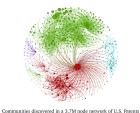
Nordic probabilistic Al school Variational Inference and Optimization

Helge Langseth, Andrés Masegosa, and Thomas Dyhre Nielsen

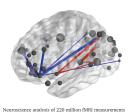
June 13, 2023

ProbAl - 2023

Introduction



[Gopalan and Blei, PNAS 2013]



euroscience analysis of 220 million fixiki measurements
[Manning et al., PLOS ONE 2014]

Analysis of 1.7M taxi trajectories, in Stan
[Kucukelbir et al., 2016]

[Eslami et al., 2016, Lake et al. 2015]

Images borrowed from David Blei et al.: Variational Inference: Foundations and Modern Methods (NeurlPS Tutorial, 2016)

Examples

Image

Probabilistic Machine Learning

Common challenges in many real-world projects:

- Modelling: Efficient representations, incorporate domain expert knowledge, . . .
- Data: Missing data, erroneous data, low signal-to-noise ratio, ...
- Scalability: Large number of variables, large number of observations, . . .
- Robustness: Statistical variations, concept drift, adversarial attacks, . . .
- Trustworthiness: Uncertainty awareness, , . . .
- Regulations: Transparency, bias, . . .

Our strategy: Probabilistic Machine Learning

- Build a probabilistic model.
- Apply probabilistic inference algorithms.

Bayesian Machine Learning

Bayesian Machine Learning = Probabilistic model + Bayesian inference

- Likelihood-part: A probabilistic model typically defined by $p(\mathbf{x} \,|\, \boldsymbol{\theta})$.
- **Prior**: $p(\theta)$ reflects our *a priori* belief about the parameters θ .

Bayesian Machine Learning

Bayesian Machine Learning = Probabilistic model + Bayesian inference

- Likelihood-part: A probabilistic model typically defined by $p(\mathbf{x} \mid \boldsymbol{\theta})$.
- **Prior**: $p(\theta)$ reflects our *a priori* belief about the parameters θ .

Now we can calculate the posterior over θ given observations $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$,

$$p(\boldsymbol{\theta} \mid \mathcal{D}) = \frac{p(\boldsymbol{\theta}) p(\mathcal{D} \mid \boldsymbol{\theta})}{p(\mathcal{D})},$$

 \dots and, e.g., the predictive distribution of a new observation x':

$$p(\mathbf{x}' \mid \mathcal{D}) = \int_{\boldsymbol{\theta}} p(\mathbf{x}' \mid \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid \mathcal{D}) d\boldsymbol{\theta}.$$

Bayesian Machine Learning

Bayesian Machine Learning = Probabilistic model + Bayesian inference

- Likelihood-part: A probabilistic model typically defined by $p(\mathbf{x} \,|\, \boldsymbol{\theta})$.
- **Prior**: $p(\theta)$ reflects our *a priori* belief about the parameters θ .

Now we can calculate the posterior over θ given observations $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$,

$$p(\boldsymbol{\theta} \mid \mathcal{D}) = \frac{p(\boldsymbol{\theta}) p(\mathcal{D} \mid \boldsymbol{\theta})}{p(\mathcal{D})},$$

 \dots and, e.g., the predictive distribution of a new observation x':

$$p(\mathbf{x}' \mid \mathcal{D}) = \int_{\boldsymbol{\theta}} p(\mathbf{x}' \mid \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid \mathcal{D}) \, \mathrm{d}\boldsymbol{\theta}.$$

Being Bayesian means maintaining a distribution over θ .

Using a point-estimate for θ is **probabilistic** (but not **Bayesian**) ML.

Example: Linear regression

A Bayesian linear regression with univariate explanatory variables:

Likelihood –
$$p(\mathcal{D} \mid \boldsymbol{\theta})$$
: $p(y_i \mid x_i, \mathbf{w}, \sigma_y^2) = \mathcal{N}\left(w_0 + w_1 \cdot x_i, \sigma_y^2\right)$

Note! The observation noise, σ_y^2 is known, so the parameter-set is simply $\theta = \{ \mathbf{w} \}$.

Prior –
$$p(\theta)$$
: $p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \sigma_w^2)$

Bayesian Linear regression - Full model:

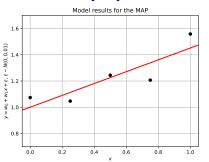
$$p(\mathcal{D}, \boldsymbol{\theta}) = p\left(\left\{y_i\right\}_{i=1}^n, \mathbf{w} \mid \left\{\mathbf{x}_i\right\}_{i=1}^n, \sigma_y^2, \sigma_w^2\right) = \underbrace{p(\boldsymbol{\theta})}_{p(\mathbf{w} \mid \sigma_w^2)} \underbrace{\prod_{i=1}^n p(y_i \mid \mathbf{w}, \mathbf{x}_i, \sigma_y^2)}_{n}$$

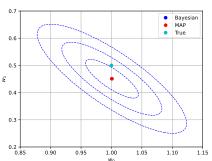
Example: Linear regression – MAP vs (fully) Bayesian

Bayes linear regression w/ some fake data:

- We have generated N=5 examples from $y_i=1.0+0.5 \cdot x_i+\epsilon_i, \ \epsilon_i \sim \mathcal{N}\left(0,0.1^2\right)$.
- Weights unknown a priori, so here we use the vague priors $w_j \sim \mathcal{N}\left(0, 100^2\right)$.

Results for the fully Bayesian model and the MAP:





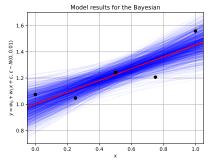
- MAP: Reasonable point estimate; No model uncertainty;
- Bayes: Model uncertainty around same MAP estimate;

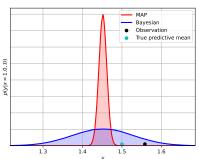
Example: Linear regression – MAP vs (fully) Bayesian

Bayes linear regression w/ some fake data:

- We have generated N=5 examples from $y_i=1.0+0.5 \cdot x_i+\epsilon_i, \, \epsilon_i \sim \mathcal{N}\left(0,0.1^2\right)$.
- Weights unknown a priori, so here we use the vague priors $w_j \sim \mathcal{N} \left(0, 100^2\right)$.

Results for the fully Bayesian model and the MAP:





- MAP: Reasonable point estimate; No model uncertainty; Predictive uncertainty degenerated to observation noise; poor fit wrt. true value and observation.
- Bayes: Model uncertainty around same MAP estimate; Captures model uncertainty well; Predictive distribution reasonable.

Bayesian inference – Summary

Bayesian inference is in principle easy using Bayes' rule:

$$p(\boldsymbol{\theta} \mid \mathcal{D}) = \frac{p(\boldsymbol{\theta}) p(\mathcal{D} \mid \boldsymbol{\theta})}{p(\mathcal{D})} = \frac{p(\boldsymbol{\theta}) p(\mathcal{D} \mid \boldsymbol{\theta})}{\int_{\boldsymbol{\theta}} p(\boldsymbol{\theta}) p(\mathcal{D} \mid \boldsymbol{\theta}) d\boldsymbol{\theta}}$$

Note! This can only be solved analytically for **some simple models** (e.g., linear regression), but typically not for any of the really interesting models.

The big plan today: Use **optimization** to approximate $p(\theta \mid \mathcal{D})$

What we want:

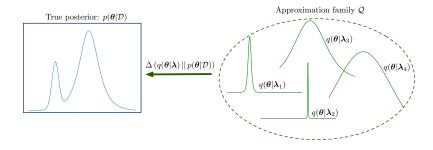
- Computationally efficient;
- Well-behaved objective:
- Easy integration with other frameworks.

What we don't want:

- No purely sampled-based techniques (like Gibbs sampling);
- No degenerate solutions (point estimators like MAP).

Approximate inference through optimization – Main idea

Variational Inference: Approximate the true posterior distribution $p(\theta \mid \mathcal{D})$ with a **variational distribution** from a tractable family of distributions \mathcal{Q} . The family is indexed by the parameters λ .



Approximate inference through optimization

- General goal: Somehow approximate $p(\theta \mid \mathcal{D})$ with a $q(\theta \mid \mathcal{D})$.
 - Note! We use $q(\theta)$ as a short-hand for $q(\theta \mid \mathcal{D})$.

Formalization of approximate inference through optimization:

Given a family of tractable distributions $\mathcal Q$ and a distance measure between distributions $\Delta,$ choose

$$\hat{q}(\boldsymbol{\theta}) = \arg\min_{q \in \mathcal{Q}} \Delta(q(\boldsymbol{\theta}) || p(\boldsymbol{\theta} | \mathcal{D})).$$

Decisions to be made:

- How to define $\Delta(\cdot||\cdot)$ so that we end up with a high-quality solution?
 - ullet How to work with $\Deltaig(q(m{ heta})\,||\,p(m{ heta}\,|\,\mathcal{D})ig)$ when we don't know what $p(m{ heta}\,|\,\mathcal{D})$ is?
- ${\cal Q}$ How to define a family of distributions ${\cal Q}$ that is both flexible enough to generate good approximations and restrictive enough to support efficient calculations?

Desiderata

To use Δ to measure the distance from an object f to an object g it would be relevant to require that Δ has the following properties:

Positivity: $\Delta(f || g) \ge 0$ and $\Delta(f || g) = 0$ if and only if f = g.

Symmetry: $\Delta(f || g) = \Delta(g || f)$

Triangle: For objects f, g, and h we have that $\Delta(f || g) \leq \Delta(f || h) + \Delta(h || g)$.

Desiderata

To use Δ to measure the distance from an object f to an object g it would be relevant to require that Δ has the following properties:

Positivity: $\Delta(f || g) \ge 0$ and $\Delta(f || g) = 0$ if and only if f = g.

Symmetry: $\Delta(f || g) = \Delta(g || f)$

Triangle: For objects f, g, and h we have that $\Delta(f || g) \leq \Delta(f || h) + \Delta(h || g)$.

Standard choice when working with probability distributions

The **Kullback-Leibler divergence** is the standard distance measure:

$$\mathrm{KL}\left(f||g\right) = \int_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) \, \log\left(\frac{f(\boldsymbol{\theta})}{g(\boldsymbol{\theta})}\right) \, \mathrm{d}\boldsymbol{\theta} = \mathbb{E}_{\boldsymbol{\theta} \sim f} \left[\log\left(\frac{f(\boldsymbol{\theta})}{g(\boldsymbol{\theta})}\right)\right].$$

Notice that while $\mathrm{KL}\left(f||g\right)$ obeys the positivity criterion, it satisfies neither symmetry nor the triangle inequality. It is thus **not a proper distance measure**.

Two alternative KL definitions: KL(q||p) or KL(p||q)?

Information-projection

- Minimizes $\mathrm{KL}\left(q||p\right) = -\mathbb{E}_{\boldsymbol{\theta} \sim q}[\log p(\boldsymbol{\theta})] \mathcal{H}_q.$
- Preference given to q that has:
 - High q-probability allocated to p-probable regions.
 - ② Small q in any region where p is small.

"
$$p(\boldsymbol{\theta}) \approx 0 \implies q(\boldsymbol{\theta}) \approx 0$$
".

High entropy (~ variance)

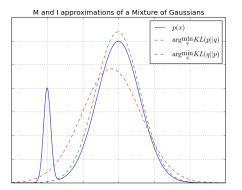
Moment-projection

- Minimizes $\mathrm{KL}\left(p||q\right) = -\mathbb{E}_{\boldsymbol{\theta} \sim p}[\log q(\boldsymbol{\theta})] \mathcal{H}_p.$
- Preference given to *q* that has:
 - High *q*-probability allocated to *p*-probable regions.
 - ② $q(\theta) > 0$ in any region where p is non-negligible. " $p(\theta) > 0 \implies q(\theta) > 0$ "
 - No explicit focus of entropy

Cheat-sheet:

- KL-divergence: $\mathrm{KL}\left(f||g\right) = \mathbb{E}_f\left[\log\left(\frac{f(\pmb{\theta})}{g(\pmb{\theta})}\right)\right] = -\mathbb{E}_f\left[\log\left(g(\pmb{\theta})\right)\right] \mathcal{H}_f.$
- Entropy: $\mathcal{H}_f = -\int_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) \log (f(\boldsymbol{\theta})) d\boldsymbol{\theta} = -\mathbb{E}_f [\log (f(\boldsymbol{\theta}))].$
- Intuition: Cheat a bit (measure-zero, limit-zero-rates, etc.) and think "If $g(\theta_0) \approx 0$, then $-\mathbb{E}_{\theta \sim f}[\log g(\theta)]$ becomes 'huge' unless $f(\theta_0) \approx 0$ " because $\lim_{x \to 0^+} \log(x)$ diverges, while $\lim_{x \to 0^+} x \cdot \log(x) = 0$.

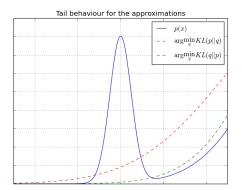
Moment and Information projection – main difference



Example: Approximating a Mix-of-Gaussians by a single Gaussian

- Moment projection optimizing $\mathrm{KL}\left(p||q\right)$ has slightly larger variance.
- ullet Similar mean values, but Information projection optimizing $\mathrm{KL}\,(q||p)$ focuses mainly on the most prominent mode.

Moment and Information projection – main difference



Example: Approximating a Mix-of-Gaussians by a single Gaussian

- Moment projection optimizing $\mathrm{KL}\left(p||q\right)$ has slightly larger variance.
- Similar mean values, but Information projection optimizing $\mathrm{KL}\,(q||p)$ focuses mainly on the most prominent mode.
- M-projection is zero-avoiding, while I-projection is zero-forcing.

Variational Bayes setup

VB uses information projections:

Variational Bayes relies on **information projections**, i.e., approximates $p(\theta \mid \mathcal{D})$ by

$$\hat{q}(\boldsymbol{\theta}) = \arg\min_{q \in \mathcal{Q}} \mathrm{KL}\left(q(\boldsymbol{\theta})||p(\boldsymbol{\theta} \mid \mathcal{D})\right)$$

Positives:

- Clever interpretation when used for Bayesian machine learning.
 - We will end up with an objective that lower-bounds the marginal log likelihood, $\log p(\mathcal{D})$.
- Very efficient when combined with cleverly chosen Q.

Negatives:

- May result in zero-forcing behaviour.
 - ullet Typical choice of ${\mathcal Q}$ can make this issue even more prominent.

Notice how we can rearrange the KL divergence as follows:

$$\frac{\mathrm{KL}\left(q(\boldsymbol{\theta})||p(\boldsymbol{\theta}\,|\,\mathcal{D})\right)}{\mathrm{E}\left[\log\frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta}\,|\,\mathcal{D})}\right]}$$

Notice how we can rearrange the KL divergence as follows:

$$| KL(q(\boldsymbol{\theta}) || p(\boldsymbol{\theta} | \mathcal{D})) | = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta} | \mathcal{D})} \right] = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta}) \cdot p(\mathcal{D})}{p(\boldsymbol{\theta} | \mathcal{D}) \cdot p(\mathcal{D})} \right]$$

Notice how we can rearrange the KL divergence as follows:

$$\frac{\mathrm{KL}\left(q(\boldsymbol{\theta})||p(\boldsymbol{\theta}\mid\mathcal{D})\right)}{\mathrm{E}\left(p(\boldsymbol{\theta}\mid\mathcal{D})\right)} = \mathbb{E}_{\boldsymbol{\theta}\sim q}\left[\log\frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta}\mid\mathcal{D})}\right] = \mathbb{E}_{\boldsymbol{\theta}\sim q}\left[\log\frac{q(\boldsymbol{\theta})\cdot p(\mathcal{D})}{p(\boldsymbol{\theta}\mid\mathcal{D})\cdot p(\mathcal{D})}\right]$$

$$= \log p(\mathcal{D}) - -\mathbb{E}_{\boldsymbol{\theta}\sim q}\left[\log\frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta},\mathcal{D})}\right]$$

Notice how we can rearrange the KL divergence as follows:

$$KL (q(\boldsymbol{\theta})||p(\boldsymbol{\theta}|\mathcal{D})) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta}|\mathcal{D})} \right] = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta}) \cdot p(\mathcal{D})}{p(\boldsymbol{\theta}|\mathcal{D}) \cdot p(\mathcal{D})} \right] \\
= \log p(\mathcal{D}) - \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta},\mathcal{D})} \right] = \log p(\mathcal{D}) - \mathcal{L}(q)$$

 $\text{Evidence Lower Bound (ELBO):} \ \ \mathcal{L}\left(q\right) = -\mathbb{E}_{\theta \sim q}\left[\log \tfrac{q(\theta)}{p(\theta,\mathcal{D})}\right] = \mathbb{E}_{\theta \sim q}\left[\log \tfrac{p(\theta,\mathcal{D})}{q(\theta)}\right] \ .$

Notice how we can rearrange the KL divergence as follows:

$$\begin{array}{lll}
\operatorname{KL}\left(q(\boldsymbol{\theta})||p(\boldsymbol{\theta}\mid\mathcal{D})\right) & = & \mathbb{E}_{\boldsymbol{\theta}\sim q}\left[\log\frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta}\mid\mathcal{D})}\right] = \mathbb{E}_{\boldsymbol{\theta}\sim q}\left[\log\frac{q(\boldsymbol{\theta})\cdot p(\mathcal{D})}{p(\boldsymbol{\theta}\mid\mathcal{D})\cdot p(\mathcal{D})}\right] \\
& = & \log p(\mathcal{D}) - -\mathbb{E}_{\boldsymbol{\theta}\sim q}\left[\log\frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta},\mathcal{D})}\right] = \frac{\log p(\mathcal{D})}{p(\boldsymbol{\theta},\mathcal{D})} - \mathcal{L}\left(q\right)
\end{array}$$

Evidence Lower Bound (ELBO):
$$\mathcal{L}\left(q\right) = -\mathbb{E}_{\boldsymbol{\theta} \sim q}\left[\log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta}, \mathcal{D})}\right] = \mathbb{E}_{\boldsymbol{\theta} \sim q}\left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta})}\right]$$
.

VB focuses on ELBO:

$$\log p(\mathcal{D}) = \mathcal{L}(q) + \mathrm{KL}(q(\boldsymbol{\theta})||p(\boldsymbol{\theta}|\mathcal{D}))$$

Since $\log p(\mathcal{D})$ is constant wrt. the distribution q it follows:

- We can minimize $\mathrm{KL}\left(q(\boldsymbol{\theta})||p(\boldsymbol{\theta}\mid\mathcal{D})\right)$ by maximizing $\mathcal{L}\left(q\right)$
- This is **computationally simpler** because it uses $p(\theta, \mathcal{D})$ and not $p(\theta \mid \mathcal{D})$.
- $\mathcal{L}(q)$ is a **lower bound** of $\log p(\mathcal{D})$ because $\mathrm{KL}(q(\theta)||p(\theta \mid \mathcal{D})) \geq 0$.

$$\rightsquigarrow$$
 Look for $\hat{q}(\boldsymbol{\theta}) = \arg \max_{q \in \mathcal{Q}} \mathcal{L}(q)$.

Notice how we can rearrange the KL divergence as follows:

$$KL (q(\boldsymbol{\theta})||p(\boldsymbol{\theta}|\mathcal{D})) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta}|\mathcal{D})} \right] = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta}) \cdot p(\mathcal{D})}{p(\boldsymbol{\theta}|\mathcal{D}) \cdot p(\mathcal{D})} \right] \\
= \log p(\mathcal{D}) - \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta},\mathcal{D})} \right] = \log p(\mathcal{D}) - \mathcal{L}(q)$$

Evidence Lower Bound (ELBO): $\mathcal{L}\left(q\right) = -\mathbb{E}_{\theta \sim q}\left[\log \frac{q(\theta)}{p(\theta,\mathcal{D})}\right] = \mathbb{E}_{\theta \sim q}\left[\log \frac{p(\theta,\mathcal{D})}{q(\theta)}\right]$.

Summary:

- We started out looking for $\arg\min_{q\in\mathcal{Q}} \mathrm{KL}\left(q(\boldsymbol{\theta})||p(\boldsymbol{\theta}\mid\mathcal{D})\right)$.
- Didn't know how to calculate $\mathrm{KL}\left(q(\boldsymbol{\theta})||p(\boldsymbol{\theta}\,|\,\mathcal{D})\right)$ because $p(\boldsymbol{\theta}\,|\,\mathcal{D})$ is unknown.
- ullet Still, we can find the optimal approximation by maximizing $\mathcal{L}\left(q
 ight)$:

$$\arg \max_{q \in \mathcal{Q}} \mathcal{L}(q) = \arg \min_{q \in \mathcal{Q}} \mathrm{KL}\left(q(\boldsymbol{\theta}) || p(\boldsymbol{\theta} | \mathcal{D})\right).$$

• It all makes sense: We aim to maximize $\mathcal{L}(q)$, which is a lower-bound of $\log p(\mathcal{D})$.

Variational Bayes w/ Mean Field

The mean field assumption

What we have ...

We now have the first building-block of the approximation:

$$\Delta(q || p) = \text{KL}(q(\boldsymbol{\theta})||p(\boldsymbol{\theta} | \mathcal{D})),$$

and avoided the issue with $p(\theta \mid \mathcal{D})$ by focusing on $\mathcal{L}(q)$.

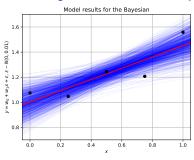
We still need the set Q:

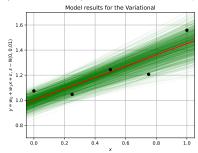
Very often you will see the **mean field assumption**, which states that $\mathcal Q$ consists of distributions that **factorize** according to the equation

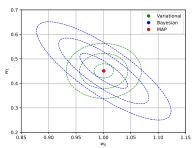
$$q(\boldsymbol{\theta}) = \prod_{i} q_i(\theta_i).$$

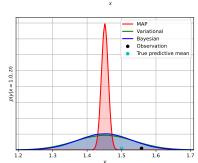
This may seem like a very restricted set, but you'll get to see some tricks later . . .

Bayes linear regression with likelihood $y_i \mid \{w_0, w_1, x_i, \sigma_y^2\} = \mathcal{N}(w_0 + w_1 x_i, \sigma_y^2)$.









Wrapping it all up: The VB algorithm under MF

Setup:

- We have observed \mathcal{D} , and can calculate the full joint $p(\theta, \mathcal{D}) = p(\theta) \cdot p(\mathcal{D} \mid \theta)$.
- ullet We use the ELBO as our objective, and assume $q(oldsymbol{ heta})$ factorizes.
- We posit a *variational family* of distributions $q_j(\cdot | \lambda_j)$, i.e., we choose the distributional form, while wanting to optimize the parameterization λ_j .

Algorithm:

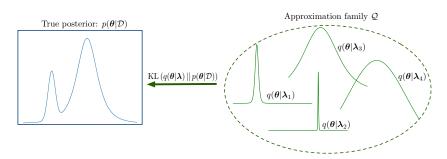
Repeat until negligible improvement in terms of $\mathcal{L}(q)$:

- For each *j*:
 - Somehow choose λ_j to maximize $\mathcal{L}\left(q\right)$, based on \mathcal{D} and $\{\lambda_i\}_{i\neq j}$.
- ② Calculate the new $\mathcal{L}(q)$.

Solving the VB optimization

Recap: What is variational inference?

VI: Approximate the true posterior distribution $p(\theta \mid \mathcal{D})$ with a variational distribution from a tractable family of distributions \mathcal{Q} . The family is indexed by the parameters λ .



Our computational challenge:

Fit the variational parameters $\hat{\lambda}$ so that the "distance" $\mathrm{KL}\left(q(\boldsymbol{\theta}\,|\,\boldsymbol{\lambda})||p(\boldsymbol{\theta}\,|\,\mathcal{D})\right)$ is minimized:

$$q(\boldsymbol{\theta} \,|\, \hat{\boldsymbol{\lambda}}) = \arg\min_{q \in \mathcal{Q}} \mathrm{KL}\left(q(\boldsymbol{\theta}) || p(\boldsymbol{\theta} \,|\, \mathcal{D})\right) = \arg\max_{\boldsymbol{\lambda}} \mathcal{L}\left(q(\boldsymbol{\theta} \,|\, \boldsymbol{\lambda})\right)$$

Solving the VB equation one θ_j at the time

We will maximize $\mathcal{L}\left(q\right) = \mathbb{E}_q\left[\log \frac{p(\theta,\mathcal{D})}{q(\theta)}\right]$ under the assumption that $q(\cdot)$ factorizes.

Let us pick one j, utilize that $q(\theta) = q_j(\theta_j) \cdot q_{\neg j}(\theta_{\neg j})$ under MF, and keep $q_{\neg j}(\cdot)$ fixed.

$$\mathcal{L}(q) = \mathbb{E}_{q} \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] - \mathbb{E}_{q} \left[\log q(\boldsymbol{\theta}) \right]$$
$$= \mathbb{E}_{q_{j}} \mathbb{E}_{q_{\neg j}} \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] - \mathbb{E}_{q_{j}} \mathbb{E}_{q_{\neg j}} \left[\log q(\boldsymbol{\theta}) \right]$$

Solving the VB equation one θ_j at the time

We will maximize $\mathcal{L}\left(q\right) = \mathbb{E}_q\left[\log \frac{p(\theta,\mathcal{D})}{q(\theta)}\right]$ under the assumption that $q(\cdot)$ factorizes.

Let us pick one j, utilize that $q(\theta)=q_j(\theta_j)\cdot q_{\neg j}(\theta_{\neg j})$ under MF, and keep $q_{\neg j}(\cdot)$ fixed.

$$\mathcal{L}(q) = \mathbb{E}_{q} \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] - \mathbb{E}_{q} \left[\log q(\boldsymbol{\theta}) \right]$$
$$= \mathbb{E}_{q_{j}} \left[\mathbb{E}_{q_{\neg j}} \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] - \mathbb{E}_{q_{j}} \mathbb{E}_{q_{\neg j}} \left[\log q(\boldsymbol{\theta}) \right] \right]$$

Notation-trick:

For the term $\mathbb{E}_{q_{\neg j}}\left[\log p(\pmb{\theta},\mathcal{D})\right]$ we simply define $\tilde{f}_j(\theta_j)$ so that

$$\log \tilde{f}_j(\theta_j) := \mathbb{E}_{q_{\neg j}} \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right].$$

Solving the VB equation one θ_j at the time

We will maximize $\mathcal{L}\left(q\right) = \mathbb{E}_q\left[\log \frac{p(\theta,\mathcal{D})}{q(\theta)}\right]$ under the assumption that $q(\cdot)$ factorizes.

Let us pick one j, utilize that $q(\pmb{\theta})=q_j(\theta_j)\cdot q_{\neg j}(\pmb{\theta}_{\neg j})$ under MF, and keep $q_{\neg j}(\cdot)$ fixed.

$$\mathcal{L}(q) = \mathbb{E}_{q} \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] - \mathbb{E}_{q} \left[\log q(\boldsymbol{\theta}) \right]$$
$$= \mathbb{E}_{q_{j}} \left[\mathbb{E}_{q_{-j}} \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] \right] - \mathbb{E}_{q_{j}} \mathbb{E}_{q_{-j}} \left[\log q(\boldsymbol{\theta}) \right]$$

Notation-trick:

For the term $\mathbb{E}_{q_{\neg j}}\left[\log p(\pmb{\theta},\mathcal{D})\right]$ we simply define $\tilde{f}_j(\theta_j)$ so that

$$\log \tilde{f}_j(\theta_j) := \mathbb{E}_{q_{\neg j}} [\log p(\boldsymbol{\theta}, \mathcal{D})].$$

We next define the *normalized version* by $f_j(\theta_j) := \frac{\tilde{f}_j(\theta_j)}{\int_{\pmb{\theta}} \tilde{f}_j(\theta_j) \, \mathrm{d} \pmb{\theta}}$. In all, this means that

$$\mathbb{E}_{q_{\neg j}} \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] = \log f_j(\theta_j) + c_1$$

We will maximize $\mathcal{L}\left(q\right) = \mathbb{E}_q\left[\log \frac{p(\theta,\mathcal{D})}{q(\theta)}\right]$ under the assumption that $q(\cdot)$ factorizes.

Let us pick one j, utilize that $\ q(\pmb{\theta})=q_j(\theta_j)\cdot q_{\lnot j}(\pmb{\theta}_{\lnot j})\$ under MF, and keep $q_{\lnot j}(\cdot)$ fixed.

$$\mathcal{L}(q) = \mathbb{E}_q \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] - \mathbb{E}_q \left[\log q(\boldsymbol{\theta}) \right]$$

$$= \mathbb{E}_{q_j} \left[\mathbb{E}_{q_{\neg j}} \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] - \mathbb{E}_{q_j} \mathbb{E}_{q_{\neg j}} \left[\log q(\boldsymbol{\theta}) \right] \right]$$

$$= \mathbb{E}_{q_j} \left[\log f_j(\theta_j) - \mathbb{E}_{q_j} \mathbb{E}_{q_{\neg j}} \left[\log q(\boldsymbol{\theta}) \right] + c_1 \right]$$

We will maximize $\mathcal{L}\left(q\right) = \mathbb{E}_q\left[\log \frac{p(\theta,\mathcal{D})}{q(\theta)}\right]$ under the assumption that $q(\cdot)$ factorizes.

Let us pick one j, utilize that $\ q(\pmb{\theta})=q_j(\theta_j)\cdot q_{\lnot j}(\pmb{\theta}_{\lnot j})\$ under MF, and keep $q_{\lnot j}(\cdot)$ fixed.

$$\mathcal{L}(q) = \mathbb{E}_q \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] - \mathbb{E}_q \left[\log q(\boldsymbol{\theta}) \right]$$

$$= \mathbb{E}_{q_j} \mathbb{E}_{q_{\neg j}} \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] - \mathbb{E}_{q_j} \mathbb{E}_{q_{\neg j}} \left[\log q(\boldsymbol{\theta}) \right]$$

$$= \mathbb{E}_{q_j} \log f_j(\theta_j) - \mathbb{E}_{q_j} \mathbb{E}_{q_{\neg j}} \left[\log q(\boldsymbol{\theta}) \right] + c_1$$

Simplification:

Notice that $\log q(\pmb{\theta}) = \log q_j(\theta_j) + \log q_{\neg j}(\pmb{\theta}_{\neg j})$ (under MF). Therefore

$$\begin{split} \mathbb{E}_{q_j} \mathbb{E}_{q_{\neg j}} \left[\log q(\boldsymbol{\theta}) \right] &= \mathbb{E}_{q_j} \mathbb{E}_{q_{\neg j}} \left[\log q_j(\theta_j) + \log q_{\neg j}(\boldsymbol{\theta}_{\neg j}) \right] \\ &= \mathbb{E}_{q_j} \mathbb{E}_{q_{\neg j}} \left[\log q_j(\theta_j) \right] + \mathbb{E}_{q_j} \mathbb{E}_{q_{\neg j}} \left[\log q_{\neg j}(\boldsymbol{\theta}_{\neg j}) \right] \\ &= \mathbb{E}_{q_j} \left[\log q_j(\theta_j) \right] + \mathbb{E}_{q_{\neg j}} \left[\log q_{\neg j}(\boldsymbol{\theta}_{\neg j}) \right] \\ &= \mathbb{E}_{q_j} \left[\log q_j(\theta_j) \right] + c_2 \ , \end{split}$$

because $\mathbb{E}_{q_{\neg j}} [\log q_{\neg j}(\boldsymbol{\theta}_{\neg j})]$ is constant wrt. $q_j(\cdot)$.

We will maximize $\mathcal{L}\left(q\right) = \mathbb{E}_q\left[\log \frac{p(\theta,\mathcal{D})}{q(\theta)}\right]$ under the assumption that $q(\cdot)$ factorizes.

Let us pick one j, utilize that $\ q(\pmb{\theta})=q_j(\theta_j)\cdot q_{\lnot j}(\pmb{\theta}_{\lnot j})\$ under MF, and keep $q_{\lnot j}(\cdot)$ fixed.

$$\mathcal{L}(q) = \mathbb{E}_{q} \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] - \mathbb{E}_{q} \left[\log q(\boldsymbol{\theta}) \right]$$

$$= \mathbb{E}_{q_{j}} \mathbb{E}_{q_{\neg j}} \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] - \mathbb{E}_{q_{j}} \mathbb{E}_{q_{\neg j}} \left[\log q(\boldsymbol{\theta}) \right]$$

$$= \mathbb{E}_{q_{j}} \log f_{j}(\theta_{j}) - \frac{\mathbb{E}_{q_{j}} \left[\log q_{j}(\theta_{j}) \right] + c}{\mathbf{E}_{q_{j}} \left[\log q_{j}(\theta_{j}) \right] + c}$$

We will maximize $\mathcal{L}\left(q\right) = \mathbb{E}_q\left[\log \frac{p(\theta,\mathcal{D})}{q(\theta)}\right]$ under the assumption that $q(\cdot)$ factorizes.

Let us pick one j, utilize that $\ q(\pmb{\theta})=q_j(\theta_j)\cdot q_{\lnot j}(\pmb{\theta}_{\lnot j})\$ under MF, and keep $q_{\lnot j}(\cdot)$ fixed.

$$\mathcal{L}(q) = \mathbb{E}_q \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] - \mathbb{E}_q \left[\log q(\boldsymbol{\theta}) \right]$$

$$= \mathbb{E}_{q_j} \mathbb{E}_{q_{\neg j}} \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] - \mathbb{E}_{q_j} \mathbb{E}_{q_{\neg j}} \left[\log q(\boldsymbol{\theta}) \right]$$

$$= \mathbb{E}_{q_j} \log f_j(\theta_j) - \mathbb{E}_{q_j} \left[\log q_j(\theta_j) \right] + c$$

Almost there:

Recall that $f_j(\theta_j)$ integrates to 1, and is per definition non-negative.

We can therefore regard it as a density function for θ_j , and get

$$\mathbb{E}_{q_j} \log f_j(\theta_j) - \mathbb{E}_{q_j} \left[\log q_j(\theta_j) \right] = -\mathbb{E}_{q_j} \left[\log q_j(\theta_j) - \log f_j(\theta_j) \right]$$
$$= -\text{KL} \left(q_j(\theta_j) || f_j(\theta_j) \right)$$

ProbAl - 2023 Solving the VB optimization 1:

We will maximize $\mathcal{L}\left(q\right) = \mathbb{E}_q\left[\log \frac{p(\theta,\mathcal{D})}{q(\theta)}\right]$ under the assumption that $q(\cdot)$ factorizes.

Let us pick one j, utilize that $\ q(\pmb{\theta})=q_j(\theta_j)\cdot q_{\lnot j}(\pmb{\theta}_{\lnot j})\$ under MF, and keep $q_{\lnot j}(\cdot)$ fixed.

$$\mathcal{L}(q) = \mathbb{E}_q \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] - \mathbb{E}_q \left[\log q(\boldsymbol{\theta}) \right]
= \mathbb{E}_{q_j} \mathbb{E}_{q_{\neg j}} \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] - \mathbb{E}_{q_j} \mathbb{E}_{q_{\neg j}} \left[\log q(\boldsymbol{\theta}) \right]
= \mathbb{E}_{q_j} \log f_j(\theta_j) - \mathbb{E}_{q_j} \left[\log q_j(\theta_j) \right] + c
= -\text{KL} \left(q_j(\theta_j) || f_j(\theta_j) \right) + c$$

We will maximize $\mathcal{L}\left(q\right) = \mathbb{E}_q\left[\log \frac{p(\theta,\mathcal{D})}{q(\theta)}\right]$ under the assumption that $q(\cdot)$ factorizes.

Let us pick one j, utilize that $q(\pmb{\theta})=q_j(\theta_j)\cdot q_{\neg j}(\pmb{\theta}_{\neg j})$ under MF, and keep $q_{\neg j}(\cdot)$ fixed.

$$\mathcal{L}(q) = \mathbb{E}_q \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] - \mathbb{E}_q \left[\log q(\boldsymbol{\theta}) \right]$$

$$= \mathbb{E}_{q_j} \mathbb{E}_{q_{\neg j}} \left[\log p(\boldsymbol{\theta}, \mathcal{D}) \right] - \mathbb{E}_{q_j} \mathbb{E}_{q_{\neg j}} \left[\log q(\boldsymbol{\theta}) \right]$$

$$= \mathbb{E}_{q_j} \log f_j(\theta_j) - \mathbb{E}_{q_j} \left[\log q_j(\theta_j) \right] + c$$

$$= - \text{KL} \left(q_j(\theta_j) || f_j(\theta_j) \right) + c$$

We get the following result:

The ELBO is maximized wrt. q_j by choosing it equal to $f_j(\theta_j)$:

$$q_j(\theta_j) = \frac{1}{Z} \exp\left(\mathbb{E}_{q_{\neg j}} \left[\log p(\boldsymbol{\theta}, \mathcal{D})\right]\right)$$

... and to get there we had to make the following assumptions:

- Mean field: $q(\theta) = \prod_i q_i(\theta_i)$, and specifically $q(\theta) = q_i(\theta_i) \cdot q_{\neg i}(\theta_{\neg i})$.
- We optimize wrt. $q_j(\cdot)$, while keeping $q_{\neg j}(\cdot)$ fixed i.e., we do coordinate ascent in probability distribution space.

VB w/ MF: The CAVI (coordinate ascent variational inference) algorithm

Setup

- We have observed \mathcal{D} , and can calculate the full joint $p(\theta, \mathcal{D})$.
- ullet We use the ELBO as our objective, and assume q(ullet) factorizes.
- We posit a *variational family* of distributions $q_j(\theta_j | \lambda_j)$, i.e., we choose the distributional form, while wanting to optimize the parameterization λ_j .

The CAVI algorithm

Repeat until negligible improvement in terms of $\mathcal{L}(q)$:

- For each j:
 - Somehow choose λ_i to maximize $\mathcal{L}(q)$, based on \mathcal{D} and $\{\lambda_i\}_{i\neq j}$.
- Calculate the new $\mathcal{L}(q)$.

Setup

- We have observed \mathcal{D} , and can calculate the full joint $p(\theta, \mathcal{D})$.
- ullet We use the ELBO as our objective, and assume q(ullet) factorizes.
- We posit a *variational family* of distributions $q_j(\theta_j | \lambda_j)$, i.e., we choose the distributional form, while wanting to optimize the parameterization λ_j .

The CAVI algorithm

Repeat until negligible improvement in terms of $\mathcal{L}\left(q\right)$:

- For each j:
 - Calculate $\mathbb{E}_{q_{-i}} [\log p(\boldsymbol{\theta}, \mathcal{D})]$ using current estimates for $q_i(\cdot | \boldsymbol{\lambda}_i), i \neq j$.
 - Choose λ_j so that $q_j(\theta_j \mid \lambda_j) \propto \exp\left(\mathbb{E}_{q_{\neg j}}\left[\log p(\boldsymbol{\theta}, \mathcal{D})\right]\right)$.
- Calculate the new $\mathcal{L}(q)$.

VB w/ MF: The CAVI (coordinate ascent variational inference) algorithm

Setup

- We have observed \mathcal{D} , and can calculate the full joint $p(\theta, \mathcal{D})$.
- ullet We use the ELBO as our objective, and assume q(ullet) factorizes.
- We posit a *variational family* of distributions $q_j(\theta_j | \lambda_j)$, i.e., we choose the distributional form, while wanting to optimize the parameterization λ_j .

The CAVI algorithm

Repeat until negligible improvement in terms of $\mathcal{L}\left(q\right)$:

- For each j:
 - Calculate $\mathbb{E}_{q_{\neg i}} [\log p(\boldsymbol{\theta}, \mathcal{D})]$ using current estimates for $q_i(\cdot | \boldsymbol{\lambda}_i), i \neq j$.
 - Choose λ_j so that $q_j(\theta_j \mid \lambda_j) \propto \exp\left(\mathbb{E}_{q_{\neg j}}[\log p(\boldsymbol{\theta}, \mathcal{D})]\right)$.
- Calculate the new $\mathcal{L}(q)$.

The procedure gives us the $q(\theta \mid \lambda) \in \mathcal{Q}$ that is closest to $p(\theta \mid \mathcal{D})$, even though we do not know what $p(\theta \mid \mathcal{D})$ is. Quite remarkable!

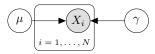
VB w/ MF: The CAVI (coordinate ascent variational inference) algorithm

Setup

- We have observed \mathcal{D} , and can calculate the full joint $p(\theta, \mathcal{D})$.
- ullet We use the ELBO as our objective, and assume $q(oldsymbol{ heta})$ factorizes.
- We posit a *variational family* of distributions $q_j(\theta_j | \lambda_j)$, i.e., we choose the distributional form, while wanting to optimize the parameterization λ_j .

A simple Gaussian model

A Gaussian model with unknown mean and precision

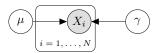


- $X_i \mid \{\mu, \gamma\} \sim \mathcal{N}(\mu, 1/\gamma)$
- $\mu \sim \mathcal{N}(0, \tau^{-1})$
- $\quad \bullet \ \, \gamma \sim \mathsf{Gamma}(\alpha,\beta)$

The probability model

$$p(\mathcal{D}, \overbrace{\mu, \gamma}^{\theta} | \tau, \alpha, \beta) = \prod_{i=1}^{N} p(x_i | \mu, \gamma^{-1}) p(\mu | 0, \tau^{-1}) p(\gamma | \alpha, \beta)$$

A Gaussian model with unknown mean and precision



- $X_i \mid \{\mu, \gamma\} \sim \mathcal{N}(\mu, 1/\gamma)$
- $\mu \sim \mathcal{N}(0, \tau^{-1})$
- $\gamma \sim \text{Gamma}(\alpha, \beta)$

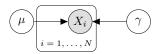
The probability model

$$p(\mathcal{D}, \overbrace{\mu, \gamma}^{\theta} | \tau, \alpha, \beta) = \prod_{i=1}^{N} p(x_i | \mu, \gamma^{-1}) p(\mu | 0, \tau^{-1}) p(\gamma | \alpha, \beta)$$

The variational model (full mean field)

$$q(\mu,\gamma) = q(\mu)q(\gamma), \quad \min_{q} \operatorname{KL}\left(q(\mu)q(\gamma)||p(\mu,\gamma|\mathcal{D})\right)$$

A Gaussian model with unknown mean and precision



• $X_i \mid \{\mu, \gamma\} \sim \mathcal{N}(\mu, 1/\gamma)$

21

- $\mu \sim \mathcal{N}(0, \tau^{-1})$
- $\gamma \sim \text{Gamma}(\alpha, \beta)$

The probability model

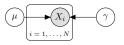
$$p(\mathcal{D}, \overbrace{\mu, \gamma}^{\theta} | \tau, \alpha, \beta) = \prod_{i=1}^{N} p(x_i | \mu, \gamma^{-1}) p(\mu | 0, \tau^{-1}) p(\gamma | \alpha, \beta)$$

The variational model (full mean field)

$$q(\mu,\gamma) = q(\mu)q(\gamma), \quad \min_{q} \operatorname{KL}\left(q(\mu)q(\gamma)||p(\mu,\gamma|\mathcal{D})\right)$$

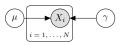
where

- $q(\mu) = \mathcal{N}(\nu_q, \tau_q^{-1})$
- $q(\gamma) = \text{Gamma}(\alpha_q, \beta_q)$



$$\log q(\mu \mid \nu_q, \tau_q^{-1}) = \mathbb{E}_{q_{\gamma}}[\log p(\mathcal{D}, \mu, \gamma)] + c =$$

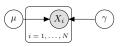
We choose the variational distribution so that



$$\log q(\mu \mid \nu_q, \tau_q^{-1}) = \mathbb{E}_{q_{\gamma}}[\log p(\mathcal{D}, \mu, \gamma)] + c =$$

$$\log q(\mu \,|\, \nu_q, \tau_q^{-1}) = -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\tau_q) - \frac{\tau_q}{2} (\mu - \nu_q)^2$$

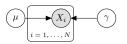
We choose the variational distribution so that



$$\log q(\mu \mid \nu_q, \tau_q^{-1}) = \mathbb{E}_{q_{\gamma}}[\log p(\mathcal{D}, \mu, \gamma)] + c =$$

$$\begin{split} \log q(\mu \,|\, \nu_q, \tau_q^{-1}) &= -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\tau_q) - \frac{\tau_q}{2} (\mu - \nu_q)^2 \\ &= -\frac{1}{2} \tau_q \mu^2 + \tau_q \nu_q \mu + c \end{split}$$

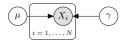
We choose the variational distribution so that



$$\begin{split} \log q(\mu \,|\, \nu_q, \tau_q^{-1}) &= \mathbb{E}_{q\gamma}[\log p(\mathcal{D}, \mu, \gamma)] + c = \\ &= -\frac{1}{2} \left(\mathbb{E}_{q\gamma}[\gamma] \cdot N + \tau \right) \mu^2 + \left(\mathbb{E}_{q\gamma}[\gamma] \sum_{i=1}^N x_i \right) \mu + c \end{split}$$

$$\begin{split} \log q(\mu \,|\, \nu_q, \tau_q^{-1}) &= -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\tau_q) - \frac{\tau_q}{2} (\mu - \nu_q)^2 \\ &= -\frac{1}{2} \tau_q \mu^2 + \tau_q \nu_q \mu + c \end{split}$$

We choose the variational distribution so that



$$\log q(\mu \mid \nu_q, \tau_q^{-1}) = \mathbb{E}_{q_{\gamma}}[\log p(\mathcal{D}, \mu, \gamma)] + c =$$

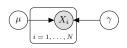
$$= -\frac{1}{2} \left(\mathbb{E}_{q_{\gamma}}[\gamma] \cdot N + \tau \right) \mu^2 + \left(\mathbb{E}_{q_{\gamma}}[\gamma] \sum_{i=1}^{N} x_i \right) \mu + c$$

Thus, we see that $q(\mu)$ is normally distributed with

- precision $\tau_q \leftarrow \mathbb{E}_{q_{\gamma}}[\gamma] \cdot N + \tau$
- \bullet mean $\nu_q \leftarrow \tau_q^{-1} \left(\mathbb{E}_{q_\gamma}[\gamma] \sum_{i=1}^N x_i \right)$

$$\log q(\mu \mid \nu_q, \tau_q^{-1}) = -\frac{1}{2}\log(2\pi) + \frac{1}{2}\log(\tau_q) - \frac{\tau_q}{2}(\mu - \nu_q)^2$$
$$= -\frac{1}{2}\tau_q\mu^2 + \tau_q\nu_q\mu + c$$

$$\log q(\mu) = \mathbb{E}_{q_{\gamma}}[\log p(\mathcal{D}, \mu, \gamma)] + c =$$



We choose the variational distribution so that

$$\begin{array}{c|c}
\mu & X_i \\
\hline
i = 1, \dots, N
\end{array}$$

$$\log q(\mu) = \mathbb{E}_{q_{\gamma}}[\log p(\mathcal{D}, \mu, \gamma)] + c =$$

$$\log p(\mathcal{D}, \mu, \gamma) = \sum_{i=1}^{N} \log p(x_i | \mu, \gamma^{-1}) + \log p(\mu) + \log p(\gamma)$$

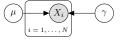
We choose the variational distribution so that

$$\begin{array}{c|c}
\mu & & \\
\hline
 & X_i \\
\hline
 & i = 1, \dots, N
\end{array}$$

$$\log q(\mu) = \mathbb{E}_{q_{\gamma}}[\log p(\mathcal{D}, \mu, \gamma)] + c =$$

$$\log p(\mathcal{D}, \mu, \gamma) = \sum_{i=1}^{N} \log p(x_i \mid \mu, \gamma^{-1}) + \log p(\mu) + \log p(\gamma)$$

We choose the variational distribution so that



$$\log q(\mu) = \mathbb{E}_{q_{\gamma}}[\log p(\mathcal{D}, \mu, \gamma)] + c = \sum_{i=1}^{N} \mathbb{E}_{q_{\gamma}}[\log p(x_i \mid \mu, \gamma^{-1})] + \log p(\mu) + c$$

$$\log p(\mathcal{D}, \mu, \gamma) = \sum_{i=1}^{N} \log p(x_i \mid \mu, \gamma^{-1}) + \log p(\mu) + \log p(\gamma)$$

We choose the variational distribution so that

$$\mu = X_i$$

$$i = 1, \dots, N$$

$$\log q(\mu) = \mathbb{E}_{q_{\gamma}}[\log p(\mathcal{D}, \mu, \gamma)] + c = \sum_{i=1}^{N} \mathbb{E}_{q_{\gamma}}[\log p(x_i \mid \mu, \gamma^{-1})] + \log p(\mu) + c$$

$$\log p(x_i | \mu, \gamma^{-1}) = \mathcal{N}(\mu, \gamma^{-1}) = -\frac{1}{2}\log(2\pi) + \frac{1}{2}\log(\gamma) - \frac{\gamma}{2}(x_i - \mu)^2$$
$$\log p(\mu) = \mathcal{N}(0, \tau^{-1}) = -\frac{1}{2}\log(2\pi) + \frac{1}{2}\log(\tau) - \frac{\tau}{2}(\mu)^2$$

hoose the variational distribution so that
$$\log q(\mu) = \mathbb{E}_{q_{\gamma}}[\log p(\mathcal{D}, \mu, \gamma)] + c = \sum_{i=1,\dots,N}^{N} \mathbb{E}_{q_{\gamma}}[\log p(x_{i} \mid \mu, \gamma^{-1})] + \log p(\mu) + c$$

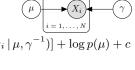
$$\log p(x_i | \mu, \gamma^{-1}) = \mathcal{N}(\mu, \gamma^{-1}) = -\frac{1}{2}\log(2\pi) + \frac{1}{2}\log(\gamma) - \frac{\gamma}{2}(x_i - \mu)^2$$
$$\log p(\mu) = \mathcal{N}(0, \tau^{-1}) = -\frac{1}{2}\log(2\pi) + \frac{1}{2}\log(\tau) - \frac{\tau}{2}(\mu)^2$$

We choose the variational distribution so that

loose the variational distribution so that
$$\log q(\mu) = \mathbb{E}_{q_{\gamma}}[\log p(\mathcal{D}, \mu, \gamma)] + c = \sum_{i=1}^{N} \mathbb{E}_{q_{\gamma}}[\log p(x_i \mid \mu, \gamma^{-1})] + \log p(\mu) + c$$

$$= \sum_{i=1}^{N} \mathbb{E}_{q_{\gamma}}\left[-\frac{\gamma}{2}(x_i - \mu)^2\right] - \frac{\tau}{2}(\mu)^2 + c$$

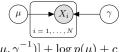
$$\log p(x_i \mid \mu, \gamma^{-1}) = \mathcal{N}(\mu, \gamma^{-1}) = -\frac{1}{2}\log(2\pi) + \frac{1}{2}\log(\gamma) - \frac{\gamma}{2}(x_i - \mu)^2$$
$$\log p(\mu) = \mathcal{N}(0, \tau^{-1}) = -\frac{1}{2}\log(2\pi) + \frac{1}{2}\log(\tau) - \frac{\tau}{2}(\mu)^2$$



$$\log q(\mu) = \mathbb{E}_{q_{\gamma}}[\log p(\mathcal{D}, \mu, \gamma)] + c = \sum_{i=1}^{N} \mathbb{E}_{q_{\gamma}}[\log p(x_{i} \mid \mu, \gamma^{-1})] + \log p(\mu) + c$$

$$= \sum_{i=1}^{N} \mathbb{E}_{q_{\gamma}} \left[-\frac{\gamma}{2} (x_{i} - \mu)^{2} \right] - \frac{\tau}{2} (\mu)^{2} + c$$

$$= -\frac{1}{2} \mathbb{E}_{q_{\gamma}}[\gamma] \left(\sum_{i=1}^{N} x_{i}^{2} + N \cdot \mu^{2} - 2\mu \sum_{i=1}^{N} x_{i} \right) - \frac{\tau}{2} (\mu)^{2} + c$$

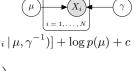


$$\log q(\mu) = \mathbb{E}_{q_{\gamma}}[\log p(\mathcal{D}, \mu, \gamma)] + c = \sum_{i=1}^{N} \mathbb{E}_{q_{\gamma}}[\log p(x_{i} | \mu, \gamma^{-1})] + \log p(\mu) + c$$

$$= \sum_{i=1}^{N} \mathbb{E}_{q_{\gamma}} \left[-\frac{\gamma}{2} (x_{i} - \mu)^{2} \right] - \frac{\tau}{2} (\mu)^{2} + c$$

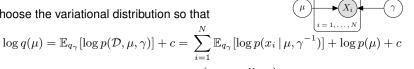
$$= -\frac{1}{2} \mathbb{E}_{q_{\gamma}}[\gamma] \left(\sum_{i=1}^{N} x_{i}^{2} + N \cdot \mu^{2} - 2\mu \sum_{i=1}^{N} x_{i} \right) - \frac{\tau}{2} (\mu)^{2} + c$$

$$= -\frac{1}{2} \left(\mathbb{E}_{q_{\gamma}}[\gamma] \cdot N + \tau \right) \mu^{2} + \left(\mathbb{E}_{q_{\gamma}}[\gamma] \sum_{i=1}^{N} x_{i} \right) \mu + c$$



$$\log q(\mu) = \mathbb{E}_{q_{\gamma}}[\log p(\mathcal{D}, \mu, \gamma)] + c = \sum_{i=1}^{N} \mathbb{E}_{q_{\gamma}}[\log p(x_i \mid \mu, \gamma^{-1})] + \log p(\mu) + c$$
$$= -\frac{1}{2} \left(\mathbb{E}_{q_{\gamma}}[\gamma] \cdot N + \tau \right) \mu^2 + \left(\mathbb{E}_{q_{\gamma}}[\gamma] \sum_{i=1}^{N} x_i \right) \mu + c$$

We choose the variational distribution so that



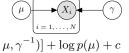
$$= -\frac{1}{2} \left(\mathbb{E}_{q_{\gamma}}[\gamma] \cdot N + \tau \right) \mu^{2} + \left(\mathbb{E}_{q_{\gamma}}[\gamma] \sum_{i=1}^{N} x_{i} \right) \mu + c$$

$$\log q(\mu \mid \nu_q, \tau_q^{-1}) = -\frac{1}{2}\log(2\pi) + \frac{1}{2}\log(\tau_q) - \frac{\tau_q}{2}(\mu - \nu_q)^2$$
$$= -\frac{1}{2}\tau_q\mu^2 + \tau_q\nu_q\mu + c$$

hoose the variational distribution so that
$$\log q(\mu) = \mathbb{E}_{q_{\gamma}}[\log p(\mathcal{D}, \mu, \gamma)] + c = \sum_{i=1}^{N} \mathbb{E}_{q_{\gamma}}[\log p(x_{i} \mid \mu, \gamma^{-1})] + \log p(\mu) + c$$
$$= -\frac{1}{2} \left(\mathbb{E}_{q_{\gamma}}[\gamma] \cdot N + \tau \right) \mu^{2} + \left(\mathbb{E}_{q_{\gamma}}[\gamma] \sum_{i=1}^{N} x_{i} \right) \mu + c$$

$$\begin{split} \log q(\mu \,|\, \nu_q, \tau_q^{-1}) &= -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\tau_q) - \frac{\tau_q}{2} (\mu - \nu_q)^2 \\ &= -\frac{1}{2} \tau_q \mu^2 + \tau_q \nu_q \mu + c \end{split}$$

We choose the variational distribution so that



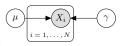
$$\log q(\mu) = \mathbb{E}_{q_{\gamma}}[\log p(\mathcal{D}, \mu, \gamma)] + c = \sum_{i=1} \mathbb{E}_{q_{\gamma}}[\log p(x_i \mid \mu, \gamma^{-1})] + \log p(\mu) + c$$
$$= -\frac{1}{2} \left(\mathbb{E}_{q_{\gamma}}[\gamma] \cdot N + \tau \right) \mu^2 + \left(\mathbb{E}_{q_{\gamma}}[\gamma] \sum_{i=1}^{N} x_i \right) \mu + c$$

Thus, we see that $q(\mu)$ is normally distributed with

- precision $\tau_q \leftarrow \mathbb{E}_{q_{\gamma}}[\gamma] \cdot N + \tau$
- mean $\nu_q \leftarrow au_q^{-1} \left(\mathbb{E}_{q_\gamma}[\gamma] \sum_{i=1}^N x_i \right)$

$$\begin{split} \log q(\mu \,|\, \nu_q, \tau_q^{-1}) &= -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\tau_q) - \frac{\tau_q}{2} (\mu - \nu_q)^2 \\ &= -\frac{1}{2} \tau_q \mu^2 + \tau_q \nu_q \mu + c \end{split}$$

$$\log q(\gamma) = \mathbb{E}_{q_{\mu}}[\log p(\mathbf{x}, \mu, \gamma)] + c$$



We choose the variational distribution so that

$$\mu = \underbrace{X_i}_{i=1,\ldots,N}$$

$$\log q(\gamma) = \mathbb{E}_{q_{\mu}}[\log p(\mathbf{x}, \mu, \gamma)] + c$$

Thus, we see that $q(\gamma)$ is Gamma distributed with

- $\alpha_q \leftarrow \frac{N}{2} + \alpha$
- $\beta_q \leftarrow \beta + \frac{1}{2} \sum_{i=1}^{N} \mathbb{E}_{q_{\mu}} [(x_i \mu)^2]$

Note that:

- $\mathbb{E}_{q_{\mu}}[(x_i \mu)^2] = x_i^2 + \mathbb{E}_{q_{\mu}}[\mu^2] 2 \cdot x_i \cdot \mathbb{E}_{q_{\mu}}[\mu]$
- $\bullet \ \mathbb{E}_{q_{\mu}}[\mu^2] = \mathsf{Var}(\mu) + \mathbb{E}_{q_{\mu}}[\mu]^2$

We choose the variational distribution so that

$$\mu = \underbrace{X_i}_{i=1,\ldots,N}$$

$$\log q(\gamma) = \mathbb{E}_{q_{\mu}}[\log p(\mathbf{x}, \mu, \gamma)] + c$$

Thus, we see that $q(\gamma)$ is Gamma distributed with

- $\alpha_q \leftarrow \frac{N}{2} + \alpha$
- $\beta_q \leftarrow \beta + \frac{1}{2} \sum_{i=1}^N \mathbb{E}_{q_\mu}[(x_i \mu)^2]$

Note that:

- $\mathbb{E}_{q_{\mu}}[(x_i \mu)^2] = x_i^2 + \mathbb{E}_{q_{\mu}}[\mu^2] 2 \cdot x_i \cdot \mathbb{E}_{q_{\mu}}[\mu]$
- $\bullet \ \mathbb{E}_{q_{\mu}}[\mu^2] = \mathsf{Var}(\mu) + \mathbb{E}_{q_{\mu}}[\mu]^2$

$$\log q(\gamma \mid \alpha_q, \beta_q) = \alpha_q \cdot \log(\beta_q) + (\alpha_q - 1) \log(\gamma) - \beta_q \cdot \gamma - \log(\Gamma(\alpha_q))$$

Monitoring the ELBO

The variational updating rules are guaranteed to never decrease the ELBO $\mathcal{L}(q)$:

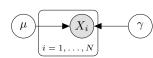
$$\mathcal{L}(q) = \underset{q}{\mathbb{E}} \log p(\mathbf{x}, \mu, \gamma \mid \tau, \alpha, \beta) - \underset{q}{\mathbb{E}} \log q(\mu, \gamma)$$

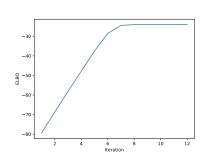
$$= \sum_{i=1}^{N} \underset{q}{\mathbb{E}} \log p(x_i \mid \mu, \gamma) + \underset{q}{\mathbb{E}} \log p(\mu \mid 0, \tau) + \underset{q}{\mathbb{E}} \log p(\gamma \mid \alpha, \beta) - \underset{q}{\mathbb{E}} \log q(\mu) - \underset{q}{\mathbb{E}} \log q(\gamma)$$

at any updating step. With some pencil pushing we arrive at a somewhat complicated but closed form expression (not shown here).

Monitoring the ELBO can be useful for

- Assessing convergence
- Doing debugging
- ...





Code Task: VB for a simple Gaussian model

- $X_i \mid \{\mu, \gamma\} \sim \mathcal{N}(\mu, 1/\gamma)$
- $\mu \sim \mathcal{N}(0, \tau)$
- $\quad \bullet \quad \gamma \sim \mathsf{Gamma}(\alpha,\beta)$

In this task you need to use mean-field, and look for $q(\mu,\gamma)=q(\mu)\cdot q(\gamma)$ that best approximates $p(\mu,\gamma\,|\,\mathcal{D})$ wrt. the VB measure $\mathrm{KL}\,(q||p)$.

Go though the notebook

- Implement the update rules for $q(\mu)$ and $q(\gamma)$ (from the slides) in the notebook.
- Experiment with the model and the data set; try changing the prior and the data generating process.

Code-task: VB for a simple Gaussian model

Code Task: VB for a simple Gaussian model



- $X_i \mid \{\mu, \gamma\} \sim \mathcal{N}(\mu, 1/\gamma)$
- $\mu \sim \mathcal{N}(0, \tau)$
- $\gamma \sim \text{Gamma}(\alpha, \beta)$

Variational Updating Equation for $q(\mu) = \mathcal{N}(\nu_q, \tau_q^{-1})$

- $\bullet \ \, \mathsf{precision} \,\, \tau_q \leftarrow \mathbb{E}_{q_\gamma}[\gamma] \cdot N + \tau$
- mean $\nu_q \leftarrow \tau_q^{-1} \left(\mathbb{E}_{q_\gamma}[\gamma] \sum_{i=1}^N x_i \right)$

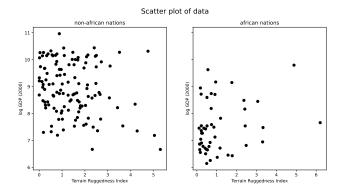
Variational Updating Equation for $q(\gamma) = \text{Gamma}(\alpha_q, \beta_q)$

- $\alpha_q \leftarrow \frac{N}{2} + \alpha$
- $\beta_q \leftarrow \beta + \frac{1}{2} \sum_{i=1}^{N} \mathbb{E}_{q_{\mu}} [(x_i \mu)^2]$

Note that:

- $\mathbb{E}_{q_{\mu}}[(x_i \mu)^2] = x_i^2 + \mathbb{E}_{q_{\mu}}[\mu^2] 2 \cdot x_i \cdot \mathbb{E}_{q_{\mu}}[\mu]$
- $\mathbb{E}_{q_{\mu}}[\mu^2] = \operatorname{Var}(\mu) + \mathbb{E}_{q_{\mu}}[\mu]^2$
- $\mathbb{E}_{q_{\gamma}}[\gamma] = \frac{\alpha_q}{\beta_q}$

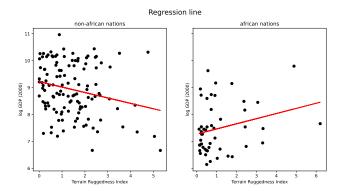
Bayesian linear regression



Relationship between topographic heterogeneity and GDP per capita

 Terrain ruggedness or bad geography is related to poorer economic performance outside of Africa.

Real Data Example

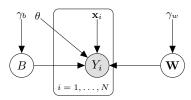


Linear Regression Model

- Negative slope for Non African Nations.
- Positive slope for African Nations.

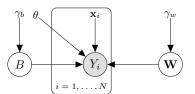
Are these relationships really supported by the data?

The Bayesian linear regression model



- Num. of data dim: M
- Num. of data inst: N
- $Y_i | \{\mathbf{w}, \mathbf{x}_i, b, \theta\} \sim \mathcal{N}(\mathbf{w}^\mathsf{T} \mathbf{x}_i + b, 1/\theta)$
- $\mathbf{W} \sim \mathcal{N}(\mathbf{0}, \gamma_w^{-1} \mathbf{I}_{M \times M})$
- $B \sim \mathcal{N}(0, \gamma_b^{-1})$

The Bayesian linear regression model

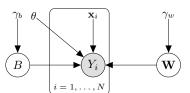


- Num. of data dim: M
- Num. of data inst: N
- $Y_i | \{\mathbf{w}, \mathbf{x}_i, b, \theta\} \sim \mathcal{N}(\mathbf{w}^\mathsf{T} \mathbf{x}_i + b, 1/\theta)$
- $\mathbf{W} \sim \mathcal{N}(\mathbf{0}, \gamma_w^{-1} \mathbf{I}_{M \times M})$
- $\bullet \ B \sim \mathcal{N}(0, \gamma_b^{-1})$

The probability model

$$p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) = \prod_{i=1}^{N} p(y_i \mid \mathbf{x}_i, \mathbf{w}, b, \theta) p(\mathbf{w} \mid \gamma_w) p(b \mid \gamma_b)$$

The Bayesian linear regression model



- Num. of data dim: M
- Num. of data inst: N
- $Y_i | \{\mathbf{w}, \mathbf{x}_i, b, \theta\} \sim \mathcal{N}(\mathbf{w}^\mathsf{T} \mathbf{x}_i + b, 1/\theta)$
- $\mathbf{W} \sim \mathcal{N}(\mathbf{0}, \gamma_w^{-1} \mathbf{I}_{M \times M})$
- $B \sim \mathcal{N}(0, \gamma_b^{-1})$

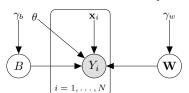
The probability model

$$p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) = \prod_{i=1}^{N} p(y_i \mid \mathbf{x}_i, \mathbf{w}, b, \theta) p(\mathbf{w} \mid \gamma_w) p(b \mid \gamma_b)$$

... after taking the log

$$\log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) = \sum_{i=1}^{N} \log p(y_i \mid \mathbf{x}_i, \mathbf{w}, b, \theta) + \log p(\mathbf{w} \mid \gamma_w) + \log p(b \mid \gamma_b)$$

The Bayesian linear regression model



- Num. of data dim: M
- Num. of data inst: N
- $Y_i | \{\mathbf{w}, \mathbf{x}_i, b, \theta\} \sim \mathcal{N}(\mathbf{w}^\mathsf{T} \mathbf{x}_i + b, 1/\theta)$
- $\mathbf{W} \sim \mathcal{N}(\mathbf{0}, \gamma_w^{-1} \mathbf{I}_{M \times M})$
- $\bullet \ B \sim \mathcal{N}(0, \gamma_b^{-1})$

The probability model

$$p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) = \prod_{i=1}^{N} p(y_i \mid \mathbf{x}_i, \mathbf{w}, b, \theta) p(\mathbf{w} \mid \gamma_w) p(b \mid \gamma_b)$$

... after taking the log

$$\log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) = \sum_{i=1}^{N} \log p(y_i \mid \mathbf{x}_i, \mathbf{w}, b, \theta) + \log p(\mathbf{w} \mid \gamma_w) + \log p(b \mid \gamma_b)$$
$$= \sum_{i=1}^{N} \log p(y_i \mid \mathbf{x}_i, \mathbf{w}, b, \theta) + \sum_{i=1}^{M} \log p(w_i \mid \gamma_w) + \log p(b \mid \gamma_b)$$

The Bayesian linear regression model



- Num. of data dim: M
- Num. of data inst: N
- $Y_i | \{\mathbf{w}, \mathbf{x}_i, b, \theta\} \sim \mathcal{N}(\mathbf{w}^\mathsf{T} \mathbf{x}_i + b, 1/\theta)$
- $\mathbf{W} \sim \mathcal{N}(\mathbf{0}, \gamma_w^{-1} \mathbf{I}_{M \times M})$
- $\bullet \ B \sim \mathcal{N}(0, \gamma_b^{-1})$

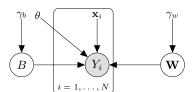
The probability model

$$p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) = \prod_{i=1}^{N} p(y_i \mid \mathbf{x}_i, \mathbf{w}, b, \theta) p(\mathbf{w} \mid \gamma_w) p(b \mid \gamma_b)$$

The variational model (full mean field)

$$q(\cdot) = q(b \mid \cdot) \prod_{i=1}^{M} q(w_i \mid \cdot)$$

The Bayesian linear regression model



- Num. of data dim: M
- Num. of data inst: N
- $Y_i | \{\mathbf{w}, \mathbf{x}_i, b, \theta\} \sim \mathcal{N}(\mathbf{w}^\mathsf{T} \mathbf{x}_i + b, 1/\theta)$
- $\mathbf{W} \sim \mathcal{N}(\mathbf{0}, \gamma_w^{-1} \mathbf{I}_{M \times M})$
- $B \sim \mathcal{N}(0, \gamma_b^{-1})$

The probability model

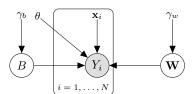
$$p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) = \prod_{i=1}^{N} p(y_i \mid \mathbf{x}_i, \mathbf{w}, b, \theta) p(\mathbf{w} \mid \gamma_w) p(b \mid \gamma_b)$$

The variational updating rules (full mean field) - with some pencil pushing

$q(w_i)$ is normally distributed with

- precision $\tau_j \leftarrow (\gamma_w + \theta \sum_{i=1}^N (x_{ij}^2))$
- mean $\mu_j \leftarrow \tau_j^{-1} \theta \sum_{i=1}^N x_{ij} (y_i (\sum_{k \neq j} x_{ik} \mathbb{E}(W_k) + \mathbb{E}(B)))$

The Bayesian linear regression model



- Num. of data dim: M
- Num. of data inst: N
- $Y_i | \{\mathbf{w}, \mathbf{x}_i, b, \theta\} \sim \mathcal{N}(\mathbf{w}^\mathsf{T} \mathbf{x}_i + b, 1/\theta)$
- $\mathbf{W} \sim \mathcal{N}(\mathbf{0}, \gamma_w^{-1} \mathbf{I}_{M \times M})$
- $\bullet \ B \sim \mathcal{N}(0, \gamma_b^{-1})$

The probability model

$$p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) = \prod_{i=1}^{N} p(y_i \mid \mathbf{x}_i, \mathbf{w}, b, \theta) p(\mathbf{w} \mid \gamma_w) p(b \mid \gamma_b)$$

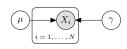
The variational updating rules (full mean field) - with some pencil pushing

q(b) is normally distributed with

- precision $\tau \leftarrow (\gamma_b + \theta N)$
- mean $\mu \leftarrow \tau^{-1}\theta \sum_{i=1}^{N} (y_i \mathbb{E}(\mathbf{W}^{\mathsf{T}})\mathbf{x}_i)$

Supplementary

$$\log q(\gamma) = \mathbb{E}_{q_{\mu}}[\log p(\mathbf{x}, \mu, \gamma)] + c =$$



We choose the variational distribution so that

$$\begin{array}{c|c}
\mu & & \\
\hline
 & X_i \\
\hline
 & i = 1, \dots, N
\end{array}$$

$$\log q(\gamma) = \mathbb{E}_{q_{\mu}}[\log p(\mathbf{x}, \mu, \gamma)] + c =$$

$$\log p(\mathbf{x}, \mu, \gamma | \tau, \alpha, \beta) = \sum_{i=1}^{N} \log p(x_i | \mu, \gamma^{-1}) + \log p(\mu | 0, \tau^{-1}) + \log p(\gamma | \alpha, \beta)$$

We choose the variational distribution so that

$$\begin{array}{c|c}
\mu & & \\
\hline
 & X_i \\
\hline
 & i = 1, \dots, N
\end{array}$$

$$\log q(\gamma) = \mathbb{E}_{q_{\mu}}[\log p(\mathbf{x}, \mu, \gamma)] + c =$$

$$\log p(\mathbf{x}, \mu, \gamma | \tau, \alpha, \beta) = \sum_{i=1}^{N} \log p(x_i | \mu, \gamma^{-1}) + \log p(\mu | 0, \tau^{-1}) + \log p(\gamma | \alpha, \beta)$$

We choose the variational distribution so that

$$\begin{array}{c|c}
\mu & & \\
\hline
 & X_i \\
\hline
 & i = 1, \dots, N
\end{array}$$

$$\log q(\gamma) = \mathbb{E}_{q_{\mu}}[\log p(\mathbf{x}, \mu, \gamma)] + c = \sum_{i=1}^{N} \mathbb{E}_{q_{\mu}}[\log p(x_i \mid \mu, \gamma^{-1})] + \log p(\gamma) + c$$

$$\log p(\mathbf{x}, \mu, \gamma | \tau, \alpha, \beta) = \sum_{i=1}^{N} \log p(x_i | \mu, \gamma^{-1}) + \log p(\mu | 0, \tau^{-1}) + \log p(\gamma | \alpha, \beta)$$

hoose the variational distribution so that
$$\log q(\gamma) = \mathbb{E}_{q_{\mu}}[\log p(\mathbf{x}, \mu, \gamma)] + c = \sum_{i=1,\dots,N}^{N} \mathbb{E}_{q_{\mu}}[\log p(x_{i} \mid \mu, \gamma^{-1})] + \log p(\gamma) + c$$

$$\log p(x_i \mid \mu, \gamma^{-1}) = \mathcal{N}(\mu, \gamma^{-1}) = -\frac{1}{2}\log(2\pi) + \frac{1}{2}\log(\gamma) - \frac{\gamma}{2}(x_i - \mu)^2$$
$$\log p(\gamma \mid \alpha, \beta) = \operatorname{Gamma}(\alpha, \beta) = \alpha \cdot \log(\beta) + (\alpha - 1)\log(\gamma) - \beta \cdot \gamma - \log(\Gamma(\alpha))$$

hoose the variational distribution so that
$$\log q(\gamma) = \mathbb{E}_{q_{\mu}}[\log p(\mathbf{x}, \mu, \gamma)] + c = \sum_{i=1,\dots,N}^{N} \mathbb{E}_{q_{\mu}}[\log p(x_{i} \mid \mu, \gamma^{-1})] + \log p(\gamma) + c$$

$$\log p(x_i \mid \mu, \gamma^{-1}) = \mathcal{N}(\mu, \gamma^{-1}) = -\frac{1}{2}\log(2\pi) + \frac{1}{2}\log(\gamma) - \frac{\gamma}{2}(x_i - \mu)^2$$
$$\log p(\gamma \mid \alpha, \beta) = \operatorname{Gamma}(\alpha, \beta) = \alpha \cdot \log(\beta) + (\alpha - 1)\log(\gamma) - \beta \cdot \gamma - \log(\Gamma(\alpha))$$

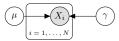
We choose the variational distribution so that

$$\begin{array}{c|c}
\mu & & \\
\hline
 & X_i \\
\hline
 & i = 1, \dots, N
\end{array}$$

$$\log q(\gamma) = \mathbb{E}_{q_{\mu}}[\log p(\mathbf{x}, \mu, \gamma)] + c = \sum_{i=1}^{N} \mathbb{E}_{q_{\mu}}[\log p(x_i \mid \mu, \gamma^{-1})] + \log p(\gamma) + c$$
$$= \frac{N}{2}\log(\gamma) - \frac{\gamma}{2}\sum_{i=1}^{N} \mathbb{E}_{q_{\mu}}[(x_i - \mu)^2] + (\alpha - 1)\log(\gamma) - \beta \cdot \gamma + c$$

$$\log p(x_i \mid \mu, \gamma^{-1}) = \mathcal{N}(\mu, \gamma^{-1}) = -\frac{1}{2}\log(2\pi) + \frac{1}{2}\log(\gamma) - \frac{\gamma}{2}(x_i - \mu)^2$$

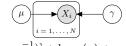
$$\log p(\gamma \mid \alpha, \beta) = \mathsf{Gamma}(\alpha, \beta) = \alpha \cdot \log(\beta) + (\alpha - 1)\log(\gamma) - \beta \cdot \gamma - \log(\Gamma(\alpha))$$



$$\log q(\gamma) = \mathbb{E}_{q_{\mu}}[\log p(\mathbf{x}, \mu, \gamma)] + c = \sum_{i=1}^{N} \mathbb{E}_{q_{\mu}}[\log p(x_{i} | \mu, \gamma^{-1})] + \log p(\gamma) + c$$

$$= \frac{N}{2} \log(\gamma) - \frac{\gamma}{2} \sum_{i=1}^{N} \mathbb{E}_{q_{\mu}}[(x_{i} - \mu)^{2}] + (\alpha - 1) \log(\gamma) - \beta \cdot \gamma + c$$

$$= \left(\frac{N}{2} + \alpha - 1\right) \log(\gamma) - \left(\frac{1}{2} \sum_{i=1}^{N} \mathbb{E}_{q_{\mu}}[(x_{i} - \mu)^{2}] + \beta\right) \cdot \gamma + c$$



$$\log q(\gamma) = \mathbb{E}_{q_{\mu}}[\log p(\mathbf{x}, \mu, \gamma)] + c = \sum_{i=1}^{N} \mathbb{E}_{q_{\mu}}[\log p(x_i \mid \mu, \gamma^{-1})] + \log p(\gamma) + c$$
$$= \left(\frac{N}{2} + \alpha - 1\right) \log(\gamma) - \left(\frac{1}{2} \sum_{i=1}^{N} \mathbb{E}_{q_{\mu}}[(x_i - \mu)^2] + \beta\right) \cdot \gamma + c$$

We choose the variational distribution so that

$$\begin{array}{c|c}
\mu & & \\
\hline
 & X_i \\
\hline
 & i = 1, \dots, N
\end{array}$$

$$\log q(\gamma) = \mathbb{E}_{q_{\mu}}[\log p(\mathbf{x}, \mu, \gamma)] + c = \sum_{i=1}^{N} \mathbb{E}_{q_{\mu}}[\log p(x_i \mid \mu, \gamma^{-1})] + \log p(\gamma) + c$$
$$= \left(\frac{N}{2} + \alpha - 1\right) \log(\gamma) - \left(\frac{1}{2} \sum_{i=1}^{N} \mathbb{E}_{q_{\mu}}[(x_i - \mu)^2] + \beta\right) \cdot \gamma + c$$

$$\log q(\gamma \mid \alpha_q, \beta_q) = \alpha_q \cdot \log(\beta_q) + (\alpha_q - 1)\log(\gamma) - \beta_q \cdot \gamma - \log(\Gamma(\alpha_q))$$

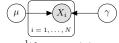
We choose the variational distribution so that

$$\begin{array}{c|c}
\mu & & \\
\hline
 & X_i \\
\hline
 & i = 1, \dots, N
\end{array}$$

$$\log q(\gamma) = \mathbb{E}_{q_{\mu}}[\log p(\mathbf{x}, \mu, \gamma)] + c = \sum_{i=1}^{N} \mathbb{E}_{q_{\mu}}[\log p(x_i \mid \mu, \gamma^{-1})] + \log p(\gamma) + c$$
$$= \left(\frac{N}{2} + \alpha - 1\right) \log(\gamma) - \left(\frac{1}{2} \sum_{i=1}^{N} \mathbb{E}_{q_{\mu}}[(x_i - \mu)^2] + \beta\right) \cdot \gamma + c$$

$$\log q(\gamma \mid \alpha_q, \beta_q) = \alpha_q \cdot \log(\beta_q) + (\alpha_q - 1) \log(\gamma) - \beta_q \cdot \gamma - \log(\Gamma(\alpha_q))$$

We choose the variational distribution so that



$$\log q(\gamma) = \mathbb{E}_{q_{\mu}}[\log p(\mathbf{x}, \mu, \gamma)] + c = \sum_{i=1}^{N} \mathbb{E}_{q_{\mu}}[\log p(x_i \mid \mu, \gamma^{-1})] + \log p(\gamma) + c$$
$$= \left(\frac{N}{2} + \alpha - 1\right) \log(\gamma) - \left(\frac{1}{2} \sum_{i=1}^{N} \mathbb{E}_{q_{\mu}}[(x_i - \mu)^2] + \beta\right) \cdot \gamma + c$$

Thus, we see that $q(\gamma)$ is Gamma distributed with

•
$$\alpha_q \leftarrow \frac{N}{2} + \alpha$$

•
$$\beta_q \leftarrow \beta + \frac{1}{2} \sum_{i=1}^N \mathbb{E}_{q_\mu}[(x_i - \mu)^2]$$

Note that:

•
$$\mathbb{E}_{q_{\mu}}[(x_i - \mu)^2] = x_i^2 + \mathbb{E}_{q_{\mu}}[\mu^2] - 2 \cdot x_i \cdot \mathbb{E}_{q_{\mu}}[\mu]$$

$$\bullet \ \mathbb{E}_{q_{\mu}}[\mu^2] = \mathsf{Var}(\mu) + \mathbb{E}_{q_{\mu}}[\mu]^2$$

$$\log q(w_j) = \mathop{\mathbb{E}}_{q \neg w_j} \log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) + c$$

We choose the variational distribution so that

$$\log q(w_j) = \mathop{\mathbb{E}}_{q \neg w_j} \log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) + c$$

$$\log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) = \sum_{i=1}^{N} \log p(y_i \mid \mathbf{x}_i, \mathbf{w}, b, \theta) + \sum_{i=1}^{M} \log p(w_i \mid \gamma_w) + \log p(b \mid \gamma_b)$$

We choose the variational distribution so that

$$\log q(w_j) = \mathop{\mathbb{E}}_{q \neg w_j} \log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) + c$$

$$\log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) = \sum_{i=1}^{N} \log p(y_i \mid \mathbf{x}_i, \mathbf{w}, b, \theta) + \sum_{i=1}^{M} \log p(w_i \mid \gamma_w) + \log p(b \mid \gamma_b)$$

We choose the variational distribution so that

$$\log q(w_j) = \underset{q \to w_j}{\mathbb{E}} \log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) + c = \sum_{i=1}^{N} \mathbb{E} \log p(y_i \mid \mathbf{x}_i, \mathbf{W}, B, \theta) + \log p(w_j \mid \gamma_w) + c$$

$$\log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) = \sum_{i=1}^{N} \log p(y_i \mid \mathbf{x}_i, \mathbf{w}, b, \theta) + \sum_{i=1}^{M} \log p(w_j \mid \gamma_w) + \log p(b \mid \gamma_b)$$

We choose the variational distribution so that

$$\log q(w_j) = \mathbb{E}_{q \to w_j} \log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) + c = \sum_{i=1}^{N} \mathbb{E} \log p(y_i \mid \mathbf{x}_i, \mathbf{W}, B, \theta) + \log p(w_j \mid \gamma_w) + c$$

The normal distribution

$$\log p(y_i \mid \mathbf{x}_i, \mathbf{w}, b, \theta) = -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\theta) - \frac{\theta}{2} (y_i - (\mathbf{w}^\mathsf{T} \mathbf{x}_i + b))^2$$
$$\log p(w_j \mid \gamma_w) = \log \mathcal{N}(w_j \mid 0, \gamma_w^{-1}) = -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\gamma_w) - \frac{\gamma_w}{2} w_j^2$$

ProbAl - 2023 Supplementary 3

We choose the variational distribution so that

$$\log q(w_j) = \mathbb{E}_{q \to w_j} \log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) + c = \sum_{i=1}^{N} \mathbb{E} \log p(y_i \mid \mathbf{x}_i, \mathbf{W}, B, \theta) + \log p(w_j \mid \gamma_w) + c$$

The normal distribution

$$\log p(y_i | \mathbf{x}_i, \mathbf{w}, b, \theta) = -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\theta) - \frac{\theta}{2} (y_i - (\mathbf{w}^\mathsf{T} \mathbf{x}_i + b))^2$$
$$\log p(w_j | \gamma_w) = \log \mathcal{N}(w_j | 0, \gamma_w^{-1}) = -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\gamma_w) - \frac{\gamma_w}{2} w_j^2$$

ProbAl - 2023 Supplementary 3

We choose the variational distribution so that

$$\log q(w_j) = \underset{q \neg w_j}{\mathbb{E}} \log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) + c = \sum_{i=1}^{N} \mathbb{E} \log p(y_i \mid \mathbf{x}_i, \mathbf{W}, B, \theta) + \log p(w_j \mid \gamma_w) + c$$
$$= -\frac{\gamma_w}{2} w_j^2 - \frac{\theta}{2} \sum_{i=1}^{N} \mathbb{E}((y_i - (\mathbf{W}^\mathsf{T} \mathbf{x}_i + B))^2) + c$$

The normal distribution

$$\log p(y_i \mid \mathbf{x}_i, \mathbf{w}, b, \theta) = -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\theta) - \frac{\theta}{2} (y_i - (\mathbf{w}^\mathsf{T} \mathbf{x}_i + b))^2$$
$$\log p(w_j \mid \gamma_w) = \log \mathcal{N}(w_j \mid 0, \gamma_w^{-1}) = -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\gamma_w) - \frac{\gamma_w}{2} w_j^2$$

ProbAl - 2023 Supplementary 3

We choose the variational distribution so that

$$\log q(w_j) = \underset{q \neg w_j}{\mathbb{E}} \log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) + c = \sum_{i=1}^{N} \mathbb{E} \log p(y_i \mid \mathbf{x}_i, \mathbf{W}, B, \theta) + \log p(w_j \mid \gamma_w) + c$$
$$= -\frac{\gamma_w}{2} w_j^2 - \frac{\theta}{2} \sum_{i=1}^{N} \mathbb{E}((y_i - (\mathbf{W}^\mathsf{T} \mathbf{x}_i + B))^2) + c$$

Expanding the square

$$(y - (\mathbf{w}^{\mathsf{T}}\mathbf{x} + b))^{2} = y^{2} + \mathbf{x}^{\mathsf{T}}\mathbf{w}\mathbf{w}^{\mathsf{T}}\mathbf{x} + b^{2} + 2\mathbf{w}^{\mathsf{T}}\mathbf{x}b - 2y\mathbf{w}^{\mathsf{T}}\mathbf{x} - 2yb$$
$$\mathbf{x}^{\mathsf{T}}\mathbf{w}\mathbf{w}^{\mathsf{T}}\mathbf{x} = x_{j}^{2}w_{j}^{2} + \sum_{h,k\neq j} x_{k}x_{h}w_{k}w_{h} + 2x_{j}w_{j}\sum_{k\neq j} x_{k}w_{k}$$

We choose the variational distribution so that

$$\log q(w_j) = \underset{q \neg w_j}{\mathbb{E}} \log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) + c = \sum_{i=1}^{N} \mathbb{E} \log p(y_i \mid \mathbf{x}_i, \mathbf{W}, B, \theta) + \log p(w_j \mid \gamma_w) + c$$
$$= -\frac{\gamma_w}{2} w_j^2 - \frac{\theta}{2} \sum_{i=1}^{N} \mathbb{E}((y_i - (\mathbf{W}^\mathsf{T} \mathbf{x}_i + B))^2) + c$$

Expanding the square

$$(y - (\mathbf{w}^{\mathsf{T}}\mathbf{x} + b))^{2} = y^{2} + \mathbf{x}^{\mathsf{T}}\mathbf{w}\mathbf{w}^{\mathsf{T}}\mathbf{x} + b^{2} + 2\mathbf{w}^{\mathsf{T}}\mathbf{x}b - 2y\mathbf{w}^{\mathsf{T}}\mathbf{x} - 2yb$$
$$\mathbf{x}^{\mathsf{T}}\mathbf{w}\mathbf{w}^{\mathsf{T}}\mathbf{x} = x_{j}^{2}w_{j}^{2} + \sum_{h,k\neq j} x_{k}x_{h}w_{k}w_{h} + 2x_{j}w_{j}\sum_{k\neq j} x_{k}w_{k}$$

We choose the variational distribution so that

$$\log q(w_j) = \underset{q \neg w_j}{\mathbb{E}} \log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) + c = \sum_{i=1}^{N} \mathbb{E} \log p(y_i \mid \mathbf{x}_i, \mathbf{W}, B, \theta) + \log p(w_j \mid \gamma_w) + c$$

$$= -\frac{\gamma_w}{2} w_j^2 - \frac{\theta}{2} \sum_{i=1}^{N} \mathbb{E}((y_i - (\mathbf{W}^\mathsf{T} \mathbf{x}_i + B))^2) + c$$

$$= -\frac{\gamma_w}{2} w_j^2 - \theta \sum_{i=1}^{N} (\frac{1}{2} x_{ij}^2 w_j^2 + w_j (\sum_{k \neq i} x_{ij} x_{ik} \mathbb{E}(W_k) + x_{ij} \mathbb{E}(B) - y x_{ij}) + c$$

Expanding the square

$$(y - (\mathbf{w}^{\mathsf{T}}\mathbf{x} + b))^{2} = y^{2} + \mathbf{x}^{\mathsf{T}}\mathbf{w}\mathbf{w}^{\mathsf{T}}\mathbf{x} + b^{2} + 2\mathbf{w}^{\mathsf{T}}\mathbf{x}b - 2y\mathbf{w}^{\mathsf{T}}\mathbf{x} - 2yb$$
$$\mathbf{x}^{\mathsf{T}}\mathbf{w}\mathbf{w}^{\mathsf{T}}\mathbf{x} = x_{j}^{2}w_{j}^{2} + \sum_{h,k\neq j} x_{k}x_{h}w_{k}w_{h} + 2x_{j}w_{j}\sum_{k\neq j} x_{k}w_{k}$$

$$\log q(w_{j}) = \underset{q \to w_{j}}{\mathbb{E}} \log p(\cdot \mid \mathbf{x}, \theta, \gamma_{w}, \gamma_{b}) + c = \sum_{i=1}^{N} \mathbb{E} \log p(y_{i} \mid \mathbf{x}_{i}, \mathbf{W}, B, \theta) + \log p(w_{j} \mid \gamma_{w}) + c$$

$$= -\frac{\gamma_{w}}{2} w_{j}^{2} - \frac{\theta}{2} \sum_{i=1}^{N} \mathbb{E}((y_{i} - (\mathbf{W}^{\mathsf{T}} \mathbf{x}_{i} + B))^{2}) + c$$

$$= -\frac{\gamma_{w}}{2} w_{j}^{2} - \theta \sum_{i=1}^{N} (\frac{1}{2} x_{ij}^{2} w_{j}^{2} + w_{j} (\sum_{k \neq j} x_{ij} x_{ik} \mathbb{E}(W_{k}) + x_{ij} \mathbb{E}(B) - y x_{ij}) + c$$

$$= -\frac{1}{2} (\gamma_{w} + \theta \sum_{k=1}^{N} (x_{ij}^{2}) w_{j}^{2} + w_{j} \theta \sum_{k=1}^{N} x_{ij} (y_{i} - (\sum_{k \neq i} x_{ik} \mathbb{E}(W_{k}) + \mathbb{E}(B))) + c$$

$$\log q(w_j) = \underset{q \neg w_j}{\mathbb{E}} \log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) + c = \sum_{i=1}^{N} \mathbb{E} \log p(y_i \mid \mathbf{x}_i, \mathbf{W}, B, \theta) + \log p(w_j \mid \gamma_w) + c$$

$$= -\frac{1}{2} (\gamma_w + \theta \sum_{i=1}^{N} (x_{ij}^2) w_j^2 + w_j \theta \sum_{i=1}^{N} x_{ij} (y_i - (\sum_{k \neq i} x_{ik} \mathbb{E}(W_k) + \mathbb{E}(B))) + c$$

We choose the variational distribution so that

$$\log q(w_j) = \underset{q \neg w_j}{\mathbb{E}} \log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) + c = \sum_{i=1}^{N} \mathbb{E} \log p(y_i \mid \mathbf{x}_i, \mathbf{W}, B, \theta) + \log p(w_j \mid \gamma_w) + c$$

$$= -\frac{1}{2} (\gamma_w + \theta \sum_{i=1}^{N} (x_{ij}^2) w_j^2 + w_j \theta \sum_{i=1}^{N} x_{ij} (y_i - (\sum_{k \neq i} x_{ik} \mathbb{E}(W_k) + \mathbb{E}(B))) + c$$

$$\log p(w \mid \mu, \tau) = \log \mathcal{N}(w \mid \mu, \tau^{-1}) = -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\tau) - \frac{\tau}{2} (w - \mu)^{2}$$
$$= -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\tau) - \frac{1}{2} \tau w^{2} - \frac{\tau}{2} \mu^{2} + w\tau \mu$$

We choose the variational distribution so that

$$\log q(w_j) = \underset{q \neg w_j}{\mathbb{E}} \log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) + c = \sum_{i=1}^{N} \mathbb{E} \log p(y_i \mid \mathbf{x}_i, \mathbf{W}, B, \theta) + \log p(w_j \mid \gamma_w) + c$$

$$= -\frac{1}{2} (\gamma_w + \theta \sum_{i=1}^{N} (x_{ij}^2) w_j^2 + w_j \theta \sum_{i=1}^{N} x_{ij} (y_i - (\sum_{k \neq j} x_{ik} \mathbb{E}(W_k) + \mathbb{E}(B))) + c$$

$$\log p(w \mid \mu, \tau) = \log \mathcal{N}(w \mid \mu, \tau^{-1}) = -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\tau) - \frac{\tau}{2} (w - \mu)^{2}$$
$$= -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\tau) - \frac{1}{2} \tau w^{2} - \frac{\tau}{2} \mu^{2} + w\tau\mu$$

We choose the variational distribution so that

$$\log q(w_j) = \underset{q \neg w_j}{\mathbb{E}} \log p(\cdot \mid \mathbf{x}, \theta, \gamma_w, \gamma_b) + c = \sum_{i=1}^{N} \mathbb{E} \log p(y_i \mid \mathbf{x}_i, \mathbf{W}, B, \theta) + \log p(w_j \mid \gamma_w) + c$$

$$= -\frac{1}{2} (\gamma_w + \theta \sum_{i=1}^{N} (x_{ij}^2) w_j^2 + w_j \theta \sum_{i=1}^{N} x_{ij} (y_i - (\sum_{k \neq i} x_{ik} \mathbb{E}(W_k) + \mathbb{E}(B))) + c$$

Thus, we see that $q(w_j)$ is normally distributed with

- precision $\tau \leftarrow (\gamma_w + \theta \sum_{i=1}^N (x_{ij}^2))$
- mean $\mu \leftarrow au^{-1} \theta \sum_{i=1}^N x_{ij} (y_i (\sum_{k \neq j} x_{ik} \mathop{\mathbb{E}}(W_k) + \mathop{\mathbb{E}}(B)))$

$$\log p(w \mid \mu, \tau) = \log \mathcal{N}(w \mid \mu, \tau^{-1}) = -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\tau) - \frac{\tau}{2} (w - \mu)^{2}$$
$$= -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\tau) - \frac{1}{2} \tau w^{2} - \frac{\tau}{2} \mu^{2} + w\tau\mu$$

$$\log q(b) = \underset{q \neg w_j}{\mathbb{E}} \log p(\cdot \mid \mathbf{W}, B, \theta, \gamma) + c = \sum_{i=1}^{N} \mathbb{E} \log p(y_i \mid \mathbf{x}_i, \mathbf{W}, \theta) + \log p(b \mid \gamma_b) + c$$

$$= \dots$$

$$= -\frac{1}{2} (\gamma_b + \theta N) b^2 + b \left(\theta \sum_{i=1}^{N} (y_i - \mathbb{E}(\mathbf{W})^\mathsf{T} \mathbf{x}_i) \right) + c$$

We choose the variational distribution so that

$$\log q(b) = \underset{q \to w_j}{\mathbb{E}} \log p(\cdot \mid \mathbf{W}, B, \theta, \gamma) + c = \sum_{i=1}^{N} \mathbb{E} \log p(y_i \mid \mathbf{x}_i, \mathbf{W}, \theta) + \log p(b \mid \gamma_b) + c$$

$$= \dots$$

$$= -\frac{1}{2} (\gamma_b + \theta N) b^2 + b \left(\theta \sum_{i=1}^{N} (y_i - \mathbb{E}(\mathbf{W})^\mathsf{T} \mathbf{x}_i) \right) + c$$

$$\begin{split} \log p(b \mid \mu, \tau) &= \log \mathcal{N}(b \mid \mu, \tau^{-1}) = -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\tau) - \frac{\tau}{2} (b - \mu)^2 \\ &= -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\tau) - \frac{1}{2} \tau b^2 - \frac{\tau}{2} \mu^2 + b\tau \mu \end{split}$$

We choose the variational distribution so that

$$\log q(b) = \underset{q \to w_j}{\mathbb{E}} \log p(\cdot \mid \mathbf{W}, B, \theta, \gamma) + c = \sum_{i=1}^{N} \mathbb{E} \log p(y_i \mid \mathbf{x}_i, \mathbf{W}, \theta) + \log p(b \mid \gamma_b) + c$$

$$= \dots$$

$$= -\frac{1}{2} (\gamma_b + \theta N) b^2 + b \left(\theta \sum_{i=1}^{N} (y_i - \mathbb{E}(\mathbf{W})^\mathsf{T} \mathbf{x}_i) \right) + c$$

Thus, we get that q(b) is normally distributed with

- precision $\tau \leftarrow (\gamma_b + \theta N)$
- mean $\mu \leftarrow au^{-1} heta \sum_{i=1}^N (y_i \mathbb{E}(\mathbf{W}^{\mathsf{T}}) \mathbf{x}_i)$

$$\log p(b \mid \mu, \tau) = \log \mathcal{N}(b \mid \mu, \tau^{-1}) = -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\tau) - \frac{\tau}{2} (b - \mu)^{2}$$
$$= -\frac{1}{2} \log(2\pi) + \frac{1}{2} \log(\tau) - \frac{1}{2} \tau b^{2} - \frac{\tau}{2} \mu^{2} + b\tau \mu$$