
Regularized Greedy Forest in C++ Version 1.2: User Guide

1 Introduction

Regularized greedy forest (RGF) [2] is a tree ensemble learning method. The purpose of this document is
to guide you through the software package of RGF implementation. [2] should be referred to in order to
understand RGF. With the code provided in the package, you can do the following:
Using the stand-alone executable:

• Conduct RGF training for regression tasks and binary classification tasks.

• Apply trained models to new data.

It is possible to call RGF functions from your code, but documentation for this purpose is not included in
this guide.

This guide is organized as follows. Section 2 quickly goes through the functionality. Data formats are
described in Section 3. Section 4 explains all the parameters.

2 Get started: A quick tour of functionality

The first thing to do is to download the package, extract the content, and create the executable. Please follow
the online instructions and README.

The top directory of the extracted content is rgf1.2. Make sure that the executable rgf (or rgf.exe
on Windows) is at rgf1.2/bin. To go through the examples in this section, always set the current directory
to rgf1.2/test because the resource files configured for using sample toy data assume that the current
directory is rgf1.2/test. For the same reason, the path expressions in this section should be understood
to be relative to rgf1.2/test unless it begins with rgf1.2.

2.1 Get started: train – training

To get started, set the current directory to rgf1.2/test and enter in the command line:

perl call exe.pl ../bin/rgf train sample/train

If successful, the last several lines of the screen should look like:

1

Generated 5 model file(s):

output/sample.model-01

output/sample.model-02

output/sample.model-03

output/sample.model-04

output/sample.model-05

Sat Dec 10 12:17:39 2011: Done ...

elapsed: 0.115

What happened is: the Perl script call exe.pl read parameters in the configuration file
sample/train.inp and passed them to the executable ../bin/rgf along with the action to take (train);
as a result, training was conducted and five models were saved to files. Here is the configuration file
sample/train.inp that call exe.pl was given:

sample input to "train"

train x fn=sample/train.data.x # Training data points

train y fn=sample/train.data.y # Training targets

model fn prefix=output/sample.model

reg L2=1 # Regularization parameter

algorithm=RGF

loss=LS # Square loss

test interval=100 # Save models every time 100 leaves are added.

max leaf forest=500 # Stop training when #leaf reaches 500

Verbose

It essentially says: conduct training with the training data points in sample/train.data.x and the training
targets in sample/train.data.y and save the trained models to the files. Any texts from “#” to the end
of line are comments. The line “model fn prefix...” indicates that the system should generate model
path names using the string “output/sample.model” as a prefix and attaching sequential numbers “-01”,
“-02”, · · · to it. It also says: training should proceed until the number of leaf nodes in the forest reaches
500 (max leaf forest=500); and every time another 100 leaf nodes are added to the forest, the system
should simulate the end of training and save the model for later testing (test interval=100). As a result,
you should obtain five models each of which contains approximately 100, 200, 300, 400, or 500 leaf nodes.
We delay explanation of other parameters until Section 4 where complete lists of parameters are given. The
format of training data files is described in Section 3.1.

2.2 Models: Why one call of training results in several model files

As seen above, one call of RGF training typically results in several model files. This fact may deserve some
explanation as it differs from typical boosting methods.

For example, suppose that you conducted Gradient Boosting [1] training using regression trees as base
learners; stopped training when you obtained 500 trees; and saved them to a file for later testing. Then in
principle, using these 500 trees, you can test 500 distinct models, each of which consists of the first k trees
where k = 1, 2, · · · , 500, by simply changing the number of trees to be used for making predictions. In
principle, you do not have to save 500 models individually. This is because Gradient Boosting does not
change the previously-generated trees; it only adds new trees as it proceeds. The same can be said about
other typical boosting methods such as AdaBoost.

2

By contrast, RGF performs fully-corrective update of weights, which updates the weights of all the leaf
nodes of all the trees, in the designated interval and at the end of training. For this reason, if we save the
model of, for example, 500 trees, then these 500 trees can be used only for testing the additive model of 500
trees. Unlike the Gradient Boosting example above, the first k trees of these 500 trees do not constitute a
meaningful model. If we stopped training when k trees were obtained, the weights assigned to the nodes of
the k trees would be totally different from those of the first k trees of the 500 trees.

It might be simpler if the system let a user only specify when to stop training and only return one
model, but it would be very inefficient to train several models of different sizes this way. For efficiency,
our implementation trains several models of different sizes in one call by simulating the end of training in
the interval designated by test interval. More precisely, training branches into two in the designated
interval. One continues training as if nothing happened, and the other ends training, which triggers weight
optimization (if it has not been triggered by the designated optimization interval), and tests or saves the
model. That is how one call of training produces several models.

2.3 predict: To apply a model to new data

The next example reads a model from one of the five model files generated in Section 2.1 and applies the
model to new data. Set the current directory to rgf1.2/test and enter:

perl call exe.pl ../bin/rgf predict sample/predict

If successful, after parameters are displayed, something similar to the following should be displayed:

output/sample.pred: output/sample.model-03,#leaf=301,#tree=73

Sat Dec 10 13:20:54 2011: Done ...

which indicates that the prediction values were saved to output/sample.pred; the model was read from
the file output/sample.model-03 and it contained 301 leaf nodes and 73 trees.

The configuration file sample/predict.inp we used is:

sample input to "predict"

test x fn=sample/test.data.x # Test data points

model fn=output/sample.model-03 # Model file

prediction fn=output/sample.pred # Where to write prediction values

It says: read the model from output/sample.model-03; apply it to the data points in
sample/test.data.x; and save the prediction values to output/sample.pred. The format of the pre-
diction file is described in Section 3.3.

2.4 Executable rgf and Perl script call exe.pl

The executable rgf, called through the Perl script in the examples above, takes two arguments:

rgf action parameters

3

action train | predict | train test | train predict

train Conduct training and save the trained models to files.
Input: training data; Output: models.

predict Apply a model to new data.
Input: a model and test data; Output: predictions

train test Train and test the models in one call.
Input: training data and test data; Output: performance results.
Optional output: models.

train predict Train and apply the models to new data in one call.
Input: training data and test data; Output: predictions, model infor-
mation, and models.

parameters Parameters are in the form of: keyword1=value1, keyword2=value2, Option1,· · ·
Example: algorithm=RGF,train x fn=data.x,train y fn=data.y,...

Although what is done by train test or train predict can also be done by combining train and
predict, use of train test or train predict has advantages in some situations as discussed in Sections
2.5 and 2.6.

To get help on parameters, call rgf with action but without parameters, for example:

rgf train

rgf predict

Since parameters could be long and tedious to type in, the Perl script call exe.pl introduced above
is provided to ease the job. It essentially reads parameters from a configuration file and concatenates them
with delimiter “,” to pass to rgf. The syntax is as follows:

perl call exe.pl executable action config pathname

executable Typically, ../bin/rgf, i.e., rgf1.2/bin/rgf.
action train | predict | train test | train predict

config pathname Path name to the configuration file without extension. The extension of configura-
tion files must be “.inp”.

In the configuration files, any text from “#” to the end of line is considered to be a comment.
Additionally, call exe.pl provides an interface to perform several runs in one call with one configura-

tion file. This is convenient, for example, for testing different degrees of regularization with other parameters
fixed. sample/regress train test.inp provides a self-explaining example.

2.5 train test: train, apply, and evaluate models

train test performs training and test in one call. What train test does can also be done by combining
train and predict and writing an evaluation routine by yourself. One advantage of train test other
than convenience is that it can save disk space by not having to write the models to files.

To try the example configuration for train test, set the current directory to rgf1.2/test, and enter:

perl call exe.pl ../bin/rgf train test sample/train test

If successful, the last several lines of the screen should look like:

4

Generated 5 model file(s):

output/m-01

output/m-02

output/m-03

output/m-04

output/m-05

Sat Dec 10 10:17:50 2011: Done ...

elapsed: 0.135

The configuration file sample/train test.inp is:

sample input to "train test"

train x fn=sample/train.data.x # Training data points

train y fn=sample/train.data.y # Training targest

test x fn=sample/test.data.x # Test data points

test y fn=sample/test.data.y # Test targest

evaluation fn=output/sample.evaluation

Where to write evaluation results

model fn prefix=output/m # Save models. This is optional.

algorithm=RGF

reg L2=1 # Regularization parameter

loss=LS # Square loss

test interval=100 # Test at every 100 leaves

max leaf forest=500 # Stop training when 500 leaves are added

Verbose

It is mostly the same as the configuration file for train in Section 2.1 except that test data is specified
by test x fn (data points) and test y fn (targets) and evaluation fn indicates where the performance
evaluation results should be written. In this example, model files are saved to files, as model fn prefix is
specified. If model fn prefix is omitted, the models are not saved.

Now check the evaluation file (output/sample.evaluation) that was just generated. It should look
like the following except that the items following cfg are omitted here:

#tree,29,#leaf,100,acc,0.61,rmse,0.9886,sqerr,0.9773,#test,100,cfg,...,output/m-01

#tree,52,#leaf,200,acc,0.66,rmse,0.9757,sqerr,0.952,#test,100,cfg,...,output/m-02

#tree,73,#leaf,301,acc,0.66,rmse,0.9824,sqerr,0.9651,#test,100,cfg,...,output/m-03

#tree,94,#leaf,400,acc,0.69,rmse,0.9767,sqerr,0.9539,#test,100,cfg,...,output/m-04

#tree,115,#leaf,501,acc,0.67,rmse,0.985,sqerr,0.9702,#test,100,cfg,...,output/m-05

Five lines indicate that five models were trained and tested. For example, the first line says: a model with
29 trees and 100 leaf nodes was applied to 100 data points and classification accuracy was found to be 61%,
and the model was saved to output/m-01.

The evaluation file format is described in Section 3.5. The format of training data and test data files is
described in Section 3.1.

2.6 train predict: train and apply the models and save predictions

The primary function of train predict is to perform training; apply the trained models to test data;
and write predictions to files. What train predict does can also be done by combining train and

5

predict. One advantage of train predict is that it can save disk space by not having to write model
files. (Typically, predictions take up much less disk space than models.) In particular, train predict

can be used for one-vs-all training for multi-class categorization, whereas train test cannot since testing
(evaluation) of predictions has to wait until training of all the K one-vs-all models for K classes is done.

Note that by default all the models are written to files, and to save disk space as discussed above, the
option switch SaveLastModelOnly needs to be turned on. With this switch on, only the last (and largest)
model is written to the file to enable future warm-start. (Warm-start resumes training from where the training
stopped before, which is also explained in 4.3.1.)

Model information such as sizes is also written to files. The original purpose is to save information that
would be disposed of otherwise with SaveLastModelOnly on. But for simplicity, train predict always
generates model information files irrespective of on/off of the switch. The provided sample configuration
file for train predict, sample/train predict.inp is as follows.

sample input to "train predict"

train x fn=sample/train.data.x # Training data points

train y fn=sample/train.data.y # Training targets

test x fn=sample/test.data.x # Test data points

model fn prefix=output/m

SaveLastModelOnly # Only the last (largest) model will be saved.

:

test interval=100 # Test every time 100 leaves are added.

max leaf forest=500 # Stop training when #leaf reaches 500

In this example, the model path names will be output/m-01, · · · , output/m-05, but the only last one
output/m-05 is actually written to the file, as SaveLastModelOnly is turned on. The path names for
saving the predictions and model information are generated by attaching .pred and .info to the model
path names, respectively. Therefore, after entering the following in the command line,

perl call exe.pl ../bin/rgf train predict sample/train predict

we should have the following 11 files at the output directory:

• Five prediction files: m-01.pred, · · · , m-05.pred

• Five model information files m-01.info, · · · , m-05.info

• One model file m-05

The data format is described in Section 3.1.

3 Input/output file format

This section describes the format of input/output files.

3.1 Data file format

3.1.1 Data points

The data points (or feature vectors) should be given in a plain text file of the following format. Each line
represents one data point. In each line, values should be separated by one or more white space characters.

6

All the lines should have exactly the same number of values. The values should be in the format that
is recognized as valid floating-point number expressions by atof of C libraries. The following example
represents three data points of five dimensions.

0.3 −0.5 1 0 2
1.555 0 0 2.8 0
0 0 0 3 0

(NOTE) Currently, there is no support for categorical values. All the values must be numbers. This means
that categorical attributes, if any, need to be converted to indicator vectors in advance.

Alternative data format for sparse data points For sparse data which has many zero components (e.g.,
bag-of-word data), the following format can be used instead. The first line should be “sparse d” where d is
the feature dimensionality. Starting from the second line, each line represents one data point. In each line,
non-zero components should be specified as feature#:value where feature# begins from 0 and goes up to
d− 1. For example, the three data points above can be expressed as:

sparse 5

0 : 0.3 1 : −0.5 2 : 1 4 : 2
0 : 1.555 3 : 2.8
3 : 3

3.1.2 Targets

The target values should be given in a plain text file of the following format. Each line contains the target
value of one data point. The order must be in sync with the data point file. If the data is for the classification
task, the values must be in {1,−1}, for example:

+1
−1
−1

If paired with the data point file example above, this means that the target value of the first data point
[0.3,−0.5, 1, 0, 2] is 1 and the target value of the second data point [1.555, 0, 0, 2.8, 0] is −1, and so on.

For regression tasks, the target values could be any real values, for example:

0.35
1.23
−0.0028

3.2 Data point weight file format

As introduced later, training optionally takes the user-specified weights of data points as input. The data
point weights should be given in a plain text file of the same format as the target file. That is, each line
should contain the user-specified weight of one data point, and the order must be in sync with the data point
file of training data.

3.3 Prediction file format

predict and train predict output prediction values to a file. The prediction file is a plain text file that
contains one prediction value per line. The order of the values is in sync with the data point file of test data.

7

3.4 Model information file format
train predict outputs model information to files. The model information file is a plain text file that has
one line, for example:

#tree,378,#leaf,5000,sign,- - RGF ,cfg,reg L2=0.1;loss=LS...

This example means that the model consists of 378 trees and 5000 leaf nodes; and the model was trained
with RGF with the parameter setting following “cfg”.

3.5 Evaluation file format
train test outputs performance evaluation results to a file in the CSV format. Here is an example:

#tree,115,#leaf,500,acc,0.64,rmse,0.9802,sqerr,0.9607,#test,100,cfg,...

#tree,213,#leaf,1000,acc,0.65,rmse,0.9721,sqerr,0.945,#test,100,cfg,...

In the evaluation file each line represents the evaluation results of one model. In each line, each value is
preceded by its descriptor; e.g., “#tree,115” indicates that the number of trees is 115 in the tested model.
In the following, yi and pi are the target value and prediction value of the i-th data point, respectively; I(x)
is the indicator function so that I(x) = 1 if x is true and 0 otherwise; and m is the number of test data
points.

Descriptor Meaning
#tree Number of trees in the model
#leaf Number of leaf nodes in the model
acc Accuracy regarding the task as a classification task.

∑m
i=1 I(yi · pi > 0)/m.

rmse RMSE regarding the task as a regression task.
√∑m

i=1(yi − pi)2/m
sqerr Square error. RMSE×RMSE.
#test Number of test data points m.
cfg Some of training parameters.

In addition, if models were saved to files, the last item of each line will be the model path name.

(NOTE) Although performances are shown in several metrics, depending on the task some are obviously
meaningless and should be ignored, e.g., accuracy should be ignored on the regression task; RMSE and
square error should be ignored on the classification task especially when exponential loss is used.

3.6 Model files

The model files generated by train or train test are binary files. Caution is needed if you wish to share
model files between the environments with different endianness. By default the code assumes little-endian.
To share model files between environments with different endians the executable used in the big-endian
environment needs to be compiled in a certain way; see README for detail.

8

4 Parameters

4.1 Overview of RGF training

Since many of the parameters are for controlling training, let us first give a brief overview of RGF training,
focusing on the things that can be controlled via parameters. [2] should be referred to for more precise and
complete definition.

Suppose that we are given n training data points x1, · · · ,xn and targets y1, · · · , yn. The additive model
obtained by RGF training is in the form of: hF (x) =

∑
v αv · gv(x), where v goes through all the leaf

nodes in the forest F , gv(x) is the basis function associated with node v, and αv is its weight or coefficient.
Initially, we have an empty forest with hF (x) = 0. As training proceeds, the forest F obtains more and
more nodes so the model hF (x) obtains more and more basis functions. The training objective of RGF is to
find the model that minimizes regularized loss, which is the sum of loss and a regularization penalty term:

1

n

n∑
i=1

`(hF (xi), yi) + G(F) , (1)

where ` is a loss function; and G(F) is the regularization penalty term. RGF grows the forest with greedy
search so that regularized loss is minimized, while it performs fully-corrective update of weights to minimize
the regularized loss in the designated interval. The loss function ` and the interval of weight optimization
can be specified by parameters.

There are three methods of regularization discussed in [2]. One is L2 regularization on leaf-only models
in which the regularization penalty term G(F) is:

λ ·
∑
v

α2
v/2 ,

where λ is a constant. This is equivalent to standard L2 regularization and penalizes larger weights. The
other two are called min-penalty regularizers. Their definition of the regularization penalty term over each
tree is in the form of:

λ ·min
{βv}

{∑
v

γdvβ2v/2 : some conditions on {βv}

}
,

where dv is the depth of node v; and λ and γ are constants. While [2] should be consulted for precise
definition of min-penalty regularizers, one thing to note here is that a larger γ > 1 penalizes deeper nodes
(corresponding to more complex basis functions) more severely. Parameters are provided to choose the
regularizer or to specify the degree of regularization through λ or γ.

Optionally, it is possible to have different L2 regularization parameters for the process of growing a
forest and the process of weight correction.

On the regression tasks, it is sensible to normalize targets so that the average becomes zero since regu-
larization shrinks weights towards zero. An option switch NormalizeTarget is provided for this purpose.
When it is turned on, the model is fitted to the normalized targets [yi − ȳ]ni=1 where ȳ =

∑n
i=1 yi/n and the

final model is set to hF (x) + ȳ.
The regularized loss in (1) can be customized not only by specifying a loss function but also by spec-

ifying user-defined weights. Let wi > 0 be the user-defined weight assigned to the i-th data point. Then
instead of (1) the system will minimize the following:

1∑n
i=1wi

n∑
i=1

wi · `(hF (xi), yi) + G(F) . (2)

9

Finally, in our implementation, fully-corrective weight update is done by coordinate descent as follows:
for j = 1 to J do

foreach leaf node v do
// Update αv by the Newton step with step size η to minimize regularized loss Q.
αv←αv − η · ∂Q/∂δv |δv=0

∂2Q/∂δ2v |δv=0
// δv is the additive change to αv.

end
end
The constants J and η above can be changed using the parameters described below, although, in our

experiments, we never used them as the default values worked fine on a number of datasets.

4.2 Naming conventions and notation

There are two types of parameters: keyword-value pairs and options. The keywords begin with a lower-case
letter and should be followed by =value, e.g., “loss=LS”. The options begin with an upper-case letter, e.g.,
“Verbose”, and indicate to turn on corresponding option switches, which are off by default.

In the lists below, ‘*’ in front of the keyword indicates that the designated keyword-value pair is required
and cannot be omitted.

4.3 Parameters for train

The parameters described in this section are used by the train function. train trains models and saves
them to files.

4.3.1 Parameters to control input and output for train

A pair of training data files (one contains the data points and the other contains the target values) are required.
Another required parameter is the prefix of model path names, which is used to generate model path names
by attaching to it sequential numbers “-01”, “-02”, and so on. The reason why one call of training typically
produces multiple model files is explained in Section 2.2.

Optionally, training can be resumed from the point where training was ended last time, which we call
warm-start. To do warm-start, the model file from which training should be resumed needs to be specified.
Also optionally, user-defined weights of training data points can be specified through train w fn. They are
used as in (2).

Required parameters to control input and output for train
* train x fn= Path to the data point file of training data.
* train y fn= Path to the target file of training data.
* model fn prefix= To save models to files, path names are generated by attaching

“-01”, “-02”,· · · to this value.
Optional parameters to control input and output for train

train w fn Path to the file of user-defined weights assigned to training data
points.

model fn for warmstart= Path to the model file from which training should do warm-start.

10

4.3.2 Parameters to control training

In the list below, the first group of parameters are most important in the sense that they would affect either
accuracy of the models or speed of training directly, and they were actually used in the experiments reported
in [2]. The second group of parameters never needed to be specified in our experiments, as the default
values worked fine on a number of datasets, but they may be useful in some situations. The third group is
for displaying information and specifying the memory allocation policy.

The variables below refer to the corresponding variables in the overview in Section 4.1.

Parameters to control training
algorithm= RGF|RGF Opt|RGF Sib (Default: RGF)

RGF: RGF with L2 regularization on leaf-only models
RGF Opt: RGF with min-penalty regularization
RGF Sib: RGF with min-penalty regularization with the sum-to-zero sibling
constraints.

loss= Loss function `(p, y). LS|Expo|Log (Default: LS)
LS: square loss (p − y)2/2; Expo: exponential loss exp(−py); Log: logistic
loss log(1 + exp(−py))

max leaf forest= Training will be terminated when the number of leaf nodes in the forest
reaches this value. It should be large enough so that a good model can be
obtained at some point of training, whereas a smaller value makes training
time shorter. Appropriate values are data-dependent and in [2] varied from
1000 to 10000. (Default:10000)

NormalizeTarget If turned on, training targets are normalized so that the average becomes zero.
It was turned on in all the regression experiments in [2].

* reg L2= λ. Used to control the degree of L2 regularization. Crucial for good perfor-
mance. Appropriate values are data-dependent. Either 1, 0.1, or 0.01 often
produces good results though with exponential loss (loss=Expo) and logistic
loss (loss=Log) some data requires smaller values such as 1e-10 or 1e-20.

reg sL2= λg. Override L2 regularization parameter λ for the process of growing the
forest. That is, if specified, the weight correction process uses λ and the
forest growing process uses λg. If omitted, no override takes place and λ is
used throughout training. On some data, λ/100 works well.

reg depth= γ. Must be no smaller than 1. Meant for being used with
algorithm=RGF Opt|RGF Sib. A larger value penalizes deeper nodes more
severely. (Default: 1)

test interval= Test interval in terms of the number of leaf nodes. For example, if
test interval=500, every time 500 leaf nodes are newly added to the for-
est, end of training is simulated and the model is tested or saved for later
testing. For efficiency, it must be either multiple or divisor of the optimiza-
tion interval (opt interval: default 100). If not, it may be changed by the
system automatically. (Default:500)

Parameters that are probably rarely used
min pop= Minimum number of training data points in each leaf node. Smaller values

may slow down training. Too large values may degrade model accuracy. (De-
fault:10)

11

num iteration opt= J . Number of iterations of coordinate descent to optimize weights. (De-
fault:10 for square loss; 5 for exponential loss and the likes)

num tree search= Number of trees to be searched for the nodes to split. The most recently-
grown trees are searched first. (Default:1)

opt interval= Weight optimization interval in terms of the number of leaf nodes. For ex-
ample, if opt interval=100, weight optimization is performed every time
approximately 100 leaf nodes are newly added to the forest. (Default:100)

opt stepsize= η. Step size of Newton updates used in coordinate descent to optimize
weights. (Default:0.5)

Other parameters
Verbose Print information during training.
Time Measure and display elapsed time for node search and weight optimization.
memory policy= Conservative|Generous. (Default:Generous)

4.4 Parameters for predict

predict reads a model saved by train, train test, or train predict, applies it to new data, and saves
prediction values to a file.

Parameters for predict
* test x fn Path to the data point file of test data.
* model fn Path to the model file.
* prediction fn Path to the prediction file to write prediction values to.

4.5 Parameters for train test

train test trains models with training data and evaluates them on test data in one call.

4.5.1 Parameters to control input and output for train test

train test requires a pair of training data files (one contains the data points and the other contains the
target values) and a pair of test data files.

Optionally, the models can be saved to files by specifying model fn prefix. The value specified with
model fn prefix is used to generate model path names by attaching to it sequential numbers “-01”, “-02”,
and so on. The reason why one call of training typically produces multiple model files is explained in Section
2.2. If SaveLastModelOnly is turned on, only the last (and largest) model will be saved, which enables
warm-start later on. Other things that can be done optionally are the same as train. That is, optionally,
training can be resumed from the point where training was ended last time (warm-start). Also optionally,
user-defined weights of training data points can be specified through train w fn; see Section 4.1 for how
they are used.

12

Parameters to control input and output for train test

* train x fn= Path to the data point file of training data.
* train y fn= Path to the target file of training data.
* test x fn= Path to the data point file of test data.
* test y fn= Path to the target file of test data.

evaluation fn Path to the file to write performance evaluation results to. If omitted,
the results are written to stdout.

Append evaluation Open the file to write evaluation results to with the append mode.
model fn prefix= If omitted, the models are not saved to files. Model path names are

generated by attaching ”-01”, ”-02”,... to this value to save models.
train w fn Path to the file of user-defined weights assigned to training data points.
model fn for warmstart= Path to the input model file from which training should do warm-start.

4.5.2 Parameters to control training

The parameters to control training for train test are the same as those for train; see Section 4.3.2.

4.6 Parameters for train predict

train predict trains models with training data; applies the models to test data; and saves the obtained
predictions and model information to files in one call. Model files are also saved to files, but whether all the
models should be saved or only the last one is obtional.

4.6.1 Parameters to control input and output for train predict

train predict requires a pair of training data files (one contains the data points and the other contains the
target values) and a test data file that has data points. The target values of test data is not required.

The value specified with model fn prefix is used to generate model path names by attaching to it
sequential numbers “-01”, “-02”, and so on. The reason why one call of training typically produces multiple
model files is explained in Section 2.2. To write predictions to files, the path names are generated by
attaching “.pred” to the corresponding model path names.

When the SaveLastModelOnly switch is turned on, only the last (and largest) model is written to a file.
This option is useful for reducing the amount of disk space needed while enabling warm-start later on. See
Section 2.6 for more on the situations train predict is suitable.

Information on models such as sizes are also written to files, and their path names are generated by
attaching “.info” to the model path names. The original purpose is to save information that would be
disposed of otherwise with SaveLastModelOnly on. But for simplicity, train predict always generates
model information files irrespective of on/off of SaveLastModelOnly.

13

Parameters to control input and output for train predict

* train x fn= Path to the data point file of training data.
* train y fn= Path to the target file of training data.
* test x fn= Path to the data point file of test data.
* model fn prefix= Model path names are generated by attaching ”-01”, ”-02”,... to this

value to save models. Prediction path names and model information
path names are generated by attaching “.pred” and “.info” to the
model path names, respectively.

SaveLastModelOnly If turned on, only the last model is saved to the file.
train w fn Path to the file of user-defined weights assigned to training data points.
model fn for warmstart= Path to the input model file from which training should do warm-start.

4.6.2 Parameters to control training

The parameters to control training for train predict are the same as those for train; see Section 4.3.2.

References

[1] Jerome Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statis-
tics, 29, 2001.

[2] Rie Johnson and Tong Zhang. Learning nonlinear functions using regularized greedy forest. Technical
report, Tech Report: arXiv:1109.0887, 2011.

14

