
Internationalization and localization with Limnoria / Supybot

Valentin "ProgVal" Lorentz

Contents

I Internationalizing your plugins 2

1 About gettext 2

2 Importing the i18n module 2

3 It is time to internationalize! 2
3.1 Internationalize the docstrings . 2
3.2 Internationalize the strings . 3

4 Generate the POT file 3

II Localizing plugins into your language 5

5 Understanding the file formats 5

6 The tools 5

7 The files architecture used by Limnoria for its translations 5

8 Generate the PO file 5

9 Translate the PO file 6

1

Part I

Internationalizing your plugins
1 About gettext
Gettext is a really powerful tool to internationalize software, and many other tools come
with it, that’s why I first wanted to use it. But, the problem was gettext need to have
a single catalog for the whole software, but that is impossible for Supybot because of its
modularity: each plugin needs to have its own catalog of translations.

Then, I choosed to write my own internationalization tool, compatible with tools de-
signed for gettext (such as PoEdit or pygettext), fully integrated with Limnoria.

For plugins developpers, the syntax to use is nearly the same.

2 Importing the i18n module
i18n is the short version of "internationalization". It is also the name I gave to the module
which handles internationalization and localization in Limnoria. All internationalized
plugins need to import and use it.

If you created your plugin with the modified version of supybot-plugin-create provided
with Limnoria, your plugin already imports the i18n module. If you didn’t use the modified
tool, append this code after the imports, in plugin.py and config.py:

from supybot . i18n import PluginInternationalization
from supybot . i18n import internationalizeDocstring
_ = PluginInternationalization (’<NAME OF YOUR PLUGIN>’)

But this code has a problem: as you see, it requires the module supybot.i18n, and this
module exists only in Limnoria (at the moment). Then, I suggest you to use this code:

t ry :
from supybot . i18n import PluginInternationalization
from supybot . i18n import internationalizeDocstring
_ = PluginInternationalization (’<NAME OF YOUR PLUGIN>’)

except :
_ = lambda x : x
internationalizeDocstring = lambda x : x

As you can see, if the import fails, the functions are replaced by functions which takes an
argument, and return it verbatim. Of course, the string won’t be localized, but it is still
better than an error.

3 It is time to internationalize!

3.1 Internationalize the docstrings

As you probably noticed, Supybot uses the docstrings of the command as help. This help
should be internationalized.

To do that, the i18n module provides the function internationalizeDocstring. I know
this name is long, I have to use it for all commands I write for my plugins, but I think
having an explicit name is more important than having a short name. Thanks to this long
name, you know what it does: it internationalizes the docstrings!

2

Actually, this function is a decorator. If you don’t know what a decorator is, that is
not important. You just have to add a line before every command, like that:

@internationalizeDocstring # <= This i s the l i n e
de f mycommand (self , irc , msg , args , arg1 , arg2) :

" " "<argument 1> <argument 2>

This command does that " " "
The code o f the command

mycommand = wrap (mycommand , [’ something ’ , ’ something ’])

Additionally, you can also decorate the class:

@internationalizeDocstring # <= This i s the l i n e
c l a s s MyPlugin :

" " "My plug in does that . " " "
The code o f the p lug in

Class = MyPlugin

3.2 Internationalize the strings

There is two types of strings: those displayed on IRC (irc.reply(), irc.error(), ...), and
those which are not (log.debug(), log.info(), ...). I consider the bot owner (the only one
who can read the logs) should be able to understand English, so we translate only the
string displayed on IRC. This shorten the painful work of translating.

To internationalize a string, the syntax is the same as gettext, because it is a good
syntax, but also because it allows us to use tools designed for gettext (as pygettext). If
you never used gettext, you will like the easiness of this syntax:

irc . reply (_ (’ This i s an i n t e r n a t i o n a l i z e d s t r i n g . ’))

Really easy, isn’t it?
Now, we have another problem: how to insert variables into the string? You probably

want to use one of this lines:

irc . reply (_ (’ There i s ’ + count + ’ packages on t h i s r e p o s i t o r y ’))
irc . reply (_ (’ There i s %i packages on t h i s r e p o s i t o r y ’ % count))

But you are wrong: in the best case, you will get an error. In the worst, the string won’t
be localized. The good syntax is:

irc . reply (_ (’ There i s %i packages on t h i s r e p o s i t o r y ’) % count)

4 Generate the POT file
All internationalized plugins should come with a POT file, usually named messages.pot. If
you already used gettext, you probably want to use the gettext command to generate this
file, but you are wrong. Do you remember the docstrings needs to (and will) be localized,
even if we did not _()-ize them? But gettext picks out only _()-ized strings, so, it is not
the tool we need.

3

Fortunatly, a such tool exists! It is called pygettext and should be installed with
Python. Here is the command to use:

pygettext −−docstring config . py plugin . py

It will create a file called messages.pot, which is needed by the translators.

4

Part II

Localizing plugins into your language
5 Understanding the file formats
The localization process deals with three file types

a .pot – Contains untranslated strings. Human readable, but doesn’t need to be read

a .po per language – Also called "catalog". It is the translation of the strings. Human
readable.

a .mo per .po – The compiled version of the .po. Not human readable.

As I said before, Limnoria uses my own implementation of gettext; and this implementation
does not need the .mo files: it reads directly the .po (actually, at the moment I was writing
the i18n module, I did not know .mo files exist ;)).

6 The tools
I personnaly use PoEdit, because it does everything one could expect on a PO editor:
create the PO from the POT, nice PO editor, and PO -> MO compiler (even if we do not
need the last one).

But, PoEdit is not the universal tool, there is many other graphic tools or in the
console. I will not cover this other tools here because I never tryed them, but there is
probably nice documentation somewhere else, but the process is nearly the same.

7 The files architecture used by Limnoria for its translations
There is two kind of localization files: for the core itself, and for the plugins.

The core: The localization files of the core are in the directory locale/, located at the
root of the source. There is two files per language: a fr.po and fr.py (fr is of course
the language representation).
The first one is easy to understand and translate, it is a big classic PO file, trans-
latable with PoEdit.
fr.py is slightly more tricky: it contains additional Python code used to "say" how to
do some stuff related to the language, such as pluralization. If you want to localize
it, you need to be a Python programmer (actually, a beginner should be able to do
it, it is easy).

The plugins: All plugins should have a locale/ directory (create it if it does not exist),
containing the PO files.

8 Generate the PO file
If you are editing an existing translation, skip this step.

For Limnoria core, the POT is in the locale/ directory. For the plugins, it is in the
directory of the plugin. (It is easy to remember, isn’t it?) PoEdit allows you to create a

5

Figure 1: Creating a catalog from a .pot file

catalog from the POT easily, from the File menu, as in figure 1. Now you created the PO
file, save it as plugins/<plugin name>/locale/<language code>.po if it is for a plugin or
as locale/<language code>.po if it is for the core.

9 Translate the PO file
Now, the most important step: translating the plugin/bot. Open it with PoEdit or with
your favorite PO editor, and translate it, as in figure 2.

There is two things you have to keep in mind:

• In the untranslated string, there is many \n and line break. You can ignore them
safely, they are useless...

• ... but you need to have two \n after the syntax of commands. That is important,
Limnoria uses them to detect what is the syntax and what is the real help (when
displayed on IRC, the syntax is bold).

6

Figure 2: Translating the strings

7

About
More informations
If you need more informations, you can contact me on #supybot or #supybot-fr on Freen-
ode IRC Network. You can also contact me by email, I should answer in less than a
week.

Getting this document
Of course, this is a libre document. You can access source code at GitHub.

Licencing
This work is licensed under a Creative Commons Attribution 3.0 Unported License.

You are free:

toShare – to copy, distribute, and transmit the work

toRemix – to adapt the work

Under the fellowing condition:

Attribution – You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).

8

https://github.com/ProgVal/Supybot-docs

	I Internationalizing your plugins
	About gettext
	Importing the i18n module
	It is time to internationalize!
	Internationalize the docstrings
	Internationalize the strings

	Generate the POT file

	II Localizing plugins into your language
	Understanding the file formats
	The tools
	The files architecture used by Limnoria for its translations
	Generate the PO file
	Translate the PO file

