in the structure to every atomLabel in the
node.

class rmgpy.data.base.LogicOr(items, invert)
A logical OR node. Structure can match any component.

Initialize with a list of component items and a boolean instruction to invert the answer.

get_possible_structures(entries)
Return a list of the possible structures below this node.

match_logic_or(other)
Is other the same LogicOr group as self?

match_to_structure(database, structure, atoms, strict=False)
Does this node in the given database match the given structure with the labeled atoms?

Setting strict to True makes enforces matching of atomLabels in the structure to every atomLabel in the
node.

rmgpy.data.base.make_logic_node(string)
Creates and returns a node in the tree which is a logic node.

String should be of the form:

• OR{}

• AND{}

• NOT OR{}

• NOT AND{}

And the returned object will be of class LogicOr or LogicAnd

46 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

rmgpy.data.kinetics.ReactionRecipe

class rmgpy.data.kinetics.ReactionRecipe(actions=None)
Represent a list of actions that, when executed, result in the conversion of a set of reactants to a set of products.
There are currently five such actions:

Action
Name

Arguments Description

CHANGE_BONDcenter1, order,
center2

change the bond order of the bond between center1 and center2 by order;
do not break or form bonds

FORM_BOND center1, order,
center2

form a new bond between center1 and center2 of type order

BREAK_BONDcenter1, order,
center2

break the bond between center1 and center2, which should be of type
order

GAIN_RADICALcenter, radical increase the number of free electrons on center by radical
LOSE_RADICALcenter, radical decrease the number of free electrons on center by radical
GAIN_PAIR center, pair increase the number of lone electron pairs on center by pair
LOSE_PAIR center, pair decrease the number of lone electron pairs on center by pair

The actions are stored as a list in the actions attribute. Each action is a list of items; the first is the action name,
while the rest are the action parameters as indicated above.

add_action(action)
Add an action to the reaction recipe, where action is a list containing the action name and the required
parameters, as indicated in the table above.

apply_forward(struct, unique=True)
Apply the forward reaction recipe to molecule, a single Molecule object.

apply_reverse(struct, unique=True)
Apply the reverse reaction recipe to molecule, a single Molecule object.

get_reverse()
Generate a reaction recipe that, when applied, does the opposite of what the current recipe does, i.e., it is
the recipe for the reverse of the reaction that this is the recipe for.

rmgpy.data.statmech.StatmechDatabase

class rmgpy.data.statmech.StatmechDatabase
A class for working with the RMG statistical mechanics (frequencies) database.

get_statmech_data(molecule, thermo_model=None)
Return the thermodynamic parameters for a given Molecule object molecule. This function first searches
the loaded libraries in order, returning the first match found, before falling back to estimation via group
additivity.

get_statmech_data_from_depository(molecule)
Return statmech data for the given Molecule object molecule by searching the entries in the depository.
Returns a list of tuples (statmechData, depository, entry).

get_statmech_data_from_groups(molecule, thermo_model)
Return statmech data for the given Molecule object molecule by estimating using characteristic group
frequencies and fitting the remaining internal modes to heat capacity data from the given thermo model
thermo_model. This always returns valid degrees of freedom data.

1.4. Database (rmgpy.data) 47



RMG-Py API Reference, Release 3.1.0

get_statmech_data_from_library(molecule, library)
Return statmech data for the given Molecule object molecule by searching the entries in the specified
StatmechLibrary object library. Returns None if no data was found.

load(path, libraries=None, depository=True)
Load the statmech database from the given path on disk, where path points to the top-level folder of the
thermo database.

load_depository(path)
Load the statmech database from the given path on disk, where path points to the top-level folder of the
thermo database.

load_groups(path)
Load the statmech database from the given path on disk, where path points to the top-level folder of the
thermo database.

load_libraries(path, libraries=None)
Load the statmech database from the given path on disk, where path points to the top-level folder of the
thermo database.

load_old(path)
Load the old RMG thermo database from the given path on disk, where path points to the top-level folder
of the old RMG database.

save(path)
Save the statmech database to the given path on disk, where path points to the top-level folder of the
statmech database.

save_depository(path)
Save the statmech depository to the given path on disk, where path points to the top-level folder of the
statmech depository.

save_groups(path)
Save the statmech groups to the given path on disk, where path points to the top-level folder of the statmech
groups.

save_libraries(path)
Save the statmech libraries to the given path on disk, where path points to the top-level folder of the
statmech libraries.

save_old(path)
Save the old RMG thermo database to the given path on disk, where path points to the top-level folder of
the old RMG database.

rmgpy.data.statmech.StatmechDepository

class rmgpy.data.statmech.StatmechDepository(label='', name='', short_desc='', long_desc='')
A class for working with the RMG statistical mechanics (frequencies) depository.

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

are_siblings(node, node_other)
Return True if node and node_other have the same parent node. Otherwise, return False. Both node and
node_other must be Entry types with items containing Group or LogicNode types.

descend_tree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

48 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

generate_old_tree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

get_entries_to_save()
Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

get_species(path, resonance=True)
Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)
Load an RMG-style database from the file at location path on disk. The parameters local_context and
global_context are used to provide specialized mapping of identifiers in the input file to corresponding
functions to evaluate. This method will automatically add a few identifiers required by all data entries, so
you don’t need to provide these.

load_entry(index, label, molecule, statmech, reference=None, referenceType='', shortDesc='',
longDesc='')

Method for parsing entries in database files. Note that these argument names are retained for backward
compatibility.

load_old(dictstr, treestr, libstr, num_parameters, num_labels=1, pattern=True)
Load a dictionary-tree-library based database. The database is stored in three files: dictstr is the path to
the dictionary, treestr to the tree, and libstr to the library. The tree is optional, and should be set to ‘’ if not
desired.

load_old_dictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty
line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

load_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path.

load_old_tree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

match_node_to_child(parent_node, child_node)
Return True if parent_node is a parent of child_node. Otherwise, return False. Both parent_node and
child_node must be Entry types with items containing Group or LogicNode types. If parent_node and
child_node are identical, the function will also return False.

match_node_to_node(node, node_other)
Return True if node and node_other are identical. Otherwise, return False. Both node and node_other
must be Entry types with items containing Group or LogicNode types.

match_node_to_structure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure

1.4. Database (rmgpy.data) 49



RMG-Py API Reference, Release 3.1.0

at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.get_all_labeled_atoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

parse_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

remove_group(group_to_remove)
Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also
update the parent/child relationships

Returns the removed group

save(path)
Save the current database to the file at location path on disk.

save_dictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

save_entry(f, entry)
Write the given entry in the thermo database to the file object f.

save_old(dictstr, treestr, libstr)
Save the current database to a set of text files using the old-style syntax.

save_old_dictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

save_old_library(path)
Save the current database library to a text file using the old-style syntax.

save_old_tree(path)
Save the current database tree to a text file using the old-style syntax.

50 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

rmgpy.data.statmechfit

Fitting functions

rmgpy.data.statmechfit.fit_statmech_to_heat_capacity(Tlist, Cvlist, n_vib, n_rot,
molecule=None)

For a given set of dimensionless heat capacity data Cvlist corresponding to temperature list Tlist in K, fit n_vib
harmonic oscillator and n_rot hindered internal rotor modes. External and other previously-known modes should
have already been removed from Cvlist prior to calling this function. You must provide at least 7 values for
Cvlist.

This function returns a list containing the fitted vibrational frequencies in a HarmonicOscillator object and
the fitted 1D hindered rotors in HinderedRotor objects.

rmgpy.data.statmechfit.fit_statmech_direct(Tlist, Cvlist, n_vib, n_rot, molecule=None)
Fit n_vib harmonic oscillator and n_rot hindered internal rotor modes to the provided dimensionless heat capac-
ities Cvlist at temperatures Tlist in K. This method assumes that there are enough heat capacity points provided
that the vibrational frequencies and hindered rotation frequency- barrier pairs can be fit directly.

rmgpy.data.statmechfit.fit_statmech_pseudo_rotors(Tlist, Cvlist, n_vib, n_rot, molecule=None)
Fit n_vib harmonic oscillator and n_rot hindered internal rotor modes to the provided dimensionless heat ca-
pacities Cvlist at temperatures Tlist in K. This method assumes that there are enough heat capacity points pro-
vided that the vibrational frequencies can be fit directly, but the hindered rotors must be combined into a single
“pseudo-rotor”.

rmgpy.data.statmechfit.fit_statmech_pseudo(Tlist, Cvlist, n_vib, n_rot, molecule=None)
Fit n_vib harmonic oscillator and n_rot hindered internal rotor modes to the provided dimensionless heat ca-
pacities Cvlist at temperatures Tlist in K. This method assumes that there are relatively few heat capacity points
provided, so the vibrations must be combined into one real vibration and two “pseudo-vibrations” and the hin-
dered rotors must be combined into a single “pseudo-rotor”.

Helper functions

rmgpy.data.statmechfit.harmonic_oscillator_heat_capacity(T, freq)
Return the heat capacity in J/mol*K at the given set of temperatures Tlist in K for the harmonic oscillator with
a frequency freq in cm^-1.

rmgpy.data.statmechfit.harmonic_oscillator_d_heat_capacity_d_freq(T, freq)
Return the first derivative of the heat capacity with respect to the harmonic oscillator frequency in J/mol*K/cm^-
1 at the given set of temperatures Tlist in K, evaluated at the frequency freq in cm^-1.

rmgpy.data.statmechfit.hindered_rotor_heat_capacity(T, freq, barr)
Return the heat capacity in J/mol*K at the given set of temperatures Tlist in K for the 1D hindered rotor with a
frequency freq in cm^-1 and a barrier height barr in cm^-1.

rmgpy.data.statmechfit.hindered_rotor_d_heat_capacity_d_freq(T, freq, barr)
Return the first derivative of the heat capacity with respect to the hindered rotor frequency in J/mol*K/cm^-1 at
the given set of temperatures Tlist in K, evaluated at the frequency freq in cm^-1 and a barrier height barr in
cm^-1.

rmgpy.data.statmechfit.hindered_rotor_d_heat_capacity_d_barr(T, freq, barr)
Return the first derivative of the heat capacity with respect to the hindered rotor frequency in J/mol*K/cm^-1 at
the given set of temperatures Tlist in K, evaluated at the frequency freq in cm^-1 and a barrier height barr in
cm^-1.

1.4. Database (rmgpy.data) 51



RMG-Py API Reference, Release 3.1.0

Helper classes

class rmgpy.data.statmechfit.DirectFit(Tdata, Cvdata, n_vib, n_rot)
Class for fitting vibrational frequencies and hindered rotor frequency-barrier pairs for the case when there are
few enough oscillators and rotors that their values can be fit directly.

evaluate(x)
Evaluate the nonlinear equations and constraints for this system, and the corresponding Jacobian matrices,
at the given value of the solution vector x. Return a tuple containing three items:

• A vector of the current values of the system of equations f(x).

• A matrix of the current values of the Jacobian of the system of equations: 𝐽𝑖𝑗 = 𝜕𝑓𝑖
𝜕𝑥𝑗

.

• A matrix of the current values of the Jacobian of the (linear) constrains: 𝐽 ′
𝑖𝑗 = 𝜕𝑔𝑖

𝜕𝑥𝑗
.

initialize()
Initialize the DQED solver. The required parameters are:

• Neq - The number of algebraic equations.

• Nvars - The number of unknown variables.

• Ncons - The number of constraint equations.

The optional parameters are:

• bounds - A list of 2-tuples giving the lower and upper bound for each unknown variable. Use None
if there is no bound in one or either direction. If provided, you must give bounds for every unknown
variable.

• tolf - The tolerance used for stopping when the norm of the residual has absolute length less than tolf,
i.e. ‖𝑓‖ ≤ 𝜖𝑓 .

• told - The tolerance used for stopping when changes to the unknown variables has absolute length less
than told, i.e. ‖∆�⃗�‖ ≤ 𝜖𝑑.

• tolx - The tolerance used for stopping when changes to the unknown variables has relative length less
than tolx, i.e. ‖∆�⃗�‖ ≤ 𝜖𝑥 · ‖�⃗�‖.

• maxIter - The maximum number of iterations to use

• verbose - True to have DQED print extra information about the solve, False to only see printed
output when the solver has an error.

solve()
Using the initial guess x0, return the least-squares solution to the set of nonlinear algebraic equations
defined by the evaluate() method of the derived class. This is the method that actually conducts the
call to DQED. Returns the solution vector and a flag indicating the status of the solve. The possible output
values of the flag are:

52 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

Value Meaning
2 The norm of the residual is zero; the solution vector is a root of the system
3 The bounds on the trust region are being encountered on each step; the solution vector may or

may not be a local minimum
4 The solution vector is a local minimum
5 A significant amount of noise or uncertainty has been observed in the residual; the solution may

or may not be a local minimum
6 The solution vector is only changing by small absolute amounts; the solution may or may not

be a local minimum
7 The solution vector is only changing by small relative amounts; the solution may or may not be

a local minimum
8 The maximum number of iterations has been reached; the solution is the best found, but may or

may not be a local minimum
9-18 An error occurred during the solve operation; the solution is not a local minimum

class rmgpy.data.statmechfit.PseudoRotorFit(Tdata, Cvdata, n_vib, n_rot)
Class for fitting vibrational frequencies and hindered rotor frequency-barrier pairs for the case when there are
too many oscillators and rotors for their values can be fit directly, and where collapsing the rotors into a single
pseudo-rotor allows for fitting the vibrational frequencies directly.

evaluate(x)
Evaluate the nonlinear equations and constraints for this system, and the corresponding Jacobian matrices,
at the given value of the solution vector x. Return a tuple containing three items:

• A vector of the current values of the system of equations f(x).

• A matrix of the current values of the Jacobian of the system of equations: 𝐽𝑖𝑗 = 𝜕𝑓𝑖
𝜕𝑥𝑗

.

• A matrix of the current values of the Jacobian of the (linear) constrains: 𝐽 ′
𝑖𝑗 = 𝜕𝑔𝑖

𝜕𝑥𝑗
.

initialize()
Initialize the DQED solver. The required parameters are:

• Neq - The number of algebraic equations.

• Nvars - The number of unknown variables.

• Ncons - The number of constraint equations.

The optional parameters are:

• bounds - A list of 2-tuples giving the lower and upper bound for each unknown variable. Use None
if there is no bound in one or either direction. If provided, you must give bounds for every unknown
variable.

• tolf - The tolerance used for stopping when the norm of the residual has absolute length less than tolf,
i.e. ‖𝑓‖ ≤ 𝜖𝑓 .

• told - The tolerance used for stopping when changes to the unknown variables has absolute length less
than told, i.e. ‖∆�⃗�‖ ≤ 𝜖𝑑.

• tolx - The tolerance used for stopping when changes to the unknown variables has relative length less
than tolx, i.e. ‖∆�⃗�‖ ≤ 𝜖𝑥 · ‖�⃗�‖.

• maxIter - The maximum number of iterations to use

• verbose - True to have DQED print extra information about the solve, False to only see printed
output when the solver has an error.

1.4. Database (rmgpy.data) 53



RMG-Py API Reference, Release 3.1.0

solve()
Using the initial guess x0, return the least-squares solution to the set of nonlinear algebraic equations
defined by the evaluate() method of the derived class. This is the method that actually conducts the
call to DQED. Returns the solution vector and a flag indicating the status of the solve. The possible output
values of the flag are:

Value Meaning
2 The norm of the residual is zero; the solution vector is a root of the system
3 The bounds on the trust region are being encountered on each step; the solution vector may or

may not be a local minimum
4 The solution vector is a local minimum
5 A significant amount of noise or uncertainty has been observed in the residual; the solution may

or may not be a local minimum
6 The solution vector is only changing by small absolute amounts; the solution may or may not

be a local minimum
7 The solution vector is only changing by small relative amounts; the solution may or may not be

a local minimum
8 The maximum number of iterations has been reached; the solution is the best found, but may or

may not be a local minimum
9-18 An error occurred during the solve operation; the solution is not a local minimum

class rmgpy.data.statmechfit.PseudoFit(Tdata, Cvdata, n_vib, n_rot)
Class for fitting vibrational frequencies and hindered rotor frequency-barrier pairs for the case when there are
too many oscillators and rotors for their values can be fit directly, and where we must collapse both the vibrations
and hindered rotations into “pseudo-oscillators” and “pseudo-rotors”.

evaluate(x)
Evaluate the nonlinear equations and constraints for this system, and the corresponding Jacobian matrices,
at the given value of the solution vector x. Return a tuple containing three items:

• A vector of the current values of the system of equations f(x).

• A matrix of the current values of the Jacobian of the system of equations: 𝐽𝑖𝑗 = 𝜕𝑓𝑖
𝜕𝑥𝑗

.

• A matrix of the current values of the Jacobian of the (linear) constrains: 𝐽 ′
𝑖𝑗 = 𝜕𝑔𝑖

𝜕𝑥𝑗
.

initialize()
Initialize the DQED solver. The required parameters are:

• Neq - The number of algebraic equations.

• Nvars - The number of unknown variables.

• Ncons - The number of constraint equations.

The optional parameters are:

• bounds - A list of 2-tuples giving the lower and upper bound for each unknown variable. Use None
if there is no bound in one or either direction. If provided, you must give bounds for every unknown
variable.

• tolf - The tolerance used for stopping when the norm of the residual has absolute length less than tolf,
i.e. ‖𝑓‖ ≤ 𝜖𝑓 .

• told - The tolerance used for stopping when changes to the unknown variables has absolute length less
than told, i.e. ‖∆�⃗�‖ ≤ 𝜖𝑑.

• tolx - The tolerance used for stopping when changes to the unknown variables has relative length less
than tolx, i.e. ‖∆�⃗�‖ ≤ 𝜖𝑥 · ‖�⃗�‖.

54 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

• maxIter - The maximum number of iterations to use

• verbose - True to have DQED print extra information about the solve, False to only see printed
output when the solver has an error.

solve()
Using the initial guess x0, return the least-squares solution to the set of nonlinear algebraic equations
defined by the evaluate() method of the derived class. This is the method that actually conducts the
call to DQED. Returns the solution vector and a flag indicating the status of the solve. The possible output
values of the flag are:

Value Meaning
2 The norm of the residual is zero; the solution vector is a root of the system
3 The bounds on the trust region are being encountered on each step; the solution vector may or

may not be a local minimum
4 The solution vector is a local minimum
5 A significant amount of noise or uncertainty has been observed in the residual; the solution may

or may not be a local minimum
6 The solution vector is only changing by small absolute amounts; the solution may or may not

be a local minimum
7 The solution vector is only changing by small relative amounts; the solution may or may not be

a local minimum
8 The maximum number of iterations has been reached; the solution is the best found, but may or

may not be a local minimum
9-18 An error occurred during the solve operation; the solution is not a local minimum

rmgpy.data.statmech.StatmechGroups

class rmgpy.data.statmech.StatmechGroups(label='', name='', short_desc='', long_desc='')
A class for working with an RMG statistical mechanics (frequencies) group database.

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

are_siblings(node, node_other)
Return True if node and node_other have the same parent node. Otherwise, return False. Both node and
node_other must be Entry types with items containing Group or LogicNode types.

descend_tree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

generate_old_library_entry(data)
Return a list of values used to save entries to the old-style RMG thermo database based on the thermody-
namics object data.

1.4. Database (rmgpy.data) 55



RMG-Py API Reference, Release 3.1.0

generate_old_tree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

get_entries_to_save()
Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

get_frequency_groups(molecule)
Return the set of characteristic group frequencies corresponding to the specified molecule. This is done by
searching the molecule for certain functional groups for which characteristic frequencies are known, and
using those frequencies.

get_species(path, resonance=True)
Load the dictionary containing all of the species in a kinetics library or depository.

get_statmech_data(molecule, thermo_model)
Use the previously-loaded frequency database to generate a set of characteristic group frequencies cor-
responding to the speficied molecule. The provided thermo data in thermo_model is used to fit some
frequencies and all hindered rotors to heat capacity data.

load(path, local_context=None, global_context=None)
Load an RMG-style database from the file at location path on disk. The parameters local_context and
global_context are used to provide specialized mapping of identifiers in the input file to corresponding
functions to evaluate. This method will automatically add a few identifiers required by all data entries, so
you don’t need to provide these.

load_entry(index, label, group, statmech, reference=None, referenceType='', shortDesc='',
longDesc='')

Method for parsing entries in database files. Note that these argument names are retained for backward
compatibility.

load_old(dictstr, treestr, libstr, num_parameters, num_labels=1, pattern=True)
Load a dictionary-tree-library based database. The database is stored in three files: dictstr is the path to
the dictionary, treestr to the tree, and libstr to the library. The tree is optional, and should be set to ‘’ if not
desired.

load_old_dictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty
line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

load_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path.

load_old_tree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

match_node_to_child(parent_node, child_node)
Return True if parent_node is a parent of child_node. Otherwise, return False. Both parent_node and
child_node must be Entry types with items containing Group or LogicNode types. If parent_node and
child_node are identical, the function will also return False.

match_node_to_node(node, node_other)
Return True if node and node_other are identical. Otherwise, return False. Both node and node_other
must be Entry types with items containing Group or LogicNode types.

match_node_to_structure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure

56 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.get_all_labeled_atoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

parse_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

process_old_library_entry(data)
Process a list of parameters data as read from an old-style RMG statmech database, returning the corre-
sponding thermodynamics object.

remove_group(group_to_remove)
Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also
update the parent/child relationships

Returns the removed group

save(path)
Save the current database to the file at location path on disk.

save_dictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

save_entry(f, entry)
Write the given entry in the thermo database to the file object f.

save_old(dictstr, treestr, libstr)
Save the current database to a set of text files using the old-style syntax.

save_old_dictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

save_old_library(path)
Save the current database library to a text file using the old-style syntax.

save_old_tree(path)
Save the current database tree to a text file using the old-style syntax.

1.4. Database (rmgpy.data) 57



RMG-Py API Reference, Release 3.1.0

rmgpy.data.statmech.StatmechLibrary

class rmgpy.data.statmech.StatmechLibrary(label='', name='', short_desc='', long_desc='')
A class for working with a RMG statistical mechanics (frequencies) library.

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

are_siblings(node, node_other)
Return True if node and node_other have the same parent node. Otherwise, return False. Both node and
node_other must be Entry types with items containing Group or LogicNode types.

descend_tree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

generate_old_library_entry(data)
Return a list of values used to save entries to the old-style RMG thermo database based on the thermody-
namics object data.

generate_old_tree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

get_entries_to_save()
Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

get_species(path, resonance=True)
Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)
Load an RMG-style database from the file at location path on disk. The parameters local_context and
global_context are used to provide specialized mapping of identifiers in the input file to corresponding
functions to evaluate. This method will automatically add a few identifiers required by all data entries, so
you don’t need to provide these.

load_entry(index, label, molecule, statmech, reference=None, referenceType='', shortDesc='',
longDesc='')

Method for parsing entries in database files. Note that these argument names are retained for backward
compatibility.

load_old(dictstr, treestr, libstr, num_parameters, num_labels=1, pattern=True)
Load a dictionary-tree-library based database. The database is stored in three files: dictstr is the path to
the dictionary, treestr to the tree, and libstr to the library. The tree is optional, and should be set to ‘’ if not
desired.

load_old_dictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty

58 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

load_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path.

load_old_tree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

match_node_to_child(parent_node, child_node)
Return True if parent_node is a parent of child_node. Otherwise, return False. Both parent_node and
child_node must be Entry types with items containing Group or LogicNode types. If parent_node and
child_node are identical, the function will also return False.

match_node_to_node(node, node_other)
Return True if node and node_other are identical. Otherwise, return False. Both node and node_other
must be Entry types with items containing Group or LogicNode types.

match_node_to_structure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure
at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.get_all_labeled_atoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

parse_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

process_old_library_entry(data)
Process a list of parameters data as read from an old-style RMG thermo database, returning the corre-
sponding thermodynamics object.

remove_group(group_to_remove)
Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also
update the parent/child relationships

Returns the removed group

save(path)
Save the current database to the file at location path on disk.

save_dictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

1.4. Database (rmgpy.data) 59



RMG-Py API Reference, Release 3.1.0

save_entry(f, entry)
Write the given entry in the thermo database to the file object f.

save_old(dictstr, treestr, libstr)
Save the current database to a set of text files using the old-style syntax.

save_old_dictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

save_old_library(path)
Save the current database library to a text file using the old-style syntax.

save_old_tree(path)
Save the current database tree to a text file using the old-style syntax.

rmgpy.data.kinetics.TemplateReaction

class rmgpy.data.kinetics.TemplateReaction(index=- 1, reactants=None, products=None,
specific_collider=None, kinetics=None, re-
versible=True, transition_state=None, dupli-
cate=False, degeneracy=1, pairs=None, fam-
ily=None, template=None, estimator=None,
reverse=None, is_forward=None)

A Reaction object generated from a reaction family template. In addition to attributes inherited from Reaction,
this class includes the following attributes:

Attribute Type Description
family str The kinetics family that the reaction was created from.
estimator str Whether the kinetics came from rate rules or group additivity.
reverse TemplateReaction The reverse reaction, for families that are their own reverse.
is_forward bool Whether the reaction was generated in the forward direction of the fam-

ily.

calculate_coll_limit(temp, reverse)
Calculate the collision limit rate in m3/mol-s for the given temperature implemented as recommended in
Wang et al. doi 10.1016/j.combustflame.2017.08.005 (Eq. 1)

calculate_microcanonical_rate_coefficient(e_list, j_list, reac_dens_states,
prod_dens_states, T)

Calculate the microcanonical rate coefficient 𝑘(𝐸) for the reaction reaction at the energies e_list in J/mol.
reac_dens_states and prod_dens_states are the densities of states of the reactant and product configurations
for this reaction. If the reaction is irreversible, only the reactant density of states is required; if the reaction
is reversible, then both are required. This function will try to use the best method that it can based on the
input data available:

• If detailed information has been provided for the transition state (i.e. the molecular degrees of free-
dom), then RRKM theory will be used.

• If the above is not possible but high-pressure limit kinetics 𝑘∞(𝑇 ) have been provided, then the
inverse Laplace transform method will be used.

The density of states for the product prod_dens_states and the temperature of interest T in K can also
be provided. For isomerization and association reactions prod_dens_states is required; for dissociation
reactions it is optional. The temperature is used if provided in the detailed balance expression to determine
the reverse kinetics, and in certain cases in the inverse Laplace transform method.

60 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

calculate_tst_rate_coefficient(T)
Evaluate the forward rate coefficient for the reaction with corresponding transition state TS at temperature
T in K using (canonical) transition state theory. The TST equation is

𝑘(𝑇 ) = 𝜅(𝑇 )
𝑘B𝑇

ℎ

𝑄‡(𝑇 )

𝑄A(𝑇 )𝑄B(𝑇 )
exp

(︂
− 𝐸0

𝑘B𝑇

)︂
where 𝑄‡ is the partition function of the transition state, 𝑄A and 𝑄B are the partition function of the
reactants, 𝐸0 is the ground-state energy difference from the transition state to the reactants, 𝑇 is the
absolute temperature, 𝑘B is the Boltzmann constant, and ℎ is the Planck constant. 𝜅(𝑇 ) is an optional
tunneling correction.

can_tst()
Return True if the necessary parameters are available for using transition state theory – or the microcanon-
ical equivalent, RRKM theory – to compute the rate coefficient for this reaction, or False otherwise.

check_collision_limit_violation(t_min, t_max, p_min, p_max)
Warn if a core reaction violates the collision limit rate in either the forward or reverse direction at the
relevant extreme T/P conditions. Assuming a monotonic behaviour of the kinetics. Returns a list with the
reaction object and the direction in which the violation was detected.

copy()
creates a new instance of TemplateReaction

degeneracy
The reaction path degeneracy for this reaction.

If the reaction has kinetics, changing the degeneracy will adjust the reaction rate by a ratio of the new
degeneracy to the old degeneracy.

draw(path)
Generate a pictorial representation of the chemical reaction using the draw module. Use path to specify
the file to save the generated image to; the image type is automatically determined by extension. Valid
extensions are .png, .svg, .pdf, and .ps; of these, the first is a raster format and the remainder are
vector formats.

ensure_species(reactant_resonance, product_resonance)
Ensure the reaction contains species objects in its reactant and product attributes. If the reaction is found
to hold molecule objects, it modifies the reactant, product and pairs to hold Species objects.

Generates resonance structures for Molecules if the corresponding options, reactant_resonance and/or
product_resonance, are True. Does not generate resonance for reactants or products that start as Species
objects.

fix_barrier_height(force_positive)
Turns the kinetics into Arrhenius (if they were ArrheniusEP) and ensures the activation energy is at least
the endothermicity for endothermic reactions, and is not negative only as a result of using Evans Polanyi
with an exothermic reaction. If force_positive is True, then all reactions are forced to have a non-negative
barrier.

fix_diffusion_limited_a_factor(T)
Decrease the pre-exponential factor (A) by the diffusion factor to account for the diffusion limit at the
specified temperature.

generate_3d_ts(reactants, products)
Generate the 3D structure of the transition state. Called from model.generate_kinetics().

self.reactants is a list of reactants self.products is a list of products

1.4. Database (rmgpy.data) 61



RMG-Py API Reference, Release 3.1.0

generate_high_p_limit_kinetics()
Used for incorporating library reactions with pressure-dependent kinetics in PDep networks. Only imple-
mented for LibraryReaction

generate_pairs()
Generate the reactant-product pairs to use for this reaction when performing flux analysis. The exact
procedure for doing so depends on the reaction type:

Reaction type Template Resulting pairs
Isomerization A -> C (A,C)
Dissociation A -> C + D (A,C), (A,D)
Association A + B -> C (A,C), (B,C)
Bimolecular A + B -> C + D (A,C), (B,D) or (A,D), (B,C)

There are a number of ways of determining the correct pairing for bimolecular reactions. Here we try a
simple similarity analysis by comparing the number of heavy atoms. This should work most of the time,
but a more rigorous algorithm may be needed for some cases.

generate_reverse_rate_coefficient(network_kinetics, Tmin, Tmax, surface_site_density)
Generate and return a rate coefficient model for the reverse reaction. Currently this only works if the
kinetics attribute is one of several (but not necessarily all) kinetics types.

If the reaction kinetics model is Sticking Coefficient, please provide a nonzero surface site density in
mol/m^2 which is required to evaluate the rate coefficient.

get_enthalpies_of_reaction(Tlist)
Return the enthalpies of reaction in J/mol evaluated at temperatures Tlist in K.

get_enthalpy_of_reaction(T)
Return the enthalpy of reaction in J/mol evaluated at temperature T in K.

get_entropies_of_reaction(Tlist)
Return the entropies of reaction in J/mol*K evaluated at temperatures Tlist in K.

get_entropy_of_reaction(T)
Return the entropy of reaction in J/mol*K evaluated at temperature T in K.

get_equilibrium_constant(T, type, surface_site_density)
Return the equilibrium constant for the reaction at the specified temperature T in K and reference sur-
face_site_density in mol/m^2 (2.5e-05 default) The type parameter lets you specify the quantities used in
the equilibrium constant: Ka for activities, Kc for concentrations (default), or Kp for pressures. This func-
tion assumes a reference pressure of 1e5 Pa for gas phases species and uses the ideal gas law to determine
reference concentrations. For surface species, the surface_site_density is the assumed reference.

get_equilibrium_constants(Tlist, type)
Return the equilibrium constants for the reaction at the specified temperatures Tlist in K. The type parame-
ter lets you specify the quantities used in the equilibrium constant: Ka for activities, Kc for concentrations
(default), or Kp for pressures. Note that this function currently assumes an ideal gas mixture.

get_free_energies_of_reaction(Tlist)
Return the Gibbs free energies of reaction in J/mol evaluated at temperatures Tlist in K.

get_free_energy_of_reaction(T)
Return the Gibbs free energy of reaction in J/mol evaluated at temperature T in K.

get_mean_sigma_and_epsilon(reverse)
Calculates the collision diameter (sigma) using an arithmetic mean Calculates the well depth (epsilon)
using a geometric mean If reverse is False the above is calculated for the reactants, otherwise for the
products

62 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

get_rate_coefficient(T, P, surface_site_density)
Return the overall rate coefficient for the forward reaction at temperature T in K and pressure P in Pa,
including any reaction path degeneracies.

If diffusion_limiter is enabled, the reaction is in the liquid phase and we use a diffusion limitation to correct
the rate. If not, then use the intrinsic rate coefficient.

If the reaction has sticking coefficient kinetics, a nonzero surface site density in mol/m^2 must be provided

get_reduced_mass(reverse)
Returns the reduced mass of the reactants if reverse is False Returns the reduced mass of the products if
reverse is True

get_source()
Return the database that was the source of this reaction. For a TemplateReaction this should be a Kinetic-
sGroups object.

get_stoichiometric_coefficient(spec)
Return the stoichiometric coefficient of species spec in the reaction. The stoichiometric coefficient is
increased by one for each time spec appears as a product and decreased by one for each time spec appears
as a reactant.

get_surface_rate_coefficient(T, surface_site_density)
Return the overall surface rate coefficient for the forward reaction at temperature T in K with surface site
density surface_site_density in mol/m2. Value is returned in combination of [m,mol,s]

get_url()
Get a URL to search for this reaction in the rmg website.

has_template(reactants, products)
Return True if the reaction matches the template of reactants and products, which are both lists of
Species objects, or False if not.

is_association()
Return True if the reaction represents an association reaction A + B −−⇀↽−− C or False if not.

is_balanced()
Return True if the reaction has the same number of each atom on each side of the reaction equation, or
False if not.

is_dissociation()
Return True if the reaction represents a dissociation reaction A −−⇀↽−− B + C or False if not.

is_isomerization()
Return True if the reaction represents an isomerization reaction A −−⇀↽−− B or False if not.

is_isomorphic(other, either_direction, check_identical, check_only_label,
check_template_rxn_products, generate_initial_map, strict, save_order)

Return True if this reaction is the same as the other reaction, or False if they are different. The compar-
ison involves comparing isomorphism of reactants and products, and doesn’t use any kinetic information.

Parameters

• either_direction (bool, optional) – if False,then the reaction direction must
match.

• check_identical (bool, optional) – if True, check that atom ID’s match (used for
checking degeneracy)

• check_only_label (bool, optional) – if True, only check the string representation,
ignoring molecular structure comparisons

1.4. Database (rmgpy.data) 63



RMG-Py API Reference, Release 3.1.0

• check_template_rxn_products (bool, optional) – if True, only check isomor-
phism of reaction products (used when we know the reactants are identical, i.e. in gener-
ating reactions)

• generate_initial_map (bool, optional) – if True, initialize map by pairing atoms
with same labels

• strict (bool, optional) – if False, perform isomorphism ignoring electrons

• save_order (bool, optional) – if True, perform isomorphism saving atom order

is_surface_reaction()
Return True if one or more reactants or products are surface species (or surface sites)

is_unimolecular()
Return True if the reaction has a single molecule as either reactant or product (or both) A −−⇀↽−− B + C or
A + B −−⇀↽−− C or A −−⇀↽−− B, or False if not.

matches_species(reactants, products)
Compares the provided reactants and products against the reactants and products of this reaction. Both
directions are checked.

Parameters

• reactants (list) – Species required on one side of the reaction

• products (list, optional) – Species required on the other side

reverse_arrhenius_rate(k_forward, reverse_units, Tmin, Tmax)
Reverses the given k_forward, which must be an Arrhenius type. You must supply the correct units for the
reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).

reverse_sticking_coeff_rate(k_forward, reverse_units, surface_site_density, Tmin, Tmax)
Reverses the given k_forward, which must be a StickingCoefficient type. You must supply the correct
units for the reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).
The surface_site_density in mol/m^2 is used to evalaute the forward rate constant.

reverse_surface_arrhenius_rate(k_forward, reverse_units, Tmin, Tmax)
Reverses the given k_forward, which must be a SurfaceArrhenius type. You must supply the correct units
for the reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).

to_cantera(species_list, use_chemkin_identifier)
Converts the RMG Reaction object to a Cantera Reaction object with the appropriate reaction class.

If use_chemkin_identifier is set to False, the species label is used instead. Be sure that species’ labels are
unique when setting it False.

to_chemkin(species_list, kinetics)
Return the chemkin-formatted string for this reaction.

If kinetics is set to True, the chemkin format kinetics will also be returned (requires the species_list to
figure out third body colliders.) Otherwise, only the reaction string will be returned.

to_labeled_str(use_index)
the same as __str__ except that the labels are assumed to exist and used for reactant and products rather
than the labels plus the index in parentheses

64 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

rmgpy.data.thermo.ThermoDatabase

class rmgpy.data.thermo.ThermoDatabase
A class for working with the RMG thermodynamics database.

compute_group_additivity_thermo(molecule)
Return the set of thermodynamic parameters corresponding to a given Molecule object molecule using
the group additivity values method. If no group additivity values are loaded, a DatabaseError is raised.

The entropy is not corrected for the symmetry of the molecule, this should be done later by the calling
function.

correct_binding_energy(thermo, species, metal_to_scale_from=None, metal_to_scale_to=None)
Changes the provided thermo, by applying a linear scaling relation to correct the adsorption energy.

Parameters

• thermo – starting thermo data

• species – the species (which is an adsorbate)

• metal_to_scale_from – the metal you want to scale from (string eg. ‘Pt111’ or None)

• metal_to_scale_to – the metal you want to scale to (string e.g ‘Pt111’ or None)

Returns corrected thermo

estimate_radical_thermo_via_hbi(molecule, stable_thermo_estimator)
Estimate the thermodynamics of a radical by saturating it, applying the provided stable_thermo_estimator
method on the saturated species, then applying hydrogen bond increment corrections for the radical site(s)
and correcting for the symmetry.

No entropy is included in the returning term. This should be done later by the calling function.

estimate_thermo_via_group_additivity(molecule)
Return the set of thermodynamic parameters corresponding to a given Molecule object molecule using
the group additivity values method. If no group additivity values are loaded, a DatabaseError is raised.

The entropy is not corrected for the symmetry of the molecule, this should be done later by the calling
function.

extract_source_from_comments(species)
species: A species object containing thermo data and thermo data comments

Parses the verbose string of comments from the thermo data of the species object, and extracts the thermo
sources.

Returns a dictionary with keys of either ‘Library’, ‘QM’, and/or ‘GAV’. Commonly, species thermo are
estimated using only one of these sources. However, a radical can be estimated with more than one type
of source, for instance a saturated library value and a GAV HBI correction, or a QM saturated value and a
GAV HBI correction.

source = {‘Library’: String_Name_of_Library_Used, ‘QM’: String_of_Method_Used, ‘GAV’: Dic-
tionary_of_Groups_Used }

The Dictionary_of_Groups_Used looks like {‘groupType’:[List of tuples containing (Entry, Weight)]

get_all_thermo_data(species)
Return all possible sets of thermodynamic parameters for a given Species object species. The hits from
the depository come first, then the libraries (in order), and then the group additivity estimate. This method
is useful for a generic search job.

Returns: a list of tuples (ThermoData, source, entry) (Source is a library or depository, or None)

1.4. Database (rmgpy.data) 65



RMG-Py API Reference, Release 3.1.0

get_ring_groups_from_comments(thermo_data)
Takes a string of comments from group additivity estimation, and extracts the ring and polycyclic ring
groups from them, returning them as lists.

get_thermo_data(species, metal_to_scale_to=None, training_set=None)
Return the thermodynamic parameters for a given Species object species. This function first searches
the loaded libraries in order, returning the first match found, before falling back to estimation via machine
learning and then group additivity.

The method corrects for symmetry when the molecule uses machine learning or group additivity. Libraries
and direct QM calculations are already corrected.

If either metal to scale to or from is not specified, assume the binding energies given in the input file

Returns: ThermoData

get_thermo_data_for_surface_species(species)
Get the thermo data for an adsorbed species, by desorbing it, finding the thermo of the gas-phase species,
then adding an adsorption correction that is found from the groups/adsorption tree. Does not apply linear
scaling relationship.

Returns a ThermoData object, with no Cp0 or CpInf

get_thermo_data_from_depository(species)
Return all possible sets of thermodynamic parameters for a given Species object species from the depos-
itory. If no depository is loaded, a DatabaseError is raised.

Returns: a list of tuples (thermo_data, depository, entry) without any Cp0 or CpInf data.

get_thermo_data_from_groups(species)
Return the set of thermodynamic parameters corresponding to a given Species object species by esti-
mation using the group additivity values. If no group additivity values are loaded, a DatabaseError is
raised.

The resonance isomer (molecule) with the lowest H298 is used, and as a side-effect the resonance isomers
(items in species.molecule list) are sorted in ascending order.

This does not account for symmetry. The method calling this sould correct for it.

Returns: ThermoData

get_thermo_data_from_libraries(species, training_set=None)
Return the thermodynamic parameters for a given Species object species. This function first searches the
loaded libraries in order, returning the first match found, before failing and returning None. training_set is
used to identify if function is called during training set or not. During training set calculation we want to
use gas phase thermo to not affect reverse rate calculation.

Returns: ThermoData or None

get_thermo_data_from_library(species, library)
Return the set of thermodynamic parameters corresponding to a given Species object species from the
specified thermodynamics library. If library is a string, the list of libraries is searched for a library with
that name. If no match is found in that library, None is returned. If no corresponding library is found, a
DatabaseError is raised.

Returns a tuple: (ThermoData, library, entry) or None.

get_thermo_data_from_ml(species, ml_estimator, ml_settings)
Return the set of thermodynamic parameters corresponding to a given Species object species by estima-
tion using the ML estimator. Also compare the estimated uncertainties to the user-defined cutoffs. If any
of the uncertainties are larger than their corresponding cutoffs, return None. Also check all other options
in ml_settings.

66 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

For HBI, the resonance isomer with the lowest H298 is used and the resonance isomers in species are
sorted in ascending order.

The entropy is not corrected for the symmetry of the molecule. This should be done later by the calling
function.

load(path, libraries=None, depository=True, surface=False)
Load the thermo database from the given path on disk, where path points to the top-level folder of the
thermo database.

load_depository(path)
Load the thermo database from the given path on disk, where path points to the top-level folder of the
thermo database.

load_groups(path)
Load the thermo database from the given path on disk, where path points to the top-level folder of the
thermo database.

load_libraries(path, libraries=None)
Load the thermo database from the given path on disk, where path points to the top-level folder of the
thermo database.

If no libraries are given, all are loaded.

load_old(path)
Load the old RMG thermo database from the given path on disk, where path points to the top-level folder
of the old RMG database.

load_surface()
Load the metal database from the given path on disk, where path points to the top-level folder of the
thermo database.

prioritize_thermo(species, thermo_data_list)
Use some metrics to reorder a list of thermo data from best to worst. Return a list of indices with the
desired order associated with the index of thermo from the data list.

prune_heteroatoms(allowed=None)
Remove all species from thermo libraries that contain atoms other than those allowed.

This is useful before saving the database for use in RMG-Java

record_polycylic_generic_nodes()
Identify generic nodes in tree for polycyclic groups. Saves them as a list in the generic_nodes attribute in
the polycyclic ThermoGroups object, which must be pre-loaded.

Necessary for polycyclic heuristic.

record_ring_generic_nodes()
Identify generic nodes in tree for ring groups. Saves them as a list in the generic_nodes attribute in the
ring ThermoGroups object, which must be pre-loaded.

Necessary for polycyclic heuristic.

save(path)
Save the thermo database to the given path on disk, where path points to the top-level folder of the thermo
database.

save_depository(path)
Save the thermo depository to the given path on disk, where path points to the top-level folder of the
thermo depository.

1.4. Database (rmgpy.data) 67



RMG-Py API Reference, Release 3.1.0

save_groups(path)
Save the thermo groups to the given path on disk, where path points to the top-level folder of the thermo
groups.

save_libraries(path)
Save the thermo libraries to the given path on disk, where path points to the top-level folder of the thermo
libraries.

save_old(path)
Save the old RMG thermo database to the given path on disk, where path points to the top-level folder of
the old RMG database.

save_surface(path)
Save the metal library to the given path on disk, where path points to the top-level folder of the metal
library.

set_binding_energies(binding_energies='Pt111')
Sets and stores the atomic binding energies specified in the input file.

All adsorbates will be scaled to use these elemental binding energies.

Parameters binding_energies (dict, optional) – the desired binding energies with ele-
ments as keys and binding energy/unit tuples (or Energy quantities) as values

Returns None, stores result in self.binding_energies

rmgpy.data.thermo.ThermoDepository

class rmgpy.data.thermo.ThermoDepository(label='', name='', short_desc='', long_desc='',
metal=None, site=None, facet=None)

A class for working with the RMG thermodynamics depository.

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

are_siblings(node, node_other)
Return True if node and node_other have the same parent node. Otherwise, return False. Both node and
node_other must be Entry types with items containing Group or LogicNode types.

descend_tree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

generate_old_tree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

get_entries_to_save()
Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

68 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

get_species(path, resonance=True)
Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)
Load an RMG-style database from the file at location path on disk. The parameters local_context and
global_context are used to provide specialized mapping of identifiers in the input file to corresponding
functions to evaluate. This method will automatically add a few identifiers required by all data entries, so
you don’t need to provide these.

load_entry(index, label, molecule, thermo, reference=None, referenceType='', shortDesc='',
longDesc='', rank=None, metal=None, site=None, facet=None)

Method for parsing entries in database files. Note that these argument names are retained for backward
compatibility.

load_old(dictstr, treestr, libstr, num_parameters, num_labels=1, pattern=True)
Load a dictionary-tree-library based database. The database is stored in three files: dictstr is the path to
the dictionary, treestr to the tree, and libstr to the library. The tree is optional, and should be set to ‘’ if not
desired.

load_old_dictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty
line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

load_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path.

load_old_tree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

match_node_to_child(parent_node, child_node)
Return True if parent_node is a parent of child_node. Otherwise, return False. Both parent_node and
child_node must be Entry types with items containing Group or LogicNode types. If parent_node and
child_node are identical, the function will also return False.

match_node_to_node(node, node_other)
Return True if node and node_other are identical. Otherwise, return False. Both node and node_other
must be Entry types with items containing Group or LogicNode types.

match_node_to_structure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure
at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

1.4. Database (rmgpy.data) 69



RMG-Py API Reference, Release 3.1.0

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.get_all_labeled_atoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

parse_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

remove_group(group_to_remove)
Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also
update the parent/child relationships

Returns the removed group

save(path)
Save the current database to the file at location path on disk.

save_dictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

save_entry(f, entry)
Write the given entry in the thermo database to the file object f.

save_old(dictstr, treestr, libstr)
Save the current database to a set of text files using the old-style syntax.

save_old_dictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

save_old_library(path)
Save the current database library to a text file using the old-style syntax.

save_old_tree(path)
Save the current database tree to a text file using the old-style syntax.

rmgpy.data.thermo.ThermoGroups

class rmgpy.data.thermo.ThermoGroups(label='', name='', short_desc='', long_desc='', metal=None,
site=None, facet=None)

A class for working with an RMG thermodynamics group additivity database.

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

are_siblings(node, node_other)
Return True if node and node_other have the same parent node. Otherwise, return False. Both node and
node_other must be Entry types with items containing Group or LogicNode types.

copy_data(source, destination)
This method copys the ThermoData object and all meta data from source to destination :param source:
The entry for which data is being copied :param destination: The entry for which data is being overwritten

70 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

descend_tree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

generate_old_library_entry(data)
Return a list of values used to save entries to the old-style RMG thermo database based on the thermody-
namics object data.

generate_old_tree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

get_entries_to_save()
Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

get_species(path, resonance=True)
Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)
Load an RMG-style database from the file at location path on disk. The parameters local_context and
global_context are used to provide specialized mapping of identifiers in the input file to corresponding
functions to evaluate. This method will automatically add a few identifiers required by all data entries, so
you don’t need to provide these.

load_entry(index, label, group, thermo, reference=None, referenceType='', shortDesc='', longDesc='',
rank=None, metal=None, facet=None, site=None)

Method for parsing entries in database files. Note that these argument names are retained for backward
compatibility.

load_old(dictstr, treestr, libstr, num_parameters, num_labels=1, pattern=True)
Load a dictionary-tree-library based database. The database is stored in three files: dictstr is the path to
the dictionary, treestr to the tree, and libstr to the library. The tree is optional, and should be set to ‘’ if not
desired.

load_old_dictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty
line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

load_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path.

load_old_tree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

match_node_to_child(parent_node, child_node)
Return True if parent_node is a parent of child_node. Otherwise, return False. Both parent_node and

1.4. Database (rmgpy.data) 71



RMG-Py API Reference, Release 3.1.0

child_node must be Entry types with items containing Group or LogicNode types. If parent_node and
child_node are identical, the function will also return False.

match_node_to_node(node, node_other)
Return True if node and node_other are identical. Otherwise, return False. Both node and node_other
must be Entry types with items containing Group or LogicNode types.

match_node_to_structure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure
at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.get_all_labeled_atoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

parse_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

process_old_library_entry(data)
Process a list of parameters data as read from an old-style RMG thermo database, returning the corre-
sponding thermodynamics object.

remove_group(group_to_remove)
Removes a group that is in a tree from the database. For thermo groups we also, need to re-point any
unicode thermo_data that may have pointed to the entry.

Returns the removed group

save(path)
Save the current database to the file at location path on disk.

save_dictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

save_entry(f, entry)
Write the given entry in the thermo database to the file object f.

save_old(dictstr, treestr, libstr)
Save the current database to a set of text files using the old-style syntax.

save_old_dictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

save_old_library(path)
Save the current database library to a text file using the old-style syntax.

72 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

save_old_tree(path)
Save the current database tree to a text file using the old-style syntax.

rmgpy.data.thermo.ThermoLibrary

class rmgpy.data.thermo.ThermoLibrary(label='', name='', solvent=None, short_desc='',
long_desc='', metal=None, site=None, facet=None)

A class for working with a RMG thermodynamics library.

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

are_siblings(node, node_other)
Return True if node and node_other have the same parent node. Otherwise, return False. Both node and
node_other must be Entry types with items containing Group or LogicNode types.

descend_tree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

generate_old_library_entry(data)
Return a list of values used to save entries to the old-style RMG thermo database based on the thermody-
namics object data.

generate_old_tree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

get_entries_to_save()
Return a sorted list of the entries in this database that should be saved to the output file.

Then renumber the entry indexes so that we never have any duplicate indexes.

get_species(path, resonance=True)
Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)
Load an RMG-style database from the file at location path on disk. The parameters local_context and
global_context are used to provide specialized mapping of identifiers in the input file to corresponding
functions to evaluate. This method will automatically add a few identifiers required by all data entries, so
you don’t need to provide these.

load_entry(index, label, molecule, thermo, reference=None, referenceType='', shortDesc='',
longDesc='', rank=None, metal=None, facet=None, site=None)

Method for parsing entries in database files. Note that these argument names are retained for backward
compatibility.

load_old(dictstr, treestr, libstr, num_parameters, num_labels=1, pattern=True)
Load a dictionary-tree-library based database. The database is stored in three files: dictstr is the path to
the dictionary, treestr to the tree, and libstr to the library. The tree is optional, and should be set to ‘’ if not
desired.

1.4. Database (rmgpy.data) 73



RMG-Py API Reference, Release 3.1.0

load_old_dictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty
line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

load_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path.

load_old_tree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

match_node_to_child(parent_node, child_node)
Return True if parent_node is a parent of child_node. Otherwise, return False. Both parent_node and
child_node must be Entry types with items containing Group or LogicNode types. If parent_node and
child_node are identical, the function will also return False.

match_node_to_node(node, node_other)
Return True if node and node_other are identical. Otherwise, return False. Both node and node_other
must be Entry types with items containing Group or LogicNode types.

match_node_to_structure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure
at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as its
Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.get_all_labeled_atoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

parse_old_library(path, num_parameters, num_labels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

process_old_library_entry(data)
Process a list of parameters data as read from an old-style RMG thermo database, returning the corre-
sponding thermodynamics object.

remove_group(group_to_remove)
Removes a group that is in a tree from the database. In addition to deleting from self.entries, it must also
update the parent/child relationships

Returns the removed group

save(path)
Save the current database to the file at location path on disk.

74 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

save_dictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

save_entry(f, entry)
Write the given entry in the thermo database to the file object f.

save_old(dictstr, treestr, libstr)
Save the current database to a set of text files using the old-style syntax.

save_old_dictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

save_old_library(path)
Save the current database library to a text file using the old-style syntax.

save_old_tree(path)
Save the current database tree to a text file using the old-style syntax.

1.5 Kinetics (rmgpy.kinetics)

The rmgpy.kinetics subpackage contains classes that represent various kinetics models of chemical reaction rates
and models of quantum mechanical tunneling through an activation barrier.

1.5.1 Pressure-independent kinetics models

Class Description
KineticsData A kinetics model based on a set of discrete rate coefficient points in temperature
Arrhenius A kinetics model based on the (modified) Arrhenius expression
MultiArrhenius A kinetics model based on a sum of Arrhenius expressions

1.5.2 Pressure-dependent kinetics models

Class Description
PDepKineticsData A kinetics model based on a set of discrete rate coefficient points in temperature and pres-

sure
PDepArrhenius A kinetics model based on a set of Arrhenius expressions for a range of pressures
MultiPDepArrheniusA kinetics model based on a sum of PDepArrhenius expressions
Chebyshev A kinetics model based on a Chebyshev polynomial representation
ThirdBody A low pressure-limit kinetics model based on the (modified) Arrhenius expression, with a

third body
Lindemann A kinetics model of pressure-dependent falloff based on the Lindemann model
Troe A kinetics model of pressure-dependent falloff based on the Lindemann model with the

Troe falloff factor

1.5. Kinetics (rmgpy.kinetics) 75



RMG-Py API Reference, Release 3.1.0

1.5.3 Tunneling models

Class Description
Wigner A one-dimensional tunneling model based on the Wigner expression
Eckart A one-dimensional tunneling model based on the (asymmetric) Eckart expression

rmgpy.kinetics.KineticsData

class rmgpy.kinetics.KineticsData(Tdata=None, kdata=None, Tmin=None, Tmax=None,
Pmin=None, Pmax=None, comment='')

A kinetics model based on an array of rate coefficient data vs. temperature. The attributes are:

Attribute Description
Tdata An array of temperatures at which rate coefficient values are known
kdata An array of rate coefficient values
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure at which the model is valid, or zero if unknown or undefined
comment Information about the model (e.g. its source)

Pmax
The maximum pressure at which the model is valid, or None if not defined.

Pmin
The minimum pressure at which the model is valid, or None if not defined.

Tdata
An array of temperatures at which rate coefficient values are known.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

comment
unicode

Type comment

discrepancy(self, KineticsModel other_kinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

get_rate_coefficient(self, double T, double P=0.0)→ double
Return the rate coefficient in the appropriate combination of m^3, mol, and s at temperature T in K.

is_identical_to(self, KineticsModel other_kinetics)→ bool
Returns True if the kdata and Tdata match. Returns False otherwise.

is_pressure_dependent(self)→ bool
Return False since, by default, all objects derived from KineticsModel represent pressure-independent
kinetics.

is_similar_to(self, KineticsModel other_kinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

76 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

is_temperature_valid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

kdata
An array of rate coefficient values.

set_cantera_kinetics(self, ct_reaction, species_list)
Sets the kinetics for a cantera reaction object.

to_html(self)
Return an HTML rendering.

uncertainty
rmgpy.kinetics.uncertainties.RateUncertainty

Type uncertainty

rmgpy.kinetics.Arrhenius

class rmgpy.kinetics.Arrhenius(A=None, n=0.0, Ea=None, T0=(1.0, 'K'), Tmin=None, Tmax=None,
Pmin=None, Pmax=None, uncertainty=None, comment='')

A kinetics model based on the (modified) Arrhenius equation. The attributes are:

Attribute Description
A The preexponential factor
T0 The reference temperature
n The temperature exponent
Ea The activation energy
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure at which the model is valid, or zero if unknown or undefined
comment Information about the model (e.g. its source)

The Arrhenius equation, given below, accurately reproduces the kinetics of many reaction families:

𝑘(𝑇 ) = 𝐴

(︂
𝑇

𝑇0

)︂𝑛

exp

(︂
− 𝐸a

𝑅𝑇

)︂
Above, 𝐴 is the preexponential factor, 𝑇0 is the reference temperature, 𝑛 is the temperature exponent, and 𝐸a is
the activation energy.

A
The preexponential factor.

Ea
The activation energy.

Pmax
The maximum pressure at which the model is valid, or None if not defined.

Pmin
The minimum pressure at which the model is valid, or None if not defined.

T0
The reference temperature.

1.5. Kinetics (rmgpy.kinetics) 77



RMG-Py API Reference, Release 3.1.0

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

change_rate(self, double factor)
Changes A factor in Arrhenius expression by multiplying it by a factor.

change_t0(self, double T0)
Changes the reference temperature used in the exponent to T0 in K, and adjusts the preexponential factor
accordingly.

comment
unicode

Type comment

discrepancy(self, KineticsModel other_kinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

fit_to_data(self, ndarray Tlist, ndarray klist, unicode kunits, double T0=1, ndarray weights=None,
bool three_params=True)

Fit the Arrhenius parameters to a set of rate coefficient data klist in units of kunits corresponding to a set
of temperatures Tlist in K. A linear least-squares fit is used, which guarantees that the resulting parameters
provide the best possible approximation to the data.

get_rate_coefficient(self, double T, double P=0.0)→ double
Return the rate coefficient in the appropriate combination of m^3, mol, and s at temperature T in K.

is_identical_to(self, KineticsModel other_kinetics)→ bool
Returns True if kinetics matches that of another kinetics model. Must match temperature and pressure
range of kinetics model, as well as parameters: A, n, Ea, T0. (Shouldn’t have pressure range if it’s
Arrhenius.) Otherwise returns False.

is_pressure_dependent(self)→ bool
Return False since, by default, all objects derived from KineticsModel represent pressure-independent
kinetics.

is_similar_to(self, KineticsModel other_kinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

is_temperature_valid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

n
The temperature exponent.

set_cantera_kinetics(self, ct_reaction, species_list)
Passes in a cantera ElementaryReaction() object and sets its rate to a Cantera Arrhenius() object.

to_arrhenius_ep(self, double alpha=0.0, double dHrxn=0.0)→ ArrheniusEP
Converts an Arrhenius object to ArrheniusEP

If setting alpha, you need to also input dHrxn, which must be given in J/mol (and vise versa).

to_cantera_kinetics(self)
Converts the Arrhenius object to a cantera Arrhenius object

Arrhenius(A,b,E) where A is in units of m^3/kmol/s, b is dimensionless, and E is in J/kmol

78 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

to_html(self)
Return an HTML rendering.

uncertainty
rmgpy.kinetics.uncertainties.RateUncertainty

Type uncertainty

rmgpy.kinetics.MultiArrhenius

class rmgpy.kinetics.MultiArrhenius(arrhenius=None, Tmin=None, Tmax=None, Pmin=None,
Pmax=None, comment='')

A kinetics model based on a set of (modified) Arrhenius equations, which are summed to obtain the overall rate.
The attributes are:

Attribute Description
arrhenius A list of the Arrhenius kinetics
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure at which the model is valid, or zero if unknown or undefined
comment Information about the model (e.g. its source)

Pmax
The maximum pressure at which the model is valid, or None if not defined.

Pmin
The minimum pressure at which the model is valid, or None if not defined.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

arrhenius
list

Type arrhenius

change_rate(self, double factor)
Change kinetics rate by a multiple factor.

comment
unicode

Type comment

discrepancy(self, KineticsModel other_kinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

get_rate_coefficient(self, double T, double P=0.0)→ double
Return the rate coefficient in the appropriate combination of m^3, mol, and s at temperature T in K.

is_identical_to(self, KineticsModel other_kinetics)→ bool
Returns True if kinetics matches that of another kinetics model. Each duplicate reaction must be matched
and equal to that in the other MultiArrhenius model in the same order. Otherwise returns False

1.5. Kinetics (rmgpy.kinetics) 79



RMG-Py API Reference, Release 3.1.0

is_pressure_dependent(self)→ bool
Return False since, by default, all objects derived from KineticsModel represent pressure-independent
kinetics.

is_similar_to(self, KineticsModel other_kinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

is_temperature_valid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

set_cantera_kinetics(self, ct_reaction, species_list)
Sets the kinetic rates for a list of cantera Reaction objects Here, ct_reaction must be a list rather than a
single cantera reaction.

to_arrhenius(self, double Tmin=-1, double Tmax=-1)→ Arrhenius
Return an Arrhenius instance of the kinetics model

Fit the Arrhenius parameters to a set of rate coefficient data generated from the MultiArrhenius kinetics,
over the temperature range Tmin to Tmax, in Kelvin. If Tmin or Tmax are unspecified (or -1) then the
MultiArrhenius’s Tmin and Tmax are used. A linear least-squares fit is used, which guarantees that the
resulting parameters provide the best possible approximation to the data.

to_html(self)
Return an HTML rendering.

uncertainty
rmgpy.kinetics.uncertainties.RateUncertainty

Type uncertainty

rmgpy.kinetics.PDepKineticsData

class rmgpy.kinetics.PDepKineticsData(Tdata=None, Pdata=None, kdata=None, Tmin=None,
Tmax=None, Pmin=None, Pmax=None, comment='')

A kinetics model based on an array of rate coefficient data vs. temperature and pressure. The attributes are:

Attribute Description
Tdata An array of temperatures at which rate coefficient values are known
Pdata An array of pressures at which rate coefficient values are known
kdata An array of rate coefficient values at each temperature and pressure
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure at which the model is valid, or zero if unknown or undefined
comment Information about the model (e.g. its source)

Pdata
An array of pressures at which rate coefficient values are known.

Pmax
The maximum pressure at which the model is valid, or None if not defined.

Pmin
The minimum pressure at which the model is valid, or None if not defined.

80 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

Tdata
An array of temperatures at which rate coefficient values are known.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

comment
unicode

Type comment

discrepancy(self, KineticsModel other_kinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

efficiencies
dict

Type efficiencies

get_cantera_efficiencies(self, species_list)
Returns a dictionary containing the collider efficiencies for this PDepKineticsModel object suitable
for setting the efficiencies in the following cantera reaction objects: ThreeBodyReaction, FalloffReac-
tion,`ChemicallyActivatedReaction`

get_effective_collider_efficiencies(self, list species)→ ndarray
Return the effective collider efficiencies for all species in the form of a numpy array. This function helps
assist rapid effective pressure calculations in the solver.

get_effective_pressure(self, double P, list species, ndarray fractions)→ double
Return the effective pressure in Pa for a system at a given pressure P in Pa composed of the given list of
species (Species or Molecule objects) with the given fractions.

get_rate_coefficient(self, double T, double P=0.0)→ double
Return the rate coefficient in the appropriate combination of m^3, mol, and s at temperature T in K and
pressure P in Pa.

highPlimit
rmgpy.kinetics.model.KineticsModel

Type highPlimit

is_identical_to(self, KineticsModel other_kinetics)→ bool
Returns True if the kdata and Tdata match. Returns False otherwise.

is_pressure_dependent(self)→ bool
Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

is_pressure_valid(self, double P)→ bool
Return True if the pressure P in Pa is within the valid pressure range of the kinetic data, or False if not.
If the minimum and maximum pressure are not defined, True is returned.

is_similar_to(self, KineticsModel other_kinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

is_temperature_valid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

1.5. Kinetics (rmgpy.kinetics) 81



RMG-Py API Reference, Release 3.1.0

kdata
An array of rate coefficient values at each temperature and pressure.

set_cantera_kinetics(self, ct_reaction, species_list)
Sets the kinetics for a cantera reaction object.

to_html(self)
Return an HTML rendering.

uncertainty
rmgpy.kinetics.uncertainties.RateUncertainty

Type uncertainty

rmgpy.kinetics.PDepArrhenius

class rmgpy.kinetics.PDepArrhenius(pressures=None, arrhenius=None, highPlimit=None,
Tmin=None, Tmax=None, Pmin=None, Pmax=None, com-
ment='')

A kinetic model of a phenomenological rate coefficient 𝑘(𝑇, 𝑃 ) where a set of Arrhenius kinetics are stored at
a variety of pressures and interpolated between on a logarithmic scale. The attributes are:

Attribute Description
pressures The list of pressures
arrhenius The list of Arrhenius objects at each pressure
Tmin The minimum temperature in K at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature in K at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure in bar at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure in bar at which the model is valid, or zero if unknown or undefined
efficiencies A dict associating chemical species with associated efficiencies
order The reaction order (1 = first, 2 = second, etc.)
comment Information about the model (e.g. its source)

The pressure-dependent Arrhenius formulation is sometimes used to extend the Arrhenius expression to handle
pressure-dependent kinetics. The formulation simply parameterizes 𝐴, 𝑛, and 𝐸a to be dependent on pressure:

𝑘(𝑇, 𝑃 ) = 𝐴(𝑃 )

(︂
𝑇

𝑇0

)︂𝑛(𝑃 )

exp

(︂
−𝐸a(𝑃 )

𝑅𝑇

)︂
Although this suggests some physical insight, the 𝑘(𝑇, 𝑃 ) data is often highly complex and non-Arrhenius,
limiting the usefulness of this formulation to simple systems.

Pmax
The maximum pressure at which the model is valid, or None if not defined.

Pmin
The minimum pressure at which the model is valid, or None if not defined.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

arrhenius
list

Type arrhenius

82 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

change_rate(self, double factor)
Changes kinetics rate by a multiple factor.

comment
unicode

Type comment

discrepancy(self, KineticsModel other_kinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

efficiencies
dict

Type efficiencies

fit_to_data(self, ndarray Tlist, ndarray Plist, ndarray K, unicode kunits, double T0=1)
Fit the pressure-dependent Arrhenius model to a matrix of rate coefficient data K with units of kunits
corresponding to a set of temperatures Tlist in K and pressures Plist in Pa. An Arrhenius model is fit cpdef
change_rate(self, double factor)at each pressure.

get_cantera_efficiencies(self, species_list)
Returns a dictionary containing the collider efficiencies for this PDepKineticsModel object suitable
for setting the efficiencies in the following cantera reaction objects: ThreeBodyReaction, FalloffReac-
tion,`ChemicallyActivatedReaction`

get_effective_collider_efficiencies(self, list species)→ ndarray
Return the effective collider efficiencies for all species in the form of a numpy array. This function helps
assist rapid effective pressure calculations in the solver.

get_effective_pressure(self, double P, list species, ndarray fractions)→ double
Return the effective pressure in Pa for a system at a given pressure P in Pa composed of the given list of
species (Species or Molecule objects) with the given fractions.

get_rate_coefficient(self, double T, double P=0)→ double
Return the rate coefficient in the appropriate combination of m^3, mol, and s at temperature T in K and
pressure P in Pa.

highPlimit
rmgpy.kinetics.model.KineticsModel

Type highPlimit

is_identical_to(self, KineticsModel other_kinetics)→ bool
Returns True if kinetics matches that of another kinetics model. Each duplicate reaction must be matched
and equal to that in the other PDepArrhenius model in the same order. Otherwise returns False

is_pressure_dependent(self)→ bool
Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

is_pressure_valid(self, double P)→ bool
Return True if the pressure P in Pa is within the valid pressure range of the kinetic data, or False if not.
If the minimum and maximum pressure are not defined, True is returned.

is_similar_to(self, KineticsModel other_kinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

is_temperature_valid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

1.5. Kinetics (rmgpy.kinetics) 83



RMG-Py API Reference, Release 3.1.0

pressures
The list of pressures.

set_cantera_kinetics(self, ct_reaction, species_list)
Sets a Cantera PlogReaction()’s rates attribute with A list of tuples containing [(pressure in Pa, cantera
arrhenius object), (..)]

to_html(self)
Return an HTML rendering.

uncertainty
rmgpy.kinetics.uncertainties.RateUncertainty

Type uncertainty

rmgpy.kinetics.MultiPDepArrhenius

class rmgpy.kinetics.MultiPDepArrhenius(arrhenius=None, Tmin=None, Tmax=None,
Pmin=None, Pmax=None, comment='')

A kinetic model of a phenomenological rate coefficient 𝑘(𝑇, 𝑃 ) where sets of Arrhenius kinetics are stored at a
variety of pressures and interpolated between on a logarithmic scale. The attributes are:

Attribute Description
arrhenius A list of the PDepArrhenius kinetics at each temperature
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure at which the model is valid, or zero if unknown or undefined
comment Information about the model (e.g. its source)

Pmax
The maximum pressure at which the model is valid, or None if not defined.

Pmin
The minimum pressure at which the model is valid, or None if not defined.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

arrhenius
list

Type arrhenius

change_rate(self, double factor)
Change kinetic rate by a multiple factor.

comment
unicode

Type comment

discrepancy(self, KineticsModel other_kinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

efficiencies
dict

84 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

Type efficiencies

get_cantera_efficiencies(self, species_list)
Returns a dictionary containing the collider efficiencies for this PDepKineticsModel object suitable
for setting the efficiencies in the following cantera reaction objects: ThreeBodyReaction, FalloffReac-
tion,`ChemicallyActivatedReaction`

get_effective_collider_efficiencies(self, list species)→ ndarray
Return the effective collider efficiencies for all species in the form of a numpy array. This function helps
assist rapid effective pressure calculations in the solver.

get_effective_pressure(self, double P, list species, ndarray fractions)→ double
Return the effective pressure in Pa for a system at a given pressure P in Pa composed of the given list of
species (Species or Molecule objects) with the given fractions.

get_rate_coefficient(self, double T, double P=0.0)→ double
Return the rate coefficient in the appropriate combination of m^3, mol, and s at temperature T in K and
pressure P in Pa.

highPlimit
rmgpy.kinetics.model.KineticsModel

Type highPlimit

is_identical_to(self, KineticsModel other_kinetics)→ bool
Returns True if kinetics matches that of another kinetics model. Each duplicate reaction must be matched
and equal to that in the other MultiArrhenius model in the same order. Otherwise returns False

is_pressure_dependent(self)→ bool
Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

is_pressure_valid(self, double P)→ bool
Return True if the pressure P in Pa is within the valid pressure range of the kinetic data, or False if not.
If the minimum and maximum pressure are not defined, True is returned.

is_similar_to(self, KineticsModel other_kinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

is_temperature_valid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

set_cantera_kinetics(self, ct_reaction, species_list)
Sets the PLOG kinetics for multiple cantera Reaction objects, provided in a list. ct_reaction is a list of
cantera reaction objects.

to_html(self)
Return an HTML rendering.

uncertainty
rmgpy.kinetics.uncertainties.RateUncertainty

Type uncertainty

1.5. Kinetics (rmgpy.kinetics) 85



RMG-Py API Reference, Release 3.1.0

rmgpy.kinetics.Chebyshev

class rmgpy.kinetics.Chebyshev(coeffs=None, kunits='', highPlimit=None, Tmin=None, Tmax=None,
Pmin=None, Pmax=None, comment='')

A model of a phenomenological rate coefficient 𝑘(𝑇, 𝑃 ) using a set of Chebyshev polynomials in temperature
and pressure. The attributes are:

Attribute Description
coeffs Matrix of Chebyshev coefficients, such that the resulting 𝑘(𝑇, 𝑃 ) has units of cm^3, mol, s
kunits The units of the rate coefficient
degreeT The number of terms in the inverse temperature direction
degreeP The number of terms in the log pressure direction
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure at which the model is valid, or zero if unknown or undefined
comment Information about the model (e.g. its source)

The Chebyshev polynomial formulation is a means of fitting a wide range of complex 𝑘(𝑇, 𝑃 ) behavior. How-
ever, there is no meaningful physical interpretation of the polynomial-based fit, and one must take care to
minimize the magnitude of Runge’s phenomenon. The formulation is as follows:

log 𝑘(𝑇, 𝑃 ) =

𝑁𝑇∑︁
𝑡=1

𝑁𝑃∑︁
𝑝=1

𝛼𝑡𝑝𝜑𝑡(𝑇 )𝜑𝑝(𝑃 )

Above, 𝛼𝑡𝑝 is a constant, 𝜑𝑛(𝑥) is the Chebyshev polynomial of degree 𝑛 evaluated at 𝑥, and

𝑇 ≡ 2𝑇−1 − 𝑇−1
min − 𝑇−1

max

𝑇−1
max − 𝑇−1

min

𝑃 ≡ 2 log𝑃 − log𝑃min − log𝑃max

log𝑃max − log𝑃min

are reduced temperature and reduced pressure designed to map the ranges (𝑇min, 𝑇max) and (𝑃min, 𝑃max) to
(−1, 1).

Pmax
The maximum pressure at which the model is valid, or None if not defined.

Pmin
The minimum pressure at which the model is valid, or None if not defined.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

change_rate(self, double factor)
Changes kinetics rates by a multiple factor.

chebyshev(self, int n, double x)→ double
Return the value of the nth-order Chebyshev polynomial at the given value of x.

coeffs
The Chebyshev coefficients.

86 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

comment
unicode

Type comment

degreeP
‘int’

Type degreeP

degreeT
‘int’

Type degreeT

discrepancy(self, KineticsModel other_kinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

efficiencies
dict

Type efficiencies

fit_to_data(self, ndarray Tlist, ndarray Plist, ndarray K, unicode kunits, int degreeT, int degreeP,
double Tmin, double Tmax, double Pmin, double Pmax)

Fit a Chebyshev kinetic model to a set of rate coefficients K, which is a matrix corresponding to the
temperatures Tlist in K and pressures Plist in Pa. degreeT and degreeP are the degree of the polynomials
in temperature and pressure, while Tmin, Tmax, Pmin, and Pmax set the edges of the valid temperature
and pressure ranges in K and bar, respectively.

get_cantera_efficiencies(self, species_list)
Returns a dictionary containing the collider efficiencies for this PDepKineticsModel object suitable
for setting the efficiencies in the following cantera reaction objects: ThreeBodyReaction, FalloffReac-
tion,`ChemicallyActivatedReaction`

get_effective_collider_efficiencies(self, list species)→ ndarray
Return the effective collider efficiencies for all species in the form of a numpy array. This function helps
assist rapid effective pressure calculations in the solver.

get_effective_pressure(self, double P, list species, ndarray fractions)→ double
Return the effective pressure in Pa for a system at a given pressure P in Pa composed of the given list of
species (Species or Molecule objects) with the given fractions.

get_rate_coefficient(self, double T, double P=0)→ double
Return the rate coefficient in the appropriate combination of m^3, mol, and s at temperature T in K and
pressure P in Pa by evaluating the Chebyshev expression.

get_reduced_pressure(self, double P)→ double
Return the reduced pressure corresponding to the given pressure P in Pa. This maps the logarithm of the
pressure onto the domain [-1, 1] using the Pmin and Pmax attributes as the limits.

get_reduced_temperature(self, double T)→ double
Return the reduced temperature corresponding to the given temperature T in K. This maps the inverse of
the temperature onto the domain [-1, 1] using the Tmin and Tmax attributes as the limits.

highPlimit
rmgpy.kinetics.model.KineticsModel

Type highPlimit

is_identical_to(self, KineticsModel other_kinetics)→ bool
Checks to see if kinetics matches that of other kinetics and returns True if coeffs, kunits, Tmin,

1.5. Kinetics (rmgpy.kinetics) 87



RMG-Py API Reference, Release 3.1.0

is_pressure_dependent(self)→ bool
Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

is_pressure_valid(self, double P)→ bool
Return True if the pressure P in Pa is within the valid pressure range of the kinetic data, or False if not.
If the minimum and maximum pressure are not defined, True is returned.

is_similar_to(self, KineticsModel other_kinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

is_temperature_valid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

kunits
unicode

Type kunits

set_cantera_kinetics(self, ct_reaction, species_list)
Sets the kinetics parameters for a Cantera ChebyshevReaction() object Uses
set_parameters(self,Tmin,Tmax,Pmin,Pmax,coeffs) where T’s are in units of K, P’s in units of Pa,
and coeffs is 2D array of (nTemperature, nPressure).

to_html(self)
Return an HTML rendering.

uncertainty
rmgpy.kinetics.uncertainties.RateUncertainty

Type uncertainty

rmgpy.kinetics.ThirdBody

class rmgpy.kinetics.ThirdBody(arrheniusLow=None, Tmin=None, Tmax=None, Pmin=None,
Pmax=None, efficiencies=None, comment='')

A kinetic model of a phenomenological rate coefficient 𝑘(𝑇, 𝑃 ) using third-body kinetics. The attributes are:

Attribute Description
arrheniusLow The Arrhenius kinetics at the low-pressure limit
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure at which the model is valid, or zero if unknown or undefined
efficiencies A dict associating chemical species with associated efficiencies
comment Information about the model (e.g. its source)

Third-body kinetics simply introduce an inert third body to the rate expression:

𝑘(𝑇, 𝑃 ) = 𝑘0(𝑇 )[M]

Above, [M] ≈ 𝑃/𝑅𝑇 is the concentration of the bath gas. This formulation is equivalent to stating that the
kinetics are always in the low-pressure limit.

Pmax
The maximum pressure at which the model is valid, or None if not defined.

88 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

Pmin
The minimum pressure at which the model is valid, or None if not defined.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

arrheniusLow
rmgpy.kinetics.arrhenius.Arrhenius

Type arrheniusLow

change_rate(self, double factor)
Changes kinetics rate by a multiple factor.

comment
unicode

Type comment

discrepancy(self, KineticsModel other_kinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

efficiencies
dict

Type efficiencies

get_cantera_efficiencies(self, species_list)
Returns a dictionary containing the collider efficiencies for this PDepKineticsModel object suitable
for setting the efficiencies in the following cantera reaction objects: ThreeBodyReaction, FalloffReac-
tion,`ChemicallyActivatedReaction`

get_effective_collider_efficiencies(self, list species)→ ndarray
Return the effective collider efficiencies for all species in the form of a numpy array. This function helps
assist rapid effective pressure calculations in the solver.

get_effective_pressure(self, double P, list species, ndarray fractions)→ double
Return the effective pressure in Pa for a system at a given pressure P in Pa composed of the given list of
species (Species or Molecule objects) with the given fractions.

get_rate_coefficient(self, double T, double P=0.0)→ double
Return the value of the rate coefficient 𝑘(𝑇 ) in units of m^3, mol, and s at the specified temperature
T in K and pressure P in Pa. If you wish to consider collision efficiencies, then you should first use
get_effective_pressure() to compute the effective pressure, and pass that value as the pressure to
this method.

highPlimit
rmgpy.kinetics.model.KineticsModel

Type highPlimit

is_identical_to(self, KineticsModel other_kinetics)→ bool
Checks to see if kinetics matches that of other kinetics and returns True if coeffs, kunits, Tmin,

is_pressure_dependent(self)→ bool
Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

is_pressure_valid(self, double P)→ bool
Return True if the pressure P in Pa is within the valid pressure range of the kinetic data, or False if not.
If the minimum and maximum pressure are not defined, True is returned.

1.5. Kinetics (rmgpy.kinetics) 89



RMG-Py API Reference, Release 3.1.0

is_similar_to(self, KineticsModel other_kinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

is_temperature_valid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

set_cantera_kinetics(self, ct_reaction, species_list)
Sets the kinetics and efficiencies for a cantera ThreeBodyReaction object

to_html(self)
Return an HTML rendering.

uncertainty
rmgpy.kinetics.uncertainties.RateUncertainty

Type uncertainty

rmgpy.kinetics.Lindemann

class rmgpy.kinetics.Lindemann(arrheniusHigh=None, arrheniusLow=None, Tmin=None,
Tmax=None, Pmin=None, Pmax=None, efficiencies=None, com-
ment='')

A kinetic model of a phenomenological rate coefficient 𝑘(𝑇, 𝑃 ) using the Lindemann formulation. The attributes
are:

Attribute Description
arrheniusHigh The Arrhenius kinetics at the high-pressure limit
arrheniusLow The Arrhenius kinetics at the low-pressure limit
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure at which the model is valid, or zero if unknown or undefined
efficiencies A dict associating chemical species with associated efficiencies
comment Information about the model (e.g. its source)

The Lindemann model qualitatively predicts the falloff of some simple pressure-dependent reaction kinetics.
The formulation is as follows:

𝑘(𝑇, 𝑃 ) = 𝑘∞(𝑇 )

[︂
𝑃r

1 + 𝑃r

]︂
where

𝑃r =
𝑘0(𝑇 )

𝑘∞(𝑇 )
[M]

𝑘0(𝑇 ) = 𝐴0𝑇
𝑛0 exp

(︂
− 𝐸0

𝑅𝑇

)︂
𝑘∞(𝑇 ) = 𝐴∞𝑇𝑛∞ exp

(︂
−𝐸∞

𝑅𝑇

)︂
and [M] ≈ 𝑃/𝑅𝑇 is the concentration of the bath gas. The Arrhenius expressions 𝑘0(𝑇 ) and 𝑘∞(𝑇 ) represent
the low-pressure and high-pressure limit kinetics, respectively.

Pmax
The maximum pressure at which the model is valid, or None if not defined.

90 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

Pmin
The minimum pressure at which the model is valid, or None if not defined.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

arrheniusHigh
rmgpy.kinetics.arrhenius.Arrhenius

Type arrheniusHigh

arrheniusLow
rmgpy.kinetics.arrhenius.Arrhenius

Type arrheniusLow

change_rate(self, double factor)
Changes kinetics rate by a multiple factor.

comment
unicode

Type comment

discrepancy(self, KineticsModel other_kinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

efficiencies
dict

Type efficiencies

get_cantera_efficiencies(self, species_list)
Returns a dictionary containing the collider efficiencies for this PDepKineticsModel object suitable
for setting the efficiencies in the following cantera reaction objects: ThreeBodyReaction, FalloffReac-
tion,`ChemicallyActivatedReaction`

get_effective_collider_efficiencies(self, list species)→ ndarray
Return the effective collider efficiencies for all species in the form of a numpy array. This function helps
assist rapid effective pressure calculations in the solver.

get_effective_pressure(self, double P, list species, ndarray fractions)→ double
Return the effective pressure in Pa for a system at a given pressure P in Pa composed of the given list of
species (Species or Molecule objects) with the given fractions.

get_rate_coefficient(self, double T, double P=0.0)→ double
Return the value of the rate coefficient 𝑘(𝑇 ) in units of m^3, mol, and s at the specified temperature
T in K and pressure P in Pa. If you wish to consider collision efficiencies, then you should first use
get_effective_pressure() to compute the effective pressure, and pass that value as the pressure to
this method.

highPlimit
rmgpy.kinetics.model.KineticsModel

Type highPlimit

is_identical_to(self, KineticsModel other_kinetics)→ bool
Checks to see if kinetics matches that of other kinetics and returns True if coeffs, kunits, Tmin,

is_pressure_dependent(self)→ bool
Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

1.5. Kinetics (rmgpy.kinetics) 91



RMG-Py API Reference, Release 3.1.0

is_pressure_valid(self, double P)→ bool
Return True if the pressure P in Pa is within the valid pressure range of the kinetic data, or False if not.
If the minimum and maximum pressure are not defined, True is returned.

is_similar_to(self, KineticsModel other_kinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

is_temperature_valid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

set_cantera_kinetics(self, ct_reaction, species_list)
Sets the efficiencies and kinetics for a cantera reaction.

to_html(self)
Return an HTML rendering.

uncertainty
rmgpy.kinetics.uncertainties.RateUncertainty

Type uncertainty

rmgpy.kinetics.Troe

class rmgpy.kinetics.Troe(arrheniusHigh=None, arrheniusLow=None, alpha=0.0, T3=None,
T1=None, T2=None, Tmin=None, Tmax=None, Pmin=None, Pmax=None,
efficiencies=None, comment='')

A kinetic model of a phenomenological rate coefficient 𝑘(𝑇, 𝑃 ) using the Troe formulation. The attributes are:

Attribute Description
arrheniusHigh The Arrhenius kinetics at the high-pressure limit
arrheniusLow The Arrhenius kinetics at the low-pressure limit
alpha The 𝛼 parameter
T1 The 𝑇1 parameter
T2 The 𝑇2 parameter
T3 The 𝑇3 parameter
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure at which the model is valid, or zero if unknown or undefined
efficiencies A dict associating chemical species with associated efficiencies
comment Information about the model (e.g. its source)

The Troe model attempts to make the Lindemann model quantitative by introducing a broadening factor 𝐹 . The
formulation is as follows:

𝑘(𝑇, 𝑃 ) = 𝑘∞(𝑇 )

[︂
𝑃r

1 + 𝑃r

]︂
𝐹

92 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

where

𝑃r =
𝑘0(𝑇 )

𝑘∞(𝑇 )
[M]

𝑘0(𝑇 ) = 𝐴0𝑇
𝑛0 exp

(︂
− 𝐸0

𝑅𝑇

)︂
𝑘∞(𝑇 ) = 𝐴∞𝑇𝑛∞ exp

(︂
−𝐸∞

𝑅𝑇

)︂
and [M] ≈ 𝑃/𝑅𝑇 is the concentration of the bath gas. The Arrhenius expressions 𝑘0(𝑇 ) and 𝑘∞(𝑇 ) represent
the low-pressure and high-pressure limit kinetics, respectively. The broadening factor 𝐹 is computed via

log𝐹 =

{︃
1 +

[︂
log𝑃r + 𝑐

𝑛− 𝑑(log𝑃r + 𝑐)

]︂2}︃−1

log𝐹cent

𝑐 = −0.4 − 0.67 log𝐹cent

𝑛 = 0.75 − 1.27 log𝐹cent

𝑑 = 0.14

𝐹cent = (1 − 𝛼) exp (−𝑇/𝑇3) + 𝛼 exp (−𝑇/𝑇1) + exp (−𝑇2/𝑇 )

Pmax
The maximum pressure at which the model is valid, or None if not defined.

Pmin
The minimum pressure at which the model is valid, or None if not defined.

T1
The Troe 𝑇1 parameter.

T2
The Troe 𝑇2 parameter.

T3
The Troe 𝑇3 parameter.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

alpha
‘double’

Type alpha

arrheniusHigh
rmgpy.kinetics.arrhenius.Arrhenius

Type arrheniusHigh

arrheniusLow
rmgpy.kinetics.arrhenius.Arrhenius

Type arrheniusLow

change_rate(self, double factor)
Changes kinetics rate by a multiple factor.

1.5. Kinetics (rmgpy.kinetics) 93



RMG-Py API Reference, Release 3.1.0

comment
unicode

Type comment

discrepancy(self, KineticsModel other_kinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

efficiencies
dict

Type efficiencies

get_cantera_efficiencies(self, species_list)
Returns a dictionary containing the collider efficiencies for this PDepKineticsModel object suitable
for setting the efficiencies in the following cantera reaction objects: ThreeBodyReaction, FalloffReac-
tion,`ChemicallyActivatedReaction`

get_effective_collider_efficiencies(self, list species)→ ndarray
Return the effective collider efficiencies for all species in the form of a numpy array. This function helps
assist rapid effective pressure calculations in the solver.

get_effective_pressure(self, double P, list species, ndarray fractions)→ double
Return the effective pressure in Pa for a system at a given pressure P in Pa composed of the given list of
species (Species or Molecule objects) with the given fractions.

get_rate_coefficient(self, double T, double P=0.0)→ double
Return the value of the rate coefficient 𝑘(𝑇 ) in units of m^3, mol, and s at the specified temperature
T in K and pressure P in Pa. If you wish to consider collision efficiencies, then you should first use
get_effective_pressure() to compute the effective pressure, and pass that value as the pressure to
this method.

highPlimit
rmgpy.kinetics.model.KineticsModel

Type highPlimit

is_identical_to(self, KineticsModel other_kinetics)→ bool
Checks to see if kinetics matches that of other kinetics and returns True if coeffs, kunits, Tmin,

is_pressure_dependent(self)→ bool
Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

is_pressure_valid(self, double P)→ bool
Return True if the pressure P in Pa is within the valid pressure range of the kinetic data, or False if not.
If the minimum and maximum pressure are not defined, True is returned.

is_similar_to(self, KineticsModel other_kinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

is_temperature_valid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

set_cantera_kinetics(self, ct_reaction, species_list)
Sets the efficiencies, kinetics, and troe falloff parameters for a cantera FalloffReaction.

to_html(self)
Return an HTML rendering.

uncertainty
rmgpy.kinetics.uncertainties.RateUncertainty

94 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

Type uncertainty

rmgpy.kinetics.Wigner

class rmgpy.kinetics.Wigner(frequency)
A tunneling model based on the Wigner formula. The attributes are:

Attribute Description
frequency The imaginary frequency of the transition state

An early formulation for incorporating the effect of tunneling is that of Wigner [1932Wigner]:

𝜅(𝑇 ) = 1 +
1

24

(︂
ℎ |𝜈TS|
𝑘B𝑇

)︂2

where ℎ is the Planck constant, 𝜈TS is the negative frequency, 𝑘B is the Boltzmann constant, and 𝑇 is the
absolute temperature.

The Wigner formula represents the first correction term in a perturbative expansion for a parabolic barrier
[1959Bell], and is therefore only accurate in the limit of a small tunneling correction. There are many cases
for which the tunneling correction is very large; for these cases the Wigner model is inappropriate.

calculate_tunneling_factor(self, double T)→ double
Calculate and return the value of the Wigner tunneling correction for the reaction at the temperature T in
K.

calculate_tunneling_function(self, ndarray Elist)→ ndarray
Raises NotImplementedError, as the Wigner tunneling model does not have a well-defined energy-
dependent tunneling function.

frequency
The negative frequency along the reaction coordinate.

rmgpy.kinetics.Eckart

class rmgpy.kinetics.Eckart(frequency, E0_reac, E0_TS, E0_prod=None)
A tunneling model based on the Eckart model. The attributes are:

Attribute Description
frequency The imaginary frequency of the transition state
E0_reac The ground-state energy of the reactants
E0_TS The ground-state energy of the transition state
E0_prod The ground-state energy of the products

If E0_prod is not given, it is assumed to be the same as the reactants; this results in the so-called “symmetric”
Eckart model. Providing E0_prod, and thereby using the “asymmetric” Eckart model, is the recommended
approach.

The Eckart tunneling model is based around a potential of the form

𝑉 (𝑥) =
~2

2𝑚

[︃
𝐴𝑒𝑥

1 + 𝑒𝑥
+

𝐵𝑒𝑥

(1 + 𝑒𝑥)
2

]︃

1.5. Kinetics (rmgpy.kinetics) 95



RMG-Py API Reference, Release 3.1.0

where 𝑥 represents the reaction coordinate and 𝐴 and 𝐵 are parameters. The potential is symmetric if 𝐴 = 0
and asymmetric if 𝐴 ̸= 0. If we add the constraint |𝐵| > |𝐴| then the potential has a maximum at

𝑥max = ln

(︂
𝐵 + 𝐴

𝐵 −𝐴

)︂

𝑉 (𝑥max) =
~2

2𝑚

(𝐴 + 𝐵)2

4𝐵

The one-dimensional Schrodinger equation with the Eckart potential is analytically solvable. The resulting
microcanonical tunneling factor 𝜅(𝐸) is a function of the total energy of the molecular system:

𝜅(𝐸) = 1 − cosh(2𝜋𝑎− 2𝜋𝑏) + cosh(2𝜋𝑑)

cosh(2𝜋𝑎 + 2𝜋𝑏) + cosh(2𝜋𝑑)

where

2𝜋𝑎 =
2
√
𝛼1𝜉

𝛼
−1/2
1 + 𝛼

−1/2
2

2𝜋𝑏 =
2
√︀
|(𝜉 − 1)𝛼1 + 𝛼2|
𝛼
−1/2
1 + 𝛼

−1/2
2

2𝜋𝑑 = 2
√︀
|𝛼1𝛼2 − 4𝜋2/16|

𝛼1 = 2𝜋
∆𝑉1

ℎ |𝜈TS|

𝛼2 = 2𝜋
∆𝑉2

ℎ |𝜈TS|

𝜉 =
𝐸

∆𝑉1

∆𝑉1 and ∆𝑉2 are the thermal energy difference between the transition state and the reactants and products,
respectively; 𝜈TS is the negative frequency, ℎ is the Planck constant.

Applying a Laplace transform gives the canonical tunneling factor as a function of temperature 𝑇 (expressed as
𝛽 ≡ 1/𝑘B𝑇 ):

𝜅(𝑇 ) = 𝑒𝛽Δ𝑉1

∫︁ ∞

0

𝜅(𝐸)𝑒−𝛽𝐸 𝑑𝐸

If product data is not available, then it is assumed that 𝛼2 ≈ 𝛼1.

The Eckart correction requires information about the reactants as well as the transition state. For best results,
information about the products should also be given. (The former is called the symmetric Eckart correction, the
latter the asymmetric Eckart correction.) This extra information allows the Eckart correction to generally give a
better result than the Wigner correction.

E0_TS
The ground-state energy of the transition state.

E0_prod
The ground-state energy of the products.

E0_reac
The ground-state energy of the reactants.

calculate_tunneling_factor(self, double T)→ double
Calculate and return the value of the Eckart tunneling correction for the reaction at the temperature T in K.

96 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

calculate_tunneling_function(self, ndarray Elist)→ ndarray
Calculate and return the value of the Eckart tunneling function for the reaction at the energies e_list in
J/mol.

frequency
The negative frequency along the reaction coordinate.

1.6 Molecular representations (rmgpy.molecule)

The rmgpy.molecule subpackage contains classes and functions for working with molecular representations, partic-
ularly using chemical graph theory.

1.6.1 Graphs

Class Description
Vertex A generic vertex (node) in a graph
Edge A generic edge (arc) in a graph
Graph A generic graph data type

1.6.2 Graph isomorphism

Class Description
VF2 Graph isomorphism using the VF2 algorithm

1.6.3 Elements and atom types

Class/Function Description
Element A model of a chemical element
get_element() Return the Element object for a given atomic number or symbol
AtomType A model of an atom type: an element and local bond structure
get_atomtype() Return the AtomType object for a given atom in a molecule

1.6.4 Molecules

Class Description
Atom An atom in a molecule
Bond A bond in a molecule
Molecule A molecular structure represented using a chemical graph

1.6. Molecular representations (rmgpy.molecule) 97



RMG-Py API Reference, Release 3.1.0

1.6.5 Functional groups

Class Description
GroupAtom An atom in a functional group
GroupBond A bond in a functional group
Group A functional group structure represented using a chemical graph

1.6.6 Molecule Utilities

Class Description
rmgpy.molecule.resonance Resonance structure generation methods
rmgpy.molecule.kekulize Kekule structure generation
rmgpy.molecule.filtration Resonance structure filtration methods
rmgpy.molecule.pathfinder Resonance path enumeration
rmgpy.molecule.converter Molecule object converter (RDKit/OpenBabel)
rmgpy.molecule.translator Molecule string representation translator

1.6.7 Adjacency lists

Function Description
from_adjacency_list() Convert an adjacency list to a set of atoms and bonds
to_adjacency_list() Convert a set of atoms and bonds to an adjacency list

1.6.8 Symmetry numbers

Class Description
calculate_atom_symmetry_number()Calculate the atom-centered symmetry number for an atom in a

molecule
calculate_bond_symmetry_number()Calculate the bond-centered symmetry number for a bond in a molecule
calculate_axis_symmetry_number()Calculate the axis-centered symmetry number for a double bond axis in

a molecule
calculate_cyclic_symmetry_number()Calculate the ring-centered symmetry number for a ring in a molecule
calculate_symmetry_number() Calculate the total internal + external symmetry number for a molecule

1.6.9 Molecule and reaction drawing

Class Description
MoleculeDrawer Draw the skeletal formula of a molecule
ReactionDrawer Draw a chemical reaction

98 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

rmgpy.molecule.graph.Vertex

class rmgpy.molecule.graph.Vertex
A base class for vertices in a graph. Contains several connectivity values useful for accelerating isomorphism
searches, as proposed by Morgan (1965).

Attribute Type Description
connectivity1 int The number of nearest neighbors
connectivity2 int The sum of the neighbors’ connectivity1 values
connectivity3 int The sum of the neighbors’ connectivity2 values
edges dict Dictionary of edges with keys being neighboring vertices
sorting_label int An integer label used to sort the vertices

copy()
Return a copy of the vertex. The default implementation assumes that no semantic information is associ-
ated with each vertex, and therefore simply returns a new Vertex object.

equivalent(other, strict)
Return True if two vertices self and other are semantically equivalent, or False if not. You should
reimplement this function in a derived class if your vertices have semantic information.

is_specific_case_of(other)
Return True if self is semantically more specific than other, or False if not. You should reimplement
this function in a derived class if your edges have semantic information.

reset_connectivity_values()
Reset the cached structure information for this vertex.

rmgpy.molecule.graph.Edge

class rmgpy.molecule.graph.Edge
A base class for edges in a graph. The vertices which comprise the edge can be accessed using the vertex1 and
vertex2 attributes.

copy()
Return a copy of the edge. The default implementation assumes that no semantic information is associated
with each edge, and therefore simply returns a new Edge object. Note that the vertices are not copied in
this implementation.

equivalent(other)
Return True if two edges self and other are semantically equivalent, or False if not. You should reim-
plement this function in a derived class if your edges have semantic information.

get_other_vertex(vertex)
Given a vertex that makes up part of the edge, return the other vertex. Raise a ValueError if the given
vertex is not part of the edge.

is_specific_case_of(other)
Return True if self is semantically more specific than other, or False if not. You should reimplement
this function in a derived class if your edges have semantic information.

1.6. Molecular representations (rmgpy.molecule) 99

http://dx.doi.org/10.1021/c160017a018


RMG-Py API Reference, Release 3.1.0

rmgpy.molecule.graph.Graph

class rmgpy.molecule.graph.Graph
A graph data type. The vertices of the graph are stored in a list vertices; this provides a consistent traversal
order. A single edge can be accessed using the get_edge() method or by accessing specific vertices using
vertex1.edges[vertex2]; in either case, an exception will be raised if the edge does not exist. All edges of
a vertex can be accessed using the get_edges() method or vertex.edges.

add_edge(edge)
Add an edge to the graph. The two vertices in the edge must already exist in the graph, or a ValueError
is raised.

add_vertex(vertex)
Add a vertex to the graph. The vertex is initialized with no edges.

copy(deep)
Create a copy of the current graph. If deep is True, a deep copy is made: copies of the vertices and edges
are used in the new graph. If deep is False or not specified, a shallow copy is made: the original vertices
and edges are used in the new graph.

copy_and_map()
Create a deep copy of the current graph, and return the dict ‘mapping’. Method was modified from
Graph.copy() method

find_isomorphism(other, initial_map, save_order, strict)
Returns True if other is subgraph isomorphic and False otherwise, and the matching mapping. Uses the
VF2 algorithm of Vento and Foggia.

Parameters

• initial_map (dict, optional) – initial atom mapping to use

• save_order (bool, optional) – if True, reset atom order after performing atom iso-
morphism

• strict (bool, optional) – if False, perform isomorphism ignoring electrons

find_subgraph_isomorphisms(other, initial_map, save_order)
Returns True if other is subgraph isomorphic and False otherwise. Also returns the lists all of valid
mappings.

Uses the VF2 algorithm of Vento and Foggia.

get_all_cycles(starting_vertex)
Given a starting vertex, returns a list of all the cycles containing that vertex.

This function returns a duplicate of each cycle because [0,1,2,3] is counted as separate from [0,3,2,1]

get_all_cycles_of_size(size)
Return a list of the all non-duplicate rings with length ‘size’. The algorithm implements was adapted from
a description by Fan, Panaye, Doucet, and Barbu (doi: 10.1021/ci00015a002)

B. T. Fan, A. Panaye, J. P. Doucet, and A. Barbu. “Ring Perception: A New Algorithm for Directly Finding
the Smallest Set of Smallest Rings from a Connection Table.” J. Chem. Inf. Comput. Sci. 33, p. 657-662
(1993).

get_all_cyclic_vertices()
Returns all vertices belonging to one or more cycles.

get_all_edges()
Returns a list of all edges in the graph.

100 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

get_all_polycyclic_vertices()
Return all vertices belonging to two or more cycles, fused or spirocyclic.

get_all_simple_cycles_of_size(size)
Return a list of all non-duplicate monocyclic rings with length ‘size’.

Naive approach by eliminating polycyclic rings that are returned by getAllCyclicsOfSize.

get_disparate_cycles()
Get all disjoint monocyclic and polycyclic cycle clusters in the molecule. Takes the RC and recursively
merges all cycles which share vertices.

Returns: monocyclic_cycles, polycyclic_cycles

get_edge(vertex1, vertex2)
Returns the edge connecting vertices vertex1 and vertex2.

get_edges(vertex)
Return a dictionary of the edges involving the specified vertex.

get_edges_in_cycle(vertices, sort)
For a given list of atoms comprising a ring, return the set of bonds connecting them, in order around the
ring.

If sort=True, then sort the vertices to match their connectivity. Otherwise, assumes that they are already
sorted, which is true for cycles returned by get_relevant_cycles or get_smallest_set_of_smallest_rings.

get_largest_ring(vertex)
returns the largest ring containing vertex. This is typically useful for finding the longest path in a poly-
cyclic ring, since the polycyclic rings returned from get_polycycles are not necessarily in order in the ring
structure.

get_max_cycle_overlap()
Return the maximum number of vertices that are shared between any two cycles in the graph. For example,
if there are only disparate monocycles or no cycles, the maximum overlap is zero; if there are “spiro”
cycles, it is one; if there are “fused” cycles, it is two; and if there are “bridged” cycles, it is three.

get_monocycles()
Return a list of cycles that are monocyclic.

get_polycycles()
Return a list of cycles that are polycyclic. In other words, merge the cycles which are fused or spirocyclic
into a single polycyclic cycle, and return only those cycles. Cycles which are not polycyclic are not
returned.

get_relevant_cycles()
Returns the set of relevant cycles as a list of lists. Uses RingDecomposerLib for ring perception.

Kolodzik, A.; Urbaczek, S.; Rarey, M. Unique Ring Families: A Chemically Meaningful Description of
Molecular Ring Topologies. J. Chem. Inf. Model., 2012, 52 (8), pp 2013-2021

Flachsenberg, F.; Andresen, N.; Rarey, M. RingDecomposerLib: An Open-Source Implementation of
Unique Ring Families and Other Cycle Bases. J. Chem. Inf. Model., 2017, 57 (2), pp 122-126

get_smallest_set_of_smallest_rings()
Returns the smallest set of smallest rings as a list of lists. Uses RingDecomposerLib for ring perception.

Kolodzik, A.; Urbaczek, S.; Rarey, M. Unique Ring Families: A Chemically Meaningful Description of
Molecular Ring Topologies. J. Chem. Inf. Model., 2012, 52 (8), pp 2013-2021

Flachsenberg, F.; Andresen, N.; Rarey, M. RingDecomposerLib: An Open-Source Implementation of
Unique Ring Families and Other Cycle Bases. J. Chem. Inf. Model., 2017, 57 (2), pp 122-126

1.6. Molecular representations (rmgpy.molecule) 101



RMG-Py API Reference, Release 3.1.0

has_edge(vertex1, vertex2)
Returns True if vertices vertex1 and vertex2 are connected by an edge, or False if not.

has_vertex(vertex)
Returns True if vertex is a vertex in the graph, or False if not.

is_cyclic()
Return True if one or more cycles are present in the graph or False otherwise.

is_edge_in_cycle(edge)
Return True if the edge between vertices vertex1 and vertex2 is in one or more cycles in the graph, or
False if not.

is_isomorphic(other, initial_map, save_order, strict)
Returns True if two graphs are isomorphic and False otherwise. Uses the VF2 algorithm of Vento and
Foggia.

Parameters

• initial_map (dict, optional) – initial atom mapping to use

• save_order (bool, optional) – if True, reset atom order after performing atom iso-
morphism

• strict (bool, optional) – if False, perform isomorphism ignoring electrons

is_mapping_valid(other, mapping, equivalent, strict)
Check that a proposed mapping of vertices from self to other is valid by checking that the vertices and
edges involved in the mapping are mutually equivalent. If equivalent is True it checks if atoms and edges
are equivalent, if False it checks if they are specific cases of each other. If strict is True, electrons and
bond orders are considered, and ignored if False.

is_subgraph_isomorphic(other, initial_map, save_order)
Returns True if other is subgraph isomorphic and False otherwise. Uses the VF2 algorithm of Vento and
Foggia.

is_vertex_in_cycle(vertex)
Return True if the given vertex is contained in one or more cycles in the graph, or False if not.

merge(other)
Merge two graphs so as to store them in a single Graph object.

remove_edge(edge)
Remove the specified edge from the graph. Does not remove vertices that no longer have any edges as a
result of this removal.

remove_vertex(vertex)
Remove vertex and all edges associated with it from the graph. Does not remove vertices that no longer
have any edges as a result of this removal.

reset_connectivity_values()
Reset any cached connectivity information. Call this method when you have modified the graph.

restore_vertex_order()
reorder the vertices to what they were before sorting if you saved the order

sort_cyclic_vertices(vertices)
Given a list of vertices comprising a cycle, sort them such that adjacent entries in the list are connected to
each other. Warning: Assumes that the cycle is elementary, ie. no bridges.

sort_vertices(save_order)
Sort the vertices in the graph. This can make certain operations, e.g. the isomorphism functions, much
more efficient.

102 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

split()
Convert a single Graph object containing two or more unconnected graphs into separate graphs.

update_connectivity_values()
Update the connectivity values for each vertex in the graph. These are used to accelerate the isomorphism
checking.

rmgpy.molecule.vf2.VF2

class rmgpy.molecule.vf2.VF2
An implementation of the second version of the Vento-Foggia (VF2) algorithm for graph and subgraph isomor-
phism.

feasible(vertex1, vertex2)
Return True if vertex vertex1 from the first graph is a feasible match for vertex vertex2 from the second
graph, or False if not. The semantic and structural relationship of the vertices is evaluated, including
several structural “look-aheads” that cheaply eliminate many otherwise feasible pairs.

find_isomorphism(graph1, graph2, initial_mapping, save_order, strict)
Return a list of dicts of all valid isomorphism mappings from graph graph1 to graph graph2 with the
optional initial mapping initial_mapping. If no valid isomorphisms are found, an empty list is returned.

find_subgraph_isomorphisms(graph1, graph2, initial_mapping, save_order)
Return a list of dicts of all valid subgraph isomorphism mappings from graph graph1 to subgraph graph2
with the optional initial mapping initial_mapping. If no valid subgraph isomorphisms are found, an empty
list is returned.

is_isomorphic(graph1, graph2, initial_mapping, save_order, strict)
Return True if graph graph1 is isomorphic to graph graph2 with the optional initial mapping ini-
tial_mapping, or False otherwise.

is_subgraph_isomorphic(graph1, graph2, initial_mapping, save_order)
Return True if graph graph1 is subgraph isomorphic to subgraph graph2 with the optional initial mapping
initial_mapping, or False otherwise.

rmgpy.molecule.Element

class rmgpy.molecule.Element
A chemical element. The attributes are:

Attribute Type Description
number int The atomic number of the element
symbol str The symbol used for the element
name str The IUPAC name of the element
mass float The mass of the element in kg/mol
cov_radius float Covalent bond radius in Angstrom
isotope int The isotope integer of the element
chemkin_name str The chemkin compatible representation of the element

This class is specifically for properties that all atoms of the same element share. Ideally there is only one instance
of this class for each element.

rmgpy.molecule.get_element(value, isotope)
Return the Element object corresponding to the given parameter value. If an integer is provided, the value is

1.6. Molecular representations (rmgpy.molecule) 103



RMG-Py API Reference, Release 3.1.0

treated as the atomic number. If a string is provided, the value is treated as the symbol. An ElementError is
raised if no matching element is found.

rmgpy.molecule.AtomType

class rmgpy.molecule.AtomType
A class for internal representation of atom types. Using unique objects rather than strings allows us to use fast
pointer comparisons instead of slow string comparisons, as well as store extra metadata. In particular, we store
metadata describing the atom type’s hierarchy with regard to other atom types, and the atom types that can result
when various actions involving this atom type are taken. The attributes are:

Attribute Type Description
label str A unique label for the atom type
generic list The atom types that are more generic than this one
specific list The atom types that are more specific than this one
increment_bond list The atom type(s) that result when an adjacent

bond’s order is incremented
decrement_bond list The atom type(s) that result when an adjacent

bond’s order is decremented
form_bond list The atom type(s) that result when a new single bond

is formed to this atom type
break_bond list The atom type(s) that result when an existing single

bond to this atom type is broken
increment_radical list The atom type(s) that result when the number of

radical electrons is incremented
decrement_radical list The atom type(s) that result when the number of

radical electrons is decremented
increment_lone_pair list The atom type(s) that result when the number of

lone electron pairs is incremented
decrement_lone_pair list The atom type(s) that result when the number of

lone electron pairs is decremented
The following features are what are required in a given atomtype. Any int in the list is acceptable. An empty
list is a wildcard
single list The total number of single bonds on the atom
all_double list The total number of double bonds on the atom
r_double list The number of double bonds to any non-oxygen,

nonsulfur
o_double list The number of double bonds to oxygen
s_double list The number of double bonds to sulfur
triple list The total number of triple bonds on the atom
quadruple list The total number of quadruple bonds on the atom
benzene list The total number of benzene bonds on the atom
lone_pairs list The number of lone pairs on the atom
charge list The partial charge of the atom

equivalent(other)
Returns True if two atom types atomType1 and atomType2 are equivalent or False otherwise. This
function respects wildcards, e.g. R!H is equivalent to C.

get_features()
Returns a list of the features that are checked to determine atomtype

104 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

is_specific_case_of(other)
Returns True if atom type atomType1 is a specific case of atom type atomType2 or False otherwise.

rmgpy.molecule.get_atomtype(atom, bonds)
Determine the appropriate atom type for an Atom object atom with local bond structure bonds, a dict containing
atom-bond pairs.

The atom type of an atom describes the atom itself and (often) something about the local bond structure around
that atom. This is a useful semantic tool for accelerating graph isomorphism queries, and a useful shorthand when
specifying molecular substructure patterns via an RMG-style adjacency list.

We define the following basic atom types:

Atom type Description
General atom types
R any atom with any local bond structure
R!H any non-hydrogen atom with any local bond structure
Hydrogen atom types
H hydrogen atom with up to one single bond
Carbon atom types
C carbon atom with any local bond structure
Ca carbon atom with two lone pairs and no bonds
Cs carbon atom with up to four single bonds
Csc charged carbon atom with up to three single bonds
Cd carbon atom with one double bond (not to O or S) and up to two single bonds
Cdc charged carbon atom with one double bond and up to one single bond
CO carbon atom with one double bond to oxygen and up to two single bonds
CS carbon atom with one double bond to sulfur and up to two single bonds
Cdd carbon atom with two double bonds
Ct carbon atom with one triple bond and up to one single bond
Cb carbon atom with up to two benzene bonds and up to one single bond
Cbf carbon atom with three benzene bonds
C2s carbon atom with one lone pair (valance 2) and up to two single bonds
C2sc charged carbon atom with one lone pair (valance 2) and up to three single bonds
C2d carbon atom with one lone pair (valance 2) and one double bond
C2dc charged carbon atom with one lone pair (valance 2), one double bond and up to one single bond
C2tc charged carbon atom with one lone pair (valance 2), one triple bond
Nitrogen atom types
N nitrogen atom with any local bond structure
N0sc charged nitrogen atom with three lone pairs (valance 0) with up to one single bond
N1s nitrogen atom with two lone pairs (valance 1) and up to one single bond
N1sc charged nitrogen atom with two lone pairs (valance 1) up to two single bonds
N1dc charged nitrogen atom with two lone pairs (valance 1), one double bond
N3s nitrogen atom with one lone pair (valance 3) with up to three single bonds
N3d nitrogen atom with one lone pair (valance 3), one double bond and up to one single bond
N3t nitrogen atom with one lone pair (valance 3) and one triple bond
N3b nitrogen atom with one lone pair (valance 3) and two benzene bonds
N5sc charged nitrogen atom with no lone pairs (valance 5) with up to four single bonds
N5dc charged nitrogen atom with no lone pairs (valance 5), one double bond and up to two single bonds
N5ddc charged nitrogen atom with with no lone pairs (valance 5) and two double bonds
N5dddc charged nitrogen atom with with no lone pairs (valance 5) and three double bonds
N5tc charged nitrogen atom with with no lone pairs (valance 5), one triple bond and up to one single bond
N5b nitrogen atom with with no lone pairs (valance 5) and two benzene bonds (one of the lone pairs also participates in the aromatic bond) and up to one single bond

continues on next page

1.6. Molecular representations (rmgpy.molecule) 105



RMG-Py API Reference, Release 3.1.0

Table 2 – continued from previous page
Atom type Description
N5bd nitrogen atom with with no lone pairs (valance 5), two benzene bonds, and one double bond
Oxygen atom types
O oxygen atom with any local bond structure
Oa oxygen atom with three lone pairs and no bonds
O0sc charged oxygen with three lone pairs (valance 0) and up to one single bond
O0dc charged oxygen atom with three lone pairs (valance 0) and one double bond
O2s oxygen atom with two lone pairs (valance 2) and up to two single bonds
O2sc charged oxygen atom with two lone pairs (valance 2) and up to one single bond
O2d oxygen atom with two lone pairs (valance 2) and one doubel bond
O4sc charged oxygen atom with one one pair (valance 4) and up to three single bonds
O4dc charged oxygen atom with one one pair (valance 4), one double bond and up to one single bond
O4tc charged oxygen atom with one one pair (valance 4) and one triple bond
O4b oxygen atom with one one pair (valance 4) and and two benzene bonds
Silicon atom types
Si silicon atom with any local bond structure
Sis silicon atom with four single bonds
Sid silicon atom with one double bond (to carbon) and two single bonds
SiO silicon atom with one double bond (to oxygen) and two single bonds
Sidd silicon atom with two double bonds
Sit silicon atom with one triple bond and one single bond
Sib silicon atom with two benzene bonds and one single bond
Sibf silicon atom with three benzene bonds
Phosphorus atom types
P phosphorus atom with any local bond structure
P0sc charged phosphorus atom with three lone pairs (valence 0) and up to 1 single bond
P1s phosphorus atom with two lone pairs (valence 1) and up to 1 single bond
P1sc charged phosphorus atom with two lone pairs (valence 1) and up to 2 single bonds
P1dc charged phosphorus atom with two lone pairs (valence 1) and 1 double bond
P3s phosphorus atom with one lone pair (valence 3) and up to 3 single bonds
P3d phosphorus atom with one lone pair (valence 3), 1 double bond and up to 1 single bond
P3t phosphorus atom with one lone pair (valence 3) and 1 triple bond
P3b phosphorus atom with one lone pair (valence 3) and 2 benzene bonds
P5s phosphorus atom with no lone pairs (valence 5) and up to 5 single bonds
P5sc charged phosphorus atom with no lone pairs (valence 5) and up to 6 single bonds
P5d phosphorus atom with no lone pairs (valence 5), 1 double bond and up to 3 single bonds
P5dd phosphorus atom with no lone pairs (valence 5), 2 double bonds and up to 1 single bond
P5dc charged phosphorus atom with no lone pairs (valence 5), 1 double bond and up to 2 single bonds
P5ddc charged phosphorus atom with no lone pairs (valence 5) and 2 double bonds
P5t phosphorus atom with no lone pairs (valence 5), 1 triple bond and up to 2 single bonds
P5td phosphorus atom with no lone pairs (valence 5), 1 triple bond and 1 double bond
P5tc charged phosphorus atom with no lone pairs (valence 5), 1 triple bond and up to 1 single bond
P5b phosphorus atom with no lone pairs (valence 5), 2 benzene bonds and up to 1 single bond
P5bd phosphorus atom with no lone pairs (valence 5), 2 benzene bonds and 1 double bond
Sulfur atom types
S sulfur atom with any local bond structure
Sa sulfur atom with three lone pairs and no bonds
S0sc charged sulfur atom with three lone pairs (valance 0) and up to one single bonds
S2s sulfur atom with two lone pairs (valance 2) and up to two single bonds
S2sc charged sulfur atom with two lone pairs (valance 2) and up to three single bonds

continues on next page

106 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

Table 2 – continued from previous page
Atom type Description
S2d sulfur atom with two lone pairs (valance 2) and one double bond
S2dc charged sulfur atom with two lone pairs (valance 2), one double bond and up to one single bond
S2tc charged sulfur atom with two lone pairs (valance 2) and one triple bond
S4s sulfur atom with one lone pair (valance 4) and up to four single bonds
S4sc charged sulfur atom with one lone pair (valance 4) and up to five single bonds
S4d sulfur atom with one lone pair (valance 4), one double bond and up to two single bonds
S4dd sulfur atom with one lone pair (valance 4) and two double bonds
S4dc charged sulfur atom with one lone pair (valance 4), one to three double bonds and up to three single bonds
S4b sulfur atom with one lone pair (valance 4) and two benzene bonds (one of the lone pairs also participates in the aromatic bond)
S4t sulfur atom with one lone pair (valance 4), one triple bond and up to one single bond
S4tdc charged sulfur atom with one lone pair (valance 4) one to two triple bonds, up to two double bonds, and up to three single bonds
S6s sulfur atom with no lone pairs (valance 6) and up to six single bonds
S6sc charged sulfur atom with no lone pairs (valance 6) and up to seven single bonds
S6d sulfur atom with no lone pairs (valance 6), one double bond and up to four single bonds
S6dd sulfur atom with no lone pairs (valance 6), two double bonds and up to two single bonds
S6ddd sulfur atom with no lone pairs (valance 6) and three double bonds
S6dc charged sulfur atom with no lone pairs (valance 6), one to three double bonds and up to five single bonds
S6t sulfur atom with no lone pairs (valance 6), one triple bond and up to three single bonds
S6td sulfur atom with no lone pairs (valance 6), one triple bond, one double bond and up to one single bond
S6tt sulfur atom with no lone pairs (valance 6) and two triple bonds
S6tdc charged sulfur atom with no lone pairs (valance 6), one to two triple bonds, up to two double bonds, and up to four single bonds
Chlorine atom types
Cl chlorine atom with any local bond structure
Cl1s chlorine atom with three lone pairs and zero to one single bonds
Bromine atom types
Br bromine atom with any local bond structure
Br1s bromine atom with three lone pairs and zero to one single bonds
Iodine atom types
I iodine atom with any local bond structure
I1s iodine atom with three lone pairs and zero to one single bonds
Fluorine atom types
F fluorine atom with any local bond structure
F1s fluorine atom with three lone pairs and zero to one single bonds

Reaction recipes

A reaction recipe is a procedure for applying a reaction to a set of chemical species. Each reaction recipe is made up
of a set of actions that, when applied sequentially, a set of chemical reactants to chemical products via that reaction’s
characteristic chemical process. Each action requires a small set of parameters in order to be fully defined.

We define the following reaction recipe actions:

1.6. Molecular representations (rmgpy.molecule) 107



RMG-Py API Reference, Release 3.1.0

Action
name

Arguments Action

CHANGE_BONDcenter1, order,
center2

change the bond order of the bond between center1 and center2 by
order; do not break or form bonds

FORM_BONDcenter1, order,
center2

form a new bond between center1 and center2 of type order

BREAK_BONDcenter1, order,
center2

break the bond between center1 and center2, which should be of
type order

GAIN_RADICALcenter, radical increase the number of free electrons on center by radical
LOSE_RADICALcenter, radical decrease the number of free electrons on center by radical

rmgpy.molecule.Atom

class rmgpy.molecule.Atom
An atom. The attributes are:

Attribute Type Description
atomtype AtomType The atom type
element Element The chemical element the atom represents
radical_electrons short The number of radical electrons
charge short The formal charge of the atom
label str A string label that can be used to tag individual atoms
coords numpy array The (x,y,z) coordinates in Angstrom
lone_pairs short The number of lone electron pairs
id int Number assignment for atom tracking purposes
bonds dict Dictionary of bond objects with keys being neighboring atoms
props dict Dictionary for storing additional atom properties
mass int atomic mass of element (read only)
number int atomic number of element (read only)
symbol str atomic symbol of element (read only)

Additionally, the mass, number, and symbol attributes of the atom’s element can be read (but not written)
directly from the atom object, e.g. atom.symbol instead of atom.element.symbol.

apply_action(action)
Update the atom pattern as a result of applying action, a tuple containing the name of the reaction recipe
action along with any required parameters. The available actions can be found here.

copy()
Generate a deep copy of the current atom. Modifying the attributes of the copy will not affect the original.

decrement_lone_pairs()
Update the lone electron pairs pattern as a result of applying a LOSE_PAIR action.

decrement_radical()
Update the atom pattern as a result of applying a LOSE_RADICAL action, where radical specifies the
number of radical electrons to remove.

equivalent(other, strict)
Return True if other is indistinguishable from this atom, or False otherwise. If other is an Atom object,
then all attributes except label and ‘ID’ must match exactly. If other is an GroupAtom object, then the
atom must match any of the combinations in the atom pattern. If strict is False, then only the element
is compared and electrons are ignored.

108 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

get_total_bond_order()
This helper function is to help calculate total bond orders for an input atom.

Some special consideration for the order B bond. For atoms having three B bonds, the order for each is
4/3.0, while for atoms having other than three B bonds, the order for each is 3/2.0

increment_lone_pairs()
Update the lone electron pairs pattern as a result of applying a GAIN_PAIR action.

increment_radical()
Update the atom pattern as a result of applying a GAIN_RADICAL action, where radical specifies the
number of radical electrons to add.

is_carbon()
Return True if the atom represents a carbon atom or False if not.

is_chlorine()
Return True if the atom represents a chlorine atom or False if not.

is_fluorine()
Return True if the atom represents a fluorine atom or False if not.

is_hydrogen()
Return True if the atom represents a hydrogen atom or False if not.

is_iodine()
Return True if the atom represents an iodine atom or False if not.

is_nitrogen()
Return True if the atom represents a nitrogen atom or False if not.

is_non_hydrogen()
Return True if the atom does not represent a hydrogen atom or False if it does.

is_nos()
Return True if the atom represent either nitrogen, sulfur, or oxygen False if it does not.

is_oxygen()
Return True if the atom represents an oxygen atom or False if not.

is_phosphorus()
Return True if the atom represents a phosphorus atom or False if not.

is_silicon()
Return True if the atom represents a silicon atom or False if not.

is_specific_case_of(other)
Return True if self is a specific case of other, or False otherwise. If other is an Atom object, then this is
the same as the equivalent() method. If other is an GroupAtom object, then the atom must match or
be more specific than any of the combinations in the atom pattern.

is_sulfur()
Return True if the atom represents a sulfur atom or False if not.

is_surface_site()
Return True if the atom represents a surface site or False if not.

reset_connectivity_values()
Reset the cached structure information for this vertex.

set_lone_pairs(lone_pairs)
Set the number of lone electron pairs.

1.6. Molecular representations (rmgpy.molecule) 109



RMG-Py API Reference, Release 3.1.0

sorting_key
Returns a sorting key for comparing Atom objects. Read-only

update_charge()
Update self.charge, according to the valence, and the number and types of bonds, radicals, and lone pairs.

rmgpy.molecule.Bond

class rmgpy.molecule.Bond
A chemical bond. The attributes are:

Attribute Type Description
order float The bond type
atom1 Atom An Atom object connecting to the bond
atom2 Atom An Atom object connecting to the bond

apply_action(action)
Update the bond as a result of applying action, a tuple containing the name of the reaction recipe action
along with any required parameters. The available actions can be found here.

copy()
Generate a deep copy of the current bond. Modifying the attributes of the copy will not affect the original.

decrement_order()
Update the bond as a result of applying a CHANGE_BOND action to decrease the order by one.

equivalent(other)
Return True if other is indistinguishable from this bond, or False otherwise. other can be either a Bond
or a GroupBond object.

get_bde()
estimate the bond dissociation energy in J/mol of the bond based on the order of the bond and the atoms
involved in the bond

get_bond_string()
Represent the bond object as a string (eg. ‘C#N’). The returned string is independent of the atom ordering,
with the atom labels in alphabetical order (i.e. ‘C-H’ is possible but not ‘H-C’) :return: str

get_order_num()
returns the bond order as a number

get_order_str()
returns a string representing the bond order

get_other_vertex(vertex)
Given a vertex that makes up part of the edge, return the other vertex. Raise a ValueError if the given
vertex is not part of the edge.

increment_order()
Update the bond as a result of applying a CHANGE_BOND action to increase the order by one.

is_benzene()
Return True if the bond represents a benzene bond or False if not.

is_double()
Return True if the bond represents a double bond or False if not.

is_hydrogen_bond()
Return True if the bond represents a hydrogen bond or False if not.

110 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

is_order(other_order)
Return True if the bond is of order other_order or False if not. This compares floats that takes into
account floating point error

NOTE: we can replace the absolute value relation with math.isclose when we swtich to python 3.5+

is_quadruple()
Return True if the bond represents a quadruple bond or False if not.

is_single()
Return True if the bond represents a single bond or False if not.

is_specific_case_of(other)
Return True if self is a specific case of other, or False otherwise. other can be either a Bond or a
GroupBond object.

is_triple()
Return True if the bond represents a triple bond or False if not.

is_van_der_waals()
Return True if the bond represents a van der Waals bond or False if not.

set_order_num(new_order)
change the bond order with a number

set_order_str(new_order)
set the bond order using a valid bond-order character

sorting_key
Returns a sorting key for comparing Bond objects. Read-only

Bond types

The bond type simply indicates the order of a chemical bond. We define the following bond types:

Bond type Description
S a single bond
D a double bond
T a triple bond
B a benzene bond

rmgpy.molecule.Molecule

class rmgpy.molecule.Molecule
A representation of a molecular structure using a graph data type, extending the Graph class. Attributes are:

1.6. Molecular representations (rmgpy.molecule) 111



RMG-Py API Reference, Release 3.1.0

Attribute Type Description
atoms list A list of Atom objects in the

molecule
symmetry_number float The (estimated) external + in-

ternal symmetry number of the
molecule, modified for chirality

multiplicity int The multiplicity of this species,
multiplicity = 2*total_spin+1

reactive bool
True (by default) if the molecule participates in reaction families.

It is set to False by the
filtration functions if a non
representative resonance
structure was generated by a
template reaction

props dict A list of properties describing the
state of the molecule.

inchi str A string representation of the
molecule in InChI

smiles str A string representation of the
molecule in SMILES

fingerprint str A representation for fast compari-
son, set as molecular formula

A new molecule object can be easily instantiated by passing the smiles or inchi string representing the molecular
structure.

add_atom(atom)
Add an atom to the graph. The atom is initialized with no bonds.

add_bond(bond)
Add a bond to the graph as an edge connecting the two atoms atom1 and atom2.

add_edge(edge)
Add an edge to the graph. The two vertices in the edge must already exist in the graph, or a ValueError
is raised.

add_vertex(vertex)
Add a vertex to the graph. The vertex is initialized with no edges.

assign_atom_ids()
Assigns an index to every atom in the molecule for tracking purposes. Uses entire range of cython’s integer
values to reduce chance of duplicates

atom_ids_valid()
Checks to see if the atom IDs are valid in this structure

atoms
List of atoms contained in the current molecule.

Renames the inherited vertices attribute of Graph.

calculate_cp0()
Return the value of the heat capacity at zero temperature in J/mol*K.

calculate_cpinf()
Return the value of the heat capacity at infinite temperature in J/mol*K.

112 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

calculate_symmetry_number()
Return the symmetry number for the structure. The symmetry number includes both external and internal
modes.

clear_labeled_atoms()
Remove the labels from all atoms in the molecule.

connect_the_dots(critical_distance_factor, raise_atomtype_exception)
Delete all bonds, and set them again based on the Atoms’ coords. Does not detect bond type.

contains_labeled_atom(label)
Return True if the molecule contains an atom with the label label and False otherwise.

contains_surface_site()
Returns True iff the molecule contains an ‘X’ surface site.

copy(deep)
Create a copy of the current graph. If deep is True, a deep copy is made: copies of the vertices and edges
are used in the new graph. If deep is False or not specified, a shallow copy is made: the original vertices
and edges are used in the new graph.

copy_and_map()
Create a deep copy of the current graph, and return the dict ‘mapping’. Method was modified from
Graph.copy() method

count_aromatic_rings()
Count the number of aromatic rings in the current molecule, as determined by the benzene bond type. This
is purely dependent on representation and is unrelated to the actual aromaticity of the molecule.

Returns an integer corresponding to the number or aromatic rings.

count_internal_rotors()
Determine the number of internal rotors in the structure. Any single bond not in a cycle and between two
atoms that also have other bonds are considered to be internal rotors.

delete_hydrogens()
Irreversibly delete all non-labeled hydrogens without updating connectivity values. If there’s nothing but
hydrogens, it does nothing. It destroys information; be careful with it.

draw(path)
Generate a pictorial representation of the chemical graph using the draw module. Use path to specify
the file to save the generated image to; the image type is automatically determined by extension. Valid
extensions are .png, .svg, .pdf, and .ps; of these, the first is a raster format and the remainder are
vector formats.

enumerate_bonds()
Count the number of each type of bond (e.g. ‘C-H’, ‘C=C’) present in the molecule :return: dictionary,
with bond strings as keys and counts as values

find_h_bonds()
generates a list of (new-existing H bonds ignored) possible Hbond coordinates [(i1,j1),(i2,j2),. . . ] where i
and j values correspond to the indexes of the atoms involved, Hbonds are allowed if they meet the following
constraints:

1) between a H and [O,N] atoms

2) the hydrogen is covalently bonded to an O or N

3) the Hydrogen bond must complete a ring with at least 5 members

4) An atom can only be hydrogen bonded to one other atom

1.6. Molecular representations (rmgpy.molecule) 113



RMG-Py API Reference, Release 3.1.0

find_isomorphism(other, initial_map, save_order, strict)
Returns True if other is isomorphic and False otherwise, and the matching mapping. The initialMap
attribute can be used to specify a required mapping from self to other (i.e. the atoms of self are the keys,
while the atoms of other are the values). The returned mapping also uses the atoms of self for the keys
and the atoms of other for the values. The other parameter must be a Molecule object, or a TypeError
is raised.

Parameters

• initial_map (dict, optional) – initial atom mapping to use

• save_order (bool, optional) – if True, reset atom order after performing atom iso-
morphism

• strict (bool, optional) – if False, perform isomorphism ignoring electrons

find_subgraph_isomorphisms(other, initial_map, save_order)
Returns True if other is subgraph isomorphic and False otherwise. Also returns the lists all of valid
mappings. The initial_map attribute can be used to specify a required mapping from self to other (i.e. the
atoms of self are the keys, while the atoms of other are the values). The returned mappings also use the
atoms of self for the keys and the atoms of other for the values. The other parameter must be a Group
object, or a TypeError is raised.

fingerprint
Fingerprint used to accelerate graph isomorphism comparisons with other molecules. The fingerprint is
a short string containing a summary of selected information about the molecule. Two fingerprint strings
matching is a necessary (but not sufficient) condition for the associated molecules to be isomorphic.

Use an expanded molecular formula to also enable sorting.

from_adjacency_list(adjlist, saturate_h, raise_atomtype_exception, raise_charge_exception)
Convert a string adjacency list adjlist to a molecular structure. Skips the first line (assuming it’s a label)
unless withLabel is False.

from_augmented_inchi(aug_inchi, raise_atomtype_exception)
Convert an Augmented InChI string aug_inchi to a molecular structure.

from_inchi(inchistr, backend, raise_atomtype_exception)
Convert an InChI string inchistr to a molecular structure.

from_smarts(smartsstr, raise_atomtype_exception)
Convert a SMARTS string smartsstr to a molecular structure. Uses RDKit to perform the conversion. This
Kekulizes everything, removing all aromatic atom types.

from_smiles(smilesstr, backend, raise_atomtype_exception)
Convert a SMILES string smilesstr to a molecular structure.

from_xyz(atomic_nums, coordinates, critical_distance_factor, raise_atomtype_exception)
Create an RMG molecule from a list of coordinates and a corresponding list of atomic numbers. These
are typically received from CCLib and the molecule is sent to ConnectTheDots so will only contain single
bonds.

generate_h_bonded_structures()
generates a list of Hbonded molecular structures in addition to the constraints on Hydrogen bonds applied
in the find_H_Bonds function the generated structures are constrained to:

1) An atom can only be hydrogen bonded to one other atom

2) Only two H-bonds can exist in a given molecule

the second is done to avoid explosive growth in the number of structures as without this constraint the
number of possible structures grows 2^n where n is the number of possible H-bonds

114 Chapter 1. RMG API Reference

http://rdkit.org/


RMG-Py API Reference, Release 3.1.0

generate_resonance_structures(keep_isomorphic, filter_structures)
Returns a list of resonance structures of the molecule.

get_all_cycles(starting_vertex)
Given a starting vertex, returns a list of all the cycles containing that vertex.

This function returns a duplicate of each cycle because [0,1,2,3] is counted as separate from [0,3,2,1]

get_all_cycles_of_size(size)
Return a list of the all non-duplicate rings with length ‘size’. The algorithm implements was adapted from
a description by Fan, Panaye, Doucet, and Barbu (doi: 10.1021/ci00015a002)

B. T. Fan, A. Panaye, J. P. Doucet, and A. Barbu. “Ring Perception: A New Algorithm for Directly Finding
the Smallest Set of Smallest Rings from a Connection Table.” J. Chem. Inf. Comput. Sci. 33, p. 657-662
(1993).

get_all_cyclic_vertices()
Returns all vertices belonging to one or more cycles.

get_all_edges()
Returns a list of all edges in the graph.

get_all_labeled_atoms()
Return the labeled atoms as a dict with the keys being the labels and the values the atoms themselves. If
two or more atoms have the same label, the value is converted to a list of these atoms.

get_all_polycyclic_vertices()
Return all vertices belonging to two or more cycles, fused or spirocyclic.

get_all_simple_cycles_of_size(size)
Return a list of all non-duplicate monocyclic rings with length ‘size’.

Naive approach by eliminating polycyclic rings that are returned by getAllCyclicsOfSize.

get_aromatic_rings(rings)
Returns all aromatic rings as a list of atoms and a list of bonds.

Identifies rings using Graph.get_smallest_set_of_smallest_rings(), then uses RDKit to perceive aromatic-
ity. RDKit uses an atom-based pi-electron counting algorithm to check aromaticity based on Huckel’s
Rule. Therefore, this method identifies “true” aromaticity, rather than simply the RMG bond type.

The method currently restricts aromaticity to six-membered carbon-only rings. This is a limitation imposed
by RMG, and not by RDKit.

get_bond(atom1, atom2)
Returns the bond connecting atoms atom1 and atom2.

get_bonds(atom)
Return a dictionary of the bonds involving the specified atom.

get_charge_span()
Iterate through the atoms in the structure and calculate the charge span on the overall molecule. The charge
span is a measure of the number of charge separations in a molecule.

get_deterministic_sssr()
Modified Graph method get_smallest_set_of_smallest_rings by sorting calculated cycles by short length
and then high atomic number instead of just short length (for cases where multiple cycles with same length
are found, get_smallest_set_of_smallest_rings outputs non-determinstically).

For instance, molecule with this smiles: C1CC2C3CSC(CO3)C2C1, will have non-deterministic output
from get_smallest_set_of_smallest_rings, which leads to non-deterministic bicyclic decomposition. Using
this new method can effectively prevent this situation.

1.6. Molecular representations (rmgpy.molecule) 115



RMG-Py API Reference, Release 3.1.0

Important Note: This method returns an incorrect set of SSSR in certain molecules (such as cubane). It
is recommended to use the main Graph.get_smallest_set_of_smallest_rings method in new applications.
Alternatively, consider using Graph.get_relevant_cycles for deterministic output.

In future development, this method should ideally be replaced by some method to select a deterministic
set of SSSR from the set of Relevant Cycles, as that would be a more robust solution.

get_disparate_cycles()
Get all disjoint monocyclic and polycyclic cycle clusters in the molecule. Takes the RC and recursively
merges all cycles which share vertices.

Returns: monocyclic_cycles, polycyclic_cycles

get_edge(vertex1, vertex2)
Returns the edge connecting vertices vertex1 and vertex2.

get_edges(vertex)
Return a dictionary of the edges involving the specified vertex.

get_edges_in_cycle(vertices, sort)
For a given list of atoms comprising a ring, return the set of bonds connecting them, in order around the
ring.

If sort=True, then sort the vertices to match their connectivity. Otherwise, assumes that they are already
sorted, which is true for cycles returned by get_relevant_cycles or get_smallest_set_of_smallest_rings.

get_element_count()
Returns the element count for the molecule as a dictionary.

get_formula()
Return the molecular formula for the molecule.

get_labeled_atoms(label)
Return the atoms in the molecule that are labeled.

get_largest_ring(vertex)
returns the largest ring containing vertex. This is typically useful for finding the longest path in a poly-
cyclic ring, since the polycyclic rings returned from get_polycycles are not necessarily in order in the ring
structure.

get_max_cycle_overlap()
Return the maximum number of vertices that are shared between any two cycles in the graph. For example,
if there are only disparate monocycles or no cycles, the maximum overlap is zero; if there are “spiro”
cycles, it is one; if there are “fused” cycles, it is two; and if there are “bridged” cycles, it is three.

get_molecular_weight()
Return the molecular weight of the molecule in kg/mol.

get_monocycles()
Return a list of cycles that are monocyclic.

get_net_charge()
Iterate through the atoms in the structure and calculate the net charge on the overall molecule.

get_nth_neighbor(starting_atoms, distance_list, ignore_list, n)
Recursively get the Nth nonHydrogen neighbors of the starting_atoms, and return them in a list. start-
ing_atoms is a list of :class:Atom for which we will get the nth neighbor. distance_list is a list of integers,
corresponding to the desired neighbor distances. ignore_list is a list of :class:Atom that have been counted
in (n-1)th neighbor, and will not be returned. n is an integer, corresponding to the distance to be calculated
in the current iteration.

116 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

get_num_atoms(element)
Return the number of atoms in molecule. If element is given, ie. “H” or “C”, the number of atoms of that
element is returned.

get_polycycles()
Return a list of cycles that are polycyclic. In other words, merge the cycles which are fused or spirocyclic
into a single polycyclic cycle, and return only those cycles. Cycles which are not polycyclic are not
returned.

get_radical_atoms()
Return the atoms in the molecule that have unpaired electrons.

get_radical_count()
Return the total number of radical electrons on all atoms in the molecule. In this function, monoradical
atoms count as one, biradicals count as two, etc.

get_relevant_cycles()
Returns the set of relevant cycles as a list of lists. Uses RingDecomposerLib for ring perception.

Kolodzik, A.; Urbaczek, S.; Rarey, M. Unique Ring Families: A Chemically Meaningful Description of
Molecular Ring Topologies. J. Chem. Inf. Model., 2012, 52 (8), pp 2013-2021

Flachsenberg, F.; Andresen, N.; Rarey, M. RingDecomposerLib: An Open-Source Implementation of
Unique Ring Families and Other Cycle Bases. J. Chem. Inf. Model., 2017, 57 (2), pp 122-126

get_singlet_carbene_count()
Return the total number of singlet carbenes (lone pair on a carbon atom) in the molecule. Counts the
number of carbon atoms with a lone pair. In the case of [C] with two lone pairs, this method will return 1.

get_smallest_set_of_smallest_rings()
Returns the smallest set of smallest rings as a list of lists. Uses RingDecomposerLib for ring perception.

Kolodzik, A.; Urbaczek, S.; Rarey, M. Unique Ring Families: A Chemically Meaningful Description of
Molecular Ring Topologies. J. Chem. Inf. Model., 2012, 52 (8), pp 2013-2021

Flachsenberg, F.; Andresen, N.; Rarey, M. RingDecomposerLib: An Open-Source Implementation of
Unique Ring Families and Other Cycle Bases. J. Chem. Inf. Model., 2017, 57 (2), pp 122-126

get_symmetry_number()
Returns the symmetry number of Molecule. First checks whether the value is stored as an attribute of
Molecule. If not, it calls the calculate_symmetry_number method.

get_url()
Get a URL to the molecule’s info page on the RMG website.

has_atom(atom)
Returns True if atom is an atom in the graph, or False if not.

has_bond(atom1, atom2)
Returns True if atoms atom1 and atom2 are connected by an bond, or False if not.

has_edge(vertex1, vertex2)
Returns True if vertices vertex1 and vertex2 are connected by an edge, or False if not.

has_lone_pairs()
Return True if the molecule contains at least one lone electron pair, or False otherwise.

has_vertex(vertex)
Returns True if vertex is a vertex in the graph, or False if not.

identify_ring_membership()
Performs ring perception and saves ring membership information to the Atom.props attribute.

1.6. Molecular representations (rmgpy.molecule) 117



RMG-Py API Reference, Release 3.1.0

inchi
InChI string for this molecule. Read-only.

is_aromatic()
Returns True if the molecule is aromatic, or False if not. Iterates over the SSSR’s and searches for
rings that consist solely of Cb atoms. Assumes that aromatic rings always consist of 6 atoms. In cases of
naphthalene, where a 6 + 4 aromatic system exists, there will be at least one 6 membered aromatic ring so
this algorithm will not fail for fused aromatic rings.

is_aryl_radical(aromatic_rings)
Return True if the molecule only contains aryl radicals, ie. radical on an aromatic ring, or False other-
wise.

is_atom_in_cycle(atom)
Return True if atom is in one or more cycles in the structure, and False if not.

is_bond_in_cycle(bond)
Return True if the bond between atoms atom1 and atom2 is in one or more cycles in the graph, or False
if not.

is_cyclic()
Return True if one or more cycles are present in the graph or False otherwise.

is_edge_in_cycle(edge)
Return True if the edge between vertices vertex1 and vertex2 is in one or more cycles in the graph, or
False if not.

is_heterocyclic()
Returns True if the molecule is heterocyclic, or False if not.

is_identical(other, strict)
Performs isomorphism checking, with the added constraint that atom IDs must match.

Primary use case is tracking atoms in reactions for reaction degeneracy determination.

Returns True if two graphs are identical and False otherwise.

If strict=False, performs the check ignoring electrons and resonance structures.

is_isomorphic(other, initial_map, generate_initial_map, save_order, strict)
Returns True if two graphs are isomorphic and False otherwise. The initialMap attribute can be used to
specify a required mapping from self to other (i.e. the atoms of self are the keys, while the atoms of other
are the values). The other parameter must be a Molecule object, or a TypeError is raised. Also ensures
multiplicities are also equal.

Parameters

• initial_map (dict, optional) – initial atom mapping to use

• generate_initial_map (bool, optional) – if True, initialize map by pairing atoms
with same labels

• save_order (bool, optional) – if True, reset atom order after performing atom iso-
morphism

• strict (bool, optional) – if False, perform isomorphism ignoring electrons

is_linear()
Return True if the structure is linear and False otherwise.

is_mapping_valid(other, mapping, equivalent, strict)
Check that a proposed mapping of vertices from self to other is valid by checking that the vertices and
edges involved in the mapping are mutually equivalent. If equivalent is True it checks if atoms and edges

118 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

are equivalent, if False it checks if they are specific cases of each other. If strict is True, electrons and
bond orders are considered, and ignored if False.

is_radical()
Return True if the molecule contains at least one radical electron, or False otherwise.

is_subgraph_isomorphic(other, initial_map, generate_initial_map, save_order)
Returns True if other is subgraph isomorphic and False otherwise. The initial_map attribute can be used
to specify a required mapping from self to other (i.e. the atoms of self are the keys, while the atoms of
other are the values). The other parameter must be a Group object, or a TypeError is raised.

is_surface_site()
Returns True iff the molecule is nothing but a surface site ‘X’.

is_vertex_in_cycle(vertex)
Return True if the given vertex is contained in one or more cycles in the graph, or False if not.

kekulize()
Kekulizes an aromatic molecule.

merge(other)
Merge two molecules so as to store them in a single Molecule object. The merged Molecule object is
returned.

remove_atom(atom)
Remove atom and all bonds associated with it from the graph. Does not remove atoms that no longer have
any bonds as a result of this removal.

remove_bond(bond)
Remove the bond between atoms atom1 and atom2 from the graph. Does not remove atoms that no longer
have any bonds as a result of this removal.

remove_edge(edge)
Remove the specified edge from the graph. Does not remove vertices that no longer have any edges as a
result of this removal.

remove_h_bonds()
removes any present hydrogen bonds from the molecule

remove_van_der_waals_bonds()
Remove all van der Waals bonds.

remove_vertex(vertex)
Remove vertex and all edges associated with it from the graph. Does not remove vertices that no longer
have any edges as a result of this removal.

reset_connectivity_values()
Reset any cached connectivity information. Call this method when you have modified the graph.

restore_vertex_order()
reorder the vertices to what they were before sorting if you saved the order

saturate_radicals(raise_atomtype_exception)
Saturate the molecule by replacing all radicals with bonds to hydrogen atoms. Changes self molecule
object.

saturate_unfilled_valence(update)
Saturate the molecule by adding H atoms to any unfilled valence

smiles
SMILES string for this molecule. Read-only.

1.6. Molecular representations (rmgpy.molecule) 119



RMG-Py API Reference, Release 3.1.0

sort_atoms()
Sort the atoms in the graph. This can make certain operations, e.g. the isomorphism functions, much more
efficient.

This function orders atoms using several attributes in atom.getDescriptor(). Currently it sorts by placing
heaviest atoms first and hydrogen atoms last. Placing hydrogens last during sorting ensures that functions
with hydrogen removal work properly.

sort_cyclic_vertices(vertices)
Given a list of vertices comprising a cycle, sort them such that adjacent entries in the list are connected to
each other. Warning: Assumes that the cycle is elementary, ie. no bridges.

sort_vertices(save_order)
Sort the vertices in the graph. This can make certain operations, e.g. the isomorphism functions, much
more efficient.

sorting_key
Returns a sorting key for comparing Molecule objects. Read-only

split()
Convert a single Molecule object containing two or more unconnected molecules into separate
class:Molecule objects.

to_adjacency_list(label, remove_h, remove_lone_pairs, old_style)
Convert the molecular structure to a string adjacency list.

to_augmented_inchi()
Adds an extra layer to the InChI denoting the multiplicity of the molecule.

Separate layer with a forward slash character.

to_augmented_inchi_key()
Adds an extra layer to the InChIKey denoting the multiplicity of the molecule.

Simply append the multiplicity string, do not separate by a character like forward slash.

to_group()
This method converts a list of atoms in a Molecule to a Group object.

to_inchi()
Convert a molecular structure to an InChI string. Uses RDKit to perform the conversion. Perceives aro-
maticity.

or

Convert a molecular structure to an InChI string. Uses OpenBabel to perform the conversion.

to_inchi_key()
Convert a molecular structure to an InChI Key string. Uses OpenBabel to perform the conversion.

or

Convert a molecular structure to an InChI Key string. Uses RDKit to perform the conversion.

to_rdkit_mol(*args, **kwargs)
Convert a molecular structure to a RDKit rdmol object.

to_single_bonds(raise_atomtype_exception)
Returns a copy of the current molecule, consisting of only single bonds.

This is useful for isomorphism comparison against something that was made via from_xyz, which does
not attempt to perceive bond orders

120 Chapter 1. RMG API Reference

http://rdkit.org/
http://openbabel.org/
http://openbabel.org/
http://rdkit.org/


RMG-Py API Reference, Release 3.1.0

to_smarts()
Convert a molecular structure to an SMARTS string. Uses RDKit to perform the conversion. Perceives
aromaticity and removes Hydrogen atoms.

to_smiles()
Convert a molecular structure to an SMILES string.

If there is a Nitrogen atom present it uses OpenBabel to perform the conversion, and the SMILES may or
may not be canonical.

Otherwise, it uses RDKit to perform the conversion, so it will be canonical SMILES. While converting to
an RDMolecule it will perceive aromaticity and removes Hydrogen atoms.

update(log_species, raise_atomtype_exception, sort_atoms)
Update the charge and atom types of atoms. Update multiplicity, and sort atoms (if sort_atoms is True)
Does not necessarily update the connectivity values (which are used in isomorphism checks) If you need
that, call update_connectivity_values()

update_atomtypes(log_species, raise_exception)
Iterate through the atoms in the structure, checking their atom types to ensure they are correct (i.e. accu-
rately describe their local bond environment) and complete (i.e. are as detailed as possible).

If raise_exception is False, then the generic atomtype ‘R’ will be prescribed to any atom when
get_atomtype fails. Currently used for resonance hybrid atom types.

update_connectivity_values()
Update the connectivity values for each vertex in the graph. These are used to accelerate the isomorphism
checking.

update_lone_pairs()
Iterate through the atoms in the structure and calculate the number of lone electron pairs, assuming a
neutral molecule.

update_multiplicity()
Update the multiplicity of a newly formed molecule.

rmgpy.molecule.GroupAtom

class rmgpy.molecule.GroupAtom
An atom group. This class is based on the Atom class, except that it uses atom types instead of elements, and all
attributes are lists rather than individual values. The attributes are:

Attribute Type Description
atomtype list The allowed atom types (as AtomType objects)
radical_electrons list The allowed numbers of radical electrons (as short integers)
charge list The allowed formal charges (as short integers)
label str A string label that can be used to tag individual atoms
lone_pairs list The number of lone electron pairs
charge list The partial charge of the atom
props dict Dictionary for storing additional atom properties
reg_dim_atm list List of atom types that are free dimensions in tree optimization
reg_dim_u list List of unpaired electron numbers that are free dimensions in tree optimization
reg_dim_r list List of inRing values that are free dimensions in tree optimization

Each list represents a logical OR construct, i.e. an atom will match the group if it matches any item in the list.
However, the radical_electrons, and charge attributes are linked such that an atom must match values from the
same index in each of these in order to match.

1.6. Molecular representations (rmgpy.molecule) 121

http://rdkit.org/
http://openbabel.org/
http://rdkit.org/


RMG-Py API Reference, Release 3.1.0

apply_action(action)
Update the atom group as a result of applying action, a tuple containing the name of the reaction recipe
action along with any required parameters. The available actions can be found here.

copy()
Return a deep copy of the GroupAtom object. Modifying the attributes of the copy will not affect the
original.

count_bonds(wildcards)
Returns: list of the number of bonds currently on the :class:GroupAtom

If the argument wildcards is turned off then any bonds with multiple options for bond orders will not be
counted

equivalent(other, strict)
Returns True if other is equivalent to self or False if not, where other can be either an Atom or an
GroupAtom object. When comparing two GroupAtom objects, this function respects wildcards, e.g. R!H
is equivalent to C.

has_wildcards()
Return True if the atom has wildcards in any of the attributes: atomtype, radical electrons, lone pairs,
charge, and bond order. Returns ‘’False” if no attribute has wildcards.

is_carbon()
Return True if the atom represents an sulfur atom or False if not.

is_nitrogen()
Return True if the atom represents an sulfur atom or False if not.

is_oxygen()
Return True if the atom represents an oxygen atom or False if not.

is_specific_case_of(other)
Returns True if self is the same as other or is a more specific case of other. Returns False if some of self
is not included in other or they are mutually exclusive.

is_sulfur()
Return True if the atom represents an sulfur atom or False if not.

is_surface_site()
Return True if the atom represents a surface site or False if not.

make_sample_atom()
Returns: a class :Atom: object analagous to the GroupAtom

This makes a sample, so it takes the first element when there are multiple options inside of self.atomtype,
self.radical_electrons, self.lone_pairs, and self.charge

reset_connectivity_values()
Reset the cached structure information for this vertex.

122 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

rmgpy.molecule.GroupBond

class rmgpy.molecule.GroupBond
A bond group. This class is based on the Bond class, except that all attributes are lists rather than individual
values. The allowed bond types are given here. The attributes are:

Attribute Type Description
order list The allowed bond orders (as character strings)
reg_dim Boolean Indicates if this is a regularization dimension during tree generation

Each list represents a logical OR construct, i.e. a bond will match the group if it matches any item in the list.

apply_action(action)
Update the bond group as a result of applying action, a tuple containing the name of the reaction recipe
action along with any required parameters. The available actions can be found here.

copy()
Return a deep copy of the GroupBond object. Modifying the attributes of the copy will not affect the
original.

equivalent(other)
Returns True if other is equivalent to self or False if not, where other can be either an Bond or an
GroupBond object.

get_order_num()
returns the bond order as a list of numbers

get_order_str()
returns a list of strings representing the bond order

get_other_vertex(vertex)
Given a vertex that makes up part of the edge, return the other vertex. Raise a ValueError if the given
vertex is not part of the edge.

is_benzene(wildcards)
Return True if the bond represents a benzene bond or False if not. If wildcards is False we return False
anytime there is more than one bond order, otherwise we return True if any of the options are benzene

is_double(wildcards)
Return True if the bond represents a double bond or False if not. If wildcards is False we return False
anytime there is more than one bond order, otherwise we return True if any of the options are double.

is_hydrogen_bond(wildcards)
Return True if the bond represents a hydrogen bond or False if not. If wildcards is False we return False
anytime there is more than one bond order, otherwise we return True if any of the options are hydrogen
bonds.

is_quadruple(wildcards)
Return True if the bond represents a quadruple bond or False if not. If wildcards is False we return
False anytime there is more than one bond order, otherwise we return True if any of the options are
quadruple.

is_single(wildcards)
Return True if the bond represents a single bond or False if not. If wildcards is False we return False
anytime there is more than one bond order, otherwise we return True if any of the options are single.

NOTE: we can replace the absolute value relation with math.isclose when we swtich to python 3.5+

1.6. Molecular representations (rmgpy.molecule) 123



RMG-Py API Reference, Release 3.1.0

is_specific_case_of(other)
Returns True if other is the same as self or is a more specific case of self. Returns False if some of self
is not included in other or they are mutually exclusive.

is_triple(wildcards)
Return True if the bond represents a triple bond or False if not. If wildcards is False we return False
anytime there is more than one bond order, otherwise we return True if any of the options are triple.

is_van_der_waals(wildcards)
Return True if the bond represents a van der Waals bond or False if not. If wildcards is False we return
False anytime there is more than one bond order, otherwise we return True if any of the options are van
der Waals.

make_bond(molecule, atom1, atom2)
Creates a :class: Bond between atom1 and atom2 analogous to self

The intended input arguments should be class :Atom: not class :GroupAtom: :param atom1: First :class:
Atom the bond connects :param atom2: Second :class: Atom the bond connects

set_order_num(new_order)
change the bond order with a list of numbers

set_order_str(new_order)
set the bond order using a valid bond-order character list

rmgpy.molecule.Group

class rmgpy.molecule.Group
A representation of a molecular substructure group using a graph data type, extending the Graph class. The
attributes are:

Attribute Type Description
atoms list Aliases for the vertices storing GroupAtom
multiplicity list Range of multiplicities accepted for the group
props dict Dictionary of arbitrary properties/flags classifying state of Group object

Corresponding alias methods to Molecule have also been provided.

add_atom(atom)
Add an atom to the graph. The atom is initialized with no bonds.

add_bond(bond)
Add a bond to the graph as an edge connecting the two atoms atom1 and atom2.

add_edge(edge)
Add an edge to the graph. The two vertices in the edge must already exist in the graph, or a ValueError
is raised.

add_explicit_ligands()
This function O2d/S2d ligand to CO or CS atomtypes if they are not already there.

Returns a ‘True’ if the group was modified otherwise returns ‘False’

add_implicit_atoms_from_atomtype()
Returns: a modified group with implicit atoms added Add implicit double/triple bonded atoms O, S or R,
for which we will use a C

Not designed to work with wildcards

124 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

add_implicit_benzene()
Returns: A modified group with any implicit benzene rings added

This method currently does not if there are wildcards in atomtypes or bond orders The current algorithm
also requires that all Cb and Cbf are atomtyped

There are other cases where the algorithm doesn’t work. For example whenever there are many dangling
Cb or Cbf atoms not in a ring, it is likely fail. In the database test (the only use thus far), we will require
that any group with more than 3 Cbfs have complete rings. This is much stricter than this method can
handle, but right now this method cannot handle very general cases, so it is better to be conservative.

add_vertex(vertex)
Add a vertex to the graph. The vertex is initialized with no edges.

atoms
List of atoms contained in the current molecule.

Renames the inherited vertices attribute of Graph.

classify_benzene_carbons(partners)

Parameters

• group – :class:Group with atoms to classify

• partners – dictionary of partnered up atoms, which must be a cbf atom

Returns: tuple with lists of each atom classification

clear_labeled_atoms()
Remove the labels from all atoms in the molecular group.

clear_reg_dims()
clear regularization dimensions

contains_labeled_atom(label)
Return True if the group contains an atom with the label label and False otherwise.

contains_surface_site()
Returns True iff the group contains an ‘X’ surface site.

copy(deep)
Create a copy of the current graph. If deep is True, a deep copy is made: copies of the vertices and edges
are used in the new graph. If deep is False or not specified, a shallow copy is made: the original vertices
and edges are used in the new graph.

copy_and_map()
Create a deep copy of the current graph, and return the dict ‘mapping’. Method was modified from
Graph.copy() method

create_and_connect_atom(atomtypes, connecting_atom, bond_orders)
This method creates an non-radical, uncharged, :class:GroupAtom with specified list of atomtypes and
connects it to one atom of the group, ‘connecting_atom’. This is useful for making sample atoms.

Parameters

• atomtypes – list of atomtype labels (strs)

• connecting_atom – :class:GroupAtom that is connected to the new benzene atom

• bond_orders – list of bond Orders connecting new_atom and connecting_atom

Returns: the newly created atom

1.6. Molecular representations (rmgpy.molecule) 125



RMG-Py API Reference, Release 3.1.0

draw(file_format)
Use pydot to draw a basic graph of the group.

Use format to specify the desired output file_format, eg. ‘png’, ‘svg’, ‘ps’, ‘pdf’, ‘plain’, etc.

find_isomorphism(other, initial_map, save_order, strict)
Returns True if other is isomorphic and False otherwise, and the matching mapping. The initial_map
attribute can be used to specify a required mapping from self to other (i.e. the atoms of self are the keys,
while the atoms of other are the values). The returned mapping also uses the atoms of self for the keys and
the atoms of other for the values. The other parameter must be a Group object, or a TypeError is raised.

find_subgraph_isomorphisms(other, initial_map, save_order)
Returns True if other is subgraph isomorphic and False otherwise. In other words, return True is self
is more specific than other. Also returns the lists all of valid mappings. The initial_map attribute can be
used to specify a required mapping from self to other (i.e. the atoms of self are the keys, while the atoms
of other are the values). The returned mappings also use the atoms of self for the keys and the atoms of
other for the values. The other parameter must be a Group object, or a TypeError is raised.

from_adjacency_list(adjlist)
Convert a string adjacency list adjlist to a molecular structure. Skips the first line (assuming it’s a label)
unless withLabel is False.

get_all_cycles(starting_vertex)
Given a starting vertex, returns a list of all the cycles containing that vertex.

This function returns a duplicate of each cycle because [0,1,2,3] is counted as separate from [0,3,2,1]

get_all_cycles_of_size(size)
Return a list of the all non-duplicate rings with length ‘size’. The algorithm implements was adapted from
a description by Fan, Panaye, Doucet, and Barbu (doi: 10.1021/ci00015a002)

B. T. Fan, A. Panaye, J. P. Doucet, and A. Barbu. “Ring Perception: A New Algorithm for Directly Finding
the Smallest Set of Smallest Rings from a Connection Table.” J. Chem. Inf. Comput. Sci. 33, p. 657-662
(1993).

get_all_cyclic_vertices()
Returns all vertices belonging to one or more cycles.

get_all_edges()
Returns a list of all edges in the graph.

get_all_labeled_atoms()
Return the labeled atoms as a dict with the keys being the labels and the values the atoms themselves. If
two or more atoms have the same label, the value is converted to a list of these atoms.

get_all_polycyclic_vertices()
Return all vertices belonging to two or more cycles, fused or spirocyclic.

get_all_simple_cycles_of_size(size)
Return a list of all non-duplicate monocyclic rings with length ‘size’.

Naive approach by eliminating polycyclic rings that are returned by getAllCyclicsOfSize.

get_bond(atom1, atom2)
Returns the bond connecting atoms atom1 and atom2.

get_bonds(atom)
Return a list of the bonds involving the specified atom.

get_disparate_cycles()
Get all disjoint monocyclic and polycyclic cycle clusters in the molecule. Takes the RC and recursively
merges all cycles which share vertices.

126 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

Returns: monocyclic_cycles, polycyclic_cycles

get_edge(vertex1, vertex2)
Returns the edge connecting vertices vertex1 and vertex2.

get_edges(vertex)
Return a dictionary of the edges involving the specified vertex.

get_edges_in_cycle(vertices, sort)
For a given list of atoms comprising a ring, return the set of bonds connecting them, in order around the
ring.

If sort=True, then sort the vertices to match their connectivity. Otherwise, assumes that they are already
sorted, which is true for cycles returned by get_relevant_cycles or get_smallest_set_of_smallest_rings.

get_element_count()
Returns the element count for the molecule as a dictionary. Wildcards are not counted as any particular
element.

get_extensions(r, basename, atm_ind, atm_ind2, n_splits)
generate all allowed group extensions and their complements note all atomtypes except for elements and
r/r!H’s must be removed

get_labeled_atoms(label)
Return the atom in the group that is labeled with the given label. Raises ValueError if no atom in the
group has that label.

get_largest_ring(vertex)
returns the largest ring containing vertex. This is typically useful for finding the longest path in a poly-
cyclic ring, since the polycyclic rings returned from get_polycycles are not necessarily in order in the ring
structure.

get_max_cycle_overlap()
Return the maximum number of vertices that are shared between any two cycles in the graph. For example,
if there are only disparate monocycles or no cycles, the maximum overlap is zero; if there are “spiro”
cycles, it is one; if there are “fused” cycles, it is two; and if there are “bridged” cycles, it is three.

get_monocycles()
Return a list of cycles that are monocyclic.

get_net_charge()
Iterate through the atoms in the group and calculate the net charge

get_polycycles()
Return a list of cycles that are polycyclic. In other words, merge the cycles which are fused or spirocyclic
into a single polycyclic cycle, and return only those cycles. Cycles which are not polycyclic are not
returned.

get_relevant_cycles()
Returns the set of relevant cycles as a list of lists. Uses RingDecomposerLib for ring perception.

Kolodzik, A.; Urbaczek, S.; Rarey, M. Unique Ring Families: A Chemically Meaningful Description of
Molecular Ring Topologies. J. Chem. Inf. Model., 2012, 52 (8), pp 2013-2021

Flachsenberg, F.; Andresen, N.; Rarey, M. RingDecomposerLib: An Open-Source Implementation of
Unique Ring Families and Other Cycle Bases. J. Chem. Inf. Model., 2017, 57 (2), pp 122-126

get_smallest_set_of_smallest_rings()
Returns the smallest set of smallest rings as a list of lists. Uses RingDecomposerLib for ring perception.

Kolodzik, A.; Urbaczek, S.; Rarey, M. Unique Ring Families: A Chemically Meaningful Description of
Molecular Ring Topologies. J. Chem. Inf. Model., 2012, 52 (8), pp 2013-2021

1.6. Molecular representations (rmgpy.molecule) 127



RMG-Py API Reference, Release 3.1.0

Flachsenberg, F.; Andresen, N.; Rarey, M. RingDecomposerLib: An Open-Source Implementation of
Unique Ring Families and Other Cycle Bases. J. Chem. Inf. Model., 2017, 57 (2), pp 122-126

has_atom(atom)
Returns True if atom is an atom in the graph, or False if not.

has_bond(atom1, atom2)
Returns True if atoms atom1 and atom2 are connected by an bond, or False if not.

has_edge(vertex1, vertex2)
Returns True if vertices vertex1 and vertex2 are connected by an edge, or False if not.

has_vertex(vertex)
Returns True if vertex is a vertex in the graph, or False if not.

is_aromatic_ring()
This method returns a boolean telling if the group has a 5 or 6 cyclic with benzene bonds exclusively

is_benzene_explicit()
Returns: ‘True’ if all Cb, Cbf atoms are in completely explicitly stated benzene rings.

Otherwise return ‘False’

is_cyclic()
Return True if one or more cycles are present in the graph or False otherwise.

is_edge_in_cycle(edge)
Return True if the edge between vertices vertex1 and vertex2 is in one or more cycles in the graph, or
False if not.

is_identical(other, save_order)
Returns True if other is identical and False otherwise. The function is_isomorphic respects wildcards,
while this function does not, make it more useful for checking groups to groups (as opposed to molecules
to groups)

is_isomorphic(other, initial_map, save_order, strict)
Returns True if two graphs are isomorphic and False otherwise. The initial_map attribute can be used to
specify a required mapping from self to other (i.e. the atoms of self are the keys, while the atoms of other
are the values). The other parameter must be a Group object, or a TypeError is raised.

is_mapping_valid(other, mapping, equivalent, strict)
Check that a proposed mapping of vertices from self to other is valid by checking that the vertices and
edges involved in the mapping are mutually equivalent. If equivalent is True it checks if atoms and edges
are equivalent, if False it checks if they are specific cases of each other. If strict is True, electrons and
bond orders are considered, and ignored if False.

is_subgraph_isomorphic(other, initial_map, generate_initial_map, save_order)
Returns True if other is subgraph isomorphic and False otherwise. In other words, return True if self
is more specific than other. The initial_map attribute can be used to specify a required mapping from self
to other (i.e. the atoms of self are the keys, while the atoms of other are the values). The other parameter
must be a Group object, or a TypeError is raised.

is_surface_site()
Returns True iff the group is nothing but a surface site ‘X’.

is_vertex_in_cycle(vertex)
Return True if the given vertex is contained in one or more cycles in the graph, or False if not.

make_sample_molecule()
Returns: A sample class :Molecule: from the group

128 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

merge(other)
Merge two groups so as to store them in a single Group object. The merged Group object is returned.

merge_groups(other, keep_identical_labels)
This function takes other :class:Group object and returns a merged :class:Group object based on overlap-
ping labeled atoms between self and other

Currently assumes other can be merged at the closest labelled atom if keep_identical_labels=True
merge_groups will not try to merge atoms with the same labels

pick_wildcards()
Returns: the :class:Group object without wildcards in either atomtype or bonding

This function will naively pick the first atomtype for each atom, but will try to pick bond orders that make
sense given the selected atomtypes

remove_atom(atom)
Remove atom and all bonds associated with it from the graph. Does not remove atoms that no longer have
any bonds as a result of this removal.

remove_bond(bond)
Remove the bond between atoms atom1 and atom2 from the graph. Does not remove atoms that no longer
have any bonds as a result of this removal.

remove_edge(edge)
Remove the specified edge from the graph. Does not remove vertices that no longer have any edges as a
result of this removal.

remove_van_der_waals_bonds()
Remove all bonds that are definitely only van der Waals bonds.

remove_vertex(vertex)
Remove vertex and all edges associated with it from the graph. Does not remove vertices that no longer
have any edges as a result of this removal.

reset_connectivity_values()
Reset any cached connectivity information. Call this method when you have modified the graph.

reset_ring_membership()
Resets ring membership information in the GroupAtom.props attribute.

restore_vertex_order()
reorder the vertices to what they were before sorting if you saved the order

sort_atoms()
Sort the atoms in the graph. This can make certain operations, e.g. the isomorphism functions, much more
efficient.

sort_by_connectivity(atom_list)

Parameters atom_list – input list of atoms

Returns: a sorted list of atoms where each atom is connected to a previous atom in the list if possible

sort_cyclic_vertices(vertices)
Given a list of vertices comprising a cycle, sort them such that adjacent entries in the list are connected to
each other. Warning: Assumes that the cycle is elementary, ie. no bridges.

sort_vertices(save_order)
Sort the vertices in the graph. This can make certain operations, e.g. the isomorphism functions, much
more efficient.

1.6. Molecular representations (rmgpy.molecule) 129



RMG-Py API Reference, Release 3.1.0

specify_atom_extensions(i, basename, r)
generates extensions for specification of the type of atom defined by a given atomtype or set of atomtypes

specify_bond_extensions(i, j, basename, r_bonds)
generates extensions for the specification of bond order for a given bond

specify_external_new_bond_extensions(i, basename, r_bonds)
generates extensions for the creation of a bond (of undefined order) between an atom and a new atom that
is not H

specify_internal_new_bond_extensions(i, j, n_splits, basename, r_bonds)
generates extensions for creation of a bond (of undefined order) between two atoms indexed i,j that already
exist in the group and are unbonded

specify_ring_extensions(i, basename)
generates extensions for specifying if an atom is in a ring

specify_unpaired_extensions(i, basename, r_un)
generates extensions for specification of the number of electrons on a given atom

split()
Convert a single Group object containing two or more unconnected groups into separate class:Group
objects.

standardize_atomtype()
This function changes the atomtypes in a group if the atom must be a specific atomtype based on its bonds
and valency.

Currently only standardizes oxygen, carbon and sulfur ATOMTYPES

We also only check when there is exactly one atomtype, one bondType, one radical setting. For any group
where there are wildcards or multiple attributes, we cannot apply this check.

In the case where the atomtype is ambiguous based on bonds and valency, this function will not change
the type.

Returns a ‘True’ if the group was modified otherwise returns ‘False’

standardize_group()
This function modifies groups to make them have a standard AdjList form.

Currently it makes atomtypes as specific as possible and makes CO/CS atomtypes have explicit O2d/S2d
ligands. Other functions can be added as necessary

Returns a ‘True’ if the group was modified otherwise returns ‘False’

to_adjacency_list(label)
Convert the molecular structure to a string adjacency list.

update_charge()
Update the partial charge according to the valence electron, total bond order, lone pairs and radical elec-
trons. This method is used for products of specific families with recipes that modify charges.

update_connectivity_values()
Update the connectivity values for each vertex in the graph. These are used to accelerate the isomorphism
checking.

update_fingerprint()
Update the molecular fingerprint used to accelerate the subgraph isomorphism checks.

130 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

rmgpy.molecule.resonance

This module contains methods for generation of resonance structures of molecules.

The main function to generate all relevant resonance structures for a given Molecule object is
generate_resonance_structures. It calls the necessary functions for generating each type of resonance
structure.

Currently supported resonance types:

• All species:

– generate_allyl_delocalization_resonance_structures: single radical shift with double
or triple bond

– generate_lone_pair_multiple_bond_resonance_structures: lone pair shift with double
or triple bond in a 3-atom system (between nonadjacent atoms)

– generate_adj_lone_pair_radical_resonance_structures: single radical shift with lone
pair between adjacent atoms

– generate_adj_lone_pair_multiple_bond_resonance_structures: multiple bond shift
with lone pair between adjacent atoms

– generate_adj_lone_pair_radical_multiple_bond_resonance_structures: multiple
bond and radical shift with lone pair and radical between adjacent atoms

– generate_N5dc_radical_resonance_structures: shift between radical and lone pair medi-
ated by an N5dc atom

– generate_aryne_resonance_structures: shift between cumulene and alkyne forms of arynes,
which are not considered aromatic in RMG

• Aromatic species only:

– generate_optimal_aromatic_resonance_structures: fully delocalized structure, where all
aromatic rings have benzene bonds

– generate_kekule_structure: generate a single Kekule structure for an aromatic compound (sin-
gle/double bond form)

– generate_opposite_kekule_structure: for monocyclic aromatic species, rotate the double
bond assignment

– generate_clar_structures: generate all structures with the maximum number of pi-sextet as-
signments

rmgpy.molecule.resonance.analyze_molecule(mol)
Identify key features of molecule important for resonance structure generation.

Returns a dictionary of features.

rmgpy.molecule.resonance.generate_N5dc_radical_resonance_structures(mol)
Generate all of the resonance structures formed by radical and lone pair shifts mediated by an N5dc atom.

rmgpy.molecule.resonance.generate_adj_lone_pair_multiple_bond_resonance_structures(mol)
Generate all of the resonance structures formed by lone electron pair - multiple bond shifts between adjacent
atoms. Example: [:NH]=[CH2] <=> [::NH-]-[CH2+] (where ‘:’ denotes a lone pair, ‘.’ denotes a radical, ‘-‘
not in [] denotes a single bond, ‘-‘/’+’ denote charge) Here atom1 refers to the N/S/O atom, atom 2 refers to the
any R!H (atom2’s lone_pairs aren’t affected) (In direction 1 atom1 <losses> a lone pair, in direction 2 atom1
<gains> a lone pair)

1.6. Molecular representations (rmgpy.molecule) 131



RMG-Py API Reference, Release 3.1.0

rmgpy.molecule.resonance.generate_adj_lone_pair_radical_multiple_bond_resonance_structures(mol)
Generate all of the resonance structures formed by lone electron pair - radical - multiple bond shifts be-
tween adjacent atoms. Example: [:N.]=[CH2] <=> [::N]-[.CH2] (where ‘:’ denotes a lone pair, ‘.’ de-
notes a radical, ‘-‘ not in [] denotes a single bond, ‘-‘/’+’ denote charge) Here atom1 refers to the N/S/O
atom, atom 2 refers to the any R!H (atom2’s lone_pairs aren’t affected) This function is similar to gener-
ate_adj_lone_pair_multiple_bond_resonance_structures() except for dealing with the radical transformations.
(In direction 1 atom1 <losses> a lone pair, gains a radical, and atom2 looses a radical. In direction 2 atom1
<gains> a lone pair, looses a radical, and atom2 gains a radical)

rmgpy.molecule.resonance.generate_adj_lone_pair_radical_resonance_structures(mol)
Generate all of the resonance structures formed by lone electron pair - radical shifts between adjacent atoms.
These resonance transformations do not involve changing bond orders. NO2 example: O=[:N]-[::O.] <=>
O=[N.+]-[:::O-] (where ‘:’ denotes a lone pair, ‘.’ denotes a radical, ‘-‘ not in [] denotes a single bond, ‘-‘/’+’
denote charge)

rmgpy.molecule.resonance.generate_allyl_delocalization_resonance_structures(mol)
Generate all of the resonance structures formed by one allyl radical shift.

Biradicals on a single atom are not supported.

rmgpy.molecule.resonance.generate_aromatic_resonance_structure(mol, aromatic_bonds,
copy)

Generate the aromatic form of the molecule in place without considering other resonance.

Parameters

• mol – Molecule object to modify

• aromatic_bonds (optional) – list of previously identified aromatic bonds

• copy (optional) – copy the molecule if True, otherwise modify in place

Returns List of one molecule if successful, empty list otherwise

rmgpy.molecule.resonance.generate_aryne_resonance_structures(mol)
Generate aryne resonance structures, including the cumulene and alkyne forms.

For all 6-membered rings, check for the following bond patterns:

• DDDSDS

• STSDSD

This does NOT cover all possible aryne resonance forms, only the simplest ones. Especially for polycyclic
arynes, enumeration of all resonance forms is related to enumeration of all Kekule structures, which is very
difficult.

rmgpy.molecule.resonance.generate_clar_structures(mol)
Generate Clar structures for a given molecule.

Returns a list of Molecule objects corresponding to the Clar structures.

rmgpy.molecule.resonance.generate_isomorphic_resonance_structures(mol, saturate_h)
Select the resonance isomer that is isomorphic to the parameter isomer, with the lowest unpaired electrons
descriptor.

We generate over all resonance isomers (non-isomorphic as well as isomorphic) and retain isomorphic isomers.

If saturate_h is True, then saturate mol with hydrogens before generating the resonance structures, and remove
the hydrogens before returning isomorphic_isomers. This is useful when resonance structures are generated for
molecules in which all hydrogens were intentionally removed as in generating augInChI. Otherwise, RMG will
probably get many of the lone_pairs and partial charges in a molecule wrong.

WIP: do not generate aromatic resonance isomers.

132 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

rmgpy.molecule.resonance.generate_kekule_structure(mol)
Generate a kekulized (single-double bond) form of the molecule. The specific arrangement of double bonds is
non-deterministic, and depends on RDKit.

Returns a single Kekule structure as an element of a list of length 1. If there’s an error (eg. in RDKit) then it
just returns an empty list.

rmgpy.molecule.resonance.generate_lone_pair_multiple_bond_resonance_structures(mol)
Generate all of the resonance structures formed by lone electron pair - multiple bond shifts in 3-atom systems.
Examples: aniline (Nc1ccccc1), azide, [:NH2]C=[::O] <=> [NH2+]=C[:::O-] (where ‘:’ denotes a lone pair, ‘.’
denotes a radical, ‘-‘ not in [] denotes a single bond, ‘-‘/’+’ denote charge)

rmgpy.molecule.resonance.generate_optimal_aromatic_resonance_structures(mol, fea-
tures)

Generate the aromatic form of the molecule. For radicals, generates the form with the most aromatic rings.

Returns result as a list. In most cases, only one structure will be returned. In certain cases where multiple forms
have the same number of aromatic rings, multiple structures will be returned. If there’s an error (eg. in RDKit)
it just returns an empty list.

rmgpy.molecule.resonance.generate_resonance_structures(mol, clar_structures,
keep_isomorphic, filter_structures)

Generate and return all of the resonance structures for the input molecule.

Most of the complexity of this method goes into handling aromatic species, particularly to generate an accurate
set of resonance structures that is consistent regardless of the input structure. The following considerations are
made:

1. False positives from RDKit aromaticity detection can occur if a molecule has exocyclic double bonds

2. False negatives from RDKit aromaticity detection can occur if a radical is delocalized into an aromatic
ring

3. sp2 hybridized radicals in the plane of an aromatic ring do not participate in hyperconjugation

4. Non-aromatic resonance structures of PAHs are not important resonance contributors (assumption)

Aromatic species are broken into the following categories for resonance treatment:

• Radical polycyclic aromatic species: Kekule structures are generated in order to generate adjacent reso-
nance structures. The resulting structures are then used for Clar structure generation. After all three steps,
any non-aromatic structures are removed, under the assumption that they are not important resonance
contributors.

• Radical monocyclic aromatic species: Kekule structures are generated along with adjacent resonance struc-
tures. All are kept regardless of aromaticity because the radical is more likely to delocalize into the ring.

• Stable polycyclic aromatic species: Clar structures are generated

• Stable monocyclic aromatic species: Kekule structures are generated

rmgpy.molecule.resonance.populate_resonance_algorithms(features)
Generate list of resonance structure algorithms relevant to the current molecule.

Takes a dictionary of features generated by analyze_molecule(). Returns a list of resonance algorithms.

1.6. Molecular representations (rmgpy.molecule) 133



RMG-Py API Reference, Release 3.1.0

rmgpy.molecule.kekulize

This module contains functions for kekulization of a aromatic molecule. The only function that should be used outside
of this module is the main kekulize() function. The remaining functions and classes are designed only to support the
kekulization algorithm, and should not be used on their own.

The basic algorithm is as follows: 1. Identify all aromatic rings in the molecule, based on bond types. 2. For each
ring, identify endocyclic and exocyclic bonds. 3. Determine if any bonds in the ring are already defined (not benzene
bonds). 4. For the remaining bonds, determine whether or not they can be double bonds. 5. If a clear determination
cannot be made, make heuristic based assumption. 6. Continue until all bonds in the ring are determined. 7. Continue
until all rings in the molecule are determined.

Here, endo refers to bonds that comprise a given ring, while exo refers to bonds that are connected to atoms in the ring,
but not part of the ring itself.

A key part of the algorithm is use of degree of freedom (DOF) analysis in order to determine the optimal order to
solve the system. Rings and bonds with fewer DOFs have fewer ways to be to be kekulized, and are generally easier
to solve. Each ring or bond that is fixed reduces the DOF of adjacent rings and bonds, and the process continues until
the entire molecule can be solved.

class rmgpy.molecule.kekulize.AromaticBond
Helper class containing information about a single aromatic bond in a molecule.

DO NOT use outside of this module. This class does not do any aromaticity perception.

update()
Update the local degree of freedom information for this aromatic bond. The DOF counts do not include
the bond itself, only its adjacent bonds.

endo_dof refers to the number of adjacent bonds in the ring without fixed bond orders. exo_dof refers to
the number of adjacent bonds outside the ring without fixed bond orders.

class rmgpy.molecule.kekulize.AromaticRing
Helper class containing information about a single aromatic ring in a molecule.

DO NOT use outside of this module. This class does not do any aromaticity perception.

kekulize()
Attempts to kekulize a single aromatic ring in a molecule.

Returns True if successful, and False otherwise.

process_bonds()
Create AromaticBond objects for each endocyclic bond.

update()
Update the degree of freedom information for this aromatic ring.

endo_dof refers to the number of bonds in the ring without fixed bond orders. exo_dof refers to the number
of bonds outside the ring without fixed bond orders.

rmgpy.molecule.kekulize.kekulize(mol)
Kekulize an aromatic molecule in place. If the molecule cannot be kekulized, a KekulizationError will be raised.
However, the molecule will be left in a semi-kekulized state. Therefore, if the original molecule needs to be
kept, it is advisable to create a copy before kekulizing.

Args: Molecule object to be kekulized

134 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

rmgpy.molecule.filtration

This module contains functions for filtering a list of Molecules representing a single Species, keeping only the repre-
sentative structures. Relevant for filtration of negligible mesomerism contributing structures.

The rules this module follows are (by order of importance):

1. Minimum overall deviation from the Octet Rule (elaborated for Dectet for sulfur as a third row element)

2. Additional charge separation is only allowed for radicals if it makes a new radical site in the species

3. If a structure must have charge separation, negative charges will be assigned to more electronegative atoms,
whereas positive charges will be assigned to less electronegative atoms (charge stabilization)

4. Opposite charges will be as close as possible to one another, and vice versa (charge stabilization)

(inspired by http://www.chem.ucla.edu/~harding/tutorials/resonance/imp_res_str.html)

rmgpy.molecule.filtration.aromaticity_filtration(mol_list, features)
Returns a filtered list of molecules based on heuristics for determining representative aromatic resonance struc-
tures.

For monocyclic aromatics, Kekule structures are removed, with the assumption that an equivalent aromatic
structure exists. Non-aromatic structures are maintained if they present new radical sites. Instead of explicitly
checking the radical sites, we only check for the SDSDSD bond motif since radical delocalization will disrupt
that pattern.

For polycyclic aromatics, structures without any benzene bonds are removed. The idea is that radical delocal-
ization into the aromatic pi system is unfavorable because it disrupts aromaticity. Therefore, structures where
the radical is delocalized so far into the molecule such that none of the rings are aromatic anymore are not
representative. While this isn’t strictly true, it helps reduce the number of representative structures by focusing
on the most important ones.

rmgpy.molecule.filtration.charge_filtration(filtered_list, charge_span_list)
Returns a new filtered_list, filtered based on charge_span_list, electronegativity and proximity considerations.
If structures with an additional charge layer introduce reactive sites (i.e., radicals or multiple bonds) they will
also be considered. For example:

• Both of NO2’s resonance structures will be kept: [O]N=O <=> O=[N+.][O-]

• NCO will only have two resonance structures [N.]=C=O <=> N#C[O.], and will loose the third structure
which has the same octet deviation, has a charge separation, but the radical site has already been consid-
ered: [N+.]#C[O-]

• CH2NO keeps all three structures, since a new radical site is introduced: [CH2.]N=O <=> C=N[O.] <=>
C=[N+.][O-]

• NH2CHO has two structures, one of which is charged since it introduces a multiple bond: NC=O <=>
[NH2+]=C[O-]

However, if the species is not a radical, or multiple bonds do not alter, we only keep the structures with the
minimal charge span. For example:

• NSH will only keep the N#S form and not [N-]=[SH+]

• The following species will loose two thirds of its resonance structures, which are charged: CS(=O)SC <=>
CS(=O)#SC <=> C[S+]([O-]SC <=> CS([O-])=[S+]C <=> C[S+]([O-])#SC <=> C[S+](=O)=[S-]C

• Azide is know to have three resonance structures: [NH-][N+]#N <=> N=[N+]=[N-] <=> [NH+]#[N+][N-
2]; here we filter the third one out due to the higher charge span, which does not contribute to reactivity in
RMG

1.6. Molecular representations (rmgpy.molecule) 135

http://www.chem.ucla.edu/~harding/tutorials/resonance/imp_res_str.html


RMG-Py API Reference, Release 3.1.0

rmgpy.molecule.filtration.check_reactive(filtered_list)
Check that there’s at least one reactive structure in the returned list. If not, raise an error (does not return
anything)

rmgpy.molecule.filtration.filter_structures(mol_list, mark_unreactive=True, al-
low_expanded_octet=True, features=None)

We often get too many resonance structures from the combination of all rules, particularly for species containing
lone pairs. This function filters them out by minimizing the number of C/N/O/S atoms without a full octet.

rmgpy.molecule.filtration.find_unique_sites_in_charged_list(mol, rad_sorting_list,
mul_bond_sorting_list)

A helper function for reactive site discovery in charged species

rmgpy.molecule.filtration.get_charge_span_list(mol_list)
Returns the a list of charge spans for a respective list of :class:Molecule objects This is also calculated in the
octet_filtration() function along with the octet filtration process

rmgpy.molecule.filtration.get_octet_deviation(mol, allow_expanded_octet=True)
Returns the octet deviation for a :class:Molecule object if allow_expanded_octet is True (by default), then the
function also considers dectet for third row elements (currently sulfur is the only hypervalance third row element
in RMG)

rmgpy.molecule.filtration.get_octet_deviation_list(mol_list, allow_expanded_octet=True)
Returns the a list of octet deviations for a respective list of :class:Molecule objects

rmgpy.molecule.filtration.mark_unreactive_structures(filtered_list, mol_list)
Mark selected structures in filtered_list with the Molecule.reactive flag set to False (it is True by default) Changes
the filtered_list object, and does not return anything

rmgpy.molecule.filtration.octet_filtration(mol_list, octet_deviation_list)
Returns a filtered list based on the octet_deviation_list. Also computes and returns a charge_span_list. Filtering
using the octet deviation criterion rules out most unrepresentative structures. However, since some charge-
strained species are still kept (e.g., [NH]N=S=O <-> [NH+]#[N+][S-][O-]), we also generate during the same
loop a charge_span_list to keep track of the charge spans. This is used for further filtering.

rmgpy.molecule.filtration.stabilize_charges_by_electronegativity(mol_list, al-
low_empty_list=False)

Only keep structures that obey the electronegativity rule. If a structure must have charge separation, negative
charges will be assigned to more electronegative atoms, and vice versa. If allow_empty_list is set to False
(default), this function will not return an empty list. If it is set to True and all structures in mol_list violate the
electronegativity heuristic, the original mol_list is returned (examples: [C-]#[O+], CS, [NH+]#[C-], [OH+]=[N-
], [C-][S+]=C violate this heuristic).

rmgpy.molecule.filtration.stabilize_charges_by_proximity(mol_list)
Only keep structures that obey the charge proximity rule. Opposite charges will be as close as possible to one
another, and vice versa.

rmgpy.molecule.pathfinder

This module provides functions for searching paths within a molecule. The paths generally consist of alternating
atoms and bonds.

rmgpy.molecule.pathfinder.add_allyls(path)
Find all the (3-atom, 2-bond) patterns “X=X-X” starting from the last atom of the existing path.

The bond attached to the starting atom should be non single. The second bond should be single.

rmgpy.molecule.pathfinder.add_inverse_allyls(path)
Find all the (3-atom, 2-bond) patterns “start~atom2=atom3” starting from the last atom of the existing path.

136 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

The second bond should be non-single.

rmgpy.molecule.pathfinder.add_unsaturated_bonds(path)
Find all the (2-atom, 1-bond) patterns “X=X” starting from the last atom of the existing path.

The bond attached to the starting atom should be non single.

rmgpy.molecule.pathfinder.compute_atom_distance(atom_indices, mol)
Compute the distances between each pair of atoms in the atom_indices.

The distance between two atoms is defined as the length of the shortest path between the two atoms minus 1,
because the start atom is part of the path.

The distance between multiple atoms is defined by generating all possible combinations between two atoms and
storing the distance between each combination of atoms in a dictionary.

The parameter ‘atom_indices’ is a list of 1-based atom indices.

rmgpy.molecule.pathfinder.find_N5dc_radical_delocalization_paths(atom1)
Find all the resonance structures of an N5dc nitrogen atom with a single bond to a radical N/O/S site, another
single bond to a negatively charged N/O/S site, and one double bond (not participating in this transformation)

Example:

• N=[N+]([O])([O-]) <=> N=[N+]([O-])([O]), these structures are isomorphic but not identical, the transi-
tion is important for correct degeneracy calculations

In this transition atom1 is the middle N+ (N5dc), atom2 is the radical site, and atom3 is negatively charged A
“if atom1.atomtype.label == ‘N5dc’” check should be done before calling this function

rmgpy.molecule.pathfinder.find_adj_lone_pair_multiple_bond_delocalization_paths(atom1)
Find all the delocalization paths of atom1 which either

• Has a lonePair and is bonded by a single/double bond (e.g., [::NH-]-[CH2+], [::N-]=[CH+]) – direction 1

• Can obtain a lonePair and is bonded by a double/triple bond (e.g., [:NH]=[CH2], [:N]#[CH]) – direction 2

Giving the following resonance transitions, for example:

• [::NH-]-[CH2+] <=> [:NH]=[CH2]

• [:N]#[CH] <=> [::N-]=[CH+]

• other examples: S#N, N#[S], O=S([O])=O

Direction “1” is the direction <increasing> the bond order as in [::NH-]-[CH2+] <=> [:NH]=[CH2] Direction
“2” is the direction <decreasing> the bond order as in [:NH]=[CH2] <=> [::NH-]-[CH2+] (where ‘:’ denotes a
lone pair, ‘.’ denotes a radical, ‘-‘ not in [] denotes a single bond, ‘-‘/’+’ denote charge) (In direction 1 atom1
<losses> a lone pair, in direction 2 atom1 <gains> a lone pair)

rmgpy.molecule.pathfinder.find_adj_lone_pair_radical_delocalization_paths(atom1)
Find all the delocalization paths of lone electron pairs next to the radical center indicated by atom1. Used to
generate resonance isomers in adjacent N/O/S atoms. Two adjacent O atoms are not allowed since (a) currently
RMG has no good thermo/kinetics for R[:O+.][:::O-] which could have been generated as a resonance structure
of R[::O][::O.].

The radical site (atom1) could be either:

• N u1 p0, eg O=[N.+][:::O-]

• N u1 p1, eg R[:NH][:NH.]

• O u1 p1, eg [:O.+]=[::N-]; not allowed when adjacent to another O atom

• O u1 p2, eg O=N[::O.]; not allowed when adjacent to another O atom

1.6. Molecular representations (rmgpy.molecule) 137



RMG-Py API Reference, Release 3.1.0

• S u1 p0, eg O[S.+]([O-])=O

• S u1 p1, eg O[:S.+][O-]

• S u1 p2, eg O=N[::S.]

• any of the above with more than 1 radical where possible

The non-radical site (atom2) could respectively be:

• N u0 p1

• N u0 p2

• O u0 p2

• O u0 p3

• S u0 p1

• S u0 p2

• S u0 p3

(where ‘:’ denotes a lone pair, ‘.’ denotes a radical, ‘-‘ not in [] denotes a single bond, ‘-‘/’+’ denote charge)
The bond between the sites does not have to be single, e.g.: [:O.+]=[::N-] <=> [::O]=[:N.]

rmgpy.molecule.pathfinder.find_adj_lone_pair_radical_multiple_bond_delocalization_paths(atom1)
Find all the delocalization paths of atom1 which either

• Has a lonePair and is bonded by a single/double bond to a radical atom (e.g., [::N]-[.CH2])

• Can obtain a lonePair, has a radical, and is bonded by a double/triple bond (e.g., [:N.]=[CH2])

Giving the following resonance transitions, for example:

• [::N]-[.CH2] <=> [:N.]=[CH2]

• O[:S](=O)[::O.] <=> O[S.](=O)=[::O]

Direction “1” is the direction <increasing> the bond order as in [::N]-[.CH2] <=> [:N.]=[CH2] Direction “2” is
the direction <decreasing> the bond order as in [:N.]=[CH2] <=> [::N]-[.CH2] (where ‘:’ denotes a lone pair,
‘.’ denotes a radical, ‘-‘ not in [] denotes a single bond, ‘-‘/’+’ denote charge) (In direction 1 atom1 <losses> a
lone pair, gains a radical, and atom2 looses a radical. In direction 2 atom1 <gains> a lone pair, looses a radical,
and atom2 gains a radical)

rmgpy.molecule.pathfinder.find_allyl_delocalization_paths(atom1)
Find all the delocalization paths allyl to the radical center indicated by atom1.

rmgpy.molecule.pathfinder.find_allyl_end_with_charge(start)
Search for a (3-atom, 2-bond) path between start and end atom that consists of alternating non-single and single
bonds and ends with a charged atom.

Returns a list with atom and bond elements from start to end, or an empty list if nothing was found.

rmgpy.molecule.pathfinder.find_butadiene(start, end)
Search for a path between start and end atom that consists of alternating non-single and single bonds.

Returns a list with atom and bond elements from start to end, or None if nothing was found.

rmgpy.molecule.pathfinder.find_butadiene_end_with_charge(start)
Search for a (4-atom, 3-bond) path between start and end atom that consists of alternating non-single and single
bonds and ends with a charged atom.

Returns a list with atom and bond elements from start to end, or None if nothing was found.

138 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

rmgpy.molecule.pathfinder.find_lone_pair_multiple_bond_paths(atom1)
Find all the delocalization paths between lone electron pair and multiple bond in a 3-atom system atom1 indi-
cates the localized lone pair site. Currently carbenes are excluded from this path.

Examples:

• N2O (N#[N+][O-] <-> [N-]=[N+]=O)

• Azide (N#[N+][NH-] <-> [N-]=[N+]=N <-> [N-2][N+]#[NH+])

• N#N group on sulfur (O[S-](O)[N+]#N <-> OS(O)=[N+]=[N-] <-> O[S+](O)#[N+][N-2])

• N[N+]([O-])=O <=> N[N+](=O)[O-], these structures are isomorphic but not identical, this transition is
important for correct degeneracy calculations

rmgpy.molecule.pathfinder.is_atom_able_to_gain_lone_pair(atom)
Helper function Returns True if atom is N/O/S and is able to <gain> an additional lone pair, False otherwise We
don’t allow O to remain with no lone pairs

rmgpy.molecule.pathfinder.is_atom_able_to_lose_lone_pair(atom)
Helper function Returns True if atom is N/O/S and is able to <loose> a lone pair, False otherwise We don’t allow
O to remain with no lone pairs

rmgpy.molecule.converter

This module provides methods for converting molecules between RMG, RDKit, and OpenBabel.

rmgpy.molecule.converter.debug_rdkit_mol(rdmol, level=20)
Takes an rdkit molecule object and logs some debugging information equivalent to calling rdmol.Debug() but
uses our logging framework. Default logging level is INFO but can be controlled with the level parameter. Also
returns the message as a string, should you want it for something.

rmgpy.molecule.converter.from_ob_mol(mol, obmol, raise_atomtype_exception)
Convert a OpenBabel Mol object obmol to a molecular structure. Uses OpenBabel to perform the conversion.

rmgpy.molecule.converter.from_rdkit_mol(mol, rdkitmol, raise_atomtype_exception)
Convert a RDKit Mol object rdkitmol to a molecular structure. Uses RDKit to perform the conversion. This
Kekulizes everything, removing all aromatic atom types.

rmgpy.molecule.converter.to_ob_mol(mol, return_mapping)
Convert a molecular structure to an OpenBabel OBMol object. Uses OpenBabel to perform the conversion.

rmgpy.molecule.converter.to_rdkit_mol(mol, remove_h, return_mapping, sanitize)
Convert a molecular structure to a RDKit rdmol object. Uses RDKit to perform the conversion. Perceives
aromaticity and, unless remove_h==False, removes Hydrogen atoms.

If return_mapping==True then it also returns a dictionary mapping the atoms to RDKit’s atom indices.

rmgpy.molecule.translator

This module provides methods for translating to and from common molecule representation formats, e.g. SMILES,
InChI, SMARTS.

rmgpy.molecule.translator.from_augmented_inchi(mol, aug_inchi, raise_atomtype_exception)
Creates a Molecule object from the augmented inchi.

First, the inchi is converted into a Molecule using the backend parsers.

Next, the multiplicity and unpaired electron information is used to fix a number of parsing errors made by the
backends.

1.6. Molecular representations (rmgpy.molecule) 139

http://openbabel.org/
http://rdkit.org/
http://openbabel.org/
http://rdkit.org/


RMG-Py API Reference, Release 3.1.0

Finally, the atom types of the corrected molecule are perceived.

Returns a Molecule object

rmgpy.molecule.translator.from_inchi(mol, inchistr, backend, raise_atomtype_exception)
Convert an InChI string inchistr to a molecular structure. Uses a user-specified backend for conversion, currently
supporting rdkit (default) and openbabel.

rmgpy.molecule.translator.from_smarts(mol, smartsstr, backend, raise_atomtype_exception)
Convert a SMARTS string smartsstr to a molecular structure. Uses RDKit to perform the conversion. This
Kekulizes everything, removing all aromatic atom types.

rmgpy.molecule.translator.from_smiles(mol, smilesstr, backend, raise_atomtype_exception)
Convert a SMILES string smilesstr to a molecular structure. Uses a user-specified backend for conversion,
currently supporting rdkit (default) and openbabel.

rmgpy.molecule.translator.to_inchi(mol, backend, aug_level)
Convert a molecular structure to an InChI string. For aug_level=0, generates the canonical InChI. For
aug_level=1, appends the molecule multiplicity. For aug_level=2, appends positions of unpaired and paired
electrons.

Uses RDKit or OpenBabel for conversion.

Parameters

• choice of backend (backend) –

• 'try-all' –

• 'rdkit' –

• 'openbabel' (or) –

• level of augmentation (aug_level) –

• 0 –

• 1 –

• 2 (or) –

rmgpy.molecule.translator.to_inchi_key(mol, backend, aug_level)
Convert a molecular structure to an InChI Key string. For aug_level=0, generates the canonical InChI. For
aug_level=1, appends the molecule multiplicity. For aug_level=2, appends positions of unpaired and paired
electrons.

Uses RDKit or OpenBabel for conversion.

Parameters

• choice of backend (backend) –

• 'try-all' –

• 'rdkit' –

• 'openbabel' (or) –

• level of augmentation (aug_level) –

• 0 –

• 1 –

• 2 (or) –

140 Chapter 1. RMG API Reference

http://rdkit.org/


RMG-Py API Reference, Release 3.1.0

rmgpy.molecule.translator.to_smarts(mol, backend)
Convert a molecular structure to an SMARTS string. Uses RDKit to perform the conversion. Perceives aro-
maticity and removes Hydrogen atoms.

rmgpy.molecule.translator.to_smiles(mol, backend)
Convert a molecular structure to an SMILES string.

If there is a Nitrogen/Sulfur atom present it uses OpenBabel to perform the conversion, and the SMILES may
or may not be canonical.

Otherwise, it uses RDKit to perform the conversion, so it will be canonical SMILES. While converting to an
RDMolecule it will perceive aromaticity and removes Hydrogen atoms.

Adjacency Lists

Note: The adjacency list syntax changed in July 2014. The minimal requirement for most translations is to prefix the
number of unpaired electrons with the letter u. The new syntax, however, allows much greater flexibility, including
definition of lone pairs, partial charges, wildcards, and molecule multiplicities.

Note: To quickly visualize any adjacency list, or to generate an adjacency list from other types of molecular rep-
resentations such as SMILES, InChI, or even common species names, use the Molecule Search tool found here:
http://rmg.mit.edu/molecule_search

An adjacency list is the most general way of specifying a chemical molecule or molecular pattern in RMG. It is based
on the adjacency list representation of the graph data type – the underlying data type for molecules and patterns in
RMG – but extended to allow for specification of extra semantic information.

The first line of most adjacency lists is a unique identifier for the molecule or pattern the adjacency list represents.
This is not strictly required, but is recommended in most cases. Generally the identifier should only use alphanumeric
characters and the underscore, as if an identifier in many popular programming languages. However, strictly speaking
any non-space ASCII character is allowed.

The subsequent lines may contain keyword-value pairs. Currently there is only one keyword, multiplicity.

For species or molecule declarations, the value after multiplicity defines the spin multiplicity of the molecule.
E.g. multiplicity 1 for most ground state closed shell species, multiplicity 2 for most radical species, and
multiplicity 3 for a triplet biradical. If the multiplicity line is not present then a value of (1 + number of
unpaired electrons) is assumed. Thus, it can usually be omitted, but if present can be used to distinguish, for example,
singlet CH2 from triplet CH2.

If defining a Functional Group, then the value must be a list, which defines the multiplicities that will be matched by
the group, eg. multiplicity [1,2,3] or, for a single value, multiplicity [1]. If a wildcard is desired, the
line 'multiplicity x can be used instead to accept all multiplicities. If the multiplicity line is omitted altogether,
then a wildcard is assumed.

e.g. the following two group adjlists represent identical groups.

group1
multiplicity x
1 R!H u0

group2
1 R!H u0

1.6. Molecular representations (rmgpy.molecule) 141

http://rdkit.org/
http://openbabel.org/
http://rdkit.org/
http://rmg.mit.edu/molecule_search


RMG-Py API Reference, Release 3.1.0

After the identifier line and keyword-value lines, each subsequent line describes a single atom and its local bond
structure. The format of these lines is a whitespace-delimited list with tokens

<number> [<label>] <element> u<unpaired> [p<pairs>] [c<charge>] <bondlist>

The first item is the number used to identify that atom. Any number may be used, though it is recommended to number
the atoms sequentially starting from one. Next is an optional label used to tag that atom; this should be an asterisk
followed by a unique number for the label, e.g. *1. In some cases (e.g. thermodynamics groups) there is only one
labeled atom, and the label is just an asterisk with no number: *.

After that is the atom’s element or atom type, indicated by its atomic symbol, followed by a sequence of tokens
describing the electronic state of the atom:

• u0 number of unpaired electrons (eg. radicals)

• p0 number of lone pairs of electrons, common on oxygen and nitrogen.

• c0 formal charge on the atom, e.g. c-1 (negatively charged), c0, c+1 (positively charged)

For Molecule definitions: The value must be a single integer (and for charge must have a + or - sign if not equal to
0) The number of unpaired electrons (i.e. radical electrons) is required, even if zero. The number of lone pairs and the
formal charge are assumed to be zero if omitted.

For Group definitions: The value can be an integer or a list of integers (with signs, for charges), eg. u[0,1,2] or
c[0,+1,+2,+3,+4], or may be a wildcard x which matches any valid value, eg. px is the same as p[0,1,2,3,4, .
..] and cx is the same as c[...,-4,-3,-2,-1,0,+1,+2,+3,+4,...]. Lists must be enclosed is square brackets,
and separated by commas, without spaces. If lone pairs or formal charges are omitted from a group definition, the
wildcard is assumed.

The last set of tokens is the list of bonds. To indicate a bond, place the number of the atom at the other end of the bond
and the bond type within curly braces and separated by a comma, e.g. {2,S}. Multiple bonds from the same atom
should be separated by whitespace.

Note: You must take care to make sure each bond is listed on the lines of both atoms in the bond, and that these
entries have the same bond type. RMG will raise an exception if it encounters such an invalid adjacency list.

When writing a molecular substructure pattern, you may specify multiple elements, radical counts, and bond types as
a comma-separated list inside square brackets. For example, to specify any carbon or oxygen atom, use the syntax
[C,O]. For a single or double bond to atom 2, write {2,[S,D]}.

Atom types such as R!H or Cdd may also be used as a shorthand. (Atom types like Cdd can also be used in full
molecules, but this use is discouraged, as RMG can compute them automatically for full molecules.)

Below is an example adjacency list, for 1,3-hexadiene, with the weakest bond in the molecule labeled with *1 and
*2. Note that hydrogen atoms can be omitted if desired, as their presence is inferred, provided that unpaired electrons,
lone pairs, and charges are all correctly defined:

HXD13
multiplicity 1
1 C u0 {2,D}
2 C u0 {1,D} {3,S}
3 C u0 {2,S} {4,D}
4 C u0 {3,D} {5,S}
5 *1 C u0 {4,S} {6,S}
6 *2 C u0 {5,S}

The allowed element types, radicals, and bonds are listed in the following table:

142 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

Notation Explanation
Chemical Element C Carbon atom

O Oxygen atom
H Hydrogen atom
S Sulfur atom
N Nitrogen atom

Nonreactive Elements Si Silicon atom
Cl Chlorine atom
He Helium atom
Ar Argon atom

Chemical Bond S Single Bond
D Double Bond
T Triple bond
B Benzene bond

rmgpy.molecule.adjlist.from_adjacency_list(adjlist, group=False, saturate_h=False)
Convert a string adjacency list adjlist into a set of Atom and Bond objects.

rmgpy.molecule.adjlist.to_adjacency_list(atoms, multiplicity, label=None, group=False,
remove_h=False, remove_lone_pairs=False,
old_style=False)

Convert a chemical graph defined by a list of atoms into a string adjacency list.

rmgpy.molecule.symmetry

rmgpy.molecule.symmetry.calculate_atom_symmetry_number(molecule, atom)
Return the symmetry number centered at atom in the structure. The atom of interest must not be in a cycle.

rmgpy.molecule.symmetry.calculate_bond_symmetry_number(molecule, atom1, atom2)
Return the symmetry number centered at bond in the structure.

rmgpy.molecule.symmetry.calculate_axis_symmetry_number(molecule)
Get the axis symmetry number correction. The “axis” refers to a series of two or more cumulated double bonds
(e.g. C=C=C, etc.). Corrections for single C=C bonds are handled in getBondSymmetryNumber().

Each axis (C=C=C) has the potential to double the symmetry number. If an end has 0 or 1 groups (eg. =C=CJJ
or =C=C-R) then it cannot alter the axis symmetry and is disregarded:

A=C=C=C.. A-C=C=C=C-A

s=1 s=1

If an end has 2 groups that are different then it breaks the symmetry and the symmetry for that axis is 1, no
matter what’s at the other end:

A\ A\ /A
T=C=C=C=C-A T=C=C=C=T

B/ A/ \B
s=1 s=1

If you have one or more ends with 2 groups, and neither end breaks the symmetry, then you have an axis
symmetry number of 2:

1.6. Molecular representations (rmgpy.molecule) 143



RMG-Py API Reference, Release 3.1.0

A\ /B A\
C=C=C=C=C C=C=C=C-B

A/ \B A/
s=2 s=2

rmgpy.molecule.symmetry.calculate_cyclic_symmetry_number(molecule)
Get the symmetry number correction for cyclic regions of a molecule. For complicated fused rings the smallest
set of smallest rings is used.

rmgpy.molecule.symmetry.calculate_symmetry_number(molecule)
Return the symmetry number for the structure. The symmetry number includes both external and internal modes.

rmgpy.molecule.draw.MoleculeDrawer

class rmgpy.molecule.draw.MoleculeDrawer(options=None)
This class provides functionality for drawing the skeletal formula of molecules using the Cairo 2D graphics
engine. The most common use case is simply:

MoleculeDrawer().draw(molecule, file_format='png', path='molecule.png')

where molecule is the Molecule object to draw. You can also pass a dict of options to the constructor to affect
how the molecules are drawn.

draw(molecule, file_format, target=None)
Draw the given molecule using the given image file_format - pdf, svg, ps, or png. If path is given, the
drawing is saved to that location on disk. The options dict is an optional set of key-value pairs that can be
used to control the generated drawing.

This function returns the Cairo surface and context used to create the drawing, as well as a bounding box
for the molecule being drawn as the tuple (left, top, width, height).

render(cr, offset=None)
Uses the Cairo graphics library to create a skeletal formula drawing of a molecule containing the list of
atoms and dict of bonds to be drawn. The 2D position of each atom in atoms is given in the coordinates
array. The symbols to use at each atomic position are given by the list symbols. You must specify the Cairo
context cr to render to.

rmgpy.molecule.draw.ReactionDrawer

class rmgpy.molecule.draw.ReactionDrawer(options=None)
This class provides functionality for drawing chemical reactions using the skeletal formula of each reactant and
product molecule via the Cairo 2D graphics engine. The most common use case is simply:

ReactionDrawer().draw(reaction, file_format='png', path='reaction.png')

where reaction is the Reaction object to draw. You can also pass a dict of options to the constructor to affect
how the molecules are drawn.

draw(reaction, file_format, path=None)
Draw the given reaction using the given image file_format - pdf, svg, ps, or png. If path is given, the
drawing is saved to that location on disk.

This function returns the Cairo surface and context used to create the drawing, as well as a bounding box
for the molecule being drawn as the tuple (left, top, width, height).

144 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

1.7 Pressure dependence (rmgpy.pdep)

The rmgpy.pdep subpackage provides functionality for calcuating the pressure-dependent rate coefficients 𝑘(𝑇, 𝑃 )
for unimolecular reaction networks.

A unimolecular reaction network is defined by a set of chemically reactive molecular configurations - local minima on
a potential energy surface - divided into unimolecular isomers and bimolecular reactants or products. In our vernacular,
reactants can associate to form an isomer, while such association is neglected for products. These configurations are
connected by chemical reactions to form a network; these are referred to as path reactions. The system also consists of
an excess of inert gas M, representing a thermal bath; this allows for neglecting all collisions other than those between
an isomer and the bath gas.

An isomer molecule at sufficiently high internal energy can be transformed by a number of possible events:

• The isomer molecule can collide with any other molecule, resulting in an increase or decrease in energy

• The isomer molecule can isomerize to an adjacent isomer at the same energy

• The isomer molecule can dissociate into any directly connected bimolecular reactant or product channel

It is this competition between collision and reaction events that gives rise to pressure-dependent kinetics.

1.7.1 Collision events

Class Description
SingleExponentialDown A collisional energy transfer model based on the single exponential down model

1.7.2 Reaction events

Function Description
calculate_microcanonical_rate_coefficient()Return the microcanonical rate coefficient 𝑘(𝐸) for a reaction
apply_rrkm_theory() Use RRKM theory to compute 𝑘(𝐸) for a reaction
apply_inverse_laplace_transform_method()Use the inverse Laplace transform method to compute 𝑘(𝐸)

for a reaction

1.7.3 Pressure-dependent reaction networks

Class Description
Configuration A molecular configuration on a potential energy surface
Network A collisional energy transfer model based on the single exponential down model

1.7. Pressure dependence (rmgpy.pdep) 145



RMG-Py API Reference, Release 3.1.0

1.7.4 The master equation

Function Description
generate_full_me_matrix() Return the full master equation matrix for a network

1.7.5 Master equation reduction methods

Function Description
msc.apply_modified_strong_collision_method()Reduce the master equation to phenomenological rate coefficients

𝑘(𝑇, 𝑃 ) using the modified strong collision method
rs.apply_reservoir_state_method()Reduce the master equation to phenomenological rate coefficients

𝑘(𝑇, 𝑃 ) using the reservoir state method
cse.apply_chemically_significant_eigenvalues_method()Reduce the master equation to phenomenological rate coefficients

𝑘(𝑇, 𝑃 ) using the chemically-significant eigenvalues method

rmgpy.pdep.SingleExponentialDown

class rmgpy.pdep.SingleExponentialDown(alpha0=None, T0=None, n=0.0)
A representation of a single exponential down model of collisional energy transfer. The attributes are:

Attribute Description
alpha0 The average energy transferred in a deactivating collision at the reference temperature
T0 The reference temperature
n The temperature exponent

Based around the collisional energy transfer probability function

𝑃 (𝐸,𝐸′) = 𝐶(𝐸′) exp

(︂
−𝐸′ − 𝐸

𝛼

)︂
𝐸 < 𝐸′

where the parameter 𝛼 = ⟨∆𝐸d⟩ represents the average energy transferred in a deactivating collision. This is the
most commonly-used collision model, simply because it only has one parameter to determine. The parameter 𝛼
is specified using the equation

𝛼 = 𝛼0

(︂
𝑇

𝑇0

)︂𝑛

where 𝛼0 is the value of 𝛼 at temperature 𝑇0 in K. Set the exponent 𝑛 to zero to obtain a temperature-independent
value for 𝛼.

T0
The reference temperature.

alpha0
The average energy transferred in a deactivating collision at the reference temperature.

as_dict()
A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

146 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

calculate_collision_efficiency(self, double T, ndarray e_list, ndarray j_list, ndarray
dens_states, double E0, double e_reac)

Calculate an efficiency factor for collisions, particularly useful for the modified strong collision method.
The collisions involve the given species with density of states dens_states corresponding to energies e_list`
in J/mol, ground-state energy E0 in kJ/mol, and first reactive energy e_reac in kJ/mol. The collisions
occur at temperature T in K and are described by the average energy transferred in a deactivating collision
d_e_down in kJ/mol. The algorithm here is implemented as described by Chang, Bozzelli, and Dean [?].

generate_collision_matrix(self, double T, ndarray dens_states, ndarray e_list, ndarray
j_list=None)

Generate and return the collision matrix Mcoll/𝜔 = P − I corresponding to this collision model for a
given set of energies e_list in J/mol, temperature T in K, and isomer density of states dens_states.

get_alpha(self, double T)→ double
Return the value of the 𝛼 parameter - the average energy transferred in a deactivating collision - in J/mol
at temperature T in K.

make_object(data, class_dict)
A helper function for constructing objects from a dictionary (used when loading YAML files)

Parameters

• data (dict) – The dictionary representation of the object

• class_dict (dict) – A mapping of class names to the classes themselves

Returns None

n
‘double’

Type n

Reaction events

Microcanonical rate coefficients

rmgpy.pdep.reaction.calculate_microcanonical_rate_coefficient(reaction, ndarray e_list,
ndarray j_list, ndarray
reac_dens_states, ndarray
prod_dens_states=None,
double T=0.0)

Calculate the microcanonical rate coefficient 𝑘(𝐸) for the reaction reaction at the energies e_list in J/mol.
reac_dens_states and prod_dens_states are the densities of states of the reactant and product configurations for
this reaction. If the reaction is irreversible, only the reactant density of states is required; if the reaction is
reversible, then both are required. This function will try to use the best method that it can based on the input
data available:

• If detailed information has been provided for the transition state (i.e. the molecular degrees of freedom),
then RRKM theory will be used.

• If the above is not possible but high-pressure limit kinetics 𝑘∞(𝑇 ) have been provided, then the inverse
Laplace transform method will be used.

The density of states for the product prod_dens_states and the temperature of interest T in K can also be pro-
vided. For isomerization and association reactions prod_dens_states is required; for dissociation reactions it
is optional. The temperature is used if provided in the detailed balance expression to determine the reverse
kinetics, and in certain cases in the inverse Laplace transform method.

1.7. Pressure dependence (rmgpy.pdep) 147



RMG-Py API Reference, Release 3.1.0

RRKM theory

rmgpy.pdep.reaction.apply_rrkm_theory(transition_state, ndarray e_list, ndarray j_list, ndarray
dens_states)

Calculate the microcanonical rate coefficient for a reaction using RRKM theory, where transition_state is the
transition state of the reaction, e_list is the array of energies in J/mol at which to evaluate the microcanonial
rate, and dens_states is the density of states of the reactant.

RRKM (Rice-Ramsperger-Kassel-Marcus) theory is the microcanonical analogue of transition state theory. The
microcanonical rate coefficient as a function of total energy 𝐸 and total angular momentum quantum number 𝐽
is given by

𝑘(𝐸, 𝐽) =
𝑁‡(𝐸, 𝐽)

ℎ𝜌(𝐸, 𝐽)

where 𝑁‡(𝐸, 𝐽) is the sum of states of the transition state and 𝜌(𝐸, 𝐽) is the density of states of the reactant. If
the J-rotor is treated as active, the J-dependence can be averaged in the above expression to give

𝑘(𝐸) =
𝑁‡(𝐸)

ℎ𝜌(𝐸)

as a function of total energy alone. This is reasonable at high temperatures, but less accurate at low temperatures.

Use of RRKM theory requires detailed information about the statistical mechanics of the reactant and transition
state. However, it is generally more accurate than the inverse Laplace transform method.

Inverse Laplace transform method

rmgpy.pdep.reaction.apply_inverse_laplace_transform_method(transition_state, Arrhenius ki-
netics, ndarray e_list, ndar-
ray j_list, ndarray dens_states,
double T=0.0)

Calculate the microcanonical rate coefficient for a reaction using the inverse Laplace transform method, where
kinetics is the high pressure limit rate coefficient, E0 is the ground-state energy of the transition state, e_list is
the array of energies in kJ/mol at which to evaluate the microcanonial rate, and dens_states is the density of
states of the reactant. The temperature T in K is not required, and is only used when the temperature exponent
of the Arrhenius expression is negative (for which the inverse transform is undefined).

The inverse Laplace transform method exploits the following relationship to determine the microcanonical rate
coefficient:

ℒ [𝑘(𝐸)𝜌(𝐸)] =

∫︁ ∞

0

𝑘(𝐸)𝜌(𝐸)𝑒−𝐸/𝑘B𝑇 𝑑𝐸 = 𝑘∞(𝑇 )𝑄(𝑇 )

Given a high-pressure limit rate coefficient 𝑘∞(𝑇 ) represented as an Arrhenius expression with positive 𝑛 and
𝐸a, the microcanonical rate coefficient 𝑘(𝐸) can be determined via an inverse Laplace transform. For 𝑛 = 0
the transform can be defined analytically:

𝑘(𝐸) = 𝐴
𝜌(𝐸 − 𝐸a)

𝜌(𝐸)
(𝑛 = 0)

For 𝑛 > 0 the transform is defined numerically. For 𝑛 < 0 or 𝐸a < 0 the transform is not defined; in this case
we approximate by simply lumping the 𝑇𝑛 or 𝑒−𝐸a/𝑅𝑇 terms into the preexponential factor, and use a different
𝑘(𝐸) at each temperature.

The ILT method does not required detailed transition state information, but only the high-pressure limit kinet-
ics. However, it assumes that (1) 𝑘∞(𝑇 ) is valid over the temperature range from zero to infinity and (2) the
activation energy 𝐸a is physically identical to the reaction barrier 𝐸‡

0 − 𝐸0.

148 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

rmgpy.pdep.Configuration

class rmgpy.pdep.Configuration
A representation of a molecular configuration on a potential energy surface.

E0
The ground-state energy of the configuration in J/mol.

calculate_collision_frequency(T, P, bath_gas)
Return the value of the collision frequency in Hz at the given temperature T in K and pressure P in Pa. If a
dictionary bath_gas of bath gas species and corresponding mole fractions is given, the collision parameters
of the bas gas species will be averaged with those of the species before computing the collision frequency.

Only the Lennard-Jones collision model is currently supported.

calculate_density_of_states(e_list, active_j_rotor, active_k_rotor, rmgmode)
Calculate the density (and sum) of states for the configuration at the given energies above the ground state
e_list in J/mol. The active_j_rotor and active_k_rotor flags control whether the J-rotor and/or K-rotor are
treated as active (and therefore included in the density and sum of states). The computed density and sum
of states arrays are stored on the object for future use.

cleanup()
Delete intermediate arrays used in computing k(T,P) values.

generate_collision_matrix(T, dens_states, e_list, j_list)
Return the collisional energy transfer probabilities matrix for the configuration at the given temperature T
in K using the given energies e_list in kJ/mol and total angular momentum quantum numbers j_list. The
density of states of the configuration dens_states in mol/kJ is also required.

get_enthalpy(T)
Return the enthalpy in kJ/mol at the specified temperature T in K.

get_entropy(T)
Return the entropy in J/mol*K at the specified temperature T in K.

get_free_energy(T)
Return the Gibbs free energy in kJ/mol at the specified temperature T in K.

get_heat_capacity(T)
Return the constant-pressure heat capacity in J/mol*K at the specified temperature T in K.

has_statmech()
Return True if all species in the configuration have statistical mechanics parameters, or False otherwise.

has_thermo()
Return True if all species in the configuration have thermodynamics parameters, or False otherwise.

is_bimolecular()
Return True if the configuration represents a bimolecular reactant or product channel, or False otherwise.

is_termolecular()
Return True if the configuration represents a termolecular reactant or product channel, or False other-
wise.

is_transition_state()
Return True if the configuration represents a transition state, or False otherwise.

is_unimolecular()
Return True if the configuration represents a unimolecular isomer, or False otherwise.

1.7. Pressure dependence (rmgpy.pdep) 149



RMG-Py API Reference, Release 3.1.0

map_density_of_states(e_list, j_list)
Return a mapping of the density of states for the configuration to the given energies e_list in J/mol and, if
the J-rotor is not active, the total angular momentum quantum numbers j_list.

map_sum_of_states(e_list, j_list)
Return a mapping of the density of states for the configuration to the given energies e_list in J/mol and, if
the J-rotor is not active, the total angular momentum quantum numbers j_list.

rmgpy.pdep.Network

class rmgpy.pdep.Network(label='', isomers=None, reactants=None, products=None,
path_reactions=None, bath_gas=None, net_reactions=None, T=0.0,
P=0.0, e_list=None, j_list=None, n_grains=0, n_j=0, active_k_rotor=True,
active_j_rotor=True, grain_size=0.0, grain_count=0, E0=None)

A representation of a unimolecular reaction network. The attributes are:

Attribute Description
isomers A list of the unimolecular isomers (Configuration objects) in the network
reactants A list of the bimolecular reactant channels (Configuration objects) in the network
products A list of the bimolecular product channels (Configuration objects) in the network
path_reactions A list of Reaction objects that connect isomers to their unimolecular and bimolecular products (the high-pressure-limit)
bath_gas A dictionary of the bath gas species (keys) and their mole fractions (values)
net_reactions A list of Reaction objects that connect any pair of isomers (pressure dependent reactions)
T The current temperature in K
P The current pressure in Pa
e_list The current array of energy grains in J/mol
j_list The current array of total angular momentum quantum numbers
n_isom The number of unimolecular isomers in the network
n_reac The number of bimolecular reactant channels in the network
n_prod The number of bimolecular product channels in the network
n_grains The number of energy grains
n_j The number of angular momentum grains
grain_size Maximum size of separation between energies
grain_count Minimum number of descrete energies separated
E0 A list of ground state energies of isomers, reactants, and products (J/mol)
active_k_rotor True if the K-rotor is treated as active, False if treated as adiabatic
active_j_rotor True if the J-rotor is treated as active, False if treated as adiabatic
rmgmode True if in RMG mode, False otherwise
eq_ratios An array containing concentration of each isomer and reactant channel present at equilibrium
coll_freq An array of the frequency of collision between isomers and the bath gas
Mcoll Matrix of first-order rate coefficients for collisional population transfer between grains for each isomer
dens_states 3D np array of stable configurations, number of grains, and number of J
Kij The microcanonical rates to go from isomer $j$ to isomer $i$. 4D array with indexes: i, j, energies, rotational energies
Gnj The microcanonical rates to go from isomer $j$ to reactant/product $n$. 4D array with indexes: n, j, energies, rotational energies
Fim The microcanonical rates to go from reactant $m$ to isomer $i$. 4D array with indexes: n, j, energies, rotational energies
K 2D Array of phenomenological rates at the specified T and P
p0 Pseudo-steady state population distributions

apply_chemically_significant_eigenvalues_method(lumping_order=None)
Compute the phenomenological rate coefficients 𝑘(𝑇, 𝑃 ) at the current conditions using the chemically-
significant eigenvalues method. If a lumping_order is provided, the algorithm will attempt to lump the
configurations (given by index) in the order provided, and return a reduced set of 𝑘(𝑇, 𝑃 ) values.

150 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

apply_modified_strong_collision_method(efficiency_model='default')
Compute the phenomenological rate coefficients 𝑘(𝑇, 𝑃 ) at the current conditions using the modified
strong collision method.

apply_reservoir_state_method()
Compute the phenomenological rate coefficients 𝑘(𝑇, 𝑃 ) at the current conditions using the reservoir state
method.

calculate_collision_model()
Calculate the matrix of first-order rate coefficients for collisional population transfer between grains for
each isomer, including the corresponding collision frequencies.

calculate_densities_of_states()
Calculate the densities of states of each configuration that has states data. The densities of states are
computed such that they can be applied to each temperature in the range of interest by interpolation.

calculate_equilibrium_ratios()
Return an array containing the fraction of each isomer and reactant channel present at equilibrium, as
determined from the Gibbs free energy and using the concentration equilibrium constant 𝐾c. These values
are ratios, and the absolute magnitude is not guaranteed; however, the implementation scales the elements
of the array so that they sum to unity.

calculate_microcanonical_rates()
Calculate and return arrays containing the microcanonical rate coefficients 𝑘(𝐸) for the isomerization,
dissociation, and association path reactions in the network.

get_all_species()
Return a list of all unique species in the network, including all isomers, reactant and product channels, and
bath gas species.

initialize(Tmin, Tmax, Pmin, Pmax, maximum_grain_size=0.0, minimum_grain_count=0, ac-
tive_j_rotor=True, active_k_rotor=True, rmgmode=False)

Initialize a pressure dependence calculation by computing several quantities that are independent of the
conditions. You must specify the temperature and pressure ranges of interesting using Tmin and Tmax in
K and Pmin and Pmax in Pa. You must also specify the maximum energy grain size grain_size in J/mol
and/or the minimum number of grains grain_count.

invalidate()
Mark the network as in need of a new calculation to determine the pressure-dependent rate coefficients

log_summary(level=20)
Print a formatted list of information about the current network. Each molecular configuration - unimolec-
ular isomers, bimolecular reactant channels, and bimolecular product channels - is given along with its
energy on the potential energy surface. The path reactions connecting adjacent molecular configurations
are also given, along with their energies on the potential energy surface. The level parameter controls the
level of logging to which the summary is written, and is DEBUG by default.

map_densities_of_states()
Map the overall densities of states to the current energy grains. Semi-logarithmic interpolation will be
used if the grain sizes of Elist0 and e_list do not match; this should not be a significant source of error as
long as the grain sizes are sufficiently small.

select_energy_grains(T, grain_size=0.0, grain_count=0)
Select a suitable list of energies to use for subsequent calculations. This is done by finding the minimum
and maximum energies on the potential energy surface, then adding a multiple of 𝑘B𝑇 onto the maximum
energy.

You must specify either the desired grain spacing grain_size in J/mol or the desired number of grains
n_grains, as well as a temperature T in K to use for the equilibrium calculation. You can specify both
grain_size and grain_count, in which case the one that gives the more accurate result will be used (i.e.

1.7. Pressure dependence (rmgpy.pdep) 151



RMG-Py API Reference, Release 3.1.0

they represent a maximum grain size and a minimum number of grains). An array containing the energy
grains in J/mol is returned.

set_conditions(T, P, ymB=None)
Set the current network conditions to the temperature T in K and pressure P in Pa. All of the internal
variables are updated accordingly if they are out of date. For example, those variables that depend only on
temperature will not be recomputed if the temperature is the same.

solve_full_me(tlist, x0)
Directly solve the full master equation using a stiff ODE solver. Pass the reaction network to solve, the
temperature T in K and pressure P in Pa to solve at, the energies e_list in J/mol to use, the output time
points tlist in s, the initial total populations x0, the full master equation matrix M, the accounting matrix
indices relating isomer and energy grain indices to indices of the master equation matrix, and the densities
of states dens_states in mol/J of each isomer. Returns the times in s, population distributions for each
isomer, and total population profiles for each configuration.

solve_reduced_me(tlist, x0)
Directly solve the reduced master equation using a stiff ODE solver. Pass the output time points tlist in s
and the initial total populations x0. Be sure to run one of the methods for generating 𝑘(𝑇, 𝑃 ) values before
calling this method. Returns the times in s, population distributions for each isomer, and total population
profiles for each configuration.

The master equation

rmgpy.pdep.me.generate_full_me_matrix(network, products)
Generate the full master equation matrix for the network.

An in-depth explanation can be found in the Master Equation section of the theory guide.

Methods for estimating k(T,P) values

The objective of each of the methods described in this section is to reduce the master equation into a small number of
phenomenological rate coefficients 𝑘(𝑇, 𝑃 ). All of the methods share a common formalism in that they seek to express
the population distribution vector p𝑖 for each unimolecular isomer 𝑖 as a linear combination of the total populations of
all unimolecular isomers and bimolecular reactant channels.

The modified strong collision method

rmgpy.pdep.msc.apply_modified_strong_collision_method(network, efficiency_model)
A method for applying the Modified Strong Collision approach for solving the master equation.

The modified strong collision method utilizes a greatly simplified collision model that allows for a decoupling
of the energy grains. In the simplified collision model, collisional stabilization of a reactive isomer is treated as a
single-step process, ignoring the effects of collisional energy redistribution within the reactive energy space. An
attempt to correct for the effect of collisional energy redistribution is made by modifying the collision frequency
𝜔𝑖(𝑇, 𝑃 ) with a collision efficiency 𝛽𝑖(𝑇 ) estimated from the low-pressure limit fall-off of a single isomer.

By approximating the reactive populations as existing in pseudo-steady state, the master equation is converted
to a matrix equation is at each energy. Solving these small matrix equations gives the pseudo-steady state
populations of each isomer as a function of the total population of each isomer and reactant channel, which are
then applied to determine the 𝑘(𝑇, 𝑃 ) values.

In practice, the modified strong collision method is the fastest and most robust of the methods, and is reasonably
accurate over a wide range of temperatures and pressures.

152 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

The reservoir state method

rmgpy.pdep.rs.apply_reservoir_state_method(network)
A method for applying the Reservoir State approach for solving the master equation.

In the reservoir state method, the population distribution of each isomer is partitioned into the low-energy grains
(called the reservoir) and the high-energy grains (called the active space). The partition generally occurs at or
near the lowest transition state energy for each isomer. The reservoir population is assumed to be thermalized,
while the active-space population is assumed to be in pseudo-steady state. Applying these approximations
converts the master equation into a single large matrix equation. Solving this matrix equation gives the pseudo-
steady state populations of each isomer as a function of the total population of each isomer and reactant channel,
which are then applied to determine the 𝑘(𝑇, 𝑃 ) values.

The reservoir state method is only slightly more expensive than the modified strong collision method. At low
temperatures the approximations used are very good, and the resulting 𝑘(𝑇, 𝑃 ) values are more accurate than the
modified strong collision values. However, at high temperatures the thermalized reservoir approximation breaks
down, resulting in very inaccurate 𝑘(𝑇, 𝑃 ) values. Thus, the reservoir state method is not robustly applicable
over a wide range of temperatures and pressures.

The chemically-significant eigenvalues method

rmgpy.pdep.cse.apply_chemically_significant_eigenvalues_method(network, lump-
ing_order=None)

A method for applying the Chemically Significant Eigenvalues approach for solving the master equation.

In the chemically-significant eigenvalues method, the master equation matrix is diagonized to determine its
eigenmodes. Only the slowest of these modes are relevant to the chemistry; the rest involve internal energy
relaxation due to collisions. Keeping only these “chemically-significant” eigenmodes allows for reduction to
𝑘(𝑇, 𝑃 ) values.

The chemically-significant eigenvalues method is the most accurate method, and is considered to be exact as
long as the chemically-significant eigenmodes are separable and distinct from the internal energy relaxation
eigenmodes. However, this is often only the case near the high-pressure limit, even for networks of only modest
size. The chemically-significant eigenvalues method is also substantially more expensive to apply than the other
methods.

1.8 QMTP (rmgpy.qm)

The rmgpy.qm subpackage contains classes and functions for working with molecular geometries, and interfacing
with quantum chemistry software.

1.8.1 Main

Class Description
QMSettings A class to store settings related to quantum mechanics calculations
QMCalculator An object to store settings and previous calculations

1.8. QMTP (rmgpy.qm) 153



RMG-Py API Reference, Release 3.1.0

1.8.2 Molecule

Class Description
Geometry A geometry, used for quantum calculations
QMMolecule A base class for QM Molecule calculations

1.8.3 QM Data

Class/Function Description
QMData General class for data extracted from a QM calculation

1.8.4 QM Verifier

Class/Function Description
QMVerifier Verifies whether a QM job was succesfully completed

1.8.5 Symmetry

Class/Function Description
PointGroup A symmetry Point Group
PointGroupCalculator Wrapper type to determine molecular symmetry point groups based on 3D coordi-

nates
SymmetryJob Determine the point group using the SYMMETRY program

1.8.6 Gaussian

Class/Function Description
Gaussian A base class for all QM calculations that use Gaussian
GaussianMol A base Class for calculations of molecules using Gaussian.
GaussianMolPM3 A base Class for calculations of molecules using Gaussian at PM3.
GaussianMolPM6 A base Class for calculations of molecules using Gaussian at PM6.

1.8.7 Mopac

Class/Function Description
Mopac A base class for all QM calculations that use Mopac
MopacMol A base Class for calculations of molecules using Mopac.
MopacMolPM3 A base Class for calculations of molecules using Mopac at PM3.
MopacMolPM6 A base Class for calculations of molecules using Mopac at PM6.
MopacMolPM7 A base Class for calculations of molecules using Mopac at PM7.

154 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

rmgpy.qm.main

class rmgpy.qm.main.QMSettings(software=None, method='pm3', fileStore=None, scratchDirec-
tory=None, onlyCyclics=True, maxRadicalNumber=0)

A minimal class to store settings related to quantum mechanics calculations.

Attribute Type Description
software str Quantum chemical package name in common letters
method str Semi-empirical method
fileStore str The path to the QMfiles directory
scratchDirectory str The path to the scratch directory
onlyCyclics bool True if to run QM only on ringed species
maxRadicalNumber int Radicals larger than this are saturated before applying HBI

check_all_set()
Check that all the required settings are set.

class rmgpy.qm.main.QMCalculator(software=None, method='pm3', fileStore=None, scratchDirec-
tory=None, onlyCyclics=True, maxRadicalNumber=0)

A Quantum Mechanics calculator object, to store settings.

The attributes are:

Attribute Type Description
settings QMSettings Settings for QM calculations
database ThermoLibrary Database containing QM calculations

check_paths()
Check the paths in the settings are OK. Make folders as necessary.

check_ready()
Check that it’s ready to run calculations.

get_thermo_data(molecule)
Generate thermo data for the given Molecule via a quantum mechanics calculation.

Ignores the settings onlyCyclics and maxRadicalNumber and does the calculation anyway if asked. (I.e.
the code that chooses whether to call this method should consider those settings).

initialize()
Do any startup tasks.

run_jobs(spc_list, procnum=1)
Run QM jobs for the provided species list (in parallel if requested).

set_default_output_directory(output_directory)
IF the fileStore or scratchDirectory are not already set, put them in here.

1.8. QMTP (rmgpy.qm) 155



RMG-Py API Reference, Release 3.1.0

rmgpy.qm.molecule

class rmgpy.qm.molecule.Geometry(settings, unique_id, molecule, unique_id_long=None)
A geometry, used for quantum calculations.

Created from a molecule. Geometry estimated by RDKit.

The attributes are:

Attribute Type Description
settings QMSettings Settings for QM calculations
unique_id str A short ID such as an augmented InChI Key
molecule Molecule RMG Molecule object
unique_id_long str A long, truly unique ID such as an augmented InChI

generate_rdkit_geometries()
Use RDKit to guess geometry.

Save mol files of both crude and refined. Saves coordinates on atoms.

get_crude_mol_file_path()
Returns the path of the crude mol file.

get_file_path(extension, scratch=True)
Returns the path to the file with the given extension.

The provided extension should include the leading dot. If called with scratch=False then it will be in the
fileStore directory, else scratch=True is assumed and it will be in the scratchDirectory directory.

get_refined_mol_file_path()
Returns the path the the refined mol file.

rd_build()
Import rmg molecule and create rdkit molecule with the same atom labeling.

rd_embed(rdmol, num_conf_attempts)
Embed the RDKit molecule and create the crude molecule file.

save_coordinates_from_qm_data(qmdata)
Save geometry info from QMData (eg CCLibData)

unique_id
A short unique ID such as an augmented InChI Key.

unique_id_long
Long, truly unique, ID, such as the augmented InChI.

class rmgpy.qm.molecule.QMMolecule(molecule, settings)
A base class for QM Molecule calculations.

Specific programs and methods should inherit from this and define some extra attributes and methods:

• outputFileExtension

• inputFileExtension

• generate_qm_data() . . . and whatever else is needed to make this method work.

The attributes are:

156 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

Attribute Type Description
molecule Molecule RMG Molecule object
settings QMSettings Settings for QM calculations
unique_id str A short ID such as an augmented InChI Key
unique_id_long str A long, truly unique ID such as an augmented InChI

calculate_chirality_correction()
Returns the chirality correction to entropy (R*ln(2) if chiral) in J/mol/K.

calculate_thermo_data()
Calculate the thermodynamic properties.

Stores and returns a ThermoData object as self.thermo. self.qm_data and self.point_group need to be
generated before this method is called.

check_paths()
Check the paths in the settings are OK. Make folders as necessary.

check_ready()
Check that it’s ready to run calculations.

create_geometry()
Creates self.geometry with RDKit geometries

determine_point_group()
Determine point group using the SYMMETRY Program

Stores the resulting PointGroup in self.point_group

generate_qm_data()
Calculate the QM data somehow and return a CCLibData object, or None if it fails.

generate_thermo_data()
Generate Thermo Data via a QM calc.

Returns None if it fails.

get_augmented_inchi_key()
Returns the augmented InChI from self.molecule

get_file_path(extension, scratch=True)
Returns the path to the file with the given extension.

The provided extension should include the leading dot. If called with scratch=False then it will be in the
fileStore directory, else scratch=True is assumed and it will be in the scratchDirectory directory.

get_mol_file_path_for_calculation(attempt)
Get the path to the MOL file of the geometry to use for calculation attempt.

If attempt <= self.script_attempts then we use the refined coordinates, then we start to use the crude
coordinates.

get_thermo_file_path()
Returns the path the thermo data file.

initialize()
Do any startup tasks.

property input_file_path
Get the input file name.

1.8. QMTP (rmgpy.qm) 157



RMG-Py API Reference, Release 3.1.0

load_thermo_data()
Try loading a thermo data from a previous run.

property max_attempts
The total number of attempts to try

property output_file_path
Get the output file name.

parse()
Parses the results of the Mopac calculation, and returns a QMData object.

save_thermo_data()
Save the generated thermo data.

property script_attempts
The number of attempts with different script keywords

rmgpy.qm.qmdata

class rmgpy.qm.qmdata.QMData(groundStateDegeneracy=- 1, numberOfAtoms=None,
stericEnergy=None, molecularMass=None, energy=0, atomic-
Numbers=None, rotationalConstants=None, atomCoords=None,
frequencies=None, source=None)

General class for data extracted from a QM calculation

groundStateDegeneracy
Electronic ground state degeneracy in RMG taken as number of radicals +1

numberOfAtoms
Number of atoms.

rmgpy.qm.qmverifier

class rmgpy.qm.qmverifier.QMVerifier(molfile)

Verifies whether a QM job (externalized) was succesfully completed by

• searching for specific keywords in the output files,

• located in a specific directory (e.g. “QMFiles”)

check_for_inchi_key_collision(log_file_inchi)
This method is designed in the case a MOPAC output file was found but the InChI found in the file did not
correspond to the InChI of the given molecule.

This could mean two things: 1) that the InChI Key hash does not correspond to the InChI it is hashed from.
This is the rarest case of them all 2) the complete InChI did not fit onto just one line in the MOPAC output
file. Therefore it was continued on the second line and only a part of the InChI was actually taken as the
‘whole’ InChI.

This method reads in the MOPAC input file and compares the found InChI in there to the InChI of the
given molecule.

succesful_job_exists()
checks whether one of the flags is true. If so, it returns true.

158 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

rmgpy.qm.symmetry

class rmgpy.qm.symmetry.PointGroup(point_group, symmetry_number, chiral)
A symmetry Point Group.

Attributes are:

• point_group

• symmetry_number

• chiral

• linear

class rmgpy.qm.symmetry.PointGroupCalculator(settings, unique_id, qm_data)
Wrapper type to determine molecular symmetry point groups based on 3D coords information.

Will point to a specific algorithm, like SYMMETRY that is able to do this.

class rmgpy.qm.symmetry.SymmetryJob(settings, unique_id, qm_data)
Determine the point group using the SYMMETRY program

(http://www.cobalt.chem.ucalgary.ca/ps/symmetry/).

Required input is a line with number of atoms followed by lines for each atom including: 1) atom number 2)
x,y,z coordinates

finalTol determines how loose the point group criteria are; values are comparable to those specified in the
GaussView point group interface

calculate()
Do the entire point group calculation.

This writes the input file, then tries several times to run ‘symmetry’ with different parameters, until a point
group is found and returned.

property input_file_path
The input file’s path

parse(output)
Check the output string and extract the resulting point group, which is returned.

run(command)
Run the command, wait for it to finish, and return the stdout.

unique_id
The object that holds information from a previous QM Job on 3D coords, molecule etc. . .

write_input_file()
Write the input file for the SYMMETRY program.

rmgpy.qm.gaussian

class rmgpy.qm.gaussian.Gaussian
A base class for all QM calculations that use Gaussian.

Classes such as GaussianMol will inherit from this class.

failureKeys = ['ERROR TERMINATION', 'IMAGINARY FREQUENCIES']
List of phrases that indicate failure NONE of these must be present in a succesful job.

parse()
Parses the results of the Gaussian calculation, and returns a QMData object.

1.8. QMTP (rmgpy.qm) 159

http://www.cobalt.chem.ucalgary.ca/ps/symmetry/


RMG-Py API Reference, Release 3.1.0

successKeys = ['Normal termination of Gaussian']
List of phrases to indicate success. ALL of these must be present in a successful job.

verify_output_file()
Check’s that an output file exists and was successful.

Returns a boolean flag that states whether a successful GAUSSIAN simulation already exists for the
molecule with the given (augmented) InChI Key.

The definition of finding a successful simulation is based on these criteria: 1) finding an output file with
the file name equal to the InChI Key 2) NOT finding any of the keywords that are denote a calculation
failure 3) finding all the keywords that denote a calculation success. 4) finding a match between the InChI
of the given molecule and the InchI found in the calculation files 5) checking that the optimized geometry,
when connected by single bonds, is isomorphic with self.molecule (converted to single bonds)

If any of the above criteria is not matched, False will be returned. If all are satisfied, it will return True.

class rmgpy.qm.gaussian.GaussianMol(molecule, settings)
A base Class for calculations of molecules using Gaussian.

Inherits from both QMMolecule and Gaussian.

calculate_chirality_correction()
Returns the chirality correction to entropy (R*ln(2) if chiral) in J/mol/K.

calculate_thermo_data()
Calculate the thermodynamic properties.

Stores and returns a ThermoData object as self.thermo. self.qm_data and self.point_group need to be
generated before this method is called.

check_paths()
Check the paths in the settings are OK. Make folders as necessary.

check_ready()
Check that it’s ready to run calculations.

create_geometry()
Creates self.geometry with RDKit geometries

determine_point_group()
Determine point group using the SYMMETRY Program

Stores the resulting PointGroup in self.point_group

generate_qm_data()
Calculate the QM data and return a QMData object.

generate_thermo_data()
Generate Thermo Data via a QM calc.

Returns None if it fails.

get_augmented_inchi_key()
Returns the augmented InChI from self.molecule

get_file_path(extension, scratch=True)
Returns the path to the file with the given extension.

The provided extension should include the leading dot. If called with scratch=False then it will be in the
fileStore directory, else scratch=True is assumed and it will be in the scratchDirectory directory.

get_mol_file_path_for_calculation(attempt)
Get the path to the MOL file of the geometry to use for calculation attempt.

160 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

If attempt <= self.script_attempts then we use the refined coordinates, then we start to use the crude
coordinates.

get_parser(output_file)
Returns the appropriate cclib parser.

get_thermo_file_path()
Returns the path the thermo data file.

initialize()
Do any startup tasks.

input_file_keywords(attempt)
Return the top keywords for attempt number attempt.

NB. attempt begins at 1, not 0.

property input_file_path
Get the input file name.

load_thermo_data()
Try loading a thermo data from a previous run.

property max_attempts
The total number of attempts to try

property output_file_path
Get the output file name.

parse()
Parses the results of the Mopac calculation, and returns a QMData object.

save_thermo_data()
Save the generated thermo data.

property script_attempts
The number of attempts with different script keywords

verify_output_file()
Check’s that an output file exists and was successful.

Returns a boolean flag that states whether a successful GAUSSIAN simulation already exists for the
molecule with the given (augmented) InChI Key.

The definition of finding a successful simulation is based on these criteria: 1) finding an output file with
the file name equal to the InChI Key 2) NOT finding any of the keywords that are denote a calculation
failure 3) finding all the keywords that denote a calculation success. 4) finding a match between the InChI
of the given molecule and the InchI found in the calculation files 5) checking that the optimized geometry,
when connected by single bonds, is isomorphic with self.molecule (converted to single bonds)

If any of the above criteria is not matched, False will be returned. If all are satisfied, it will return True.

write_input_file(attempt)
Using the Geometry object, write the input file for the attempt.

class rmgpy.qm.gaussian.GaussianMolPM3(molecule, settings)
Gaussian PM3 calculations for molecules

This is a class of its own in case you wish to do anything differently, but for now it’s only the ‘pm3’ in the
keywords that differs.

calculate_chirality_correction()
Returns the chirality correction to entropy (R*ln(2) if chiral) in J/mol/K.

1.8. QMTP (rmgpy.qm) 161



RMG-Py API Reference, Release 3.1.0

calculate_thermo_data()
Calculate the thermodynamic properties.

Stores and returns a ThermoData object as self.thermo. self.qm_data and self.point_group need to be
generated before this method is called.

check_paths()
Check the paths in the settings are OK. Make folders as necessary.

check_ready()
Check that it’s ready to run calculations.

create_geometry()
Creates self.geometry with RDKit geometries

determine_point_group()
Determine point group using the SYMMETRY Program

Stores the resulting PointGroup in self.point_group

generate_qm_data()
Calculate the QM data and return a QMData object.

generate_thermo_data()
Generate Thermo Data via a QM calc.

Returns None if it fails.

get_augmented_inchi_key()
Returns the augmented InChI from self.molecule

get_file_path(extension, scratch=True)
Returns the path to the file with the given extension.

The provided extension should include the leading dot. If called with scratch=False then it will be in the
fileStore directory, else scratch=True is assumed and it will be in the scratchDirectory directory.

get_mol_file_path_for_calculation(attempt)
Get the path to the MOL file of the geometry to use for calculation attempt.

If attempt <= self.script_attempts then we use the refined coordinates, then we start to use the crude
coordinates.

get_parser(output_file)
Returns the appropriate cclib parser.

get_thermo_file_path()
Returns the path the thermo data file.

initialize()
Do any startup tasks.

input_file_keywords(attempt)
Return the top keywords for attempt number attempt.

NB. attempt begins at 1, not 0.

property input_file_path
Get the input file name.

keywords = ['# pm3 opt=(verytight,gdiis) freq IOP(2/16=3)', '# pm3 opt=(verytight,gdiis) freq IOP(2/16=3) IOP(4/21=2)', '# pm3 opt=(verytight,calcfc,maxcyc=200) freq IOP(2/16=3) nosymm', '# pm3 opt=(verytight,calcfc,maxcyc=200) freq=numerical IOP(2/16=3) nosymm', '# pm3 opt=(verytight,gdiis,small) freq IOP(2/16=3)', '# pm3 opt=(verytight,nolinear,calcfc,small) freq IOP(2/16=3)', '# pm3 opt=(verytight,gdiis,maxcyc=200) freq=numerical IOP(2/16=3)', '# pm3 opt=tight freq IOP(2/16=3)', '# pm3 opt=tight freq=numerical IOP(2/16=3)', '# pm3 opt=(tight,nolinear,calcfc,small,maxcyc=200) freq IOP(2/16=3)', '# pm3 opt freq IOP(2/16=3)', '# pm3 opt=(verytight,gdiis) freq=numerical IOP(2/16=3) IOP(4/21=200)', '# pm3 opt=(calcfc,verytight,newton,notrustupdate,small,maxcyc=100,maxstep=100) freq=(numerical,step=10) IOP(2/16=3) nosymm', '# pm3 opt=(tight,gdiis,small,maxcyc=200,maxstep=100) freq=numerical IOP(2/16=3) nosymm', '# pm3 opt=(verytight,gdiis,calcall) IOP(2/16=3)', '# pm3 opt=(verytight,gdiis,calcall,small,maxcyc=200) IOP(2/16=3) IOP(4/21=2) nosymm', '# pm3 opt=(verytight,gdiis,calcall,small) IOP(2/16=3) nosymm', '# pm3 opt=(calcall,small,maxcyc=100) IOP(2/16=3)']
Keywords that will be added at the top of the qm input file

load_thermo_data()
Try loading a thermo data from a previous run.

162 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

property max_attempts
The total number of attempts to try

property output_file_path
Get the output file name.

parse()
Parses the results of the Mopac calculation, and returns a QMData object.

save_thermo_data()
Save the generated thermo data.

property script_attempts
The number of attempts with different script keywords

verify_output_file()
Check’s that an output file exists and was successful.

Returns a boolean flag that states whether a successful GAUSSIAN simulation already exists for the
molecule with the given (augmented) InChI Key.

The definition of finding a successful simulation is based on these criteria: 1) finding an output file with
the file name equal to the InChI Key 2) NOT finding any of the keywords that are denote a calculation
failure 3) finding all the keywords that denote a calculation success. 4) finding a match between the InChI
of the given molecule and the InchI found in the calculation files 5) checking that the optimized geometry,
when connected by single bonds, is isomorphic with self.molecule (converted to single bonds)

If any of the above criteria is not matched, False will be returned. If all are satisfied, it will return True.

write_input_file(attempt)
Using the Geometry object, write the input file for the attempt.

class rmgpy.qm.gaussian.GaussianMolPM6(molecule, settings)
Gaussian PM6 calculations for molecules

This is a class of its own in case you wish to do anything differently, but for now it’s only the ‘pm6’ in the
keywords that differs.

calculate_chirality_correction()
Returns the chirality correction to entropy (R*ln(2) if chiral) in J/mol/K.

calculate_thermo_data()
Calculate the thermodynamic properties.

Stores and returns a ThermoData object as self.thermo. self.qm_data and self.point_group need to be
generated before this method is called.

check_paths()
Check the paths in the settings are OK. Make folders as necessary.

check_ready()
Check that it’s ready to run calculations.

create_geometry()
Creates self.geometry with RDKit geometries

determine_point_group()
Determine point group using the SYMMETRY Program

Stores the resulting PointGroup in self.point_group

generate_qm_data()
Calculate the QM data and return a QMData object.

1.8. QMTP (rmgpy.qm) 163



RMG-Py API Reference, Release 3.1.0

generate_thermo_data()
Generate Thermo Data via a QM calc.

Returns None if it fails.

get_augmented_inchi_key()
Returns the augmented InChI from self.molecule

get_file_path(extension, scratch=True)
Returns the path to the file with the given extension.

The provided extension should include the leading dot. If called with scratch=False then it will be in the
fileStore directory, else scratch=True is assumed and it will be in the scratchDirectory directory.

get_mol_file_path_for_calculation(attempt)
Get the path to the MOL file of the geometry to use for calculation attempt.

If attempt <= self.script_attempts then we use the refined coordinates, then we start to use the crude
coordinates.

get_parser(output_file)
Returns the appropriate cclib parser.

get_thermo_file_path()
Returns the path the thermo data file.

initialize()
Do any startup tasks.

input_file_keywords(attempt)
Return the top keywords for attempt number attempt.

NB. attempt begins at 1, not 0.

property input_file_path
Get the input file name.

keywords = ['# pm6 opt=(verytight,gdiis) freq IOP(2/16=3)', '# pm6 opt=(verytight,gdiis) freq IOP(2/16=3) IOP(4/21=2)', '# pm6 opt=(verytight,calcfc,maxcyc=200) freq IOP(2/16=3) nosymm', '# pm6 opt=(verytight,calcfc,maxcyc=200) freq=numerical IOP(2/16=3) nosymm', '# pm6 opt=(verytight,gdiis,small) freq IOP(2/16=3)', '# pm6 opt=(verytight,nolinear,calcfc,small) freq IOP(2/16=3)', '# pm6 opt=(verytight,gdiis,maxcyc=200) freq=numerical IOP(2/16=3)', '# pm6 opt=tight freq IOP(2/16=3)', '# pm6 opt=tight freq=numerical IOP(2/16=3)', '# pm6 opt=(tight,nolinear,calcfc,small,maxcyc=200) freq IOP(2/16=3)', '# pm6 opt freq IOP(2/16=3)', '# pm6 opt=(verytight,gdiis) freq=numerical IOP(2/16=3) IOP(4/21=200)', '# pm6 opt=(calcfc,verytight,newton,notrustupdate,small,maxcyc=100,maxstep=100) freq=(numerical,step=10) IOP(2/16=3) nosymm', '# pm6 opt=(tight,gdiis,small,maxcyc=200,maxstep=100) freq=numerical IOP(2/16=3) nosymm', '# pm6 opt=(verytight,gdiis,calcall) IOP(2/16=3)', '# pm6 opt=(verytight,gdiis,calcall,small,maxcyc=200) IOP(2/16=3) IOP(4/21=2) nosymm', '# pm6 opt=(verytight,gdiis,calcall,small) IOP(2/16=3) nosymm', '# pm6 opt=(calcall,small,maxcyc=100) IOP(2/16=3)']
Keywords that will be added at the top of the qm input file

load_thermo_data()
Try loading a thermo data from a previous run.

property max_attempts
The total number of attempts to try

property output_file_path
Get the output file name.

parse()
Parses the results of the Mopac calculation, and returns a QMData object.

save_thermo_data()
Save the generated thermo data.

property script_attempts
The number of attempts with different script keywords

verify_output_file()
Check’s that an output file exists and was successful.

Returns a boolean flag that states whether a successful GAUSSIAN simulation already exists for the
molecule with the given (augmented) InChI Key.

164 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

The definition of finding a successful simulation is based on these criteria: 1) finding an output file with
the file name equal to the InChI Key 2) NOT finding any of the keywords that are denote a calculation
failure 3) finding all the keywords that denote a calculation success. 4) finding a match between the InChI
of the given molecule and the InchI found in the calculation files 5) checking that the optimized geometry,
when connected by single bonds, is isomorphic with self.molecule (converted to single bonds)

If any of the above criteria is not matched, False will be returned. If all are satisfied, it will return True.

write_input_file(attempt)
Using the Geometry object, write the input file for the attempt.

rmgpy.qm.mopac

class rmgpy.qm.mopac.Mopac
A base class for all QM calculations that use MOPAC.

Classes such as MopacMol will inherit from this class.

failureKeys = ['IMAGINARY FREQUENCIES', 'EXCESS NUMBER OF OPTIMIZATION CYCLES', 'NOT ENOUGH TIME FOR ANOTHER CYCLE']
List of phrases that indicate failure NONE of these must be present in a succesful job.

get_parser(output_file)
Returns the appropriate cclib parser.

successKeys = ['DESCRIPTION OF VIBRATIONS', 'MOPAC DONE']
List of phrases to indicate success. ALL of these must be present in a successful job.

usePolar = False
Keywords for the multiplicity

verify_output_file()
Check’s that an output file exists and was successful.

Returns a boolean flag that states whether a successful MOPAC simulation already exists for the molecule
with the given (augmented) InChI Key.

The definition of finding a successful simulation is based on these criteria: 1) finding an output file with
the file name equal to the InChI Key 2) NOT finding any of the keywords that are denote a calculation
failure 3) finding all the keywords that denote a calculation success. 4) finding a match between the InChI
of the given molecule and the InchI found in the calculation files 5) checking that the optimized geometry,
when connected by single bonds, is isomorphic with self.molecule (converted to single bonds)

If any of the above criteria is not matched, False will be returned. If all succeed, then it will return True.

class rmgpy.qm.mopac.MopacMol(molecule, settings)
A base Class for calculations of molecules using MOPAC.

Inherits from both QMMolecule and Mopac.

calculate_chirality_correction()
Returns the chirality correction to entropy (R*ln(2) if chiral) in J/mol/K.

calculate_thermo_data()
Calculate the thermodynamic properties.

Stores and returns a ThermoData object as self.thermo. self.qm_data and self.point_group need to be
generated before this method is called.

check_paths()
Check the paths in the settings are OK. Make folders as necessary.

1.8. QMTP (rmgpy.qm) 165



RMG-Py API Reference, Release 3.1.0

check_ready()
Check that it’s ready to run calculations.

create_geometry()
Creates self.geometry with RDKit geometries

determine_point_group()
Determine point group using the SYMMETRY Program

Stores the resulting PointGroup in self.point_group

generate_qm_data()
Calculate the QM data and return a QMData object, or None if it fails.

generate_thermo_data()
Generate Thermo Data via a QM calc.

Returns None if it fails.

get_augmented_inchi_key()
Returns the augmented InChI from self.molecule

get_file_path(extension, scratch=True)
Returns the path to the file with the given extension.

The provided extension should include the leading dot. If called with scratch=False then it will be in the
fileStore directory, else scratch=True is assumed and it will be in the scratchDirectory directory.

get_mol_file_path_for_calculation(attempt)
Get the path to the MOL file of the geometry to use for calculation attempt.

If attempt <= self.script_attempts then we use the refined coordinates, then we start to use the crude
coordinates.

get_parser(output_file)
Returns the appropriate cclib parser.

get_thermo_file_path()
Returns the path the thermo data file.

initialize()
Do any startup tasks.

input_file_keywords(attempt)
Return the top, bottom, and polar keywords.

property input_file_path
Get the input file name.

keywords = [{'top': 'precise nosym THREADS=1', 'bottom': 'oldgeo thermo nosym precise THREADS=1 '}, {'top': 'precise nosym gnorm=0.0 nonr THREADS=1', 'bottom': 'oldgeo thermo nosym precise THREADS=1 '}, {'top': 'precise nosym gnorm=0.0 THREADS=1', 'bottom': 'oldgeo thermo nosym precise THREADS=1 '}, {'top': 'precise nosym gnorm=0.0 bfgs THREADS=1', 'bottom': 'oldgeo thermo nosym precise THREADS=1 '}, {'top': 'precise nosym recalc=10 dmax=0.10 nonr cycles=2000 t=2000 THREADS=1', 'bottom': 'oldgeo thermo nosym precise THREADS=1 '}]
Keywords that will be added at the top and bottom of the qm input file

load_thermo_data()
Try loading a thermo data from a previous run.

property max_attempts
The total number of attempts to try

property output_file_path
Get the output file name.

parse()
Parses the results of the Mopac calculation, and returns a QMData object.

166 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

save_thermo_data()
Save the generated thermo data.

property script_attempts
The number of attempts with different script keywords

verify_output_file()
Check’s that an output file exists and was successful.

Returns a boolean flag that states whether a successful MOPAC simulation already exists for the molecule
with the given (augmented) InChI Key.

The definition of finding a successful simulation is based on these criteria: 1) finding an output file with
the file name equal to the InChI Key 2) NOT finding any of the keywords that are denote a calculation
failure 3) finding all the keywords that denote a calculation success. 4) finding a match between the InChI
of the given molecule and the InchI found in the calculation files 5) checking that the optimized geometry,
when connected by single bonds, is isomorphic with self.molecule (converted to single bonds)

If any of the above criteria is not matched, False will be returned. If all succeed, then it will return True.

write_input_file(attempt)
Using the Geometry object, write the input file for the attempt.

class rmgpy.qm.mopac.MopacMolPM3(molecule, settings)
Mopac PM3 calculations for molecules

This is a class of its own in case you wish to do anything differently, but for now it’s the same as all the MOPAC
PMn calculations, only pm3

calculate_chirality_correction()
Returns the chirality correction to entropy (R*ln(2) if chiral) in J/mol/K.

calculate_thermo_data()
Calculate the thermodynamic properties.

Stores and returns a ThermoData object as self.thermo. self.qm_data and self.point_group need to be
generated before this method is called.

check_paths()
Check the paths in the settings are OK. Make folders as necessary.

check_ready()
Check that it’s ready to run calculations.

create_geometry()
Creates self.geometry with RDKit geometries

determine_point_group()
Determine point group using the SYMMETRY Program

Stores the resulting PointGroup in self.point_group

generate_qm_data()
Calculate the QM data and return a QMData object, or None if it fails.

generate_thermo_data()
Generate Thermo Data via a QM calc.

Returns None if it fails.

get_augmented_inchi_key()
Returns the augmented InChI from self.molecule

1.8. QMTP (rmgpy.qm) 167



RMG-Py API Reference, Release 3.1.0

get_file_path(extension, scratch=True)
Returns the path to the file with the given extension.

The provided extension should include the leading dot. If called with scratch=False then it will be in the
fileStore directory, else scratch=True is assumed and it will be in the scratchDirectory directory.

get_mol_file_path_for_calculation(attempt)
Get the path to the MOL file of the geometry to use for calculation attempt.

If attempt <= self.script_attempts then we use the refined coordinates, then we start to use the crude
coordinates.

get_parser(output_file)
Returns the appropriate cclib parser.

get_thermo_file_path()
Returns the path the thermo data file.

initialize()
Do any startup tasks.

input_file_keywords(attempt)
Return the top, bottom, and polar keywords for attempt number attempt.

NB. attempt begins at 1, not 0.

property input_file_path
Get the input file name.

load_thermo_data()
Try loading a thermo data from a previous run.

property max_attempts
The total number of attempts to try

property output_file_path
Get the output file name.

parse()
Parses the results of the Mopac calculation, and returns a QMData object.

save_thermo_data()
Save the generated thermo data.

property script_attempts
The number of attempts with different script keywords

verify_output_file()
Check’s that an output file exists and was successful.

Returns a boolean flag that states whether a successful MOPAC simulation already exists for the molecule
with the given (augmented) InChI Key.

The definition of finding a successful simulation is based on these criteria: 1) finding an output file with
the file name equal to the InChI Key 2) NOT finding any of the keywords that are denote a calculation
failure 3) finding all the keywords that denote a calculation success. 4) finding a match between the InChI
of the given molecule and the InchI found in the calculation files 5) checking that the optimized geometry,
when connected by single bonds, is isomorphic with self.molecule (converted to single bonds)

If any of the above criteria is not matched, False will be returned. If all succeed, then it will return True.

write_input_file(attempt)
Using the Geometry object, write the input file for the attempt.

168 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

class rmgpy.qm.mopac.MopacMolPM6(molecule, settings)
Mopac PM6 calculations for molecules

This is a class of its own in case you wish to do anything differently, but for now it’s the same as all the MOPAC
PMn calculations, only pm6

calculate_chirality_correction()
Returns the chirality correction to entropy (R*ln(2) if chiral) in J/mol/K.

calculate_thermo_data()
Calculate the thermodynamic properties.

Stores and returns a ThermoData object as self.thermo. self.qm_data and self.point_group need to be
generated before this method is called.

check_paths()
Check the paths in the settings are OK. Make folders as necessary.

check_ready()
Check that it’s ready to run calculations.

create_geometry()
Creates self.geometry with RDKit geometries

determine_point_group()
Determine point group using the SYMMETRY Program

Stores the resulting PointGroup in self.point_group

generate_qm_data()
Calculate the QM data and return a QMData object, or None if it fails.

generate_thermo_data()
Generate Thermo Data via a QM calc.

Returns None if it fails.

get_augmented_inchi_key()
Returns the augmented InChI from self.molecule

get_file_path(extension, scratch=True)
Returns the path to the file with the given extension.

The provided extension should include the leading dot. If called with scratch=False then it will be in the
fileStore directory, else scratch=True is assumed and it will be in the scratchDirectory directory.

get_mol_file_path_for_calculation(attempt)
Get the path to the MOL file of the geometry to use for calculation attempt.

If attempt <= self.script_attempts then we use the refined coordinates, then we start to use the crude
coordinates.

get_parser(output_file)
Returns the appropriate cclib parser.

get_thermo_file_path()
Returns the path the thermo data file.

initialize()
Do any startup tasks.

input_file_keywords(attempt)
Return the top, bottom, and polar keywords for attempt number attempt.

NB. attempt begins at 1, not 0.

1.8. QMTP (rmgpy.qm) 169



RMG-Py API Reference, Release 3.1.0

property input_file_path
Get the input file name.

load_thermo_data()
Try loading a thermo data from a previous run.

property max_attempts
The total number of attempts to try

property output_file_path
Get the output file name.

parse()
Parses the results of the Mopac calculation, and returns a QMData object.

save_thermo_data()
Save the generated thermo data.

property script_attempts
The number of attempts with different script keywords

verify_output_file()
Check’s that an output file exists and was successful.

Returns a boolean flag that states whether a successful MOPAC simulation already exists for the molecule
with the given (augmented) InChI Key.

The definition of finding a successful simulation is based on these criteria: 1) finding an output file with
the file name equal to the InChI Key 2) NOT finding any of the keywords that are denote a calculation
failure 3) finding all the keywords that denote a calculation success. 4) finding a match between the InChI
of the given molecule and the InchI found in the calculation files 5) checking that the optimized geometry,
when connected by single bonds, is isomorphic with self.molecule (converted to single bonds)

If any of the above criteria is not matched, False will be returned. If all succeed, then it will return True.

write_input_file(attempt)
Using the Geometry object, write the input file for the attempt.

class rmgpy.qm.mopac.MopacMolPM7(molecule, settings)
Mopac PM7 calculations for molecules

This is a class of its own in case you wish to do anything differently, but for now it’s the same as all the MOPAC
PMn calculations, only pm7

calculate_chirality_correction()
Returns the chirality correction to entropy (R*ln(2) if chiral) in J/mol/K.

calculate_thermo_data()
Calculate the thermodynamic properties.

Stores and returns a ThermoData object as self.thermo. self.qm_data and self.point_group need to be
generated before this method is called.

check_paths()
Check the paths in the settings are OK. Make folders as necessary.

check_ready()
Check that it’s ready to run calculations.

create_geometry()
Creates self.geometry with RDKit geometries

determine_point_group()
Determine point group using the SYMMETRY Program

170 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

Stores the resulting PointGroup in self.point_group

generate_qm_data()
Calculate the QM data and return a QMData object, or None if it fails.

generate_thermo_data()
Generate Thermo Data via a QM calc.

Returns None if it fails.

get_augmented_inchi_key()
Returns the augmented InChI from self.molecule

get_file_path(extension, scratch=True)
Returns the path to the file with the given extension.

The provided extension should include the leading dot. If called with scratch=False then it will be in the
fileStore directory, else scratch=True is assumed and it will be in the scratchDirectory directory.

get_mol_file_path_for_calculation(attempt)
Get the path to the MOL file of the geometry to use for calculation attempt.

If attempt <= self.script_attempts then we use the refined coordinates, then we start to use the crude
coordinates.

get_parser(output_file)
Returns the appropriate cclib parser.

get_thermo_file_path()
Returns the path the thermo data file.

initialize()
Do any startup tasks.

input_file_keywords(attempt)
Return the top, bottom, and polar keywords for attempt number attempt.

NB. attempt begins at 1, not 0.

property input_file_path
Get the input file name.

load_thermo_data()
Try loading a thermo data from a previous run.

property max_attempts
The total number of attempts to try

property output_file_path
Get the output file name.

parse()
Parses the results of the Mopac calculation, and returns a QMData object.

save_thermo_data()
Save the generated thermo data.

property script_attempts
The number of attempts with different script keywords

verify_output_file()
Check’s that an output file exists and was successful.

Returns a boolean flag that states whether a successful MOPAC simulation already exists for the molecule
with the given (augmented) InChI Key.

1.8. QMTP (rmgpy.qm) 171



RMG-Py API Reference, Release 3.1.0

The definition of finding a successful simulation is based on these criteria: 1) finding an output file with
the file name equal to the InChI Key 2) NOT finding any of the keywords that are denote a calculation
failure 3) finding all the keywords that denote a calculation success. 4) finding a match between the InChI
of the given molecule and the InchI found in the calculation files 5) checking that the optimized geometry,
when connected by single bonds, is isomorphic with self.molecule (converted to single bonds)

If any of the above criteria is not matched, False will be returned. If all succeed, then it will return True.

write_input_file(attempt)
Using the Geometry object, write the input file for the attempt.

1.9 Physical quantities (rmgpy.quantity)

A physical quantity is defined by a numerical value and a unit of measurement.

The rmgpy.quantity module contains classes and methods for working with physical quantities. Physical quantities
are represented by either the ScalarQuantity or ArrayQuantity class depending on whether a scalar or vector (or
tensor) value is used. The Quantity function automatically chooses the appropriate class based on the input value.
In both cases, the value of a physical quantity is available from the value attribute, and the units from the units
attribute.

For efficient computation, the value is stored internally in the SI equivalent units. The SI value can be accessed directly
using the value_si attribute. Usually it is good practice to read the value_si attribute into a local variable and then
use it for computations, especially if it is referred to multiple times in the calculation.

Physical quantities also allow for storing of uncertainty values for both scalars and arrays. The uncertaintyType at-
tribute indicates whether the given uncertainties are additive ("+|-") or multiplicative ("*|/"), and the uncertainty
attribute contains the stored uncertainties. For additive uncertainties these are stored in the given units (not the SI equiv-
alent), since they are generally not needed for efficient computations. For multiplicative uncertainties, the uncertainty
values are by definition dimensionless.

1.9.1 Quantity objects

Class Description
ScalarQuantity A scalar physical quantity, with units and uncertainty
ArrayQuantity An array physical quantity, with units and uncertainty
Quantity() Return a scalar or array physical quantity

1.9.2 Unit types

Units can be classified into categories based on the associated dimensionality. For example, miles and kilometers
are both units of length; seconds and hours are both units of time, etc. Clearly, quantities of different unit types are
fundamentally different.

RMG provides functions that create physical quantities (scalar or array) and validate the units for a variety of unit
types. This prevents the user from inadvertently mixing up their units - e.g. by setting an enthalpy with entropy units
- which should reduce errors. RMG recognizes the following unit types:

172 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

Function Unit type SI unit
Acceleration() acceleration m/s2

Area() area m2

Concentration() concentration mol/cm3

Dimensionless() dimensionless
Energy() energy J/mol
Entropy() entropy J/mol · K
Flux() flux mol/cm2 · s
Frequency() frequency cm−1

Force() force N
Inertia() inertia kg · m2

Length() length m
Mass() mass kg
Momentum() momentum kg · m/s2

Power() power W
Pressure() pressure Pa
RateCoefficient() rate coefficient s−1, m3/mol · s, m6/mol2 · s, m9/mol3 · s
Temperature() temperature K
Time() time s
Velocity() velocity m/s
Volume() volume m3

In RMG, all energies, heat capacities, concentrations, fluxes, and rate coefficients are treated as intensive; this means
that these quantities are always expressed “per mole” or “per molecule”. All other unit types are extensive. A special
exception is added for mass so as to allow for coercion of g/mol to amu.

RMG also handles rate coefficient units as a special case, as there are multiple allowed dimensionalities based on the
reaction order. Note that RMG generally does not attempt to verify that the rate coefficient units match the reaction
order, but only that it matches one of the possibilities.

The table above gives the SI unit that RMG uses internally to work with physical quantities. This does not necessarily
correspond with the units used when outputting values. For example, pressures are often output in units of bar instead
of Pa, and moments of inertia in amu * angstrom2 instead of kg * m2. The recommended rule of thumb is to use
prefixed SI units (or aliases thereof) in the output; for example, use kJ/mol instead of kcal/mol for energy values.

rmgpy.quantity.ScalarQuantity

class rmgpy.quantity.ScalarQuantity
The ScalarQuantity class provides a representation of a scalar physical quantity, with optional units and
uncertainty information. The attributes are:

Attribute Description
value The numeric value of the quantity in the given units
units The units the value was specified in
uncertainty The numeric uncertainty in the value in the given units (unitless if multiplicative)
uncer-
tainty_type

The type of uncertainty: '+|-' for additive, '*|/' for multiplicative

value_si The numeric value of the quantity in the corresponding SI units
uncertainty_si The numeric value of the uncertainty in the corresponding SI units (unitless if multiplica-

tive)

It is often more convenient to perform computations using SI units instead of the given units of the quantity. For

1.9. Physical quantities (rmgpy.quantity) 173



RMG-Py API Reference, Release 3.1.0

this reason, the SI equivalent of the value attribute can be directly accessed using the value_si attribute. This
value is cached on the ScalarQuantity object for speed.

as_dict()
A helper function for YAML dumping

copy()
Return a copy of the quantity.

equals(quantity)
Return True if the everything in a quantity object matches the parameters in this object. If there are lists
of values or uncertainties, each item in the list must be matching and in the same order. Otherwise, return
False (Originally intended to return warning if units capitalization was different, however, Quantity object
only parses units matching in case, so this will not be a problem.)

get_conversion_factor_from_si()
Return the conversion factor for converting a quantity to a given set of units from the SI equivalent units.

get_conversion_factor_from_si_to_cm_mol_s()
Return the conversion factor for converting into SI units only with all lengths in cm, instead of m. This
is useful for outputting chemkin file kinetics. Depending on the stoichiometry of the reaction the reaction
rate coefficient could be /s, cm^3/mol/s, cm^6/mol^2/s, and for heterogeneous reactions even more possi-
bilities. Only lengths are changed. Everything else is in SI, i.e. moles (not molecules) and seconds (not
minutes).

get_conversion_factor_to_si()
Return the conversion factor for converting a quantity in a given set of`units` to the SI equivalent units.

is_uncertainty_additive()
Return True if the uncertainty is specified in additive format and False otherwise.

is_uncertainty_multiplicative()
Return True if the uncertainty is specified in multiplicative format and False otherwise.

make_object(data, class_dict)
A helper function for constructing objects from a dictionary (used when loading YAML files)

Parameters

• data (dict) – The dictionary representation of the object

• class_dict (dict) – A mapping of class names to the classes themselves

Returns None

uncertainty
The numeric value of the uncertainty, in the given units if additive, or no units if multiplicative.

uncertainty_type
'+|-' for additive, '*|/' for multiplicative

Type The type of uncertainty

value
The numeric value of the quantity, in the given units

174 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

rmgpy.quantity.ArrayQuantity

class rmgpy.quantity.ArrayQuantity
The ArrayQuantity class provides a representation of an array of physical quantity values, with optional units
and uncertainty information. The attributes are:

Attribute Description
value The numeric value of the quantity in the given units
units The units the value was specified in
uncertainty The numeric uncertainty in the value (unitless if multiplicative)
uncer-
tainty_type

The type of uncertainty: '+|-' for additive, '*|/' for multiplicative

value_si The numeric value of the quantity in the corresponding SI units
uncertainty_si The numeric value of the uncertainty in the corresponding SI units (unitless if multiplica-

tive)

It is often more convenient to perform computations using SI units instead of the given units of the quantity. For
this reason, the SI equivalent of the value attribute can be directly accessed using the value_si attribute. This
value is cached on the ArrayQuantity object for speed.

as_dict()
A helper function for YAML dumping

copy()
Return a copy of the quantity.

equals(quantity)
Return True if the everything in a quantity object matches the parameters in this object. If there are lists
of values or uncertainties, each item in the list must be matching and in the same order. Otherwise, return
False (Originally intended to return warning if units capitalization was different, however, Quantity object
only parses units matching in case, so this will not be a problem.)

get_conversion_factor_from_si()
Return the conversion factor for converting a quantity to a given set of units from the SI equivalent units.

get_conversion_factor_from_si_to_cm_mol_s()
Return the conversion factor for converting into SI units only with all lengths in cm, instead of m. This
is useful for outputting chemkin file kinetics. Depending on the stoichiometry of the reaction the reaction
rate coefficient could be /s, cm^3/mol/s, cm^6/mol^2/s, and for heterogeneous reactions even more possi-
bilities. Only lengths are changed. Everything else is in SI, i.e. moles (not molecules) and seconds (not
minutes).

get_conversion_factor_to_si()
Return the conversion factor for converting a quantity in a given set of`units` to the SI equivalent units.

is_uncertainty_additive()
Return True if the uncertainty is specified in additive format and False otherwise.

is_uncertainty_multiplicative()
Return True if the uncertainty is specified in multiplicative format and False otherwise.

make_object(data, class_dict)
A helper function for constructing objects from a dictionary (used when loading YAML files)

Parameters

• data (dict) – The dictionary representation of the object

• class_dict (dict) – A mapping of class names to the classes themselves

1.9. Physical quantities (rmgpy.quantity) 175



RMG-Py API Reference, Release 3.1.0

Returns None

uncertainty
The numeric value of the uncertainty, in the given units if additive, or no units if multiplicative.

uncertainty_type
'+|-' for additive, '*|/' for multiplicative

Type The type of uncertainty

value
The numeric value of the array quantity, in the given units.

rmgpy.quantity.Quantity

rmgpy.quantity.Quantity(*args, **kwargs)
Create a ScalarQuantity or ArrayQuantity object for a given physical quantity. The physical quantity can
be specified in several ways:

• A scalar-like or array-like value (for a dimensionless quantity)

• An array of arguments (including keyword arguments) giving some or all of the value, units, uncertainty,
and/or uncertainty_type.

• A tuple of the form (value,), (value,units), (value,units,uncertainty), or (value,units,
uncertainty_type,uncertainty)

• An existing ScalarQuantity or ArrayQuantity object, for which a copy is made

1.10 Reactions (rmgpy.reaction)

The rmgpy.reaction subpackage contains classes and functions for working with chemical reaction.

1.10.1 Reaction

Class Description
Reaction A chemical reaction

rmgpy.reaction.Reaction

class rmgpy.reaction.Reaction
A chemical reaction. The attributes are:

176 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

At-
tribute

Type Description

index int A unique nonnegative integer index
label str A descriptive string label
reac-
tants

list The reactant species (as Species objects)

prod-
ucts

list The product species (as Species objects)

‘spe-
cific_collider’

SpeciesThe collider species (as a Species object)

ki-
net-
ics

KineticsModelThe kinetics model to use for the reaction

net-
work_kinetics

ArrheniusThe kinetics model to use for PDep network exploration if the kinetics attribute is
:class:PDepKineticsModel:

re-
versible

bool True if the reaction is reversible, False if not

tran-
si-
tion_state

TransitionStateThe transition state

du-
pli-
cate

bool True if the reaction is known to be a duplicate, False if not

de-
gen-
er-
acy

double The reaction path degeneracy for the reaction

pairs list Reactant-product pairings to use in converting reaction flux to species flux
al-
low_pdep_route

bool True if the reaction has an additional PDep pathway, False if not (by default), used for
LibraryReactions

ele-
men-
tary_high_p

bool If True, pressure dependent kinetics will be generated (relevant only for unimolecular li-
brary reactions) If False (by default), this library reaction will not be explored. Only
unimolecular library reactions with high pressure limit kinetics should be flagged (not if
the kinetics were measured at some relatively low pressure)

com-
ment

str A description of the reaction source (optional)

is_forwardbool Indicates if the reaction was generated in the forward (true) or reverse (false)
rank int Integer indicating the accuracy of the kinetics for this reaction

calculate_coll_limit(temp, reverse)
Calculate the collision limit rate in m3/mol-s for the given temperature implemented as recommended in
Wang et al. doi 10.1016/j.combustflame.2017.08.005 (Eq. 1)

calculate_microcanonical_rate_coefficient(e_list, j_list, reac_dens_states,
prod_dens_states, T)

Calculate the microcanonical rate coefficient 𝑘(𝐸) for the reaction reaction at the energies e_list in J/mol.
reac_dens_states and prod_dens_states are the densities of states of the reactant and product configurations
for this reaction. If the reaction is irreversible, only the reactant density of states is required; if the reaction
is reversible, then both are required. This function will try to use the best method that it can based on the
input data available:

• If detailed information has been provided for the transition state (i.e. the molecular degrees of free-
dom), then RRKM theory will be used.

1.10. Reactions (rmgpy.reaction) 177



RMG-Py API Reference, Release 3.1.0

• If the above is not possible but high-pressure limit kinetics 𝑘∞(𝑇 ) have been provided, then the
inverse Laplace transform method will be used.

The density of states for the product prod_dens_states and the temperature of interest T in K can also
be provided. For isomerization and association reactions prod_dens_states is required; for dissociation
reactions it is optional. The temperature is used if provided in the detailed balance expression to determine
the reverse kinetics, and in certain cases in the inverse Laplace transform method.

calculate_tst_rate_coefficient(T)
Evaluate the forward rate coefficient for the reaction with corresponding transition state TS at temperature
T in K using (canonical) transition state theory. The TST equation is

𝑘(𝑇 ) = 𝜅(𝑇 )
𝑘B𝑇

ℎ

𝑄‡(𝑇 )

𝑄A(𝑇 )𝑄B(𝑇 )
exp

(︂
− 𝐸0

𝑘B𝑇

)︂
where 𝑄‡ is the partition function of the transition state, 𝑄A and 𝑄B are the partition function of the
reactants, 𝐸0 is the ground-state energy difference from the transition state to the reactants, 𝑇 is the
absolute temperature, 𝑘B is the Boltzmann constant, and ℎ is the Planck constant. 𝜅(𝑇 ) is an optional
tunneling correction.

can_tst()
Return True if the necessary parameters are available for using transition state theory – or the microcanon-
ical equivalent, RRKM theory – to compute the rate coefficient for this reaction, or False otherwise.

check_collision_limit_violation(t_min, t_max, p_min, p_max)
Warn if a core reaction violates the collision limit rate in either the forward or reverse direction at the
relevant extreme T/P conditions. Assuming a monotonic behaviour of the kinetics. Returns a list with the
reaction object and the direction in which the violation was detected.

copy()
Create a deep copy of the current reaction.

degeneracy
The reaction path degeneracy for this reaction.

If the reaction has kinetics, changing the degeneracy will adjust the reaction rate by a ratio of the new
degeneracy to the old degeneracy.

draw(path)
Generate a pictorial representation of the chemical reaction using the draw module. Use path to specify
the file to save the generated image to; the image type is automatically determined by extension. Valid
extensions are .png, .svg, .pdf, and .ps; of these, the first is a raster format and the remainder are
vector formats.

ensure_species(reactant_resonance, product_resonance)
Ensure the reaction contains species objects in its reactant and product attributes. If the reaction is found
to hold molecule objects, it modifies the reactant, product and pairs to hold Species objects.

Generates resonance structures for Molecules if the corresponding options, reactant_resonance and/or
product_resonance, are True. Does not generate resonance for reactants or products that start as Species
objects.

fix_barrier_height(force_positive)
Turns the kinetics into Arrhenius (if they were ArrheniusEP) and ensures the activation energy is at least
the endothermicity for endothermic reactions, and is not negative only as a result of using Evans Polanyi
with an exothermic reaction. If force_positive is True, then all reactions are forced to have a non-negative
barrier.

fix_diffusion_limited_a_factor(T)
Decrease the pre-exponential factor (A) by the diffusion factor to account for the diffusion limit at the
specified temperature.

178 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

generate_3d_ts(reactants, products)
Generate the 3D structure of the transition state. Called from model.generate_kinetics().

self.reactants is a list of reactants self.products is a list of products

generate_high_p_limit_kinetics()
Used for incorporating library reactions with pressure-dependent kinetics in PDep networks. Only imple-
mented for LibraryReaction

generate_pairs()
Generate the reactant-product pairs to use for this reaction when performing flux analysis. The exact
procedure for doing so depends on the reaction type:

Reaction type Template Resulting pairs
Isomerization A -> C (A,C)
Dissociation A -> C + D (A,C), (A,D)
Association A + B -> C (A,C), (B,C)
Bimolecular A + B -> C + D (A,C), (B,D) or (A,D), (B,C)

There are a number of ways of determining the correct pairing for bimolecular reactions. Here we try a
simple similarity analysis by comparing the number of heavy atoms. This should work most of the time,
but a more rigorous algorithm may be needed for some cases.

generate_reverse_rate_coefficient(network_kinetics, Tmin, Tmax, surface_site_density)
Generate and return a rate coefficient model for the reverse reaction. Currently this only works if the
kinetics attribute is one of several (but not necessarily all) kinetics types.

If the reaction kinetics model is Sticking Coefficient, please provide a nonzero surface site density in
mol/m^2 which is required to evaluate the rate coefficient.

get_enthalpies_of_reaction(Tlist)
Return the enthalpies of reaction in J/mol evaluated at temperatures Tlist in K.

get_enthalpy_of_reaction(T)
Return the enthalpy of reaction in J/mol evaluated at temperature T in K.

get_entropies_of_reaction(Tlist)
Return the entropies of reaction in J/mol*K evaluated at temperatures Tlist in K.

get_entropy_of_reaction(T)
Return the entropy of reaction in J/mol*K evaluated at temperature T in K.

get_equilibrium_constant(T, type, surface_site_density)
Return the equilibrium constant for the reaction at the specified temperature T in K and reference sur-
face_site_density in mol/m^2 (2.5e-05 default) The type parameter lets you specify the quantities used in
the equilibrium constant: Ka for activities, Kc for concentrations (default), or Kp for pressures. This func-
tion assumes a reference pressure of 1e5 Pa for gas phases species and uses the ideal gas law to determine
reference concentrations. For surface species, the surface_site_density is the assumed reference.

get_equilibrium_constants(Tlist, type)
Return the equilibrium constants for the reaction at the specified temperatures Tlist in K. The type parame-
ter lets you specify the quantities used in the equilibrium constant: Ka for activities, Kc for concentrations
(default), or Kp for pressures. Note that this function currently assumes an ideal gas mixture.

get_free_energies_of_reaction(Tlist)
Return the Gibbs free energies of reaction in J/mol evaluated at temperatures Tlist in K.

get_free_energy_of_reaction(T)
Return the Gibbs free energy of reaction in J/mol evaluated at temperature T in K.

1.10. Reactions (rmgpy.reaction) 179



RMG-Py API Reference, Release 3.1.0

get_mean_sigma_and_epsilon(reverse)
Calculates the collision diameter (sigma) using an arithmetic mean Calculates the well depth (epsilon)
using a geometric mean If reverse is False the above is calculated for the reactants, otherwise for the
products

get_rate_coefficient(T, P, surface_site_density)
Return the overall rate coefficient for the forward reaction at temperature T in K and pressure P in Pa,
including any reaction path degeneracies.

If diffusion_limiter is enabled, the reaction is in the liquid phase and we use a diffusion limitation to correct
the rate. If not, then use the intrinsic rate coefficient.

If the reaction has sticking coefficient kinetics, a nonzero surface site density in mol/m^2 must be provided

get_reduced_mass(reverse)
Returns the reduced mass of the reactants if reverse is False Returns the reduced mass of the products if
reverse is True

get_stoichiometric_coefficient(spec)
Return the stoichiometric coefficient of species spec in the reaction. The stoichiometric coefficient is
increased by one for each time spec appears as a product and decreased by one for each time spec appears
as a reactant.

get_surface_rate_coefficient(T, surface_site_density)
Return the overall surface rate coefficient for the forward reaction at temperature T in K with surface site
density surface_site_density in mol/m2. Value is returned in combination of [m,mol,s]

get_url()
Get a URL to search for this reaction in the rmg website.

has_template(reactants, products)
Return True if the reaction matches the template of reactants and products, which are both lists of
Species objects, or False if not.

is_association()
Return True if the reaction represents an association reaction A + B −−⇀↽−− C or False if not.

is_balanced()
Return True if the reaction has the same number of each atom on each side of the reaction equation, or
False if not.

is_dissociation()
Return True if the reaction represents a dissociation reaction A −−⇀↽−− B + C or False if not.

is_isomerization()
Return True if the reaction represents an isomerization reaction A −−⇀↽−− B or False if not.

is_isomorphic(other, either_direction, check_identical, check_only_label,
check_template_rxn_products, generate_initial_map, strict, save_order)

Return True if this reaction is the same as the other reaction, or False if they are different. The compar-
ison involves comparing isomorphism of reactants and products, and doesn’t use any kinetic information.

Parameters

• either_direction (bool, optional) – if False,then the reaction direction must
match.

• check_identical (bool, optional) – if True, check that atom ID’s match (used for
checking degeneracy)

• check_only_label (bool, optional) – if True, only check the string representation,
ignoring molecular structure comparisons

180 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

• check_template_rxn_products (bool, optional) – if True, only check isomor-
phism of reaction products (used when we know the reactants are identical, i.e. in gener-
ating reactions)

• generate_initial_map (bool, optional) – if True, initialize map by pairing atoms
with same labels

• strict (bool, optional) – if False, perform isomorphism ignoring electrons

• save_order (bool, optional) – if True, perform isomorphism saving atom order

is_surface_reaction()
Return True if one or more reactants or products are surface species (or surface sites)

is_unimolecular()
Return True if the reaction has a single molecule as either reactant or product (or both) A −−⇀↽−− B + C or
A + B −−⇀↽−− C or A −−⇀↽−− B, or False if not.

matches_species(reactants, products)
Compares the provided reactants and products against the reactants and products of this reaction. Both
directions are checked.

Parameters

• reactants (list) – Species required on one side of the reaction

• products (list, optional) – Species required on the other side

reverse_arrhenius_rate(k_forward, reverse_units, Tmin, Tmax)
Reverses the given k_forward, which must be an Arrhenius type. You must supply the correct units for the
reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).

reverse_sticking_coeff_rate(k_forward, reverse_units, surface_site_density, Tmin, Tmax)
Reverses the given k_forward, which must be a StickingCoefficient type. You must supply the correct
units for the reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).
The surface_site_density in mol/m^2 is used to evalaute the forward rate constant.

reverse_surface_arrhenius_rate(k_forward, reverse_units, Tmin, Tmax)
Reverses the given k_forward, which must be a SurfaceArrhenius type. You must supply the correct units
for the reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).

to_cantera(species_list, use_chemkin_identifier)
Converts the RMG Reaction object to a Cantera Reaction object with the appropriate reaction class.

If use_chemkin_identifier is set to False, the species label is used instead. Be sure that species’ labels are
unique when setting it False.

to_chemkin(species_list, kinetics)
Return the chemkin-formatted string for this reaction.

If kinetics is set to True, the chemkin format kinetics will also be returned (requires the species_list to
figure out third body colliders.) Otherwise, only the reaction string will be returned.

to_labeled_str(use_index)
the same as __str__ except that the labels are assumed to exist and used for reactant and products rather
than the labels plus the index in parentheses

1.10. Reactions (rmgpy.reaction) 181



RMG-Py API Reference, Release 3.1.0

1.11 Reaction mechanism generation (rmgpy.rmg)

The rmgpy.rmg subpackage contains the main functionality for using RMG-Py to automatically generate detailed
reaction mechanisms.

1.11.1 Reaction models

Class Description
CoreEdgeReactionModel A reaction model comprised of core and edge species and reactions

1.11.2 Input

Function Description
read_input_file() Load an RMG job input file
save_input_file() Save an RMG job input file

1.11.3 Output

Function Description
save_output_html() Save the results of an RMG job to an HTML file
save_diff_html() Save a comparison of two reaction mechanisms to an HTML file

1.11.4 Job classes

Class Description
RMG Main class for RMG jobs

1.11.5 Pressure dependence

Class Description
PDepReaction A pressure-dependent “net” reaction
PDepNetwork A pressure-dependent unimolecular reaction network, with RMG-specific functionality

rmgpy.rmg.model.CoreEdgeReactionModel

class rmgpy.rmg.model.CoreEdgeReactionModel(core=None, edge=None, surface=None)
Represent a reaction model constructed using a rate-based screening algorithm. The species and reactions in the
model itself are called the core; the species and reactions identified as candidates for inclusion in the model are
called the edge. The attributes are:

182 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

Attribute Description
core The species and reactions of the current model core
edge The species and reactions of the current model edge
network_dict A dictionary of pressure-dependent reaction networks (Network objects) indexed by

source.
network_list A list of pressure-dependent reaction networks (Network objects)
network_count A counter for the number of pressure-dependent networks created
in-
dex_species_dict

A dictionary with a unique index pointing to the species objects

solvent_name String describing solvent name for liquid reactions. Empty for non-liquid estimation
sur-
face_site_density

The surface site density (a SurfaceConcentration quantity) or None if no heterogeneous
catalyst.

add_new_surface_objects(obj, new_surface_species, new_surface_reactions, reaction_system)
obj is the list of objects for enlargement coming from simulate new_surface_species and
new_surface_reactions are the current lists of surface species and surface reactions following simulation
reaction_system is the current reactor manages surface species and reactions being moved to and from
the surface moves them to appropriate newSurfaceSpc/RxnsAdd/loss sets returns false if the surface has
changed

add_reaction_library_to_edge(reaction_library)
Add all species and reactions from reaction_library, a KineticsPrimaryDatabase object, to the model
edge.

add_reaction_library_to_output(reaction_library)
Add all species and reactions from reaction_library, a KineticsPrimaryDatabase object, to the output.
This does not bring any of the reactions or species into the core itself.

add_reaction_to_core(rxn)
Add a reaction rxn to the reaction model core (and remove from edge if necessary). This function assumes
rxn has already been checked to ensure it is supposed to be a core reaction (i.e. all of its reactants AND all
of its products are in the list of core species).

add_reaction_to_edge(rxn)
Add a reaction rxn to the reaction model edge. This function assumes rxn has already been checked to
ensure it is supposed to be an edge reaction (i.e. all of its reactants OR all of its products are in the list of
core species, and the others are in either the core or the edge).

add_reaction_to_unimolecular_networks(newReaction, new_species, network=None)
Given a newly-created Reaction object newReaction, update the corresponding unimolecular reaction
network. If no network exists, a new one is created. If the new reaction is an isomerization that connects
two existing networks, the two networks are merged. This function is called whenever a new high-pressure
limit edge reaction is created. Returns the network containing the new reaction.

add_seed_mechanism_to_core(seed_mechanism, react=False)
Add all species and reactions from seed_mechanism, a KineticsPrimaryDatabase object, to the model
core. If react is True, then reactions will also be generated between the seed species. For large seed
mechanisms this can be prohibitively expensive, so it is not done by default.

add_species_to_core(spec)
Add a species spec to the reaction model core (and remove from edge if necessary). This function also
moves any reactions in the edge that gain core status as a result of this change in status to the core. If this
are any such reactions, they are returned in a list.

add_species_to_edge(spec)
Add a species spec to the reaction model edge.

1.11. Reaction mechanism generation (rmgpy.rmg) 183



RMG-Py API Reference, Release 3.1.0

adjust_surface()
Here we add species intended to be added and remove any species that need to be moved out of the core.
For now we remove reactions from the surface that have become part of a PDepNetwork by intersecting the
set of surface reactions with the core so that all surface reactions are in the core thus the surface algorithm
currently (June 2017) is not implemented for pdep networks (however it will function fine for non-pdep
reactions on a pdep run)

apply_kinetics_to_reaction(reaction)
retrieve the best kinetics for the reaction and apply it towards the forward or reverse direction (if reverse,
flip the direaction).

apply_thermo_to_species(procnum)
Generate thermo for species. QM calculations are parallelized if requested.

check_for_existing_reaction(rxn)
Check to see if an existing reaction has the same reactants, products, and family as rxn. Returns True or
False and the matched reaction (if found).

First, a shortlist of reaction is retrieved that have the same reaction keys as the parameter reaction.

Next, the reaction ID containing an identifier (e.g. label) of the reactants and products is compared between
the parameter reaction and the each of the reactions in the shortlist. If a match is found, the discovered
reaction is returned.

If a match is not yet found, the Library (seed mechs, reaction libs) in the reaction database are iterated over
to check if a reaction was overlooked (a reaction with a different “family” key as the parameter reaction).

check_for_existing_species(molecule)
Check to see if an existing species contains the same molecule.Molecule as molecule. Comparison is
done using isomorphism without consideration of electrons. Therefore, resonance structures of a species
will all match each other.

Returns the matched species if found and None otherwise.

clear_surface_adjustments()
empties surface tracking varaibles

enlarge(new_object=None, react_edge=False, unimolecular_react=None, bimolecular_react=None,
trimolecular_react=None)

Enlarge a reaction model by processing the objects in the list new_object. If new_object is a rmg.
species.Species object, then the species is moved from the edge to the core and reactions generated
for that species, reacting with itself and with all other species in the model core. If new_object is a rmg.
unirxn.network.Network object, then reactions are generated for the species in the network with the
largest leak flux.

If the react_edge flag is True, then no new_object is needed, and instead the algorithm proceeds to react
the core species together to form edge reactions.

generate_kinetics(reaction)
Generate best possible kinetics for the given reaction using the kinetics database.

generate_thermo(spc, rename=False)
Generate thermo for species.

get_model_size()
Return the numbers of species and reactions in the model core and edge. Note that this is not necessarily
equal to the lengths of the corresponding species and reaction lists.

get_species_reaction_lists()
Return lists of all of the species and reactions in the core and the edge.

184 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

get_stoichiometry_matrix()
Return the stoichiometry matrix for all generated species and reactions. The id of each species and reaction
is the corresponding row and column, respectively, in the matrix.

initialize_index_species_dict()
Populates the core species dictionary

integer -> core Species

with the species that are currently in the core.

log_enlarge_summary(new_core_species, new_core_reactions, new_edge_species,
new_edge_reactions, reactions_moved_from_edge=None, react_edge=False)

Output a summary of a model enlargement step to the log. The details of the enlargement are passed in the
new_core_species, new_core_reactions, new_edge_species, and new_edge_reactions objects.

make_new_pdep_reaction(forward)
Make a new pressure-dependent reaction based on a list of reactants and a list of products. The reaction
belongs to the specified network and has pressure-dependent kinetics given by kinetics.

No checking for existing reactions is made here. The returned PDepReaction object is not added to
the global list of reactions, as that is intended to represent only the high-pressure-limit set. The reac-
tion_counter is incremented, however, since the returned reaction can and will exist in the model edge
and/or core.

make_new_reaction(forward, check_existing=True, generate_thermo=True)
Make a new reaction given a Reaction object forward. The reaction is added to the global list of reactions.
Returns the reaction in the direction that corresponds to the estimated kinetics, along with whether or not
the reaction is new to the global reaction list.

The forward direction is determined using the “is_reverse” attribute of the reaction’s family. If the reaction
family is its own reverse, then it is made such that the forward reaction is exothermic at 298K.

The forward reaction is appended to self.new_reaction_list if it is new.

make_new_species(object, label='', reactive=True, check_existing=True, generate_thermo=True)
Formally create a new species from the specified object, which can be either a Molecule object or an
rmgpy.species.Species object. It is emphasized that reactive relates to the Species attribute, while
reactive_structure relates to the Molecule attribute.

mark_chemkin_duplicates()
Check that all reactions that will appear the chemkin output have been checked as duplicates.

Call this if you’ve done something that may have introduced undetected duplicate reactions, like add a
reaction library or seed mechanism. Anything added via the expand() method should already be detected.

process_new_reactions(new_reactions, new_species, pdep_network=None, gener-
ate_thermo=True)

Process a list of newly-generated reactions involving the new core species or explored isomer new_species
in network pdep_network.

Makes a reaction and decides where to put it: core, edge, or PDepNetwork.

prune(reaction_systems, tol_keep_in_edge, tol_move_to_core, maximum_edge_species,
min_species_exist_iterations_for_prune)

Remove species from the model edge based on the simulation results from the list of reaction_systems.

register_reaction(rxn)
Adds the reaction to the reaction database.

The reaction database is structured as a multi-level dictionary, for efficient search and retrieval of existing
reactions.

1.11. Reaction mechanism generation (rmgpy.rmg) 185



RMG-Py API Reference, Release 3.1.0

The database has two types of dictionary keys: - reaction family - reactant(s) keys

First, the keys are generated for the parameter reaction.

Next, it is checked whether the reaction database already contains similar keys. If not, a new container is
created, either a dictionary for the family key and first reactant key, or a list for the second reactant key.

Finally, the reaction is inserted as the first element in the list.

remove_empty_pdep_networks()
searches for and deletes any empty pdep networks

remove_species_from_edge(reaction_systems, spec)
Remove species spec from the reaction model edge.

retrieve(family_label, key1, key2)
Returns a list of reactions from the reaction database with the same keys as the parameters.

Returns an empty list when one of the keys could not be found.

search_retrieve_reactions(rxn)
Searches through the reaction database for reactions with an identical reaction key as the key of the pa-
rameter reaction.

Both the reaction key based on the reactants as well as on the products is used to search for possible
candidate reactions.

set_thermodynamic_filtering_parameters(Tmax, thermo_tol_keep_spc_in_edge,
min_core_size_for_prune, maximum_edge_species,
reaction_systems)

sets parameters for thermodynamic filtering based on the current core Tmax is the maximum reac-
tor temperature in K thermo_tol_keep_spc_in_edge is the Gibbs number above which species will be
filtered min_core_size_for_prune is the core size at which thermodynamic filtering will start maxi-
mum_edge_species is the maximum allowed number of edge species reaction_systems is a list of reac-
tion_system objects

thermo_filter_down(maximum_edge_species, min_species_exist_iterations_for_prune=0)
removes species from the edge based on their Gibbs energy until maximum_edge_species is reached
under the constraint that all removed species are older than min_species_exist_iterations_for_prune
iterations maximum_edge_species is the maximum allowed number of edge species
min_species_exist_iterations_for_prune is the number of iterations a species must be in the edge
before it is eligible for thermo filtering

thermo_filter_species(spcs)
checks Gibbs energy of the species in species against the maximum allowed Gibbs energy

update_unimolecular_reaction_networks()
Iterate through all of the currently-existing unimolecular reaction networks, updating those that have been
marked as invalid. In each update, the phenomonological rate coefficients 𝑘(𝑇, 𝑃 ) are computed for each
net reaction in the network, and the resulting reactions added or updated.

class rmgpy.rmg.model.ReactionModel(species=None, reactions=None)
Represent a generic reaction model. A reaction model consists of species, a list of species, and reactions, a list
of reactions.

merge(other)
Return a new ReactionModel object that is the union of this model and other.

186 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

RMG input files

rmgpy.rmg.input.read_input_file(path, rmg0)
Read an RMG input file at path on disk into the RMG object rmg.

rmgpy.rmg.input.save_input_file(path, rmg)
Save an RMG input file at path on disk from the RMG object rmg.

rmgpy.rmg.main.RMG

class rmgpy.rmg.main.RMG(input_file=None, output_directory=None, profiler=None, stats_file=None)
A representation of a Reaction Mechanism Generator (RMG) job. The attributes are:

Attribute Description
input_file The path to the input file
profiler A cProfile.Profile object for time profiling RMG
database_directory The directory containing the RMG database
thermo_libraries The thermodynamics libraries to load
reaction_libraries The kinetics libraries to load
statmech_libraries The statistical mechanics libraries to load
seed_mechanisms The seed mechanisms included in the model
kinetics_families The kinetics families to use for reaction generation
kinetics_depositories The kinetics depositories to use for looking up kinetics in each family
kinetics_estimator The method to use to estimate kinetics: ‘group additivity’ or ‘rate rules’
solvent If solvation estimates are required, the name of the solvent.
reaction_model The core-edge reaction model generated by this job
reaction_systems A list of the reaction systems used in this job
database The RMG database used in this job
model_settings_list List of ModelSettings objects containing information related to how to manage species/reaction movement
simulator_settings_list List of SimulatorSettings objects containing information on how to run simulations
init_react_tuples List of name tuples of species to react at beginning of run
trimolecular True to consider reactions between three species (i.e., if trimolecular reaction families are present)
unimolecular_threshold Array of flags indicating whether a species is above the unimolecular reaction threshold
bimolecular_threshold Array of flags indicating whether two species are above the bimolecular reaction threshold
trimolecular_threshold Array of flags indicating whether three species are above the trimolecular reaction threshold
unimolecular_react Array of flags indicating whether a species should react unimolecularly in the enlarge step
bimolecular_react Array of flags indicating whether two species should react in the enlarge step
trimolecular_react Array of flags indicating whether three species should react in the enlarge step
termination A list of termination targets (i.e TerminationTime and TerminationConversion objects)
species_constraints Dictates the maximum number of atoms, carbons, electrons, etc. generated by RMG
output_directory The directory used to save output files
verbosity The level of logging verbosity for console output
units The unit system to use to save output files (currently must be ‘si’)
generate_output_html True to draw pictures of the species and reactions, saving a visualized model in an output HTML file. False otherwise
generate_plots True to generate plots of the job execution statistics after each iteration, False otherwise
verbose_comments True to keep the verbose comments for database estimates, False otherwise
save_edge_species True to save chemkin and HTML files of the edge species, False otherwise
keep_irreversible True to keep ireversibility of library reactions as is (‘<=>’ or ‘=>’). False (default) to force all library reactions to be reversible (‘<=>’)
trimolecular_product_reversible True (default) to allow families with trimolecular products to react in the reverse direction, False otherwise
pressure_dependence Whether to process unimolecular (pressure-dependent) reaction networks
quantum_mechanics Whether to apply quantum mechanical calculations instead of group additivity to certain molecular types.

continues on next page

1.11. Reaction mechanism generation (rmgpy.rmg) 187



RMG-Py API Reference, Release 3.1.0

Table 4 – continued from previous page
Attribute Description
ml_estimator To use thermo estimation with machine learning
ml_settings Settings for ML estimation
walltime The maximum amount of CPU time in the form DD:HH:MM:SS to expend on this job; used to stop gracefully so we can still get profiling information
max_iterations The maximum number of RMG iterations allowed, after which the job will terminate
kinetics_datastore True if storing details of each kinetic database entry in text file, False otherwise
initialization_time The time at which the job was initiated, in seconds since the epoch (i.e. from time.time())
done Whether the job has completed (there is nothing new to add)

check_input()
Check for a few common mistakes in the input file.

check_libraries()
Check unwanted use of libraries: Liquid phase libraries in Gas phase simulation. Loading a Liquid phase
library obtained in another solvent than the one defined in the input file. Other checks can be added here.

check_model()
Run checks on the RMG model

clear()
Clear all loaded information about the job (except the file paths).

execute(initialize=True, **kwargs)
Execute an RMG job using the command-line arguments args as returned by the argparse package.
initialize is a bool type flag used to determine whether to call self.initialize()

finish()
Complete the model generation.

generate_cantera_files(chemkin_file, **kwargs)
Convert a chemkin mechanism chem.inp file to a cantera mechanism file chem.cti and save it in the cantera
directory

initialize(**kwargs)
Initialize an RMG job using the command-line arguments args as returned by the argparse package.

initialize_seed_mech()
Initialize the process of saving the seed mechanism by performing the following:

1. Create the initial seed mechanism folder (the seed from a previous iterations will be deleted)

2. Save the restart-from-seed file (unless the current job is itself a restart job)

3. Ensure that we don’t overwrite existing libraries in the database that have the same name as this job

4. Create the previous_seeds directory to save intermediate seeds if the user gives a value for saveSeed-
Modulus

load_input(path=None)
Load an RMG job from the input file located at input_file, or from the input_file attribute if not given as a
parameter.

load_rmg_java_input(path)
Load an RMG-Java job from the input file located at input_file, or from the input_file attribute if not given
as a parameter.

load_thermo_input(path=None)
Load an Thermo Estimation job from a thermo input file located at input_file, or from the input_file at-
tribute if not given as a parameter.

188 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

log_header(level=20)
Output a header containing identifying information about RMG to the log.

make_seed_mech()
Save a seed mechanism (both core and edge) in the ‘seed’ sub-folder of the output directory. Additionally,
save the filter tensors to the ‘seed/filters’ sub-folder so that the RMG job can be restarted from a seed
mechanism. If self.save_seed_to_database is True then the seed mechanism is also saved as libraries (one
each for the core and edge) in the RMG-database.

Notes

initialize_seed_mech should be called one time before this function is ever called.

make_species_labels_independent(species)
This method looks at the core species labels and makes sure none of them conflict If a conflict occurs, the
second occurance will have ‘-2’ added returns a list of the old labels

process_pdep_networks(obj)
properly processes PDepNetwork objects and lists of PDepNetwork objects returned from simulate

process_reactions_to_species(obj)
properly processes Reaction objects and lists of Reaction objects returned from simulate

process_to_species_networks(obj)
breaks down the objects returned by simulate into Species and PDepNetwork components

react_init_tuples()
Reacts tuples given in the react block

read_meaningful_line_java(f)
Read a meaningful line from an RMG-Java condition file object f, returning the line with any comments
removed.

register_listeners()
Attaches listener classes depending on the options found in the RMG input file.

run_model_analysis(number=10)
Run sensitivity and uncertainty analysis if requested.

run_uncertainty_analysis()
Run uncertainty analysis if proper settings are available.

save_everything()
Saves the output HTML and the Chemkin file. If the job is being profiled this is saved as well.

save_input(path=None)
Save an RMG job to the input file located at path.

update_reaction_threshold_and_react_flags(rxn_sys_unimol_threshold=None,
rxn_sys_bimol_threshold=None,
rxn_sys_trimol_threshold=None,
skip_update=False)

updates the length and boolean value of the unimolecular and bimolecular react and threshold flags

rmgpy.rmg.main.initialize_log(verbose, log_file_name)
Set up a logger for RMG to use to print output to stdout. The verbose parameter is an integer specifying the
amount of log text seen at the console; the levels correspond to those of the logging module.

rmgpy.rmg.main.make_profile_graph(stats_file, force_graph_generation=False)
Uses gprof2dot to create a graphviz dot file of the profiling information.

1.11. Reaction mechanism generation (rmgpy.rmg) 189



RMG-Py API Reference, Release 3.1.0

This requires the gprof2dot package available via pip install gprof2dot. Render the result using the program
‘dot’ via a command like dot -Tps2 input.dot -o output.ps2.

Rendering the ps2 file to pdf requires an external pdf converter ps2pdf output.ps2 which produces a out-
put.ps2.pdf file.

Will only generate a graph if a display is present as errors can occur otherwise. If force_graph_generation is
True then the graph generation will be attempted either way

rmgpy.rmg.main.process_profile_stats(stats_file, log_file)

Saving RMG output

rmgpy.rmg.output.save_output_html(path, reaction_model, part_core_edge='core')
Save the current set of species and reactions of reactionModel to an HTML file path on disk. As part of this
process, drawings of all species are created in the species folder (if they don’t already exist) using the rmgpy.
molecule.draw module. The jinja package is used to generate the HTML; if this package is not found, no
HTML will be generated (but the program will carry on).

rmgpy.rmg.output.save_diff_html(path, common_species_list, species_list1, species_list2, com-
mon_reactions, unique_reactions1, unique_reactions2)

This function outputs the species and reactions on an HTML page for the comparison of two RMG models.

rmgpy.rmg.pdep.PDepNetwork

class rmgpy.rmg.pdep.PDepNetwork(index=- 1, source=None)
A representation of a partial unimolecular reaction network. Each partial network has a single source isomer
or reactant channel, and is responsible only for 𝑘(𝑇, 𝑃 ) values for net reactions with source as the reactant.
Multiple partial networks can have the same source, but networks with the same source and any explored isomers
must be combined.

Attribute Type Description
source list The isomer or reactant channel that acts as the source
explored list A list of the unimolecular isomers whose reactions have been fully explored

add_path_reaction(newReaction)
Add a path reaction to the network. If the path reaction already exists, no action is taken.

apply_chemically_significant_eigenvalues_method(lumping_order=None)
Compute the phenomenological rate coefficients 𝑘(𝑇, 𝑃 ) at the current conditions using the chemically-
significant eigenvalues method. If a lumping_order is provided, the algorithm will attempt to lump the
configurations (given by index) in the order provided, and return a reduced set of 𝑘(𝑇, 𝑃 ) values.

apply_modified_strong_collision_method(efficiency_model='default')
Compute the phenomenological rate coefficients 𝑘(𝑇, 𝑃 ) at the current conditions using the modified
strong collision method.

apply_reservoir_state_method()
Compute the phenomenological rate coefficients 𝑘(𝑇, 𝑃 ) at the current conditions using the reservoir state
method.

calculate_collision_model()
Calculate the matrix of first-order rate coefficients for collisional population transfer between grains for
each isomer, including the corresponding collision frequencies.

190 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

calculate_densities_of_states()
Calculate the densities of states of each configuration that has states data. The densities of states are
computed such that they can be applied to each temperature in the range of interest by interpolation.

calculate_equilibrium_ratios()
Return an array containing the fraction of each isomer and reactant channel present at equilibrium, as
determined from the Gibbs free energy and using the concentration equilibrium constant 𝐾c. These values
are ratios, and the absolute magnitude is not guaranteed; however, the implementation scales the elements
of the array so that they sum to unity.

calculate_microcanonical_rates()
Calculate and return arrays containing the microcanonical rate coefficients 𝑘(𝐸) for the isomerization,
dissociation, and association path reactions in the network.

cleanup()
Delete intermedate arrays used to compute k(T,P) values.

explore_isomer(isomer)
Explore a previously-unexplored unimolecular isomer in this partial network using the provided core-edge
reaction model reaction_model, returning the new reactions and new species.

get_all_species()
Return a list of all unique species in the network, including all isomers, reactant and product channels, and
bath gas species.

get_energy_filtered_reactions(T, tol)
Returns a list of products and isomers that are greater in Free Energy than a*R*T + Gfsource(T)

get_leak_branching_ratios(T, P)
Return a dict with the unexplored isomers in the partial network as the keys and the fraction of the total
leak coefficient as the values.

get_leak_coefficient(T, P)
Return the pressure-dependent rate coefficient 𝑘(𝑇, 𝑃 ) describing the total rate of “leak” from this network.
This is defined as the sum of the 𝑘(𝑇, 𝑃 ) values for all net reactions to nonexplored unimolecular isomers.

get_maximum_leak_species(T, P)
Get the unexplored (unimolecular) isomer with the maximum leak flux. Note that the leak rate coefficients
vary with temperature and pressure, so you must provide these in order to get a meaningful result.

get_rate_filtered_products(T, P, tol)
determines the set of path_reactions that have fluxes less than tol at steady state where all A => B + C
reactions are irreversible and there is a constant flux from/to the source configuration of 1.0

initialize(Tmin, Tmax, Pmin, Pmax, maximum_grain_size=0.0, minimum_grain_count=0, ac-
tive_j_rotor=True, active_k_rotor=True, rmgmode=False)

Initialize a pressure dependence calculation by computing several quantities that are independent of the
conditions. You must specify the temperature and pressure ranges of interesting using Tmin and Tmax in
K and Pmin and Pmax in Pa. You must also specify the maximum energy grain size grain_size in J/mol
and/or the minimum number of grains grain_count.

invalidate()
Mark the network as in need of a new calculation to determine the pressure-dependent rate coefficients

log_summary(level=20)
Print a formatted list of information about the current network. Each molecular configuration - unimolec-
ular isomers, bimolecular reactant channels, and bimolecular product channels - is given along with its
energy on the potential energy surface. The path reactions connecting adjacent molecular configurations
are also given, along with their energies on the potential energy surface. The level parameter controls the
level of logging to which the summary is written, and is DEBUG by default.

1.11. Reaction mechanism generation (rmgpy.rmg) 191



RMG-Py API Reference, Release 3.1.0

map_densities_of_states()
Map the overall densities of states to the current energy grains. Semi-logarithmic interpolation will be
used if the grain sizes of Elist0 and e_list do not match; this should not be a significant source of error as
long as the grain sizes are sufficiently small.

merge(other)
Merge the partial network other into this network.

remove_disconnected_reactions()
gets rid of reactions/isomers/products not connected to the source by a reaction sequence

remove_reactions(reaction_model, rxns=None, prods=None)
removes a list of reactions from the network and all reactions/products left disconnected by removing those
reactions

select_energy_grains(T, grain_size=0.0, grain_count=0)
Select a suitable list of energies to use for subsequent calculations. This is done by finding the minimum
and maximum energies on the potential energy surface, then adding a multiple of 𝑘B𝑇 onto the maximum
energy.

You must specify either the desired grain spacing grain_size in J/mol or the desired number of grains
n_grains, as well as a temperature T in K to use for the equilibrium calculation. You can specify both
grain_size and grain_count, in which case the one that gives the more accurate result will be used (i.e.
they represent a maximum grain size and a minimum number of grains). An array containing the energy
grains in J/mol is returned.

set_conditions(T, P, ymB=None)
Set the current network conditions to the temperature T in K and pressure P in Pa. All of the internal
variables are updated accordingly if they are out of date. For example, those variables that depend only on
temperature will not be recomputed if the temperature is the same.

solve_full_me(tlist, x0)
Directly solve the full master equation using a stiff ODE solver. Pass the reaction network to solve, the
temperature T in K and pressure P in Pa to solve at, the energies e_list in J/mol to use, the output time
points tlist in s, the initial total populations x0, the full master equation matrix M, the accounting matrix
indices relating isomer and energy grain indices to indices of the master equation matrix, and the densities
of states dens_states in mol/J of each isomer. Returns the times in s, population distributions for each
isomer, and total population profiles for each configuration.

solve_reduced_me(tlist, x0)
Directly solve the reduced master equation using a stiff ODE solver. Pass the output time points tlist in s
and the initial total populations x0. Be sure to run one of the methods for generating 𝑘(𝑇, 𝑃 ) values before
calling this method. Returns the times in s, population distributions for each isomer, and total population
profiles for each configuration.

solve_ss_network(T, P)
calculates the steady state concentrations if all A => B + C reactions are irreversible and the flux from/to
the source configuration is 1.0

update(reaction_model, pdep_settings)
Regenerate the 𝑘(𝑇, 𝑃 ) values for this partial network if the network is marked as invalid.

update_configurations(reaction_model)
Sort the reactants and products of each of the network’s path reactions into isomers, reactant channels, and
product channels. You must pass the current reaction_model because some decisions on sorting are made
based on which species are in the model core.

192 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

rmgpy.rmg.pdep.PDepReaction

class rmgpy.rmg.pdep.PDepReaction(index=- 1, label='', reactants=None, products=None, spe-
cific_collider=None, network=None, kinetics=None, net-
work_kinetics=None, reversible=True, transition_state=None,
duplicate=False, degeneracy=1, pairs=None)

calculate_coll_limit(temp, reverse)
Calculate the collision limit rate in m3/mol-s for the given temperature implemented as recommended in
Wang et al. doi 10.1016/j.combustflame.2017.08.005 (Eq. 1)

calculate_microcanonical_rate_coefficient(e_list, j_list, reac_dens_states,
prod_dens_states, T)

Calculate the microcanonical rate coefficient 𝑘(𝐸) for the reaction reaction at the energies e_list in J/mol.
reac_dens_states and prod_dens_states are the densities of states of the reactant and product configurations
for this reaction. If the reaction is irreversible, only the reactant density of states is required; if the reaction
is reversible, then both are required. This function will try to use the best method that it can based on the
input data available:

• If detailed information has been provided for the transition state (i.e. the molecular degrees of free-
dom), then RRKM theory will be used.

• If the above is not possible but high-pressure limit kinetics 𝑘∞(𝑇 ) have been provided, then the
inverse Laplace transform method will be used.

The density of states for the product prod_dens_states and the temperature of interest T in K can also
be provided. For isomerization and association reactions prod_dens_states is required; for dissociation
reactions it is optional. The temperature is used if provided in the detailed balance expression to determine
the reverse kinetics, and in certain cases in the inverse Laplace transform method.

calculate_tst_rate_coefficient(T)
Evaluate the forward rate coefficient for the reaction with corresponding transition state TS at temperature
T in K using (canonical) transition state theory. The TST equation is

𝑘(𝑇 ) = 𝜅(𝑇 )
𝑘B𝑇

ℎ

𝑄‡(𝑇 )

𝑄A(𝑇 )𝑄B(𝑇 )
exp

(︂
− 𝐸0

𝑘B𝑇

)︂
where 𝑄‡ is the partition function of the transition state, 𝑄A and 𝑄B are the partition function of the
reactants, 𝐸0 is the ground-state energy difference from the transition state to the reactants, 𝑇 is the
absolute temperature, 𝑘B is the Boltzmann constant, and ℎ is the Planck constant. 𝜅(𝑇 ) is an optional
tunneling correction.

can_tst()
Return True if the necessary parameters are available for using transition state theory – or the microcanon-
ical equivalent, RRKM theory – to compute the rate coefficient for this reaction, or False otherwise.

check_collision_limit_violation(t_min, t_max, p_min, p_max)
Warn if a core reaction violates the collision limit rate in either the forward or reverse direction at the
relevant extreme T/P conditions. Assuming a monotonic behaviour of the kinetics. Returns a list with the
reaction object and the direction in which the violation was detected.

copy()
Create a deep copy of the current reaction.

degeneracy
The reaction path degeneracy for this reaction.

If the reaction has kinetics, changing the degeneracy will adjust the reaction rate by a ratio of the new
degeneracy to the old degeneracy.

1.11. Reaction mechanism generation (rmgpy.rmg) 193



RMG-Py API Reference, Release 3.1.0

draw(path)
Generate a pictorial representation of the chemical reaction using the draw module. Use path to specify
the file to save the generated image to; the image type is automatically determined by extension. Valid
extensions are .png, .svg, .pdf, and .ps; of these, the first is a raster format and the remainder are
vector formats.

ensure_species(reactant_resonance, product_resonance)
Ensure the reaction contains species objects in its reactant and product attributes. If the reaction is found
to hold molecule objects, it modifies the reactant, product and pairs to hold Species objects.

Generates resonance structures for Molecules if the corresponding options, reactant_resonance and/or
product_resonance, are True. Does not generate resonance for reactants or products that start as Species
objects.

fix_barrier_height(force_positive)
Turns the kinetics into Arrhenius (if they were ArrheniusEP) and ensures the activation energy is at least
the endothermicity for endothermic reactions, and is not negative only as a result of using Evans Polanyi
with an exothermic reaction. If force_positive is True, then all reactions are forced to have a non-negative
barrier.

fix_diffusion_limited_a_factor(T)
Decrease the pre-exponential factor (A) by the diffusion factor to account for the diffusion limit at the
specified temperature.

generate_3d_ts(reactants, products)
Generate the 3D structure of the transition state. Called from model.generate_kinetics().

self.reactants is a list of reactants self.products is a list of products

generate_high_p_limit_kinetics()
Used for incorporating library reactions with pressure-dependent kinetics in PDep networks. Only imple-
mented for LibraryReaction

generate_pairs()
Generate the reactant-product pairs to use for this reaction when performing flux analysis. The exact
procedure for doing so depends on the reaction type:

Reaction type Template Resulting pairs
Isomerization A -> C (A,C)
Dissociation A -> C + D (A,C), (A,D)
Association A + B -> C (A,C), (B,C)
Bimolecular A + B -> C + D (A,C), (B,D) or (A,D), (B,C)

There are a number of ways of determining the correct pairing for bimolecular reactions. Here we try a
simple similarity analysis by comparing the number of heavy atoms. This should work most of the time,
but a more rigorous algorithm may be needed for some cases.

generate_reverse_rate_coefficient(network_kinetics, Tmin, Tmax, surface_site_density)
Generate and return a rate coefficient model for the reverse reaction. Currently this only works if the
kinetics attribute is one of several (but not necessarily all) kinetics types.

If the reaction kinetics model is Sticking Coefficient, please provide a nonzero surface site density in
mol/m^2 which is required to evaluate the rate coefficient.

get_enthalpies_of_reaction(Tlist)
Return the enthalpies of reaction in J/mol evaluated at temperatures Tlist in K.

get_enthalpy_of_reaction(T)
Return the enthalpy of reaction in J/mol evaluated at temperature T in K.

194 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

get_entropies_of_reaction(Tlist)
Return the entropies of reaction in J/mol*K evaluated at temperatures Tlist in K.

get_entropy_of_reaction(T)
Return the entropy of reaction in J/mol*K evaluated at temperature T in K.

get_equilibrium_constant(T, type, surface_site_density)
Return the equilibrium constant for the reaction at the specified temperature T in K and reference sur-
face_site_density in mol/m^2 (2.5e-05 default) The type parameter lets you specify the quantities used in
the equilibrium constant: Ka for activities, Kc for concentrations (default), or Kp for pressures. This func-
tion assumes a reference pressure of 1e5 Pa for gas phases species and uses the ideal gas law to determine
reference concentrations. For surface species, the surface_site_density is the assumed reference.

get_equilibrium_constants(Tlist, type)
Return the equilibrium constants for the reaction at the specified temperatures Tlist in K. The type parame-
ter lets you specify the quantities used in the equilibrium constant: Ka for activities, Kc for concentrations
(default), or Kp for pressures. Note that this function currently assumes an ideal gas mixture.

get_free_energies_of_reaction(Tlist)
Return the Gibbs free energies of reaction in J/mol evaluated at temperatures Tlist in K.

get_free_energy_of_reaction(T)
Return the Gibbs free energy of reaction in J/mol evaluated at temperature T in K.

get_mean_sigma_and_epsilon(reverse)
Calculates the collision diameter (sigma) using an arithmetic mean Calculates the well depth (epsilon)
using a geometric mean If reverse is False the above is calculated for the reactants, otherwise for the
products

get_rate_coefficient(T, P, surface_site_density)
Return the overall rate coefficient for the forward reaction at temperature T in K and pressure P in Pa,
including any reaction path degeneracies.

If diffusion_limiter is enabled, the reaction is in the liquid phase and we use a diffusion limitation to correct
the rate. If not, then use the intrinsic rate coefficient.

If the reaction has sticking coefficient kinetics, a nonzero surface site density in mol/m^2 must be provided

get_reduced_mass(reverse)
Returns the reduced mass of the reactants if reverse is False Returns the reduced mass of the products if
reverse is True

get_source()
Get the source of this PDepReaction

get_stoichiometric_coefficient(spec)
Return the stoichiometric coefficient of species spec in the reaction. The stoichiometric coefficient is
increased by one for each time spec appears as a product and decreased by one for each time spec appears
as a reactant.

get_surface_rate_coefficient(T, surface_site_density)
Return the overall surface rate coefficient for the forward reaction at temperature T in K with surface site
density surface_site_density in mol/m2. Value is returned in combination of [m,mol,s]

get_url()
Get a URL to search for this reaction in the rmg website.

has_template(reactants, products)
Return True if the reaction matches the template of reactants and products, which are both lists of
Species objects, or False if not.

1.11. Reaction mechanism generation (rmgpy.rmg) 195



RMG-Py API Reference, Release 3.1.0

is_association()
Return True if the reaction represents an association reaction A + B −−⇀↽−− C or False if not.

is_balanced()
Return True if the reaction has the same number of each atom on each side of the reaction equation, or
False if not.

is_dissociation()
Return True if the reaction represents a dissociation reaction A −−⇀↽−− B + C or False if not.

is_isomerization()
Return True if the reaction represents an isomerization reaction A −−⇀↽−− B or False if not.

is_isomorphic(other, either_direction, check_identical, check_only_label,
check_template_rxn_products, generate_initial_map, strict, save_order)

Return True if this reaction is the same as the other reaction, or False if they are different. The compar-
ison involves comparing isomorphism of reactants and products, and doesn’t use any kinetic information.

Parameters

• either_direction (bool, optional) – if False,then the reaction direction must
match.

• check_identical (bool, optional) – if True, check that atom ID’s match (used for
checking degeneracy)

• check_only_label (bool, optional) – if True, only check the string representation,
ignoring molecular structure comparisons

• check_template_rxn_products (bool, optional) – if True, only check isomor-
phism of reaction products (used when we know the reactants are identical, i.e. in gener-
ating reactions)

• generate_initial_map (bool, optional) – if True, initialize map by pairing atoms
with same labels

• strict (bool, optional) – if False, perform isomorphism ignoring electrons

• save_order (bool, optional) – if True, perform isomorphism saving atom order

is_surface_reaction()
Return True if one or more reactants or products are surface species (or surface sites)

is_unimolecular()
Return True if the reaction has a single molecule as either reactant or product (or both) A −−⇀↽−− B + C or
A + B −−⇀↽−− C or A −−⇀↽−− B, or False if not.

matches_species(reactants, products)
Compares the provided reactants and products against the reactants and products of this reaction. Both
directions are checked.

Parameters

• reactants (list) – Species required on one side of the reaction

• products (list, optional) – Species required on the other side

reverse_arrhenius_rate(k_forward, reverse_units, Tmin, Tmax)
Reverses the given k_forward, which must be an Arrhenius type. You must supply the correct units for the
reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).

reverse_sticking_coeff_rate(k_forward, reverse_units, surface_site_density, Tmin, Tmax)
Reverses the given k_forward, which must be a StickingCoefficient type. You must supply the correct

196 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

units for the reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).
The surface_site_density in mol/m^2 is used to evalaute the forward rate constant.

reverse_surface_arrhenius_rate(k_forward, reverse_units, Tmin, Tmax)
Reverses the given k_forward, which must be a SurfaceArrhenius type. You must supply the correct units
for the reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).

to_cantera(species_list, use_chemkin_identifier)
Converts the RMG Reaction object to a Cantera Reaction object with the appropriate reaction class.

If use_chemkin_identifier is set to False, the species label is used instead. Be sure that species’ labels are
unique when setting it False.

to_chemkin(species_list, kinetics)
Return the chemkin-formatted string for this reaction.

If kinetics is set to True, the chemkin format kinetics will also be returned (requires the species_list to
figure out third body colliders.) Otherwise, only the reaction string will be returned.

to_labeled_str(use_index)
the same as __str__ except that the labels are assumed to exist and used for reactant and products rather
than the labels plus the index in parentheses

1.12 Reaction system simulation (rmgpy.solver)

The rmgpy.solver module contains classes used to represent and simulate reaction systems.

1.12.1 Reaction systems

Class Description
ReactionSystem Base class for all reaction systems
SimpleReactor A simple isothermal, isobaric, well-mixed batch reactor
LiquidReactor A homogeneous, isothermal, isobaric liquid batch reactor
SurfaceReactor A heterogeneous, isothermal, isochoric batch reactor
MBSampledReactor SimpleReactor with sampling delay for simulating molecular beam experiments

1.12.2 Termination criteria

Class Description
TerminationTime Represent a time at which the simulation should be terminated
TerminationConversionRepresent a species conversion at which the simulation should be terminated
TerminationRateRatioRepresent a fraction of the maximum characteristic rate at which the simulation should

be terminated

1.12. Reaction system simulation (rmgpy.solver) 197



RMG-Py API Reference, Release 3.1.0

rmgpy.solver.ReactionSystem

class rmgpy.solver.ReactionSystem
A base class for all RMG reaction systems.

add_reactions_to_surface()
moves new surface reactions to the surface done after the while loop before the simulate call ends

advance()
Simulate from the current value of the independent variable to a specified value tout, taking as many steps
as necessary. The resulting values of 𝑡, y, and 𝑑y

𝑑𝑡 can then be accessed via the t, y, and dydt attributes.

compute_network_variables()
Initialize the arrays containing network information:

• NetworkLeakCoefficients is a n x 1 array with n the number of pressure-dependent networks.

• NetworkIndices is a n x 3 matrix with n the number of pressure-dependent networks and 3 the
maximum number of molecules allowed in either the reactant or product side of a reaction.

compute_rate_derivative()
Returns derivative vector df/dk_j where dy/dt = f(y, t, k) and k_j is the rate parameter for the jth core
reaction.

generate_reactant_product_indices()
Creates a matrix for the reactants and products.

generate_reaction_indices()
Assign an index to each reaction (core first, then edge) and store the (reaction, index) pair in a dictionary.

generate_species_indices()
Assign an index to each species (core first, then edge) and store the (species, index) pair in a dictionary.

get_layering_indices()
determines the edge reaction indices that indicate reactions that are valid for movement from edge to
surface based on the layering constraint

get_species_index()
Retrieves the index that is associated with the parameter species from the species index dictionary.

initialize()
Initialize the DASPK solver by setting the initial values of the independent variable t0, dependent variables
y0, and first derivatives dydt0. If provided, the derivatives must be consistent with the other initial condi-
tions; if not provided, DASPK will attempt to estimate a consistent set of initial values for the derivatives.
You can also set the absolute and relative tolerances atol and rtol, respectively, either as single values for
all dependent variables or individual values for each dependent variable.

initialize_model()
Initialize a simulation of the reaction system using the provided kinetic model. You will probably want to
create your own version of this method in the derived class; don’t forget to also call the base class version,
too.

initialize_surface()

removes surface_species and surface_reactions from until they are self consistent:

1) every reaction has one species in the surface

2) every species participates in a surface reaction

initiate_tolerances()
Computes the number of differential equations and initializes the tolerance arrays.

198 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

log_conversions()
Log information about the current conversion values.

log_rates()
Log information about the current maximum species and network rates.

reset_max_edge_species_rate_ratios()
This function sets max_edge_species_rate_ratios back to zero for pruning of ranged reactors it is important
to avoid doing this every initialization

residual()
Evaluate the residual function for this model, given the current value of the independent variable t, depen-
dent variables y, and first derivatives dydt. Return a numpy array with the values of the residual function
and an integer with status information (0 if okay, -2 to terminate).

set_initial_conditions()
Sets the common initial conditions of the rate equations that represent the reaction system.

• Sets the initial time of the reaction system to 0

• Initializes the species moles to a n x 1 array with zeros

set_initial_derivative()
Sets the derivative of the species moles with respect to the independent variable (time) equal to the residual.

simulate()
Simulate the reaction system with the provided reaction model, consisting of lists of core species, core re-
actions, edge species, and edge reactions. As the simulation proceeds the system is monitored for validity.
If the model becomes invalid (e.g. due to an excessively large edge flux), the simulation is interrupted and
the object causing the model to be invalid is returned. If the simulation completes to the desired termination
criteria and the model remains valid throughout, None is returned.

step()
Perform one simulation step from the current value of the independent variable toward (but not past) a
specified value tout. The resulting values of 𝑡, y, and 𝑑y

𝑑𝑡 can then be accessed via the t, y, and dydt
attributes.

rmgpy.solver.SimpleReactor

class rmgpy.solver.SimpleReactor
A reaction system consisting of a homogeneous, isothermal, isobaric batch reactor. These assumptions allow
for a number of optimizations that enable this solver to complete very rapidly, even for large kinetic models.

add_reactions_to_surface()
moves new surface reactions to the surface done after the while loop before the simulate call ends

advance()
Simulate from the current value of the independent variable to a specified value tout, taking as many steps
as necessary. The resulting values of 𝑡, y, and 𝑑y

𝑑𝑡 can then be accessed via the t, y, and dydt attributes.

calculate_effective_pressure()
Computes the effective pressure for a reaction as:

𝑃𝑒𝑓𝑓 = 𝑃 *
∑︁
𝑖

𝑦𝑖 * 𝑒𝑓𝑓𝑖∑︀
𝑗 𝑦𝑗

with:

• P the pressure of the reactor,

• y the array of initial moles of the core species

1.12. Reaction system simulation (rmgpy.solver) 199



RMG-Py API Reference, Release 3.1.0

or as:

𝑃𝑒𝑓𝑓 =
𝑃 * 𝑦𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟∑︀

𝑗 𝑦𝑗

if a specific_collider is mentioned.

compute_network_variables()
Initialize the arrays containing network information:

• NetworkLeakCoefficients is a n x 1 array with n the number of pressure-dependent networks.

• NetworkIndices is a n x 3 matrix with n the number of pressure-dependent networks and 3 the
maximum number of molecules allowed in either the reactant or product side of a reaction.

compute_rate_derivative()
Returns derivative vector df/dk_j where dy/dt = f(y, t, k) and k_j is the rate parameter for the jth core
reaction.

convert_initial_keys_to_species_objects()
Convert the initial_mole_fractions dictionary from species names into species objects, using the given
dictionary of species.

generate_rate_coefficients()
Populates the forward rate coefficients (kf), reverse rate coefficients (kb) and equilibrium constants (Keq)
arrays with the values computed at the temperature and (effective) pressure of the reaction system.

generate_reactant_product_indices()
Creates a matrix for the reactants and products.

generate_reaction_indices()
Assign an index to each reaction (core first, then edge) and store the (reaction, index) pair in a dictionary.

generate_species_indices()
Assign an index to each species (core first, then edge) and store the (species, index) pair in a dictionary.

get_const_spc_indices()
Allow to identify constant Species position in solver

get_layering_indices()
determines the edge reaction indices that indicate reactions that are valid for movement from edge to
surface based on the layering constraint

get_species_index()
Retrieves the index that is associated with the parameter species from the species index dictionary.

get_threshold_rate_constants()
Get the threshold rate constants for reaction filtering.

initialize()
Initialize the DASPK solver by setting the initial values of the independent variable t0, dependent variables
y0, and first derivatives dydt0. If provided, the derivatives must be consistent with the other initial condi-
tions; if not provided, DASPK will attempt to estimate a consistent set of initial values for the derivatives.
You can also set the absolute and relative tolerances atol and rtol, respectively, either as single values for
all dependent variables or individual values for each dependent variable.

initialize_model()
Initialize a simulation of the simple reactor using the provided kinetic model.

initialize_surface()

removes surface_species and surface_reactions from until they are self consistent:

1) every reaction has one species in the surface

200 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

2) every species participates in a surface reaction

initiate_tolerances()
Computes the number of differential equations and initializes the tolerance arrays.

jacobian()
Return the analytical Jacobian for the reaction system.

log_conversions()
Log information about the current conversion values.

log_rates()
Log information about the current maximum species and network rates.

reset_max_edge_species_rate_ratios()
This function sets max_edge_species_rate_ratios back to zero for pruning of ranged reactors it is important
to avoid doing this every initialization

residual()
Return the residual function for the governing DAE system for the simple reaction system.

set_colliders()
Store collider efficiencies and reaction indices for pdep reactions that have collider efficiencies, and store
specific collider indices

set_initial_conditions()
Sets the initial conditions of the rate equations that represent the current reactor model.

The volume is set to the value derived from the ideal gas law, using the user-defined pressure, temperature,
and the number of moles of initial species.

The species moles array (y0) is set to the values stored in the initial mole fractions dictionary.

The initial species concentration is computed and stored in the core_species_concentrations array.

set_initial_derivative()
Sets the derivative of the species moles with respect to the independent variable (time) equal to the residual.

simulate()
Simulate the reaction system with the provided reaction model, consisting of lists of core species, core re-
actions, edge species, and edge reactions. As the simulation proceeds the system is monitored for validity.
If the model becomes invalid (e.g. due to an excessively large edge flux), the simulation is interrupted and
the object causing the model to be invalid is returned. If the simulation completes to the desired termination
criteria and the model remains valid throughout, None is returned.

step()
Perform one simulation step from the current value of the independent variable toward (but not past) a
specified value tout. The resulting values of 𝑡, y, and 𝑑y

𝑑𝑡 can then be accessed via the t, y, and dydt
attributes.

rmgpy.solver.LiquidReactor

class rmgpy.solver.LiquidReactor
A reaction system consisting of a homogeneous, isothermal, constant volume batch reactor. These assumptions
allow for a number of optimizations that enable this solver to complete very rapidly, even for large kinetic
models.

add_reactions_to_surface()
moves new surface reactions to the surface done after the while loop before the simulate call ends

1.12. Reaction system simulation (rmgpy.solver) 201



RMG-Py API Reference, Release 3.1.0

advance()
Simulate from the current value of the independent variable to a specified value tout, taking as many steps
as necessary. The resulting values of 𝑡, y, and 𝑑y

𝑑𝑡 can then be accessed via the t, y, and dydt attributes.

compute_network_variables()
Initialize the arrays containing network information:

• NetworkLeakCoefficients is a n x 1 array with n the number of pressure-dependent networks.

• NetworkIndices is a n x 3 matrix with n the number of pressure-dependent networks and 3 the
maximum number of molecules allowed in either the reactant or product side of a reaction.

compute_rate_derivative()
Returns derivative vector df/dk_j where dy/dt = f(y, t, k) and k_j is the rate parameter for the jth core
reaction.

convert_initial_keys_to_species_objects()
Convert the initial_concentrations dictionary from species names into species objects, using the given
dictionary of species.

generate_rate_coefficients()
Populates the forwardRateCoefficients, reverseRateCoefficients and equilibriumConstants arrays with the
values computed at the temperature and (effective) pressure of the reacion system.

generate_reactant_product_indices()
Creates a matrix for the reactants and products.

generate_reaction_indices()
Assign an index to each reaction (core first, then edge) and store the (reaction, index) pair in a dictionary.

generate_species_indices()
Assign an index to each species (core first, then edge) and store the (species, index) pair in a dictionary.

get_const_spc_indices()
Allow to identify constant Species position in solver

get_layering_indices()
determines the edge reaction indices that indicate reactions that are valid for movement from edge to
surface based on the layering constraint

get_species_index()
Retrieves the index that is associated with the parameter species from the species index dictionary.

get_threshold_rate_constants()
Get the threshold rate constants for reaction filtering.

model_settings is not used here, but is needed so that the method matches the one in simpleReactor.

initialize()
Initialize the DASPK solver by setting the initial values of the independent variable t0, dependent variables
y0, and first derivatives dydt0. If provided, the derivatives must be consistent with the other initial condi-
tions; if not provided, DASPK will attempt to estimate a consistent set of initial values for the derivatives.
You can also set the absolute and relative tolerances atol and rtol, respectively, either as single values for
all dependent variables or individual values for each dependent variable.

initialize_model()
Initialize a simulation of the liquid reactor using the provided kinetic model.

initialize_surface()

removes surface_species and surface_reactions from until they are self consistent:

1) every reaction has one species in the surface

202 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

2) every species participates in a surface reaction

initiate_tolerances()
Computes the number of differential equations and initializes the tolerance arrays.

jacobian()
Return the analytical Jacobian for the reaction system.

log_conversions()
Log information about the current conversion values.

log_rates()
Log information about the current maximum species and network rates.

reset_max_edge_species_rate_ratios()
This function sets max_edge_species_rate_ratios back to zero for pruning of ranged reactors it is important
to avoid doing this every initialization

residual()
Return the residual function for the governing DAE system for the liquid reaction system.

set_initial_conditions()
Sets the initial conditions of the rate equations that represent the current reactor model.

The volume is set to the value in m3 required to contain one mole total of core species at start.

The core_species_concentrations array is set to the values stored in the initial concentrations dictionary.

The initial number of moles of a species j is computed and stored in the y0 instance attribute.

set_initial_derivative()
Sets the derivative of the species moles with respect to the independent variable (time) equal to the residual.

simulate()
Simulate the reaction system with the provided reaction model, consisting of lists of core species, core re-
actions, edge species, and edge reactions. As the simulation proceeds the system is monitored for validity.
If the model becomes invalid (e.g. due to an excessively large edge flux), the simulation is interrupted and
the object causing the model to be invalid is returned. If the simulation completes to the desired termination
criteria and the model remains valid throughout, None is returned.

step()
Perform one simulation step from the current value of the independent variable toward (but not past) a
specified value tout. The resulting values of 𝑡, y, and 𝑑y

𝑑𝑡 can then be accessed via the t, y, and dydt
attributes.

rmgpy.solver.SurfaceReactor

class rmgpy.solver.SurfaceReactor
A reaction system consisting of a heterogeneous, isothermal, constant volume batch reactor.

add_reactions_to_surface()
moves new surface reactions to the surface done after the while loop before the simulate call ends

advance()
Simulate from the current value of the independent variable to a specified value tout, taking as many steps
as necessary. The resulting values of 𝑡, y, and 𝑑y

𝑑𝑡 can then be accessed via the t, y, and dydt attributes.

compute_network_variables()
Initialize the arrays containing network information:

• NetworkLeakCoefficients is a n x 1 array with n the number of pressure-dependent networks.

1.12. Reaction system simulation (rmgpy.solver) 203



RMG-Py API Reference, Release 3.1.0

• NetworkIndices is a n x 3 matrix with n the number of pressure-dependent networks and 3 the
maximum number of molecules allowed in either the reactant or product side of a reaction.

compute_rate_derivative()
Returns derivative vector df/dk_j where dy/dt = f(y, t, k) and k_j is the rate parameter for the jth core
reaction.

convert_initial_keys_to_species_objects()
Convert the initial_gas_mole_fractions and initial_surface_coverages dictionaries from species names into
species objects, using the given dictionary of species.

generate_rate_coefficients()
Populates the kf, kb and equilibriumConstants arrays with the values computed at the temperature and
(effective) pressure of the reaction system.

generate_reactant_product_indices()
Creates a matrix for the reactants and products.

generate_reaction_indices()
Assign an index to each reaction (core first, then edge) and store the (reaction, index) pair in a dictionary.

generate_species_indices()
Assign an index to each species (core first, then edge) and store the (species, index) pair in a dictionary.

get_layering_indices()
determines the edge reaction indices that indicate reactions that are valid for movement from edge to
surface based on the layering constraint

get_species_index()
Retrieves the index that is associated with the parameter species from the species index dictionary.

get_threshold_rate_constants()
Get the threshold rate constants for reaction filtering.

initialize()
Initialize the DASPK solver by setting the initial values of the independent variable t0, dependent variables
y0, and first derivatives dydt0. If provided, the derivatives must be consistent with the other initial condi-
tions; if not provided, DASPK will attempt to estimate a consistent set of initial values for the derivatives.
You can also set the absolute and relative tolerances atol and rtol, respectively, either as single values for
all dependent variables or individual values for each dependent variable.

initialize_model()
Initialize a simulation of the simple reactor using the provided kinetic model.

initialize_surface()

removes surface_species and surface_reactions from until they are self consistent:

1) every reaction has one species in the surface

2) every species participates in a surface reaction

initiate_tolerances()
Computes the number of differential equations and initializes the tolerance arrays.

log_conversions()
Log information about the current conversion values.

log_initial_conditions()
Log to the console some information about this reaction system.

Should correspond to the calculations done in set_initial_conditions.

204 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

log_rates()
Log information about the current maximum species and network rates.

reset_max_edge_species_rate_ratios()
This function sets max_edge_species_rate_ratios back to zero for pruning of ranged reactors it is important
to avoid doing this every initialization

residual()
Return the residual function for the governing DAE system for the simple reaction system.

set_initial_conditions()
Sets the initial conditions of the rate equations that represent the current reactor model.

The volume is set to the value in m3 required to contain one mole total of gas phase core species at start.

The total surface sites are calculated from surface_volume_ratio and surface_site_density allowing ini-
tial_surface_coverages to determine the number of moles of surface species. The number of moles of gas
phase species is taken from initial_gas_mole_fractions.

The core_species_concentrations array is then determined, in mol/m3 for gas phase and mol/m2 for surface
species.

The initial number of moles of a species j in the reactor is computed and stored in the y0 instance attribute.

set_initial_derivative()
Sets the derivative of the species moles with respect to the independent variable (time) equal to the residual.

simulate()
Simulate the reaction system with the provided reaction model, consisting of lists of core species, core re-
actions, edge species, and edge reactions. As the simulation proceeds the system is monitored for validity.
If the model becomes invalid (e.g. due to an excessively large edge flux), the simulation is interrupted and
the object causing the model to be invalid is returned. If the simulation completes to the desired termination
criteria and the model remains valid throughout, None is returned.

step()
Perform one simulation step from the current value of the independent variable toward (but not past) a
specified value tout. The resulting values of 𝑡, y, and 𝑑y

𝑑𝑡 can then be accessed via the t, y, and dydt
attributes.

rmgpy.solver.MBSampledReactor

class rmgpy.solver.MBSampledReactor
A reaction system consisting of a homogeneous, isothermal, isobaric batch reactor that is being sample by a
molecular beam. The sampling process is modeled as a unimolecular reaction. These assumptions allow for a
number of optimizations that enable this solver to complete very rapidly, even for large kinetic models.

This is currently only intended for use with the simulate.py script, and cannot be used for a standard RMG
job.

add_reactions_to_surface()
moves new surface reactions to the surface done after the while loop before the simulate call ends

advance()
Simulate from the current value of the independent variable to a specified value tout, taking as many steps
as necessary. The resulting values of 𝑡, y, and 𝑑y

𝑑𝑡 can then be accessed via the t, y, and dydt attributes.

calculate_effective_pressure()
Computes the effective pressure for a reaction as:

𝑃𝑒𝑓𝑓 = 𝑃 *
∑︁
𝑖

𝑦𝑖 * 𝑒𝑓𝑓𝑖∑︀
𝑗 𝑦𝑗

1.12. Reaction system simulation (rmgpy.solver) 205



RMG-Py API Reference, Release 3.1.0

with:

• P the pressure of the reactor,

• y the array of initial moles of the core species

or as:

𝑃𝑒𝑓𝑓 =
𝑃 * 𝑦𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟∑︀

𝑗 𝑦𝑗

if a specific_collider is mentioned.

compute_network_variables()
Initialize the arrays containing network information:

• NetworkLeakCoefficients is a n x 1 array with n the number of pressure-dependent networks.

• NetworkIndices is a n x 3 matrix with n the number of pressure-dependent networks and 3 the
maximum number of molecules allowed in either the reactant or product side of a reaction.

compute_rate_derivative()
Returns derivative vector df/dk_j where dy/dt = f(y, t, k) and k_j is the rate parameter for the jth core
reaction.

convert_initial_keys_to_species_objects()
Convert the initial_mole_fractions dictionary from species names into species objects, using the given
dictionary of species.

generate_rate_coefficients()
Populates the forward rate coefficients (kf), reverse rate coefficients (kb) and equilibrium constants (Keq)
arrays with the values computed at the temperature and (effective) pressure of the reaction system.

generate_reactant_product_indices()
Creates a matrix for the reactants and products.

generate_reaction_indices()
Assign an index to each reaction (core first, then edge) and store the (reaction, index) pair in a dictionary.

generate_species_indices()
Assign an index to each species (core first, then edge) and store the (species, index) pair in a dictionary.

get_layering_indices()
determines the edge reaction indices that indicate reactions that are valid for movement from edge to
surface based on the layering constraint

get_species_index()
Retrieves the index that is associated with the parameter species from the species index dictionary.

initialize()
Initialize the DASPK solver by setting the initial values of the independent variable t0, dependent variables
y0, and first derivatives dydt0. If provided, the derivatives must be consistent with the other initial condi-
tions; if not provided, DASPK will attempt to estimate a consistent set of initial values for the derivatives.
You can also set the absolute and relative tolerances atol and rtol, respectively, either as single values for
all dependent variables or individual values for each dependent variable.

initialize_model()
Initialize a simulation of the reaction system using the provided kinetic model. You will probably want to
create your own version of this method in the derived class; don’t forget to also call the base class version,
too.

initialize_surface()

removes surface_species and surface_reactions from until they are self consistent:

206 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

1) every reaction has one species in the surface

2) every species participates in a surface reaction

initiate_tolerances()
Computes the number of differential equations and initializes the tolerance arrays.

log_conversions()
Log information about the current conversion values.

log_rates()
Log information about the current maximum species and network rates.

reset_max_edge_species_rate_ratios()
This function sets max_edge_species_rate_ratios back to zero for pruning of ranged reactors it is important
to avoid doing this every initialization

residual()
Return the residual function for the governing DAE system for the simple reaction system.

set_colliders()
Store collider efficiencies and reaction indices for pdep reactions that have collider efficiencies, and store
specific collider indices

set_initial_conditions()
Sets the initial conditions of the rate equations that represent the current reactor model.

The volume is set to the value derived from the ideal gas law, using the user-defined pressure, temperature,
and the number of moles of initial species.

The species moles array (y0) is set to the values stored in the initial mole fractions dictionary.

The initial species concentration is computed and stored in the core_species_concentrations array.

set_initial_derivative()
Sets the derivative of the species moles with respect to the independent variable (time) equal to the residual.

simulate()
Simulate the reaction system with the provided reaction model, consisting of lists of core species, core re-
actions, edge species, and edge reactions. As the simulation proceeds the system is monitored for validity.
If the model becomes invalid (e.g. due to an excessively large edge flux), the simulation is interrupted and
the object causing the model to be invalid is returned. If the simulation completes to the desired termination
criteria and the model remains valid throughout, None is returned.

step()
Perform one simulation step from the current value of the independent variable toward (but not past) a
specified value tout. The resulting values of 𝑡, y, and 𝑑y

𝑑𝑡 can then be accessed via the t, y, and dydt
attributes.

Termination criteria

class rmgpy.solver.TerminationTime(time=(0.0, 's'))
Represent a time at which the simulation should be terminated. This class has one attribute: the termination
time in seconds.

class rmgpy.solver.TerminationConversion(spec=None, conv=0.0)
Represent a conversion at which the simulation should be terminated. This class has two attributes: the species
to monitor and the fractional conversion at which to terminate.

class rmgpy.solver.TerminationRateRatio(ratio=0.01)
Represent a fraction of the maximum characteristic rate of the simulation at which the simulation should be

1.12. Reaction system simulation (rmgpy.solver) 207



RMG-Py API Reference, Release 3.1.0

terminated. This class has one attribute the ratio between the current and maximum characteristic rates at which
to terminate

1.13 Species (rmgpy.species)

The rmgpy.species subpackage contains classes and functions for working with chemical species.

1.13.1 Species

Class Description
Species A chemical species

1.13.2 Transition state

Class Description
TransitionState A transition state

rmgpy.species.Species

class rmgpy.species.Species
A chemical species, representing a local minimum on a potential energy surface. The attributes are:

Attribute Description
index A unique nonnegative integer index
label A descriptive string label
thermo The heat capacity model for the species
conformer The molecular conformer for the species
molecule A list of the Molecule objects describing the molec-

ular structure
transport_data A set of transport collision parameters
molecular_weight The molecular weight of the species
energy_transfer_model The collisional energy transfer model to use
reactive

True if the species participates in reaction families, False if not
Reaction libraries and seed mechanisms that
include the species are always considered
regardless of this variable

props A generic ‘properties’ dictionary to store user-
defined flags

aug_inchi Unique augmented inchi
symmetry_number Estimated symmetry number of the species, using

the resonance hybrid
creation_iteration Iteration which the species is created within the re-

action mechanism generation algorithm
explicitly_allowed Flag to exempt species from forbidden structure

checks

208 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

calculate_cp0()
Return the value of the heat capacity at zero temperature in J/mol*K.

calculate_cpinf()
Return the value of the heat capacity at infinite temperature in J/mol*K.

contains_surface_site()
Return True if the species is adsorbed on a surface (or is itself a site), else False.

copy(deep)
Create a copy of the current species. If the kw argument ‘deep’ is True, then a deep copy will be made of
the Molecule objects in self.molecule.

For other complex attributes, a deep copy will always be made.

fingerprint
Fingerprint of this species, taken from molecule attribute. Read-only.

from_adjacency_list(adjlist, raise_atomtype_exception, raise_charge_exception)
Load the structure of a species as a Molecule object from the given adjacency list adjlist and store it as the
first entry of a list in the molecule attribute. Does not generate resonance isomers of the loaded molecule.

from_smiles(smiles)
Load the structure of a species as a Molecule object from the given SMILES string smiles and store it
as the first entry of a list in the molecule attribute. Does not generate resonance isomers of the loaded
molecule.

generate_energy_transfer_model()
Generate the collisional energy transfer model parameters for the species. This “algorithm” is very much
in need of improvement.

generate_resonance_structures(keep_isomorphic, filter_structures)
Generate all of the resonance structures of this species. The isomers are stored as a list in the molecule
attribute. If the length of molecule is already greater than one, it is assumed that all of the resonance
structures have already been generated.

generate_statmech()
Generate molecular degree of freedom data for the species. You must have already provided a thermody-
namics model using e.g. generate_thermo_data().

generate_transport_data()
Generate the transport_data parameters for the species.

get_density_of_states(e_list)
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies e_list in J/mol above the ground state.

get_enthalpy(T)
Return the enthalpy in J/mol for the species at the specified temperature T in K.

get_entropy(T)
Return the entropy in J/mol*K for the species at the specified temperature T in K.

get_free_energy(T)
Return the Gibbs free energy in J/mol for the species at the specified temperature T in K.

get_heat_capacity(T)
Return the heat capacity in J/mol*K for the species at the specified temperature T in K.

get_partition_function(T)
Return the partition function for the species at the specified temperature T in K.

get_resonance_hybrid()
Returns a molecule object with bond orders that are the average of all the resonance structures.

1.13. Species (rmgpy.species) 209



RMG-Py API Reference, Release 3.1.0

get_sum_of_states(e_list)
Return the sum of states 𝑁(𝐸) at the specified energies e_list in J/mol.

get_symmetry_number()
Get the symmetry number for the species, which is the highest symmetry number amongst its resonance
isomers and the resonance hybrid. This function is currently used for website purposes and testing only as
it requires additional calculate_symmetry_number calls.

get_thermo_data(solvent_name)
Returns a thermoData object of the current Species object.

If the thermo object already exists, it is either of the (Wilhoit, ThermoData) type, or it is a Future.

If the type of the thermo attribute is Wilhoit, or ThermoData, then it is converted into a NASA format.

If it is a Future, then a blocking call is made to retrieve the NASA object. If the thermo object did not exist
yet, the thermo object is generated.

get_transport_data()
Returns the transport data associated with this species, and calculates it if it is not yet available.

has_reactive_molecule()
True if the species has at least one reactive molecule, False otherwise

has_statmech()
Return True if the species has statistical mechanical parameters, or False otherwise.

has_thermo()
Return True if the species has thermodynamic parameters, or False otherwise.

inchi
InChI string representation of this species. Read-only.

is_identical(other, strict)
Return True if at least one molecule of the species is identical to other, which can be either a Molecule
object or a Species object.

If strict=False, performs the check ignoring electrons and resonance structures.

is_isomorphic(other, generate_initial_map, save_order, strict)
Return True if the species is isomorphic to other, which can be either a Molecule object or a Species
object.

Parameters

• generate_initial_map (bool, optional) – If True, make initial map by matching
labeled atoms

• save_order (bool, optional) – if True, reset atom order after performing atom iso-
morphism

• strict (bool, optional) – If False, perform isomorphism ignoring electrons.

is_structure_in_list(species_list)
Return True if at least one Molecule in self is isomorphic with at least one other Molecule in at least one
Species in species list.

is_surface_site()
Return True if the species is a vacant surface site.

molecular_weight
value_si is in kg/molecule not kg/mol)

Type The molecular weight of the species. (Note

210 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

multiplicity
Fingerprint of this species, taken from molecule attribute. Read-only.

set_e0_with_thermo()
Helper method that sets species’ E0 using the species’ thermo data

set_structure(structure)
Set self.molecule from structure which could be either a SMILES string or an adjacency list multi-line
string

smiles
SMILES string representation of this species. Read-only.

Note that SMILES representations for different resonance structures of the same species may be different.

sorting_key
Returns a sorting key for comparing Species objects. Read-only

to_adjacency_list()
Return a string containing each of the molecules’ adjacency lists.

to_cantera(use_chemkin_identifier)
Converts the RMG Species object to a Cantera Species object with the appropriate thermo data.

If use_chemkin_identifier is set to False, the species label is used instead. Be sure that species’ labels are
unique when setting it False.

to_chemkin()
Return the chemkin-formatted string for this species.

rmgpy.species.TransitionState

class rmgpy.species.TransitionState
A chemical transition state, representing a first-order saddle point on a potential energy surface. The attributes
are:

Attribute TDescription
label A descriptive string label
conformer The molecular degrees of freedom model for the species
frequency The negative frequency of the first-order saddle point
tunneling The type of tunneling model to use for tunneling through the reaction barrier
degeneracy The reaction path degeneracy

calculate_tunneling_factor(T)
Calculate and return the value of the canonical tunneling correction factor for the reaction at the given
temperature T in K.

calculate_tunneling_function(e_list)
Calculate and return the value of the microcanonical tunneling correction for the reaction at the given
energies e_list in J/mol.

frequency
The negative frequency of the first-order saddle point.

get_density_of_states(e_list)
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies e_list in J/mol above the ground state.

get_enthalpy(T)
Return the enthalpy in J/mol for the transition state at the specified temperature T in K.

1.13. Species (rmgpy.species) 211



RMG-Py API Reference, Release 3.1.0

get_entropy(T)
Return the entropy in J/mol*K for the transition state at the specified temperature T in K.

get_free_energy(T)
Return the Gibbs free energy in J/mol for the transition state at the specified temperature T in K.

get_heat_capacity(T)
Return the heat capacity in J/mol*K for the transition state at the specified temperature T in K.

get_partition_function(T)
Return the partition function for the transition state at the specified temperature T in K.

get_sum_of_states(e_list)
Return the sum of states 𝑁(𝐸) at the specified energies e_list in J/mol.

1.14 Statistical mechanics (rmgpy.statmech)

The rmgpy.statmech subpackage contains classes that represent various statistical mechanical models of molecular
degrees of freedom. These models enable the computation of macroscopic parameters (e.g. thermodynamics, kinetics,
etc.) from microscopic parameters.

A molecular system consisting of 𝑁 atoms is described by 3𝑁 molecular degrees of freedom. Three of these modes
involve translation of the system as a whole. Another three of these modes involve rotation of the system as a whole,
unless the system is linear (e.g. diatomics), for which there are only two rotational modes. The remaining 3𝑁 − 6
(or 3𝑁 − 5 if linear) modes involve internal motion of the atoms within the system. Many of these modes are well-
described as harmonic oscillations, while others are better modeled as torsional rotations around a bond within the
system.

Molecular degrees of freedom are mathematically represented using the Schrodinger equation �̂�Ψ = 𝐸Ψ. By solving
the Schrodinger equation, we can determine the available energy states of the molecular system, which enables com-
putation of macroscopic parameters. Depending on the temperature of interest, some modes (e.g. vibrations) require
a quantum mechanical treatment, while others (e.g. translation, rotation) can be described using a classical solution.

1.14.1 Translational degrees of freedom

Class Description
IdealGasTranslation A model of three-dimensional translation of an ideal gas

1.14.2 Rotational degrees of freedom

Class Description
LinearRotor A model of two-dimensional rigid rotation of a linear molecule
NonlinearRotor A model of three-dimensional rigid rotation of a nonlinear molecule
KRotor A model of one-dimensional rigid rotation of a K-rotor
SphericalTopRotor A model of three-dimensional rigid rotation of a spherical top molecule

212 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

1.14.3 Vibrational degrees of freedom

Class Description
HarmonicOscillator A model of a set of one-dimensional harmonic oscillators

1.14.4 Torsional degrees of freedom

Class Description
HinderedRotor A model of a one-dimensional hindered rotation

1.14.5 The Schrodinger equation

Class Description
get_partition_function()Calculate the partition function at a given temperature from energy levels and degen-

eracies
get_heat_capacity() Calculate the dimensionless heat capacity at a given temperature from energy levels

and degeneracies
get_enthalpy() Calculate the enthalpy at a given temperature from energy levels and degeneracies
get_entropy() Calculate the entropy at a given temperature from energy levels and degeneracies
get_sum_of_states() Calculate the sum of states for a given energy domain from energy levels and degen-

eracies
get_density_of_states()Calculate the density of states for a given energy domain from energy levels and

degeneracies

1.14.6 Convolution

Class Description
convolve() Return the convolution of two arrays
convolve_bs()Convolve a degree of freedom into a density or sum of states using the Beyer-Swinehart (BS)

direct count algorithm
convolve_bssr()Convolve a degree of freedom into a density or sum of states using the Beyer-Swinehart-Stein-

Rabinovitch (BSSR) direct count algorithm

1.14.7 Molecular conformers

Class Description
Conformer A model of a molecular conformation

1.14. Statistical mechanics (rmgpy.statmech) 213



RMG-Py API Reference, Release 3.1.0

Translational degrees of freedom

class rmgpy.statmech.IdealGasTranslation(mass=None, quantum=False)
A statistical mechanical model of translation in an 3-dimensional infinite square well by an ideal gas. The
attributes are:

Attribute Description
mass The mass of the translating object
quantum True to use the quantum mechanical model, False to use the classical model

Translational energies are much smaller than 𝑘B𝑇 except for temperatures approaching absolute zero, so a
classical treatment of translation is more than adequate.

The translation of an ideal gas – a gas composed of randomly-moving, noninteracting particles of negligible
size – in three dimensions can be modeled using the particle-in-a-box model. In this model, a gas particle is
confined to a three-dimensional box of size 𝐿𝑥𝐿𝑦𝐿𝑧 = 𝑉 with the following potential:

𝑉 (𝑥, 𝑦, 𝑧) =

{︃
0 0 ≤ 𝑥 ≤ 𝐿𝑥, 0 ≤ 𝑦 ≤ 𝐿𝑦, 0 ≤ 𝑧 ≤ 𝐿𝑧

∞ otherwise

The time-independent Schrodinger equation for this system (within the box) is given by

− ~2

2𝑀

(︂
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2

)︂
Ψ(𝑥, 𝑦, 𝑧) = 𝐸Ψ(𝑥, 𝑦, 𝑧)

where 𝑀 is the total mass of the particle. Because the box is finite in all dimensions, the solution of the above
is quantized with the following energy levels:

𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧 =
~2

2𝑀

[︃(︂
𝑛𝑥𝜋

𝐿𝑥

)︂2

+

(︂
𝑛𝑦𝜋

𝐿𝑦

)︂2

+

(︂
𝑛𝑧𝜋

𝐿𝑧

)︂2
]︃

𝑛𝑥, 𝑛𝑦, 𝑛𝑧 = 1, 2, . . .

Above we have introduced 𝑛𝑥, 𝑛𝑦 , and 𝑛𝑧 as quantum numbers. The quantum mechanical partition function is
obtained by summing over the above energy levels:

𝑄trans(𝑇 ) =

∞∑︁
𝑛𝑥=1

∞∑︁
𝑛𝑦=1

∞∑︁
𝑛𝑧=1

exp

(︂
−
𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧

𝑘B𝑇

)︂
In almost all cases the temperature of interest is large relative to the energy spacing; in this limit we can obtain
a closed-form analytical expression for the translational partition function in the classical limit:

𝑄cl
trans(𝑇 ) =

(︂
2𝜋𝑀𝑘B𝑇

ℎ2

)︂3/2

𝑉

For a constant-pressure problem we can use the ideal gas law to replace 𝑉 with 𝑘B𝑇/𝑃 . This gives the partition
function a temperature dependence of 𝑇 5/2.

as_dict()
A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

get_density_of_states(self, ndarray e_list, ndarray dens_states_0=None)→ ndarray
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies e_list in J/mol above the ground state. If
an initial density of states dens_states_0 is given, the rotor density of states will be convoluted into these
states.

214 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

get_enthalpy(self, double T)→ double
Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

get_entropy(self, double T)→ double
Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

get_heat_capacity(self, double T)→ double
Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

get_partition_function(self, double T)→ double
Return the value of the partition function 𝑄(𝑇 ) at the specified temperature T in K.

get_sum_of_states(self, ndarray e_list, ndarray sum_states_0=None)→ ndarray
Return the sum of states 𝑁(𝐸) at the specified energies e_list in J/mol above the ground state. If an initial
sum of states sum_states_0 is given, the rotor sum of states will be convoluted into these states.

make_object(data, class_dict)
A helper function for constructing objects from a dictionary (used when loading YAML files)

Parameters

• data (dict) – The dictionary representation of the object

• class_dict (dict) – A mapping of class names to the classes themselves

Returns None

mass
The mass of the translating object.

quantum
‘bool’

Type quantum

rmgpy.statmech.LinearRotor

class rmgpy.statmech.LinearRotor(inertia=None, symmetry=1, quantum=False, rotationalCon-
stant=None)

A statistical mechanical model of a two-dimensional (linear) rigid rotor. The attributes are:

Attribute Description
inertia The moment of inertia of the rotor
rotationalConstant The rotational constant of the rotor
symmetry The symmetry number of the rotor
quantum True to use the quantum mechanical model, False to use the classical model

Note that the moment of inertia and the rotational constant are simply two ways of representing the same
quantity; only one of these can be specified independently.

In the majority of chemical applications, the energies involved in the rigid rotor place it very nearly in the
classical limit at all relevant temperatures; therefore, the classical model is used by default.

A linear rigid rotor is modeled as a pair of point masses 𝑚1 and 𝑚2 separated by a distance 𝑅. Since we
are modeling the rotation of this system, we choose to work in spherical coordinates. Following the physics
convention – where 0 ≤ 𝜃 ≤ 𝜋 is the zenith angle and 0 ≤ 𝜑 ≤ 2𝜋 is the azimuth – the Schrodinger equation
for the rotor is given by

−~2

2𝐼

[︂
1

sin 𝜃

𝜕

𝜕𝜃

(︂
sin 𝜃

𝜕

𝜕𝜃

)︂
+

1

sin2 𝜃

𝜕2

𝜕𝜑2

]︂
Ψ(𝜃, 𝜑) = 𝐸Ψ(𝜃, 𝜑)

1.14. Statistical mechanics (rmgpy.statmech) 215



RMG-Py API Reference, Release 3.1.0

where 𝐼 ≡ 𝜇𝑅2 is the moment of inertia of the rotating body, and 𝜇 ≡ 𝑚1𝑚2/(𝑚1 + 𝑚2) is the reduced mass.
Note that there is no potential term in the above expression; for this reason, a rigid rotor is often referred to as a
free rotor. Solving the Schrodinger equation gives the energy levels 𝐸𝐽 and corresponding degeneracies 𝑔𝐽 for
the linear rigid rotor as

𝐸𝐽 = 𝐵𝐽(𝐽 + 1) 𝐽 = 0, 1, 2, . . .

𝑔𝐽 = 2𝐽 + 1

where 𝐽 is the quantum number for the rotor – sometimes called the total angular momentum quantum number
– and 𝐵 ≡ ~2/2𝐼 is the rotational constant.

Using these expressions for the energy levels and corresponding degeneracies, we can evaluate the partition
function for the linear rigid rotor:

𝑄rot(𝑇 ) =
1

𝜎

∞∑︁
𝐽=0

(2𝐽 + 1)𝑒−𝐵𝐽(𝐽+1)/𝑘B𝑇

In many cases the temperature of interest is large relative to the energy spacing; in this limit we can obtain a
closed-form analytical expression for the linear rotor partition function in the classical limit:

𝑄cl
rot(𝑇 ) =

1

𝜎

8𝜋2𝐼𝑘B𝑇

ℎ2

Above we have also introduced 𝜎 as the symmetry number of the rigid rotor.

as_dict()
A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

get_density_of_states(self, ndarray e_list, ndarray dens_states_0=None)→ ndarray
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies e_list in J/mol above the ground state. If
an initial density of states dens_states_0 is given, the rotor density of states will be convoluted into these
states.

get_enthalpy(self, double T)→ double
Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

get_entropy(self, double T)→ double
Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

get_heat_capacity(self, double T)→ double
Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

get_level_degeneracy(self, int J)→ int
Return the degeneracy of level J.

get_level_energy(self, int J)→ double
Return the energy of level J in kJ/mol.

get_partition_function(self, double T)→ double
Return the value of the partition function 𝑄(𝑇 ) at the specified temperature T in K.

get_sum_of_states(self, ndarray e_list, ndarray sum_states_0=None)→ ndarray
Return the sum of states 𝑁(𝐸) at the specified energies e_list in J/mol above the ground state. If an initial
sum of states sum_states_0 is given, the rotor sum of states will be convoluted into these states.

inertia
The moment of inertia of the rotor.

216 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

make_object(self, dict data, dict class_dict)

quantum
‘bool’

Type quantum

rotationalConstant
The rotational constant of the rotor.

symmetry
‘int’

Type symmetry

rmgpy.statmech.NonlinearRotor

class rmgpy.statmech.NonlinearRotor(inertia=None, symmetry=1, quantum=False, rotationalCon-
stant=None)

A statistical mechanical model of an N-dimensional nonlinear rigid rotor. The attributes are:

Attribute Description
inertia The moments of inertia of the rotor
rotationalConstant The rotational constants of the rotor
symmetry The symmetry number of the rotor
quantum True to use the quantum mechanical model, False to use the classical model

Note that the moments of inertia and the rotational constants are simply two ways of representing the same
quantity; only one set of these can be specified independently.

In the majority of chemical applications, the energies involved in the rigid rotor place it very nearly in the
classical limit at all relevant temperatures; therefore, the classical model is used by default. In the current
implementation, the quantum mechanical model has not been implemented, and a NotImplementedError
will be raised if you try to use it.

A nonlinear rigid rotor is the generalization of the linear rotor to a nonlinear polyatomic system. Such a system
is characterized by three moments of inertia 𝐼A, 𝐼B, and 𝐼C instead of just one. The solution to the Schrodinger
equation for the quantum nonlinear rotor is not well defined, so we will simply show the classical result instead:

𝑄cl
rot(𝑇 ) =

𝜋1/2

𝜎

(︂
8𝑘B𝑇

ℎ2

)︂3/2√︀
𝐼A𝐼B𝐼C

as_dict()
A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

get_density_of_states(self, ndarray e_list, ndarray dens_states_0=None)→ ndarray
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies e_list in J/mol above the ground state. If
an initial density of states dens_states_0 is given, the rotor density of states will be convoluted into these
states.

get_enthalpy(self, double T)→ double
Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

1.14. Statistical mechanics (rmgpy.statmech) 217



RMG-Py API Reference, Release 3.1.0

get_entropy(self, double T)→ double
Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

get_heat_capacity(self, double T)→ double
Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

get_partition_function(self, double T)→ double
Return the value of the partition function 𝑄(𝑇 ) at the specified temperature T in K.

get_sum_of_states(self, ndarray e_list, ndarray sum_states_0=None)→ ndarray
Return the sum of states 𝑁(𝐸) at the specified energies e_list in J/mol above the ground state. If an initial
sum of states sum_states_0 is given, the rotor sum of states will be convoluted into these states.

inertia
The moments of inertia of the rotor.

make_object(self, dict data, dict class_dict)

quantum
‘bool’

Type quantum

rotationalConstant
The rotational constant of the rotor.

symmetry
‘int’

Type symmetry

rmgpy.statmech.KRotor

class rmgpy.statmech.KRotor(inertia=None, symmetry=1, quantum=False, rotationalConstant=None)
A statistical mechanical model of an active K-rotor (a one-dimensional rigid rotor). The attributes are:

Attribute Description
inertia The moment of inertia of the rotor in amu*angstrom^2
rotationalConstant The rotational constant of the rotor in cm^-1
symmetry The symmetry number of the rotor
quantum True to use the quantum mechanical model, False to use the classical model

Note that the moment of inertia and the rotational constant are simply two ways of representing the same
quantity; only one of these can be specified independently.

In the majority of chemical applications, the energies involved in the K-rotor place it very nearly in the classical
limit at all relevant temperatures; therefore, the classical model is used by default.

The energy levels 𝐸𝐾 of the K-rotor are given by

𝐸𝐾 = 𝐵𝐾2 𝐾 = 0,±1,±2, . . .

where 𝐾 is the quantum number for the rotor and 𝐵 ≡ ~2/2𝐼 is the rotational constant.

Using these expressions for the energy levels and corresponding degeneracies, we can evaluate the partition
function for the K-rotor:

𝑄rot(𝑇 ) =
1

𝜎

(︃
1 +

∞∑︁
𝐾=1

2𝑒−𝐵𝐾2/𝑘B𝑇

)︃

218 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

In many cases the temperature of interest is large relative to the energy spacing; in this limit we can obtain a
closed-form analytical expression for the linear rotor partition function in the classical limit:

𝑄cl
rot(𝑇 ) =

1

𝜎

(︂
8𝜋2𝐼𝑘B𝑇

ℎ2

)︂1/2

where 𝜎 is the symmetry number of the K-rotor.

as_dict()
A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

get_density_of_states(self, ndarray e_list, ndarray dens_states_0=None)→ ndarray
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies e_list in J/mol above the ground state. If
an initial density of states dens_states_0 is given, the rotor density of states will be convoluted into these
states.

get_enthalpy(self, double T)→ double
Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

get_entropy(self, double T)→ double
Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

get_heat_capacity(self, double T)→ double
Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

get_level_degeneracy(self, int J)→ int
Return the degeneracy of level J.

get_level_energy(self, int J)→ double
Return the energy of level J in kJ/mol.

get_partition_function(self, double T)→ double
Return the value of the partition function 𝑄(𝑇 ) at the specified temperature T in K.

get_sum_of_states(self, ndarray e_list, ndarray sum_states_0=None)→ ndarray
Return the sum of states 𝑁(𝐸) at the specified energies e_list in J/mol above the ground state. If an initial
sum of states sum_states_0 is given, the rotor sum of states will be convoluted into these states.

inertia
The moment of inertia of the rotor.

make_object(self, dict data, dict class_dict)

quantum
‘bool’

Type quantum

rotationalConstant
The rotational constant of the rotor.

symmetry
‘int’

Type symmetry

1.14. Statistical mechanics (rmgpy.statmech) 219



RMG-Py API Reference, Release 3.1.0

rmgpy.statmech.SphericalTopRotor

class rmgpy.statmech.SphericalTopRotor(inertia=None, symmetry=1, quantum=False, rotational-
Constant=None)

A statistical mechanical model of a three-dimensional rigid rotor with a single rotational constant: a spherical
top. The attributes are:

Attribute Description
inertia The moment of inertia of the rotor
rotationalConstant The rotational constant of the rotor
symmetry The symmetry number of the rotor
quantum True to use the quantum mechanical model, False to use the classical model

Note that the moment of inertia and the rotational constant are simply two ways of representing the same
quantity; only one of these can be specified independently.

In the majority of chemical applications, the energies involved in the rigid rotor place it very nearly in the
classical limit at all relevant temperatures; therefore, the classical model is used by default.

A spherical top rotor is simply the three-dimensional equivalent of a linear rigid rotor. Unlike the nonlinear
rotor, all three moments of inertia of a spherical top are equal, i.e. 𝐼A = 𝐼B = 𝐼C = 𝐼 . The energy levels 𝐸𝐽

and corresponding degeneracies 𝑔𝐽 of the spherial top rotor are given by

𝐸𝐽 = 𝐵𝐽(𝐽 + 1) 𝐽 = 0, 1, 2, . . .

𝑔𝐽 = (2𝐽 + 1)2

where 𝐽 is the quantum number for the rotor and 𝐵 ≡ ~2/2𝐼 is the rotational constant.

Using these expressions for the energy levels and corresponding degeneracies, we can evaluate the partition
function for the spherical top rotor:

𝑄rot(𝑇 ) =
1

𝜎

∞∑︁
𝐽=0

(2𝐽 + 1)2𝑒−𝐵𝐽(𝐽+1)/𝑘B𝑇

In many cases the temperature of interest is large relative to the energy spacing; in this limit we can obtain a
closed-form analytical expression for the linear rotor partition function in the classical limit:

𝑄cl
rot(𝑇 ) =

1

𝜎

(︂
8𝜋2𝐼𝑘B𝑇

ℎ2

)︂3/2

where 𝜎 is the symmetry number of the spherical top. Note that the above differs from the nonlinear rotor
partition function by a factor of 𝜋.

as_dict()
A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

get_density_of_states(self, ndarray e_list, ndarray dens_states_0=None)→ ndarray
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies e_list in J/mol above the ground state. If
an initial density of states dens_states_0 is given, the rotor density of states will be convoluted into these
states.

get_enthalpy(self, double T)→ double
Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

220 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

get_entropy(self, double T)→ double
Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

get_heat_capacity(self, double T)→ double
Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

get_level_degeneracy(self, int J)→ int
Return the degeneracy of level J.

get_level_energy(self, int J)→ double
Return the energy of level J in kJ/mol.

get_partition_function(self, double T)→ double
Return the value of the partition function 𝑄(𝑇 ) at the specified temperature T in K.

get_sum_of_states(self, ndarray e_list, ndarray sum_states_0=None)→ ndarray
Return the sum of states 𝑁(𝐸) at the specified energies e_list in J/mol above the ground state. If an initial
sum of states sum_states_0 is given, the rotor sum of states will be convoluted into these states.

inertia
The moment of inertia of the rotor.

make_object(self, dict data, dict class_dict)

quantum
‘bool’

Type quantum

rotationalConstant
The rotational constant of the rotor.

symmetry
‘int’

Type symmetry

rmgpy.statmech.HarmonicOscillator

class rmgpy.statmech.HarmonicOscillator(frequencies=None, quantum=True)
A statistical mechanical model of a set of one-dimensional independent harmonic oscillators. The attributes are:

Attribute Description
frequencies The vibrational frequencies of the oscillators
quantum True to use the quantum mechanical model, False to use the classical model

In the majority of chemical applications, the energy levels of the harmonic oscillator are of similar magnitude to
𝑘B𝑇 , requiring a quantum mechanical treatment. Fortunately, the harmonic oscillator has an analytical quantum
mechanical solution.

Many vibrational motions are well-described as one-dimensional quantum harmonic oscillators. The time-
independent Schrodinger equation for such an oscillator is given by

− ~2

2𝑚

𝜕2

𝜕𝑥2
Ψ(𝑥) +

1

2
𝑚𝜔2𝑥2Ψ(𝑥) = 𝐸Ψ(𝑥)

where 𝑚 is the total mass of the particle. The harmonic potential results in quantized solutions to the above with
the following energy levels:

𝐸𝑛 =

(︂
𝑛 +

1

2

)︂
~𝜔 𝑛 = 0, 1, 2, . . .

1.14. Statistical mechanics (rmgpy.statmech) 221



RMG-Py API Reference, Release 3.1.0

Above we have introduced 𝑛 as the quantum number. Note that, even in the ground state (𝑛 = 0), the harmonic
oscillator has an energy that is not zero; this energy is called the zero-point energy.

The harmonic oscillator partition function is obtained by summing over the above energy levels:

𝑄vib(𝑇 ) =

∞∑︁
𝑛=0

exp

(︃
−
(︀
𝑛 + 1

2

)︀
~𝜔

𝑘B𝑇

)︃

This summation can be evaluated explicitly to give a closed-form analytical expression for the vibrational parti-
tion function of a quantum harmonic oscillator:

𝑄vib(𝑇 ) =
𝑒−~𝜔/2𝑘B𝑇

1 − 𝑒−~𝜔/𝑘B𝑇

In RMG the convention is to place the zero-point energy in with the ground-state energy of the system instead
of the numerator of the vibrational partition function, which gives

𝑄vib(𝑇 ) =
1

1 − 𝑒−~𝜔/𝑘B𝑇

The energy levels of the harmonic oscillator in chemical systems are often significant compared to the tem-
perature of interest, so we usually use the quantum result. However, the classical limit is provided here for
completeness:

𝑄cl
vib(𝑇 ) =

𝑘B𝑇

~𝜔

as_dict()
A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

frequencies
The vibrational frequencies of the oscillators.

get_density_of_states(self, ndarray e_list, ndarray dens_states_0=None)→ ndarray
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies e_list in J/mol above the ground state. If
an initial density of states dens_states_0 is given, the rotor density of states will be convoluted into these
states.

get_enthalpy(self, double T)→ double
Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

get_entropy(self, double T)→ double
Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

get_heat_capacity(self, double T)→ double
Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

get_partition_function(self, double T)→ double
Return the value of the partition function 𝑄(𝑇 ) at the specified temperature T in K.

get_sum_of_states(self, ndarray e_list, ndarray sum_states_0=None)→ ndarray
Return the sum of states 𝑁(𝐸) at the specified energies e_list in J/mol above the ground state. If an initial
sum of states sum_states_0 is given, the rotor sum of states will be convoluted into these states.

make_object(data, class_dict)
A helper function for constructing objects from a dictionary (used when loading YAML files)

222 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

Parameters

• data (dict) – The dictionary representation of the object

• class_dict (dict) – A mapping of class names to the classes themselves

Returns None

quantum
‘bool’

Type quantum

Torsional degrees of freedom

class rmgpy.statmech.HinderedRotor(inertia=None, symmetry=1, barrier=None, fourier=None, rota-
tionalConstant=None, quantum=True, semiclassical=True, fre-
quency=None, energies=None)

A statistical mechanical model of a one-dimensional hindered rotor. The attributes are:

Attribute Description
inertia The moment of inertia of the rotor
rotationalConstant The rotational constant of the rotor
symmetry The symmetry number of the rotor
fourier The 2𝑥𝑁 array of Fourier series coefficients
barrier The barrier height of the cosine potential
quantum True to use the quantum mechanical model, False to use the classical model
semiclassical True to use the semiclassical correction, False otherwise

Note that the moment of inertia and the rotational constant are simply two ways of representing the same
quantity; only one of these can be specified independently.

The Schrodinger equation for a one-dimensional hindered rotor is given by

−~2

2𝐼

𝑑2

𝑑𝜑2
Ψ(𝜑) + 𝑉 (𝜑)Ψ(𝜑) = 𝐸Ψ(𝜑)

where 𝐼 is the reduced moment of inertia of the torsion and 𝑉 (𝜑) describes the potential of the torsion. There
are two common forms for the potential: a simple cosine of the form

𝑉 (𝜑) =
1

2
𝑉0 (1 − cos𝜎𝜑)

where 𝑉0 is the barrier height and 𝜎 is the symmetry number, or a more general Fourier series of the form

𝑉 (𝜑) = 𝐴 +

𝐶∑︁
𝑘=1

(𝑎𝑘 cos 𝑘𝜑 + 𝑏𝑘 sin 𝑘𝜑)

where 𝐴, 𝑎𝑘 and 𝑏𝑘 are fitted coefficients. Both potentials are typically defined such that the minimum of the
potential is zero and is found at 𝜑 = 0.

For either the cosine or Fourier series potentials, the energy levels of the quantum hindered rotor must be
determined numerically. The cosine potential does permit a closed-form representation of the classical partition
function, however:

𝑄cl
hind(𝑇 ) =

(︂
2𝜋𝐼𝑘B𝑇

ℎ2

)︂1/2
2𝜋

𝜎
exp

(︂
− 𝑉0

2𝑘B𝑇

)︂
𝐼0

(︂
𝑉0

2𝑘B𝑇

)︂

1.14. Statistical mechanics (rmgpy.statmech) 223



RMG-Py API Reference, Release 3.1.0

A semiclassical correction to the above is usually required to provide a reasonable estiamate of the partition
function:

𝑄semi
hind(𝑇 ) =

𝑄quant
vib (𝑇 )

𝑄cl
vib(𝑇 )

𝑄cl
hind(𝑇 )

=
ℎ𝜈

𝑘B𝑇

1

1 − exp (−ℎ𝜈/𝑘B𝑇 )

(︂
2𝜋𝐼𝑘B𝑇

ℎ2

)︂1/2
2𝜋

𝜎
exp

(︂
− 𝑉0

2𝑘B𝑇

)︂
𝐼0

(︂
𝑉0

2𝑘B𝑇

)︂
Above we have defined 𝜈 as the vibrational frequency of the hindered rotor:

𝜈 ≡ 𝜎

2𝜋

√︂
𝑉0

2𝐼

as_dict()
A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

barrier
The barrier height of the cosine potential.

energies
numpy.ndarray

Type energies

fit_cosine_potential_to_data(self, ndarray angle, ndarray V)
Fit the given angles in radians and corresponding potential energies in J/mol to the cosine potential. For
best results, the angle should begin at zero and end at 2𝜋, with the minimum energy conformation having
a potential of zero be placed at zero angle. The fit is attempted at several possible values of the symmetry
number in order to determine which one is correct.

fit_fourier_potential_to_data(self, ndarray angle, ndarray V)
Fit the given angles in radians and corresponding potential energies in J/mol to the Fourier series potential.
For best results, the angle should begin at zero and end at 2𝜋, with the minimum energy conformation
having a potential of zero be placed at zero angle.

fourier
The 2𝑥𝑁 array of Fourier series coefficients.

frequency
‘double’

Type frequency

get_density_of_states(self, ndarray e_list, ndarray dens_states_0=None)→ ndarray
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies e_list in J/mol above the ground state. If
an initial density of states dens_states_0 is given, the rotor density of states will be convoluted into these
states.

get_enthalpy(self, double T)→ double
Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

get_entropy(self, double T)→ double
Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

get_frequency(self)→ double
Return the frequency of vibration in cm^-1 corresponding to the limit of harmonic oscillation.

224 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

get_hamiltonian(self, int n_basis)→ ndarray
Return the to the Hamiltonian matrix for the hindered rotor for the given number of basis functions n_basis.
The Hamiltonian matrix is returned in banded lower triangular form and with units of J/mol.

get_heat_capacity(self, double T)→ double
Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

get_level_degeneracy(self, int J)→ int
Return the degeneracy of level J.

get_level_energy(self, int J)→ double
Return the energy of level J in J.

get_partition_function(self, double T)→ double
Return the value of the partition function 𝑄(𝑇 ) at the specified temperature T in K.

get_potential(self, double phi)→ double
Return the value of the hindered rotor potential 𝑉 (𝜑) in J/mol at the angle phi in radians.

get_sum_of_states(self, ndarray e_list, ndarray sum_states_0=None)→ ndarray
Return the sum of states 𝑁(𝐸) at the specified energies e_list in J/mol above the ground state. If an initial
sum of states sum_states_0 is given, the rotor sum of states will be convoluted into these states.

inertia
The moment of inertia of the rotor.

make_object(self, dict data, dict class_dict)

quantum
‘bool’

Type quantum

rotationalConstant
The rotational constant of the rotor.

semiclassical
‘bool’

Type semiclassical

solve_schrodinger_equation(self, int n_basis=401)→ ndarray
Solves the one-dimensional time-independent Schrodinger equation to determine the energy levels of a
one-dimensional hindered rotor with a Fourier series potential using n_basis basis functions. For the
purposes of this function it is usually sufficient to use 401 basis functions (the default). Returns the energy
eigenvalues of the Hamiltonian matrix in J/mol.

symmetry
‘int’

Type symmetry

1.14. Statistical mechanics (rmgpy.statmech) 225



RMG-Py API Reference, Release 3.1.0

rmgpy.statmech.schrodinger

The rmgpy.statmech.schrodinger module contains functionality for working with the Schrodinger equation and
its solution. In particular, it contains functions for using the energy levels and corresponding degeneracies obtained
from solving the Schrodinger equation to compute various thermodynamic and statistical mechanical properties, such
as heat capacity, enthalpy, entropy, partition function, and the sum and density of states.

rmgpy.statmech.schrodinger.convolve(ndarray rho1, ndarray rho2)
Return the convolution of two arrays rho1 and rho2.

rmgpy.statmech.schrodinger.convolve_bs(ndarray e_list, ndarray rho0, double energy, int degener-
acy=1)

Convolve a molecular degree of freedom into a density or sum of states using the Beyer-Swinehart (BS) direct
count algorithm. This algorithm is suitable for unevenly-spaced energy levels in the array of energy grains e_list
(in J/mol), but assumes the solution of the Schrodinger equation gives evenly-spaced energy levels with spacing
energy in kJ/mol and degeneracy degeneracy.

rmgpy.statmech.schrodinger.convolve_bssr(ndarray e_list, ndarray rho0, energy, degener-
acy=unit_degeneracy, int n0=0)

Convolve a molecular degree of freedom into a density or sum of states using the Beyer-Swinehart-Stein-
Rabinovitch (BSSR) direct count algorithm. This algorithm is suitable for unevenly-spaced energy levels in
both the array of energy grains e_list (in J/mol) and the energy levels corresponding to the solution of the
Schrodinger equation.

rmgpy.statmech.schrodinger.get_density_of_states(ndarray e_list, energy, degener-
acy=unit_degeneracy, int n0=0, ndarray
dens_states_0=None)→ ndarray

Return the values of the dimensionless density of states 𝜌(𝐸) 𝑑𝐸 for a given set of energies e_list in J/mol above
the ground state using an initial density of states dens_states_0. The solution to the Schrodinger equation is given
using functions energy and degeneracy that accept as argument a quantum number and return the corresponding
energy in J/mol and degeneracy of that level. The quantum number always begins at n0 and increases by ones.

rmgpy.statmech.schrodinger.get_enthalpy(double T, energy, degeneracy=unit_degeneracy, int
n0=0, int nmax=10000, double tol=1e-12)→ double

Return the value of the dimensionless enthalpy 𝐻(𝑇 )/𝑅𝑇 at a given temperature T in K. The solution to the
Schrodinger equation is given using functions energy and degeneracy that accept as argument a quantum number
and return the corresponding energy in J/mol and degeneracy of that level. The quantum number always begins
at n0 and increases by ones. You can also change the relative tolerance tol and the maximum allowed value of
the quantum number nmax.

rmgpy.statmech.schrodinger.get_entropy(double T, energy, degeneracy=unit_degeneracy, int n0=0,
int nmax=10000, double tol=1e-12)→ double

Return the value of the dimensionless entropy 𝑆(𝑇 )/𝑅 at a given temperature T in K. The solution to the
Schrodinger equation is given using functions energy and degeneracy that accept as argument a quantum number
and return the corresponding energy in J/mol and degeneracy of that level. The quantum number always begins
at n0 and increases by ones. You can also change the relative tolerance tol and the maximum allowed value of
the quantum number nmax.

rmgpy.statmech.schrodinger.get_heat_capacity(double T, energy, degeneracy=unit_degeneracy,
int n0=0, int nmax=10000, double tol=1e-12) →
double

Return the value of the dimensionless heat capacity 𝐶v(𝑇 )/𝑅 at a given temperature T in K. The solution to
the Schrodinger equation is given using functions energy and degeneracy that accept as argument a quantum
number and return the corresponding energy in J/mol and degeneracy of that level. The quantum number always
begins at n0 and increases by ones. You can also change the relative tolerance tol and the maximum allowed
value of the quantum number nmax.

226 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

rmgpy.statmech.schrodinger.get_partition_function(double T, energy, degener-
acy=unit_degeneracy, int n0=0, int
nmax=10000, double tol=1e-12) →
double

Return the value of the partition function 𝑄(𝑇 ) at a given temperature T in K. The solution to the Schrodinger
equation is given using functions energy and degeneracy that accept as argument a quantum number and return
the corresponding energy in J/mol and degeneracy of that level. The quantum number always begins at n0 and
increases by ones. You can also change the relative tolerance tol and the maximum allowed value of the quantum
number nmax.

rmgpy.statmech.schrodinger.get_sum_of_states(ndarray e_list, energy, degener-
acy=unit_degeneracy, int n0=0, ndarray
sum_states_0=None)→ ndarray

Return the values of the sum of states 𝑁(𝐸) for a given set of energies e_list in J/mol above the ground state
using an initial sum of states sum_states_0. The solution to the Schrodinger equation is given using functions
energy and degeneracy that accept as argument a quantum number and return the corresponding energy in J/mol
and degeneracy of that level. The quantum number always begins at n0 and increases by ones.

rmgpy.statmech.schrodinger.unit_degeneracy(n)

rmgpy.statmech.Conformer

class rmgpy.statmech.Conformer(E0=None, modes=None, spin_multiplicity=1, optical_isomers=1,
number=None, mass=None, coordinates=None)

A representation of an individual molecular conformation. The attributes are:

Attribute Description
E0 The ground-state energy (including zero-point energy) of the conformer
modes A list of the molecular degrees of freedom
spin_multiplicity The degeneracy of the electronic ground state
optical_isomers The number of optical isomers
number An array of atomic numbers of each atom in the conformer
mass An array of masses of each atom in the conformer
coordinates An array of 3D coordinates of each atom in the conformer

Note that the spin_multiplicity reflects the electronic mode of the molecular system.

E0
The ground-state energy (including zero-point energy) of the conformer.

as_dict()
A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

coordinates
An array of 3D coordinates of each atom in the conformer.

get_active_modes(self, bool active_j_rotor=False, bool active_k_rotor=True)→ list
Return a list of the active molecular degrees of freedom of the molecular system.

get_center_of_mass(self, atoms=None)→ ndarray
Calculate and return the [three-dimensional] position of the center of mass of the conformer in m. If a list
atoms of atoms is specified, only those atoms will be used to calculate the center of mass. Otherwise, all
atoms will be used.

1.14. Statistical mechanics (rmgpy.statmech) 227



RMG-Py API Reference, Release 3.1.0

get_density_of_states(self, ndarray e_list)→ ndarray
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies e_list above the ground state.

get_enthalpy(self, double T)→ double
Return the enthalpy in J/mol for the system at the specified temperature T in K.

get_entropy(self, double T)→ double
Return the entropy in J/mol*K for the system at the specified temperature T in K.

get_free_energy(self, double T)→ double
Return the Gibbs free energy in J/mol for the system at the specified temperature T in K.

get_heat_capacity(self, double T)→ double
Return the heat capacity in J/mol*K for the system at the specified temperature T in K.

get_internal_reduced_moment_of_inertia(self, pivots, top1, option=3)→ double
Calculate and return the reduced moment of inertia for an internal torsional rotation around the axis defined
by the two atoms in pivots. The list top1 contains the atoms that should be considered as part of the rotating
top; this list should contain the pivot atom connecting the top to the rest of the molecule. The procedure
used is that of Pitzer1, which is described as 𝐼(2,𝑜𝑝𝑡𝑖𝑜𝑛) by East and Radom2. In this procedure, the
molecule is divided into two tops: those at either end of the hindered rotor bond. The moment of inertia
of each top is evaluated using an axis determined by option. Finally, the reduced moment of inertia is
evaluated from the moment of inertia of each top via the formula (I1*I2)/(I1+I2).

option is an integer corresponding to one of three possible ways of calculating the internal reduced
moment of inertia, as discussed in East and Radom [2]

option
= 1

moments of inertia of each rotating group calculated about the axis containing the twisting
bond

option
= 2

each moment of inertia of each rotating group is calculated about an axis parallel to the
twisting bond and passing through its center of mass

option
= 3

moments of inertia of each rotating group calculated about the axis passing through the cen-
ters of mass of both groups

1

𝐼(2,𝑜𝑝𝑡𝑖𝑜𝑛)
=

1

𝐼1
+

1

𝐼2

get_moment_of_inertia_tensor(self)→ ndarray
Calculate and return the moment of inertia tensor for the conformer in kg*m^2. If the coordinates are not
at the center of mass, they are temporarily shifted there for the purposes of this calculation.

get_number_degrees_of_freedom(self)
Return the number of degrees of freedom in a species object, which should be 3N, and raises an exception
if it is not.

get_partition_function(self, double T)→ double
Return the partition function 𝑄(𝑇 ) for the system at the specified temperature T in K.

get_principal_moments_of_inertia(self)
Calculate and return the principal moments of inertia and corresponding principal axes for the conformer.
The moments of inertia are in kg*m^2, while the principal axes have unit length.

get_sum_of_states(self, ndarray e_list)→ ndarray
Return the sum of states 𝑁(𝐸) at the specified energies e_list in kJ/mol above the ground state.

1 Pitzer, K. S. J. Chem. Phys. 14, p. 239-243 (1946).
2 East, A. L. L. and Radom, L. J. Chem. Phys. 106, p. 6655-6674 (1997).

228 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

get_symmetric_top_rotors(self)
Return objects representing the external J-rotor and K-rotor under the symmetric top approximation. For
nonlinear molecules, the J-rotor is a 2D rigid rotor with a rotational constant 𝐵 determined as the geometric
mean of the two most similar rotational constants. The K-rotor is a 1D rigid rotor with a rotational constant
𝐴 − 𝐵 determined by the difference between the remaining molecular rotational constant and the J-rotor
rotational constant.

get_total_mass(self, atoms=None)→ double
Calculate and return the total mass of the atoms in the conformer in kg. If a list atoms of atoms is specified,
only those atoms will be used to calculate the center of mass. Otherwise, all atoms will be used.

make_object(data, class_dict)
A helper function for constructing objects from a dictionary (used when loading YAML files)

Parameters

• data (dict) – The dictionary representation of the object

• class_dict (dict) – A mapping of class names to the classes themselves

Returns None

mass
An array of masses of each atom in the conformer.

modes
list

Type modes

number
An array of atomic numbers of each atom in the conformer.

optical_isomers
‘int’

Type optical_isomers

spin_multiplicity
‘int’

Type spin_multiplicity

1.15 Thermodynamics (rmgpy.thermo)

The rmgpy.thermo subpackage contains classes that represent various thermodynamic models of heat capacity.

1.15.1 Heat capacity models

Class Description
ThermoData A heat capacity model based on a set of discrete heat capacity points
Wilhoit A heat capacity model based on the Wilhoit polynomial
NASA A heat capacity model based on a set of NASA polynomials
NASAPolynomial A heat capacity model based on a single NASA polynomial

1.15. Thermodynamics (rmgpy.thermo) 229



RMG-Py API Reference, Release 3.1.0

rmgpy.thermo.ThermoData

class rmgpy.thermo.ThermoData(Tdata=None, Cpdata=None, H298=None, S298=None, Cp0=None,
CpInf=None, Tmin=None, Tmax=None, E0=None, label='', com-
ment='')

A heat capacity model based on a set of discrete heat capacity data points. The attributes are:

Attribute Description
Tdata An array of temperatures at which the heat capacity is known
Cpdata An array of heat capacities at the given temperatures
H298 The standard enthalpy of formation at 298 K
S298 The standard entropy at 298 K
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
E0 The energy at zero Kelvin (including zero point energy)
comment Information about the model (e.g. its source)

Cp0
The heat capacity at zero temperature.

CpInf
The heat capacity at infinite temperature.

Cpdata
An array of heat capacities at the given temperatures.

E0
The ground state energy (J/mol) at zero Kelvin, including zero point energy, or None if not yet specified.

H298
The standard enthalpy of formation at 298 K.

S298
The standard entropy of formation at 298 K.

Tdata
An array of temperatures at which the heat capacity is known.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

as_dict()
A helper function for dumping objects as dictionaries for YAML files

Returns A dictionary representation of the object

Return type dict

comment
unicode

Type comment

discrepancy(self, HeatCapacityModel other)→ double
Return some measure of how dissimilar self is from other.

The measure is arbitrary, but hopefully useful for sorting purposes. Discrepancy of 0 means they are
identical

230 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

get_enthalpy(self, double T)→ double
Return the enthalpy in J/mol at the specified temperature T in K.

get_entropy(self, double T)→ double
Return the entropy in J/mol*K at the specified temperature T in K.

get_free_energy(self, double T)→ double
Return the Gibbs free energy in J/mol at the specified temperature T in K.

get_heat_capacity(self, double T)→ double
Return the constant-pressure heat capacity in J/mol*K at the specified temperature T in K.

is_all_zeros(self)→ bool
Check whether a ThermoData object has all zero values, e.g.:

ThermoData( Tdata=([300, 400, 500, 600, 800, 1000, 1500], “K”), Cpdata=([0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0], “J/(mol*K)”), H298=(0.0, “kJ/mol”), S298=(0.0, “J/(mol*K)”),

Definition list ends without a blank line; unexpected unindent.

)

Returns Whether all values are zeroes or not.

Return type bool

is_identical_to(self, HeatCapacityModel other)→ bool
Returns True if self and other report very similar thermo values for heat capacity, enthalpy, entropy, and
free energy over a wide range of temperatures, or False otherwise.

is_similar_to(self, HeatCapacityModel other)→ bool
Returns True if self and other report similar thermo values for heat capacity, enthalpy, entropy, and free
energy over a wide range of temperatures, or False otherwise.

is_temperature_valid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the thermodynamic data,
or False if not. If the minimum and maximum temperature are not defined, True is returned.

label
unicode

Type label

make_object(data, class_dict)
A helper function for constructing objects from a dictionary (used when loading YAML files)

Parameters

• data (dict) – The dictionary representation of the object

• class_dict (dict) – A mapping of class names to the classes themselves

Returns None

to_nasa(self, double Tmin, double Tmax, double Tint, bool fixedTint=False, bool weighting=True, int
continuity=3)→ NASA

Convert the object to a NASA object. You must specify the minimum and maximum temperatures of the fit
Tmin and Tmax in K, as well as the intermediate temperature Tint in K to use as the bridge between the
two fitted polynomials. The remaining parameters can be used to modify the fitting algorithm used:

• fixedTint - False to allow Tint to vary in order to improve the fit, or True to keep it fixed

• weighting - True to weight the fit by 𝑇−1 to emphasize good fit at lower temperatures, or False to
not use weighting

1.15. Thermodynamics (rmgpy.thermo) 231



RMG-Py API Reference, Release 3.1.0

• continuity - The number of continuity constraints to enforce at Tint:

– 0: no constraints on continuity of 𝐶p(𝑇 ) at Tint

– 1: constrain 𝐶p(𝑇 ) to be continous at Tint

– 2: constrain 𝐶p(𝑇 ) and 𝑑𝐶p

𝑑𝑇 to be continuous at Tint

– 3: constrain 𝐶p(𝑇 ), 𝑑𝐶p

𝑑𝑇 , and 𝑑2𝐶p

𝑑𝑇 2 to be continuous at Tint

– 4: constrain 𝐶p(𝑇 ), 𝑑𝐶p

𝑑𝑇 , 𝑑2𝐶p

𝑑𝑇 2 , and 𝑑3𝐶p

𝑑𝑇 3 to be continuous at Tint

– 5: constrain 𝐶p(𝑇 ), 𝑑𝐶p

𝑑𝑇 , 𝑑2𝐶p

𝑑𝑇 2 , 𝑑3𝐶p

𝑑𝑇 3 , and 𝑑4𝐶p

𝑑𝑇 4 to be continuous at Tint

Note that values of continuity of 5 or higher effectively constrain all the coefficients to be equal and should
be equivalent to fitting only one polynomial (rather than two).

Returns the fitted NASA object containing the two fitted NASAPolynomial objects.

to_wilhoit(self, B=None)→ Wilhoit
Convert the Benson model to a Wilhoit model. For the conversion to succeed, you must have set the Cp0
and CpInf attributes of the Benson model.

B: the characteristic temperature in Kelvin.

rmgpy.thermo.Wilhoit

class rmgpy.thermo.Wilhoit(Cp0=None, CpInf=None, a0=0.0, a1=0.0, a2=0.0, a3=0.0, H0=None,
S0=None, B=None, Tmin=None, Tmax=None, label='', comment='')

A heat capacity model based on the Wilhoit equation. The attributes are:

Attribute Description
a0 The zeroth-order Wilhoit polynomial coefficient
a1 The first-order Wilhoit polynomial coefficient
a2 The second-order Wilhoit polynomial coefficient
a3 The third-order Wilhoit polynomial coefficient
H0 The integration constant for enthalpy (not H at T=0)
S0 The integration constant for entropy (not S at T=0)
E0 The energy at zero Kelvin (including zero point energy)
B The Wilhoit scaled temperature coefficient in K
Tmin The minimum temperature in K at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature in K at which the model is valid, or zero if unknown or undefined
comment Information about the model (e.g. its source)

The Wilhoit polynomial is an expression for heat capacity that is guaranteed to give the correct limits at zero
and infinite temperature, and gives a very reasonable shape to the heat capacity profile in between:

𝐶p(𝑇 ) = 𝐶p(0) + [𝐶p(∞) − 𝐶p(0)] 𝑦2

[︃
1 + (𝑦 − 1)

3∑︁
𝑖=0

𝑎𝑖𝑦
𝑖

]︃

Above, 𝑦 ≡ 𝑇/(𝑇 +𝐵) is a scaled temperature that ranges from zero to one based on the value of the coefficient
𝐵, and 𝑎0, 𝑎1, 𝑎2, and 𝑎3 are the Wilhoit polynomial coefficients.

232 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

The enthalpy is given by

𝐻(𝑇 ) = 𝐻0 + 𝐶p(0)𝑇 + [𝐶p(∞) − 𝐶p(0)]𝑇⎧⎨⎩
[︃

2 +

3∑︁
𝑖=0

𝑎𝑖

]︃ [︂
1

2
𝑦 − 1 +

(︂
1

𝑦
− 1

)︂
ln

𝑇

𝑦

]︂
+ 𝑦2

3∑︁
𝑖=0

𝑦𝑖

(𝑖 + 2)(𝑖 + 3)

3∑︁
𝑗=0

𝑓𝑖𝑗𝑎𝑗

⎫⎬⎭
where 𝑓𝑖𝑗 = 3 + 𝑗 if 𝑖 = 𝑗, 𝑓𝑖𝑗 = 1 if 𝑖 > 𝑗, and 𝑓𝑖𝑗 = 0 if 𝑖 < 𝑗.

The entropy is given by

𝑆(𝑇 ) = 𝑆0 + 𝐶p(∞) ln𝑇 − [𝐶p(∞) − 𝐶p(0)]

[︃
ln 𝑦 +

(︃
1 + 𝑦

3∑︁
𝑖=0

𝑎𝑖𝑦
𝑖

2 + 𝑖

)︃
𝑦

]︃
The low-temperature limit 𝐶p(0) is 3.5𝑅 for linear molecules and 4𝑅 for nonlinear molecules.
The high-temperature limit 𝐶p(∞) is taken to be [3𝑁atoms − 1.5]𝑅 for linear molecules and
[3𝑁atoms − (2 + 0.5𝑁rotors)]𝑅 for nonlinear molecules, for a molecule composed of 𝑁atoms atoms and 𝑁rotors

internal rotors.

B
The Wilhoit scaled temperature coefficient.

Cp0
The heat capacity at zero temperature.

CpInf
The heat capacity at infinite temperature.

E0
The ground state energy (J/mol) at zero Kelvin, including zero point energy.

For the Wilhoit class, this is calculated as the Enthalpy at 0.001 Kelvin.

H0
The integration constant for enthalpy.

NB. this is not equal to the enthlapy at 0 Kelvin, which you can access via E0

S0
The integration constant for entropy.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

a0
‘double’

Type a0

a1
‘double’

Type a1

a2
‘double’

Type a2

a3
‘double’

1.15. Thermodynamics (rmgpy.thermo) 233



RMG-Py API Reference, Release 3.1.0

Type a3

as_dict(self)→ dict
A helper function for YAML parsing

comment
unicode

Type comment

copy(self)→ Wilhoit
Return a copy of the Wilhoit object.

discrepancy(self, HeatCapacityModel other)→ double
Return some measure of how dissimilar self is from other.

The measure is arbitrary, but hopefully useful for sorting purposes. Discrepancy of 0 means they are
identical

fit_to_data(self, ndarray Tdata, ndarray Cpdata, double Cp0, double CpInf, double H298, double
S298, double B0=500.0)

Fit a Wilhoit model to the data points provided, allowing the characteristic temperature B to vary so as to
improve the fit. This procedure requires an optimization, using the fminbound function in the scipy.
optimize module. The data consists of a set of heat capacity points Cpdata in J/mol*K at a given set
of temperatures Tdata in K, along with the enthalpy H298 in kJ/mol and entropy S298 in J/mol*K at 298
K. The linearity of the molecule, number of vibrational frequencies, and number of internal rotors (linear,
Nfreq, and Nrotors, respectively) is used to set the limits at zero and infinite temperature.

fit_to_data_for_constant_b(self, ndarray Tdata, ndarray Cpdata, double Cp0, double CpInf, dou-
ble H298, double S298, double B)

Fit a Wilhoit model to the data points provided using a specified value of the characteristic temperature
B. The data consists of a set of dimensionless heat capacity points Cpdata at a given set of temperatures
Tdata in K, along with the dimensionless heat capacity at zero and infinite temperature, the dimensionless
enthalpy H298 at 298 K, and the dimensionless entropy S298 at 298 K.

get_enthalpy(self, double T)→ double
Return the enthalpy in J/mol at the specified temperature T in K.

get_entropy(self, double T)→ double
Return the entropy in J/mol*K at the specified temperature T in K.

get_free_energy(self, double T)→ double
Return the Gibbs free energy in J/mol at the specified temperature T in K.

get_heat_capacity(self, double T)→ double
Return the constant-pressure heat capacity in J/mol*K at the specified temperature T in K.

is_identical_to(self, HeatCapacityModel other)→ bool
Returns True if self and other report very similar thermo values for heat capacity, enthalpy, entropy, and
free energy over a wide range of temperatures, or False otherwise.

is_similar_to(self, HeatCapacityModel other)→ bool
Returns True if self and other report similar thermo values for heat capacity, enthalpy, entropy, and free
energy over a wide range of temperatures, or False otherwise.

is_temperature_valid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the thermodynamic data,
or False if not. If the minimum and maximum temperature are not defined, True is returned.

label
unicode

Type label

234 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

make_object(data, class_dict)
A helper function for constructing objects from a dictionary (used when loading YAML files)

Parameters

• data (dict) – The dictionary representation of the object

• class_dict (dict) – A mapping of class names to the classes themselves

Returns None

to_nasa(self, double Tmin, double Tmax, double Tint, bool fixedTint=False, bool weighting=True, int
continuity=3)→ NASA

Convert the Wilhoit object to a NASA object. You must specify the minimum and maximum temperatures
of the fit Tmin and Tmax in K, as well as the intermediate temperature Tint in K to use as the bridge
between the two fitted polynomials. The remaining parameters can be used to modify the fitting algorithm
used:

• fixedTint - False to allow Tint to vary in order to improve the fit, or True to keep it fixed

• weighting - True to weight the fit by 𝑇−1 to emphasize good fit at lower temperatures, or False to
not use weighting

• continuity - The number of continuity constraints to enforce at Tint:

– 0: no constraints on continuity of 𝐶p(𝑇 ) at Tint

– 1: constrain 𝐶p(𝑇 ) to be continous at Tint

– 2: constrain 𝐶p(𝑇 ) and 𝑑𝐶p

𝑑𝑇 to be continuous at Tint

– 3: constrain 𝐶p(𝑇 ), 𝑑𝐶p

𝑑𝑇 , and 𝑑2𝐶p

𝑑𝑇 2 to be continuous at Tint

– 4: constrain 𝐶p(𝑇 ), 𝑑𝐶p

𝑑𝑇 , 𝑑2𝐶p

𝑑𝑇 2 , and 𝑑3𝐶p

𝑑𝑇 3 to be continuous at Tint

– 5: constrain 𝐶p(𝑇 ), 𝑑𝐶p

𝑑𝑇 , 𝑑2𝐶p

𝑑𝑇 2 , 𝑑3𝐶p

𝑑𝑇 3 , and 𝑑4𝐶p

𝑑𝑇 4 to be continuous at Tint

Note that values of continuity of 5 or higher effectively constrain all the coefficients to be equal and should
be equivalent to fitting only one polynomial (rather than two).

Returns the fitted NASA object containing the two fitted NASAPolynomial objects.

to_thermo_data(self)→ ThermoData
Convert the Wilhoit model to a ThermoData object.

rmgpy.thermo.NASA

class rmgpy.thermo.NASA(polynomials=None, Tmin=None, Tmax=None, E0=None, Cp0=None,
CpInf=None, label='', comment='')

A heat capacity model based on a set of one, two, or three NASAPolynomial objects. The attributes are:

Attribute Description
polynomials The list of NASA polynomials to use in this model
Tmin The minimum temperature in K at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature in K at which the model is valid, or zero if unknown or undefined
E0 The energy at zero Kelvin (including zero point energy)
comment Information about the model (e.g. its source)

The NASA polynomial is another representation of the heat capacity, enthalpy, and entropy using seven or nine
coefficients a = [𝑎−2 𝑎−1 𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6]. The relevant thermodynamic parameters are evaluated via the

1.15. Thermodynamics (rmgpy.thermo) 235



RMG-Py API Reference, Release 3.1.0

expressions

𝐶p(𝑇 )

𝑅
= 𝑎−2𝑇

−2 + 𝑎−1𝑇
−1 + 𝑎0 + 𝑎1𝑇 + 𝑎2𝑇

2 + 𝑎3𝑇
3 + 𝑎4𝑇

4

𝐻(𝑇 )

𝑅𝑇
= −𝑎−2𝑇

−2 + 𝑎−1𝑇
−1 ln𝑇 + 𝑎0 +

1

2
𝑎1𝑇 +

1

3
𝑎2𝑇

2 +
1

4
𝑎3𝑇

3 +
1

5
𝑎4𝑇

4 +
𝑎5
𝑇

𝑆(𝑇 )

𝑅
= −1

2
𝑎−2𝑇

−2 − 𝑎−1𝑇
−1 + 𝑎0 ln𝑇 + 𝑎1𝑇 +

1

2
𝑎2𝑇

2 +
1

3
𝑎3𝑇

3 +
1

4
𝑎4𝑇

4 + 𝑎6

In the seven-coefficient version, 𝑎−2 = 𝑎−1 = 0.

As simple polynomial expressions, the NASA polynomial is faster to evaluate when compared to the Wilhoit
model; however, it does not have the nice physical behavior of the Wilhoit representation. Often multiple NASA
polynomials are used to accurately represent the thermodynamics of a system over a wide temperature range.

Cp0
The heat capacity at zero temperature.

CpInf
The heat capacity at infinite temperature.

E0
The ground state energy (J/mol) at zero Kelvin, including zero point energy, or None if not yet specified.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

as_dict(self)→ dict
A helper function for YAML dumping

change_base_enthalpy(self, double deltaH)→ NASA
Add deltaH in J/mol to the base enthalpy of formation H298 and return the modified NASA object.

change_base_entropy(self, double deltaS)→ NASA
Add deltaS in J/molK to the base entropy of formation S298 and return the modified NASA object

comment
unicode

Type comment

discrepancy(self, HeatCapacityModel other)→ double
Return some measure of how dissimilar self is from other.

The measure is arbitrary, but hopefully useful for sorting purposes. Discrepancy of 0 means they are
identical

get_enthalpy(self, double T)→ double
Return the enthalpy 𝐻(𝑇 ) in J/mol at the specified temperature T in K.

get_entropy(self, double T)→ double
Return the entropy 𝑆(𝑇 ) in J/mol*K at the specified temperature T in K.

get_free_energy(self, double T)→ double
Return the Gibbs free energy 𝐺(𝑇 ) in J/mol at the specified temperature T in K.

get_heat_capacity(self, double T)→ double
Return the constant-pressure heat capacity 𝐶p(𝑇 ) in J/mol*K at the specified temperature T in K.

236 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

is_identical_to(self, HeatCapacityModel other)→ bool
Returns True if self and other report very similar thermo values for heat capacity, enthalpy, entropy, and
free energy over a wide range of temperatures, or False otherwise.

is_similar_to(self, HeatCapacityModel other)→ bool
Returns True if self and other report similar thermo values for heat capacity, enthalpy, entropy, and free
energy over a wide range of temperatures, or False otherwise.

is_temperature_valid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the thermodynamic data,
or False if not. If the minimum and maximum temperature are not defined, True is returned.

label
unicode

Type label

make_object(data, class_dict)
A helper function for constructing objects from a dictionary (used when loading YAML files)

Parameters

• data (dict) – The dictionary representation of the object

• class_dict (dict) – A mapping of class names to the classes themselves

Returns None

poly1
rmgpy.thermo.nasa.NASAPolynomial

Type poly1

poly2
rmgpy.thermo.nasa.NASAPolynomial

Type poly2

poly3
rmgpy.thermo.nasa.NASAPolynomial

Type poly3

polynomials
The set of one, two, or three NASA polynomials.

select_polynomial(self, double T)→ NASAPolynomial

to_cantera(self)
Return the cantera equivalent NasaPoly2 object from this NASA object.

to_thermo_data(self)→ ThermoData
Convert the NASAPolynomial model to a ThermoData object.

If Cp0 and CpInf are omitted or 0, they are None in the returned ThermoData.

to_wilhoit(self)→ Wilhoit
Convert a MultiNASA object multiNASA to a Wilhoit object. You must specify the linearity of the
molecule linear, the number of vibrational modes Nfreq, and the number of hindered rotor modes Nrotors
so the algorithm can determine the appropriate heat capacity limits at zero and infinite temperature.

Here is an example of a NASA entry:

1.15. Thermodynamics (rmgpy.thermo) 237



RMG-Py API Reference, Release 3.1.0

entry(
index = 2,
label = "octane",
molecule =

"""
1 C 0 {2,S}
2 C 0 {1,S} {3,S}
3 C 0 {2,S} {4,S}
4 C 0 {3,S} {5,S}
5 C 0 {4,S} {6,S}
6 C 0 {5,S} {7,S}
7 C 0 {6,S} {8,S}
8 C 0 {7,S}
""",

thermo = NASA(
polynomials = [

NASAPolynomial(coeffs=[1.25245480E+01,-1.01018826E-02,2.21992610E-04,-2.84863722E-07,1.
→˓12410138E-10,-2.98434398E+04,-1.97109989E+01], Tmin=(200,'K'), Tmax=(1000,'K')),

NASAPolynomial(coeffs=[2.09430708E+01,4.41691018E-02,-1.53261633E-05,2.30544803E-09,-1.
→˓29765727E-13,-3.55755088E+04,-8.10637726E+01], Tmin=(1000,'K'), Tmax=(6000,'K')),

],
Tmin = (200,'K'),
Tmax = (6000,'K'),

),
reference = Reference(authors=["check on burcat"], title='burcat', year="1999", url="http://www.
→˓me.berkeley.edu/gri-mech/version30/text30.html"),
referenceType = "review",
shortDesc = u"""""",
longDesc =

u"""

""",
)

rmgpy.thermo.NASAPolynomial

class rmgpy.thermo.NASAPolynomial(coeffs=None, Tmin=None, Tmax=None, E0=None, label='',
comment='')

A heat capacity model based on the NASA polynomial. Both the seven-coefficient and nine-coefficient varia-
tions are supported. The attributes are:

Attribute Description
coeffs The seven or nine NASA polynomial coefficients
Tmin The minimum temperature in K at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature in K at which the model is valid, or zero if unknown or undefined
E0 The energy at zero Kelvin (including zero point energy)
comment Information about the model (e.g. its source)

The NASA polynomial is another representation of the heat capacity, enthalpy, and entropy using seven or nine
coefficients a = [𝑎−2 𝑎−1 𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6]. The relevant thermodynamic parameters are evaluated via the
expressions

𝐶p(𝑇 )

𝑅
= 𝑎−2𝑇

−2 + 𝑎−1𝑇
−1 + 𝑎0 + 𝑎1𝑇 + 𝑎2𝑇

2 + 𝑎3𝑇
3 + 𝑎4𝑇

4

238 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

𝐻(𝑇 )

𝑅𝑇
= −𝑎−2𝑇

−2 + 𝑎−1𝑇
−1 ln𝑇 + 𝑎0 +

1

2
𝑎1𝑇 +

1

3
𝑎2𝑇

2 +
1

4
𝑎3𝑇

3 +
1

5
𝑎4𝑇

4 +
𝑎5
𝑇

𝑆(𝑇 )

𝑅
= −1

2
𝑎−2𝑇

−2 − 𝑎−1𝑇
−1 + 𝑎0 ln𝑇 + 𝑎1𝑇 +

1

2
𝑎2𝑇

2 +
1

3
𝑎3𝑇

3 +
1

4
𝑎4𝑇

4 + 𝑎6

In the seven-coefficient version, 𝑎−2 = 𝑎−1 = 0.

As simple polynomial expressions, the NASA polynomial is faster to evaluate when compared to the Wilhoit
model; however, it does not have the nice physical behavior of the Wilhoit representation. Often multiple NASA
polynomials are used to accurately represent the thermodynamics of a system over a wide temperature range;
the NASA class is available for this purpose.

Cp0
The heat capacity at zero temperature.

CpInf
The heat capacity at infinite temperature.

E0
The ground state energy (J/mol) at zero Kelvin, including zero point energy, or None if not yet specified.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

as_dict(self)→ dict

c0
‘double’

Type c0

c1
‘double’

Type c1

c2
‘double’

Type c2

c3
‘double’

Type c3

c4
‘double’

Type c4

c5
‘double’

Type c5

c6
‘double’

Type c6

change_base_enthalpy(self, double deltaH)
Add deltaH in J/mol to the base enthalpy of formation H298.

1.15. Thermodynamics (rmgpy.thermo) 239



RMG-Py API Reference, Release 3.1.0

change_base_entropy(self, double deltaS)
Add deltaS in J/molK to the base entropy of formation S298.

cm1
‘double’

Type cm1

cm2
‘double’

Type cm2

coeffs
The set of seven or nine NASA polynomial coefficients.

comment
unicode

Type comment

discrepancy(self, HeatCapacityModel other)→ double
Return some measure of how dissimilar self is from other.

The measure is arbitrary, but hopefully useful for sorting purposes. Discrepancy of 0 means they are
identical

get_enthalpy(self, double T)→ double
Return the enthalpy in J/mol at the specified temperature T in K.

get_entropy(self, double T)→ double
Return the entropy in J/mol*K at the specified temperature T in K.

get_free_energy(self, double T)→ double
Return the Gibbs free energy in J/mol at the specified temperature T in K.

get_heat_capacity(self, double T)→ double
Return the constant-pressure heat capacity in J/mol*K at the specified temperature T in K.

is_identical_to(self, HeatCapacityModel other)→ bool
Returns True if self and other report very similar thermo values for heat capacity, enthalpy, entropy, and
free energy over a wide range of temperatures, or False otherwise.

is_similar_to(self, HeatCapacityModel other)→ bool
Returns True if self and other report similar thermo values for heat capacity, enthalpy, entropy, and free
energy over a wide range of temperatures, or False otherwise.

is_temperature_valid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the thermodynamic data,
or False if not. If the minimum and maximum temperature are not defined, True is returned.

label
unicode

Type label

make_object(data, class_dict)
A helper function for constructing objects from a dictionary (used when loading YAML files)

Parameters

• data (dict) – The dictionary representation of the object

• class_dict (dict) – A mapping of class names to the classes themselves

240 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

Returns None

1.16 RMG Exceptions (rmgpy.exceptions)

This module contains classes which extend Exception for usage in the RMG module

exception rmgpy.exceptions.ActionError
An exception class for errors that occur while applying reaction recipe actions. Pass a string describing the
circumstances that caused the exceptional behavior.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.AtomTypeError
An exception to be raised when an error occurs while working with atom types. Pass a string describing the
circumstances that caused the exceptional behavior.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.ChemicallySignificantEigenvaluesError
An exception raised when the chemically significant eigenvalue method is unsuccessful for any reason. Pass a
string describing the cause of the exceptional behavior.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.ChemkinError
An exception class for exceptional behavior involving Chemkin files. Pass a string describing the circumstances
that caused the exceptional behavior.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.CollisionError
An exception class for when RMG is unable to calculate collision efficiencies for the single exponential down
pressure dependent solver. Pass a string describing the circumstances that caused the exceptional behavior.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.CoreError
An exception raised if there is a problem within the model core

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.DatabaseError
A exception that occurs when working with an RMG database. Pass a string giving specifics about the excep-
tional behavior.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.DependencyError
An exception that occurs when an error is encountered with a dependency. Pass a string describing the circum-
stances that caused the exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

1.16. RMG Exceptions (rmgpy.exceptions) 241



RMG-Py API Reference, Release 3.1.0

exception rmgpy.exceptions.ElementError
An exception class for errors that occur while working with elements. Pass a string describing the circumstances
that caused the exceptional behavior.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.ForbiddenStructureException
An exception passed when RMG encounters a forbidden structure. These are usually caught and the reaction
that created it is ignored.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.ILPSolutionError
An exception to be raised when solving an integer linear programming problem if a solution could not be found
or the solution is not valid. Can pass a string to indicate the reason that the solution is invalid.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.ImplicitBenzeneError
An exception class when encountering a group with too many implicit benzene atoms. These groups are hard to
create sample molecules and hard for users to interpret. Pass a string describing the limitation.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.InchiException
An exception used when encountering a non-valid Inchi expression are encountered. Pass a string describing
the error.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.InputError
An exception raised when parsing an input file for any module in RMG: mechanism generation, Arkane, con-
former creation, etc. Pass a string describing the error.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.InvalidActionError
An exception to be raised when an invalid action is encountered in a reaction recipe.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.InvalidAdjacencyListError
An exception used to indicate that an RMG-style adjacency list is invalid. Pass a string describing the reason
the adjacency list is invalid

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.InvalidMicrocanonicalRateError(message, k_ratio=1.0,
Keq_ratio=1.0)

Used in pressure dependence when the k(E) calculation does not give the correct kf(T) or Kc(T)

badness()
How bad is the error?

Returns the max of the absolute logarithmic errors of kf and Kc

242 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.KekulizationError
An exception to be raised when encountering an error while kekulizing an aromatic molecule. Can pass a string
to indicate the reason for failure.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.KineticsError
An exception class for problems with kinetics. This can be used when finding degeneracy in reaction generation,
modifying KineticsData objects, or finding the kinetics of reactions. Unable Pass a string describing the problem.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.ModifiedStrongCollisionError
An exception raised when the modified strong collision method is unsuccessful for any reason. Pass a string
describing the cause of the exceptional behavior.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.NegativeBarrierException
This Exception occurs when the energy barrier for a hindered Rotor is negative. This can occur if the scan or
fourier fit is poor.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.NetworkError
Raised when an error occurs while working with a pressure-dependent reaction network

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.OutputError
This exception is raised whenever an error occurs while saving output information. Pass a string describing the
circumstances of the exceptional behavior.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.PressureDependenceError
An exception class to use when an error involving pressure dependence is encountered. Pass a string describing
the circumstances of the exceptional behavior.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.QuantityError
An exception to be raised when an error occurs while working with physical quantities in RMG. Pass a string
describing the circumstances of the exceptional behavior.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.ReactionError
An exception class for exceptional behavior involving Reaction objects. Pass a string describing the circum-
stances that caused the exceptional behavior.

1.16. RMG Exceptions (rmgpy.exceptions) 243



RMG-Py API Reference, Release 3.1.0

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.ReactionPairsError
An exception to be raised when an error occurs while working with reaction pairs.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.ReservoirStateError
An exception raised when the reservoir state method is unsuccessful for any reason. Pass a string describing the
cause of the exceptional behavior.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.ResonanceError
An exception class for when RMG is unable to generate resonance structures.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.SettingsError
An exception raised when dealing with settings.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.SpeciesError
An exception class for exceptional behavior that occurs while working with chemical species. Pass a string
describing the circumstances that caused the exceptional behavior.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.StatmechError
An exception used when an error occurs in estimating Statmech.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.StatmechFitError
An exception used when attempting to fit molecular degrees of freedom to heat capacity data. Pass a string
describing the circumstances of the exceptional behavior.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.UndeterminableKineticsError(reaction, message='')
An exception raised when attempts to estimate appropriate kinetic parameters for a chemical reaction are un-
successful.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.UnexpectedChargeError(graph)
An exception class when encountering a group/molecule with unexpected charge Curently in RMG, we never
expect to see -2/+2 or greater magnitude charge, we only except +1/-1 charges on nitrogen, oxygen, sulfur or
specifically carbon monoxide/monosulfide.

Attributes: graph is the molecule or group object with the unexpected charge

244 Chapter 1. RMG API Reference



RMG-Py API Reference, Release 3.1.0

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception rmgpy.exceptions.VF2Error
An exception raised if an error occurs within the VF2 graph isomorphism algorithm. Pass a string describing
the error.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

1.16. RMG Exceptions (rmgpy.exceptions) 245



RMG-Py API Reference, Release 3.1.0

246 Chapter 1. RMG API Reference



BIBLIOGRAPHY

[1932Wigner] E.Wigner. Phys. Rev. 40, p. 749-759 (1932). doi:10.1103/PhysRev.40.749

[1959Bell] R. P. Bell. Trans. Faraday Soc. 55, p. 1-4 (1959). doi:10.1039/TF9595500001

[Chang2000] A. Y. Chang, J. W. Bozzelli, and A. M. Dean. Z. Phys. Chem. 214, p. 1533-1568 (2000). doi:
10.1524/zpch.2000.214.11.1533

247

http://dx.doi.org/10.1103/PhysRev.40.749
http://dx.doi.org/10.1039/TF9595500001
http://dx.doi.org/10.1524/zpch.2000.214.11.1533
http://dx.doi.org/10.1524/zpch.2000.214.11.1533


RMG-Py API Reference, Release 3.1.0

248 Bibliography



PYTHON MODULE INDEX

a
arkane, 3
arkane.output, 5
arkane.sensitivity, 6

r
rmgpy.chemkin, 8
rmgpy.constants, 11
rmgpy.data, 11
rmgpy.exceptions, 241
rmgpy.kinetics, 75
rmgpy.molecule, 97
rmgpy.molecule.adjlist, 141
rmgpy.molecule.converter, 139
rmgpy.molecule.filtration, 135
rmgpy.molecule.kekulize, 134
rmgpy.molecule.pathfinder, 136
rmgpy.molecule.resonance, 131
rmgpy.molecule.translator, 139
rmgpy.pdep, 145
rmgpy.qm, 153
rmgpy.quantity, 172
rmgpy.reaction, 176
rmgpy.rmg, 182
rmgpy.solver, 197
rmgpy.species, 208
rmgpy.statmech, 212
rmgpy.statmech.schrodinger, 226
rmgpy.thermo, 229

249



RMG-Py API Reference, Release 3.1.0

250 Python Module Index



INDEX

A
A (rmgpy.kinetics.Arrhenius attribute), 77
a0 (rmgpy.thermo.Wilhoit attribute), 233
a1 (rmgpy.thermo.Wilhoit attribute), 233
a2 (rmgpy.thermo.Wilhoit attribute), 233
a3 (rmgpy.thermo.Wilhoit attribute), 233
ActionError, 241
add_action() (rmgpy.data.kinetics.ReactionRecipe

method), 47
add_allyls() (in module rmgpy.molecule.pathfinder),

136
add_atom() (rmgpy.molecule.Group method), 124
add_atom() (rmgpy.molecule.Molecule method), 112
add_atom_labels_for_reaction()

(rmgpy.data.kinetics.KineticsFamily method),
26

add_bond() (rmgpy.molecule.Group method), 124
add_bond() (rmgpy.molecule.Molecule method), 112
add_edge() (rmgpy.molecule.graph.Graph method),

100
add_edge() (rmgpy.molecule.Group method), 124
add_edge() (rmgpy.molecule.Molecule method), 112
add_entry() (rmgpy.data.kinetics.KineticsFamily

method), 26
add_explicit_ligands() (rmgpy.molecule.Group

method), 124
add_implicit_atoms_from_atomtype()

(rmgpy.molecule.Group method), 124
add_implicit_benzene() (rmgpy.molecule.Group

method), 124
add_inverse_allyls() (in module

rmgpy.molecule.pathfinder), 136
add_new_surface_objects()

(rmgpy.rmg.model.CoreEdgeReactionModel
method), 183

add_path_reaction()
(rmgpy.rmg.pdep.PDepNetwork method),
190

add_reaction_library_to_edge()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 183

add_reaction_library_to_output()

(rmgpy.rmg.model.CoreEdgeReactionModel
method), 183

add_reaction_to_core()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 183

add_reaction_to_edge()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 183

add_reaction_to_unimolecular_networks()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 183

add_reactions_to_surface()
(rmgpy.solver.LiquidReactor method), 201

add_reactions_to_surface()
(rmgpy.solver.MBSampledReactor method),
205

add_reactions_to_surface()
(rmgpy.solver.ReactionSystem method), 198

add_reactions_to_surface()
(rmgpy.solver.SimpleReactor method), 199

add_reactions_to_surface()
(rmgpy.solver.SurfaceReactor method), 203

add_reverse_attribute()
(rmgpy.data.kinetics.KineticsFamily method),
26

add_rules_from_training()
(rmgpy.data.kinetics.KineticsFamily method),
26

add_seed_mechanism_to_core()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 183

add_species_to_core()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 183

add_species_to_edge()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 183

add_unsaturated_bonds() (in module
rmgpy.molecule.pathfinder), 137

add_vertex() (rmgpy.molecule.graph.Graph method),
100

add_vertex() (rmgpy.molecule.Group method), 125

251



RMG-Py API Reference, Release 3.1.0

add_vertex() (rmgpy.molecule.Molecule method), 112
adjust_surface() (rmgpy.rmg.model.CoreEdgeReactionModel

method), 183
advance() (rmgpy.solver.LiquidReactor method), 201
advance() (rmgpy.solver.MBSampledReactor method),

205
advance() (rmgpy.solver.ReactionSystem method), 198
advance() (rmgpy.solver.SimpleReactor method), 199
advance() (rmgpy.solver.SurfaceReactor method), 203
alpha (rmgpy.kinetics.Troe attribute), 93
alpha0 (rmgpy.pdep.SingleExponentialDown attribute),

146
analyze_molecule() (in module

rmgpy.molecule.resonance), 131
ancestors() (rmgpy.data.base.Database method), 13
ancestors() (rmgpy.data.kinetics.KineticsDepository

method), 23
ancestors() (rmgpy.data.kinetics.KineticsFamily

method), 26
ancestors() (rmgpy.data.kinetics.KineticsGroups

method), 34
ancestors() (rmgpy.data.kinetics.KineticsLibrary

method), 36
ancestors() (rmgpy.data.kinetics.KineticsRules

method), 39
ancestors() (rmgpy.data.statmech.StatmechDepository

method), 48
ancestors() (rmgpy.data.statmech.StatmechGroups

method), 55
ancestors() (rmgpy.data.statmech.StatmechLibrary

method), 58
ancestors() (rmgpy.data.thermo.ThermoDepository

method), 68
ancestors() (rmgpy.data.thermo.ThermoGroups

method), 70
ancestors() (rmgpy.data.thermo.ThermoLibrary

method), 73
apply_action() (rmgpy.molecule.Atom method), 108
apply_action() (rmgpy.molecule.Bond method), 110
apply_action() (rmgpy.molecule.GroupAtom

method), 121
apply_action() (rmgpy.molecule.GroupBond

method), 123
apply_chemically_significant_eigenvalues_method()

(in module rmgpy.pdep.cse), 153
apply_chemically_significant_eigenvalues_method()

(rmgpy.pdep.Network method), 150
apply_chemically_significant_eigenvalues_method()

(rmgpy.rmg.pdep.PDepNetwork method), 190
apply_forward() (rmgpy.data.kinetics.ReactionRecipe

method), 47
apply_inverse_laplace_transform_method() (in

module rmgpy.pdep.reaction), 148
apply_kinetics_to_reaction()

(rmgpy.rmg.model.CoreEdgeReactionModel
method), 184

apply_modified_strong_collision_method() (in
module rmgpy.pdep.msc), 152

apply_modified_strong_collision_method()
(rmgpy.pdep.Network method), 150

apply_modified_strong_collision_method()
(rmgpy.rmg.pdep.PDepNetwork method), 190

apply_recipe() (rmgpy.data.kinetics.KineticsFamily
method), 26

apply_reservoir_state_method() (in module
rmgpy.pdep.rs), 153

apply_reservoir_state_method()
(rmgpy.pdep.Network method), 151

apply_reservoir_state_method()
(rmgpy.rmg.pdep.PDepNetwork method),
190

apply_reverse() (rmgpy.data.kinetics.ReactionRecipe
method), 47

apply_rrkm_theory() (in module
rmgpy.pdep.reaction), 148

apply_thermo_to_species()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 184

are_siblings() (rmgpy.data.base.Database method),
13

are_siblings() (rmgpy.data.kinetics.KineticsDepository
method), 23

are_siblings() (rmgpy.data.kinetics.KineticsFamily
method), 26

are_siblings() (rmgpy.data.kinetics.KineticsGroups
method), 34

are_siblings() (rmgpy.data.kinetics.KineticsLibrary
method), 36

are_siblings() (rmgpy.data.kinetics.KineticsRules
method), 39

are_siblings() (rmgpy.data.statmech.StatmechDepository
method), 48

are_siblings() (rmgpy.data.statmech.StatmechGroups
method), 55

are_siblings() (rmgpy.data.statmech.StatmechLibrary
method), 58

are_siblings() (rmgpy.data.thermo.ThermoDepository
method), 68

are_siblings() (rmgpy.data.thermo.ThermoGroups
method), 70

are_siblings() (rmgpy.data.thermo.ThermoLibrary
method), 73

arkane
module, 3

arkane.output
module, 5

arkane.sensitivity
module, 6

252 Index



RMG-Py API Reference, Release 3.1.0

AromaticBond (class in rmgpy.molecule.kekulize), 134
aromaticity_filtration() (in module

rmgpy.molecule.filtration), 135
AromaticRing (class in rmgpy.molecule.kekulize), 134
ArrayQuantity (class in rmgpy.quantity), 175
Arrhenius (class in rmgpy.kinetics), 77
arrhenius (rmgpy.kinetics.MultiArrhenius attribute),

79
arrhenius (rmgpy.kinetics.MultiPDepArrhenius at-

tribute), 84
arrhenius (rmgpy.kinetics.PDepArrhenius attribute),

82
arrheniusHigh (rmgpy.kinetics.Lindemann attribute),

91
arrheniusHigh (rmgpy.kinetics.Troe attribute), 93
arrheniusLow (rmgpy.kinetics.Lindemann attribute), 91
arrheniusLow (rmgpy.kinetics.ThirdBody attribute), 89
arrheniusLow (rmgpy.kinetics.Troe attribute), 93
as_dict() (rmgpy.pdep.SingleExponentialDown

method), 146
as_dict() (rmgpy.quantity.ArrayQuantity method), 175
as_dict() (rmgpy.quantity.ScalarQuantity method),

174
as_dict() (rmgpy.statmech.Conformer method), 227
as_dict() (rmgpy.statmech.HarmonicOscillator

method), 222
as_dict() (rmgpy.statmech.HinderedRotor method),

224
as_dict() (rmgpy.statmech.IdealGasTranslation

method), 214
as_dict() (rmgpy.statmech.KRotor method), 219
as_dict() (rmgpy.statmech.LinearRotor method), 216
as_dict() (rmgpy.statmech.NonlinearRotor method),

217
as_dict() (rmgpy.statmech.SphericalTopRotor

method), 220
as_dict() (rmgpy.thermo.NASA method), 236
as_dict() (rmgpy.thermo.NASAPolynomial method),

239
as_dict() (rmgpy.thermo.ThermoData method), 230
as_dict() (rmgpy.thermo.Wilhoit method), 234
assign_atom_ids() (rmgpy.molecule.Molecule

method), 112
Atom (class in rmgpy.molecule), 108
atom_ids_valid() (rmgpy.molecule.Molecule

method), 112
atoms (rmgpy.molecule.Group attribute), 125
atoms (rmgpy.molecule.Molecule attribute), 112
AtomType (class in rmgpy.molecule), 104
AtomTypeError, 241

B
B (rmgpy.thermo.Wilhoit attribute), 233

badness() (rmgpy.exceptions.InvalidMicrocanonicalRateError
method), 242

barrier (rmgpy.statmech.HinderedRotor attribute), 224
Bond (class in rmgpy.molecule), 110

C
c0 (rmgpy.thermo.NASAPolynomial attribute), 239
c1 (rmgpy.thermo.NASAPolynomial attribute), 239
c2 (rmgpy.thermo.NASAPolynomial attribute), 239
c3 (rmgpy.thermo.NASAPolynomial attribute), 239
c4 (rmgpy.thermo.NASAPolynomial attribute), 239
c5 (rmgpy.thermo.NASAPolynomial attribute), 239
c6 (rmgpy.thermo.NASAPolynomial attribute), 239
calculate() (rmgpy.qm.symmetry.SymmetryJob

method), 159
calculate_atom_symmetry_number() (in module

rmgpy.molecule.symmetry), 143
calculate_axis_symmetry_number() (in module

rmgpy.molecule.symmetry), 143
calculate_bond_symmetry_number() (in module

rmgpy.molecule.symmetry), 143
calculate_chirality_correction()

(rmgpy.qm.gaussian.GaussianMol method),
160

calculate_chirality_correction()
(rmgpy.qm.gaussian.GaussianMolPM3
method), 161

calculate_chirality_correction()
(rmgpy.qm.gaussian.GaussianMolPM6
method), 163

calculate_chirality_correction()
(rmgpy.qm.molecule.QMMolecule method),
157

calculate_chirality_correction()
(rmgpy.qm.mopac.MopacMol method), 165

calculate_chirality_correction()
(rmgpy.qm.mopac.MopacMolPM3 method),
167

calculate_chirality_correction()
(rmgpy.qm.mopac.MopacMolPM6 method),
169

calculate_chirality_correction()
(rmgpy.qm.mopac.MopacMolPM7 method),
170

calculate_coll_limit()
(rmgpy.data.kinetics.DepositoryReaction
method), 15

calculate_coll_limit()
(rmgpy.data.kinetics.LibraryReaction method),
41

calculate_coll_limit()
(rmgpy.data.kinetics.TemplateReaction
method), 60

Index 253



RMG-Py API Reference, Release 3.1.0

calculate_coll_limit() (rmgpy.reaction.Reaction
method), 177

calculate_coll_limit()
(rmgpy.rmg.pdep.PDepReaction method),
193

calculate_collision_efficiency()
(rmgpy.pdep.SingleExponentialDown method),
146

calculate_collision_frequency()
(rmgpy.pdep.Configuration method), 149

calculate_collision_model()
(rmgpy.pdep.Network method), 151

calculate_collision_model()
(rmgpy.rmg.pdep.PDepNetwork method),
190

calculate_cp0() (rmgpy.molecule.Molecule method),
112

calculate_cp0() (rmgpy.species.Species method), 209
calculate_cpinf() (rmgpy.molecule.Molecule

method), 112
calculate_cpinf() (rmgpy.species.Species method),

209
calculate_cyclic_symmetry_number() (in module

rmgpy.molecule.symmetry), 144
calculate_degeneracy()

(rmgpy.data.kinetics.KineticsFamily method),
26

calculate_densities_of_states()
(rmgpy.pdep.Network method), 151

calculate_densities_of_states()
(rmgpy.rmg.pdep.PDepNetwork method),
190

calculate_density_of_states()
(rmgpy.pdep.Configuration method), 149

calculate_effective_pressure()
(rmgpy.solver.MBSampledReactor method),
205

calculate_effective_pressure()
(rmgpy.solver.SimpleReactor method), 199

calculate_equilibrium_ratios()
(rmgpy.pdep.Network method), 151

calculate_equilibrium_ratios()
(rmgpy.rmg.pdep.PDepNetwork method),
191

calculate_microcanonical_rate_coefficient()
(in module rmgpy.pdep.reaction), 147

calculate_microcanonical_rate_coefficient()
(rmgpy.data.kinetics.DepositoryReaction
method), 15

calculate_microcanonical_rate_coefficient()
(rmgpy.data.kinetics.LibraryReaction method),
41

calculate_microcanonical_rate_coefficient()
(rmgpy.data.kinetics.TemplateReaction

method), 60
calculate_microcanonical_rate_coefficient()

(rmgpy.reaction.Reaction method), 177
calculate_microcanonical_rate_coefficient()

(rmgpy.rmg.pdep.PDepReaction method), 193
calculate_microcanonical_rates()

(rmgpy.pdep.Network method), 151
calculate_microcanonical_rates()

(rmgpy.rmg.pdep.PDepNetwork method),
191

calculate_symmetry_number() (in module
rmgpy.molecule.symmetry), 144

calculate_symmetry_number()
(rmgpy.molecule.Molecule method), 113

calculate_thermo_data()
(rmgpy.qm.gaussian.GaussianMol method),
160

calculate_thermo_data()
(rmgpy.qm.gaussian.GaussianMolPM3
method), 161

calculate_thermo_data()
(rmgpy.qm.gaussian.GaussianMolPM6
method), 163

calculate_thermo_data()
(rmgpy.qm.molecule.QMMolecule method),
157

calculate_thermo_data()
(rmgpy.qm.mopac.MopacMol method), 165

calculate_thermo_data()
(rmgpy.qm.mopac.MopacMolPM3 method),
167

calculate_thermo_data()
(rmgpy.qm.mopac.MopacMolPM6 method),
169

calculate_thermo_data()
(rmgpy.qm.mopac.MopacMolPM7 method),
170

calculate_tst_rate_coefficient()
(rmgpy.data.kinetics.DepositoryReaction
method), 16

calculate_tst_rate_coefficient()
(rmgpy.data.kinetics.LibraryReaction method),
42

calculate_tst_rate_coefficient()
(rmgpy.data.kinetics.TemplateReaction
method), 60

calculate_tst_rate_coefficient()
(rmgpy.reaction.Reaction method), 178

calculate_tst_rate_coefficient()
(rmgpy.rmg.pdep.PDepReaction method),
193

calculate_tunneling_factor()
(rmgpy.kinetics.Eckart method), 96

calculate_tunneling_factor()

254 Index



RMG-Py API Reference, Release 3.1.0

(rmgpy.kinetics.Wigner method), 95
calculate_tunneling_factor()

(rmgpy.species.TransitionState method),
211

calculate_tunneling_function()
(rmgpy.kinetics.Eckart method), 96

calculate_tunneling_function()
(rmgpy.kinetics.Wigner method), 95

calculate_tunneling_function()
(rmgpy.species.TransitionState method),
211

can_tst() (rmgpy.data.kinetics.DepositoryReaction
method), 16

can_tst() (rmgpy.data.kinetics.LibraryReaction
method), 42

can_tst() (rmgpy.data.kinetics.TemplateReaction
method), 61

can_tst() (rmgpy.reaction.Reaction method), 178
can_tst() (rmgpy.rmg.pdep.PDepReaction method),

193
change_base_enthalpy() (rmgpy.thermo.NASA

method), 236
change_base_enthalpy()

(rmgpy.thermo.NASAPolynomial method),
239

change_base_entropy() (rmgpy.thermo.NASA
method), 236

change_base_entropy()
(rmgpy.thermo.NASAPolynomial method),
239

change_rate() (rmgpy.kinetics.Arrhenius method), 78
change_rate() (rmgpy.kinetics.Chebyshev method), 86
change_rate() (rmgpy.kinetics.Lindemann method),

91
change_rate() (rmgpy.kinetics.MultiArrhenius

method), 79
change_rate() (rmgpy.kinetics.MultiPDepArrhenius

method), 84
change_rate() (rmgpy.kinetics.PDepArrhenius

method), 82
change_rate() (rmgpy.kinetics.ThirdBody method), 89
change_rate() (rmgpy.kinetics.Troe method), 93
change_t0() (rmgpy.kinetics.Arrhenius method), 78
charge_filtration() (in module

rmgpy.molecule.filtration), 135
Chebyshev (class in rmgpy.kinetics), 86
chebyshev() (rmgpy.kinetics.Chebyshev method), 86
check_all_set() (rmgpy.qm.main.QMSettings

method), 155
check_collision_limit_violation()

(rmgpy.data.kinetics.DepositoryReaction
method), 16

check_collision_limit_violation()
(rmgpy.data.kinetics.LibraryReaction method),

42
check_collision_limit_violation()

(rmgpy.data.kinetics.TemplateReaction
method), 61

check_collision_limit_violation()
(rmgpy.reaction.Reaction method), 178

check_collision_limit_violation()
(rmgpy.rmg.pdep.PDepReaction method),
193

check_for_duplicates()
(rmgpy.data.kinetics.KineticsLibrary method),
36

check_for_existing_reaction()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 184

check_for_existing_species()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 184

check_for_inchi_key_collision()
(rmgpy.qm.qmverifier.QMVerifier method),
158

check_input() (rmgpy.rmg.main.RMG method), 188
check_libraries() (rmgpy.rmg.main.RMG method),

188
check_model() (rmgpy.rmg.main.RMG method), 188
check_paths() (rmgpy.qm.gaussian.GaussianMol

method), 160
check_paths() (rmgpy.qm.gaussian.GaussianMolPM3

method), 162
check_paths() (rmgpy.qm.gaussian.GaussianMolPM6

method), 163
check_paths() (rmgpy.qm.main.QMCalculator

method), 155
check_paths() (rmgpy.qm.molecule.QMMolecule

method), 157
check_paths() (rmgpy.qm.mopac.MopacMol method),

165
check_paths() (rmgpy.qm.mopac.MopacMolPM3

method), 167
check_paths() (rmgpy.qm.mopac.MopacMolPM6

method), 169
check_paths() (rmgpy.qm.mopac.MopacMolPM7

method), 170
check_reactive() (in module

rmgpy.molecule.filtration), 135
check_ready() (rmgpy.qm.gaussian.GaussianMol

method), 160
check_ready() (rmgpy.qm.gaussian.GaussianMolPM3

method), 162
check_ready() (rmgpy.qm.gaussian.GaussianMolPM6

method), 163
check_ready() (rmgpy.qm.main.QMCalculator

method), 155
check_ready() (rmgpy.qm.molecule.QMMolecule

Index 255



RMG-Py API Reference, Release 3.1.0

method), 157
check_ready() (rmgpy.qm.mopac.MopacMol method),

165
check_ready() (rmgpy.qm.mopac.MopacMolPM3

method), 167
check_ready() (rmgpy.qm.mopac.MopacMolPM6

method), 169
check_ready() (rmgpy.qm.mopac.MopacMolPM7

method), 170
ChemicallySignificantEigenvaluesError, 241
ChemkinError, 241
classify_benzene_carbons()

(rmgpy.molecule.Group method), 125
clean_tree_groups()

(rmgpy.data.kinetics.KineticsFamily method),
27

cleanup() (rmgpy.pdep.Configuration method), 149
cleanup() (rmgpy.rmg.pdep.PDepNetwork method),

191
clear() (rmgpy.rmg.main.RMG method), 188
clear_labeled_atoms() (rmgpy.molecule.Group

method), 125
clear_labeled_atoms() (rmgpy.molecule.Molecule

method), 113
clear_reg_dims() (rmgpy.molecule.Group method),

125
clear_surface_adjustments()

(rmgpy.rmg.model.CoreEdgeReactionModel
method), 184

cm1 (rmgpy.thermo.NASAPolynomial attribute), 240
cm2 (rmgpy.thermo.NASAPolynomial attribute), 240
coeffs (rmgpy.kinetics.Chebyshev attribute), 86
coeffs (rmgpy.thermo.NASAPolynomial attribute), 240
CollisionError, 241
comment (rmgpy.kinetics.Arrhenius attribute), 78
comment (rmgpy.kinetics.Chebyshev attribute), 86
comment (rmgpy.kinetics.KineticsData attribute), 76
comment (rmgpy.kinetics.Lindemann attribute), 91
comment (rmgpy.kinetics.MultiArrhenius attribute), 79
comment (rmgpy.kinetics.MultiPDepArrhenius at-

tribute), 84
comment (rmgpy.kinetics.PDepArrhenius attribute), 83
comment (rmgpy.kinetics.PDepKineticsData attribute),

81
comment (rmgpy.kinetics.ThirdBody attribute), 89
comment (rmgpy.kinetics.Troe attribute), 93
comment (rmgpy.thermo.NASA attribute), 236
comment (rmgpy.thermo.NASAPolynomial attribute), 240
comment (rmgpy.thermo.ThermoData attribute), 230
comment (rmgpy.thermo.Wilhoit attribute), 234
compute_atom_distance() (in module

rmgpy.molecule.pathfinder), 137
compute_group_additivity_thermo()

(rmgpy.data.thermo.ThermoDatabase method),

65
compute_network_variables()

(rmgpy.solver.LiquidReactor method), 202
compute_network_variables()

(rmgpy.solver.MBSampledReactor method),
206

compute_network_variables()
(rmgpy.solver.ReactionSystem method), 198

compute_network_variables()
(rmgpy.solver.SimpleReactor method), 200

compute_network_variables()
(rmgpy.solver.SurfaceReactor method), 203

compute_rate_derivative()
(rmgpy.solver.LiquidReactor method), 202

compute_rate_derivative()
(rmgpy.solver.MBSampledReactor method),
206

compute_rate_derivative()
(rmgpy.solver.ReactionSystem method), 198

compute_rate_derivative()
(rmgpy.solver.SimpleReactor method), 200

compute_rate_derivative()
(rmgpy.solver.SurfaceReactor method), 204

Configuration (class in rmgpy.pdep), 149
Conformer (class in rmgpy.statmech), 227
connect_the_dots() (rmgpy.molecule.Molecule

method), 113
contains_labeled_atom() (rmgpy.molecule.Group

method), 125
contains_labeled_atom()

(rmgpy.molecule.Molecule method), 113
contains_surface_site() (rmgpy.molecule.Group

method), 125
contains_surface_site()

(rmgpy.molecule.Molecule method), 113
contains_surface_site() (rmgpy.species.Species

method), 209
convert_duplicates_to_multi()

(rmgpy.data.kinetics.KineticsLibrary method),
36

convert_initial_keys_to_species_objects()
(rmgpy.solver.LiquidReactor method), 202

convert_initial_keys_to_species_objects()
(rmgpy.solver.MBSampledReactor method),
206

convert_initial_keys_to_species_objects()
(rmgpy.solver.SimpleReactor method), 200

convert_initial_keys_to_species_objects()
(rmgpy.solver.SurfaceReactor method), 204

convolve() (in module rmgpy.statmech.schrodinger),
226

convolve_bs() (in module
rmgpy.statmech.schrodinger), 226

convolve_bssr() (in module

256 Index



RMG-Py API Reference, Release 3.1.0

rmgpy.statmech.schrodinger), 226
coordinates (rmgpy.statmech.Conformer attribute),

227
copy() (rmgpy.data.kinetics.DepositoryReaction

method), 16
copy() (rmgpy.data.kinetics.LibraryReaction method),

42
copy() (rmgpy.data.kinetics.TemplateReaction method),

61
copy() (rmgpy.molecule.Atom method), 108
copy() (rmgpy.molecule.Bond method), 110
copy() (rmgpy.molecule.graph.Edge method), 99
copy() (rmgpy.molecule.graph.Graph method), 100
copy() (rmgpy.molecule.graph.Vertex method), 99
copy() (rmgpy.molecule.Group method), 125
copy() (rmgpy.molecule.GroupAtom method), 122
copy() (rmgpy.molecule.GroupBond method), 123
copy() (rmgpy.molecule.Molecule method), 113
copy() (rmgpy.quantity.ArrayQuantity method), 175
copy() (rmgpy.quantity.ScalarQuantity method), 174
copy() (rmgpy.reaction.Reaction method), 178
copy() (rmgpy.rmg.pdep.PDepReaction method), 193
copy() (rmgpy.species.Species method), 209
copy() (rmgpy.thermo.Wilhoit method), 234
copy_and_map() (rmgpy.molecule.graph.Graph

method), 100
copy_and_map() (rmgpy.molecule.Group method), 125
copy_and_map() (rmgpy.molecule.Molecule method),

113
copy_data() (rmgpy.data.thermo.ThermoGroups

method), 70
CoreEdgeReactionModel (class in rmgpy.rmg.model),

182
CoreError, 241
correct_binding_energy()

(rmgpy.data.thermo.ThermoDatabase method),
65

count_aromatic_rings() (rmgpy.molecule.Molecule
method), 113

count_bonds() (rmgpy.molecule.GroupAtom method),
122

count_internal_rotors()
(rmgpy.molecule.Molecule method), 113

Cp0 (rmgpy.thermo.NASA attribute), 236
Cp0 (rmgpy.thermo.NASAPolynomial attribute), 239
Cp0 (rmgpy.thermo.ThermoData attribute), 230
Cp0 (rmgpy.thermo.Wilhoit attribute), 233
Cpdata (rmgpy.thermo.ThermoData attribute), 230
CpInf (rmgpy.thermo.NASA attribute), 236
CpInf (rmgpy.thermo.NASAPolynomial attribute), 239
CpInf (rmgpy.thermo.ThermoData attribute), 230
CpInf (rmgpy.thermo.Wilhoit attribute), 233
create_and_connect_atom()

(rmgpy.molecule.Group method), 125

create_geometry() (rmgpy.qm.gaussian.GaussianMol
method), 160

create_geometry() (rmgpy.qm.gaussian.GaussianMolPM3
method), 162

create_geometry() (rmgpy.qm.gaussian.GaussianMolPM6
method), 163

create_geometry() (rmgpy.qm.molecule.QMMolecule
method), 157

create_geometry() (rmgpy.qm.mopac.MopacMol
method), 166

create_geometry() (rmgpy.qm.mopac.MopacMolPM3
method), 167

create_geometry() (rmgpy.qm.mopac.MopacMolPM6
method), 169

create_geometry() (rmgpy.qm.mopac.MopacMolPM7
method), 170

cross_validate() (rmgpy.data.kinetics.KineticsFamily
method), 27

cross_validate_old()
(rmgpy.data.kinetics.KineticsFamily method),
27

D
Database (class in rmgpy.data.base), 13
DatabaseError, 241
debug_rdkit_mol() (in module

rmgpy.molecule.converter), 139
decrement_lone_pairs() (rmgpy.molecule.Atom

method), 108
decrement_order() (rmgpy.molecule.Bond method),

110
decrement_radical() (rmgpy.molecule.Atom

method), 108
degeneracy (rmgpy.data.kinetics.DepositoryReaction

attribute), 16
degeneracy (rmgpy.data.kinetics.LibraryReaction at-

tribute), 42
degeneracy (rmgpy.data.kinetics.TemplateReaction at-

tribute), 61
degeneracy (rmgpy.reaction.Reaction attribute), 178
degeneracy (rmgpy.rmg.pdep.PDepReaction attribute),

193
degreeP (rmgpy.kinetics.Chebyshev attribute), 87
degreeT (rmgpy.kinetics.Chebyshev attribute), 87
delete_hydrogens() (rmgpy.molecule.Molecule

method), 113
DependencyError, 241
DepositoryReaction (class in rmgpy.data.kinetics),

15
descend_tree() (rmgpy.data.base.Database method),

13
descend_tree() (rmgpy.data.kinetics.KineticsDepository

method), 23

Index 257



RMG-Py API Reference, Release 3.1.0

descend_tree() (rmgpy.data.kinetics.KineticsFamily
method), 27

descend_tree() (rmgpy.data.kinetics.KineticsGroups
method), 34

descend_tree() (rmgpy.data.kinetics.KineticsLibrary
method), 37

descend_tree() (rmgpy.data.kinetics.KineticsRules
method), 39

descend_tree() (rmgpy.data.statmech.StatmechDepository
method), 48

descend_tree() (rmgpy.data.statmech.StatmechGroups
method), 55

descend_tree() (rmgpy.data.statmech.StatmechLibrary
method), 58

descend_tree() (rmgpy.data.thermo.ThermoDepository
method), 68

descend_tree() (rmgpy.data.thermo.ThermoGroups
method), 70

descend_tree() (rmgpy.data.thermo.ThermoLibrary
method), 73

descendants() (rmgpy.data.base.Database method),
13

descendants() (rmgpy.data.kinetics.KineticsDepository
method), 23

descendants() (rmgpy.data.kinetics.KineticsFamily
method), 27

descendants() (rmgpy.data.kinetics.KineticsGroups
method), 34

descendants() (rmgpy.data.kinetics.KineticsLibrary
method), 37

descendants() (rmgpy.data.kinetics.KineticsRules
method), 39

descendants() (rmgpy.data.statmech.StatmechDepository
method), 49

descendants() (rmgpy.data.statmech.StatmechGroups
method), 55

descendants() (rmgpy.data.statmech.StatmechLibrary
method), 58

descendants() (rmgpy.data.thermo.ThermoDepository
method), 68

descendants() (rmgpy.data.thermo.ThermoGroups
method), 71

descendants() (rmgpy.data.thermo.ThermoLibrary
method), 73

determine_point_group()
(rmgpy.qm.gaussian.GaussianMol method),
160

determine_point_group()
(rmgpy.qm.gaussian.GaussianMolPM3
method), 162

determine_point_group()
(rmgpy.qm.gaussian.GaussianMolPM6
method), 163

determine_point_group()

(rmgpy.qm.molecule.QMMolecule method),
157

determine_point_group()
(rmgpy.qm.mopac.MopacMol method), 166

determine_point_group()
(rmgpy.qm.mopac.MopacMolPM3 method),
167

determine_point_group()
(rmgpy.qm.mopac.MopacMolPM6 method),
169

determine_point_group()
(rmgpy.qm.mopac.MopacMolPM7 method),
170

DirectFit (class in rmgpy.data.statmechfit), 52
discrepancy() (rmgpy.kinetics.Arrhenius method), 78
discrepancy() (rmgpy.kinetics.Chebyshev method), 87
discrepancy() (rmgpy.kinetics.KineticsData method),

76
discrepancy() (rmgpy.kinetics.Lindemann method),

91
discrepancy() (rmgpy.kinetics.MultiArrhenius

method), 79
discrepancy() (rmgpy.kinetics.MultiPDepArrhenius

method), 84
discrepancy() (rmgpy.kinetics.PDepArrhenius

method), 83
discrepancy() (rmgpy.kinetics.PDepKineticsData

method), 81
discrepancy() (rmgpy.kinetics.ThirdBody method), 89
discrepancy() (rmgpy.kinetics.Troe method), 94
discrepancy() (rmgpy.thermo.NASA method), 236
discrepancy() (rmgpy.thermo.NASAPolynomial

method), 240
discrepancy() (rmgpy.thermo.ThermoData method),

230
discrepancy() (rmgpy.thermo.Wilhoit method), 234
distribute_tree_distances()

(rmgpy.data.kinetics.KineticsFamily method),
27

draw() (rmgpy.data.kinetics.DepositoryReaction
method), 16

draw() (rmgpy.data.kinetics.LibraryReaction method),
42

draw() (rmgpy.data.kinetics.TemplateReaction method),
61

draw() (rmgpy.molecule.draw.MoleculeDrawer
method), 144

draw() (rmgpy.molecule.draw.ReactionDrawer method),
144

draw() (rmgpy.molecule.Group method), 125
draw() (rmgpy.molecule.Molecule method), 113
draw() (rmgpy.reaction.Reaction method), 178
draw() (rmgpy.rmg.pdep.PDepReaction method), 193

258 Index



RMG-Py API Reference, Release 3.1.0

E
E0 (rmgpy.pdep.Configuration attribute), 149
E0 (rmgpy.statmech.Conformer attribute), 227
E0 (rmgpy.thermo.NASA attribute), 236
E0 (rmgpy.thermo.NASAPolynomial attribute), 239
E0 (rmgpy.thermo.ThermoData attribute), 230
E0 (rmgpy.thermo.Wilhoit attribute), 233
E0_prod (rmgpy.kinetics.Eckart attribute), 96
E0_reac (rmgpy.kinetics.Eckart attribute), 96
E0_TS (rmgpy.kinetics.Eckart attribute), 96
Ea (rmgpy.kinetics.Arrhenius attribute), 77
Eckart (class in rmgpy.kinetics), 95
Edge (class in rmgpy.molecule.graph), 99
efficiencies (rmgpy.kinetics.Chebyshev attribute), 87
efficiencies (rmgpy.kinetics.Lindemann attribute), 91
efficiencies (rmgpy.kinetics.MultiPDepArrhenius at-

tribute), 84
efficiencies (rmgpy.kinetics.PDepArrhenius at-

tribute), 83
efficiencies (rmgpy.kinetics.PDepKineticsData at-

tribute), 81
efficiencies (rmgpy.kinetics.ThirdBody attribute), 89
efficiencies (rmgpy.kinetics.Troe attribute), 94
Element (class in rmgpy.molecule), 103
ElementError, 241
energies (rmgpy.statmech.HinderedRotor attribute),

224
enlarge() (rmgpy.rmg.model.CoreEdgeReactionModel

method), 184
ensure_species() (rmgpy.data.kinetics.DepositoryReaction

method), 16
ensure_species() (rmgpy.data.kinetics.LibraryReaction

method), 42
ensure_species() (rmgpy.data.kinetics.TemplateReaction

method), 61
ensure_species() (rmgpy.reaction.Reaction method),

178
ensure_species() (rmgpy.rmg.pdep.PDepReaction

method), 194
Entry (class in rmgpy.data.base), 20
enumerate_bonds() (rmgpy.molecule.Molecule

method), 113
equals() (rmgpy.quantity.ArrayQuantity method), 175
equals() (rmgpy.quantity.ScalarQuantity method), 174
equivalent() (rmgpy.molecule.Atom method), 108
equivalent() (rmgpy.molecule.AtomType method),

104
equivalent() (rmgpy.molecule.Bond method), 110
equivalent() (rmgpy.molecule.graph.Edge method),

99
equivalent() (rmgpy.molecule.graph.Vertex method),

99
equivalent() (rmgpy.molecule.GroupAtom method),

122

equivalent() (rmgpy.molecule.GroupBond method),
123

estimate_kinetics()
(rmgpy.data.kinetics.KineticsRules method), 39

estimate_kinetics_using_group_additivity()
(rmgpy.data.kinetics.KineticsFamily method),
27

estimate_kinetics_using_group_additivity()
(rmgpy.data.kinetics.KineticsGroups method),
34

estimate_kinetics_using_rate_rules()
(rmgpy.data.kinetics.KineticsFamily method),
27

estimate_radical_thermo_via_hbi()
(rmgpy.data.thermo.ThermoDatabase method),
65

estimate_thermo_via_group_additivity()
(rmgpy.data.thermo.ThermoDatabase method),
65

eval_ext() (rmgpy.data.kinetics.KineticsFamily
method), 27

evaluate() (rmgpy.data.statmechfit.DirectFit method),
52

evaluate() (rmgpy.data.statmechfit.PseudoFit
method), 54

evaluate() (rmgpy.data.statmechfit.PseudoRotorFit
method), 53

execute() (arkane.sensitivity.KineticsSensitivity
method), 7

execute() (arkane.sensitivity.PDepSensitivity method),
7

execute() (rmgpy.rmg.main.RMG method), 188
explore_isomer() (rmgpy.rmg.pdep.PDepNetwork

method), 191
extend_node() (rmgpy.data.kinetics.KineticsFamily

method), 27
extract_source_from_comments()

(rmgpy.data.kinetics.KineticsDatabase
method), 21

extract_source_from_comments()
(rmgpy.data.kinetics.KineticsFamily method),
27

extract_source_from_comments()
(rmgpy.data.thermo.ThermoDatabase method),
65

F
failureKeys (rmgpy.qm.gaussian.Gaussian attribute),

159
failureKeys (rmgpy.qm.mopac.Mopac attribute), 165
feasible() (rmgpy.molecule.vf2.VF2 method), 103
fill_rules_by_averaging_up()

(rmgpy.data.kinetics.KineticsFamily method),
28

Index 259



RMG-Py API Reference, Release 3.1.0

fill_rules_by_averaging_up()
(rmgpy.data.kinetics.KineticsRules method), 39

filter_structures() (in module
rmgpy.molecule.filtration), 136

find_adj_lone_pair_multiple_bond_delocalization_paths()
(in module rmgpy.molecule.pathfinder), 137

find_adj_lone_pair_radical_delocalization_paths()
(in module rmgpy.molecule.pathfinder), 137

find_adj_lone_pair_radical_multiple_bond_delocalization_paths()
(in module rmgpy.molecule.pathfinder), 138

find_allyl_delocalization_paths() (in module
rmgpy.molecule.pathfinder), 138

find_allyl_end_with_charge() (in module
rmgpy.molecule.pathfinder), 138

find_butadiene() (in module
rmgpy.molecule.pathfinder), 138

find_butadiene_end_with_charge() (in module
rmgpy.molecule.pathfinder), 138

find_h_bonds() (rmgpy.molecule.Molecule method),
113

find_isomorphism() (rmgpy.molecule.graph.Graph
method), 100

find_isomorphism() (rmgpy.molecule.Group
method), 126

find_isomorphism() (rmgpy.molecule.Molecule
method), 113

find_isomorphism() (rmgpy.molecule.vf2.VF2
method), 103

find_lone_pair_multiple_bond_paths() (in
module rmgpy.molecule.pathfinder), 138

find_N5dc_radical_delocalization_paths() (in
module rmgpy.molecule.pathfinder), 137

find_subgraph_isomorphisms()
(rmgpy.molecule.graph.Graph method),
100

find_subgraph_isomorphisms()
(rmgpy.molecule.Group method), 126

find_subgraph_isomorphisms()
(rmgpy.molecule.Molecule method), 114

find_subgraph_isomorphisms()
(rmgpy.molecule.vf2.VF2 method), 103

find_unique_sites_in_charged_list() (in mod-
ule rmgpy.molecule.filtration), 136

fingerprint (rmgpy.molecule.Molecule attribute), 114
fingerprint (rmgpy.species.Species attribute), 209
finish() (rmgpy.rmg.main.RMG method), 188
fit_cosine_potential_to_data()

(rmgpy.statmech.HinderedRotor method),
224

fit_fourier_potential_to_data()
(rmgpy.statmech.HinderedRotor method),
224

fit_statmech_direct() (in module
rmgpy.data.statmechfit), 51

fit_statmech_pseudo() (in module
rmgpy.data.statmechfit), 51

fit_statmech_pseudo_rotors() (in module
rmgpy.data.statmechfit), 51

fit_statmech_to_heat_capacity() (in module
rmgpy.data.statmechfit), 51

fit_to_data() (rmgpy.kinetics.Arrhenius method), 78
fit_to_data() (rmgpy.kinetics.Chebyshev method), 87
fit_to_data() (rmgpy.kinetics.PDepArrhenius

method), 83
fit_to_data() (rmgpy.thermo.Wilhoit method), 234
fit_to_data_for_constant_b()

(rmgpy.thermo.Wilhoit method), 234
fix_barrier_height()

(rmgpy.data.kinetics.DepositoryReaction
method), 16

fix_barrier_height()
(rmgpy.data.kinetics.LibraryReaction method),
42

fix_barrier_height()
(rmgpy.data.kinetics.TemplateReaction
method), 61

fix_barrier_height() (rmgpy.reaction.Reaction
method), 178

fix_barrier_height()
(rmgpy.rmg.pdep.PDepReaction method),
194

fix_diffusion_limited_a_factor()
(rmgpy.data.kinetics.DepositoryReaction
method), 17

fix_diffusion_limited_a_factor()
(rmgpy.data.kinetics.LibraryReaction method),
42

fix_diffusion_limited_a_factor()
(rmgpy.data.kinetics.TemplateReaction
method), 61

fix_diffusion_limited_a_factor()
(rmgpy.reaction.Reaction method), 178

fix_diffusion_limited_a_factor()
(rmgpy.rmg.pdep.PDepReaction method),
194

ForbiddenStructureException, 242
fourier (rmgpy.statmech.HinderedRotor attribute), 224
frequencies (rmgpy.statmech.HarmonicOscillator at-

tribute), 222
frequency (rmgpy.kinetics.Eckart attribute), 97
frequency (rmgpy.kinetics.Wigner attribute), 95
frequency (rmgpy.species.TransitionState attribute),

211
frequency (rmgpy.statmech.HinderedRotor attribute),

224
from_adjacency_list() (in module

rmgpy.molecule.adjlist), 143
from_adjacency_list() (rmgpy.molecule.Group

260 Index



RMG-Py API Reference, Release 3.1.0

method), 126
from_adjacency_list() (rmgpy.molecule.Molecule

method), 114
from_adjacency_list() (rmgpy.species.Species

method), 209
from_augmented_inchi() (in module

rmgpy.molecule.translator), 139
from_augmented_inchi() (rmgpy.molecule.Molecule

method), 114
from_inchi() (in module rmgpy.molecule.translator),

140
from_inchi() (rmgpy.molecule.Molecule method), 114
from_ob_mol() (in module rmgpy.molecule.converter),

139
from_rdkit_mol() (in module

rmgpy.molecule.converter), 139
from_smarts() (in module rmgpy.molecule.translator),

140
from_smarts() (rmgpy.molecule.Molecule method),

114
from_smiles() (in module rmgpy.molecule.translator),

140
from_smiles() (rmgpy.molecule.Molecule method),

114
from_smiles() (rmgpy.species.Species method), 209
from_xyz() (rmgpy.molecule.Molecule method), 114

G
Gaussian (class in rmgpy.qm.gaussian), 159
GaussianMol (class in rmgpy.qm.gaussian), 160
GaussianMolPM3 (class in rmgpy.qm.gaussian), 161
GaussianMolPM6 (class in rmgpy.qm.gaussian), 163
generate_3d_ts() (rmgpy.data.kinetics.DepositoryReaction

method), 17
generate_3d_ts() (rmgpy.data.kinetics.LibraryReaction

method), 43
generate_3d_ts() (rmgpy.data.kinetics.TemplateReaction

method), 61
generate_3d_ts() (rmgpy.reaction.Reaction method),

179
generate_3d_ts() (rmgpy.rmg.pdep.PDepReaction

method), 194
generate_adj_lone_pair_multiple_bond_resonance_structures()

(in module rmgpy.molecule.resonance), 131
generate_adj_lone_pair_radical_multiple_bond_resonance_structures()

(in module rmgpy.molecule.resonance), 131
generate_adj_lone_pair_radical_resonance_structures()

(in module rmgpy.molecule.resonance), 132
generate_allyl_delocalization_resonance_structures()

(in module rmgpy.molecule.resonance), 132
generate_aromatic_resonance_structure() (in

module rmgpy.molecule.resonance), 132
generate_aryne_resonance_structures() (in

module rmgpy.molecule.resonance), 132

generate_cantera_files() (rmgpy.rmg.main.RMG
method), 188

generate_clar_structures() (in module
rmgpy.molecule.resonance), 132

generate_collision_matrix()
(rmgpy.pdep.Configuration method), 149

generate_collision_matrix()
(rmgpy.pdep.SingleExponentialDown method),
147

generate_energy_transfer_model()
(rmgpy.species.Species method), 209

generate_frequencies()
(rmgpy.data.statmech.GroupFrequencies
method), 21

generate_full_me_matrix() (in module
rmgpy.pdep.me), 152

generate_group_additivity_values()
(rmgpy.data.kinetics.KineticsGroups method),
34

generate_h_bonded_structures()
(rmgpy.molecule.Molecule method), 114

generate_high_p_limit_kinetics()
(rmgpy.data.kinetics.DepositoryReaction
method), 17

generate_high_p_limit_kinetics()
(rmgpy.data.kinetics.LibraryReaction method),
43

generate_high_p_limit_kinetics()
(rmgpy.data.kinetics.TemplateReaction
method), 61

generate_high_p_limit_kinetics()
(rmgpy.reaction.Reaction method), 179

generate_high_p_limit_kinetics()
(rmgpy.rmg.pdep.PDepReaction method),
194

generate_isomorphic_resonance_structures()
(in module rmgpy.molecule.resonance), 132

generate_kekule_structure() (in module
rmgpy.molecule.resonance), 132

generate_kinetics()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 184

generate_lone_pair_multiple_bond_resonance_structures()
(in module rmgpy.molecule.resonance), 133

generate_N5dc_radical_resonance_structures()
(in module rmgpy.molecule.resonance), 131

generate_old_library_entry()
(rmgpy.data.statmech.StatmechGroups
method), 55

generate_old_library_entry()
(rmgpy.data.statmech.StatmechLibrary
method), 58

generate_old_library_entry()
(rmgpy.data.thermo.ThermoGroups method),

Index 261



RMG-Py API Reference, Release 3.1.0

71
generate_old_library_entry()

(rmgpy.data.thermo.ThermoLibrary method),
73

generate_old_tree() (rmgpy.data.base.Database
method), 13

generate_old_tree()
(rmgpy.data.kinetics.KineticsDepository
method), 23

generate_old_tree()
(rmgpy.data.kinetics.KineticsFamily method),
28

generate_old_tree()
(rmgpy.data.kinetics.KineticsGroups method),
34

generate_old_tree()
(rmgpy.data.kinetics.KineticsLibrary method),
37

generate_old_tree()
(rmgpy.data.kinetics.KineticsRules method), 39

generate_old_tree()
(rmgpy.data.statmech.StatmechDepository
method), 49

generate_old_tree()
(rmgpy.data.statmech.StatmechGroups
method), 55

generate_old_tree()
(rmgpy.data.statmech.StatmechLibrary
method), 58

generate_old_tree()
(rmgpy.data.thermo.ThermoDepository
method), 68

generate_old_tree()
(rmgpy.data.thermo.ThermoGroups method),
71

generate_old_tree()
(rmgpy.data.thermo.ThermoLibrary method),
73

generate_optimal_aromatic_resonance_structures()
(in module rmgpy.molecule.resonance), 133

generate_pairs() (rmgpy.data.kinetics.DepositoryReaction
method), 17

generate_pairs() (rmgpy.data.kinetics.LibraryReaction
method), 43

generate_pairs() (rmgpy.data.kinetics.TemplateReaction
method), 62

generate_pairs() (rmgpy.reaction.Reaction method),
179

generate_pairs() (rmgpy.rmg.pdep.PDepReaction
method), 194

generate_product_template()
(rmgpy.data.kinetics.KineticsFamily method),
28

generate_qm_data() (rmgpy.qm.gaussian.GaussianMol

method), 160
generate_qm_data() (rmgpy.qm.gaussian.GaussianMolPM3

method), 162
generate_qm_data() (rmgpy.qm.gaussian.GaussianMolPM6

method), 163
generate_qm_data() (rmgpy.qm.molecule.QMMolecule

method), 157
generate_qm_data() (rmgpy.qm.mopac.MopacMol

method), 166
generate_qm_data() (rmgpy.qm.mopac.MopacMolPM3

method), 167
generate_qm_data() (rmgpy.qm.mopac.MopacMolPM6

method), 169
generate_qm_data() (rmgpy.qm.mopac.MopacMolPM7

method), 171
generate_rate_coefficients()

(rmgpy.solver.LiquidReactor method), 202
generate_rate_coefficients()

(rmgpy.solver.MBSampledReactor method),
206

generate_rate_coefficients()
(rmgpy.solver.SimpleReactor method), 200

generate_rate_coefficients()
(rmgpy.solver.SurfaceReactor method), 204

generate_rdkit_geometries()
(rmgpy.qm.molecule.Geometry method),
156

generate_reactant_product_indices()
(rmgpy.solver.LiquidReactor method), 202

generate_reactant_product_indices()
(rmgpy.solver.MBSampledReactor method),
206

generate_reactant_product_indices()
(rmgpy.solver.ReactionSystem method), 198

generate_reactant_product_indices()
(rmgpy.solver.SimpleReactor method), 200

generate_reactant_product_indices()
(rmgpy.solver.SurfaceReactor method), 204

generate_reaction_indices()
(rmgpy.solver.LiquidReactor method), 202

generate_reaction_indices()
(rmgpy.solver.MBSampledReactor method),
206

generate_reaction_indices()
(rmgpy.solver.ReactionSystem method), 198

generate_reaction_indices()
(rmgpy.solver.SimpleReactor method), 200

generate_reaction_indices()
(rmgpy.solver.SurfaceReactor method), 204

generate_reactions()
(rmgpy.data.kinetics.KineticsDatabase
method), 21

generate_reactions()
(rmgpy.data.kinetics.KineticsFamily method),

262 Index



RMG-Py API Reference, Release 3.1.0

28
generate_reactions_from_families()

(rmgpy.data.kinetics.KineticsDatabase
method), 21

generate_reactions_from_libraries()
(rmgpy.data.kinetics.KineticsDatabase
method), 21

generate_reactions_from_library()
(rmgpy.data.kinetics.KineticsDatabase
method), 21

generate_resonance_structures() (in module
rmgpy.molecule.resonance), 133

generate_resonance_structures()
(rmgpy.molecule.Molecule method), 114

generate_resonance_structures()
(rmgpy.species.Species method), 209

generate_reverse_rate_coefficient()
(rmgpy.data.kinetics.DepositoryReaction
method), 17

generate_reverse_rate_coefficient()
(rmgpy.data.kinetics.LibraryReaction method),
43

generate_reverse_rate_coefficient()
(rmgpy.data.kinetics.TemplateReaction
method), 62

generate_reverse_rate_coefficient()
(rmgpy.reaction.Reaction method), 179

generate_reverse_rate_coefficient()
(rmgpy.rmg.pdep.PDepReaction method),
194

generate_species_indices()
(rmgpy.solver.LiquidReactor method), 202

generate_species_indices()
(rmgpy.solver.MBSampledReactor method),
206

generate_species_indices()
(rmgpy.solver.ReactionSystem method), 198

generate_species_indices()
(rmgpy.solver.SimpleReactor method), 200

generate_species_indices()
(rmgpy.solver.SurfaceReactor method), 204

generate_statmech() (rmgpy.species.Species
method), 209

generate_thermo() (rmgpy.rmg.model.CoreEdgeReactionModel
method), 184

generate_thermo_data()
(rmgpy.qm.gaussian.GaussianMol method),
160

generate_thermo_data()
(rmgpy.qm.gaussian.GaussianMolPM3
method), 162

generate_thermo_data()
(rmgpy.qm.gaussian.GaussianMolPM6
method), 163

generate_thermo_data()
(rmgpy.qm.molecule.QMMolecule method),
157

generate_thermo_data()
(rmgpy.qm.mopac.MopacMol method), 166

generate_thermo_data()
(rmgpy.qm.mopac.MopacMolPM3 method),
167

generate_thermo_data()
(rmgpy.qm.mopac.MopacMolPM6 method),
169

generate_thermo_data()
(rmgpy.qm.mopac.MopacMolPM7 method),
171

generate_transport_data() (rmgpy.species.Species
method), 209

generate_tree() (rmgpy.data.kinetics.KineticsFamily
method), 28

generic_visit() (arkane.output.PrettifyVisitor
method), 5

Geometry (class in rmgpy.qm.molecule), 156
get_active_modes() (rmgpy.statmech.Conformer

method), 227
get_all_cycles() (rmgpy.molecule.graph.Graph

method), 100
get_all_cycles() (rmgpy.molecule.Group method),

126
get_all_cycles() (rmgpy.molecule.Molecule

method), 115
get_all_cycles_of_size()

(rmgpy.molecule.graph.Graph method),
100

get_all_cycles_of_size() (rmgpy.molecule.Group
method), 126

get_all_cycles_of_size()
(rmgpy.molecule.Molecule method), 115

get_all_cyclic_vertices()
(rmgpy.molecule.graph.Graph method),
100

get_all_cyclic_vertices()
(rmgpy.molecule.Group method), 126

get_all_cyclic_vertices()
(rmgpy.molecule.Molecule method), 115

get_all_descendants() (rmgpy.data.base.Entry
method), 20

get_all_edges() (rmgpy.molecule.graph.Graph
method), 100

get_all_edges() (rmgpy.molecule.Group method),
126

get_all_edges() (rmgpy.molecule.Molecule method),
115

get_all_labeled_atoms() (rmgpy.molecule.Group
method), 126

get_all_labeled_atoms()

Index 263



RMG-Py API Reference, Release 3.1.0

(rmgpy.molecule.Molecule method), 115
get_all_polycyclic_vertices()

(rmgpy.molecule.graph.Graph method),
100

get_all_polycyclic_vertices()
(rmgpy.molecule.Group method), 126

get_all_polycyclic_vertices()
(rmgpy.molecule.Molecule method), 115

get_all_rules() (rmgpy.data.kinetics.KineticsRules
method), 39

get_all_simple_cycles_of_size()
(rmgpy.molecule.graph.Graph method),
101

get_all_simple_cycles_of_size()
(rmgpy.molecule.Group method), 126

get_all_simple_cycles_of_size()
(rmgpy.molecule.Molecule method), 115

get_all_species() (rmgpy.pdep.Network method),
151

get_all_species() (rmgpy.rmg.pdep.PDepNetwork
method), 191

get_all_thermo_data()
(rmgpy.data.thermo.ThermoDatabase method),
65

get_alpha() (rmgpy.pdep.SingleExponentialDown
method), 147

get_aromatic_rings() (rmgpy.molecule.Molecule
method), 115

get_atomtype() (in module rmgpy.molecule), 105
get_augmented_inchi_key()

(rmgpy.qm.gaussian.GaussianMol method),
160

get_augmented_inchi_key()
(rmgpy.qm.gaussian.GaussianMolPM3
method), 162

get_augmented_inchi_key()
(rmgpy.qm.gaussian.GaussianMolPM6
method), 164

get_augmented_inchi_key()
(rmgpy.qm.molecule.QMMolecule method),
157

get_augmented_inchi_key()
(rmgpy.qm.mopac.MopacMol method), 166

get_augmented_inchi_key()
(rmgpy.qm.mopac.MopacMolPM3 method),
167

get_augmented_inchi_key()
(rmgpy.qm.mopac.MopacMolPM6 method),
169

get_augmented_inchi_key()
(rmgpy.qm.mopac.MopacMolPM7 method),
171

get_backbone_roots()
(rmgpy.data.kinetics.KineticsFamily method),

29
get_bde() (rmgpy.molecule.Bond method), 110
get_bond() (rmgpy.molecule.Group method), 126
get_bond() (rmgpy.molecule.Molecule method), 115
get_bond_string() (rmgpy.molecule.Bond method),

110
get_bonds() (rmgpy.molecule.Group method), 126
get_bonds() (rmgpy.molecule.Molecule method), 115
get_cantera_efficiencies()

(rmgpy.kinetics.Chebyshev method), 87
get_cantera_efficiencies()

(rmgpy.kinetics.Lindemann method), 91
get_cantera_efficiencies()

(rmgpy.kinetics.MultiPDepArrhenius method),
85

get_cantera_efficiencies()
(rmgpy.kinetics.PDepArrhenius method),
83

get_cantera_efficiencies()
(rmgpy.kinetics.PDepKineticsData method), 81

get_cantera_efficiencies()
(rmgpy.kinetics.ThirdBody method), 89

get_cantera_efficiencies() (rmgpy.kinetics.Troe
method), 94

get_center_of_mass() (rmgpy.statmech.Conformer
method), 227

get_charge_span() (rmgpy.molecule.Molecule
method), 115

get_charge_span_list() (in module
rmgpy.molecule.filtration), 136

get_const_spc_indices()
(rmgpy.solver.LiquidReactor method), 202

get_const_spc_indices()
(rmgpy.solver.SimpleReactor method), 200

get_conversion_factor_from_si()
(rmgpy.quantity.ArrayQuantity method),
175

get_conversion_factor_from_si()
(rmgpy.quantity.ScalarQuantity method),
174

get_conversion_factor_from_si_to_cm_mol_s()
(rmgpy.quantity.ArrayQuantity method), 175

get_conversion_factor_from_si_to_cm_mol_s()
(rmgpy.quantity.ScalarQuantity method), 174

get_conversion_factor_to_si()
(rmgpy.quantity.ArrayQuantity method),
175

get_conversion_factor_to_si()
(rmgpy.quantity.ScalarQuantity method),
174

get_crude_mol_file_path()
(rmgpy.qm.molecule.Geometry method),
156

get_density_of_states() (in module

264 Index



RMG-Py API Reference, Release 3.1.0

rmgpy.statmech.schrodinger), 226
get_density_of_states() (rmgpy.species.Species

method), 209
get_density_of_states()

(rmgpy.species.TransitionState method),
211

get_density_of_states()
(rmgpy.statmech.Conformer method), 227

get_density_of_states()
(rmgpy.statmech.HarmonicOscillator method),
222

get_density_of_states()
(rmgpy.statmech.HinderedRotor method),
224

get_density_of_states()
(rmgpy.statmech.IdealGasTranslation method),
214

get_density_of_states() (rmgpy.statmech.KRotor
method), 219

get_density_of_states()
(rmgpy.statmech.LinearRotor method), 216

get_density_of_states()
(rmgpy.statmech.NonlinearRotor method),
217

get_density_of_states()
(rmgpy.statmech.SphericalTopRotor method),
220

get_deterministic_sssr()
(rmgpy.molecule.Molecule method), 115

get_disparate_cycles()
(rmgpy.molecule.graph.Graph method),
101

get_disparate_cycles() (rmgpy.molecule.Group
method), 126

get_disparate_cycles() (rmgpy.molecule.Molecule
method), 116

get_edge() (rmgpy.molecule.graph.Graph method),
101

get_edge() (rmgpy.molecule.Group method), 127
get_edge() (rmgpy.molecule.Molecule method), 116
get_edges() (rmgpy.molecule.graph.Graph method),

101
get_edges() (rmgpy.molecule.Group method), 127
get_edges() (rmgpy.molecule.Molecule method), 116
get_edges_in_cycle()

(rmgpy.molecule.graph.Graph method),
101

get_edges_in_cycle() (rmgpy.molecule.Group
method), 127

get_edges_in_cycle() (rmgpy.molecule.Molecule
method), 116

get_effective_collider_efficiencies()
(rmgpy.kinetics.Chebyshev method), 87

get_effective_collider_efficiencies()

(rmgpy.kinetics.Lindemann method), 91
get_effective_collider_efficiencies()

(rmgpy.kinetics.MultiPDepArrhenius method),
85

get_effective_collider_efficiencies()
(rmgpy.kinetics.PDepArrhenius method), 83

get_effective_collider_efficiencies()
(rmgpy.kinetics.PDepKineticsData method), 81

get_effective_collider_efficiencies()
(rmgpy.kinetics.ThirdBody method), 89

get_effective_collider_efficiencies()
(rmgpy.kinetics.Troe method), 94

get_effective_pressure()
(rmgpy.kinetics.Chebyshev method), 87

get_effective_pressure()
(rmgpy.kinetics.Lindemann method), 91

get_effective_pressure()
(rmgpy.kinetics.MultiPDepArrhenius method),
85

get_effective_pressure()
(rmgpy.kinetics.PDepArrhenius method),
83

get_effective_pressure()
(rmgpy.kinetics.PDepKineticsData method), 81

get_effective_pressure()
(rmgpy.kinetics.ThirdBody method), 89

get_effective_pressure() (rmgpy.kinetics.Troe
method), 94

get_element() (in module rmgpy.molecule), 103
get_element_count() (rmgpy.molecule.Group

method), 127
get_element_count() (rmgpy.molecule.Molecule

method), 116
get_end_roots() (rmgpy.data.kinetics.KineticsFamily

method), 29
get_energy_filtered_reactions()

(rmgpy.rmg.pdep.PDepNetwork method),
191

get_enthalpies_of_reaction()
(rmgpy.data.kinetics.DepositoryReaction
method), 17

get_enthalpies_of_reaction()
(rmgpy.data.kinetics.LibraryReaction method),
43

get_enthalpies_of_reaction()
(rmgpy.data.kinetics.TemplateReaction
method), 62

get_enthalpies_of_reaction()
(rmgpy.reaction.Reaction method), 179

get_enthalpies_of_reaction()
(rmgpy.rmg.pdep.PDepReaction method),
194

get_enthalpy() (in module
rmgpy.statmech.schrodinger), 226

Index 265



RMG-Py API Reference, Release 3.1.0

get_enthalpy() (rmgpy.pdep.Configuration method),
149

get_enthalpy() (rmgpy.species.Species method), 209
get_enthalpy() (rmgpy.species.TransitionState

method), 211
get_enthalpy() (rmgpy.statmech.Conformer method),

228
get_enthalpy() (rmgpy.statmech.HarmonicOscillator

method), 222
get_enthalpy() (rmgpy.statmech.HinderedRotor

method), 224
get_enthalpy() (rmgpy.statmech.IdealGasTranslation

method), 214
get_enthalpy() (rmgpy.statmech.KRotor method),

219
get_enthalpy() (rmgpy.statmech.LinearRotor

method), 216
get_enthalpy() (rmgpy.statmech.NonlinearRotor

method), 217
get_enthalpy() (rmgpy.statmech.SphericalTopRotor

method), 220
get_enthalpy() (rmgpy.thermo.NASA method), 236
get_enthalpy() (rmgpy.thermo.NASAPolynomial

method), 240
get_enthalpy() (rmgpy.thermo.ThermoData method),

230
get_enthalpy() (rmgpy.thermo.Wilhoit method), 234
get_enthalpy_of_reaction()

(rmgpy.data.kinetics.DepositoryReaction
method), 17

get_enthalpy_of_reaction()
(rmgpy.data.kinetics.LibraryReaction method),
43

get_enthalpy_of_reaction()
(rmgpy.data.kinetics.TemplateReaction
method), 62

get_enthalpy_of_reaction()
(rmgpy.reaction.Reaction method), 179

get_enthalpy_of_reaction()
(rmgpy.rmg.pdep.PDepReaction method),
194

get_entries() (rmgpy.data.kinetics.KineticsRules
method), 39

get_entries_to_save() (rmgpy.data.base.Database
method), 14

get_entries_to_save()
(rmgpy.data.kinetics.KineticsDepository
method), 24

get_entries_to_save()
(rmgpy.data.kinetics.KineticsFamily method),
29

get_entries_to_save()
(rmgpy.data.kinetics.KineticsGroups method),
34

get_entries_to_save()
(rmgpy.data.kinetics.KineticsLibrary method),
37

get_entries_to_save()
(rmgpy.data.kinetics.KineticsRules method), 39

get_entries_to_save()
(rmgpy.data.statmech.StatmechDepository
method), 49

get_entries_to_save()
(rmgpy.data.statmech.StatmechGroups
method), 56

get_entries_to_save()
(rmgpy.data.statmech.StatmechLibrary
method), 58

get_entries_to_save()
(rmgpy.data.thermo.ThermoDepository
method), 68

get_entries_to_save()
(rmgpy.data.thermo.ThermoGroups method),
71

get_entries_to_save()
(rmgpy.data.thermo.ThermoLibrary method),
73

get_entropies_of_reaction()
(rmgpy.data.kinetics.DepositoryReaction
method), 17

get_entropies_of_reaction()
(rmgpy.data.kinetics.LibraryReaction method),
43

get_entropies_of_reaction()
(rmgpy.data.kinetics.TemplateReaction
method), 62

get_entropies_of_reaction()
(rmgpy.reaction.Reaction method), 179

get_entropies_of_reaction()
(rmgpy.rmg.pdep.PDepReaction method),
194

get_entropy() (in module
rmgpy.statmech.schrodinger), 226

get_entropy() (rmgpy.pdep.Configuration method),
149

get_entropy() (rmgpy.species.Species method), 209
get_entropy() (rmgpy.species.TransitionState

method), 211
get_entropy() (rmgpy.statmech.Conformer method),

228
get_entropy() (rmgpy.statmech.HarmonicOscillator

method), 222
get_entropy() (rmgpy.statmech.HinderedRotor

method), 224
get_entropy() (rmgpy.statmech.IdealGasTranslation

method), 215
get_entropy() (rmgpy.statmech.KRotor method), 219
get_entropy() (rmgpy.statmech.LinearRotor method),

266 Index



RMG-Py API Reference, Release 3.1.0

216
get_entropy() (rmgpy.statmech.NonlinearRotor

method), 217
get_entropy() (rmgpy.statmech.SphericalTopRotor

method), 220
get_entropy() (rmgpy.thermo.NASA method), 236
get_entropy() (rmgpy.thermo.NASAPolynomial

method), 240
get_entropy() (rmgpy.thermo.ThermoData method),

231
get_entropy() (rmgpy.thermo.Wilhoit method), 234
get_entropy_of_reaction()

(rmgpy.data.kinetics.DepositoryReaction
method), 17

get_entropy_of_reaction()
(rmgpy.data.kinetics.LibraryReaction method),
43

get_entropy_of_reaction()
(rmgpy.data.kinetics.TemplateReaction
method), 62

get_entropy_of_reaction()
(rmgpy.reaction.Reaction method), 179

get_entropy_of_reaction()
(rmgpy.rmg.pdep.PDepReaction method),
195

get_equilibrium_constant()
(rmgpy.data.kinetics.DepositoryReaction
method), 17

get_equilibrium_constant()
(rmgpy.data.kinetics.LibraryReaction method),
43

get_equilibrium_constant()
(rmgpy.data.kinetics.TemplateReaction
method), 62

get_equilibrium_constant()
(rmgpy.reaction.Reaction method), 179

get_equilibrium_constant()
(rmgpy.rmg.pdep.PDepReaction method),
195

get_equilibrium_constants()
(rmgpy.data.kinetics.DepositoryReaction
method), 17

get_equilibrium_constants()
(rmgpy.data.kinetics.LibraryReaction method),
43

get_equilibrium_constants()
(rmgpy.data.kinetics.TemplateReaction
method), 62

get_equilibrium_constants()
(rmgpy.reaction.Reaction method), 179

get_equilibrium_constants()
(rmgpy.rmg.pdep.PDepReaction method),
195

get_extension_edge()

(rmgpy.data.kinetics.KineticsFamily method),
29

get_extensions() (rmgpy.molecule.Group method),
127

get_features() (rmgpy.molecule.AtomType method),
104

get_file_path() (rmgpy.qm.gaussian.GaussianMol
method), 160

get_file_path() (rmgpy.qm.gaussian.GaussianMolPM3
method), 162

get_file_path() (rmgpy.qm.gaussian.GaussianMolPM6
method), 164

get_file_path() (rmgpy.qm.molecule.Geometry
method), 156

get_file_path() (rmgpy.qm.molecule.QMMolecule
method), 157

get_file_path() (rmgpy.qm.mopac.MopacMol
method), 166

get_file_path() (rmgpy.qm.mopac.MopacMolPM3
method), 167

get_file_path() (rmgpy.qm.mopac.MopacMolPM6
method), 169

get_file_path() (rmgpy.qm.mopac.MopacMolPM7
method), 171

get_formula() (rmgpy.molecule.Molecule method),
116

get_forward_reaction_for_family_entry()
(rmgpy.data.kinetics.KineticsDatabase
method), 22

get_free_energies_of_reaction()
(rmgpy.data.kinetics.DepositoryReaction
method), 18

get_free_energies_of_reaction()
(rmgpy.data.kinetics.LibraryReaction method),
44

get_free_energies_of_reaction()
(rmgpy.data.kinetics.TemplateReaction
method), 62

get_free_energies_of_reaction()
(rmgpy.reaction.Reaction method), 179

get_free_energies_of_reaction()
(rmgpy.rmg.pdep.PDepReaction method),
195

get_free_energy() (rmgpy.pdep.Configuration
method), 149

get_free_energy() (rmgpy.species.Species method),
209

get_free_energy() (rmgpy.species.TransitionState
method), 212

get_free_energy() (rmgpy.statmech.Conformer
method), 228

get_free_energy() (rmgpy.thermo.NASA method),
236

get_free_energy() (rmgpy.thermo.NASAPolynomial

Index 267



RMG-Py API Reference, Release 3.1.0

method), 240
get_free_energy() (rmgpy.thermo.ThermoData

method), 231
get_free_energy() (rmgpy.thermo.Wilhoit method),

234
get_free_energy_of_reaction()

(rmgpy.data.kinetics.DepositoryReaction
method), 18

get_free_energy_of_reaction()
(rmgpy.data.kinetics.LibraryReaction method),
44

get_free_energy_of_reaction()
(rmgpy.data.kinetics.TemplateReaction
method), 62

get_free_energy_of_reaction()
(rmgpy.reaction.Reaction method), 179

get_free_energy_of_reaction()
(rmgpy.rmg.pdep.PDepReaction method),
195

get_frequency() (rmgpy.statmech.HinderedRotor
method), 224

get_frequency_groups()
(rmgpy.data.statmech.StatmechGroups
method), 56

get_hamiltonian() (rmgpy.statmech.HinderedRotor
method), 224

get_heat_capacity() (in module
rmgpy.statmech.schrodinger), 226

get_heat_capacity() (rmgpy.pdep.Configuration
method), 149

get_heat_capacity() (rmgpy.species.Species
method), 209

get_heat_capacity() (rmgpy.species.TransitionState
method), 212

get_heat_capacity() (rmgpy.statmech.Conformer
method), 228

get_heat_capacity()
(rmgpy.statmech.HarmonicOscillator method),
222

get_heat_capacity()
(rmgpy.statmech.HinderedRotor method),
225

get_heat_capacity()
(rmgpy.statmech.IdealGasTranslation method),
215

get_heat_capacity() (rmgpy.statmech.KRotor
method), 219

get_heat_capacity() (rmgpy.statmech.LinearRotor
method), 216

get_heat_capacity()
(rmgpy.statmech.NonlinearRotor method),
218

get_heat_capacity()
(rmgpy.statmech.SphericalTopRotor method),

221
get_heat_capacity() (rmgpy.thermo.NASA method),

236
get_heat_capacity()

(rmgpy.thermo.NASAPolynomial method),
240

get_heat_capacity() (rmgpy.thermo.ThermoData
method), 231

get_heat_capacity() (rmgpy.thermo.Wilhoit
method), 234

get_internal_reduced_moment_of_inertia()
(rmgpy.statmech.Conformer method), 228

get_kinetics() (rmgpy.data.kinetics.KineticsFamily
method), 29

get_kinetics_for_template()
(rmgpy.data.kinetics.KineticsFamily method),
30

get_kinetics_from_depository()
(rmgpy.data.kinetics.KineticsFamily method),
30

get_labeled_atoms() (rmgpy.molecule.Group
method), 127

get_labeled_atoms() (rmgpy.molecule.Molecule
method), 116

get_labeled_reactants_and_products()
(rmgpy.data.kinetics.KineticsFamily method),
30

get_largest_ring() (rmgpy.molecule.graph.Graph
method), 101

get_largest_ring() (rmgpy.molecule.Group
method), 127

get_largest_ring() (rmgpy.molecule.Molecule
method), 116

get_layering_indices()
(rmgpy.solver.LiquidReactor method), 202

get_layering_indices()
(rmgpy.solver.MBSampledReactor method),
206

get_layering_indices()
(rmgpy.solver.ReactionSystem method), 198

get_layering_indices()
(rmgpy.solver.SimpleReactor method), 200

get_layering_indices()
(rmgpy.solver.SurfaceReactor method), 204

get_leak_branching_ratios()
(rmgpy.rmg.pdep.PDepNetwork method),
191

get_leak_coefficient()
(rmgpy.rmg.pdep.PDepNetwork method),
191

get_level_degeneracy()
(rmgpy.statmech.HinderedRotor method),
225

get_level_degeneracy() (rmgpy.statmech.KRotor

268 Index



RMG-Py API Reference, Release 3.1.0

method), 219
get_level_degeneracy()

(rmgpy.statmech.LinearRotor method), 216
get_level_degeneracy()

(rmgpy.statmech.SphericalTopRotor method),
221

get_level_energy() (rmgpy.statmech.HinderedRotor
method), 225

get_level_energy() (rmgpy.statmech.KRotor
method), 219

get_level_energy() (rmgpy.statmech.LinearRotor
method), 216

get_level_energy() (rmgpy.statmech.SphericalTopRotor
method), 221

get_library_reactions()
(rmgpy.data.kinetics.KineticsLibrary method),
37

get_max_cycle_overlap()
(rmgpy.molecule.graph.Graph method),
101

get_max_cycle_overlap() (rmgpy.molecule.Group
method), 127

get_max_cycle_overlap()
(rmgpy.molecule.Molecule method), 116

get_maximum_leak_species()
(rmgpy.rmg.pdep.PDepNetwork method),
191

get_mean_sigma_and_epsilon()
(rmgpy.data.kinetics.DepositoryReaction
method), 18

get_mean_sigma_and_epsilon()
(rmgpy.data.kinetics.LibraryReaction method),
44

get_mean_sigma_and_epsilon()
(rmgpy.data.kinetics.TemplateReaction
method), 62

get_mean_sigma_and_epsilon()
(rmgpy.reaction.Reaction method), 179

get_mean_sigma_and_epsilon()
(rmgpy.rmg.pdep.PDepReaction method),
195

get_model_size() (rmgpy.rmg.model.CoreEdgeReactionModel
method), 184

get_mol_file_path_for_calculation()
(rmgpy.qm.gaussian.GaussianMol method),
160

get_mol_file_path_for_calculation()
(rmgpy.qm.gaussian.GaussianMolPM3
method), 162

get_mol_file_path_for_calculation()
(rmgpy.qm.gaussian.GaussianMolPM6
method), 164

get_mol_file_path_for_calculation()
(rmgpy.qm.molecule.QMMolecule method),

157
get_mol_file_path_for_calculation()

(rmgpy.qm.mopac.MopacMol method), 166
get_mol_file_path_for_calculation()

(rmgpy.qm.mopac.MopacMolPM3 method),
168

get_mol_file_path_for_calculation()
(rmgpy.qm.mopac.MopacMolPM6 method),
169

get_mol_file_path_for_calculation()
(rmgpy.qm.mopac.MopacMolPM7 method),
171

get_molecular_weight() (rmgpy.molecule.Molecule
method), 116

get_moment_of_inertia_tensor()
(rmgpy.statmech.Conformer method), 228

get_monocycles() (rmgpy.molecule.graph.Graph
method), 101

get_monocycles() (rmgpy.molecule.Group method),
127

get_monocycles() (rmgpy.molecule.Molecule
method), 116

get_net_charge() (rmgpy.molecule.Group method),
127

get_net_charge() (rmgpy.molecule.Molecule
method), 116

get_nth_neighbor() (rmgpy.molecule.Molecule
method), 116

get_num_atoms() (rmgpy.molecule.Molecule method),
116

get_number_degrees_of_freedom()
(rmgpy.statmech.Conformer method), 228

get_octet_deviation() (in module
rmgpy.molecule.filtration), 136

get_octet_deviation_list() (in module
rmgpy.molecule.filtration), 136

get_order_num() (rmgpy.molecule.Bond method), 110
get_order_num() (rmgpy.molecule.GroupBond

method), 123
get_order_str() (rmgpy.molecule.Bond method), 110
get_order_str() (rmgpy.molecule.GroupBond

method), 123
get_other_vertex() (rmgpy.molecule.Bond method),

110
get_other_vertex() (rmgpy.molecule.graph.Edge

method), 99
get_other_vertex() (rmgpy.molecule.GroupBond

method), 123
get_parser() (rmgpy.qm.gaussian.GaussianMol

method), 161
get_parser() (rmgpy.qm.gaussian.GaussianMolPM3

method), 162
get_parser() (rmgpy.qm.gaussian.GaussianMolPM6

method), 164

Index 269



RMG-Py API Reference, Release 3.1.0

get_parser() (rmgpy.qm.mopac.Mopac method), 165
get_parser() (rmgpy.qm.mopac.MopacMol method),

166
get_parser() (rmgpy.qm.mopac.MopacMolPM3

method), 168
get_parser() (rmgpy.qm.mopac.MopacMolPM6

method), 169
get_parser() (rmgpy.qm.mopac.MopacMolPM7

method), 171
get_partition_function() (in module

rmgpy.statmech.schrodinger), 226
get_partition_function() (rmgpy.species.Species

method), 209
get_partition_function()

(rmgpy.species.TransitionState method),
212

get_partition_function()
(rmgpy.statmech.Conformer method), 228

get_partition_function()
(rmgpy.statmech.HarmonicOscillator method),
222

get_partition_function()
(rmgpy.statmech.HinderedRotor method),
225

get_partition_function()
(rmgpy.statmech.IdealGasTranslation method),
215

get_partition_function()
(rmgpy.statmech.KRotor method), 219

get_partition_function()
(rmgpy.statmech.LinearRotor method), 216

get_partition_function()
(rmgpy.statmech.NonlinearRotor method),
218

get_partition_function()
(rmgpy.statmech.SphericalTopRotor method),
221

get_polycycles() (rmgpy.molecule.graph.Graph
method), 101

get_polycycles() (rmgpy.molecule.Group method),
127

get_polycycles() (rmgpy.molecule.Molecule
method), 117

get_possible_structures()
(rmgpy.data.base.LogicOr method), 46

get_potential() (rmgpy.statmech.HinderedRotor
method), 225

get_principal_moments_of_inertia()
(rmgpy.statmech.Conformer method), 228

get_radical_atoms() (rmgpy.molecule.Molecule
method), 117

get_radical_count() (rmgpy.molecule.Molecule
method), 117

get_rate_coefficient()

(rmgpy.data.kinetics.DepositoryReaction
method), 18

get_rate_coefficient()
(rmgpy.data.kinetics.LibraryReaction method),
44

get_rate_coefficient()
(rmgpy.data.kinetics.TemplateReaction
method), 62

get_rate_coefficient() (rmgpy.kinetics.Arrhenius
method), 78

get_rate_coefficient() (rmgpy.kinetics.Chebyshev
method), 87

get_rate_coefficient()
(rmgpy.kinetics.KineticsData method), 76

get_rate_coefficient()
(rmgpy.kinetics.Lindemann method), 91

get_rate_coefficient()
(rmgpy.kinetics.MultiArrhenius method),
79

get_rate_coefficient()
(rmgpy.kinetics.MultiPDepArrhenius method),
85

get_rate_coefficient()
(rmgpy.kinetics.PDepArrhenius method),
83

get_rate_coefficient()
(rmgpy.kinetics.PDepKineticsData method), 81

get_rate_coefficient() (rmgpy.kinetics.ThirdBody
method), 89

get_rate_coefficient() (rmgpy.kinetics.Troe
method), 94

get_rate_coefficient() (rmgpy.reaction.Reaction
method), 180

get_rate_coefficient()
(rmgpy.rmg.pdep.PDepReaction method),
195

get_rate_filtered_products()
(rmgpy.rmg.pdep.PDepNetwork method),
191

get_rate_rule() (rmgpy.data.kinetics.KineticsFamily
method), 30

get_reaction_matches()
(rmgpy.data.kinetics.KineticsFamily method),
30

get_reaction_pairs()
(rmgpy.data.kinetics.KineticsFamily method),
30

get_reaction_template()
(rmgpy.data.kinetics.KineticsFamily method),
30

get_reaction_template()
(rmgpy.data.kinetics.KineticsGroups method),
34

get_reaction_template_labels()

270 Index



RMG-Py API Reference, Release 3.1.0

(rmgpy.data.kinetics.KineticsFamily method),
30

get_reduced_mass() (rmgpy.data.kinetics.DepositoryReaction
method), 18

get_reduced_mass() (rmgpy.data.kinetics.LibraryReaction
method), 44

get_reduced_mass() (rmgpy.data.kinetics.TemplateReaction
method), 63

get_reduced_mass() (rmgpy.reaction.Reaction
method), 180

get_reduced_mass() (rmgpy.rmg.pdep.PDepReaction
method), 195

get_reduced_pressure() (rmgpy.kinetics.Chebyshev
method), 87

get_reduced_temperature()
(rmgpy.kinetics.Chebyshev method), 87

get_refined_mol_file_path()
(rmgpy.qm.molecule.Geometry method),
156

get_relevant_cycles()
(rmgpy.molecule.graph.Graph method),
101

get_relevant_cycles() (rmgpy.molecule.Group
method), 127

get_relevant_cycles() (rmgpy.molecule.Molecule
method), 117

get_resonance_hybrid() (rmgpy.species.Species
method), 209

get_reverse() (rmgpy.data.kinetics.ReactionRecipe
method), 47

get_ring_groups_from_comments()
(rmgpy.data.thermo.ThermoDatabase method),
65

get_root_template()
(rmgpy.data.kinetics.KineticsFamily method),
30

get_rule() (rmgpy.data.kinetics.KineticsRules
method), 39

get_rxn_batches() (rmgpy.data.kinetics.KineticsFamily
method), 30

get_singlet_carbene_count()
(rmgpy.molecule.Molecule method), 117

get_smallest_set_of_smallest_rings()
(rmgpy.molecule.graph.Graph method),
101

get_smallest_set_of_smallest_rings()
(rmgpy.molecule.Group method), 127

get_smallest_set_of_smallest_rings()
(rmgpy.molecule.Molecule method), 117

get_source() (rmgpy.data.kinetics.DepositoryReaction
method), 18

get_source() (rmgpy.data.kinetics.LibraryReaction
method), 44

get_source() (rmgpy.data.kinetics.TemplateReaction

method), 63
get_source() (rmgpy.rmg.pdep.PDepReaction

method), 195
get_sources_for_template()

(rmgpy.data.kinetics.KineticsFamily method),
30

get_species() (rmgpy.data.base.Database method),
14

get_species() (rmgpy.data.kinetics.KineticsDepository
method), 24

get_species() (rmgpy.data.kinetics.KineticsFamily
method), 31

get_species() (rmgpy.data.kinetics.KineticsGroups
method), 34

get_species() (rmgpy.data.kinetics.KineticsLibrary
method), 37

get_species() (rmgpy.data.kinetics.KineticsRules
method), 39

get_species() (rmgpy.data.statmech.StatmechDepository
method), 49

get_species() (rmgpy.data.statmech.StatmechGroups
method), 56

get_species() (rmgpy.data.statmech.StatmechLibrary
method), 58

get_species() (rmgpy.data.thermo.ThermoDepository
method), 68

get_species() (rmgpy.data.thermo.ThermoGroups
method), 71

get_species() (rmgpy.data.thermo.ThermoLibrary
method), 73

get_species_identifier() (in module
rmgpy.chemkin), 10

get_species_index() (rmgpy.solver.LiquidReactor
method), 202

get_species_index()
(rmgpy.solver.MBSampledReactor method),
206

get_species_index() (rmgpy.solver.ReactionSystem
method), 198

get_species_index() (rmgpy.solver.SimpleReactor
method), 200

get_species_index() (rmgpy.solver.SurfaceReactor
method), 204

get_species_reaction_lists()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 184

get_statmech_data()
(rmgpy.data.statmech.StatmechDatabase
method), 47

get_statmech_data()
(rmgpy.data.statmech.StatmechGroups
method), 56

get_statmech_data_from_depository()
(rmgpy.data.statmech.StatmechDatabase

Index 271



RMG-Py API Reference, Release 3.1.0

method), 47
get_statmech_data_from_groups()

(rmgpy.data.statmech.StatmechDatabase
method), 47

get_statmech_data_from_library()
(rmgpy.data.statmech.StatmechDatabase
method), 47

get_stoichiometric_coefficient()
(rmgpy.data.kinetics.DepositoryReaction
method), 18

get_stoichiometric_coefficient()
(rmgpy.data.kinetics.LibraryReaction method),
44

get_stoichiometric_coefficient()
(rmgpy.data.kinetics.TemplateReaction
method), 63

get_stoichiometric_coefficient()
(rmgpy.reaction.Reaction method), 180

get_stoichiometric_coefficient()
(rmgpy.rmg.pdep.PDepReaction method),
195

get_stoichiometry_matrix()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 184

get_str_xyz() (in module arkane.output), 6
get_sum_of_states() (in module

rmgpy.statmech.schrodinger), 227
get_sum_of_states() (rmgpy.species.Species

method), 209
get_sum_of_states() (rmgpy.species.TransitionState

method), 212
get_sum_of_states() (rmgpy.statmech.Conformer

method), 228
get_sum_of_states()

(rmgpy.statmech.HarmonicOscillator method),
222

get_sum_of_states()
(rmgpy.statmech.HinderedRotor method),
225

get_sum_of_states()
(rmgpy.statmech.IdealGasTranslation method),
215

get_sum_of_states() (rmgpy.statmech.KRotor
method), 219

get_sum_of_states() (rmgpy.statmech.LinearRotor
method), 216

get_sum_of_states()
(rmgpy.statmech.NonlinearRotor method),
218

get_sum_of_states()
(rmgpy.statmech.SphericalTopRotor method),
221

get_surface_rate_coefficient()
(rmgpy.data.kinetics.DepositoryReaction

method), 18
get_surface_rate_coefficient()

(rmgpy.data.kinetics.LibraryReaction method),
44

get_surface_rate_coefficient()
(rmgpy.data.kinetics.TemplateReaction
method), 63

get_surface_rate_coefficient()
(rmgpy.reaction.Reaction method), 180

get_surface_rate_coefficient()
(rmgpy.rmg.pdep.PDepReaction method),
195

get_symmetric_top_rotors()
(rmgpy.statmech.Conformer method), 228

get_symmetry_number() (rmgpy.molecule.Molecule
method), 117

get_symmetry_number() (rmgpy.species.Species
method), 210

get_thermo_data() (rmgpy.data.thermo.ThermoDatabase
method), 66

get_thermo_data() (rmgpy.qm.main.QMCalculator
method), 155

get_thermo_data() (rmgpy.species.Species method),
210

get_thermo_data_for_surface_species()
(rmgpy.data.thermo.ThermoDatabase method),
66

get_thermo_data_from_depository()
(rmgpy.data.thermo.ThermoDatabase method),
66

get_thermo_data_from_groups()
(rmgpy.data.thermo.ThermoDatabase method),
66

get_thermo_data_from_libraries()
(rmgpy.data.thermo.ThermoDatabase method),
66

get_thermo_data_from_library()
(rmgpy.data.thermo.ThermoDatabase method),
66

get_thermo_data_from_ml()
(rmgpy.data.thermo.ThermoDatabase method),
66

get_thermo_file_path()
(rmgpy.qm.gaussian.GaussianMol method),
161

get_thermo_file_path()
(rmgpy.qm.gaussian.GaussianMolPM3
method), 162

get_thermo_file_path()
(rmgpy.qm.gaussian.GaussianMolPM6
method), 164

get_thermo_file_path()
(rmgpy.qm.molecule.QMMolecule method),
157

272 Index



RMG-Py API Reference, Release 3.1.0

get_thermo_file_path()
(rmgpy.qm.mopac.MopacMol method), 166

get_thermo_file_path()
(rmgpy.qm.mopac.MopacMolPM3 method),
168

get_thermo_file_path()
(rmgpy.qm.mopac.MopacMolPM6 method),
169

get_thermo_file_path()
(rmgpy.qm.mopac.MopacMolPM7 method),
171

get_threshold_rate_constants()
(rmgpy.solver.LiquidReactor method), 202

get_threshold_rate_constants()
(rmgpy.solver.SimpleReactor method), 200

get_threshold_rate_constants()
(rmgpy.solver.SurfaceReactor method), 204

get_top_level_groups()
(rmgpy.data.kinetics.KineticsFamily method),
31

get_total_bond_order() (rmgpy.molecule.Atom
method), 108

get_total_mass() (rmgpy.statmech.Conformer
method), 229

get_training_depository()
(rmgpy.data.kinetics.KineticsFamily method),
31

get_training_set() (rmgpy.data.kinetics.KineticsFamily
method), 31

get_transport_data() (rmgpy.species.Species
method), 210

get_url() (rmgpy.data.kinetics.DepositoryReaction
method), 18

get_url() (rmgpy.data.kinetics.LibraryReaction
method), 44

get_url() (rmgpy.data.kinetics.TemplateReaction
method), 63

get_url() (rmgpy.molecule.Molecule method), 117
get_url() (rmgpy.reaction.Reaction method), 180
get_url() (rmgpy.rmg.pdep.PDepReaction method),

195
Graph (class in rmgpy.molecule.graph), 100
groundStateDegeneracy (rmgpy.qm.qmdata.QMData

attribute), 158
Group (class in rmgpy.molecule), 124
GroupAtom (class in rmgpy.molecule), 121
GroupBond (class in rmgpy.molecule), 123
GroupFrequencies (class in rmgpy.data.statmech), 21

H
H0 (rmgpy.thermo.Wilhoit attribute), 233
H298 (rmgpy.thermo.ThermoData attribute), 230
harmonic_oscillator_d_heat_capacity_d_freq()

(in module rmgpy.data.statmechfit), 51

harmonic_oscillator_heat_capacity() (in mod-
ule rmgpy.data.statmechfit), 51

HarmonicOscillator (class in rmgpy.statmech), 221
has_atom() (rmgpy.molecule.Group method), 128
has_atom() (rmgpy.molecule.Molecule method), 117
has_bond() (rmgpy.molecule.Group method), 128
has_bond() (rmgpy.molecule.Molecule method), 117
has_edge() (rmgpy.molecule.graph.Graph method),

101
has_edge() (rmgpy.molecule.Group method), 128
has_edge() (rmgpy.molecule.Molecule method), 117
has_lone_pairs() (rmgpy.molecule.Molecule

method), 117
has_rate_rule() (rmgpy.data.kinetics.KineticsFamily

method), 31
has_reactive_molecule() (rmgpy.species.Species

method), 210
has_rule() (rmgpy.data.kinetics.KineticsRules

method), 40
has_statmech() (rmgpy.pdep.Configuration method),

149
has_statmech() (rmgpy.species.Species method), 210
has_template() (rmgpy.data.kinetics.DepositoryReaction

method), 18
has_template() (rmgpy.data.kinetics.LibraryReaction

method), 44
has_template() (rmgpy.data.kinetics.TemplateReaction

method), 63
has_template() (rmgpy.reaction.Reaction method),

180
has_template() (rmgpy.rmg.pdep.PDepReaction

method), 195
has_thermo() (rmgpy.pdep.Configuration method),

149
has_thermo() (rmgpy.species.Species method), 210
has_vertex() (rmgpy.molecule.graph.Graph method),

102
has_vertex() (rmgpy.molecule.Group method), 128
has_vertex() (rmgpy.molecule.Molecule method), 117
has_wildcards() (rmgpy.molecule.GroupAtom

method), 122
highPlimit (rmgpy.kinetics.Chebyshev attribute), 87
highPlimit (rmgpy.kinetics.Lindemann attribute), 91
highPlimit (rmgpy.kinetics.MultiPDepArrhenius at-

tribute), 85
highPlimit (rmgpy.kinetics.PDepArrhenius attribute),

83
highPlimit (rmgpy.kinetics.PDepKineticsData at-

tribute), 81
highPlimit (rmgpy.kinetics.ThirdBody attribute), 89
highPlimit (rmgpy.kinetics.Troe attribute), 94
hindered_rotor_d_heat_capacity_d_barr() (in

module rmgpy.data.statmechfit), 51
hindered_rotor_d_heat_capacity_d_freq() (in

Index 273



RMG-Py API Reference, Release 3.1.0

module rmgpy.data.statmechfit), 51
hindered_rotor_heat_capacity() (in module

rmgpy.data.statmechfit), 51
HinderedRotor (class in rmgpy.statmech), 223

I
IdealGasTranslation (class in rmgpy.statmech), 214
identify_ring_membership()

(rmgpy.molecule.Molecule method), 117
ILPSolutionError, 242
ImplicitBenzeneError, 242
inchi (rmgpy.molecule.Molecule attribute), 117
inchi (rmgpy.species.Species attribute), 210
InchiException, 242
increment_lone_pairs() (rmgpy.molecule.Atom

method), 109
increment_order() (rmgpy.molecule.Bond method),

110
increment_radical() (rmgpy.molecule.Atom

method), 109
inertia (rmgpy.statmech.HinderedRotor attribute), 225
inertia (rmgpy.statmech.KRotor attribute), 219
inertia (rmgpy.statmech.LinearRotor attribute), 216
inertia (rmgpy.statmech.NonlinearRotor attribute),

218
inertia (rmgpy.statmech.SphericalTopRotor attribute),

221
initialize() (rmgpy.data.statmechfit.DirectFit

method), 52
initialize() (rmgpy.data.statmechfit.PseudoFit

method), 54
initialize() (rmgpy.data.statmechfit.PseudoRotorFit

method), 53
initialize() (rmgpy.pdep.Network method), 151
initialize() (rmgpy.qm.gaussian.GaussianMol

method), 161
initialize() (rmgpy.qm.gaussian.GaussianMolPM3

method), 162
initialize() (rmgpy.qm.gaussian.GaussianMolPM6

method), 164
initialize() (rmgpy.qm.main.QMCalculator

method), 155
initialize() (rmgpy.qm.molecule.QMMolecule

method), 157
initialize() (rmgpy.qm.mopac.MopacMol method),

166
initialize() (rmgpy.qm.mopac.MopacMolPM3

method), 168
initialize() (rmgpy.qm.mopac.MopacMolPM6

method), 169
initialize() (rmgpy.qm.mopac.MopacMolPM7

method), 171
initialize() (rmgpy.rmg.main.RMG method), 188

initialize() (rmgpy.rmg.pdep.PDepNetwork
method), 191

initialize() (rmgpy.solver.LiquidReactor method),
202

initialize() (rmgpy.solver.MBSampledReactor
method), 206

initialize() (rmgpy.solver.ReactionSystem method),
198

initialize() (rmgpy.solver.SimpleReactor method),
200

initialize() (rmgpy.solver.SurfaceReactor method),
204

initialize_index_species_dict()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 185

initialize_log() (in module rmgpy.rmg.main), 189
initialize_model() (rmgpy.solver.LiquidReactor

method), 202
initialize_model() (rmgpy.solver.MBSampledReactor

method), 206
initialize_model() (rmgpy.solver.ReactionSystem

method), 198
initialize_model() (rmgpy.solver.SimpleReactor

method), 200
initialize_model() (rmgpy.solver.SurfaceReactor

method), 204
initialize_seed_mech() (rmgpy.rmg.main.RMG

method), 188
initialize_surface() (rmgpy.solver.LiquidReactor

method), 202
initialize_surface()

(rmgpy.solver.MBSampledReactor method),
206

initialize_surface()
(rmgpy.solver.ReactionSystem method), 198

initialize_surface() (rmgpy.solver.SimpleReactor
method), 200

initialize_surface() (rmgpy.solver.SurfaceReactor
method), 204

initiate_tolerances()
(rmgpy.solver.LiquidReactor method), 203

initiate_tolerances()
(rmgpy.solver.MBSampledReactor method),
207

initiate_tolerances()
(rmgpy.solver.ReactionSystem method), 198

initiate_tolerances()
(rmgpy.solver.SimpleReactor method), 201

initiate_tolerances()
(rmgpy.solver.SurfaceReactor method), 204

input_file_keywords()
(rmgpy.qm.gaussian.GaussianMol method),
161

input_file_keywords()

274 Index



RMG-Py API Reference, Release 3.1.0

(rmgpy.qm.gaussian.GaussianMolPM3
method), 162

input_file_keywords()
(rmgpy.qm.gaussian.GaussianMolPM6
method), 164

input_file_keywords()
(rmgpy.qm.mopac.MopacMol method), 166

input_file_keywords()
(rmgpy.qm.mopac.MopacMolPM3 method),
168

input_file_keywords()
(rmgpy.qm.mopac.MopacMolPM6 method),
169

input_file_keywords()
(rmgpy.qm.mopac.MopacMolPM7 method),
171

input_file_path() (rmgpy.qm.gaussian.GaussianMol
property), 161

input_file_path() (rmgpy.qm.gaussian.GaussianMolPM3
property), 162

input_file_path() (rmgpy.qm.gaussian.GaussianMolPM6
property), 164

input_file_path() (rmgpy.qm.molecule.QMMolecule
property), 157

input_file_path() (rmgpy.qm.mopac.MopacMol
property), 166

input_file_path() (rmgpy.qm.mopac.MopacMolPM3
property), 168

input_file_path() (rmgpy.qm.mopac.MopacMolPM6
property), 169

input_file_path() (rmgpy.qm.mopac.MopacMolPM7
property), 171

input_file_path() (rmgpy.qm.symmetry.SymmetryJob
property), 159

InputError, 242
InvalidActionError, 242
InvalidAdjacencyListError, 242
invalidate() (rmgpy.pdep.Network method), 151
invalidate() (rmgpy.rmg.pdep.PDepNetwork

method), 191
InvalidMicrocanonicalRateError, 242
is_all_zeros() (rmgpy.thermo.ThermoData method),

231
is_aromatic() (rmgpy.molecule.Molecule method),

118
is_aromatic_ring() (rmgpy.molecule.Group

method), 128
is_aryl_radical() (rmgpy.molecule.Molecule

method), 118
is_association() (rmgpy.data.kinetics.DepositoryReaction

method), 18
is_association() (rmgpy.data.kinetics.LibraryReaction

method), 44
is_association() (rmgpy.data.kinetics.TemplateReaction

method), 63
is_association() (rmgpy.reaction.Reaction method),

180
is_association() (rmgpy.rmg.pdep.PDepReaction

method), 195
is_atom_able_to_gain_lone_pair() (in module

rmgpy.molecule.pathfinder), 139
is_atom_able_to_lose_lone_pair() (in module

rmgpy.molecule.pathfinder), 139
is_atom_in_cycle() (rmgpy.molecule.Molecule

method), 118
is_balanced() (rmgpy.data.kinetics.DepositoryReaction

method), 18
is_balanced() (rmgpy.data.kinetics.LibraryReaction

method), 44
is_balanced() (rmgpy.data.kinetics.TemplateReaction

method), 63
is_balanced() (rmgpy.reaction.Reaction method), 180
is_balanced() (rmgpy.rmg.pdep.PDepReaction

method), 196
is_benzene() (rmgpy.molecule.Bond method), 110
is_benzene() (rmgpy.molecule.GroupBond method),

123
is_benzene_explicit() (rmgpy.molecule.Group

method), 128
is_bimolecular() (rmgpy.pdep.Configuration

method), 149
is_bond_in_cycle() (rmgpy.molecule.Molecule

method), 118
is_carbon() (rmgpy.molecule.Atom method), 109
is_carbon() (rmgpy.molecule.GroupAtom method),

122
is_chlorine() (rmgpy.molecule.Atom method), 109
is_cyclic() (rmgpy.molecule.graph.Graph method),

102
is_cyclic() (rmgpy.molecule.Group method), 128
is_cyclic() (rmgpy.molecule.Molecule method), 118
is_dissociation() (rmgpy.data.kinetics.DepositoryReaction

method), 18
is_dissociation() (rmgpy.data.kinetics.LibraryReaction

method), 44
is_dissociation() (rmgpy.data.kinetics.TemplateReaction

method), 63
is_dissociation() (rmgpy.reaction.Reaction

method), 180
is_dissociation() (rmgpy.rmg.pdep.PDepReaction

method), 196
is_double() (rmgpy.molecule.Bond method), 110
is_double() (rmgpy.molecule.GroupBond method),

123
is_edge_in_cycle() (rmgpy.molecule.graph.Graph

method), 102
is_edge_in_cycle() (rmgpy.molecule.Group

method), 128

Index 275



RMG-Py API Reference, Release 3.1.0

is_edge_in_cycle() (rmgpy.molecule.Molecule
method), 118

is_entry_match() (rmgpy.data.kinetics.KineticsFamily
method), 31

is_fluorine() (rmgpy.molecule.Atom method), 109
is_heterocyclic() (rmgpy.molecule.Molecule

method), 118
is_hydrogen() (rmgpy.molecule.Atom method), 109
is_hydrogen_bond() (rmgpy.molecule.Bond method),

110
is_hydrogen_bond() (rmgpy.molecule.GroupBond

method), 123
is_identical() (rmgpy.molecule.Group method), 128
is_identical() (rmgpy.molecule.Molecule method),

118
is_identical() (rmgpy.species.Species method), 210
is_identical_to() (rmgpy.kinetics.Arrhenius

method), 78
is_identical_to() (rmgpy.kinetics.Chebyshev

method), 87
is_identical_to() (rmgpy.kinetics.KineticsData

method), 76
is_identical_to() (rmgpy.kinetics.Lindemann

method), 91
is_identical_to() (rmgpy.kinetics.MultiArrhenius

method), 79
is_identical_to() (rmgpy.kinetics.MultiPDepArrhenius

method), 85
is_identical_to() (rmgpy.kinetics.PDepArrhenius

method), 83
is_identical_to() (rmgpy.kinetics.PDepKineticsData

method), 81
is_identical_to() (rmgpy.kinetics.ThirdBody

method), 89
is_identical_to() (rmgpy.kinetics.Troe method), 94
is_identical_to() (rmgpy.thermo.NASA method),

236
is_identical_to() (rmgpy.thermo.NASAPolynomial

method), 240
is_identical_to() (rmgpy.thermo.ThermoData

method), 231
is_identical_to() (rmgpy.thermo.Wilhoit method),

234
is_iodine() (rmgpy.molecule.Atom method), 109
is_isomerization() (rmgpy.data.kinetics.DepositoryReaction

method), 18
is_isomerization() (rmgpy.data.kinetics.LibraryReaction

method), 44
is_isomerization() (rmgpy.data.kinetics.TemplateReaction

method), 63
is_isomerization() (rmgpy.reaction.Reaction

method), 180
is_isomerization() (rmgpy.rmg.pdep.PDepReaction

method), 196

is_isomorphic() (rmgpy.data.kinetics.DepositoryReaction
method), 18

is_isomorphic() (rmgpy.data.kinetics.LibraryReaction
method), 44

is_isomorphic() (rmgpy.data.kinetics.TemplateReaction
method), 63

is_isomorphic() (rmgpy.molecule.graph.Graph
method), 102

is_isomorphic() (rmgpy.molecule.Group method),
128

is_isomorphic() (rmgpy.molecule.Molecule method),
118

is_isomorphic() (rmgpy.molecule.vf2.VF2 method),
103

is_isomorphic() (rmgpy.reaction.Reaction method),
180

is_isomorphic() (rmgpy.rmg.pdep.PDepReaction
method), 196

is_isomorphic() (rmgpy.species.Species method), 210
is_linear() (rmgpy.molecule.Molecule method), 118
is_mapping_valid() (rmgpy.molecule.graph.Graph

method), 102
is_mapping_valid() (rmgpy.molecule.Group

method), 128
is_mapping_valid() (rmgpy.molecule.Molecule

method), 118
is_molecule_forbidden()

(rmgpy.data.kinetics.KineticsFamily method),
31

is_nitrogen() (rmgpy.molecule.Atom method), 109
is_nitrogen() (rmgpy.molecule.GroupAtom method),

122
is_non_hydrogen() (rmgpy.molecule.Atom method),

109
is_nos() (rmgpy.molecule.Atom method), 109
is_order() (rmgpy.molecule.Bond method), 110
is_oxygen() (rmgpy.molecule.Atom method), 109
is_oxygen() (rmgpy.molecule.GroupAtom method),

122
is_phosphorus() (rmgpy.molecule.Atom method), 109
is_pressure_dependent()

(rmgpy.kinetics.Arrhenius method), 78
is_pressure_dependent()

(rmgpy.kinetics.Chebyshev method), 87
is_pressure_dependent()

(rmgpy.kinetics.KineticsData method), 76
is_pressure_dependent()

(rmgpy.kinetics.Lindemann method), 91
is_pressure_dependent()

(rmgpy.kinetics.MultiArrhenius method),
79

is_pressure_dependent()
(rmgpy.kinetics.MultiPDepArrhenius method),
85

276 Index



RMG-Py API Reference, Release 3.1.0

is_pressure_dependent()
(rmgpy.kinetics.PDepArrhenius method),
83

is_pressure_dependent()
(rmgpy.kinetics.PDepKineticsData method), 81

is_pressure_dependent()
(rmgpy.kinetics.ThirdBody method), 89

is_pressure_dependent() (rmgpy.kinetics.Troe
method), 94

is_pressure_valid() (rmgpy.kinetics.Chebyshev
method), 88

is_pressure_valid() (rmgpy.kinetics.Lindemann
method), 91

is_pressure_valid()
(rmgpy.kinetics.MultiPDepArrhenius method),
85

is_pressure_valid()
(rmgpy.kinetics.PDepArrhenius method),
83

is_pressure_valid()
(rmgpy.kinetics.PDepKineticsData method), 81

is_pressure_valid() (rmgpy.kinetics.ThirdBody
method), 89

is_pressure_valid() (rmgpy.kinetics.Troe method),
94

is_quadruple() (rmgpy.molecule.Bond method), 111
is_quadruple() (rmgpy.molecule.GroupBond

method), 123
is_radical() (rmgpy.molecule.Molecule method), 119
is_silicon() (rmgpy.molecule.Atom method), 109
is_similar_to() (rmgpy.kinetics.Arrhenius method),

78
is_similar_to() (rmgpy.kinetics.Chebyshev method),

88
is_similar_to() (rmgpy.kinetics.KineticsData

method), 76
is_similar_to() (rmgpy.kinetics.Lindemann method),

92
is_similar_to() (rmgpy.kinetics.MultiArrhenius

method), 80
is_similar_to() (rmgpy.kinetics.MultiPDepArrhenius

method), 85
is_similar_to() (rmgpy.kinetics.PDepArrhenius

method), 83
is_similar_to() (rmgpy.kinetics.PDepKineticsData

method), 81
is_similar_to() (rmgpy.kinetics.ThirdBody method),

89
is_similar_to() (rmgpy.kinetics.Troe method), 94
is_similar_to() (rmgpy.thermo.NASA method), 237
is_similar_to() (rmgpy.thermo.NASAPolynomial

method), 240
is_similar_to() (rmgpy.thermo.ThermoData

method), 231

is_similar_to() (rmgpy.thermo.Wilhoit method), 234
is_single() (rmgpy.molecule.Bond method), 111
is_single() (rmgpy.molecule.GroupBond method),

123
is_specific_case_of() (rmgpy.molecule.Atom

method), 109
is_specific_case_of() (rmgpy.molecule.AtomType

method), 104
is_specific_case_of() (rmgpy.molecule.Bond

method), 111
is_specific_case_of()

(rmgpy.molecule.graph.Edge method), 99
is_specific_case_of()

(rmgpy.molecule.graph.Vertex method), 99
is_specific_case_of()

(rmgpy.molecule.GroupAtom method), 122
is_specific_case_of()

(rmgpy.molecule.GroupBond method), 123
is_structure_in_list() (rmgpy.species.Species

method), 210
is_subgraph_isomorphic()

(rmgpy.molecule.graph.Graph method),
102

is_subgraph_isomorphic() (rmgpy.molecule.Group
method), 128

is_subgraph_isomorphic()
(rmgpy.molecule.Molecule method), 119

is_subgraph_isomorphic()
(rmgpy.molecule.vf2.VF2 method), 103

is_sulfur() (rmgpy.molecule.Atom method), 109
is_sulfur() (rmgpy.molecule.GroupAtom method),

122
is_surface_reaction()

(rmgpy.data.kinetics.DepositoryReaction
method), 19

is_surface_reaction()
(rmgpy.data.kinetics.LibraryReaction method),
45

is_surface_reaction()
(rmgpy.data.kinetics.TemplateReaction
method), 64

is_surface_reaction() (rmgpy.reaction.Reaction
method), 181

is_surface_reaction()
(rmgpy.rmg.pdep.PDepReaction method),
196

is_surface_site() (rmgpy.molecule.Atom method),
109

is_surface_site() (rmgpy.molecule.Group method),
128

is_surface_site() (rmgpy.molecule.GroupAtom
method), 122

is_surface_site() (rmgpy.molecule.Molecule
method), 119

Index 277



RMG-Py API Reference, Release 3.1.0

is_surface_site() (rmgpy.species.Species method),
210

is_temperature_valid() (rmgpy.kinetics.Arrhenius
method), 78

is_temperature_valid() (rmgpy.kinetics.Chebyshev
method), 88

is_temperature_valid()
(rmgpy.kinetics.KineticsData method), 76

is_temperature_valid()
(rmgpy.kinetics.Lindemann method), 92

is_temperature_valid()
(rmgpy.kinetics.MultiArrhenius method),
80

is_temperature_valid()
(rmgpy.kinetics.MultiPDepArrhenius method),
85

is_temperature_valid()
(rmgpy.kinetics.PDepArrhenius method),
83

is_temperature_valid()
(rmgpy.kinetics.PDepKineticsData method), 81

is_temperature_valid() (rmgpy.kinetics.ThirdBody
method), 90

is_temperature_valid() (rmgpy.kinetics.Troe
method), 94

is_temperature_valid() (rmgpy.thermo.NASA
method), 237

is_temperature_valid()
(rmgpy.thermo.NASAPolynomial method),
240

is_temperature_valid()
(rmgpy.thermo.ThermoData method), 231

is_temperature_valid() (rmgpy.thermo.Wilhoit
method), 234

is_termolecular() (rmgpy.pdep.Configuration
method), 149

is_transition_state() (rmgpy.pdep.Configuration
method), 149

is_triple() (rmgpy.molecule.Bond method), 111
is_triple() (rmgpy.molecule.GroupBond method),

124
is_uncertainty_additive()

(rmgpy.quantity.ArrayQuantity method),
175

is_uncertainty_additive()
(rmgpy.quantity.ScalarQuantity method),
174

is_uncertainty_multiplicative()
(rmgpy.quantity.ArrayQuantity method),
175

is_uncertainty_multiplicative()
(rmgpy.quantity.ScalarQuantity method),
174

is_unimolecular() (rmgpy.data.kinetics.DepositoryReaction

method), 19
is_unimolecular() (rmgpy.data.kinetics.LibraryReaction

method), 45
is_unimolecular() (rmgpy.data.kinetics.TemplateReaction

method), 64
is_unimolecular() (rmgpy.pdep.Configuration

method), 149
is_unimolecular() (rmgpy.reaction.Reaction

method), 181
is_unimolecular() (rmgpy.rmg.pdep.PDepReaction

method), 196
is_van_der_waals() (rmgpy.molecule.Bond method),

111
is_van_der_waals() (rmgpy.molecule.GroupBond

method), 124
is_vertex_in_cycle()

(rmgpy.molecule.graph.Graph method),
102

is_vertex_in_cycle() (rmgpy.molecule.Group
method), 128

is_vertex_in_cycle() (rmgpy.molecule.Molecule
method), 119

J
jacobian() (rmgpy.solver.LiquidReactor method), 203
jacobian() (rmgpy.solver.SimpleReactor method), 201

K
kdata (rmgpy.kinetics.KineticsData attribute), 77
kdata (rmgpy.kinetics.PDepKineticsData attribute), 81
KekulizationError, 243
kekulize() (in module rmgpy.molecule.kekulize), 134
kekulize() (rmgpy.molecule.kekulize.AromaticRing

method), 134
kekulize() (rmgpy.molecule.Molecule method), 119
keywords (rmgpy.qm.gaussian.GaussianMolPM3

attribute), 162
keywords (rmgpy.qm.gaussian.GaussianMolPM6

attribute), 164
keywords (rmgpy.qm.mopac.MopacMol attribute), 166
KineticsData (class in rmgpy.kinetics), 76
KineticsDatabase (class in rmgpy.data.kinetics), 21
KineticsDepository (class in rmgpy.data.kinetics),

23
KineticsError, 243
KineticsFamily (class in rmgpy.data.kinetics), 25
KineticsGroups (class in rmgpy.data.kinetics), 34
KineticsLibrary (class in rmgpy.data.kinetics), 36
KineticsRules (class in rmgpy.data.kinetics), 39
KineticsSensitivity (class in arkane.sensitivity), 6
KRotor (class in rmgpy.statmech), 218
kunits (rmgpy.kinetics.Chebyshev attribute), 88

278 Index



RMG-Py API Reference, Release 3.1.0

L
label (rmgpy.thermo.NASA attribute), 237
label (rmgpy.thermo.NASAPolynomial attribute), 240
label (rmgpy.thermo.ThermoData attribute), 231
label (rmgpy.thermo.Wilhoit attribute), 234
LibraryReaction (class in rmgpy.data.kinetics), 41
Lindemann (class in rmgpy.kinetics), 90
LinearRotor (class in rmgpy.statmech), 215
LiquidReactor (class in rmgpy.solver), 201
load() (rmgpy.data.base.Database method), 14
load() (rmgpy.data.kinetics.KineticsDatabase method),

22
load() (rmgpy.data.kinetics.KineticsDepository

method), 24
load() (rmgpy.data.kinetics.KineticsFamily method), 31
load() (rmgpy.data.kinetics.KineticsGroups method),

35
load() (rmgpy.data.kinetics.KineticsLibrary method),

37
load() (rmgpy.data.kinetics.KineticsRules method), 40
load() (rmgpy.data.statmech.StatmechDatabase

method), 48
load() (rmgpy.data.statmech.StatmechDepository

method), 49
load() (rmgpy.data.statmech.StatmechGroups method),

56
load() (rmgpy.data.statmech.StatmechLibrary method),

58
load() (rmgpy.data.thermo.ThermoDatabase method),

67
load() (rmgpy.data.thermo.ThermoDepository method),

69
load() (rmgpy.data.thermo.ThermoGroups method), 71
load() (rmgpy.data.thermo.ThermoLibrary method), 73
load_chemkin_file() (in module rmgpy.chemkin), 9
load_depository() (rmgpy.data.statmech.StatmechDatabase

method), 48
load_depository() (rmgpy.data.thermo.ThermoDatabase

method), 67
load_entry() (rmgpy.data.kinetics.KineticsDepository

method), 24
load_entry() (rmgpy.data.kinetics.KineticsGroups

method), 35
load_entry() (rmgpy.data.kinetics.KineticsLibrary

method), 37
load_entry() (rmgpy.data.kinetics.KineticsRules

method), 40
load_entry() (rmgpy.data.statmech.StatmechDepository

method), 49
load_entry() (rmgpy.data.statmech.StatmechGroups

method), 56
load_entry() (rmgpy.data.statmech.StatmechLibrary

method), 58

load_entry() (rmgpy.data.thermo.ThermoDepository
method), 69

load_entry() (rmgpy.data.thermo.ThermoGroups
method), 71

load_entry() (rmgpy.data.thermo.ThermoLibrary
method), 73

load_families() (rmgpy.data.kinetics.KineticsDatabase
method), 22

load_forbidden() (rmgpy.data.kinetics.KineticsFamily
method), 31

load_groups() (rmgpy.data.statmech.StatmechDatabase
method), 48

load_groups() (rmgpy.data.thermo.ThermoDatabase
method), 67

load_input() (rmgpy.rmg.main.RMG method), 188
load_libraries() (rmgpy.data.kinetics.KineticsDatabase

method), 22
load_libraries() (rmgpy.data.statmech.StatmechDatabase

method), 48
load_libraries() (rmgpy.data.thermo.ThermoDatabase

method), 67
load_old() (rmgpy.data.base.Database method), 14
load_old() (rmgpy.data.kinetics.KineticsDatabase

method), 22
load_old() (rmgpy.data.kinetics.KineticsDepository

method), 24
load_old() (rmgpy.data.kinetics.KineticsFamily

method), 31
load_old() (rmgpy.data.kinetics.KineticsGroups

method), 35
load_old() (rmgpy.data.kinetics.KineticsLibrary

method), 37
load_old() (rmgpy.data.kinetics.KineticsRules

method), 40
load_old() (rmgpy.data.statmech.StatmechDatabase

method), 48
load_old() (rmgpy.data.statmech.StatmechDepository

method), 49
load_old() (rmgpy.data.statmech.StatmechGroups

method), 56
load_old() (rmgpy.data.statmech.StatmechLibrary

method), 58
load_old() (rmgpy.data.thermo.ThermoDatabase

method), 67
load_old() (rmgpy.data.thermo.ThermoDepository

method), 69
load_old() (rmgpy.data.thermo.ThermoGroups

method), 71
load_old() (rmgpy.data.thermo.ThermoLibrary

method), 73
load_old_dictionary() (rmgpy.data.base.Database

method), 14
load_old_dictionary()

(rmgpy.data.kinetics.KineticsDepository

Index 279



RMG-Py API Reference, Release 3.1.0

method), 24
load_old_dictionary()

(rmgpy.data.kinetics.KineticsFamily method),
31

load_old_dictionary()
(rmgpy.data.kinetics.KineticsGroups method),
35

load_old_dictionary()
(rmgpy.data.kinetics.KineticsLibrary method),
37

load_old_dictionary()
(rmgpy.data.kinetics.KineticsRules method), 40

load_old_dictionary()
(rmgpy.data.statmech.StatmechDepository
method), 49

load_old_dictionary()
(rmgpy.data.statmech.StatmechGroups
method), 56

load_old_dictionary()
(rmgpy.data.statmech.StatmechLibrary
method), 58

load_old_dictionary()
(rmgpy.data.thermo.ThermoDepository
method), 69

load_old_dictionary()
(rmgpy.data.thermo.ThermoGroups method),
71

load_old_dictionary()
(rmgpy.data.thermo.ThermoLibrary method),
73

load_old_library() (rmgpy.data.base.Database
method), 14

load_old_library() (rmgpy.data.kinetics.KineticsDepository
method), 24

load_old_library() (rmgpy.data.kinetics.KineticsFamily
method), 31

load_old_library() (rmgpy.data.kinetics.KineticsGroups
method), 35

load_old_library() (rmgpy.data.kinetics.KineticsLibrary
method), 37

load_old_library() (rmgpy.data.kinetics.KineticsRules
method), 40

load_old_library() (rmgpy.data.statmech.StatmechDepository
method), 49

load_old_library() (rmgpy.data.statmech.StatmechGroups
method), 56

load_old_library() (rmgpy.data.statmech.StatmechLibrary
method), 59

load_old_library() (rmgpy.data.thermo.ThermoDepository
method), 69

load_old_library() (rmgpy.data.thermo.ThermoGroups
method), 71

load_old_library() (rmgpy.data.thermo.ThermoLibrary
method), 74

load_old_template()
(rmgpy.data.kinetics.KineticsFamily method),
31

load_old_tree() (rmgpy.data.base.Database
method), 14

load_old_tree() (rmgpy.data.kinetics.KineticsDepository
method), 24

load_old_tree() (rmgpy.data.kinetics.KineticsFamily
method), 31

load_old_tree() (rmgpy.data.kinetics.KineticsGroups
method), 35

load_old_tree() (rmgpy.data.kinetics.KineticsLibrary
method), 37

load_old_tree() (rmgpy.data.kinetics.KineticsRules
method), 40

load_old_tree() (rmgpy.data.statmech.StatmechDepository
method), 49

load_old_tree() (rmgpy.data.statmech.StatmechGroups
method), 56

load_old_tree() (rmgpy.data.statmech.StatmechLibrary
method), 59

load_old_tree() (rmgpy.data.thermo.ThermoDepository
method), 69

load_old_tree() (rmgpy.data.thermo.ThermoGroups
method), 71

load_old_tree() (rmgpy.data.thermo.ThermoLibrary
method), 74

load_recipe() (rmgpy.data.kinetics.KineticsFamily
method), 32

load_recommended_families()
(rmgpy.data.kinetics.KineticsDatabase
method), 22

load_rmg_java_input() (rmgpy.rmg.main.RMG
method), 188

load_species_dictionary() (in module
rmgpy.chemkin), 9

load_surface() (rmgpy.data.thermo.ThermoDatabase
method), 67

load_template() (rmgpy.data.kinetics.KineticsFamily
method), 32

load_thermo_data() (rmgpy.qm.gaussian.GaussianMol
method), 161

load_thermo_data() (rmgpy.qm.gaussian.GaussianMolPM3
method), 162

load_thermo_data() (rmgpy.qm.gaussian.GaussianMolPM6
method), 164

load_thermo_data() (rmgpy.qm.molecule.QMMolecule
method), 157

load_thermo_data() (rmgpy.qm.mopac.MopacMol
method), 166

load_thermo_data() (rmgpy.qm.mopac.MopacMolPM3
method), 168

load_thermo_data() (rmgpy.qm.mopac.MopacMolPM6
method), 170

280 Index



RMG-Py API Reference, Release 3.1.0

load_thermo_data() (rmgpy.qm.mopac.MopacMolPM7
method), 171

load_thermo_input() (rmgpy.rmg.main.RMG
method), 188

load_transport_file() (in module rmgpy.chemkin),
9

log_conversions() (rmgpy.solver.LiquidReactor
method), 203

log_conversions() (rmgpy.solver.MBSampledReactor
method), 207

log_conversions() (rmgpy.solver.ReactionSystem
method), 198

log_conversions() (rmgpy.solver.SimpleReactor
method), 201

log_conversions() (rmgpy.solver.SurfaceReactor
method), 204

log_enlarge_summary()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 185

log_header() (rmgpy.rmg.main.RMG method), 188
log_initial_conditions()

(rmgpy.solver.SurfaceReactor method), 204
log_rates() (rmgpy.solver.LiquidReactor method),

203
log_rates() (rmgpy.solver.MBSampledReactor

method), 207
log_rates() (rmgpy.solver.ReactionSystem method),

199
log_rates() (rmgpy.solver.SimpleReactor method),

201
log_rates() (rmgpy.solver.SurfaceReactor method),

204
log_summary() (rmgpy.pdep.Network method), 151
log_summary() (rmgpy.rmg.pdep.PDepNetwork

method), 191
LogicAnd (class in rmgpy.data.base), 46
LogicNode (class in rmgpy.data.base), 46
LogicOr (class in rmgpy.data.base), 46

M
make_bond() (rmgpy.molecule.GroupBond method),

124
make_logic_node() (in module rmgpy.data.base), 46
make_new_pdep_reaction()

(rmgpy.rmg.model.CoreEdgeReactionModel
method), 185

make_new_reaction()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 185

make_new_species() (rmgpy.rmg.model.CoreEdgeReactionModel
method), 185

make_object() (rmgpy.pdep.SingleExponentialDown
method), 147

make_object() (rmgpy.quantity.ArrayQuantity
method), 175

make_object() (rmgpy.quantity.ScalarQuantity
method), 174

make_object() (rmgpy.statmech.Conformer method),
229

make_object() (rmgpy.statmech.HarmonicOscillator
method), 222

make_object() (rmgpy.statmech.HinderedRotor
method), 225

make_object() (rmgpy.statmech.IdealGasTranslation
method), 215

make_object() (rmgpy.statmech.KRotor method), 219
make_object() (rmgpy.statmech.LinearRotor method),

216
make_object() (rmgpy.statmech.NonlinearRotor

method), 218
make_object() (rmgpy.statmech.SphericalTopRotor

method), 221
make_object() (rmgpy.thermo.NASA method), 237
make_object() (rmgpy.thermo.NASAPolynomial

method), 240
make_object() (rmgpy.thermo.ThermoData method),

231
make_object() (rmgpy.thermo.Wilhoit method), 234
make_profile_graph() (in module rmgpy.rmg.main),

189
make_sample_atom() (rmgpy.molecule.GroupAtom

method), 122
make_sample_molecule() (rmgpy.molecule.Group

method), 128
make_seed_mech() (rmgpy.rmg.main.RMG method),

189
make_species_labels_independent()

(rmgpy.rmg.main.RMG method), 189
make_tree() (rmgpy.data.kinetics.KineticsFamily

method), 32
map_densities_of_states() (rmgpy.pdep.Network

method), 151
map_densities_of_states()

(rmgpy.rmg.pdep.PDepNetwork method),
191

map_density_of_states()
(rmgpy.pdep.Configuration method), 149

map_sum_of_states() (rmgpy.pdep.Configuration
method), 150

mark_chemkin_duplicates()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 185

mark_duplicate_reactions() (in module
rmgpy.chemkin), 10

mark_unreactive_structures() (in module
rmgpy.molecule.filtration), 136

mark_valid_duplicates()

Index 281



RMG-Py API Reference, Release 3.1.0

(rmgpy.data.kinetics.KineticsLibrary method),
37

mass (rmgpy.statmech.Conformer attribute), 229
mass (rmgpy.statmech.IdealGasTranslation attribute),

215
match_logic_or() (rmgpy.data.base.LogicOr

method), 46
match_node_to_child() (rmgpy.data.base.Database

method), 14
match_node_to_child()

(rmgpy.data.kinetics.KineticsDepository
method), 24

match_node_to_child()
(rmgpy.data.kinetics.KineticsFamily method),
32

match_node_to_child()
(rmgpy.data.kinetics.KineticsGroups method),
35

match_node_to_child()
(rmgpy.data.kinetics.KineticsLibrary method),
38

match_node_to_child()
(rmgpy.data.kinetics.KineticsRules method), 40

match_node_to_child()
(rmgpy.data.statmech.StatmechDepository
method), 49

match_node_to_child()
(rmgpy.data.statmech.StatmechGroups
method), 56

match_node_to_child()
(rmgpy.data.statmech.StatmechLibrary
method), 59

match_node_to_child()
(rmgpy.data.thermo.ThermoDepository
method), 69

match_node_to_child()
(rmgpy.data.thermo.ThermoGroups method),
71

match_node_to_child()
(rmgpy.data.thermo.ThermoLibrary method),
74

match_node_to_node() (rmgpy.data.base.Database
method), 14

match_node_to_node()
(rmgpy.data.kinetics.KineticsDepository
method), 24

match_node_to_node()
(rmgpy.data.kinetics.KineticsFamily method),
32

match_node_to_node()
(rmgpy.data.kinetics.KineticsGroups method),
35

match_node_to_node()
(rmgpy.data.kinetics.KineticsLibrary method),

38
match_node_to_node()

(rmgpy.data.kinetics.KineticsRules method), 40
match_node_to_node()

(rmgpy.data.statmech.StatmechDepository
method), 49

match_node_to_node()
(rmgpy.data.statmech.StatmechGroups
method), 56

match_node_to_node()
(rmgpy.data.statmech.StatmechLibrary
method), 59

match_node_to_node()
(rmgpy.data.thermo.ThermoDepository
method), 69

match_node_to_node()
(rmgpy.data.thermo.ThermoGroups method),
72

match_node_to_node()
(rmgpy.data.thermo.ThermoLibrary method),
74

match_node_to_structure()
(rmgpy.data.base.Database method), 14

match_node_to_structure()
(rmgpy.data.kinetics.KineticsDepository
method), 24

match_node_to_structure()
(rmgpy.data.kinetics.KineticsFamily method),
32

match_node_to_structure()
(rmgpy.data.kinetics.KineticsGroups method),
35

match_node_to_structure()
(rmgpy.data.kinetics.KineticsLibrary method),
38

match_node_to_structure()
(rmgpy.data.kinetics.KineticsRules method), 40

match_node_to_structure()
(rmgpy.data.statmech.StatmechDepository
method), 49

match_node_to_structure()
(rmgpy.data.statmech.StatmechGroups
method), 56

match_node_to_structure()
(rmgpy.data.statmech.StatmechLibrary
method), 59

match_node_to_structure()
(rmgpy.data.thermo.ThermoDepository
method), 69

match_node_to_structure()
(rmgpy.data.thermo.ThermoGroups method),
72

match_node_to_structure()
(rmgpy.data.thermo.ThermoLibrary method),

282 Index



RMG-Py API Reference, Release 3.1.0

74
match_to_structure() (rmgpy.data.base.LogicAnd

method), 46
match_to_structure() (rmgpy.data.base.LogicOr

method), 46
matches_species() (rmgpy.data.kinetics.DepositoryReaction

method), 19
matches_species() (rmgpy.data.kinetics.LibraryReaction

method), 45
matches_species() (rmgpy.data.kinetics.TemplateReaction

method), 64
matches_species() (rmgpy.reaction.Reaction

method), 181
matches_species() (rmgpy.rmg.pdep.PDepReaction

method), 196
max_attempts() (rmgpy.qm.gaussian.GaussianMol

property), 161
max_attempts() (rmgpy.qm.gaussian.GaussianMolPM3

property), 162
max_attempts() (rmgpy.qm.gaussian.GaussianMolPM6

property), 164
max_attempts() (rmgpy.qm.molecule.QMMolecule

property), 158
max_attempts() (rmgpy.qm.mopac.MopacMol prop-

erty), 166
max_attempts() (rmgpy.qm.mopac.MopacMolPM3

property), 168
max_attempts() (rmgpy.qm.mopac.MopacMolPM6

property), 170
max_attempts() (rmgpy.qm.mopac.MopacMolPM7

property), 171
MBSampledReactor (class in rmgpy.solver), 205
merge() (rmgpy.molecule.graph.Graph method), 102
merge() (rmgpy.molecule.Group method), 128
merge() (rmgpy.molecule.Molecule method), 119
merge() (rmgpy.rmg.model.ReactionModel method),

186
merge() (rmgpy.rmg.pdep.PDepNetwork method), 192
merge_groups() (rmgpy.molecule.Group method), 129
modes (rmgpy.statmech.Conformer attribute), 229
ModifiedStrongCollisionError, 243
module

arkane, 3
arkane.output, 5
arkane.sensitivity, 6
rmgpy.chemkin, 8
rmgpy.constants, 11
rmgpy.data, 11
rmgpy.exceptions, 241
rmgpy.kinetics, 75
rmgpy.molecule, 97
rmgpy.molecule.adjlist, 141
rmgpy.molecule.converter, 139
rmgpy.molecule.filtration, 135

rmgpy.molecule.kekulize, 134
rmgpy.molecule.pathfinder, 136
rmgpy.molecule.resonance, 131
rmgpy.molecule.translator, 139
rmgpy.pdep, 145
rmgpy.qm, 153
rmgpy.quantity, 172
rmgpy.reaction, 176
rmgpy.rmg, 182
rmgpy.solver, 197
rmgpy.species, 208
rmgpy.statmech, 212
rmgpy.statmech.schrodinger, 226
rmgpy.thermo, 229

molecular_weight (rmgpy.species.Species attribute),
210

Molecule (class in rmgpy.molecule), 111
MoleculeDrawer (class in rmgpy.molecule.draw), 144
Mopac (class in rmgpy.qm.mopac), 165
MopacMol (class in rmgpy.qm.mopac), 165
MopacMolPM3 (class in rmgpy.qm.mopac), 167
MopacMolPM6 (class in rmgpy.qm.mopac), 168
MopacMolPM7 (class in rmgpy.qm.mopac), 170
MultiArrhenius (class in rmgpy.kinetics), 79
MultiPDepArrhenius (class in rmgpy.kinetics), 84
multiplicity (rmgpy.species.Species attribute), 210

N
n (rmgpy.kinetics.Arrhenius attribute), 78
n (rmgpy.pdep.SingleExponentialDown attribute), 147
NASA (class in rmgpy.thermo), 235
NASAPolynomial (class in rmgpy.thermo), 238
NegativeBarrierException, 243
Network (class in rmgpy.pdep), 150
NetworkError, 243
NonlinearRotor (class in rmgpy.statmech), 217
number (rmgpy.statmech.Conformer attribute), 229
numberOfAtoms (rmgpy.qm.qmdata.QMData attribute),

158

O
octet_filtration() (in module

rmgpy.molecule.filtration), 136
optical_isomers (rmgpy.statmech.Conformer at-

tribute), 229
output_file_path() (rmgpy.qm.gaussian.GaussianMol

property), 161
output_file_path() (rmgpy.qm.gaussian.GaussianMolPM3

property), 163
output_file_path() (rmgpy.qm.gaussian.GaussianMolPM6

property), 164
output_file_path() (rmgpy.qm.molecule.QMMolecule

property), 158

Index 283



RMG-Py API Reference, Release 3.1.0

output_file_path() (rmgpy.qm.mopac.MopacMol
property), 166

output_file_path() (rmgpy.qm.mopac.MopacMolPM3
property), 168

output_file_path() (rmgpy.qm.mopac.MopacMolPM6
property), 170

output_file_path() (rmgpy.qm.mopac.MopacMolPM7
property), 171

OutputError, 243

P
parse() (rmgpy.qm.gaussian.Gaussian method), 159
parse() (rmgpy.qm.gaussian.GaussianMol method),

161
parse() (rmgpy.qm.gaussian.GaussianMolPM3

method), 163
parse() (rmgpy.qm.gaussian.GaussianMolPM6

method), 164
parse() (rmgpy.qm.molecule.QMMolecule method),

158
parse() (rmgpy.qm.mopac.MopacMol method), 166
parse() (rmgpy.qm.mopac.MopacMolPM3 method),

168
parse() (rmgpy.qm.mopac.MopacMolPM6 method),

170
parse() (rmgpy.qm.mopac.MopacMolPM7 method),

171
parse() (rmgpy.qm.symmetry.SymmetryJob method),

159
parse_old_library() (rmgpy.data.base.Database

method), 15
parse_old_library()

(rmgpy.data.kinetics.KineticsDepository
method), 25

parse_old_library()
(rmgpy.data.kinetics.KineticsFamily method),
32

parse_old_library()
(rmgpy.data.kinetics.KineticsGroups method),
36

parse_old_library()
(rmgpy.data.kinetics.KineticsLibrary method),
38

parse_old_library()
(rmgpy.data.kinetics.KineticsRules method), 41

parse_old_library()
(rmgpy.data.statmech.StatmechDepository
method), 50

parse_old_library()
(rmgpy.data.statmech.StatmechGroups
method), 57

parse_old_library()
(rmgpy.data.statmech.StatmechLibrary
method), 59

parse_old_library()
(rmgpy.data.thermo.ThermoDepository
method), 70

parse_old_library()
(rmgpy.data.thermo.ThermoGroups method),
72

parse_old_library()
(rmgpy.data.thermo.ThermoLibrary method),
74

Pdata (rmgpy.kinetics.PDepKineticsData attribute), 80
PDepArrhenius (class in rmgpy.kinetics), 82
PDepKineticsData (class in rmgpy.kinetics), 80
PDepNetwork (class in rmgpy.rmg.pdep), 190
PDepReaction (class in rmgpy.rmg.pdep), 193
PDepSensitivity (class in arkane.sensitivity), 7
perturb() (arkane.sensitivity.KineticsSensitivity

method), 7
perturb() (arkane.sensitivity.PDepSensitivity method),

7
pick_wildcards() (rmgpy.molecule.Group method),

129
plot() (arkane.sensitivity.KineticsSensitivity method), 7
plot() (arkane.sensitivity.PDepSensitivity method), 7
Pmax (rmgpy.kinetics.Arrhenius attribute), 77
Pmax (rmgpy.kinetics.Chebyshev attribute), 86
Pmax (rmgpy.kinetics.KineticsData attribute), 76
Pmax (rmgpy.kinetics.Lindemann attribute), 90
Pmax (rmgpy.kinetics.MultiArrhenius attribute), 79
Pmax (rmgpy.kinetics.MultiPDepArrhenius attribute), 84
Pmax (rmgpy.kinetics.PDepArrhenius attribute), 82
Pmax (rmgpy.kinetics.PDepKineticsData attribute), 80
Pmax (rmgpy.kinetics.ThirdBody attribute), 88
Pmax (rmgpy.kinetics.Troe attribute), 93
Pmin (rmgpy.kinetics.Arrhenius attribute), 77
Pmin (rmgpy.kinetics.Chebyshev attribute), 86
Pmin (rmgpy.kinetics.KineticsData attribute), 76
Pmin (rmgpy.kinetics.Lindemann attribute), 91
Pmin (rmgpy.kinetics.MultiArrhenius attribute), 79
Pmin (rmgpy.kinetics.MultiPDepArrhenius attribute), 84
Pmin (rmgpy.kinetics.PDepArrhenius attribute), 82
Pmin (rmgpy.kinetics.PDepKineticsData attribute), 80
Pmin (rmgpy.kinetics.ThirdBody attribute), 88
Pmin (rmgpy.kinetics.Troe attribute), 93
PointGroup (class in rmgpy.qm.symmetry), 159
PointGroupCalculator (class in

rmgpy.qm.symmetry), 159
poly1 (rmgpy.thermo.NASA attribute), 237
poly2 (rmgpy.thermo.NASA attribute), 237
poly3 (rmgpy.thermo.NASA attribute), 237
polynomials (rmgpy.thermo.NASA attribute), 237
populate_resonance_algorithms() (in module

rmgpy.molecule.resonance), 133
PressureDependenceError, 243

284 Index



RMG-Py API Reference, Release 3.1.0

pressures (rmgpy.kinetics.PDepArrhenius attribute),
83

prettify() (in module arkane.output), 6
PrettifyVisitor (class in arkane.output), 5
prioritize_thermo()

(rmgpy.data.thermo.ThermoDatabase method),
67

process_bonds() (rmgpy.molecule.kekulize.AromaticRing
method), 134

process_new_reactions()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 185

process_old_library_entry()
(rmgpy.data.kinetics.KineticsRules method), 41

process_old_library_entry()
(rmgpy.data.statmech.StatmechGroups
method), 57

process_old_library_entry()
(rmgpy.data.statmech.StatmechLibrary
method), 59

process_old_library_entry()
(rmgpy.data.thermo.ThermoGroups method),
72

process_old_library_entry()
(rmgpy.data.thermo.ThermoLibrary method),
74

process_pdep_networks() (rmgpy.rmg.main.RMG
method), 189

process_profile_stats() (in module
rmgpy.rmg.main), 190

process_reactions_to_species()
(rmgpy.rmg.main.RMG method), 189

process_to_species_networks()
(rmgpy.rmg.main.RMG method), 189

prune() (rmgpy.rmg.model.CoreEdgeReactionModel
method), 185

prune_heteroatoms()
(rmgpy.data.thermo.ThermoDatabase method),
67

prune_tree() (rmgpy.data.kinetics.KineticsFamily
method), 32

PseudoFit (class in rmgpy.data.statmechfit), 54
PseudoRotorFit (class in rmgpy.data.statmechfit), 53

Q
QMCalculator (class in rmgpy.qm.main), 155
QMData (class in rmgpy.qm.qmdata), 158
QMMolecule (class in rmgpy.qm.molecule), 156
QMSettings (class in rmgpy.qm.main), 155
QMVerifier (class in rmgpy.qm.qmverifier), 158
Quantity() (in module rmgpy.quantity), 176
QuantityError, 243
quantum (rmgpy.statmech.HarmonicOscillator at-

tribute), 223

quantum (rmgpy.statmech.HinderedRotor attribute), 225
quantum (rmgpy.statmech.IdealGasTranslation at-

tribute), 215
quantum (rmgpy.statmech.KRotor attribute), 219
quantum (rmgpy.statmech.LinearRotor attribute), 217
quantum (rmgpy.statmech.NonlinearRotor attribute),

218
quantum (rmgpy.statmech.SphericalTopRotor attribute),

221

R
rd_build() (rmgpy.qm.molecule.Geometry method),

156
rd_embed() (rmgpy.qm.molecule.Geometry method),

156
react_init_tuples() (rmgpy.rmg.main.RMG

method), 189
react_molecules() (rmgpy.data.kinetics.KineticsDatabase

method), 22
Reaction (class in rmgpy.reaction), 176
ReactionDrawer (class in rmgpy.molecule.draw), 144
ReactionError, 243
ReactionModel (class in rmgpy.rmg.model), 186
ReactionPairsError, 244
ReactionRecipe (class in rmgpy.data.kinetics), 47
ReactionSystem (class in rmgpy.solver), 198
read_input_file() (in module rmgpy.rmg.input), 187
read_kinetics_entry() (in module rmgpy.chemkin),

9
read_meaningful_line_java()

(rmgpy.rmg.main.RMG method), 189
read_reaction_comments() (in module

rmgpy.chemkin), 9
read_reactions_block() (in module

rmgpy.chemkin), 9
read_thermo_entry() (in module rmgpy.chemkin), 9
reconstruct_kinetics_from_source()

(rmgpy.data.kinetics.KineticsDatabase
method), 22

record_polycylic_generic_nodes()
(rmgpy.data.thermo.ThermoDatabase method),
67

record_ring_generic_nodes()
(rmgpy.data.thermo.ThermoDatabase method),
67

register_listeners() (rmgpy.rmg.main.RMG
method), 189

register_reaction()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 185

regularize() (rmgpy.data.kinetics.KineticsFamily
method), 32

remove_atom() (rmgpy.molecule.Group method), 129

Index 285



RMG-Py API Reference, Release 3.1.0

remove_atom() (rmgpy.molecule.Molecule method),
119

remove_bond() (rmgpy.molecule.Group method), 129
remove_bond() (rmgpy.molecule.Molecule method),

119
remove_comment_from_line() (in module

rmgpy.chemkin), 9
remove_disconnected_reactions()

(rmgpy.rmg.pdep.PDepNetwork method),
192

remove_edge() (rmgpy.molecule.graph.Graph
method), 102

remove_edge() (rmgpy.molecule.Group method), 129
remove_edge() (rmgpy.molecule.Molecule method),

119
remove_empty_pdep_networks()

(rmgpy.rmg.model.CoreEdgeReactionModel
method), 186

remove_group() (rmgpy.data.base.Database method),
15

remove_group() (rmgpy.data.kinetics.KineticsDepository
method), 25

remove_group() (rmgpy.data.kinetics.KineticsFamily
method), 32

remove_group() (rmgpy.data.kinetics.KineticsGroups
method), 36

remove_group() (rmgpy.data.kinetics.KineticsLibrary
method), 38

remove_group() (rmgpy.data.kinetics.KineticsRules
method), 41

remove_group() (rmgpy.data.statmech.StatmechDepository
method), 50

remove_group() (rmgpy.data.statmech.StatmechGroups
method), 57

remove_group() (rmgpy.data.statmech.StatmechLibrary
method), 59

remove_group() (rmgpy.data.thermo.ThermoDepository
method), 70

remove_group() (rmgpy.data.thermo.ThermoGroups
method), 72

remove_group() (rmgpy.data.thermo.ThermoLibrary
method), 74

remove_h_bonds() (rmgpy.molecule.Molecule
method), 119

remove_reactions() (rmgpy.rmg.pdep.PDepNetwork
method), 192

remove_species_from_edge()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 186

remove_van_der_waals_bonds()
(rmgpy.molecule.Group method), 129

remove_van_der_waals_bonds()
(rmgpy.molecule.Molecule method), 119

remove_vertex() (rmgpy.molecule.graph.Graph

method), 102
remove_vertex() (rmgpy.molecule.Group method),

129
remove_vertex() (rmgpy.molecule.Molecule method),

119
render() (rmgpy.molecule.draw.MoleculeDrawer

method), 144
ReservoirStateError, 244
reset_connectivity_values()

(rmgpy.molecule.Atom method), 109
reset_connectivity_values()

(rmgpy.molecule.graph.Graph method),
102

reset_connectivity_values()
(rmgpy.molecule.graph.Vertex method), 99

reset_connectivity_values()
(rmgpy.molecule.Group method), 129

reset_connectivity_values()
(rmgpy.molecule.GroupAtom method), 122

reset_connectivity_values()
(rmgpy.molecule.Molecule method), 119

reset_max_edge_species_rate_ratios()
(rmgpy.solver.LiquidReactor method), 203

reset_max_edge_species_rate_ratios()
(rmgpy.solver.MBSampledReactor method),
207

reset_max_edge_species_rate_ratios()
(rmgpy.solver.ReactionSystem method), 199

reset_max_edge_species_rate_ratios()
(rmgpy.solver.SimpleReactor method), 201

reset_max_edge_species_rate_ratios()
(rmgpy.solver.SurfaceReactor method), 205

reset_ring_membership() (rmgpy.molecule.Group
method), 129

residual() (rmgpy.solver.LiquidReactor method), 203
residual() (rmgpy.solver.MBSampledReactor

method), 207
residual() (rmgpy.solver.ReactionSystem method),

199
residual() (rmgpy.solver.SimpleReactor method), 201
residual() (rmgpy.solver.SurfaceReactor method), 205
ResonanceError, 244
restore_vertex_order()

(rmgpy.molecule.graph.Graph method),
102

restore_vertex_order() (rmgpy.molecule.Group
method), 129

restore_vertex_order() (rmgpy.molecule.Molecule
method), 119

retrieve() (rmgpy.rmg.model.CoreEdgeReactionModel
method), 186

retrieve_original_entry()
(rmgpy.data.kinetics.KineticsFamily method),
33

286 Index



RMG-Py API Reference, Release 3.1.0

retrieve_template()
(rmgpy.data.kinetics.KineticsFamily method),
33

reverse_arrhenius_rate()
(rmgpy.data.kinetics.DepositoryReaction
method), 19

reverse_arrhenius_rate()
(rmgpy.data.kinetics.LibraryReaction method),
45

reverse_arrhenius_rate()
(rmgpy.data.kinetics.TemplateReaction
method), 64

reverse_arrhenius_rate()
(rmgpy.reaction.Reaction method), 181

reverse_arrhenius_rate()
(rmgpy.rmg.pdep.PDepReaction method),
196

reverse_sticking_coeff_rate()
(rmgpy.data.kinetics.DepositoryReaction
method), 19

reverse_sticking_coeff_rate()
(rmgpy.data.kinetics.LibraryReaction method),
45

reverse_sticking_coeff_rate()
(rmgpy.data.kinetics.TemplateReaction
method), 64

reverse_sticking_coeff_rate()
(rmgpy.reaction.Reaction method), 181

reverse_sticking_coeff_rate()
(rmgpy.rmg.pdep.PDepReaction method),
196

reverse_surface_arrhenius_rate()
(rmgpy.data.kinetics.DepositoryReaction
method), 19

reverse_surface_arrhenius_rate()
(rmgpy.data.kinetics.LibraryReaction method),
45

reverse_surface_arrhenius_rate()
(rmgpy.data.kinetics.TemplateReaction
method), 64

reverse_surface_arrhenius_rate()
(rmgpy.reaction.Reaction method), 181

reverse_surface_arrhenius_rate()
(rmgpy.rmg.pdep.PDepReaction method),
197

RMG (class in rmgpy.rmg.main), 187
rmgpy.chemkin

module, 8
rmgpy.constants

module, 11
rmgpy.data

module, 11
rmgpy.exceptions

module, 241

rmgpy.kinetics
module, 75

rmgpy.molecule
module, 97

rmgpy.molecule.adjlist
module, 141

rmgpy.molecule.converter
module, 139

rmgpy.molecule.filtration
module, 135

rmgpy.molecule.kekulize
module, 134

rmgpy.molecule.pathfinder
module, 136

rmgpy.molecule.resonance
module, 131

rmgpy.molecule.translator
module, 139

rmgpy.pdep
module, 145

rmgpy.qm
module, 153

rmgpy.quantity
module, 172

rmgpy.reaction
module, 176

rmgpy.rmg
module, 182

rmgpy.solver
module, 197

rmgpy.species
module, 208

rmgpy.statmech
module, 212

rmgpy.statmech.schrodinger
module, 226

rmgpy.thermo
module, 229

rotationalConstant (rmgpy.statmech.HinderedRotor
attribute), 225

rotationalConstant (rmgpy.statmech.KRotor at-
tribute), 219

rotationalConstant (rmgpy.statmech.LinearRotor
attribute), 217

rotationalConstant (rmgpy.statmech.NonlinearRotor
attribute), 218

rotationalConstant (rmgpy.statmech.SphericalTopRotor
attribute), 221

run() (rmgpy.qm.symmetry.SymmetryJob method), 159
run_jobs() (rmgpy.qm.main.QMCalculator method),

155
run_model_analysis() (rmgpy.rmg.main.RMG

method), 189

Index 287



RMG-Py API Reference, Release 3.1.0

run_uncertainty_analysis()
(rmgpy.rmg.main.RMG method), 189

S
S0 (rmgpy.thermo.Wilhoit attribute), 233
S298 (rmgpy.thermo.ThermoData attribute), 230
saturate_radicals() (rmgpy.molecule.Molecule

method), 119
saturate_unfilled_valence()

(rmgpy.molecule.Molecule method), 119
save() (arkane.sensitivity.KineticsSensitivity method), 7
save() (arkane.sensitivity.PDepSensitivity method), 8
save() (rmgpy.data.base.Database method), 15
save() (rmgpy.data.kinetics.KineticsDatabase method),

23
save() (rmgpy.data.kinetics.KineticsDepository

method), 25
save() (rmgpy.data.kinetics.KineticsFamily method), 33
save() (rmgpy.data.kinetics.KineticsGroups method),

36
save() (rmgpy.data.kinetics.KineticsLibrary method),

38
save() (rmgpy.data.kinetics.KineticsRules method), 41
save() (rmgpy.data.statmech.StatmechDatabase

method), 48
save() (rmgpy.data.statmech.StatmechDepository

method), 50
save() (rmgpy.data.statmech.StatmechGroups method),

57
save() (rmgpy.data.statmech.StatmechLibrary method),

59
save() (rmgpy.data.thermo.ThermoDatabase method),

67
save() (rmgpy.data.thermo.ThermoDepository method),

70
save() (rmgpy.data.thermo.ThermoGroups method), 72
save() (rmgpy.data.thermo.ThermoLibrary method), 74
save_chemkin_file() (in module rmgpy.chemkin), 9
save_coordinates_from_qm_data()

(rmgpy.qm.molecule.Geometry method),
156

save_depository() (rmgpy.data.kinetics.KineticsFamily
method), 33

save_depository() (rmgpy.data.statmech.StatmechDatabase
method), 48

save_depository() (rmgpy.data.thermo.ThermoDatabase
method), 67

save_dictionary() (rmgpy.data.base.Database
method), 15

save_dictionary() (rmgpy.data.kinetics.KineticsDepository
method), 25

save_dictionary() (rmgpy.data.kinetics.KineticsFamily
method), 33

save_dictionary() (rmgpy.data.kinetics.KineticsGroups
method), 36

save_dictionary() (rmgpy.data.kinetics.KineticsLibrary
method), 38

save_dictionary() (rmgpy.data.kinetics.KineticsRules
method), 41

save_dictionary() (rmgpy.data.statmech.StatmechDepository
method), 50

save_dictionary() (rmgpy.data.statmech.StatmechGroups
method), 57

save_dictionary() (rmgpy.data.statmech.StatmechLibrary
method), 59

save_dictionary() (rmgpy.data.thermo.ThermoDepository
method), 70

save_dictionary() (rmgpy.data.thermo.ThermoGroups
method), 72

save_dictionary() (rmgpy.data.thermo.ThermoLibrary
method), 74

save_diff_html() (in module rmgpy.rmg.output), 190
save_entry() (rmgpy.data.kinetics.KineticsDepository

method), 25
save_entry() (rmgpy.data.kinetics.KineticsFamily

method), 33
save_entry() (rmgpy.data.kinetics.KineticsLibrary

method), 38
save_entry() (rmgpy.data.kinetics.KineticsRules

method), 41
save_entry() (rmgpy.data.statmech.StatmechDepository

method), 50
save_entry() (rmgpy.data.statmech.StatmechGroups

method), 57
save_entry() (rmgpy.data.statmech.StatmechLibrary

method), 59
save_entry() (rmgpy.data.thermo.ThermoDepository

method), 70
save_entry() (rmgpy.data.thermo.ThermoGroups

method), 72
save_entry() (rmgpy.data.thermo.ThermoLibrary

method), 75
save_everything() (rmgpy.rmg.main.RMG method),

189
save_families() (rmgpy.data.kinetics.KineticsDatabase

method), 23
save_generated_tree()

(rmgpy.data.kinetics.KineticsFamily method),
33

save_groups() (rmgpy.data.kinetics.KineticsFamily
method), 33

save_groups() (rmgpy.data.statmech.StatmechDatabase
method), 48

save_groups() (rmgpy.data.thermo.ThermoDatabase
method), 67

save_html_file() (in module rmgpy.chemkin), 10
save_input() (rmgpy.rmg.main.RMG method), 189

288 Index



RMG-Py API Reference, Release 3.1.0

save_input_file() (in module rmgpy.rmg.input), 187
save_java_kinetics_library() (in module

rmgpy.chemkin), 10
save_kinetics_lib() (in module arkane.output), 6
save_libraries() (rmgpy.data.kinetics.KineticsDatabase

method), 23
save_libraries() (rmgpy.data.statmech.StatmechDatabase

method), 48
save_libraries() (rmgpy.data.thermo.ThermoDatabase

method), 68
save_old() (rmgpy.data.base.Database method), 15
save_old() (rmgpy.data.kinetics.KineticsDatabase

method), 23
save_old() (rmgpy.data.kinetics.KineticsDepository

method), 25
save_old() (rmgpy.data.kinetics.KineticsFamily

method), 33
save_old() (rmgpy.data.kinetics.KineticsGroups

method), 36
save_old() (rmgpy.data.kinetics.KineticsLibrary

method), 38
save_old() (rmgpy.data.kinetics.KineticsRules

method), 41
save_old() (rmgpy.data.statmech.StatmechDatabase

method), 48
save_old() (rmgpy.data.statmech.StatmechDepository

method), 50
save_old() (rmgpy.data.statmech.StatmechGroups

method), 57
save_old() (rmgpy.data.statmech.StatmechLibrary

method), 60
save_old() (rmgpy.data.thermo.ThermoDatabase

method), 68
save_old() (rmgpy.data.thermo.ThermoDepository

method), 70
save_old() (rmgpy.data.thermo.ThermoGroups

method), 72
save_old() (rmgpy.data.thermo.ThermoLibrary

method), 75
save_old_dictionary() (rmgpy.data.base.Database

method), 15
save_old_dictionary()

(rmgpy.data.kinetics.KineticsDepository
method), 25

save_old_dictionary()
(rmgpy.data.kinetics.KineticsFamily method),
33

save_old_dictionary()
(rmgpy.data.kinetics.KineticsGroups method),
36

save_old_dictionary()
(rmgpy.data.kinetics.KineticsLibrary method),
38

save_old_dictionary()

(rmgpy.data.kinetics.KineticsRules method), 41
save_old_dictionary()

(rmgpy.data.statmech.StatmechDepository
method), 50

save_old_dictionary()
(rmgpy.data.statmech.StatmechGroups
method), 57

save_old_dictionary()
(rmgpy.data.statmech.StatmechLibrary
method), 60

save_old_dictionary()
(rmgpy.data.thermo.ThermoDepository
method), 70

save_old_dictionary()
(rmgpy.data.thermo.ThermoGroups method),
72

save_old_dictionary()
(rmgpy.data.thermo.ThermoLibrary method),
75

save_old_library() (rmgpy.data.base.Database
method), 15

save_old_library() (rmgpy.data.kinetics.KineticsDepository
method), 25

save_old_library() (rmgpy.data.kinetics.KineticsFamily
method), 33

save_old_library() (rmgpy.data.kinetics.KineticsGroups
method), 36

save_old_library() (rmgpy.data.kinetics.KineticsLibrary
method), 38

save_old_library() (rmgpy.data.kinetics.KineticsRules
method), 41

save_old_library() (rmgpy.data.statmech.StatmechDepository
method), 50

save_old_library() (rmgpy.data.statmech.StatmechGroups
method), 57

save_old_library() (rmgpy.data.statmech.StatmechLibrary
method), 60

save_old_library() (rmgpy.data.thermo.ThermoDepository
method), 70

save_old_library() (rmgpy.data.thermo.ThermoGroups
method), 72

save_old_library() (rmgpy.data.thermo.ThermoLibrary
method), 75

save_old_template()
(rmgpy.data.kinetics.KineticsFamily method),
33

save_old_tree() (rmgpy.data.base.Database
method), 15

save_old_tree() (rmgpy.data.kinetics.KineticsDepository
method), 25

save_old_tree() (rmgpy.data.kinetics.KineticsFamily
method), 33

save_old_tree() (rmgpy.data.kinetics.KineticsGroups
method), 36

Index 289



RMG-Py API Reference, Release 3.1.0

save_old_tree() (rmgpy.data.kinetics.KineticsLibrary
method), 39

save_old_tree() (rmgpy.data.kinetics.KineticsRules
method), 41

save_old_tree() (rmgpy.data.statmech.StatmechDepository
method), 50

save_old_tree() (rmgpy.data.statmech.StatmechGroups
method), 57

save_old_tree() (rmgpy.data.statmech.StatmechLibrary
method), 60

save_old_tree() (rmgpy.data.thermo.ThermoDepository
method), 70

save_old_tree() (rmgpy.data.thermo.ThermoGroups
method), 72

save_old_tree() (rmgpy.data.thermo.ThermoLibrary
method), 75

save_output_html() (in module rmgpy.rmg.output),
190

save_recommended_families()
(rmgpy.data.kinetics.KineticsDatabase
method), 23

save_species_dictionary() (in module
rmgpy.chemkin), 9

save_surface() (rmgpy.data.thermo.ThermoDatabase
method), 68

save_thermo_data() (rmgpy.qm.gaussian.GaussianMol
method), 161

save_thermo_data() (rmgpy.qm.gaussian.GaussianMolPM3
method), 163

save_thermo_data() (rmgpy.qm.gaussian.GaussianMolPM6
method), 164

save_thermo_data() (rmgpy.qm.molecule.QMMolecule
method), 158

save_thermo_data() (rmgpy.qm.mopac.MopacMol
method), 166

save_thermo_data() (rmgpy.qm.mopac.MopacMolPM3
method), 168

save_thermo_data() (rmgpy.qm.mopac.MopacMolPM6
method), 170

save_thermo_data() (rmgpy.qm.mopac.MopacMolPM7
method), 171

save_thermo_lib() (in module arkane.output), 6
save_training_reactions()

(rmgpy.data.kinetics.KineticsFamily method),
33

save_transport_file() (in module rmgpy.chemkin),
10

ScalarQuantity (class in rmgpy.quantity), 173
script_attempts() (rmgpy.qm.gaussian.GaussianMol

property), 161
script_attempts() (rmgpy.qm.gaussian.GaussianMolPM3

property), 163
script_attempts() (rmgpy.qm.gaussian.GaussianMolPM6

property), 164

script_attempts() (rmgpy.qm.molecule.QMMolecule
property), 158

script_attempts() (rmgpy.qm.mopac.MopacMol
property), 167

script_attempts() (rmgpy.qm.mopac.MopacMolPM3
property), 168

script_attempts() (rmgpy.qm.mopac.MopacMolPM6
property), 170

script_attempts() (rmgpy.qm.mopac.MopacMolPM7
property), 171

search_retrieve_reactions()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 186

select_energy_grains() (rmgpy.pdep.Network
method), 151

select_energy_grains()
(rmgpy.rmg.pdep.PDepNetwork method),
192

select_polynomial() (rmgpy.thermo.NASA method),
237

semiclassical (rmgpy.statmech.HinderedRotor
attribute), 225

set_binding_energies()
(rmgpy.data.thermo.ThermoDatabase method),
68

set_cantera_kinetics() (rmgpy.kinetics.Arrhenius
method), 78

set_cantera_kinetics() (rmgpy.kinetics.Chebyshev
method), 88

set_cantera_kinetics()
(rmgpy.kinetics.KineticsData method), 77

set_cantera_kinetics()
(rmgpy.kinetics.Lindemann method), 92

set_cantera_kinetics()
(rmgpy.kinetics.MultiArrhenius method),
80

set_cantera_kinetics()
(rmgpy.kinetics.MultiPDepArrhenius method),
85

set_cantera_kinetics()
(rmgpy.kinetics.PDepArrhenius method),
84

set_cantera_kinetics()
(rmgpy.kinetics.PDepKineticsData method), 82

set_cantera_kinetics() (rmgpy.kinetics.ThirdBody
method), 90

set_cantera_kinetics() (rmgpy.kinetics.Troe
method), 94

set_colliders() (rmgpy.solver.MBSampledReactor
method), 207

set_colliders() (rmgpy.solver.SimpleReactor
method), 201

set_conditions() (rmgpy.pdep.Network method), 152
set_conditions() (rmgpy.rmg.pdep.PDepNetwork

290 Index



RMG-Py API Reference, Release 3.1.0

method), 192
set_default_output_directory()

(rmgpy.qm.main.QMCalculator method),
155

set_e0_with_thermo() (rmgpy.species.Species
method), 211

set_initial_conditions()
(rmgpy.solver.LiquidReactor method), 203

set_initial_conditions()
(rmgpy.solver.MBSampledReactor method),
207

set_initial_conditions()
(rmgpy.solver.ReactionSystem method), 199

set_initial_conditions()
(rmgpy.solver.SimpleReactor method), 201

set_initial_conditions()
(rmgpy.solver.SurfaceReactor method), 205

set_initial_derivative()
(rmgpy.solver.LiquidReactor method), 203

set_initial_derivative()
(rmgpy.solver.MBSampledReactor method),
207

set_initial_derivative()
(rmgpy.solver.ReactionSystem method), 199

set_initial_derivative()
(rmgpy.solver.SimpleReactor method), 201

set_initial_derivative()
(rmgpy.solver.SurfaceReactor method), 205

set_lone_pairs() (rmgpy.molecule.Atom method),
109

set_order_num() (rmgpy.molecule.Bond method), 111
set_order_num() (rmgpy.molecule.GroupBond

method), 124
set_order_str() (rmgpy.molecule.Bond method), 111
set_order_str() (rmgpy.molecule.GroupBond

method), 124
set_structure() (rmgpy.species.Species method), 211
set_thermodynamic_filtering_parameters()

(rmgpy.rmg.model.CoreEdgeReactionModel
method), 186

SettingsError, 244
simple_regularization()

(rmgpy.data.kinetics.KineticsFamily method),
33

SimpleReactor (class in rmgpy.solver), 199
simulate() (rmgpy.solver.LiquidReactor method), 203
simulate() (rmgpy.solver.MBSampledReactor

method), 207
simulate() (rmgpy.solver.ReactionSystem method),

199
simulate() (rmgpy.solver.SimpleReactor method), 201
simulate() (rmgpy.solver.SurfaceReactor method), 205
SingleExponentialDown (class in rmgpy.pdep), 146
smiles (rmgpy.molecule.Molecule attribute), 119

smiles (rmgpy.species.Species attribute), 211
solve() (rmgpy.data.statmechfit.DirectFit method), 52
solve() (rmgpy.data.statmechfit.PseudoFit method), 55
solve() (rmgpy.data.statmechfit.PseudoRotorFit

method), 53
solve_full_me() (rmgpy.pdep.Network method), 152
solve_full_me() (rmgpy.rmg.pdep.PDepNetwork

method), 192
solve_reduced_me() (rmgpy.pdep.Network method),

152
solve_reduced_me() (rmgpy.rmg.pdep.PDepNetwork

method), 192
solve_schrodinger_equation()

(rmgpy.statmech.HinderedRotor method),
225

solve_ss_network() (rmgpy.rmg.pdep.PDepNetwork
method), 192

sort_atoms() (rmgpy.molecule.Group method), 129
sort_atoms() (rmgpy.molecule.Molecule method), 119
sort_by_connectivity() (rmgpy.molecule.Group

method), 129
sort_cyclic_vertices()

(rmgpy.molecule.graph.Graph method),
102

sort_cyclic_vertices() (rmgpy.molecule.Group
method), 129

sort_cyclic_vertices() (rmgpy.molecule.Molecule
method), 120

sort_vertices() (rmgpy.molecule.graph.Graph
method), 102

sort_vertices() (rmgpy.molecule.Group method),
129

sort_vertices() (rmgpy.molecule.Molecule method),
120

sorting_key (rmgpy.molecule.Atom attribute), 109
sorting_key (rmgpy.molecule.Bond attribute), 111
sorting_key (rmgpy.molecule.Molecule attribute), 120
sorting_key (rmgpy.species.Species attribute), 211
Species (class in rmgpy.species), 208
SpeciesError, 244
specify_atom_extensions()

(rmgpy.molecule.Group method), 129
specify_bond_extensions()

(rmgpy.molecule.Group method), 130
specify_external_new_bond_extensions()

(rmgpy.molecule.Group method), 130
specify_internal_new_bond_extensions()

(rmgpy.molecule.Group method), 130
specify_ring_extensions()

(rmgpy.molecule.Group method), 130
specify_unpaired_extensions()

(rmgpy.molecule.Group method), 130
SphericalTopRotor (class in rmgpy.statmech), 220
spin_multiplicity (rmgpy.statmech.Conformer at-

Index 291



RMG-Py API Reference, Release 3.1.0

tribute), 229
split() (rmgpy.molecule.graph.Graph method), 102
split() (rmgpy.molecule.Group method), 130
split() (rmgpy.molecule.Molecule method), 120
stabilize_charges_by_electronegativity() (in

module rmgpy.molecule.filtration), 136
stabilize_charges_by_proximity() (in module

rmgpy.molecule.filtration), 136
standardize_atomtype() (rmgpy.molecule.Group

method), 130
standardize_group() (rmgpy.molecule.Group

method), 130
StatmechDatabase (class in rmgpy.data.statmech), 47
StatmechDepository (class in rmgpy.data.statmech),

48
StatmechError, 244
StatmechFitError, 244
StatmechGroups (class in rmgpy.data.statmech), 55
StatmechLibrary (class in rmgpy.data.statmech), 58
step() (rmgpy.solver.LiquidReactor method), 203
step() (rmgpy.solver.MBSampledReactor method), 207
step() (rmgpy.solver.ReactionSystem method), 199
step() (rmgpy.solver.SimpleReactor method), 201
step() (rmgpy.solver.SurfaceReactor method), 205
succesful_job_exists()

(rmgpy.qm.qmverifier.QMVerifier method),
158

successKeys (rmgpy.qm.gaussian.Gaussian attribute),
160

successKeys (rmgpy.qm.mopac.Mopac attribute), 165
SurfaceReactor (class in rmgpy.solver), 203
symmetry (rmgpy.statmech.HinderedRotor attribute),

225
symmetry (rmgpy.statmech.KRotor attribute), 219
symmetry (rmgpy.statmech.LinearRotor attribute), 217
symmetry (rmgpy.statmech.NonlinearRotor attribute),

218
symmetry (rmgpy.statmech.SphericalTopRotor at-

tribute), 221
SymmetryJob (class in rmgpy.qm.symmetry), 159

T
T0 (rmgpy.kinetics.Arrhenius attribute), 77
T0 (rmgpy.pdep.SingleExponentialDown attribute), 146
T1 (rmgpy.kinetics.Troe attribute), 93
T2 (rmgpy.kinetics.Troe attribute), 93
T3 (rmgpy.kinetics.Troe attribute), 93
Tdata (rmgpy.kinetics.KineticsData attribute), 76
Tdata (rmgpy.kinetics.PDepKineticsData attribute), 80
Tdata (rmgpy.thermo.ThermoData attribute), 230
TemplateReaction (class in rmgpy.data.kinetics), 60
TerminationConversion (class in rmgpy.solver), 207
TerminationRateRatio (class in rmgpy.solver), 207
TerminationTime (class in rmgpy.solver), 207

thermo_filter_down()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 186

thermo_filter_species()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 186

ThermoData (class in rmgpy.thermo), 230
ThermoDatabase (class in rmgpy.data.thermo), 65
ThermoDepository (class in rmgpy.data.thermo), 68
ThermoGroups (class in rmgpy.data.thermo), 70
ThermoLibrary (class in rmgpy.data.thermo), 73
ThirdBody (class in rmgpy.kinetics), 88
Tmax (rmgpy.kinetics.Arrhenius attribute), 77
Tmax (rmgpy.kinetics.Chebyshev attribute), 86
Tmax (rmgpy.kinetics.KineticsData attribute), 76
Tmax (rmgpy.kinetics.Lindemann attribute), 91
Tmax (rmgpy.kinetics.MultiArrhenius attribute), 79
Tmax (rmgpy.kinetics.MultiPDepArrhenius attribute), 84
Tmax (rmgpy.kinetics.PDepArrhenius attribute), 82
Tmax (rmgpy.kinetics.PDepKineticsData attribute), 81
Tmax (rmgpy.kinetics.ThirdBody attribute), 89
Tmax (rmgpy.kinetics.Troe attribute), 93
Tmax (rmgpy.thermo.NASA attribute), 236
Tmax (rmgpy.thermo.NASAPolynomial attribute), 239
Tmax (rmgpy.thermo.ThermoData attribute), 230
Tmax (rmgpy.thermo.Wilhoit attribute), 233
Tmin (rmgpy.kinetics.Arrhenius attribute), 78
Tmin (rmgpy.kinetics.Chebyshev attribute), 86
Tmin (rmgpy.kinetics.KineticsData attribute), 76
Tmin (rmgpy.kinetics.Lindemann attribute), 91
Tmin (rmgpy.kinetics.MultiArrhenius attribute), 79
Tmin (rmgpy.kinetics.MultiPDepArrhenius attribute), 84
Tmin (rmgpy.kinetics.PDepArrhenius attribute), 82
Tmin (rmgpy.kinetics.PDepKineticsData attribute), 81
Tmin (rmgpy.kinetics.ThirdBody attribute), 89
Tmin (rmgpy.kinetics.Troe attribute), 93
Tmin (rmgpy.thermo.NASA attribute), 236
Tmin (rmgpy.thermo.NASAPolynomial attribute), 239
Tmin (rmgpy.thermo.ThermoData attribute), 230
Tmin (rmgpy.thermo.Wilhoit attribute), 233
to_adjacency_list() (in module

rmgpy.molecule.adjlist), 143
to_adjacency_list() (rmgpy.molecule.Group

method), 130
to_adjacency_list() (rmgpy.molecule.Molecule

method), 120
to_adjacency_list() (rmgpy.species.Species

method), 211
to_arrhenius() (rmgpy.kinetics.MultiArrhenius

method), 80
to_arrhenius_ep() (rmgpy.kinetics.Arrhenius

method), 78
to_augmented_inchi() (rmgpy.molecule.Molecule

method), 120

292 Index



RMG-Py API Reference, Release 3.1.0

to_augmented_inchi_key()
(rmgpy.molecule.Molecule method), 120

to_cantera() (rmgpy.data.kinetics.DepositoryReaction
method), 19

to_cantera() (rmgpy.data.kinetics.LibraryReaction
method), 45

to_cantera() (rmgpy.data.kinetics.TemplateReaction
method), 64

to_cantera() (rmgpy.reaction.Reaction method), 181
to_cantera() (rmgpy.rmg.pdep.PDepReaction

method), 197
to_cantera() (rmgpy.species.Species method), 211
to_cantera() (rmgpy.thermo.NASA method), 237
to_cantera_kinetics() (rmgpy.kinetics.Arrhenius

method), 78
to_chemkin() (rmgpy.data.kinetics.DepositoryReaction

method), 19
to_chemkin() (rmgpy.data.kinetics.LibraryReaction

method), 45
to_chemkin() (rmgpy.data.kinetics.TemplateReaction

method), 64
to_chemkin() (rmgpy.reaction.Reaction method), 181
to_chemkin() (rmgpy.rmg.pdep.PDepReaction

method), 197
to_chemkin() (rmgpy.species.Species method), 211
to_group() (rmgpy.molecule.Molecule method), 120
to_html() (rmgpy.kinetics.Arrhenius method), 78
to_html() (rmgpy.kinetics.Chebyshev method), 88
to_html() (rmgpy.kinetics.KineticsData method), 77
to_html() (rmgpy.kinetics.Lindemann method), 92
to_html() (rmgpy.kinetics.MultiArrhenius method), 80
to_html() (rmgpy.kinetics.MultiPDepArrhenius

method), 85
to_html() (rmgpy.kinetics.PDepArrhenius method), 84
to_html() (rmgpy.kinetics.PDepKineticsData method),

82
to_html() (rmgpy.kinetics.ThirdBody method), 90
to_html() (rmgpy.kinetics.Troe method), 94
to_inchi() (in module rmgpy.molecule.translator), 140
to_inchi() (rmgpy.molecule.Molecule method), 120
to_inchi_key() (in module

rmgpy.molecule.translator), 140
to_inchi_key() (rmgpy.molecule.Molecule method),

120
to_labeled_str() (rmgpy.data.kinetics.DepositoryReaction

method), 20
to_labeled_str() (rmgpy.data.kinetics.LibraryReaction

method), 46
to_labeled_str() (rmgpy.data.kinetics.TemplateReaction

method), 64
to_labeled_str() (rmgpy.reaction.Reaction method),

181
to_labeled_str() (rmgpy.rmg.pdep.PDepReaction

method), 197

to_nasa() (rmgpy.thermo.ThermoData method), 231
to_nasa() (rmgpy.thermo.Wilhoit method), 235
to_ob_mol() (in module rmgpy.molecule.converter),

139
to_rdkit_mol() (in module

rmgpy.molecule.converter), 139
to_rdkit_mol() (rmgpy.molecule.Molecule method),

120
to_single_bonds() (rmgpy.molecule.Molecule

method), 120
to_smarts() (in module rmgpy.molecule.translator),

140
to_smarts() (rmgpy.molecule.Molecule method), 120
to_smiles() (in module rmgpy.molecule.translator),

141
to_smiles() (rmgpy.molecule.Molecule method), 121
to_thermo_data() (rmgpy.thermo.NASA method), 237
to_thermo_data() (rmgpy.thermo.Wilhoit method),

235
to_wilhoit() (rmgpy.thermo.NASA method), 237
to_wilhoit() (rmgpy.thermo.ThermoData method),

232
TransitionState (class in rmgpy.species), 211
Troe (class in rmgpy.kinetics), 92

U
uncertainty (rmgpy.kinetics.Arrhenius attribute), 79
uncertainty (rmgpy.kinetics.Chebyshev attribute), 88
uncertainty (rmgpy.kinetics.KineticsData attribute),

77
uncertainty (rmgpy.kinetics.Lindemann attribute), 92
uncertainty (rmgpy.kinetics.MultiArrhenius attribute),

80
uncertainty (rmgpy.kinetics.MultiPDepArrhenius at-

tribute), 85
uncertainty (rmgpy.kinetics.PDepArrhenius at-

tribute), 84
uncertainty (rmgpy.kinetics.PDepKineticsData

attribute), 82
uncertainty (rmgpy.kinetics.ThirdBody attribute), 90
uncertainty (rmgpy.kinetics.Troe attribute), 94
uncertainty (rmgpy.quantity.ArrayQuantity attribute),

176
uncertainty (rmgpy.quantity.ScalarQuantity at-

tribute), 174
uncertainty_type (rmgpy.quantity.ArrayQuantity at-

tribute), 176
uncertainty_type (rmgpy.quantity.ScalarQuantity at-

tribute), 174
UndeterminableKineticsError, 244
UnexpectedChargeError, 244
unique_id (rmgpy.qm.molecule.Geometry attribute),

156

Index 293



RMG-Py API Reference, Release 3.1.0

unique_id (rmgpy.qm.symmetry.SymmetryJob at-
tribute), 159

unique_id_long (rmgpy.qm.molecule.Geometry
attribute), 156

unit_degeneracy() (in module
rmgpy.statmech.schrodinger), 227

unperturb() (arkane.sensitivity.KineticsSensitivity
method), 7

unperturb() (arkane.sensitivity.PDepSensitivity
method), 8

update() (rmgpy.molecule.kekulize.AromaticBond
method), 134

update() (rmgpy.molecule.kekulize.AromaticRing
method), 134

update() (rmgpy.molecule.Molecule method), 121
update() (rmgpy.rmg.pdep.PDepNetwork method), 192
update_atomtypes() (rmgpy.molecule.Molecule

method), 121
update_charge() (rmgpy.molecule.Atom method), 110
update_charge() (rmgpy.molecule.Group method),

130
update_configurations()

(rmgpy.rmg.pdep.PDepNetwork method),
192

update_connectivity_values()
(rmgpy.molecule.graph.Graph method),
103

update_connectivity_values()
(rmgpy.molecule.Group method), 130

update_connectivity_values()
(rmgpy.molecule.Molecule method), 121

update_fingerprint() (rmgpy.molecule.Group
method), 130

update_lone_pairs() (rmgpy.molecule.Molecule
method), 121

update_multiplicity() (rmgpy.molecule.Molecule
method), 121

update_reaction_threshold_and_react_flags()
(rmgpy.rmg.main.RMG method), 189

update_unimolecular_reaction_networks()
(rmgpy.rmg.model.CoreEdgeReactionModel
method), 186

usePolar (rmgpy.qm.mopac.Mopac attribute), 165

V
value (rmgpy.quantity.ArrayQuantity attribute), 176
value (rmgpy.quantity.ScalarQuantity attribute), 174
verify_output_file()

(rmgpy.qm.gaussian.Gaussian method),
160

verify_output_file()
(rmgpy.qm.gaussian.GaussianMol method),
161

verify_output_file()
(rmgpy.qm.gaussian.GaussianMolPM3
method), 163

verify_output_file()
(rmgpy.qm.gaussian.GaussianMolPM6
method), 164

verify_output_file() (rmgpy.qm.mopac.Mopac
method), 165

verify_output_file() (rmgpy.qm.mopac.MopacMol
method), 167

verify_output_file()
(rmgpy.qm.mopac.MopacMolPM3 method),
168

verify_output_file()
(rmgpy.qm.mopac.MopacMolPM6 method),
170

verify_output_file()
(rmgpy.qm.mopac.MopacMolPM7 method),
171

Vertex (class in rmgpy.molecule.graph), 99
VF2 (class in rmgpy.molecule.vf2), 103
VF2Error, 245
visit() (arkane.output.PrettifyVisitor method), 5
visit_Call() (arkane.output.PrettifyVisitor method), 5
visit_Dict() (arkane.output.PrettifyVisitor method), 5
visit_List() (arkane.output.PrettifyVisitor method), 5
visit_Num() (arkane.output.PrettifyVisitor method), 5
visit_Str() (arkane.output.PrettifyVisitor method), 5
visit_Tuple() (arkane.output.PrettifyVisitor method),

5
visit_UnaryOp() (arkane.output.PrettifyVisitor

method), 5

W
Wigner (class in rmgpy.kinetics), 95
Wilhoit (class in rmgpy.thermo), 232
with_traceback() (rmgpy.exceptions.ActionError

method), 241
with_traceback() (rmgpy.exceptions.AtomTypeError

method), 241
with_traceback() (rmgpy.exceptions.ChemicallySignificantEigenvaluesError

method), 241
with_traceback() (rmgpy.exceptions.ChemkinError

method), 241
with_traceback() (rmgpy.exceptions.CollisionError

method), 241
with_traceback() (rmgpy.exceptions.CoreError

method), 241
with_traceback() (rmgpy.exceptions.DatabaseError

method), 241
with_traceback() (rmgpy.exceptions.DependencyError

method), 241
with_traceback() (rmgpy.exceptions.ElementError

method), 242

294 Index



RMG-Py API Reference, Release 3.1.0

with_traceback() (rmgpy.exceptions.ForbiddenStructureException
method), 242

with_traceback() (rmgpy.exceptions.ILPSolutionError
method), 242

with_traceback() (rmgpy.exceptions.ImplicitBenzeneError
method), 242

with_traceback() (rmgpy.exceptions.InchiException
method), 242

with_traceback() (rmgpy.exceptions.InputError
method), 242

with_traceback() (rmgpy.exceptions.InvalidActionError
method), 242

with_traceback() (rmgpy.exceptions.InvalidAdjacencyListError
method), 242

with_traceback() (rmgpy.exceptions.InvalidMicrocanonicalRateError
method), 242

with_traceback() (rmgpy.exceptions.KekulizationError
method), 243

with_traceback() (rmgpy.exceptions.KineticsError
method), 243

with_traceback() (rmgpy.exceptions.ModifiedStrongCollisionError
method), 243

with_traceback() (rmgpy.exceptions.NegativeBarrierException
method), 243

with_traceback() (rmgpy.exceptions.NetworkError
method), 243

with_traceback() (rmgpy.exceptions.OutputError
method), 243

with_traceback() (rmgpy.exceptions.PressureDependenceError
method), 243

with_traceback() (rmgpy.exceptions.QuantityError
method), 243

with_traceback() (rmgpy.exceptions.ReactionError
method), 243

with_traceback() (rmgpy.exceptions.ReactionPairsError
method), 244

with_traceback() (rmgpy.exceptions.ReservoirStateError
method), 244

with_traceback() (rmgpy.exceptions.ResonanceError
method), 244

with_traceback() (rmgpy.exceptions.SettingsError
method), 244

with_traceback() (rmgpy.exceptions.SpeciesError
method), 244

with_traceback() (rmgpy.exceptions.StatmechError
method), 244

with_traceback() (rmgpy.exceptions.StatmechFitError
method), 244

with_traceback() (rmgpy.exceptions.UndeterminableKineticsError
method), 244

with_traceback() (rmgpy.exceptions.UnexpectedChargeError
method), 244

with_traceback() (rmgpy.exceptions.VF2Error
method), 245

write_input_file() (rmgpy.qm.gaussian.GaussianMol
method), 161

write_input_file() (rmgpy.qm.gaussian.GaussianMolPM3
method), 163

write_input_file() (rmgpy.qm.gaussian.GaussianMolPM6
method), 165

write_input_file() (rmgpy.qm.mopac.MopacMol
method), 167

write_input_file() (rmgpy.qm.mopac.MopacMolPM3
method), 168

write_input_file() (rmgpy.qm.mopac.MopacMolPM6
method), 170

write_input_file() (rmgpy.qm.mopac.MopacMolPM7
method), 172

write_input_file() (rmgpy.qm.symmetry.SymmetryJob
method), 159

write_kinetics_entry() (in module
rmgpy.chemkin), 10

write_thermo_entry() (in module rmgpy.chemkin),
10

Index 295


	RMG API Reference
	Arkane (arkane)
	Chemkin files (rmgpy.chemkin)
	Physical constants (rmgpy.constants)
	Database (rmgpy.data)
	Kinetics (rmgpy.kinetics)
	Molecular representations (rmgpy.molecule)
	Pressure dependence (rmgpy.pdep)
	QMTP (rmgpy.qm)
	Physical quantities (rmgpy.quantity)
	Reactions (rmgpy.reaction)
	Reaction mechanism generation (rmgpy.rmg)
	Reaction system simulation (rmgpy.solver)
	Species (rmgpy.species)
	Statistical mechanics (rmgpy.statmech)
	Thermodynamics (rmgpy.thermo)
	RMG Exceptions (rmgpy.exceptions)

	Bibliography
	Python Module Index
	Index

