Nordic probabilistic AI school Variational Inference and Optimization

Helge Langseth, Andrés Masegosa, and Thomas Dyhre Nielsen

June 13, 2023

[Deep Bayesian Learning – VAE](#page-1-0)

The Variational Auto Encoder (VAE)

Model of interest

- \bullet $p(\mathbf{z}_i)$ is (usually) an isotropic Gaussian distribution.
- \bullet $p_{\boldsymbol{\omega}}(\mathbf{x}_i | g_{\boldsymbol{\omega}}(\mathbf{z}_i))$, where g is a deep neural network.

 $p_{\boldsymbol{\omega}}(\mathbf{x}_i|\mathbf{z}_i) \sim \text{Bernoulli}(\text{logits} = q_{\boldsymbol{\omega}}(\mathbf{z}_i))$

- \bullet $q_{\omega}(\mathbf{z}_i)$ plays the role of a **DECODER NETWORK**.
- Learn ω to maximize the model's fit to D.
	- We will cheat and find a **point estimate** for ω.

The Variational Auto Encoder (VAE)

Model of interest

- \bullet $p(\mathbf{z}_i)$ is (usually) an isotropic Gaussian distribution.
- \bullet $p_{\boldsymbol{\omega}}(\mathbf{x}_i | g_{\boldsymbol{\omega}}(\mathbf{z}_i))$, where g is a deep neural network.

 $p_{\omega}(\mathbf{x}_i|\mathbf{z}_i) \sim$ Bernoulli(logits = $q_{\omega}(\mathbf{z}_i)$)

- \bullet $q_{\omega}(\mathbf{z}_i)$ plays the role of a **DECODER NETWORK**.
- Learn ω to maximize the model's fit to \mathcal{D} .
	- We will cheat and find a **point estimate** for ω.

Variational Inference

• We will need $p_{\boldsymbol{\omega}}(\mathbf{z}_i | \mathbf{x}_i)$ for each data-point \mathbf{x}_i :

$$
p_{\boldsymbol{\omega}}(\mathbf{z}_i | \mathbf{x}_i) = \frac{p_{\boldsymbol{\omega}}(\mathbf{z}_i) \cdot p_{\boldsymbol{\omega}}(\mathbf{x}_i | g_{\boldsymbol{\omega}}(\mathbf{z}_i))}{\int_{\mathbf{z}_i} p_{\boldsymbol{\omega}}(\mathbf{z}_i) \cdot p_{\boldsymbol{\omega}}(\mathbf{x}_i | g_{\boldsymbol{\omega}}(\mathbf{z}_i)) \, d\mathbf{z}_i}.
$$

• Initial plan: Fit $q(\mathbf{z}_i | \boldsymbol{\lambda}_i)$ to $p_{\boldsymbol{\omega}}(\mathbf{z}_i | \mathbf{x}_i)$ using variational inference.

Variational inference and the VAE

Initial plan:

Optimize the ELBO

$$
\mathcal{L}(\boldsymbol{\omega}, \boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_N) = -\mathbb{E}_q \left[\log \frac{\prod_{i=1}^N q(\mathbf{z}_i \, | \, \boldsymbol{\lambda}_i)}{\prod_{i=1}^N p_{\boldsymbol{\omega}}(\mathbf{z}_i, \mathbf{x}_i)} \right]
$$

- A natural model for $q(\mathbf{z}_i | \boldsymbol{\lambda}_i)$ is a Gaussian with parameters $\boldsymbol{\lambda}_i = \{\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i\}.$
- \bullet If \mathbf{Z}_i is d-dim and we for simplicity assume diagonal Σ_i , this still gives $2Nd$ variational parameters to learn.

.

Variational inference and the VAE

Initial plan:

Optimize the ELBO

$$
\mathcal{L}(\boldsymbol{\omega}, \boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_N) = -\mathbb{E}_q \left[\log \frac{\prod_{i=1}^N q(\mathbf{z}_i \,|\, \boldsymbol{\lambda}_i)}{\prod_{i=1}^N p_{\boldsymbol{\omega}}(\mathbf{z}_i, \mathbf{x}_i)} \right]
$$

A natural model for $q(\mathbf{z}_i | \boldsymbol{\lambda}_i)$ is a Gaussian with parameters $\boldsymbol{\lambda}_i = \{\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i\}.$

 \bullet If \mathbf{Z}_i is d-dim and we for simplicity assume diagonal Σ_i , this still gives $2Nd$ variational parameters to learn.

A better plan

Assume $q_{\omega}(z)$ is "smooth": if z_i and z_j are "close", then so are x_i and x_j .

 $\rightarrow \lambda_i$ and λ_j should be "close" if x_i and x_j are "close".

- **Therefore:** Let's assume there exists a (smooth) function $h(\mathbf{x})$ so that $h(\mathbf{x}_i) = \lambda_i$.
- \bullet $h(\cdot)$ is unavailable, so represent it using a deep neural net and learn the weights.
- \bullet $h(\mathbf{x}_i)$ plays the role of an **ENCODER NETWORK**.

.

Amortized inference:

To learn a model $h(\cdot)$, typically a deep neural network, so that $h(\mathbf{x}_i) = \lambda_i$. $h(\cdot)$ is parameterized with weights, often (abusing notation) denoted by λ .

Note! Amortized inference is useful also outside VAEs!

Benefits:

- The $2Nd$ parameters $\{\boldsymbol{\lambda}_i\}_{i=1}^N$ are replaced by the fixed-sized vector $\boldsymbol{\lambda}.$
	- If N is large we may get a simpler learning problem.
- Smoothness of $h(\cdot)$ implies regularization.
- We only change the **parameterization**, not the model itself!

VAE: Full setup

The full VAE approach:

- \bullet $p(\mathbf{z}_i)$ is an isotropic Gaussian distribution.
- \bullet $p_{\boldsymbol{\omega}}(\mathbf{x}_i|\mathbf{z}_i) \sim \text{Bernoulli}(\text{logits} = g_{\boldsymbol{\omega}}(\mathbf{z}_i)),$ where q_{ω} is a DNN with weights ω .
- $q(\mathbf{z}_i | \mathbf{x}_i, \boldsymbol{\lambda}) \sim \mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i),$ where $\{\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i\}$ is given by $h_{\boldsymbol{\lambda}}(\mathbf{x}_i)$. h_{λ} is a DNN with weights λ .

Goal:

Learn **both** ω and λ by maximizing the ELBO:

$$
\mathcal{L}(\boldsymbol{\lambda},\boldsymbol{\omega})=-\mathbb{E}_q\left[\log\frac{q(\mathbf{z}\,\vert\,\mathbf{x},\boldsymbol{\lambda})}{p_{\boldsymbol{\omega}}(\mathbf{z},\mathbf{x}\,\vert\,\boldsymbol{\omega})}\right].
$$

For each x_i , sample M (typically 1) ϵ -values.

- 2 Calculate $\nabla_{\lambda,\omega} \mathcal{L}(\lambda,\omega)$ using the reparameterization-trick.
- ³ Update parameters using a standard DL optimizer (like Adam).

Fun with MNIST – The model

- The model is learned from $N = 55.000$ training examples.
- Each x_i is a binary vector of 784 pixel values.
-

Fun with MNIST – The model

- The model is learned from $N = 55.000$ training examples.
- Each x_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each x_i is a picture of a handwritten digit ("0" "9").

- **•** Encoding is done in **two** dimensions. $p(\mathbf{z}_i) = \mathcal{N}(\mathbf{0}_2, \mathbf{I}_2)$.
- **■** The **encoder network** $X \sim Z$.

Fun with MNIST – The model

- The model is learned from $N = 55.000$ training examples.
- Each x_i is a binary vector of 784 pixel values.
-

- **•** Encoding is done in **two** dimensions. $p(\mathbf{z}_i) = \mathcal{N}(\mathbf{0}_2, \mathbf{I}_2)$.
- **■** The **encoder network** $X \sim Z$.
- The **decoder network** $\mathbf{Z} \rightsquigarrow \mathbf{X}$ is a $64 + 256$ neural net with ReLU units. $z_i : 2$ dim $\frac{\text{ReLU}}{\text{H} \cup \text{H} \cup \text{H}}$ Hidden, 256-d $\frac{\text{Linear}}{\text{H}}$ logit(p_i), 784-d $\frac{\text{ReLU}}{\text{P} \cup \text{H}}$ $p_\omega(x_i | z_i, \omega) = \text{Bernoulli}(p_i)$, 784-d

Code Task: VAEs in Pyro

Learn how a VAE is coded in Pryo.

We provide a VAE with a **linear decoder**.

Exercise (summary):

- Define a Non-Linear Decoder, e.g., an MLP with a hidden layer and non-linearities (e.g. Relu).
- Explore the latent space when moving from linear to non-linear decoders with different capacity.
- Notebook:

Day2-Evening/students_VAE.ipynb.

[Conclusions](#page-13-0)

Bayesian Machine Learning

- Represents unobserved quantities using **distributions**
- Models **epistemic** uncertainty using $p(\theta | \mathcal{D})$
- **Bayesian Machine Learning**
- **Variational inference**
	- **Provides** $q(\theta | \lambda)$: A distributional approximation to $p(\theta | \mathcal{D})$
	- **Objective:** $\arg \min_{\lambda} \mathrm{KL}(q(\theta | \lambda) || p(\theta | \mathcal{D})) \Leftrightarrow \arg \max_{\lambda} \mathcal{L}(q(\theta | \lambda))$
	- **Mean-field:** Divide and conquer strategy for high-dimensional posteriors
	- **Main caveat:** $q(\theta | \lambda)$ underestimates the uncertainty of $p(\theta | \mathcal{D})$
- **Bayesian Machine Learning**
- **Variational inference**

Coordinate Ascent Variational Inference

- Analytic expressions for some models (i.e., conjugate exponential family)
- CAVI is very **efficient and stable** if it can be used
- In principle requires **manual derivation** of updating equations
	- There are **tools** to help (using *variational message passing*)
- **Bayesian Machine Learning**
- **Variational inference**
- **Coordinate Ascent Variational Inference**
- **Gradient-based Variational Inference**
	- Provides the tools for VI over **arbitrary** probabilistic models
	- Directly integrates with the tools of deep learning
		- Automatic differentiation, sampling from standard distributions, and SGD
	- Sampling to approximate expectations: **Beware of the variance!**
- **Bayesian Machine Learning**
- **Variational inference**
- **Coordinate Ascent Variational Inference**
- **Gradient-based Variational Inference**
- **Probabilistic programming languages**
	- \bullet PPLs fuel the "build compute critique repeat" cycle through
		- **•** ease and flexibility of modelling
		- **•** powerful inference engines
		- **e** efficient model evaluations
	- Many available tools (Pyro, TF Probability, Infer.net, Turing.jl, ...)
- **Bayesian Machine Learning**
- **Variational inference**
- **Coordinate Ascent Variational Inference**
- **Gradient-based Variational Inference**
- **Probabilistic programming languages**

What's next?

- The "VI toolbox" is reaching maturity
	- From *only* a research area to almost a *prerequisite* for Probabilistic AI
	- \bullet ... vet there are still things to explore further!
- Today's material should suffice to read (and write!) Prob-AI papers