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1 Introduction

This document describes the current support for encryption and access control in CCNx. It begins, for
reference and convenience, with the documentation of signing and signature formats used by CCNx. It then
presents a description of the content encryption and access control mechanisms provided by the CCNx Java
library.

Content encryption can be performed using symmetric keys managed by an application in any way it
chooses, or can be used together with a key distribution scheme to automatically manage encryption keys for
content. The most general notion of a key distribution scheme for content protection is an encryption-based
access control scheme; CCNx’s general architecture for defining and managing encryption-based access
control schemes is described in section 4. Implementing any key distribution scheme requires the ability
to wrap keys — encrypt keys in other keys. The default key wrapping mechanisms present in CCNx are
described in section 5. We can also use key derivation to turn one key into many different keys, used to
protect multiple pieces of content. CCNx’s example access control scheme uses a generic key derivation
algorithm, which is also available for more general use. This algorithm is defined in section 6. Finally,
we can gather up these individual components — encryption, key wrapping, key derivation, and put them
together to define new access control or key distribution schemes that are useful for various application
scenarios. CCNXx contains an example of one such scheme; a scheme for encryption-based access control
providing (eventually) many of the features of standard file system access control, and implemented using
the CCNx pluggable access control framework. This scheme is described in section 7.

2 Signing
A ContentObject in CCNXx consists of:

ContentObject ::= Signature
Name
SignedInfo
Content

The Signature, described below, is computed over the concatenated ccnb binary encoding of the
Name, SignedInfo and Content components of the ContentObject, with all of their start and end
tags, but without the start or end tag of the Content Ob ject itself, or any component of the Signature.
This makes possible a signing implementation that takes a packet in over the wire, selects the digest algo-
rithm to use to verify the signature based on information in the Signature component, and then digests
the bulk of the packet, exactly as it arrived on the wire, in order to verify its signature.

2.1 Signature
The Signature component of the ContentOb ject consists of:
Signature ::= DigestAlgorithm

Witness
SignatureBits
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2.1.1 Digest Algorithm

The digest algorithm specifies the cryptographic digest algorithm used in signature generation. We need
to specify either the digest algorithm used to generate the signature, or a combined signature algorithm
which includes both the digest algorithm and public key algorithm used (for example, “SHA1withRSA”),
so that verifiers know what digest to use to verify the signature. The X.509 digital signature standard uses
a signature algorithm specified at the start of the certificate, as well as in the signature itself. The PKCS#7
standard for signed data, and the standard for XML signatures specify only a digest algorithm up front.
Choosing to specify a digest algorithm, rather than a signature algorithm, at the start (and to only specify the
digest algorithm, letting the signature algorithm be determined by the key rather than separately specified
in the signature) forces us to assume that a given key can only be used for one algorithm type. However,
assuming that a smaller number of digest algorithms are used than public key types, including only the
digest algorithm in the specifier saves us the bytes for a separate specification of signature algorithm in the
signature, and increases the chance that we will also be able to elide the digest algorithm identifier itself
because the digest algorithm chosen will be one selected as the most common default (for now, SHA-256).

We place the digest algorithm identifier, along with the content of the signature itself, at the start of the
ContentObject, so that devices that need to perform signature verification on the incoming data stream
as it arrives may do so. (Though they will need to store the Signature itself for verification until both
the data is processed and the public key needed has been retrieved.) For the moment, the digest algorithm is
specified as a UTF-8 encoding of an Object Identifier, or OID. If it matches the default value (the OID for
SHA-256, or 2.16.840.1.101.3.4.2.1) it is elided.

2.1.2 Witness

A Witness is additional information necessary to verify the signature, particularly in the case where
signature generation is aggregated and performed over multiple ContentOb jects at once. In such a case,
the Witness allows an individual ContentObject to be verified as being part of that set. For example,
for elements authenticated using a Merkle Hash Tree, the witness information would be the elements of the
hash path through the tree.

The Witness is represented as a DER-encoded PKCS#1 DigestInfo, which contains an
AlgorithmIdentifier (an OID, together with any necessary parameters) and a byte array (OCTET
STRING) containing the digest information to be interpreted according to that OID.

2.1.3 Signature Bits

The contents of the digital signature itself, computed as appropriate for the algorithm used (see sec-
tion 2.2.1). For now, this is the bits of the signature itself, encoded as appropriate for the particular crypto-
graphic algorithm used (in other words, no encapsulating specification of signature algorithm).

2.2 Signature Generation

Signature generation in CCNx takes one of two forms: either individual blocks are individually digitally
signed with a standard public key signature algorithm, or multiple blocks are signed at once using an aggre-
gated signature.
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2.2.1 Algorithm Choice

The choice of signature algorithm and signature granularity (whether, or how much, to aggregate signing) is
done by the publisher using a number of considerations: most importantly ease of implementation, compu-
tational constraints on the publisher and verifier, and bandwidth constraints. Signing each block individually
is more computationally costly for the publisher than aggregating signature generation, but offers lower la-
tency and requires less space for the signature. (Aggregated signatures require the use of per-block witness
information to allow each block to be individually verified.) Verification cost is lower for aggregated signa-
tures, as the consumer can cache and reuse the result of verifying the signature itself, and even parts of the
witness, across multiple blocks.

The choice of the public key algorithm used to generate either the individual block or aggregated signa-
ture is determined by what keys the publisher has available, what algorithms they expect their consumers to
support, and the relative cost of signature generation and verification for individual algorithms, as well as,
of course, their security requirements. For example, the RSA algorithm offers a significant asymmetry in
signing and verification times: signature generation is an order of magnitude (or more) slower than verifica-
tion. It is therefore a good choice if signatures will be verified many more times than they will be generated
(but it comes at the cost of relatively long signatures). Elliptic curve cryptography can be used to generate
short signatures with high security, but verification is as computationally expensive, or more expensive, than
signature generation.

2.2.2 Individual Block Signing

To sign an individual ContentObject, we generate a standard digital signature using PKCS#1 padding
over the Name, SignedInfo, and Content portions of the encoded ContentOb ject described above
with the specified digest algorithm and a signature algorithm determined by that and the key. We place the
resulting signature in the SignatureBits portion of the Signature, omitting the Witness. Such a
signature can be generated and verified using any number of standard cryptographic libraries.

2.2.3 Aggregated Signing

An aggregated signature takes a set of 2 or more ContentObjects, and generates a signature over
their combination, together with a set of per-object witness data such that it is possible to verify for each
ContentObject in the set that it is indeed a member of the set, that it was signed as part of the set by
the designated public key, and that it has not been altered since (up to the security of the cryptographic
algorithms used).

The CCNx standard library currently implements a single aggregated signature algorithm, using Merkle
hash trees. However, the intent is to make the aggregated, or bulk signature implementation sufficiently
parameterizable that other algorithms (for experimental or production use) can be included. At the same
time, the expectation that all nodes in the network can verify any signature they choose suggests that the
number of production algorithms eventually supported will be relatively limited. As of the initial release,
aggregated signature generation is set up to allow for new implementations to be added, but verification is
not.

While the typical use for aggregated signatures is to sign a set of related content objects (for example a
set of segments from a single stream), there is no requirement that the objects aggregated be related at all.
(However, when they are, it maximizes the likelihood that a verifier will be verifying them all together and
so will be able to reuse cached verification data.)
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2.2.4 Merkle Hash Tree Aggregated Signatures

We describe here the aggregated signature algorithm implemented in the CCNx library. Some of the design
elements used in this algorithm were selected to maximize overlap with the standard signing implementation,
and would be good common elements to use for any aggregated signature implementation. Additional details
of the implementation can be seen in the Java library source code.

A Merkle hash tree is constructed most simply by taking a set of data elements, and arranging them
as leaf nodes in a n-ary tree. Each leaf node is represented by its cryptographic digest, or hash. The
parent of a set of n leaves is calculated by concatenating the digests of those n leaves and then computing a
cryptographic digest, or hash, over the result. This process is iterated up the tree, until a single root digest
is calculated at the top. That root digest is then digitally signed. To verify a single leaf, one needs the leaf
itself, as well as a Merkle Path through the tree, i.e. the values (digests) in the tree of that leaf’s n — 1
siblings, and its parents’ siblings, and so on up the tree, so as to be able to take the leaf and the path values,
and recompute the root. A consumer verifying the leaf uses the leaf and path data to compute a root value,
and then given a digital signature on the actual root, determines whether or not the computed root value
matches the value that was originally computed and signed. Assuming the security of the cryptographic
digest algorithm used to compute the tree, this verifies the content and position of the leaf in the tree.

CCNx uses binary Merkle hash trees, with a parameterizable digest algorithm used to compute the leaf
and interior (node) digests. Given a set of 2 or more ContentObjects, the leaf digest of each of those
ContentObjects is computed using the same method used to compute an individual signature over
a single ContentObject. In other words, each leaf is represented by the cryptographic digest of the
concatenated ccnb binary encodings of its contained Name, SignedInfo and Content fields. The node
(interior) digests of the tree are computed as described above: as the digest of the concatenation of the two
children of the node to be computed. If that node has only a left child (the tree formulation used ensures that
no node will have only a right child), the digest of that node is computed as the digest of its left child alone
(this simplifies implementation over skipping the digest computation).

To generate the signature on a Merkle hash tree (MHT), we sign the root node as follows. The root
is already a digest, so in theory we could just wrap it up in some PKCS#1 padding and sign it with our
private key. But there are basically no crypto software packages that provide signature primitives that take
already-digested data and just do the padding and encryption, and so we would be asking anyone attempting
to implement CCNx MHT signing (including ourselves) to re-implement a number of signature algorithms.
We might also want to sign with a key that does not support the digest algorithm we used to compute
the root (for example, DSA). So we take the slightly more computationally expensive, but vastly simpler
(implementation-wise) approach of taking our digest and signing it with a standard signing API — which
means digesting it one more time for the signature. So we sign (digest + encrypt) the root digest with a
standard off-the-shelf signature algorithm. It is this signature that we place in the SignatureBits of
the Signature of each ContentObject in the aggregated set, and the digest algorithm used for this
signature that we place in the DigestAlgorithm field.

To represent the witness, or Merkle Path, for each ContentObject in the aggregate, we list the leaf
or node digests for the sibling of this leaf, and the sibling of its parent, and on up the tree, in that order.
We do not include the digest of the leaf itself (that can be calculated from the content) or the root digest
(which can be calculated from the calculated leaf digest and the path) in the path data (witness). In order
to be able to verify the content with respect to the given path, the verifier needs to be able to determine
whether this leaf represents the left or right leaf in a terminal pair, and which position (left or right child)
each of the digests on the witness path takes (as the computation of the parent digest is order dependent).
Because of the representation of trees used, the index of the leaf whose path this is determines the position
of the remainder of the nodes on the path if they are presented in order (from top to bottom). We therefore
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represent our Merkle Paths as follows (noted in ASN.1):

MerklePath ::= SEQUENCE {
nodeIndex INTEGER,
nodes NodeList

NodeList ::= SEQUENCE OF OCTET STRING

We could probably save a few bytes by not encoding this as DER, and simply packing in the bytes to
represent this data. But this encoding offers a fair amount of ease of parsing and clarity, at the cost of some
5 + 2 x pathLength bytes of overhead, or 20 bytes in typical paths. At some point this may seem too much,

and we will move to a more compact encoding.

The Witness for a Merkle hash tree-signed ContentObject contains, as noted above, a DER-
encoded PKCS#1 DigestInfo. The AlgorithmIdentifier of that DigestInfo contains an OID
that specifies both that this is a Merkle path, and the component digest algorithm used to compute the
leaf and interior node digests. The OCTET STRING of that DigestInfo contains the DER-encoded
MerklePath for this leaf. OIDs for initial MHT algorithms are below. The default for the CCNx library

is SHA256MHT.

SHA-1-Merkle—-Hash-Tree ::= 1.2.840.113550.11.1.2.1
SHA-256-Merkle-Hash-Tree ::= 1.2.840.113550.11.1.2.2
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3 Encryption

This section describes the basic mechanics of content encryption for standard, segmented content, under a
symmetric key. It relies on the SegmentationProfile for naming conventions. Content encryption
can be performed using keys managed by an application in any way it chooses, or can be used together with
a key distribution scheme to automatically manage encryption keys for content. Note that the current CCNx
release supports only counter (CTR) mode; support for CBC mode is in progress.

3.1 Goals

The goals of this encryption specification are, in order of importance:

» simplicity: a programmer should need to specify as little as possible in order to successfully and
securely encrypt content.

» speed: the encryption specification should be designed to allow as efficient operation as possible;
in particular, it should enable (though not require) parallel operation whenever possible, and mini-
mize the number of public key operations necessary in order to read content, modulo the ability to
effectively manage access.

 data use flexibility: the encryption specification should provide for random access to the data, and
allow reads to start from any data segment. This implies that the encryption specification should be
segmentation-aware, i.e. responsive to the block boundaries of the content. Otherwise, encryption
blocks may break across content segments, and require more complicated higher-level structures to
manage decryption of that data. This does not preclude segmentation-opaque approaches to encryp-
tion, such as applications that encrypt their data completely at the application level and then add it
to CCNx. Such approaches will just require more sophisticated application-level machinery to allow
completely random access to the data.

* space efficiency: we use algorithms without length expansion whenever possible. (Though given the
amount of space used for authentication data, this may seem a false economy; particularly when all
we are saving is an explicit initialization vector or a block’s worth of padding.)

* algorithm agility and future-proofing: we recognize that cryptographic algorithms come and go, and
therefore it is necessary to allow algorithms to change, or different applications to plug in their own
preferred algorithms when necessary. Ideally we want to enable this without requiring those appli-
cations to lose the benefits of the tight integration of encryption with efficient low-level networking
code. The advantage of CCNx is that encryption algorithms must only be agreed on between content
producers and consumers, removing the requirement that all potential communication partners agree
on the universe of available algorithms.

3.2 Basic Approach

A content object O (possibly segmented according to the SegmentationProfile) is encrypted under a single
key Ko (the derivation of Ko for a given object O is described in section 6). The basic encryption profile
takes Ko and uses it to encrypt the n = length(O)/fragmentSize segments of O. If we use counter mode to
do this, we need to ensure that both the publisher and the desired recipients can determine both the key and
the initial counter value for each block, and that counter values are never reused for the same key.
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Encryption is performed prior to packet authentication (signing). Callers can specify the desired final
packet length, including headers, authentication information and encrypted data. The segmenter uses infor-
mation about any message expansion performed by the cipher being used to determine the segment length
to use to achieve the desired output length, within the limits of same-length segments.

3.3 Supported Algorithms: AES-CTR and AES-CBC

The default algorithm for encryption of CCNx content is AES in counter mode (AES-CTR). Counter mode
is in effect a stream cipher: it generates a stream of encrypted bytes (a key stream), which is then XORed
with the data to produce the ciphertext. Its advantage is that it is length-preserving. The length of the
ciphertext generated need not be a multiple of the block length of the underlying block cipher. Instead, the
output ciphertext is only as long as the input plaintext (note that this leaks the length of the plaintext). AES-
CTR is highly parallelizable. The keystream can be generated in parallel, potentially before the plaintext or
ciphertext to be encrypted or decrypted has been received. Encryption and decryption use exactly the same
operations. AES-CTR is a malleable mode of encryption (if you know the plaintext, you can easily alter
unauthenticated ciphertext to contain any plaintext you want) and so it must be used with authentication.
However, this is not a problem as all CCNx data is authenticated. The key stream is generated by encrypting
sequential values of an incrementing counter using the underlying cipher. As this is a stream cipher, it is
imperative that no key stream segment (i.e. no counter value) is ever used twice for a given key, otherwise all
security is lost. To achieve full security, however, the counter value must be sufficiently unpredictable; e.g.
must contain 64 bits of effectively random or at least rare data (e.g. a sender identifier). To achieve space
compression, the initial counter value must be computable by the sender and receiver, rather than requiring
that it be sent explicitly.

A secondary encryption mode uses AES in cipher-block-chaining mode (AES-CBC), generating the
initialization vector using the algorithm described in section 6 to generate the random portion of the counter.
AES-CBC is more complex, as the padding required may expand the size of the written data.

The key length and encryption algorithm (e.g. AES-CTR, AES-CBC) are specified inside the master
key block (see section 6). This was determined to be more efficient and likely sufficiently general than
marking each packet with the specific algorithm used. We begin with a simplifying assumption that all data
keys derived from a single master key will use the same encryption mode, and specify the desired mode
in the master key block. That allows the key derivation operation (see section 6) to derive not only the
data key to be used, but any auxiliary data needed (counter for CTR mode, initialization vector for CBC
mode). The low-level segmentation interface takes a Cipher parameter as well as a mechanism to construct
a per-segment counter or initialization vector. This enables higher-level interfaces to begin to add their own
choices for Cipher types.

3.4 Formal Specification

The segmenter is called with parameters identifying:
* the encryption algorithm and mode to use, if any
* the encryption key Ko to use for the data object O to be segmented

* an 8-byte value IV .4 used as an initialization vector seed for this item (in CBC mode) or a random
counter component (in CTR mode). This derivation is described in section 6.

* the desired full segment (packet) length, including supporting data
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3.4.1 Counter mode

In CTR mode, the counter for a given block B in segment S is constructed as follows:
CTR = IV oo ql/Snum||Bnum

where the segment and block numbers are represented in unsigned, 1-based big endian format. The total
width of the counter value is 16 bytes, where the first 8 bytes are the IV o04 value, the next 6 bytes are
the segment number Spum, and the last 2 bytes are the block number Bpym. Note that according to the
SegmentationProfile, a single-segment object has a segment number component in its name, and follows the
specification above for managing its encryption keys.

3.4.2 Cipher-block chaining mode

In CBC mode, the value IV
S as follows:

seed 18 used as a seed to generate an initialization vector IV g for each segment

IVs = Ex, (IVgeeq!|Snum||Bo)

where the segment number is encoded in 1-based, unsigned, big-endian form, and represented in the b — /¢
rightmost bytes of the plaintext above, where b is the width of the block cipher in use, and ¢ is the length
of the numeric representation of the segment number. We let By = 1 to maintain consistency with standard
CTR mode use. The same initialization vector expansion function is used regardless of mode for simplicity.

If concerns were raised that key derivation (see section 6) might result in key collisions (e.g. if the
wrong level of specificity was applied to key derivation, such as applying key derivation to a file instead
of a version name), and if we were willing to require a segment to be retrieved prior to generation of
its decryption keystream, than we could take the actual timestamp of a given segment, represented in its
SignedInfo and combine it with the provided IVqqq-

3.5 Parameters

Counter mode can generate 25 key stream blocks before an adversary gains any advantage in his attempt

to distinguish the key stream from random, assuming that the counter contains sufficient entropy to thwart
offline precomputation attacks (see [3]). For smallest AES key length (16 bytes), this will encrypt 2°® bytes,
or 256 exabytes of raw data securely, if one can create 264 different counter values.

AES in counter mode is typically used with 128 bit counters. As noted above, 64 bits of that counter
must be relatively unpredictable, effectively derived by sender and receiver as part of the key. This leaves
64 bits (8 bytes) to be used for the counter itself.

As we are encrypting segmented data, a portion of each counter needs to be used to identify the current
segment, and the remainder to identify the cipher block within the segment. We assume likely segment
sizes will range from a minimum of 1 KB (2!° bytes), to a maximum of 64 KB (2'0 bytes). Segments
typically represent the amount of data that can fit into a single packet (along with name and authentication
information). The 1 KB size represents a packet meant to fit into a 1500 byte Ethernet frame with heavy
overhead. At a minimum block size of 16 bytes (an AES key length of 128 bits), this corresponds to 26
blocks for the small block size, and 2'° blocks for the large block size. Allowing 2 bytes for a block counter
would allow up to 2'6 blocks in a single segment, equivalent to segments containing a maximum of 22°
bytes (1 MB) using 128 bit AES keys, or 22! bytes (2 MB) using 256 bit AES keys.

Assuming 6 bytes remaining to represent the segment number, this scheme can represent up to
segments. Using 1 KB segments, this scheme could index 2°8 bytes, or 256 petabytes, in a single data stream.

248
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Using 64 KB segments, this scheme can index 24, or 16 exabytes. Using full-length 1 MB segments, we
can achieve stream capacity of 256 exabytes.

This parametrization achieves a good balance between maximizing encryption capacity while supporting
expected packet size ranges, using a fixed field width for segment and block numbers (which simplifies
implementation).

3.6 Data Handling

Encrypted data objects are of type ENCR (typically, but not always, encapsulating type DATA; if the original
type is not DATA, the consumer must be able to figure out how to handle the content post-decryption).

We would like to minimize the number of additional copies made of data during the process of outputting
it to the network, whether it is encrypted or not. We can think of data as coming in, together with information
about what name it should have and who should sign it, at the top of a stack, and signed ContentObjects
exiting at the bottom of the stack. The ContentOb ject s may exit one by one, each individually signed,
or they may be created as a group, where the signature process is amortized across the set.

Creating a ContentOb ject requires making a copy of the content that will go in that segment, be-
cause the content must be immutable from that point on. (For storage, the content can actually be stored sep-
arately from the ContentOb ject; for now we store a copy of the content inside the ContentObject
object itself.) So that is the one copy we can’t avoid.

The CCNSegmenter takes content stored in buffers specified by its caller (in general a stream with
internal buffers, or a CCNWriter which takes a buffer from a higher-level user directly; network objects use
streams for their output so reduce to a pass-through version of that case where there is no standing buffer,
save perhaps one in the intervening stream). It does all its computation on those buffers, and then copies
them segment-wise to ContentObjects at the end. There are two problems with this: first, it requires
the caller of a segmenter to have buffers someplace, rather than just streaming data through. Second, if we
want to add in encryption, e.g. by putting inputs to the segmenter into a CipherOutputStream, we then have
to get it out to the ContentOb ject s, which currently expect to operate on buffers — hence requiring extra
buffers.

A potential 2-stage plan would operate as follows. We keep callers dealing in terms of buffers for
now. We deal with encryption via CipherOutputStreams, and have those bottom out in a stream that writes
directly to ContentObjects, and has the bulk signers work directly on those content objects, i.e. have
the segmenter build content objects more incrementally. In stage 2, we allow callers to interface their output
streams directly to the streams used by the segmenter, with no buffers required. Copies still happen, both
at the bottom into the ContentObject, and as they pass through the cipher stream, but potentially that
would be it. Once we move to stage 2, we can add support for AES-CBC and other block modes of operation
that might incur length expansion.
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4 Access Control in CCNx

CCNx is beginning to provide a general framework for “plugging” in access control schemes — schemes
for automatically distributing encryption keys over content. In this section we describe the high-level func-
tionality available to support such schemes, and in section 7 below we describe one such scheme currently
supported by CCNx.

4.1 Access Control Model

Our initial approach to making it easy to implement new access control and/ or key distribution models
in CCNx is to organize access control around the concepts of “namespaces” — subtrees of the content tree
rooted at some particular node n, where the entire subtree’s content is controlled according to some particular
access control scheme. !

We provide some generic mechanisms to make it easy to associate an access control scheme with a
namespace, and to use that “scheme” to provide keys to encrypt and decrypt content automatically as that
content is read. This automatic key creation and retrieval functionality is currently supported by the CCNx
Java library, for reading and writing content with the io streams and their subclasses, and the network
objects. (Encryption/decryption keys can also be explicitly provided and this automated process avoided,
when desired.)

This framework of generic mechanisms is implemented by
the abstract class AccessControlManager. Subclasses of AccessControlManager are used to
implement particular access control schemes (e.g. GroupBasedAccessControlManager, described
in section 7). But the AccessControlManager class (ACM, for short) itself provides the machinery
for loading and using individual ACM subclass instances. We associate one such ACM subclass instance
with each namespace NV, and use that ACM instance to manage content in that namespace (subtree). We
refer to this ability to aggregate access control policies across multiple, independently-managed subtrees
as Multi-Location Access Control. These multiple subtrees can be managed using the same access control
scheme, and have ACMs which are (parameterized) instances of the same ACM subclass, or they can be
managed using a heterogeneous collection of ACM subclasses.

The core features of the ACM class used to implement this framework are as follows:

* loadAccessControlManagerForNamespace: a method which determines whether a given
namespace is subject to an access control policy, and if it is, detects the policy in force and instantiates
the appropriate ACM subclass to manage access control in that namespace for this user. These ACM
instances are cached per-user (per-KeyManager instance), and so once one is loaded for a given
namespace, it will be reused. See section 4.2.

* keysForOutput: a method which is called by the output streams (and via them, by the write
methods of the network objects) to determine whether or not the content to be written is subject to
access control, and if it is, to obtain from the ACM controlling that namespace, a content key to use to
encrypt that content, created or obtained according to the access control scheme implemented by that
ACM. (If a key is passed in to the constructor of the stream to use to encrypt the content, that key is
used and the access control lookup is bypassed.) The default implementation of keysForOutput
encrypts content under a randomly-generated nonce key, and stores that in a place in the namespace

'Note that by “access control” here we mean access control by encryption, and that when we say a subtree’s content is con-
trolled according to a particualar scheme, we mean to include the notion that some or all of that content may be deliberately left
unencrypted. For example, the “default” access control scheme could be considered the null scheme, where no content is encrypted
and no specific validation rules (which might be required, say, to implement write control) are required.
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defined in the AccessControlProfile class. That nonce key is then encrypted under a key
obtained from the controlling ACM using the getDataKeyWrappingKey method, which needs
to be implemented by ACM subclasses.

* keysForInput: when encrypted content is retrieved (content of type ENCR), and no key is pro-
vided directly to decrypt it, this method is called by the streams (and hence the network objects) in
order to find out what ACM is managing the namespace from where the content is retrieved, and to
request the decryption key from that ACM if the reader has rights to read the content. Eventually
hooks will be put in place to allow readers to also potentially validate things like compliance with
write access restrictions. The default implementation of keysForInput basically reverses the de-
fault implementation of keysForOutput — retrieving the nonce data key the content is encrypted
under, and using the method getDataKeyWrappingKey to retrieve from the controlling ACM
the wrapping key necessary to unwrap it. This means that a “new” ACM type that wishes to only
implement a key distribution scheme need only overridde getDataKeyWrappingKey).

* inProtectedNamespace: a method implemented by ACM and potentially overridden by its sub-
classes, that is called by the ACM lookup machinery to determine whether this ACM is the one
“controlling” a given piece of content.

* isProtectedContent: a method implemented by each ACM subclass to exempt particular types
of content (e.g. content of type KEY or LINK) from encryption; it is called by keysForOutput to
determine whether to encrypt this content or not. Subclass implementations should potentially call
super.isProtectedContent and not ask to encrypt content that the superclass would not;
otherwise some machinery may fail (e.g. the default isProtectedContent exempts public keys
(type KEY), links (type LINK, though an encrypted link type may be needed in the future), and the
metadata controlling access control itself from encryption).

This describes how an ACM instance, once retrieved, determines whether and how to encrypt or decrypt
content. The last remaining component of our Multi-Location Access Control system is the mechanism for
retrieving the ACM, if any, controlling a particular namespace.

4.2 Namespaces and Access Control Managers

There are two choices for how one could establish that access control (of a particular type) should be used
for a particular namespace. One option would require application writers to always “know” what type of
access control to use and set that up for any namespace they deal with. However, applications are usually
designed to operate on content in many different namespaces, with many different policies, and the access
control policy applied to a given namespace is usually determined by local IT policy — not something that a
generic application should “know” about.

The second, more appealing, option, marks, for a given name tree, that we are using a particular access
control profile to control access to content in that subtree. We don’t want users to be able to decide to
simply not encrypt things if they don’t like the policy associated with that tree; similarly we don’t want to
offer users and developers too many opportunities for errors in the encryption of content. So we support the
notion of marking a namespace with the profiles it is supposed to require, and having the library enforce
those automatically throughout the content tree.

At the top of an access controlled namespace, we store a namespace marker in the metadata, indicating
that access control is in force for this namespace, and what profile is in use (which is used, together with
a registration/lookup mechanism in the AccessControlManager class, to determine what subclass of
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ACM to instantiate to manage this subtree). It can also list parameters necessary for the given ACM subclass
to be instantiated, such as default prefixes for group and user information. This “policy marker” determines
the root of the access control hierarchy, discussed below.

The NamespaceManager class is designed to store and retrieve policy markers demarcating func-
tional namespaces in the overall name tree. The example currently implemented is this one — policy markers
for acces control — but the mechanism is intended to be general (though it is still very preliminary). The
NamespaceManager class provides an efficient paralell search mechanism and negative caching feature
to make it fast to lookup whether a policy of a given type exists at a particular point or along a particular
path in the name hierarchy — this is used by 1loadAccessControlManagerForNamespace, discussed
above, to find a policy marker if one is present, and instantiate the corresponding access control manager. To
speed this process negative caching in the NamespaceManager is used to avoid re-searching previously
checked locations in the namespace.’

There are two choices for how this automated ACM lookup functionality can be integrated with content
writes. (Content reads handle encryption more simply — if content is encrypted but no keys are provided, a
strong assumption can be made that an ACM should be searched for. Content writes are more ambiguous.)
On every write, one could look for a controlling ACM — first in the cached set of ACMs then if none is found
there, by searching for policy markers — to find any access control policy in force and obtain encryption keys
prior to write. This has the advantage that it is completely transparent for developers. They don’t have to
do anything about access control — it just “happens” automatically. And if the “common” case is that access
control is in use, the controlling ACM is searched for once and then usualy retrieved (rapidly) from cache,
causing negligable impact on performance. However, if the “common” case is that access control is not
used, every write incurs the penalty of searching the unsearched parts of the name path being written on the
off chance that an access control policy might be found (previously searched components will be avoided by
negative caching). This puts steep minimum performance bound on writes in the absence of access control,
as they must time out looking for policy markers.

As the access control support in CCN is still relatively early in its development, and the predominant
use of CCN is for pilot applications without encryption-based access control, we have currently disabled the
automatic search functionality. Applications wishing to use access control must arrange to explicitly load
access control managers for the controlled namespaces they wish to work with. These ACMs must be loaded
per user — ACM instances, and their caching mechanisms, are currently tied to a a given KeyManager
holding the identity information for a particular user. Applications acting as more than one user (as is
common, for instance, in access control test code) must currently be sure that they load the ACMs for each
user that they are acting as prior to performing access control operations as that user.

Negative caching can produce unexpected results, particularly in code responsible for initializing access control and writing
policy markers — the Name spaceManager may have cached the non-existence of a policy marker at a node n which that code
then writes a policy marker at. Careful use of NamespaceManager.clearSearchedPathCache can be used to get around
such problems.
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5 Key Wrapping

This section describes how symmetric and private keys are stored wrapped in other symmetric keys or
encrypted under public keys.

For a given node in the name tree, one or more wrapped keys may be stored and used to either decrypt
content at that node and below, (e.g. using the approach described in section 3), or used to unwrap (decrypt)
keys stored lower in the name tree, or used to derive keys (e.g. using key derivation, see section 6) that are
then used to encrypt content or wrap keys for nodes at or below this one in the name tree.

Such wrapped keys are stored in standard CCNx content blocks marked as type DATA. The absence of
keys (signalling that they may be somewhere else) will be marked with blocks of type GONE, and blocks of
type LINK may be used by higher level protocols to refer to wrapped keys at other points in the namespace.

5.1 Specification
Each wrapped key must specify:

1. The binary identifier (e.g. SHA256 digest) of the key used to wrap this key, which should be used to
unwrap it (OPTIONAL, see below).

2. The algorithm of the wrapped key, which determines how to decode and reconstitute that key for use,
represented as an OID. For public key algorithms (where the wrapped key is generally a private key),
we use the standard OID (e.g. RSA or ElGamal). For symmetric keys we use an OID that represents
the algorithm together with a mode of operation. For some symmetric ciphers, this also implies the bit
length of the key (though that is obvious from the data). For AES-CTR mode, which has no generally-
accepted OID, we use the following OIDs: aes128~-ctr, aes192-ctr and aes256-ctr.

3. The algorithm used to wrap the key, represented as an OID. (OPTIONAL, omitted if default). The
defaults are:

* RFC 3394 key wrapping (if AES symmetric keys are used as the wrapping key), augmented by
RFC 5649 [2] to handle wrapping of public/private keys that may not be a multiple of 8 bytes in
length. RFC3394 parallels a NIST standard, and the augmenting I-D has a NIST co-author and
NIST OIDs, so will likely be accepted by NIST as well.

* RSA-OAEP for wrapping with public keys (if RSA public keys are used as the wrapping key).
4. A UTF-8 label indicating the intended use for this key (OPTIONAL).
5. The (binary) wrapped key.

6. If the key to be wrapped is (encoded) longer than the longest object that the wrapping key is capable of
encrypting (e.g. if we are wrapping a private key in a RSA public key), we interpose a random nonce
key, which we select by default to be an AES key. We encrypt this nonce key in the wrapping key,
and then wrap the key to be wrapped in the nonce key. To allow decryption, we include the encrypted
(wrapped) nonce key.

Algorithms are represented using standard object identifiers (OIDs), from the existing public OID tree.
We currently represent them as OID strings. If we need to reduce space (we expect these objects to be much
less than a packet in size) we can move to a DER-encoded binary encoding, which is compact and easily
handled by the necessary software.
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The key used to wrap this key (and hence necessary to unwrap it) may be obvious from the name of
the content, or identified inside the content if using it in the name would be somehow less optimal. Typical
names for such wrapped key content would be the SHA256 digest of the key used for wrapping/unwrapping
(in the case of public key wrapping, the digest of the public key). If this is not used as the last component of
the name prior to any versioning information (if present) or segmentation information, then the key identifier
should be stored inside the wrapped key data.

If a public key is used as the wrapping key, we expect most of the key components above to be optional.
If they are not, a two-level wrapping may be needed, because the data to be wrapped will exceed the length of
data that can be encrypted with RSA-OAEP given sensible RSA key lengths. Similarly, if we are wrapping
a private key, we may need to wrap it under a symmetric key and that under a public key to deal with key
length restrictions. In such cases, all key wrap material is stored at the same point in the name hierarchy,
and the key identifiers/content names are used to chain them together.

To summarize, the representation of wrapped keys is:

WrappedKey ::= WrappingKeyIdentifier KeyAlgorithm WrapAlgorithm Label
EncryptedNonceKey EncryptedKey

WrappingKeyIdentifier ::= BLOB

KeyAlgorithm ::= UTF-8

WrapAlgorithm ::= UTF-8

Label ::= UTF-8

EncryptedNonceKey ::= BLOB

EncryptedKey ::= BLOB

The intent is to pick wrapping algorithms which are secure, standardized, and easily available for wrap-
ping and unwrapping in standard crypto libraries. We will need to specify additional default choices for
public key algorithms other than RSA. (Though with public keys, key wrapping tends to need less special
treatment compared to other types of encryption, so the sensible defaults are more obvious.) As such we
wrap only the keys, which allows the key wrap algorithm to be specified in the clear if need be, and the
standard key wrap routines (which tend not to take associated data to wrap, even if the specification allows
it) to be used.

We represent wrapped keys as ccnb-encoded XML objects.
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6 Key Derivation

This section describes the algorithms used to go from a content key, associated with a particular set of
content items, to an individual object key used to encrypt one of those items. The details of how to then
encrypt that (potentially segmented) item are described in section 3.

6.1 Basic Idea

The goal of the key derivation scheme is to efficiently generate a set of encryption keys and parameters
for a set of closely related data that is likely to often be encrypted and decrypted together (e.g. a file and
its associated intrinsic metadata), and to be subject to the same access control policy. It also serves the
purpose of ensuring that a given combination of key and parameters is never used twice, both by providing
deterministically-generatable (and hence not needing to be stored explicitly) but unpredictable I'V/counter
source material, and key diversity, protecting a non-security savvy programmer from shooting themselves
in the foot by reusing keys.

Taken together with a high-level mechanism for mapping keys onto CCNx namespaces, such as CC-
NAccessControl, this provides an efficient set of mechanisms for encryption-mediated access control of
content.

6.2 Specification

A cohort of objects in this sense is usually defined as a namespace. For example, given a file or other piece
of CCNx content, /bigco/divisions/finance/report.xls, we can expect to see that high-level (user-

oriented) content name act as the root of a content subtree. That subtree will contain a number of versions
of the file, e.g.:

/bigco/divisions/finance/report.xls/%FD%12%05%E6W%7De%DB
/bigco/divisions/finance/report.xls/%FD%12%05%EEbE%ES%8B

Those versions will have associated metadata, e.g.:

/bigco/divisions/finance/report.xls/%FD%12%05%E6bE%E8%8B/ meta_/STAT_INFO
/bigco/divisions/finance/report.xls/%FD%12%05%E6bE%E8%8B/ meta_/AUTHOR

as defined in the MetadataProfile. Those versions and metadata items will have content associated with them
(and the metadata items may themselves have versions). If that content is large enough, it will be broken
into individual segments such as:

/bigco/divisions/finance/report.xls/%FD%12%05%EE6bENES%8B/%F8
/bigco/divisions/finance/report.xls/%FD%12%05%E6bE%E8%8B/%F801

Let K. denote a content key associated with a particular version of a file and its intrinsic metadata. Our goal
is that the object key Ko for a given object can be constructed given its corresponding K. and any single
block of object O (or no block of O at all, given a-priori information about Q). This allows decryption
to start at any point in a large piece of content, without having to retrieve a special block with additional
encryption information, other than the key blocks necessary to retrieve K..
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To achieve this, we use a standard key derivation function, or KDF, to derive the object keys Ko and
initialization vector I Vg (or counter seed material) used to encrypt each object as follows:

Ko||IVo = KDF(Label, K., Datag, h),

where Label indicates the function of this key, Datag is a set of auxiliary data specific to O, and A is the
desired total length of Kp and I'Vg in bits.

We define Datag as the concatenation of the ccnb encoding of the name of O, prior to segmentation
(so the prefix of the name of any specific block of O prior to segmentation information and implicit content
digest), and the PublisherID of the publisher of interest of O. This formulation has the advantage of being
universal across all blocks of O, and can allow a querier to begin computing decryption keystream material
while waiting for blocks to arrive. An alternative formulation would take the concatenation of the name
of O and its entire encoded SignedInfo. This would seemingly have the advantage of including not
only publisher information but timestamp and type as well. However, this alternative suffers from several
problems. First, a block must be retrieved prior to keystream computation. Secondly, the segment-specific
portions of the name of that block must be excised from the value presented to the KDF. (We want to use
the KDF once per object O, and use the more efficient approach described in section 3 to use that key to
encrypt the segments of O). Third, different segments of O may in fact have different timestamps. Rather
than forcing all of the segments of O (which might be multitudinous and written over a long time period) to
have exactly the same SignedInfo content, we adopt the simpler and more robust approach above.

As an initial default, we use the counter mode KDF defined in NIST special publication 800-108 [1],
which can be described as follows:

Fixed values:
* PRF: a pseudo-random function,
* h: the length of the output of PRF in bits, and

 r: the length of the binary representation of the counter .

Inputs: K, Label, Context, and /¢, the desired output length of the KDF (keys and IVs) in bits.

Key derivation process:
1. n:=T[{/h]
2. If n > 2" — 1, then indicate an error and stop.
3. Result(0) := 0.
4. Fori=1ton,do

* K (i) = PRF(K7, [i]2||Label||0200]||Context||[L]2)
* Result(i) = Result(i — 1)|| K ()

5. Return Ko ||IV as the leftmost £ bits of Result(n).

In our CCNx implementation, the pseudo-random function PRF is specified to be HMAC-SHA256. An
alternative would be to use CMAC, as it removes the dependency on a message digest algorithm and should
be equivalent in speed, or even better the faster Rogaway-Shrimpton KDF defined in RFC5297. However,
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the choice of HMAC-SHA256 is conservative and matches the schemes available in all up-to-date crypto
toolkits, while CMAC support is not yet common.

The value i is always represented by 7 bits. Label is represented in UTF-8, does not include a null
terminator, and is defined by the particular key use context. If no label is specified, O bytes are used as label.
Context refers to Datag, described above.

Those object keys and IV/counter values are then used to encrypt the actual blocks of content of each
object in the cohort as described in section 3.

This KDF can also be used to derive hierarchical keys used only to wrap or derive other keys. In this
case, the length of IV is 0, and only key material is derived.
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7 Group Based Access Control

We describe a scheme for achieving group-based access control by encryption. Although our description is
in the context of the CCNx naming hierarchy, our scheme, in fact, applies to general hierarchies of named
content.

As this scheme is under active development, some of the implementation details are currently repre-
sented only in the code. We expect to fill in the details in the specification as they become clearer.

For background on, and examples of, encryption-based access control schemes, we refer the reader
to [4, 5]. We believe, however, this is the first encryption-based access control scheme supporting a) a
notion of Groups, and b) denying principals given read access at a higher level of a content hierarchy (e.g.
/test) read access at a lower level of the content hiearchy (e.g. /test/foo).

7.1 Overview

We support a simplified access control model for nodes in a hierarchy of named content. This could be
CCNx content or standard file system content. Our model supports a notion of named groups composed
of users and other groups, and grants of access can be made to either such groups, or directly to individual
users. Publicly readable data is unencrypted.

We allow only a simplified set of permissions, relatively to traditional file systems — users and groups
can be granted read, write, or manage (change permissions) access to particular trees of content. We assume
that write access implies read access, i.e., if you can write a document you are able to read it. This means
that we don’t support write-only access, but do support read-only access. Without loss of generality, man-
agement/ownership permission (ability to write access control lists) implies write access — if you are able to
change the permission, you can always add yourself to the list of writers.

We specify access rights, or access control lists (ACLs) at nodes of the name tree. In the CCNx name
tree, all nodes, including interior nodes, may contain content. In theory, we can support ACLs for a piece
of content, or a specific version of the content. However, we do not support ACLs at the granularity of
individual content segments, i.e. one is unable to specify different ACLs for different segments (fragments)
of a single file. In practice, we may disallow specifying ACLs at levels in the hierarchy likely to cause
significant confusion and unnecessary complication for users.

7.1.1 Access rights inheritance and overriding

We assume a modified hierarchical access control (HAC) model. If no specific rights are specified for a
node, it inherits the settings associated with its parent. Unlike a traditional encryption-based HAC model,
however, we allow child nodes to set their associated rights arbitrarily — at any child node, you can attach
an arbitrary ACL indicating a new set of permissions to be associated with that node and its children (until
overridden lower in the tree by another ACL). A traditional HAC model nests permissions, and says that
if you have rights to a node N, you have those rights over all of its children; you can grant additional
principals rights to children of N but you cannot take away rights granted at higher points in the tree. We
offer greater flexibility to specify arbitrary ACLs throughout the tree, supporting use cases much closer to
what individuals are accustomed to with traditional file systems.

We assume a standard delegation model for rights inheritance in the tree. If node N has an associated
ACL specifying rights for N and its children, and a user changes the contents of that ACL to add or remove
rights, we assume that change should apply to all of N’s children whose rights were previously controlled
by ACL. We do not offer the user a choice to apply that change to only N (and its associated contents), as
some standard file systems do. These choices seem merely to cause confusion and error in most cases. If a
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user wishes to change the privileges associated with one or more of the descendants of N, they merely have
to associate a new ACL to that descendant.

7.1.2 Lazy revocation of read rights

We support only lazy revocation of read rights. When an access specification changes, we try to ensure
that any new content written to affected points of the content hierarchy is subject to the new access policy
—i.e. is inaccessible to principals whose (read) rights have been removed. We also ensure that principals
who have access rights added (e.g. a user newly added to a group) gain the ability to read old content
written before they were in the group. We believe this behavior most closely mirrors what users expect from
distributed file systems. Limited-time access, such as having new principals gain access to new but not old
data is interesting for some applications, but should be supported outside this model in the context of those
applications.

In distributed environments, content deletion or revoking access to old content is not always possible.
In particular, previous rights holders may have cached a copy of the old content already. For this reason, in
CCNx, we cannot guarantee clean up of old contents. However, in cooperative environments (e.g., within
a corporation), we support cooperative deletion — where you can ask people to delete things for you, and
hope that they will cooperate and do so. Using cooperative deletion, we can ask people to clean up old
content keys, so that revoked users no longer have access to content that they did not choose to read while
their rights were in effect, as the keys needed will no longer be available. We expect this model is actually
quite sufficient for most cases (and the cooperative deletion functionality may only be necessary primarily
for regulatory compliance). We can also combine encryption-based access control and token or capability-
based access control mechanisms to enforce access revocation: e.g., former employees no longer have the
ability to access data behind a firewall.

The choice to support only lazy revocation also means we never have to re-encrypt data; cooperative
deletion is achieved by deletion of keys. Re-encryption (essentially re-publication) of CCNx data is possible,
but changes the semantics of that data, as the publisher that signs the re-encryption may not be the same
publisher that signed the original data.

7.1.3 Enforcing write/manage rights

Write control — determining who is allowed to write a particular piece of content is done by verifying that
said content was signed by a publisher who has write privileges for that part of the namespace. Manage-
ment rights are essentially equivalent to having write access to ACLs; those are similarly enforced through
signature checks. See section 7.2.11 for details.

7.1.4 Resolving offline conflicts

One challenge we face is how to merge and resolve conflicts that arise from independent offline changes
made to the same ACL or group specification. For example, one may change access control settings on
shared content stored on your laptop while travelling on an airplane, but then need to sync with other copies
of that data stored elsewhere, whose access control settings may have been changed independently. The
scheme described in this section ensures that changes to separate parts of the content tree are independent
—i.e. changes to access rights in non-overlapping subtrees can simply be merged. Changes to overlapping
subtrees must go through a deterministic resolution protocol to resolve any conflicts and make sure that the
result represents the net access policy intended by all sets of changes to be resolved. This part of our protocol
is only loosely specified; it is likely to be implemented only as part of a larger resolution and synchronization
infrastructure.
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7.2 Basic Scheme

We consider two hierarchies: a top-down content hierarchy, and a bottom up group hierarchy. In the group
hierarchy, users are leaf nodes, and in general can be considered as special, one-member groups. Groups
can contain other groups as well as individual users.

We speak of the parent of a node as being above it in the hierarchy, and its children being below it; but
the two hierarchies aggregate in different directions such that a content tree has its leaves (content) at the
bottom (childward) and a group tree has its leaves (users) at the top (parentward).

7.2.1 Keys

We define the following types of keys:
* group key: a public/private key pair associated with a named group, denoted GPK and GSK

* user key: a public/private key pair associated with a named user, denoted UPK and USK. (For this
initial treatment, we consider users to have one key pair each.)

* node key: a symmetric key associated with a content node, denoted NK.
* data key: a symmetric key used to derive keys to encrypt data, denoted DK.

We may also use a key derivation function, or KDF to derive additional keys deterministically from
known keys, limiting the number of keys that must be stored to securely encrypt a content hierarchy (see
section 0).

7.2.2 Representing Groups

Let G denote a group with group keys GPK and GSK. We encrypt the group secret key GSK under the
public keys PK; of its children nodes (GPK; for groups or UPK; for users).

For all PK; € Children(G) : Encappg, (GSKen)

where Encap is an encapsulation operation defined as follows. Let W K denote a random symmetric wrap-

ping key:
Encappg, (GSKen) = [Ecpk; (W K), Ew i (GSKuen )]

For a child node which is a group belonging to the parent group, we encapsulate the group secret key GSK

under the GPK for that child group. For a child node which is an individual user belonging to the parent
group, we encapsulate GSK under that user’s public key.

7.2.3 Representing ACLs on Nodes

For each subtree in the content hierarchy participating in this access control scheme, we associate an ACL
with the root node of that subtree. When one marks a tree as access-controlled, we can initialize its root
ACL either using a default ACL, or using an ACL representing public access (see below). All children nodes
initially inherit the ACL of the root node.

To change the access rights associated with some subtree of this access-controlled tree from those spec-
ified for the root node, a user associates an ACL with that subtree. For example, if the root node / were

marked as access controlled, with a default ACL, to attach different access rights to a subtree rooted at
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/project/secret, we would attach an ACL to /project/secret specifying those rights. The root node
/, and all of its subtrees other than /project/secret would still be controlled by the root ACL associated

with /.

To effect read access, we associate a node key, NK with each node N that has an ACL. That node key is
used to derive the keys used to encrypt data keys (DK, the keys used to actually encrypt content) for nodes
subject to that ACL (i.e where that ACL is the nearest ACL above that node in the naming hierarchy).

When a node N is given an ACL at node creation time (either the root node, at initialization, or a child
node when an ACL is added to that node at node creation time), we do the following:

* Generate a new random node key NK for that node N.

* Encrypt that node key with the group public key of every group in its ACL: for all GPK,; € ACLx :
Ecrpk, (NKN).

In theory, ACLs may occur anywhere in the content hierarchy. In practice, we restrict this by disallowing
ACLs and node key changes on individual segments of a segmented object (or even a single-segment object.)
The last place where it is legal to hang a node key is the level in the hierarchy just above segmentation. We
use the node key to derive the encryption keys to encrypt the contents of the corresponding node. To do this,
we use the key derivation mechanism (described in section 6) to generate a key and initialization material
from the node key, and basic encryption (described in section 3) to use that key and IV to encrypt individual
content segments.

7.2.4 ACL Inheritance

There are two approaches to handling inheritance of ACLs on nodes which inherit their policies from their
parents and do not override it.

Scheme 1: each such child node generates a new random node key NK and stores it encrypted under their
parent’s node key:
NKuia €R {07 1}* ) ENKparem (NKchild)-

Scheme 2: each such child node does not explicitly select a new random node key NK, but derives a new
node key NK from their parent’s node key and information particular to that node, using a key derivation
function, or KDF (see section 6):

NK.« = KDF (NKparent7 infOchild)-

These two approaches result in different properties. In scheme 1, every node has an explicitly stored
node key, and it is easy to find the key for a node without timeouts. In scheme 2, only nodes with ACLs
have explicitly stored node keys, and the node keys for other nodes must be obtained through one of the
following ways: 1) by asking for them and on time-out, asking for an ancestor key to derive the node key
for the current node; or 2) by marking them as explicitly absent, either by publishing GONE blocks at those
locations or, better, publishing a link to the parent node key in effect. However, if one has reason to believe
that there are no ACL changes at this point in the hierarchy, one can go ahead and derive the current node
key. The load on the publisher is effectively the same, as in order to avoid timeouts, they must publish
something (a node key, a GONE block, or a link) at every node in the hierarchy to give information about
the node key to use. (One could potentially publish a GONE block for an ACL and achieve the same effect.)
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In scheme 1, one knows nothing about node keys one has not explicitly pulled. This has the advantage
of giving reassurance that someone whose access is revoked cannot get access to old data for which they
have not yet pulled key blocks. In scheme 2, one can generate large numbers of node keys one has not
explicitly had to pull. This may offer increased efficiency in cases where one knows one doesn’t have to
incur a network round trip to pull them.

As the node keys in question are symmetric keys wrapped in symmetric keys, the computational cost of
unwrapping a retrieved symmetric key and deriving one with a KDF is likely largely equivalent.

We discuss below the implications of the choice between these two schemes on the cost of key updates
as access control settings change.

7.2.5 Encrypting Content with Data Keys

Data keys, DK are used to encrypt individual “files” or content. In a standard file system, they are used for
file-level encryption. In CCNX, they are used to derive the keys for a family of data blocks. In general, data
keys are stored at the level of a version of a file, and may cover metadata associated with that version as
well as the file data itself. To do this securely, we use the algorithm specified in KeyDerivation to derive the
counters/IVs and keys used for encrypting data blocks.

The purpose for having data keys rather than directly using node keys to encrypt content is three-fold: 1)
The use of data keys can introduce more randomness into keys used to encrypt data, and reduce the number
of times the same key is reused. 2) In some scenarios, this can allow more fine-grained access control — if
data keys are used, I may give you access to a specific file by giving you the corresponding data key. If node
keys are used to encrypt, I will have to give you the corresponding node key, which also gives you access to
all children nodes whose ACLs inherit that of the current node. 3) It allows deterministic retrieval of the key
used to encrypt each set of data; that key can then point to the node key NK used to encrypt it. Without this,
we would need some way of figuring out what version of the node key NK was in use at the time a given
piece of data was encrypted, in order to figure out how to decrypt it.

In essence, this is equivalent to using scheme 2 of section 7.2.4 for data keys, regardless of which scheme
is used for node keys.

7.2.6 Adding groups or users to an ACL.

When a node’s ACL changes, appropriate actions need to be taken depending on what changes happened.
The easy case is when groups or users have been added to the ACL, but no user or group has had their access
revoked. All we need to do in that case is encrypt the corresponding node key under the group or user keys
of the added groups or users. The cost of adding n new users or groups to an ACL is proportional to the
number of new users or groups (n encryptions) and does not depend on the size of the ACL prior to the
addition.

7.2.7 Revoking access

If a group or user has write or management access revoked, but retains read access, we merely need to update
the ACL. (We may eventually need to tie the time of update to a representation of the state of content, to
prevent revoked writers from forging content with dates indicating they were written before their write
access was revoked, but that is under development).

If a group or user has their read access revoked, the node keys of all children in the subtree controlled
by that ACL need to be changed (until overriden by another ACL). In our lazy revocation model, old files
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do not need to be re-encrypted, but we need to ensure that new files and folders added in the future are
encrypted under the new node keys.

This work can potentially be deferred to when a writer needs to write data to a child node (denoted N').
That writer will need to generate all node keys on the path from N to N'.

If cooperative deletion is available, the old encrypted node key can be deleted. In the case of scheme
1 (see section 7.2.4), this gives some assurance that a revoked user who has not previously tried to read
content is unlikely to have its key. Basically, a revoked user needs to cache n node keys to be able to decrypt
all old contents in a subtree of size n. In scheme 2, a revoked user only needs to cache 1 node key, and he
will be able to decrypt all old contents of that subtree even after revocation.

Scheme 1. If we are using explicitly stored node keys at each node (scheme 1), on ACL change we must
regenerate all node keys for all of the descendant nodes whose access policy is determined by the ACL at
node N. This is difficult to do. Either the manager changing the ACL at N must attempt to enumerate all
of the descendants of N and change their node keys, or we must implement a lazy update scheme where a
writer needing to write data to a child node N’ updates the node key at N’ and its ancestors up to N. The
latter approach requires significant bookkeeping to track what nodes have had their node keys updated.

Scheme 2. If we are using hierarchically derived node keys (scheme 2, above), all we need to do is generate
a new node key at the node whose ACL has changed (denoted N). When writers need to write to a child
node (denoted N’) which does not have its own ACL but is instead subject to the ACL at N, that writer can
compute the derived node key on demand based on the new node key.

Other scheme. We could attempt an intermediate representation, where only nodes with ACLs have node
keys, but each node stores a link to point back to the ancestor (or to itself) on whose node key it depends.
This allows writers to locate the node key N to use with O(1) operation, as in scheme 1, but simplifies key
update. The problem with such a scheme is finding (enumerating) all descendant nodes and updating their
links when a new ACL is added to the tree, or an ACL is deleted. This approach has the potential to incur
many timeouts as writers must check every node on the path above the point at which they are writing to see
if it already exists and has a link to its node key.

Implementation. Given its simplicity and lower cost, we choose to implement scheme 2 for managing node
keys. A manager revoking access to a group or user at node N merely updates the ACL for node N, generates
a new node key NK’ for N, and then encrypts NK’ under the current version of the public keys for all the
groups and users remaining on the ACL for N. The manager also needs to encrypt the previous node key,
NK, under NK’, so that newly added readers can access old content. The cost of this operation is the cost
of generating a new node key, and the cost of encrypting this new node key under the public keys of all the
entities in the ACL (this cost is linear in the size of the ACL).

7.2.8 Adding an ACL to a Node

Adding an ACL to a node that previously inherited its parent’s ACL is effectively the same as the access
revocation case above. We generate a new node key, encrypt that new node key under the public keys in
its ACL, and encrypt its old node key (derived or stored) under the new node key. If the newly interposed
ACL only extends the access rights granted by the parent ACL (but does not revoke any right), then the cost
of interposing the ACL is the same as that of adding a user or a group to an ACL (see Section 7.2.6). If
the interposed ACL revokes some access rights, then the cost of interposing the ACL is the same as that of
revoking some ACL access (see Section 7.2.7).

If we use pointers to indicate for a node where its ACL lives, adding an ACL to an intermediate node
requires fixing all of the pointers in children nodes. This suggests that either not having any such markers,
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and relying on name enumeration to efficiently determine where an ACL resides, or using simple GONE
markers to indicate that there is no ACL here and that one should move up the tree without incurring a
timeout (or both) may be the simplest option.

7.2.9 Adding a User or Group to an Existing Group

This only requires encrypting the group’s secret key GSK under the new user or group’s public key. The
cost of adding n new members to a group is proportional to the number of new members (n encryptions)
and does not depend on the size of the group prior to addition.

7.2.10 Revoking a User or Group from an Existing Group

1. Generate a new GPK/GSK pair, and encrypt the GSK under the public key of the remaining members
of G (users or groups).

2. Encrypt the old GSK under the new GPK, so that new members can retrieve old data if necessary.

3. If we allow nested groups, we need to change the group keys of all the ancestor groups of G as well
(all the groups of which G is a member).

4. We need to ensure that each node whose ACL contains G or its ancestors uses the new key pairs for
G (or its ancestors) when encrypting new node keys. This is trivial, by having the ACL in effect
reference the latest version of each group’s public key.

5. Replace all of the node keys NK to which G has access, either directly or via membership in its
ancestor groups, with new versions encrypted under the new group public keys; this ensures that new
content is encrypted under new node keys and is not accessible to revoked members of G.

The cost of 1) and 2) is proportional to the number of group members. Similarly, the cost of 3) is
proportional to the number of members of the parent groups of the group.

The most expensive operation in this set is the last one — updating all of the “dirty” node keys to new
versions. Rather than incur the significant cost of enumerating the full tree to find the nodes to which G has
access, we defer rekeying operations to when writers add new files or folders. This ensures that new content
is protected by new keys, preventing access by revoked members, but only does the work of updating keys
in places where it is needed - if no new content is ever added to node N, we do not incur the cost of updating
its key.

In this approach, each writer adding data at a node N’ must find the node key NK corresponding to the
ACL in force at N’, located at a node N. The writer must then determine whether that node key is “dirty” —
whether the public keys of the groups (or potentially users) that node key was encrypted for have changed
since it was written. If we represent at N what version of each group G’s public key its ACL is encrypted
for, and have each writer check to see whether or not that is the latest version of G’s public key. If so, that
writer makes a new node key NK' at N, and encrypts it under the latest versions of the keys listed in the
latest version of N’s ACL. (This requires that writers, not just managers, be allowed to update node keys.)
The writer also encrypts the previous version of NK under the new NK’, so that if new readers are added to
the ACL, they will have access to old content.

An additional advantage of this approach — having writers, not the group managers that change a group’s
membership, update node keys is that writers are guaranteed to have access to the node key they need to
update, while group managers very likely do not.
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7.2.11 Enforcing Write/Manage Rights

Enforcing access controls on writes requires determining that the key that signed a given piece of content
(or an ACL, for management rights) is allowed to do so — either on the list of allowed writers or the allowed
managers for the ACL in force for the node being updated at the time of update.

Making this verification requires first verifying that the ACL itself is valid - that it was signed by some-
one with management rights according to either the parent ACL that it was created under, or the previous
version of the same ACL. This can incur work linear in the number of ACL versions, and increases if the
manager is specified as part of the group as one must verify the integrity of group membership. We can
reduce the cost by caching validated data or signatures, or by re-signing intermediate steps with a root of
trust for the user (either a trusted authority or the user themselves) to mark that intermediate ACL versions
can be directly trusted as valid, or that their validity has been previously determined.

We also need to verify that contents and node keys have been written by legitimate writers. This involves
verifying the ACL itself, and checking that the content publisher is authorized to write by the ACL.

Prevention of “write rollback™ attacks — where a user or group that has had their write access to a piece
of content revoked writes new content that claims to have been written at a previous time (before their write
access was revoked), in the absence of certified time, requires a method for validating overall temporal
state. For example, by constructing the notion of a version of a content tree, that represents the state of
all the content in that tree at a given point in time (much like the notion of a version in the source control
system git), one can mark the “time” a piece of content was written by incorporating this cryptographic
representation of this point in the write stream into the content. That content is then itself included in the
future representation of time used in other writes. This makes it impossible to go back and insert content
from previous times into the write stream. Making this work in practice requires a) a notion of aggregated
versioning, and b) an approach to reconciling writes made to multiple disconnected repositories who have a
different notion of time. These are areas of active research, and will be incorporated into future versions of
access control mechanisms.

Enforcement of write/manage rights is not yet implemented.

7.2.12 Group-Related Rights

In CCNx, groups are stored as special nodes in the name tree. Therefore, the ability to modify group
membership translates to the write right for the content node corresponding to the group. Similarly, “group
management right” — the ability to modify the set of writers, translates to the management right of the
content node corresponding to the group.

Enforcement of write control over group membership is not yet implemented.

8 Implementation

We need to generate efficient data representations for access control-related items that allow retrieval
and update of necessary data in a minimum number of round-trips and packets. We have implemented
a prototype of this access control scheme in the CCNx Java library (it will be ported to C when sta-
ble). We describe in this section the implementation of both the overall access control framework (sec-
tion 4.1) and the particular group-based access control scheme we have implemented using it (section 7).
Code can be found in the org.ccnx.ccn.profiles.security.access package. Most operations
are mediated by GroupAccessControlManager, the group-based access control-specific subclass of
AccessControlManager (see section 4).
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As noted in section 4.2 each namespace under access control may be marked with the desired access
control scheme to apply to that namespace, the subclass of AccessControlManager to instantiate to
manage access there, and any additional parameters necessary to specify to allow that type of access control
manager to operate in that namespace.

Each namespace participating in group-based access control has the root of that namespace marked
with a policy marker indicating that GroupBasedAccessControlManager or a subclass thereof
should be instantiated to manage access control for names in that namespace (under that node in the
name tree). Such a policy marker also provides a set of ParameterizedNames — names indicating
where the keys for Groups and Users participating in access control and defined under this namespace,
can be found. Such a ParameterizedName has two components — the “prefix” or fixed portion of
the name between the namespace root and the variable group or user name, and the “suffix” — the por-
tion of the name (if any) between the individual group or user name and the actual encryption public
key of that group or user. For example, if we define that the namespace /bigco/finance/ is to be

protected using group-based access control, we might specify prefix of a ParameterizedName for
group definition of “Groups”, meaning that groups are defined under the prefix /bigco/finance/Groups

—e.g. /bigco/finance/Groups/Managers, /bigco/finance/Groups/Accountants, and so on. If

the policy also specifies a suffix for that group namespace of “EncryptionKey”, then the actual pub-
lic key of those groups would be stored at /bigco/finance/Groups/Managers/EncryptionKey and

/bigco/finance/Groups/Accountants/EncryptionKey, each followed by a version. If no such pa-

rameterized names are given to control the locations at which group and user keys are expected to be pub-
lished, they are placed at the default locations mentioned below.

Note that a given namespace may have more than one location at which Group and User keys can be
published. Also note that in multi-location access control, where more than one namespace is subject to
access control at once, each namespace under access control will likely have its own location for defining
groups and users (as each namespace usually represents a separate sphere of control, managed on its own).
An access control policy (ACL) specified under namespace N may refer to principals (groups or users)
defined under namespace N’, and managed by a separate AccessControlManager instance.

Operating in such a circumstance requires that the AccessControlManager for each protected
namespace be loaded so that each can be queried to resolve references to principals defined in its namespace,
and to retrieve the appropriate name parameters necessary to obtain their public keys. As groups and users
are referred to by string “friendly” names, which might collide, they are separated by a “distinguishing
hash” which separates friendly prefixes defined in namespace N from those defined in namespace N’ (see
references to distinguishingHash in GroupManager and KeyDirectory). Use of this feature
allows ACLs defined in namespace N to refer to principals (groups or users) defined not only in /N but also
N’ and so on.

When a user wishes to define a new Group, they must specify in what namespace it should be defined
in; by defining it using the GroupBasedAccessControlManager controlling that namespace (and its
corresponding GroupManager). (While each protected namespace can have more than one location for
defining groups, they typically won’t, and the ability to have more than one may be removed in future design
iterations.) Software acting on that user’s behalf — e.g. a GUI designed to make the group management
process easier — is likely to choose for the user the appropriate location in which to define their group. For
example, a group first defined to protect a subtree of content in namespace N is likely to be best defined in
the group namespace of NV; a group defined to contain members from namespaces A, B and C all of which
are in some sense “‘members” of a shared namespace D is likely best defined in D. However, such policies
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are specific to the set of use cases operating for particular classes of content, and as such are not prescribed
by the CCNXx library.

8.1 User Keys

We identify users in our access control system by public keys. These public keys may evolve over time and
can be versioned. They can be associated with a friendly name either by being published under a CCNx from
which software constructs friendly name, or through a trust management infrastructure that allows users to
associate names with keys, as in a Simple Distributed Security Infrastructure (SDSI).

In our implementation, we support an open universe of users — you can refer to any user’s public key
(as a CCNx Name) in a group membership specification. For convenience, we provide a user namespace
— a location under which users can write (or link, but we’ll start out with writing) their public keys. This
namespace can be a corporation’s existing directory of users (and will be, in most corporate contexts), but
could also be a user’s own address book or merely a peer-to-peer list of registered users. The point of having
a list is not to rule out inclusion of other users, but to have an easy place for GUI tools to generate a list of
available users for creation of groups, etc.

It is a trivial policy addition to require that users’ keys be signed by a particular authority for use — for
example, to use this scheme to represent access control in a corporation, where corporate employees (who
have keys signed as such) are considered valid users to include in groups and access control lists, and others
are not.

A user namespace is given to an AccessControlManager as a parameter; software wishing to offer
the ability to list available users will publish a link to each participating user’s key in this namespace. If
unspecified, it defaults to:

<protected namespace root>/Users/
Where <protected namespace root> is the root of the namespace which is access controlled. If

available, a namespace policy marker stored at this root can point to an alternate user (and group) namespace.
The user’s public key is stored under the following. Its latest version is the up-to-date public key of that
user.

<protected namespace root>/Users/<username>
For now, we link to user keys using fully-demarcated names or publisher identifiers.
There may be an optional suffix separating the user friendly name and the actual key data (the default is

empty); this is parameterizable and set in the policy marker for the namespace along with the prefix (default
of “Users”).

8.2 Group Keys and Membership Lists

In contrast to user keys, which are assumed to be by default managed by individual users, or by policy
managed by users and signed by a trusted entity (e.g. in corporate access control), the access control system
assumes that it owns the representation of Groups and their public keys, and manages those keys on behalf
of the group managers.

8.3 Group namespace

Groups are stored under a specified Group subnamespace for this access-controlled namespace. This can
be a standardized group namespace used by a corporation for many applications, or a specific namespace
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targeted for this particular set of protected content. This group namespace is given to an AccessControl-
Manager as a parameter. If unspecified, it defaults to

GROUP_PREFIX := <protected namespace root>/Groups/

It can be specified in the policy marker marking the namespace root. It is meant to be publicly visible,
and enumerated by software.

8.4 Friendly names

Each group is associated with a human-readable “friendly name”. Information associated with that group is
stored under:

GROUP_PREFIX := <protected namespace root>/Groups/<Group Friendly Name
(UTF-8) >

Friendly names of group members are obtained by looking at the keys pointed to by the group member-
ship list (usually the last component of the name of that key, minus the version or segmentation information,
or a user-specified name associated with that key).

8.5 Group membership lists

A group membership list is represented as a versioned collection, where the latest version indicates the
current set of members. The collection contains links to the keys of the members of the group, authenticated
using any of the means available to the CCNx links. Child groups are specified in the collection using the
unversioned name of the group (under the same group namespace). Without active freshness protection, this
is vulnerable to a rollback attack, but peer-to-peer techniques may be sufficient to defend against that well
enough for standard levels of threat.

The group membership list is stored under the following name:

<GROUP_PREFIX>/<Group Friendly Name (UTF-8)>/Members/<version marker>

which contains a collection containing a list of members of this group, as links pointing to either groups
(as /, with optional authentication information) or users (as links to their user keys, for now)

8.6 Group public key

We store the group public key as a versioned named content item, whose segment(s) are of type KEY. This
is stored under the friendly name prefix of the group. We write keys using PublicKeyObjects, which handle
storing a versioned representation of a DER-encoded (X.509) SubjectPublicKeylInfo.

A group public key is stored under the following name:

<GROUP_PREFIX>/<Group Friendly Name (UTF-8)>/KEY/<version
marker>/<segmentation>

which contains the DER-encoded public key for this version of the group membership, as a KEY block
(or blocks)

There may be an optional suffix separating the friendly name and the actual key data (here KEY is the
suffix); this is parameterizable and set in the policy marker for the namespace along with the prefix.
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8.7 Group private key

We store the current group private key wrapped under a symmetric nonce (random) key (the private key
wrapping key). For each member of the group, we store that nonce key wrapped under the member’s latest
public key (where the member can be a group or a user). Each key is stored in a WrappedKey structure,
named with the cryptographic digest (key ID) of the key used to wrap it. We store these wrapped key blocks
under the version of the public key whose private key is being wrapped. We also store a set of indexing links
helping users find the keys associated with particular principals, and the versions of those principals keys
being used.

We assume the universe of groups is small, so that each user can scan the available groups to determine
whether they are a member of any of them. For each group they are a member of, they remember the
group name to look for updates, and retrieve the private key associated with the group and cache it. Using
CCNx’s Interest mechanism, they can generate interests that will let them know if the group public key is
ever updated.

<GROUP_PREFIX>/<Group Friendly Name (UTF-8)>/KEY/<version
marker>/PrivateKey

contains the private key for this version of the group membership, as a WrappedKey, wrapped under a nonce
symmetric key — the private key wrapping key.

<GROUP_PREFIX>/<Group Friendly Name (UTF-8)>/KEY/<version
marker>/keyid:<KeyID>

contains a set of WrappedKey blocks containing the private key wrapping key for this group encrypted under
the current public key of its members, identified by the key ID of the target public key.

<GROUP_PREFIX>/<Group Friendly Name (UTF-8)>/KEY/<version
marker>/p:<PrincipalName>:<PrincipalVersion>

contains a link from a friendly identifier of the target principal (group friendly name or user friendly name
as listed in the User or Group namespace), and the version identifier (as 12-bit timestamp) of their current
key (at the time of wrapping), to the wrapped key block containing that principal’s version of the group
wrapping key.

<GROUP_PREFIX>/<Group Friendly Name (UTF-8)>/KEY/<version
marker>/PreviousKey (optional)

contains a WrappedKey block containing the previous key for this group encrypted under the current key
for this group. The label of this WrappedKey block provides a reference to the version of the group where
the previous key is stored (to allow chaining backwards through multiple previous keys).

<GROUP_PREFIX>/<Group Friendly Name (UTF-8)>/KEY/<version
marker>/SupersedingKey (optional)

contains a link pointing to the next version of this key (e.g. for this group); in a small number of instances
this contains a WrappedKey block containing this key wrapped in the superseding key.

8.8 ACL and Node Keys

At anode N where an ACL is set, we represent the ACL in an access subnamespace. This is intended to be
a namespace we expect only programs, not people, to look into.

<N>/_access_/ACL/<version marker>
points to a collection containing a version of the ACL information for this node. If there was an ACL at a
given level but it has been deleted, we may store a block at:
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<N>/_access_/ACL/<version marker>
for the latest version of the ACL.

An ACL is stored as a collection, a list of links where the links point to the keys of the principals listed
on that ACL. The difference between read, write and manage privileges is represented as tagged roles for
each link:

READ ::= r
WRITE ::= rw (implies read)
MANAGE ::= rwt+ (implies read, write)

(An alternative would be to use 3 ACLs per node, one for each type of access.)
Each principal is listed on the ACL only once — as MANAGE rights imply WRITE access, and WRITE
access implies READ access, this allows total specification of rights for each named principal.

<N>/_access_/DK
points to the data key used to encrypt the content at this node (the data key is stored in the repository).

<N>/_access_/NK/<version marker>
points to a collection containing a version of the node key information for this node. If there was a node
key (and ACL) at a given level but it has been deleted, we store a block at /_access_/NK/ for the latest

version of the node key. Under that version, we store a Superseded link pointing to the new node key in
force at this node.

For each public key on the reader list, under the node key version we store the node key encrypted
under that public key in a WrappedKey block. We represent these in the same way that group private keys
are stored for each group member, as above (with links corresponding to principals and so on). Because
the node key may change without a change to the ACL (e.g if a group membership changes), we need to
evolve the stored version of the group key in some sensible way. Recall that under a given group key, we
represent version n of the group as the group member list for that version, the group public key, and the
list of WrappedKey blocks for the group private key. Similarly, we represent version n of the node key as a
name:

NK/<version marker>

under which we store the wrapped keys for that version of the node key. When we update the access control
list and node key in parallel (e.g. when we remove someone from the access control list), we give the
updated node key and access control list the same version identifier.

<N>/_access_/NK/<version marker>/p:<PrincipalName>:<PrincipalVersion>
contains a link from a friendly identifier of the target principal (group friendly name or user friendly name
as listed in the User or Group namespace), and the version identifier (as 12-bit timestamp) of their current
key (at the time of wrapping) to the wrapped key block containing that principal’s encrypted copy of the
node key.

<N>/_access_/NK/<version marker>/keyid:<key_id>

contains blocks all making up this version of the node key, each of which contains a WrappedKey object
targeted for a particular entity on the ACL. For now we name them using the key digest under which the NK
is wrapped.

8.9 Reader Operation

To use this access control scheme, readers must perform a series of steps (embodied in the CCNXx library,
and largely unseen by users).
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1. A reader retrieves a piece of content, and discovers that it is encrypted (marked as type ENCR).

2. The reader consults their namespace manager to determine what profiles are in effect for the names-
pace in which the content resides, and is handed an AccessControlManager handling this namespace.
That AccessControlManager (ACM) implements group-based access control.

3. The reader uses the ACM to retrieve the wrapped data key DK used to encrypt this content. The
ACM, using its AccessControlProfile knows the naming convention where the DK will be stored, as
a WrappedKey. This data key is wrapped in an Effective Node Key, the key derived from the node
key in force at this node at the time the data was written, iterated using KeyDerivation to result in the
effective node key for this node.

4. The reader looks in the wrapped data key to determine what node key was used to derive the key
used to wrap it. If it has this key in its cache, it unwraps the data key and moves on to verifying
write validity for the content. This is the expected “fast path” for normal operation — the remainder
of the algorithm pursued by the reader is somewhat heuristic, and focused on building up a cache
of node keys used to access content. This cache can be shared across applications and retained over
time, maximizing the speed of decryption. (Another advantage of scheme 2 of section 7.2.4, where
one node key is used to derive keys for many data items.) This does make it more difficult to revoke
access for a user that retains control of their cache, but in practice access is revoked only rarely, and
the win in efficiency is in many cases worth the risk. (In others, key caching may be disallowed.)

5. The user’s AccessControlManager pursues a search strategy to attempt to unwrap the desired node
key, or if that node key is superseded, to unwrap a later version of that node key (which can be used
to unwrap previous versions of that node key, including the desired key). There are two large classes
of algorithms that can be used to retrieve and decrypt the node key. All retrieved keys are stored in
the user’s key cache for reuse in further steps of the algorithm.

» Forward algorithms look at the ACL associated with the node key, and attempt to find a principal
on that list that is either the user themselves, or a group the user is in. The user builds up a cache
over time of information about their own group memberships and the group private keys for
those groups. Given that knowledge, the algorithm tries to pull a wrapped key block for the
desired node key encrypted with that cached private key, and decrypt it.

* Reverse algorithms look only at wrapped key blocks and the associated principal information,
always attempting first to find a block wrapped with a key that is already in the user’s cache
(using the keyid information), and then using the principal information stored in links to try to
find a group or user key that the user might have access to.

6. The user attempts to verify whether the first content block of the desired content was signed by some-
one that is both acceptable to the user, and allowed by the write privileges granted for this content.
This requires looking at the ACL for this node, unless we put an indexed representation of write
privileges among the key information. Details of implementing write control are still in development.

If the node key cannot be retrieved, signals an access denied error.

8.10 Writer operation
The writer wishing to write a piece of content performs the following steps:

1. Generates a random data key for this content, and uses it to encrypt the content.
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2. Stores the encrypted content at the desired name.

3. Retrieves the node key in force at this node using the search algorithm described above for readers.
As write access implies read access, a user without read access will not be able to retrieve the correct
key to encrypt the data. Determining that a user has write access and not just read access has to be
done as a separate step, but the ability to correctly encrypt the data demonstrates that it was written
by at least someone with the ability to read the data. If the node key cannot be retrieved, signals an
access denied error.

4. Checks the versions on the keys of the principals that node key is encrypted for against the current
versions of those keys that are available. If later keys are available (e.g. if a group has had a member
revoked and updated its public key), generates a new node key version, and encrypts the new (now
current) node key according to the latest version of the access control list for this content, and encrypts
the old node key under the new node key as described above.

5. Derives the effective node key from the current node key using the algorithm in KeyDerivation. Uses
that to encrypt the data key.

6. Stores the encrypted data key block at a point designated by the AccessControlProfile.
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