Nordic probabilistic AI school Variational Inference and Optimization

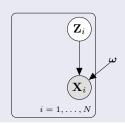
Helge Langseth, Andrés Masegosa, and Thomas Dyhre Nielsen

June 13, 2023

Deep Bayesian Learning - VAE

The Variational Auto Encoder (VAE)

Model of interest



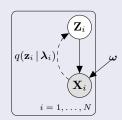
- $p(\mathbf{z}_i)$ is (usually) an isotropic Gaussian distribution.
- $p_{\omega}(\mathbf{x}_i | g_{\omega}(\mathbf{z}_i))$, where g is a deep neural network.

 $p_{\boldsymbol{\omega}}(\mathbf{x}_i | \mathbf{z}_i) \sim \mathsf{Bernoulli}(\mathsf{logits} = g_{\boldsymbol{\omega}}(\mathbf{z}_i))$

- $g_{\omega}(\mathbf{z}_i)$ plays the role of a **DECODER NETWORK**.
- Learn ω to maximize the model's fit to \mathcal{D} .
 - We will cheat and find a point estimate for ω.

The Variational Auto Encoder (VAE)

Model of interest



• $p(\mathbf{z}_i)$ is (usually) an isotropic Gaussian distribution.

• $p_{\omega}(\mathbf{x}_i | g_{\omega}(\mathbf{z}_i))$, where g is a deep neural network.

 $p_{\boldsymbol{\omega}}(\mathbf{x}_i | \mathbf{z}_i) \sim \mathsf{Bernoulli}(\mathsf{logits} = g_{\boldsymbol{\omega}}(\mathbf{z}_i))$

- $g_{\omega}(\mathbf{z}_i)$ plays the role of a **DECODER NETWORK**.
- Learn ω to maximize the model's fit to \mathcal{D} .
 - We will cheat and find a point estimate for ω.

Variational Inference

• We will need $p_{\omega}(\mathbf{z}_i | \mathbf{x}_i)$ for each data-point \mathbf{x}_i :

$$p_{\boldsymbol{\omega}}(\mathbf{z}_i \,|\, \mathbf{x}_i) = \frac{p_{\boldsymbol{\omega}}(\mathbf{z}_i) \cdot p_{\boldsymbol{\omega}}(\mathbf{x}_i \,|\, g_{\boldsymbol{\omega}}(\mathbf{z}_i))}{\int_{\mathbf{z}_i} p_{\boldsymbol{\omega}}(\mathbf{z}_i) \cdot p_{\boldsymbol{\omega}}(\mathbf{x}_i \,|\, g_{\boldsymbol{\omega}}(\mathbf{z}_i)) \,\mathrm{d}\mathbf{z}_i}.$$

• Initial plan: Fit $q(\mathbf{z}_i | \boldsymbol{\lambda}_i)$ to $p_{\boldsymbol{\omega}}(\mathbf{z}_i | \mathbf{x}_i)$ using variational inference.

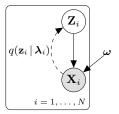
Variational inference and the VAE

Initial plan:

Optimize the ELBO

$$\mathcal{L}(\boldsymbol{\omega}, \boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_N) = -\mathbb{E}_q \left[\log rac{\prod_{i=1}^N q(\mathbf{z}_i \mid \boldsymbol{\lambda}_i)}{\prod_{i=1}^N p_{\boldsymbol{\omega}}(\mathbf{z}_i, \mathbf{x}_i)}
ight]$$

- A natural model for $q(\mathbf{z}_i | \boldsymbol{\lambda}_i)$ is a Gaussian with parameters $\boldsymbol{\lambda}_i = \{\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i\}$.
- If \mathbf{Z}_i is *d*-dim and we for simplicity assume diagonal Σ_i , this still gives 2Nd variational parameters to learn.



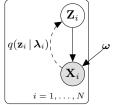
Variational inference and the VAE

Initial plan:

Optimize the ELBO

$$\mathcal{L}(\boldsymbol{\omega}, \boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_N) = -\mathbb{E}_q \left[\log \frac{\prod_{i=1}^N q(\mathbf{z}_i \mid \boldsymbol{\lambda}_i)}{\prod_{i=1}^N p_{\boldsymbol{\omega}}(\mathbf{z}_i, \mathbf{x}_i)} \right]$$

• A natural model for $q(\mathbf{z}_i | \boldsymbol{\lambda}_i)$ is a Gaussian with parameters $\boldsymbol{\lambda}_i = \{\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i\}.$



• If \mathbf{Z}_i is *d*-dim and we for simplicity assume diagonal Σ_i , this still gives 2Nd variational parameters to learn.

A better plan

• Assume $g_{\omega}(\mathbf{z})$ is "smooth": if \mathbf{z}_i and \mathbf{z}_j are "close", then so are \mathbf{x}_i and \mathbf{x}_j .

 $\rightsquigarrow \lambda_i$ and λ_j should be "close" if \mathbf{x}_i and \mathbf{x}_j are "close".

- Therefore: Let's assume there exists a (smooth) function $h(\mathbf{x})$ so that $h(\mathbf{x}_i) = \lambda_i$.
- $h(\cdot)$ is unavailable, so represent it using a deep neural net and learn the weights.
- $h(\mathbf{x}_i)$ plays the role of an **ENCODER NETWORK**.

Amortized inference:

To learn a model $h(\cdot)$, typically a deep neural network, so that $h(\mathbf{x}_i) = \boldsymbol{\lambda}_i$. $h(\cdot)$ is parameterized with weights, often (abusing notation) denoted by $\boldsymbol{\lambda}$.

Note! Amortized inference is useful also outside VAEs!

Benefits:

- The 2Nd parameters $\{\lambda_i\}_{i=1}^N$ are replaced by the fixed-sized vector λ .
 - If N is large we may get a simpler learning problem.
- Smoothness of $h(\cdot)$ implies regularization.
- We only change the parameterization, not the model itself!

VAE: Full setup

The full VAE approach:

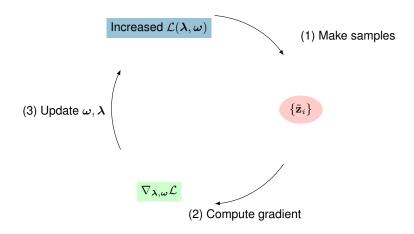
- $p(\mathbf{z}_i)$ is an isotropic Gaussian distribution.
- $p_{\omega}(\mathbf{x}_i | \mathbf{z}_i) \sim \text{Bernoulli}(\text{logits} = g_{\omega}(\mathbf{z}_i)),$ where g_{ω} is a DNN with weights ω .
- $q(\mathbf{z}_i | \mathbf{x}_i, \boldsymbol{\lambda}) \sim \mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i),$ where $\{\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i\}$ is given by $h_{\boldsymbol{\lambda}}(\mathbf{x}_i).$ $h_{\boldsymbol{\lambda}}$ is a DNN with weights $\boldsymbol{\lambda}.$



Goal:

Learn **both** ω and λ by maximizing the ELBO:

$$\mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{\omega}) = -\mathbb{E}_q \left[\log rac{q(\mathbf{z} \mid \mathbf{x}, \boldsymbol{\lambda})}{p_{\boldsymbol{\omega}}(\mathbf{z}, \mathbf{x} \mid \boldsymbol{\omega})}
ight].$$



- For each \mathbf{x}_i , sample M (typically 1) ϵ -values.
- 3 Calculate $\nabla_{\lambda,\omega} \mathcal{L}(\lambda,\omega)$ using the reparameterization-trick.
- Update parameters using a standard DL optimizer (like Adam).

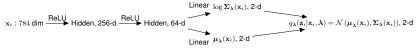
Fun with MNIST – The model

- The model is learned from N = 55.000 training examples.
- Each \mathbf{x}_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each \mathbf{x}_i is a picture of a handwritten digit ("0" "9").

Fun with MNIST – The model

- The model is learned from N = 55.000 training examples.
- Each \mathbf{x}_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each \mathbf{x}_i is a picture of a handwritten digit ("0" "9").

- Encoding is done in **two** dimensions. $p(\mathbf{z}_i) = \mathcal{N}(\mathbf{0}_2, \mathbf{I}_2)$.
- The encoder network $\mathbf{X} \rightsquigarrow \mathbf{Z}$.



Fun with MNIST – The model

- The model is learned from N = 55.000 training examples.
- Each \mathbf{x}_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each \mathbf{x}_i is a picture of a handwritten digit ("0" "9").

- Encoding is done in **two** dimensions. $p(\mathbf{z}_i) = \mathcal{N}(\mathbf{0}_2, \mathbf{I}_2)$.
- The encoder network $\mathbf{X} \rightsquigarrow \mathbf{Z}.$
- The decoder network $\mathbf{Z} \rightsquigarrow \mathbf{X}$ is a 64 + 256 neural net with ReLU units.

 $\mathbf{z}_{i}: 2 \text{ dim} \xrightarrow{\text{ReLU}} \text{Hidden}, 64\text{-d} \xrightarrow{\text{ReLU}} \text{Hidden}, 256\text{-d} \xrightarrow{\text{Linear}} \text{logit}(\mathbf{p}_{i}), 784\text{-d} \longrightarrow p_{\omega}(\mathbf{x}_{i} \mid \mathbf{z}_{i}, \omega) = \text{Bernoulli}(\mathbf{p}_{i}), 784\text{-d} \longrightarrow p_{\omega}(\mathbf{x}_{i} \mid \mathbf{z}_{i}), 784\text{-d} \longrightarrow p_{\omega}$

Code Task: VAEs in Pyro

Learn how a VAE is coded in Pryo.

• We provide a VAE with a linear decoder.

• Exercise (summary):

- Define a Non-Linear Decoder, e.g., an MLP with a hidden layer and non-linearities (e.g. Relu).
- Explore the latent space when moving from linear to non-linear decoders with different capacity.
- Notebook:

Day2-Evening/students_VAE.ipynb.

Conclusions

• Bayesian Machine Learning

- Represents unobserved quantities using distributions
- Models **epistemic** uncertainty using $p(\theta \mid D)$

- Bayesian Machine Learning
- Variational inference
 - **Provides** $q(\theta | \lambda)$: A distributional approximation to $p(\theta | D)$
 - Objective: $\operatorname{arg\,min}_{\lambda} \operatorname{KL} \left(q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \mid | p(\boldsymbol{\theta} \mid \mathcal{D}) \right) \Leftrightarrow \operatorname{arg\,max}_{\lambda} \mathcal{L} \left(q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right)$
 - Mean-field: Divide and conquer strategy for high-dimensional posteriors
 - Main caveat: $q(\theta | \lambda)$ underestimates the uncertainty of $p(\theta | D)$

- Bayesian Machine Learning
- Variational inference

• Coordinate Ascent Variational Inference

- Analytic expressions for some models (i.e., conjugate exponential family)
- CAVI is very efficient and stable if it can be used
- In principle requires manual derivation of updating equations
 - There are tools to help (using variational message passing)

- Bayesian Machine Learning
- Variational inference
- Coordinate Ascent Variational Inference
- Gradient-based Variational Inference
 - Provides the tools for VI over arbitrary probabilistic models
 - Directly integrates with the tools of deep learning
 - Automatic differentiation, sampling from standard distributions, and SGD
 - Sampling to approximate expectations: Beware of the variance!

- Bayesian Machine Learning
- Variational inference
- Coordinate Ascent Variational Inference
- Gradient-based Variational Inference
- Probabilistic programming languages
 - PPLs fuel the "build compute critique repeat" cycle through
 - ease and flexibility of modelling
 - powerful inference engines
 - efficient model evaluations
 - Many available tools (Pyro, TF Probability, Infer.net, Turing.jl, ...)

- Bayesian Machine Learning
- Variational inference
- Coordinate Ascent Variational Inference
- Gradient-based Variational Inference
- Probabilistic programming languages

• What's next?

- The "VI toolbox" is reaching maturity
 - From only a research area to almost a prerequisite for Probabilistic AI
 - ... yet there are still things to explore further!
- Today's material should suffice to read (and write!) Prob-Al papers