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Deep Bayesian Learning — VAE
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The Variational Auto Encoder (VAE)

Model of interest

@ p(z;) is (usually) an isotropic Gaussian distribution.
-
@ @ pu(xi| gw(zi)), where g is a deep neural network.

Pw(xi|z:) ~ Bernoulli(logits = g, (z:))

/w @ g.(z;) plays the role of a DECODER NETWORK.
@ @ Learn w to maximize the model’s fit to D.
i=1..., N o We will cheat and find a point estimate for w.
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@ p(z;) is (usually) an isotropic Gaussian distribution.
@ pu(xi | gw(zi)), where g is a deep neural network.
Pw(xi|z:) ~ Bernoulli(logits = g, (z:))

/ @ g.(z;) plays the role of a DECODER NETWORK.
@ Learn w to maximize the model’s fit to D.
o We will cheat and find a point estimate for w.

Variational Inference

@ We will need p.,(z; | x;) for each data-point x;:

@ Initial plan: Fi

2 lx) = P (Zi) - Po(Xi| 9w (2i))
SEY L, P (2i) - Pus (%i | guo (i) dzi”

it ¢(z; | A:) t0 pw(2z: | x;) using variational inference.
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Variational inference and the VAE

Initial plan:
@ Optimize the ELBO

ITi, a(zi| )

Hf\;1 pw(ziv xi)

@ A natural model for ¢(z; | \;) is a Gaussian with N @
parameters A\; = {p,, 3;}.

@ If Z, is d-dim and we for simplicity assume diagonal
3, this still gives 2N d variational parameters to learn.

L(w,A1,...,An) = —E; |log
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Variational inference and the VAE

Initial plan:
@ Optimize the ELBO

ITi, a(zi| )

1L, pe (2, x:)

@ A natural model for ¢(z; | \;) is a Gaussian with N @
parameters A\; = {p,, 3;}.

@ If Z, is d-dim and we for simplicity assume diagonal
33;, this still gives 2N d variational parameters to learn.

A better plan

@ Assume g.,(z) is “smooth”: if z; and z; are “close”, then so are x; and x;.

L(w,A1,...,An) = —E; |log

~+ A; and X, should be “close” if x; and x; are “close”.

@ Therefore: Let's assume there exists a (smooth) function h(x) so that ~A(x;) = As.
@ h(-) is unavailable, so represent it using a deep neural net and learn the weights.
@ h(x;) plays the role of an ENCODER NETWORK.
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Amortized inference

Amortized inference:
To learn a model A(-), typically a deep neural network, so that h(x;) = ;.
h(-) is parameterized with weights, often (abusing notation) denoted by A.

Note! Amortized inference is useful also outside VAEs!

Benefits:
@ The 2Nd parameters {\;}1Y; are replaced by the fixed-sized vector A.
e If N is large we may get a simpler learning problem.
@ Smoothness of k() implies regularization.
@ We only change the parameterization, not the model itself!
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VAE: Full setup
The full VAE approach:

@ p(z;) is an isotropic Gaussian distribution. @
@ p. (xi|z;) ~ Bernoulli(logits = g, (2:)), R
where g, is a DNN with weights w. q(zi | X = ha(xi)) | o
© q(zi|xi, A) ~ N(p;, 3i), \
where {u,;, 3;} is given by hx(x;).
hx is a DNN with weights A. i=1,..., N
Goal:

Learn both w and A by maximizing the ELBO:

LA w) = ~E, [log %} '
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ELBO for VAEs

Increased L(\, w) \ (1) Make samples

(3) Update w, A {zi}

v)\’w[’ /

(2) Compute gradient

@ For each x;, sample M (typically 1) e-values.
@ Calculate V., £(\, w) using the reparameterization-trick.
© Update parameters using a standard DL optimizer (like Adam).

ProbAl - 2023 Deep Bayesian Learning — VAE 6



Fun with MNIST — The model

@ The model is learned from N = 55.000 training examples.
@ Each x; is a binary vector of 784 pixel values.

@ When seen as a 28 x 28 array, each x; is a picture of a handwritten digit (“0” — “9”).
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Fun with MNIST — The model

@ The model is learned from N = 55.000 training examples.
@ Each x; is a binary vector of 784 pixel values.

@ When seen as a 28 x 28 array, each x; is a picture of a handwritten digit (“0” — “9”).

@ Encoding is done in two dimensions. p(z;) = N (02, I>).

@ The encoder network X ~ Z.
Linear log £ (x:), 2-d
/V
xi : 784 dim FRel§ Hidden, 256-d Rely Hidden, 64-d ax(2sxi, A) = N (pn (x2), Ba(x1)), 2-d

T
Linear ha(xi), 2-d
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Fun with MNIST — The model

@ The model is learned from N = 55.000 training examples.
@ Each x; is a binary vector of 784 pixel values.

@ When seen as a 28 x 28 array, each x; is a picture of a handwritten digit (“0” — “9”).

@ Encoding is done in two dimensions. p(z;) = N (02, I>).

@ The encoder network X ~~ Z.

@ The decoder network Z ~~ X is a 64 + 256 neural net with ReLU units.

2+ 2.dim Y Hidden, 64-d P8 Hidden, 256-d E°% logit(p.), 784-d — po (x: | 2:, ) — Bernoul (p), 784-d
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Code Task: VAEs in Pyro

Code Task: VAEs in Pyro
@ Learn how a VAE is coded in Pryo.

@ We provide a VAE with a linear decoder.

@ Exercise (summary):
o Define a Non-Linear Decoder, e.g., an MLP with a hidden layer and
non-linearities (e.g. Relu).
e Explore the latent space when moving from linear to non-linear
decoders with different capacity.

@ Notebook:
Day2-Evening/students_VAE. ipynb.
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Conclusions
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Recap & Conclusions

@ Bayesian Machine Learning

o Represents unobserved quantities using distributions
e Models epistemic uncertainty using p(6 | D)
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Recap & Conclusions

@ Bayesian Machine Learning

@ Variational inference

e Provides ¢(6 | \): A distributional approximation to p(@ | D)
Objective: arg miny KL (¢(6 | A\)||p(€ | D)) < arg maxx L (q¢(0 | X))
Mean-field: Divide and conquer strategy for high-dimensional posteriors
Main caveat: ¢(6 | A) underestimates the uncertainty of p(8 | D)
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Recap & Conclusions

@ Bayesian Machine Learning
@ Variational inference

@ Coordinate Ascent Variational Inference

e Analytic expressions for some models (i.e., conjugate exponential family)
o CAVlis very efficient and stable if it can be used
e In principle requires manual derivation of updating equations

@ There are tools to help (using variational message passing)
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Recap & Conclusions

@ Bayesian Machine Learning
@ Variational inference
@ Coordinate Ascent Variational Inference

@ Gradient-based Variational Inference

e Provides the tools for VI over arbitrary probabilistic models
o Directly integrates with the tools of deep learning
@ Automatic differentiation, sampling from standard distributions, and SGD

e Sampling to approximate expectations: Beware of the variance!
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Recap & Conclusions

@ Bayesian Machine Learning

@ Variational inference

@ Coordinate Ascent Variational Inference
@ Gradient-based Variational Inference

@ Probabilistic programming languages
e PPLs fuel the “build — compute — critique — repeat” - cycle through

@ ease and flexibility of modelling
@ powerful inference engines
@ efficient model evaluations

e Many available tools (Pyro, TF Probability, Infer.net, Turing.jl, ...)
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Recap & Conclusions

@ Bayesian Machine Learning
@ Variational inference
@ Coordinate Ascent Variational Inference

Gradient-based Variational Inference

(]

Probabilistic programming languages

What’s next?
e The “VI toolbox” is reaching maturity

@ From only a research area to almost a prerequisite for Probabilistic Al
@ ... yetthere are still things to explore further!

e Today’s material should suffice to read (and write!) Prob-Al papers
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