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Deep Bayesian Learning – VAE
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The Variational Auto Encoder (VAE)

Model of interest

Xi

Zi

ω

i = 1, . . . , N

p(zi) is (usually) an isotropic Gaussian distribution.

pω(xi | gω(zi)), where g is a deep neural network.

pω(xi|zi) ∼ Bernoulli(logits = gω(zi))

gω(zi) plays the role of a DECODER NETWORK.

Learn ω to maximize the model’s fit to D.
We will cheat and find a point estimate for ω.

Variational Inference

We will need pω(zi |xi) for each data-point xi:

pω(zi |xi) =
pω(zi) · pω(xi | gω(zi))∫

zi
pω(zi) · pω(xi | gω(zi)) dzi

.

Initial plan: Fit q(zi |λi) to pω(zi |xi) using variational inference.
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Variational inference and the VAE

Initial plan:
Optimize the ELBO

L(ω,λ1, . . . ,λN ) = −Eq

[
log

∏N
i=1 q(zi |λi)∏N
i=1 pω(zi,xi)

]
.

A natural model for q(zi |λi) is a Gaussian with
parameters λi = {µi,Σi}.

If Zi is d-dim and we for simplicity assume diagonal
Σi, this still gives 2Nd variational parameters to learn.

Xi

Zi

ωq(zi |λi)

i = 1, . . . , N

A better plan

Assume gω(z) is “smooth”: if zi and zj are “close”, then so are xi and xj .

⇝ λi and λj should be “close” if xi and xj are “close”.

Therefore: Let’s assume there exists a (smooth) function h(x) so that h(xi) = λi.

h(·) is unavailable, so represent it using a deep neural net and learn the weights.

h(xi) plays the role of an ENCODER NETWORK.
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Amortized inference

Amortized inference:
To learn a model h(·), typically a deep neural network, so that h(xi) = λi.
h(·) is parameterized with weights, often (abusing notation) denoted by λ.

Note! Amortized inference is useful also outside VAEs!

Benefits:
The 2Nd parameters {λi}Ni=1 are replaced by the fixed-sized vector λ.

If N is large we may get a simpler learning problem.

Smoothness of h(·) implies regularization.

We only change the parameterization, not the model itself!

ProbAI - 2023 Deep Bayesian Learning – VAE 4



VAE: Full setup

The full VAE approach:
p(zi) is an isotropic Gaussian distribution.

pω(xi|zi) ∼ Bernoulli(logits = gω(zi)),
where gω is a DNN with weights ω.

q(zi |xi,λ) ∼ N (µi,Σi),
where {µi,Σi} is given by hλ(xi).
hλ is a DNN with weights λ.

Xi

Zi

ωq (zi |λi = hλ(xi))

i = 1, . . . , N

Goal:
Learn both ω and λ by maximizing the ELBO:

L(λ,ω) = −Eq

[
log

q(z |x,λ)
pω(z,x |ω)

]
.
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ELBO for VAEs

{z̃i}

(1) Make samples
Increased L(λ,ω)

(3) Update ω,λ

∇λ,ωL

(2) Compute gradient

1 For each xi, sample M (typically 1) ϵ-values.
2 Calculate ∇λ,ω L(λ,ω) using the reparameterization-trick.
3 Update parameters using a standard DL optimizer (like Adam).
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Fun with MNIST – The model

The model is learned from N = 55.000 training examples.

Each xi is a binary vector of 784 pixel values.

When seen as a 28× 28 array, each xi is a picture of a handwritten digit (“0” – “9”).

Encoding is done in two dimensions. p(zi) = N (02, I2).

The encoder network X⇝ Z.
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Each xi is a binary vector of 784 pixel values.

When seen as a 28× 28 array, each xi is a picture of a handwritten digit (“0” – “9”).

Encoding is done in two dimensions. p(zi) = N (02, I2).

The encoder network X⇝ Z.

xi : 784 dim Hidden, 256-d Hidden, 64-d

µλ(xi), 2-d

logΣλ(xi), 2-d

qλ(zi|xi,λ) = N (µλ(xi),Σλ(xi)), 2-d
ReLU ReLU

Linear

Linear
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Fun with MNIST – The model

The model is learned from N = 55.000 training examples.

Each xi is a binary vector of 784 pixel values.

When seen as a 28× 28 array, each xi is a picture of a handwritten digit (“0” – “9”).

Encoding is done in two dimensions. p(zi) = N (02, I2).

The encoder network X⇝ Z.

The decoder network Z⇝ X is a 64 + 256 neural net with ReLU units.

zi : 2 dim Hidden, 64-d Hidden, 256-d logit(pi), 784-d pω(xi | zi,ω) = Bernoulli (pi), 784-d
ReLU ReLU Linear
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Code Task: VAEs in Pyro

Code Task: VAEs in Pyro
Learn how a VAE is coded in Pryo.

We provide a VAE with a linear decoder.

Exercise (summary):
Define a Non-Linear Decoder, e.g., an MLP with a hidden layer and
non-linearities (e.g. Relu).
Explore the latent space when moving from linear to non-linear
decoders with different capacity.

Notebook:
Day2-Evening/students_VAE.ipynb.
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Conclusions

ProbAI - 2023 Conclusions 9



Recap & Conclusions

Bayesian Machine Learning
Represents unobserved quantities using distributions
Models epistemic uncertainty using p(θ | D)
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Recap & Conclusions

Bayesian Machine Learning

Variational inference
Provides q(θ |λ): A distributional approximation to p(θ | D)
Objective: argminλ KL (q(θ |λ)||p(θ | D)) ⇔ argmaxλ L (q(θ |λ))
Mean-field: Divide and conquer strategy for high-dimensional posteriors
Main caveat: q(θ |λ) underestimates the uncertainty of p(θ | D)
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Recap & Conclusions

Bayesian Machine Learning

Variational inference

Coordinate Ascent Variational Inference
Analytic expressions for some models (i.e., conjugate exponential family)
CAVI is very efficient and stable if it can be used
In principle requires manual derivation of updating equations

There are tools to help (using variational message passing)
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Recap & Conclusions

Bayesian Machine Learning

Variational inference

Coordinate Ascent Variational Inference

Gradient-based Variational Inference
Provides the tools for VI over arbitrary probabilistic models
Directly integrates with the tools of deep learning

Automatic differentiation, sampling from standard distributions, and SGD

Sampling to approximate expectations: Beware of the variance!
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Recap & Conclusions

Bayesian Machine Learning

Variational inference

Coordinate Ascent Variational Inference

Gradient-based Variational Inference

Probabilistic programming languages
PPLs fuel the “build – compute – critique – repeat” - cycle through

ease and flexibility of modelling
powerful inference engines
efficient model evaluations

Many available tools (Pyro, TF Probability, Infer.net, Turing.jl, . . . )
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Recap & Conclusions

Bayesian Machine Learning

Variational inference

Coordinate Ascent Variational Inference

Gradient-based Variational Inference

Probabilistic programming languages

What’s next?
The “VI toolbox” is reaching maturity

From only a research area to almost a prerequisite for Probabilistic AI
. . . yet there are still things to explore further!

Today’s material should suffice to read (and write!) Prob-AI papers
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