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Communities discovered in a 3.7M node network of U.S. Patents Neuroscience analysis of 220 million fMRI measurements

Gopalan and Blei, PNAS 2013 Manning et al,, PLOS ON

Scenes, concepts and control.

Eslami et al, 2016, Lake et al. 2015

Analysis of 1.7M taxi trajectories, in Stan

Kucukelbir et al., 2016,

Images borrowed from David Blei et al.: Variational Inference: Foundations and Modern Methods (NeurlPS Tutorial, 2016)
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Probabilistic Machine Learning

Common challenges in many real-world projects:
@ Modelling: Efficient representations, incorporate domain expert knowledge, ...
o Data: Missing data, erroneous data, low signal-to-noise ratio, . ..
@ Scalability: Large number of variables, large number of observations, ...
@ Robustness: Statistical variations, concept drift, adversarial attacks, ...
@ Trustworthiness: Uncertainty awareness, , ...
@ Regulations: Transparency, bias, ...

Our strategy: Probabilistic Machine Learning
@ Build a probabilistic model.
@ Apply probabilistic inference algorithms.
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Bayesian Machine Learning

Bayesian Machine Learning = Probabilistic model + Bayesian inference

@ Likelihood-part: A probabilistic model typically defined by p(x | 0).
@ Prior: p(0) reflects our a priori belief about the parameters 6.
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Bayesian Machine Learning

Bayesian Machine Learning = Probabilistic model + Bayesian inference

@ Likelihood-part: A probabilistic model typically defined by p(x | 0).
@ Prior: p(0) reflects our a priori belief about the parameters 6.

Now we can calculate the posterior over 8 given observations D = {x1,...,xn},
p(0)p(D]6)
0|D) ="
p@[D) p(D)

... and, e.g., the predictive distribution of a new observation x’:

p(x'| D) = / p(x | 8)p(8| D) de.
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Bayesian Machine Learning

Bayesian Machine Learning = Probabilistic model + Bayesian inference

@ Likelihood-part: A probabilistic model typically defined by p(x | 0).
@ Prior: p(0) reflects our a priori belief about the parameters 6.

Now we can calculate the posterior over 8 given observations D = {x1,...,xn},
p(0)p(D]6)
0|D) ="
p@[D) p(D)

... and, e.g., the predictive distribution of a new observation x’:

p(x'| D) = / p(x | 8)p(8| D) de.

Being Bayesian means maintaining a distribution over 6.
Using a point-estimate for 0 is probabilistic (but not Bayesian) ML.
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Example: Linear regression

A Bayesian linear regression with univariate explanatory variables:
Likelihood — p(D |0):  p(y; | zi, w,05) = N (wo + w1 - 24, 07)

Note! The observation noise, ag is known, so the parameter-set is simply 8 = {w}.

Prior — p(6): p(w) =N (0,02)

Bayesian Linear regression — Full model:

p(D|0)
p(0)
——

p(D,6) =p ({yi}iey W {xiYizy 0y, 00) = p(w o) [ [ plyi | w,xi, 07)

.
1 3
i
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Example: Linear regression — MAP vs (fully) Bayesian

Bayes linear regression w/ some fake data:
@ We have generated N = 5 examples from y; = 1.0+ 0.5 - @i + €, &; ~ N (0,0.17).
@ Weights unknown a priori, so here we use the vague priors w; ~ N (0,1007).

Results for the fully Bayesian model and the MAP:

Model results for the MAP 0.7
@ Bayesian
P - e wMAP
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@ MAP: Reasonable point estimate; No model uncertainty;

@ Bayes: Model uncertainty around same MAP estimate;
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Example: Linear regression — MAP vs (fully) Bayesian

Bayes linear regression w/ some fake data:
@ We have generated N = 5 examples from y; = 1.0+ 0.5 - @i + €, &; ~ N (0,0.17).
@ Weights unknown a priori, so here we use the vague priors w; ~ N (0,1007).

Results for the fully Bayesian model and the MAP:

Model results for the Bayesian

—— MAP

—— Bayesian

® Observation

® True predictive mean

Wo+Wix +€, € ~N(0,0.01)
plylx=1.0,D)

y=

0.0 0.2 0.4 0.6 0.8 1.0 13 1.4 15 1.6
X y

@ MAP: Reasonable point estimate; No model uncertainty; Predictive uncertainty
degenerated to observation noise: poor fit wrt. true value and observation.

@ Bayes: Model uncertainty around same MAP estimate; Captures model
uncertainty well; Predictive distribution reasonable.
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Bayesian inference — Summary

Bayesian inference is in principle easy using Bayes’ rule:

p@)p(D|6) _  p(6)p(D|6)
p(D) Jop(8)p(D]6)d6

Note! This can only be solved analytically for some simple models (e.g., linear
regression), but typically not for any of the really interesting models.

p(0|D) =

The big plan today: Use optimization to approximate p(0 | D)

What we want: What we don’t want:
@ Computationally efficient; @ No purely sampled-based
@ Well-behaved objective; techniques (like Gibbs sampling);
e Easy integration with other @ No degenerate solutions (point

frameworks. estimators like MAP).
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Variational Bayes: Approximate inference by optimization
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Approximate inference through optimization — Main idea

Variational Inference: Approximate the true posterior distribution p(@ | D) with a

variational distribution from a tractable family of distributions Q. The family is
indexed by the parameters A.

Approximation family Q
True posterior: p(6|D)
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Approximate inference through optimization

@ General goal: Somehow approximate p(6 | D) with a ¢(8 | D).
o Note! We use ¢(0) as a short-hand for ¢(6 | D).

Formalization of approximate inference through optimization:

Given a family of tractable distributions Q and a distance measure between
distributions A, choose

4(6) = argmin A(¢(6) | (6| D).

Decisions to be made:

@ How to define A(:||-) so that we end up with a high-quality solution?
o How to work with A(q(8) || p(6 | D)) when we don’t know what p(6 | D) is?

@ How to define a family of distributions Q that is both flexible enough to generate
good approximations and restrictive enough to support efficient calculations?
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Distance measure

Desiderata
To use A to measure the distance from an object f to an object g it would be relevant
to require that A has the following properties:
Positivity: A(f||g) >0and A(f||g) =0ifandonlyif f = g.

Symmetry: A(f|lg) = A(gll f)
Triangle: For objects f, g, and h we have that A(f || g) < A(f || k) + A(R]| g).
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Distance measure

Desiderata
To use A to measure the distance from an object f to an object g it would be relevant
to require that A has the following properties:
Positivity: A(f||g) >0and A(f||g) =0ifandonlyif f = g.

Symmetry: A(f|lg) = A(gll f)
Triangle: For objects f, g, and h we have that A(f || g) < A(f || k) + A(R]| g).

Standard choice when working with probability distributions

The Kullback-Leibler divergence is the standard distance measure:

L (fllg) = /f log( deo E9~f[log(fEZ§)].

Notice that while KL (f||g) obeys the positivity criterion, it satisfies neither symmetry
nor the triangle inequality. It is thus not a proper distance measure.
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Two alternative KL definitions: KL (¢||p) or KL (p||q)?

Information-projection

@ Minimizes KL (q||p) =
—Eonqg[log p(0)] — Hg.
@ Preference given to ¢ that has:
@ High g-probability allocated
to p-probable regions.
@ Small g in any region where
pis small.
“p(0) =0 = ¢q(0) = 0".
© High entropy (~ variance)

Moment-projection

@ Minimizes KL (p||q) =
— Eo~p[logq(8)] — Hp.
@ Preference given to ¢ that has:
@ High g-probability allocated
to p-probable regions.
@ ¢(6) > 0in any region
where p is non-negligible.
“p(@) >0 = ¢(0) > 0"
© No explicit focus of entropy

Cheat-sheet:

o KL-divergence: KL (f||g) =
e Entropy: H; = — [, f(0)

£y [log (£9))] = —Ey llog (9(6))] — H;.
I

log (£(0)) d6 = —E [log (f(8))

@ Intuition: Cheat a bit (measure-zero, limit-zero-rates, etc.) and think

“If g(60) =~ 0, then — Ee~.¢[log g(0)] becomes ‘huge’ unless f(6o) ~ 0”

because lim,_,+ log(x) diverges, while lim,_,,+ z - log(z) = 0.
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Moment and Information projection — main difference

M and | approximations of a Mixture of Gaussians

— i)
8 [ d - - argminKL(p|lq)

- - argMinKL(gl|p)

Example: Approximating a Mix-of-Gaussians by a single Gaussian
@ Moment projection — optimizing KL (p||q) — has slightly larger variance.

@ Similar mean values, but Information projection — optimizing KL (¢||p) — focuses
mainly on the most prominent mode.
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Moment and Information projection — main difference

Tail behaviour for the approximations

— i)
- - argminKL(p|lq)

- - argMinKL(gl|p)

Example: Approximating a Mix-of-Gaussians by a single Gaussian
@ Moment projection — optimizing KL (p||q) — has slightly larger variance.

@ Similar mean values, but Information projection — optimizing KL (¢||p) — focuses
mainly on the most prominent mode.

@ M-projection is zero-avoiding, while I-projection is zero-forcing.
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Variational Bayes setup
VB uses information projections:

Variational Bayes relies on information projections, i.e., approximates p(6 | D) by

4(8) = arg min KL (¢(8)||p(6 [ D))

@ Positives:
o Clever interpretation when used for Bayesian machine learning.
@ We will end up with an objective that lower-bounds the marginal log likelihood, log p(D).

o Very efficient when combined with cleverly chosen Q.

@ Negatives:
e May result in zero-forcing behaviour.
@ Typical choice of Q can make this issue even more prominent.
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ELBO: Evidence Lower-BOund

Notice how we can rearrange the KL divergence as follows:

KL (¢(0)/[p(0|D)) = Eo~g [log p(%(%)}
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ELBO: Evidence Lower-BOund

Notice how we can rearrange the KL divergence as follows:

a0 1 oy _40) - p(D)
p(ewﬂ = Fo~a {1 & p(6]D) -p(DJ

KL(¢(0)[p(8]|D)) = Eow, [log
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ELBO: Evidence Lower-BOund

Notice how we can rearrange the KL divergence as follows:

KL@O)IOID) = Foy [log 00| = Bon, [1ox A0 D]
= logp(D) — —Equ [log p(qe(eé)}
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ELBO: Evidence Lower-BOund

Notice how we can rearrange the KL divergence as follows:

KL@@)pOID) = Eovy |log 505 | = Bavo s G0
— 10g2(D) - ~Eov, |10z A0 ] — logn(D) - £(a

Evidence Lower Bound (ELBO): £ (q) = —Eg~q [log ‘1(79))] =Eony [log ”E}”’D)] :
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ELBO: Evidence Lower-BOund

Notice how we can rearrange the KL divergence as follows:

KL@@)pOID) = Eovy |log 505 | = Bavo s G0
— 10g2(D) - ~Eov, |10z A0 ] — logn(D) - £(a

Evidence Lower Bound (ELBO): £ (q) = —Eg~q [log %] =Eony [log ”E}”’D)] :

VB focuses on ELBO:

logp(D) = L(q) + KL (q(0)|p(6]D))
Since logp(D) is constant wrt. the distribution ¢ it follows:

@ We can minimize KL (q(0)||p(@ | D)) by maximizing L (q)
@ This is computationally simpler because it uses p(6, D) and not p(0 | D).
@ L(q) is alower bound of logp(D) because KL (¢(8)||p(8| D)) > 0.

~ Look for §(0) = argmaxqco L (q).
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ELBO: Evidence Lower-BOund

Notice how we can rearrange the KL divergence as follows:

KL (¢(0)|[p(@|D)) = Eo~yg [log (9(?)@)} Eo~g {log %}
= logp(D) — —Fgry [log p(qe(ﬁl))):| = logp(D) — L(q)

Evidence Lower Bound (ELBO): £ (q) = —Eg~q [log a8 ] Eonyg [log D)] .

Summary:
@ We started out looking for arg mingco KL (¢(0)||p(0 | D)).
@ Didn’t know how to calculate KL (¢(0)||p(@ | D)) because p(8 | D) is unknown.

@ Still, we can find the optimal approximation by maximizing £ (q) :
argmax £ (¢) = argmin KL (¢(8)||p(6 | D)) -

@ It all makes sense: We aim to maximize £ (q), which is a lower-bound of log p(D).
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Variational Bayes w/ Mean Field
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The mean field assumption

We now have the first building-block of the approximation:

Algqllp) = KL (¢()|Ip(0 | D)) ,

and avoided the issue with p(@ | D) by focusing on L (g).

We still need the set O:

Very often you will see the mean field assumption, which states that Q consists of
distributions that factorize according to the equation

q(6) = qu- (6:) -

This may seem like a very restricted set, but you’ll get to see some tricks later . ..
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VB-MF example

“sanity

Bayes linear regression with likelihood y; | {wo, w1, i, 05} = N(wo + w1 x4, 07).

Model results for the Bayesian

ecC

wo + wix + €, € ~ N(0,0.01)

y=

07
@ \Variational
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MAP
06
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g
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02
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wo

Wo+wix +€, € ~N(0,0.01)

y=

=1.0,D)

plylx

Model results for the Variational
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® Observation
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Variational Bayes w/ Mean Field




Wrapping it all up: The VB algorithm under MF

@ We have observed D, and can calculate the full joint p(6, D) = p(0) - p(D | 9).

@ We use the ELBO as our objective, and assume ¢(8) factorizes.

@ We posit a variational family of distributions g; (- | A;), i.e., we choose the
distributional form, while wanting to optimize the parameterization ;.

Algorithm:

Repeat until negligible improvement in terms of £ (q):
@ For each j:
e Somehow choose A; to maximize L (g), based on D and {\;};.
@ Calculate the new £ (q).
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Solving the VB optimization
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Recap: What is variational inference?

VI: Approximate the true posterior distribution p(0 | D) with a variational distribution
from a tractable family of distributions Q. The family is indexed by the parameters A.

Approximation family Q

True posterior: p(8|D) - ~
- N(“S) .
\
\
K

// “‘
L (¢(6|)) || p(6|D)) ‘/ J\ a(81A0),
1
| q(6|A1) !
) \L !
N h /
\ a(8122)

Our computational challenge:
Fit the variational parameters X so that the “distance” KL (¢(6 | A)||p(6 | D))

minimized:
(0| A) = argmin KL (¢(6)||p(0 | D)) = arg max £ (¢(6 | X))
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Solving the VB equation one §; at the time

p(6,D)
q(8)

We will maximize L (q) =E, [log ] under the assumption that ¢(-) factorizes.
Let us pick one j, utilize that ¢(0) = ¢;(0;) - ¢-;(0-;) under MF, and keep ¢-;(-) fixed.

L (q)

Eq [logp(0,D)] — Eq [logq(0)]

= Eq]' Eqﬂj [IOgP(OuD)] - quEq—*j [10g (I(e)]
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Solving the VB equation one §; at the time

p(6,D)
q(8)

We will maximize L (q) =E, [log ] under the assumption that ¢(-) factorizes.
Let us pick one j, utilize that ¢(0) = ¢;(0;) - ¢-;(0-;) under MF, and keep g-;(-) fixed.
L(q) = Eq [logp(0,D)] - Eq [logq(0)]

= Eq]' ]E‘Z—‘j [logp(e,D)] - quEq—*j [10g (I(e)]

Notation-trick: .
For the term E,_; [log p(8, D)] we simply define f;(6;) so that

log f;(6;) := Eq_, [log p(6,D)] -
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Solving the VB equation one §; at the time

p(6,D)
q(8)

We will maximize L (q) =E, [log ] under the assumption that ¢(-) factorizes.
Let us pick one j, utilize that ¢(0) = ¢;(0;) - ¢-;(0-;) under MF, and keep g-;(-) fixed.
L(q) = Eq [logp(0,D)] - Eq [logq(0)]

= Eq]' ]E‘Z—‘j [logp(e,D)] - quEq—*j [10g (I(e)]

Notation-trick: .
For the term E,_; [log p(8, D)] we simply define f;(6;) so that

log f;(6;) := Eq_, [log p(6, D)] .
We next define the normalized version by f;(6;) = £3(6;)

T Jo Fi(65)d6°
In all, this means that

Eq_, [logp(6,D)] = log f;(6;) + c1
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Solving the VB equation one §; at the time

p(6,D)
q(8)

We will maximize L (q) =E, [log ] under the assumption that ¢(-) factorizes.
Let us pick one j, utilize that ¢(0) = ¢;(0;) - ¢-;(0-;) under MF, and keep g-;(-) fixed.
L(q) = Eq [logp(8,D)] - E, [logq(0)]
= Ky Eq; [logp(0,D)] —EqE,; [logq(0)]

Eq; 1og f5(0;) — Eq;E,; [logq()] +c
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Solving the VB equation one §; at the time

We will maximize £ (q) = [log p(6, D)] under the assumption that ¢(-) factorizes.

Let us pick one j, utilize that ¢(0) = ¢;(0;) - ¢-;(0-;) under MF, and keep g-;(-) fixed.
L(g) = Eq [logp(6,D)] — Eq [logq(0)]
= Eq]' ]E‘I—q‘ [IOgP(OuD)] - quEq—*j [10g (I(e)]

Eq]. lngj(Qj) - quEqﬂj [1qu(9)] ta

Simplification:
Notice that log ¢(6) = log ¢;(6;) + log g-;(0-;) (under MF). Therefore
EQj Eqﬂj [10g q(e)] = EqJ' ]E(Iﬁj [IOg q; (HJ) + 1Og q-j (0“3' )}

Eq]‘ ]Eqﬁj DOg q; (gj)} + quEqﬁJ DOg q-j (eﬁj)]
Eq]‘ [IOg q; (ej)] + Eqﬁ_j DOg q-j (eﬁj)]
= Ey [logg;(0;)] +c2 ,

because E,_; [log ¢-;(0-;)] is constant wrt. g;(-).
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Solving the VB equation one §; at the time

p(6,D)
q(8)

We will maximize L (q) =E, [log ] under the assumption that ¢(-) factorizes.
Let us pick one j, utilize that ¢(0) = ¢;(0;) - ¢-;(0-;) under MF, and keep g-;(-) fixed.
L(q) = Eq [logp(8,D)] - E, [logq(0)]
= Eq Eq; [logp(6,D)] —Eq;E,_; [logq(8)]

Ey; log f;(0;) — Eqg, [log g;(6;)] + ¢
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Solving the VB equation one §; at the time

p(6,D)
q(8)

We will maximize L (q) =E, [log ] under the assumption that ¢(-) factorizes.
Let us pick one j, utilize that ¢(0) = ¢;(0;) - ¢-;(0-;) under MF, and keep g-;(-) fixed.
L(q) = Eq [logp(0,D)] - Eq [logq(0)]
= Eg; Eq; [logp(0,D)] —Eq,E, ; [logq(6)]

Ey, log f;(0;) — Eq, [logq;(6;)] +c

Almost there:
Recall that f;(6;) integrates to 1, and is per definition non-negative.

We can therefore regard it as a density function for 6;, and get
Eq; log f;(0;) — Eq, [logg;(0;)] = —Eg; [logq;(0;) —log £;(0;)]

— KL (g;(6)11;(65))
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Solving the VB equation one §; at the time

p(6,D)
q(8)

We will maximize L (q) =E, [log ] under the assumption that ¢(-) factorizes.
Let us pick one j, utilize that ¢(0) = ¢;(0;) - ¢-;(0-;) under MF, and keep g-;(-) fixed.
L(q) = Eq [logp(0,D)] - E, [logq(0)]
= Eq Eq; [logp(6,D)] —Eq;E,_; [logq(8)]
Eq; log fj(0;) — Eq; [logq;(0;)] + ¢

—KL (¢;(05)[1£;(65)) + ¢
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Solving the VB equation one §; at the time

p(6,D)
q(8)

We will maximize L (q) =E, [log ] under the assumption that ¢(-) factorizes.
Let us pick one j, utilize that ¢(0) = ¢;(0;) - ¢-;(0-;) under MF, and keep g-;(-) fixed.
L(q) = Eq [logp(8,D)] - E, [logq(0)]
= Eq Eq; [logp(6,D)] —Eq;E,_; [logq(8)]
Eq; log fj(0;) — Eq; [logq;(0;)] + ¢

= —KL(g;(0)Ilf:(0;)) + ¢

We get the following result:

The ELBO is maximized wrt. ¢; by choosing it equal to f;(6;):

43(65) =  exp (E,., [l0g p(6, D))

... and to get there we had to make the following assumptions:
@ Mean field: ¢(8) = [T, ¢:(9:), and specifically ¢(8) = q;(0;) - g-;(6-;) .
@ We optimize wrt. ¢;(-), while keeping ¢-;(-) fixed —i.e., we do coordinate ascent in
probability distribution space.
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VB w/ MF: The CAVI (coordinate ascent variational inference) algorithm

@ We have observed D, and can calculate the full joint p(6, D).
@ We use the ELBO as our objective, and assume ¢(8) factorizes.

@ We posit a variational family of distributions ¢;(6; | A;), i.e., we choose the
distributional form, while wanting to optimize the parameterization ;.

The CAVI algorithm

Repeat until negligible improvement in terms of £ (¢):
@ For each j:
e Somehow choose A; to maximize £ (q), based on D and {\; }i;.
@ Calculate the new L (gq).
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VB w/ MF: The CAVI (coordinate ascent variational inference) algorithm

@ We have observed D, and can calculate the full joint p(6, D).
@ We use the ELBO as our objective, and assume ¢(8) factorizes.

@ We posit a variational family of distributions ¢;(6; | A;), i.e., we choose the
distributional form, while wanting to optimize the parameterization ;.

The CAVI algorithm

Repeat until negligible improvement in terms of £ (¢):
@ For each j:

o Calculate E,_; [log p(6, D)] using current estimates for ¢; (- | Ai), i # j.
e Choose A, so that ¢;(6; | Aj) o« exp (Eq_; [log p(0, D)]).

@ Calculate the new L (q).
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VB w/ MF: The CAVI (coordinate ascent variational inference) algorithm

@ We have observed D, and can calculate the full joint p(6, D).
@ We use the ELBO as our objective, and assume ¢(8) factorizes.

@ We posit a variational family of distributions ¢;(6; | A;), i.e., we choose the
distributional form, while wanting to optimize the parameterization ;.

The CAVI algorithm

Repeat until negligible improvement in terms of £ (¢):
@ For each j:

o Calculate E,_, [log p(6, D)] using current estimates for ¢; (- | A:), i # j.
o Choose A; so that ¢;(6; | A;) o exp (E,_ [logp(6, D)]).

@ Calculate the new L (q).

The procedure gives us the ¢(0 | A\) € Q that is closest to p(8 | D), even though we do
not know what p(0 | D) is. Quite remarkable!
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VB w/ MF: The CAVI (coordinate ascent variational inference) algorithm

@ We have observed D, and can calculate the full joint p(6, D).
@ We use the ELBO as our objective, and assume ¢(8) factorizes.

@ We posit a variational family of distributions ¢;(6; | A;), i.e., we choose the
distributional form, while wanting to optimize the parameterization ;.
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|
0.2 1 A
t

0.14

0.0 T T T T — T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
Wo
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A simple Gaussian model
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VB for a simple Gaussian model

A Gaussian model with unknown mean and precision
0 @ 0 © Xi|{m} ~N(p1/7)
o u~N(O,771"
@ v ~ Gamma(a, §)
The probability model

6 N
p(D. 77| e, B) = [[ ol oy~ e 0,77 p(v| @, B)

=1
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VB for a simple Gaussian model

A Gaussian model with unknown mean and precision
0 @ 0 © Xi[{m, v} ~N(p1/7)
@ u~N(©O,771
@ v ~ Gamma(a, f)
The probability model
0 N
A= - -
p(D, 77 |y, 8) = [ [ (@i |,y p(u[ 0,7 )p(y | @, B)
=1

The variational model (full mean field)

q(, ) = q(w)q(v), mqinKL (a(w)g(Vlp(k, vID))
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VB for a simple Gaussian model

A Gaussian model with unknown mean and precision

0 @ 0 © Xi|{m} ~N(p1/7)
@ u~N(©O,771
@ v ~ Gamma(a, f)

The probability model

6 N
p(D. 77|, B) = [[ ol |y~ )p( | 0.7~ p(v| @, B)

=1
The variational model (full mean field)

q(, ) = q(w)q(v), mqinKL (a(w)g(Vlp(k, vID))

where
® q(n) :N(Vqﬂ'q_l)
® q(y) = Gamma(ayg, 8,)



VB for simple Gaussian model: updating ¢(u)

We choose the variational distribution so that

log q(1t| vy, 74 ') = Eq, [log p(D, p1,7)] + ¢ =
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VB for simple Gaussian model: updating ¢(u)

We choose the variational distribution so that

log q(1t| vy, 74 ') = Eq, [log p(D, p1,7)] + ¢ =

Recall the normal distribution

1

_ 1 T
log q(p | v, 7y ") = —3 log(2m) + 5 log(re) — o (1 = v4)°
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VB for simple Gaussian model: updating ¢(u)

We choose the variational distribution so that

log q(1t| vy, 74 ') = Eq, [log p(D, p1,7)] + ¢ =

Recall the normal distribution

_ 1 1 i
logq(p | v, 7y ") = —3 log(2m) + 5 log(re) — o (1 = vg)”

= 757{1/12 + TqVqh + C
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VB for simple Gaussian model: updating ¢(u)

We choose the variational distribution so that

log q(1t| v, 73 1) = Eq, [log p(D, 11,7)] + ¢ =

=5 (B b N +7) i+ (E b Z) pte

Recall the normal distribution

_ 1 1 i
log g(st | va, 75 ") = — 3 log(2m) + 3 log(ra) — (s — vy)?

= 757{1/12 + TqVqh + C
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VB for simple Gaussian model: updating ¢(u)

We choose the variational distribution so that

log q(1t| v, 73 1) = Eq, [log p(D, 11,7)] + ¢ =
.
1
= L @b Nt (E b Z) pte

Thus, we see that ¢(u) is normally distributed with
@ precision 7, <~ Eo [7] - N + 7

@ mean v, « 7, " (I[*Zq7 My, xz)

Recall the normal distribution

_ 1 1 i
log (st | va, 75 ") = — 3 log(2m) + 3 log(ra) — (s — vy)*

= 757{1/1,2 + TqVqh + C
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VB for simple Gaussian model: updating ¢(u)

NN
We choose the variational distribution so that Gu? @

log q(11) = Eq, [log p(D, p,¥)] + ¢ =
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VB for simple Gaussian model: updating ¢(u)

NN
We choose the variational distribution so that @u? @

log q(11) = Eq, [log p(D, p,¥)] + ¢ =

Recall

N
logp(D, 11, 7) = Y logp(w: | 1,7~") + log p() + log p(7)

=1
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VB for simple Gaussian model: updating ¢(u)

NN
We choose the variational distribution so that @u? @

log q(11) = Eq, [log p(D, p,¥)] + ¢ =

Recall

N
logp(D, 11, 7) = Y logp(w: | 1,7~") + log p() + log p(7)

=1
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VB for simple Gaussian model: updating ¢(u)

NN
We choose the variational distribution so that @u? @

N
log q(1) = Eq, [log p(D, ;7)) + ¢ = Y By, [logp(a: | 1,7 ™")] + log p(p) + ¢

=1

Recall

N
logp(D, 11, 7) = Y logp(w: | 1,7~") + log p() + log p(7)

=1
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VB for simple Gaussian model: updating ¢(u)

NN
We choose the variational distribution so that @u? @

N
log q(1) = Eq, [log p(D, ;7)) + ¢ = Y By, [logp(a: | 1,7 ™")] + log p(p) + ¢

=1

Recall

2

N - 1 1
log p(wi | 1,y ™") = N(p,v™") = =5 log(2m) + 5 log(y) — o (@i — )’

log () = N0, 7") = — log(2m) +  log(r) — = ()

|3
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VB for simple Gaussian model: updating ¢(u)

NN
We choose the variational distribution so that @u? @

N
log q(1) = Eq, [log p(D, ;7)) + ¢ = Y By, [logp(a: | 1,7 ™")] + log p(p) + ¢

=1

Recall

N - 1 1
log p(wi | 1,y ™") = N(p,v™") = =5 log(2m) + 5 log(y) — o (@i — )’

log p() = (0, 7") = — log(2m) + 3 log(r) — = ()

| S
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VB for simple Gaussian model: updating ¢(u)

NN
We choose the variational distribution so that @u? @

N
log q(1) = Eq, [log p(D, ;)] + ¢ = Y By, [log p(as | 1,7~ )] + log p() + ¢

i=1

= _XN:EM [—%(fvi - M)Q} - %(u)2 +e

Recall
_ _ 1 1
log p(w: | 1,7 ™") = N, v™") = — log(2m) + 5 log(7) — % (a: — )*
_ 1 1
log p(u) = N(0,7") = — log(2m) + 7 log(r) — Z ()
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VB for simple Gaussian model: updating ¢(u)

NN
We choose the variational distribution so that Gu? @

N
log q(1) = Eq, [log p(D, ;7)) + ¢ = Y By, [logp(a: | 1,7 ™")] + log p(p) + ¢
N i=1
:EE 2= n?] = Z(w’ +c
1 (i ?+N‘/A22ﬂixi)T(ﬂ)2+C
2" - 2 2

ProbAl - 2023 A simple Gaussian model
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VB for simple Gaussian model: updating ¢(u)

NN
We choose the variational distribution so that Gu? @

N
log q(1) = Eq, [log p(D, ;7)) + ¢ = Y By, [logp(a: | 1,7 ™")] + log p(p) + ¢

=1
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VB for simple Gaussian model: updating ¢(u)

NN
We choose the variational distribution so that Gu? @

N
log q(1) = Eq, [log p(D, ;7)) + ¢ = Y By, [logp(a: | 1,7 ™")] + log p(p) + ¢

=1

= 7% (EQV[’Y] N+T)[L2+ (EQW[’Y]211> /L+C
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VB for simple Gaussian model: updating ¢(u)

NN
We choose the variational distribution so that @u? @

N
log q(1) = Eq, [log p(D, ;7)) + ¢ = Y By, [logp(a: | 1,7 ™")] + log p(p) + ¢

=1

= *% (Eqw['Y]'NJFT)ﬂzJF (qu[’Y];%) Htc

Recall the normal distribution

_ 1 1 i
log (st | va, 75 ") = — 3 log(2m) + 3 log(ra) — (s — vy

19
=37k + TqVglt + C
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VB for simple Gaussian model: updating ¢(u)

NN
We choose the variational distribution so that @u? @

N
log q(1) = Eq, [log p(D, ;7)) + ¢ = Y By, [logp(a: | 1,7 ™")] + log p(p) + ¢

=1

_ 7% (E% - N+ 7_) /1,2 + <E(,ﬂ [v] Z :1:,¢> w4+ c

i

Recall the normal distribution

_ 1 1 i
log (st | va, 75 ") = — 3 log(2m) + 3 log(ra) — (s — vy

= 757{1/1,2 + TqVqh + C
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VB for simple Gaussian model: updating ¢(u)

NN
We choose the variational distribution so that @u? @

N
log q(1) = Eq, [log p(D, ;7)) + ¢ = Y By, [logp(a: | 1,7 ™")] + log p(p) + ¢

=1
1 N
=5 o, h]-N+7) i’ + (h Y ) e
Thus, we see that ¢(u) is normally distributed with
@ precision 7, <~ Eq [7] - N 47

® meanv, + 7, " (I[Eq7 My, xz)

Recall the normal distribution

_ 1 1 i
log (st | va, 75 ") = — 3 log(2m) + 3 log(ra) — (s — vy)*

= 757{1/12 + TqVqh + C
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VB for simple Gaussian model: updating ¢(~)

NN
We choose the variational distribution so that Gu? @

log q(7) = Eq,, [log p(x, p1,7)] + ¢
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VB for simple Gaussian model: updating ¢(~)

We choose the variational distribution so that Gﬂ @
log q(7y) = Eq,, [log p(x, pt, )] + ¢
Thus, we see that ¢(~) is Gamma distributed with
0 a,+ T +a

© By« B+ 52l Bgl(zi — )7

Note that:
° Equ, [(z: — ,“)2] = mf + Eq,,, [FLQ] -2z Eq,l (1]
® By, [11?] = Var(u) + Eq, [u]?
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VB for simple Gaussian model: updating ¢(~)

We choose the variational distribution so that @ﬂ @
log q(7y) = Eq, [log p(x, 1, )] + ¢
Thus, we see that ¢(~) is Gamma distributed with
@ ay % +«

© By« B+ 52l Bgl(zi — )7

Note that:
° ]Eqp, [(z: — ,“)2] = mf + Eq,,, [Hz] -2z Eq,l, (1]
® By, [11?] = Var(u) + Eq, [u]?

Recall

log q(v | atg, Bq) = g - log(Bq) + (g — 1) log(7) — By - v — log(T'(eg))

ProbAl - 2023 A simple Gaussian model 24



Monitoring the ELBO

The variational updating rules are guaranteed to never decrease the ELBO L(q):

L(q) = Elogp(x, w7 B) — Iglog q(p,7)

N
Z logp(x:| 1,7) + Elogp(k| 0,7) + Elogp(y |, B) — Elog q(u) — Elog ()

=1

at any updating step. With some pencil pushing we arrive at a somewhat complicated
but closed form expression (not shown here).

Monitoring the ELBO can be useful for
@ Assessing convergence
@ Doing debugging
o ...

0 @ 0 a
3
o

Iteration
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Code-task: VB for a simple Gaussian model

Code Task: VB for a simple Gaussian model

X; ] ~N(p,1
0.@ a ® X;|{m} (s 1/7)

M @ u~N(0,T1)

@ v ~ Gamma(a, f)
In this task you need to use mean-field, and look for q(u,v) = q(u) - ¢(~) that best
approximates p(u, v | D) wrt. the VB measure KL (q||p).
@ Go though the notebook
students_simple_model.ipynb
and try to link the code to the derivations in the slides.

@ Implement the update rules for ¢(1) and g(v) (from the slides) in the
notebook.

@ Experiment with the model and the data set; try changing the prior and the
data generating process.
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Code-task: VB for a simple Gaussian model

Code Task: VB for a simple Gaussian model

X; ] ~N(p,1
0.@ a ® X;|{m} (s 1/7)

M @ u~N(0,T1)

@ v ~ Gamma(a, f)
Variational Updating Equation for g(u) = N (vq, 75 ")
@ precision 7, ~ Eq [7] - N + 7
@ mean v, + 7, " (IEqW My, ml)
Variational Updating Equation for ¢(v) = Gamma(ayg, 84)
@ oy % + «

@ B+ B+ % Zil Eq, (s — N)2]

Note that:
° Ky, (@i — N)Z] =i+ Eg, [l‘z] —2-zi- B, (1]
® E,, [u°] = Var(u) + Eq, [u]®
° Eqw ['7] = %3

\.
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Bayesian linear regression
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Real Data Example

Scatter plot of data

non-african nations african nations
1 L]
. .
o ° ° .
R o F )
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5 e 0° o 4 0 s . Y
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7
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. o
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6
o 2 3 4 5 o 1 2 3 a4 5 6
Terrain Ruggedness Index Terrain Ruggedness Index

Relationship between topographic heterogeneity and GDP per capita

@ Terrain ruggedness or bad geography is related to poorer economic performance
outside of Africa.
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Real Data Example

Regression line

non-african nations african nations

1 L]
10
.
.
= 5 A .
g ° gl
o S| e _o¢
.
8 8 s
o o . .
o 8 L
.
Oa® % . . °
.
7 *
e . °
. . Y .
by
Lo o
o
6
o 1 5 o 1 5 6

2 3 2 3 4
Terrain Ruggedness Index Terrain Ruggedness Index

Linear Regression Model

@ Negative slope for Non African Nations.
@ Positive slope for African Nations.

Are these relationships really supported by the data?
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VB for Bayesian linear regression

The Bayesian linear regression model
Yo @ Num. of data dim: M
@ Num. of data inst: N
@ Y;|{w,x;,b,0} ~ N(w'x; +b,1/0)
@ W ~ N(0,v5 Tarxar)
® B~ N(0,% )
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VB for Bayesian linear regression

The Bayesian linear regression model

@ Num. of data dim: M

@ Num. of data inst: N

0 Y| {w,x,b,0} ~ N(w'x; +b,1/0)
@ W ~ N(0,v5 Tarscar)

@ B~N(0,7")

The probability model

N
p( |X’97’Yuu7b) = Hp(y7- ‘ Xiy, W, b7 G)p(w ‘ ’Yw)p(b ‘ 'Yb)

=1
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VB for Bayesian linear regression

The Bayesian linear regression model
) Y @ Num. of data dim: M
i i @ Num. of data inst: N
‘ ° Y |{w,x;,b,0} ~ N(w'x; +b,1/6)
e @ @ ® W ~ N(0,7v4 Tarx )
® B~ N(0,7,)
The probability model

N
p(-1%,0,70, %) = [ [ (i [ xi, w, b, 0)p(W | 70 )p(b] )
=1

... after taking the log

N
1og p(- | %, 0, 7w, 1) = Y _ log p(yi | x5, W, b,0) + log p(w | 1) + log p(b| 1)

=1
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VB for Bayesian linear regression

The Bayesian linear regression model
') Vew @ Num. of data dim: M

i i @ Num. of data inst: N
‘ @ Y| {w,x;,b,0} ~N(w'x; +b,1/0)
e e @ ® W ~ N(0,7v4 Tarx )

@ B~ N0, ")
The probability model

N
p(-1%,0,70, %) = [ [ (i [ xi, w, b, 0)p(W | 70 )p(b] )

i=1

.. after taking the log

N
1og p(- | %, 0, 7w, 1) = Y _ log p(yi | x5, W, b,0) + log p(w | 1) + log p(b| 1)

=1

M
= logp(yi | xi, w,b,0) + Y _ log p(w; | ) + log p(b| )

=1 Jj=1

ProbAl - 2023 Bayesian linear regression 30
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VB for Bayesian linear regression

The Bayesian linear regression model

@ Num. of data dim: M

@ Num. of data inst: N

0 Y| {w,x,b,0} ~ N(w'x; +b,1/0)
@ W ~ N(0,v5 Tarscar)

@ B~N(0,7")

The probability model

N
p( |X’97’Yuu7b) = Hp(y7- ‘ Xiy, W, b7 G)p(w ‘ ’Yw)p(b ‘ 'Yb)

=1

The variational model (full mean field)

a(’) = Q(b")HQ(wi )
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VB for Bayesian linear regression

The Bayesian linear regression model
Yoo @ Num. of data dim: M
@ Num. of data inst: N
o Y;|{w,x;,b,0} ~ N(w'x; +b,1/6)
@ W ~ N (0,74 Tarxar)
® B~ N(0,7, )
The probability model

N

P(1%,0,70,%) = [ [ (i [ xi, w, b, 0)p(W | 72 )p(b] )
1=1

The variational updating rules (full mean field) - with some pencil pushing

q(w;) is normally distributed with

@ precision 7; + (yuw + 031, (%))
@ mean p; + T]lé’ vazl zij(yi — (Zk¢j zi E(Wk) + E(B)))
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VB for Bayesian linear regression

The Bayesian linear regression model

@ Num. of data dim: M

@ Num. of data inst: NV

0 Y| {w,x,b,0} ~ N(w'x; +b,1/0)
© W~ N(0,7; T mr)

@ B~N(0,7")

The probability model

N
p( |X,97’Yw,7b) = Hp(y1 ‘ Xiy, W, b7 G)p(w ‘ ’Yw)p(b ‘ 'Yb)

=1
The variational updating rules (full mean field) - with some pencil pushing

q(b) is normally distributed with

@ precision 7 < (v, + ON)
@ mean pu < 70N (y; —E(W')x;)
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VB for simple Gaussian model: updating ¢(~)

NN
We choose the variational distribution so that Gu? @

log q(v) = Eq,, [log p(x, p1,7)] + ¢ =
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VB for simple Gaussian model: updating ¢(~)

NN
We choose the variational distribution so that @u? @

log q(v) = Eq,, [log p(x, p1,7)] + ¢ =

Recall

N
log p(x, p, y|7, 0, B) = > logp(i | s,y ") +log (| 0,77") + log p(v | o, B)

i=1
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VB for simple Gaussian model: updating ¢(~)

NN
We choose the variational distribution so that @u? @

log q(v) = Eq,, [log p(x, p1,7)] + ¢ =

Recall

N
log p(x, 1, 7|7, @, B) = > _logp(ws | 1,7~ ") +logp(u] 0,77") + log p(v | o, B)

i=1
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VB for simple Gaussian model: updating ¢(~)

NN
We choose the variational distribution so that @u? @

N
log q(7) = Bq, [log p(x, 11, 7)) + ¢ = > _ By, [logp(ai | 1,7 )] +log p(v) + ¢

=1

Recall

N
log p(x, 1, 7|7, @, B) = > _logp(ws | 1,7~ ") +logp(u] 0,77") + log p(v | o, B)

i=1
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VB for simple Gaussian model: updating ¢(~)

NN
We choose the variational distribution so that @u? @

N
log q(7) = Bq, [log p(x, 11, 7)) + ¢ = > _ By, [logp(ai | 1,7 )] +log p(v) + ¢
=1
Recall
_ _ 1 1
log p(w: | 1,7™") = N(,y™") = 5 log(2m) + 5 log(7) — % (a: — )’

logp(v |, B) = Gamma(e, 8) = a - log(B) + (a — 1) log(v) — B - v — log(I'(a))
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VB for simple Gaussian model: updating ¢(~)

NN
We choose the variational distribution so that @u? @

N
log q(7) = Bq, [log p(x, 11, 7)) + ¢ = > _ By, [logp(ai | 1,7 )] +log p(v) + ¢
=1
Recall
_ _ 1 1
log p(w: | 1,7™") = N (1, y™") = — log(2m) + 5 log(7) — % (a: — )’

logp(7 |, B) = Gamma(e, 8) = a - log(B) + (a — 1) log(y) — B - v — log(I'(a))
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VB for simple Gaussian model: updating ¢(~)

o
We choose the variational distribution so that @u? @
N
log q(7) = Bq, [log p(x, 11, 7)) + ¢ = > _ By, [logp(ai | 1,7 )] +log p(v) + ¢

i=1

N
N
= 5 log(y ’%Z au [ (@i 4 (a—1)log(y) = B-v+c

Recall

_ - 1 1
log p(a: | 1,7™Y) = N, y™") = =5 log(2m) + 5 log(7) - 3 (@i — w)°

logp(v |, B) = Gamma(e, 8) = a - log(B) + (a — 1) log(y) — B - v — log(I'(@))
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VB for simple Gaussian model: updating ¢(~)

NN
We choose the variational distribution so that Gu? @

N
log q(7) = Bq, [log p(x, 11, 7)) + ¢ = > _ By, [logp(ai | 1,7 )] +log p(v) + ¢

i=1

N N
= - log(y %Z aul(@i = )?] + (@ = 1)log(y) = B- 7 +c

:(];[Jral)log(w)(;ZEqﬂ[( ) )}Jrﬂ).erc
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VB for simple Gaussian model: updating ¢(~)

o
We choose the variational distribution so that Gu? @
N
log q(7) = Bq, [log p(x, 11, 7)) + ¢ = > _ By, [logp(ai | 1,7 )] +log p(v) + ¢

i=1

:(nga—l)log ( ZE% }+/8)~7+c
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VB for simple Gaussian model: updating ¢(~)

NN
We choose the variational distribution so that @u? @

N
log q(7) = Bq, [log p(x, 11, 7)) + ¢ = > _ By, [logp(ai | 1,7 )] +log p(v) + ¢

i=1

:<g+a71)log ( ZE% ]+ﬂ)~’y+c

Recall

log g(v | g, Bg) = aq - log(Bq) + (aq — 1) log(7y) — B - v — log(I'(eg))
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VB for simple Gaussian model: updating ¢(~)

NN
We choose the variational distribution so that @u? @

N
log q(7) = Bq, [log p(x, 11, 7)) + ¢ = > _ By, [logp(ai | 1,7 )] +log p(v) + ¢

i=1

N
N
:<E+wfl>log_,w ( 2 . (@i — ]+3> +c

)

Recall

log q(7 | g, Bg) = g - 10g(Bq) + (g — 1) log(y) — By - v — log(T(eyg))

ProbAl - 2023 Supplementary 3t



VB for simple Gaussian model: updating ¢(~)

NN
We choose the variational distribution so that @u? @

N
log q(7) = Bq, [log p(x, 11, 7)) + ¢ = > _ By, [logp(ai | 1,7 )] +log p(v) + ¢

=1
N 1 &
4V S 2 .
= <7 +a— 1) log(~) — <2 ’Z;lhq“ [(x: —p)° ]+ "3> “v+e
Thus, we see that ¢(~) is Gamma distributed with
0 a,+ T +a
© By B+ 5 XL, g l(@i — p)’]
Note that:
° ]Eq,t [(z: — H)Q] = xf + Equ [NQ] -2z Equ (1]
© E,,[1°] = Var(u) + Eq, [u]®
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VB for Bayesian linear regression: updating ¢(w;)

We choose the variational distribution so that

10g q(w7) = q E lng( | X, 97 Yws ryb) + c
_‘u)j
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VB for Bayesian linear regression: updating ¢(w;)

We choose the variational distribution so that

Iqu(wJ) = q E lng( | X, 97’7“77’75) + c
—wj

Recall

N M
1og p(- | %, 0, 7w, 1) = Y log p(yi | x5, W, b,0) + Y _ log p(w; | y) + log p(b| )

i=1 j=1
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VB for Bayesian linear regression: updating ¢(w;)

We choose the variational distribution so that

Iqu(wJ) = q E lng( | X, 97’7“77’75) + c
—wj

Recall

N M
1og p(- | %, 0, 7w, 1) = Y log p(yi | x5, w,b,0) + Y log p(w; | y) + log p(b| )

i=1 j=1
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VB for Bayesian linear regression: updating ¢(w;)

We choose the variational distribution so that

N
log g(w;) = E log p(- | %, 0,%uw, 1) + ¢ = > _ Elog p(y: | xi, W, B, 0) + log p(w; | yu) + ¢
_‘u)j

i=1

Recall

N M
1og p(- | %, 0, 7w, 1) = Y log p(yi | x5, w,b,0) + Y log p(w; | y) + log p(b| )

i=1 j=1

ProbAl - 2023 Supplementary 3



VB for Bayesian linear regression: updating ¢(w;)

We choose the variational distribution so that

N
log g(w;) = E log p(- | %, 0,%uw, 1) + ¢ = > _ Elog p(y: | xi, W, B, 0) + log p(w; | yu) + ¢
_‘u)j

i=1

The normal distribution

1 1 9
log p(y: | xi, W, b,0) = — 7 log(2m) + 7 log(6) — 5 (v: — (W'xi +1))*

log p(w; | ) = log N (w; |0, 75,") = — 5 1og(2m) + 5 log(7u) — 22w}
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VB for Bayesian linear regression: updating ¢(w;)

We choose the variational distribution so that

N
log g(w;) = E log p(- | %, 0,%uw, 1) + ¢ = > _ Elog p(y: | xi, W, B, 0) + log p(w; | yu) + ¢
_‘u)j

i=1

The normal distribution

1 1 9
log p(y: | xi, W, b,0) = — 7 log(2m) + 7 log(6) — 5 (v: — (W'xi +1))*

log p(w; | ) = log N (w; |0, 75,") = =5 1og(2m) + 5 log(7u) — 22w}
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VB for Bayesian linear regression: updating ¢(w;)

We choose the variational distribution so that
N
logq(w;) = E 10gp(-|%,0,7,%) + ¢ = > Elogp(y: |xi, W, B,0) +log p(w; | ) + ¢

J i=1

The normal distribution

1 1 0
log p(yi | xi, w,b,6) = — log(2m) + 7 log(6) — 5 (vi — (w'x; +b))°

Yw 2

~ 1 1
log p(w; | w) = log N (w; |0,7,") = — 5 log(2m) + 5 log(yw) — 5w
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VB for Bayesian linear regression: updating ¢(w;)

We choose the variational distribution so that
N
log g(w;) = E log p(- | %, 0,%w, 1) + ¢ = > _ Elog p(y: | xi, W, B, 0) + log p(w; | ) + ¢
Wi i—1

= Jug? g > E((i — (W'xi + B))*) + ¢

Expanding the square

.
Il
=

(y— (Wx+b)° =y> +x ww'x +b> +2w'xb — 2yw'x — 2yb

2 2
T E TETRWEWh + 22W; E TrWhk
h,k#j k#j

T T
X WW X
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VB for Bayesian linear regression: updating ¢(w;)

We choose the variational distribution so that
N
log g(w;) = E log p(- | %, 0,%w, 1) + ¢ = > _ Elog p(y: | xi, W, B, 0) + log p(w; | ) + ¢
—wj =1

= Jug? g > E((i — (W'xi + B))*) + ¢

Expanding the square

.
Il
=

(y— (Wx+b)? =1y> +x ww'x +b> +2w'xb — 2yw'x — 2yb

2 2
T E TRTRWEWh + 22,W; E TrWhk
h,k#j k#j

T T
X WW X
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VB for Bayesian linear regression: updating ¢(w;)

We choose the variational distribution so that
N

logg(wy) = E logp(-]x6:7.7) +e= Elogp(y:| xi, W, B, ) + log p(w; | yw) + ¢
i=1

2 0

vi =g

- (W'xi + B))?) + ¢

ZL‘ZJU) + wj z TijTik ]E(Wk) + Tij ]E(B) - yI”) +c
k#j

e
(RO

Expanding the square

(y— (Wx+b)? =1y> +x ww'x +b> +2w'xb — 2yw'x — 2yb

2 2
T E TRTRWEWh + 22,W; E TrWhk
h,k#j k#j

T T
X WW X
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VB for Bayesian linear regression: updating ¢(w;)

We choose the variational distribution so that

N
log g(w;) = E log p(-| X, 0,7, 76) + ¢ = Y Elog p(yi | xi, W, B, ) + log p(w; | ) + ¢

i=1

— (W'x; + B))®) +¢

J

—aiw] + w; Z TijTip B(Wk) + x5 E(B) — yxij) + ¢

gl
(RO

k#j
N
vw +02 (%) w] +wﬂzwm — O ww E(Wi) +E(B))) +c
=1 i=1 k#j
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VB for Bayesian linear regression: updating ¢(w;)

We choose the variational distribution so that

N
logg(w;) = E logp(-|x,0,7u,%) + =) Elogp(y: | xi, W, B,0) +logp(w; | ) + ¢
B i=1
1 N N
=50+ 0> (xf)wi + w0 Y mii(yi — O ik E(Wk) + E(B))) + ¢
i—1 i=1 kg
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VB for Bayesian linear regression: updating ¢(w;)

We choose the variational distribution so that

N
log g(w;) = E log p(- | %, 0,%uw, 1) + ¢ = > _ Elog p(y: | xi, W, B, 0) + log p(w; | yu) + ¢
_‘u)j

i=1

N N
1
=50+ 0> (xf)wi + w0 Y mii(yi — O ik E(Wk) + E(B))) + ¢
i—1 i=1 kg

Recall the normal distribution

_ 1 1 T
log p(w |, ) = log Af(w| 1, 7™) = — 1 log(2) + 1+ log(r) ~ L (w — s
! 1 w2 T2
= log(2m) + > log(7) 5TW — GH + wTp
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VB for Bayesian linear regression: updating ¢(w;)

We choose the variational distribution so that

N
log g(w;) = E log p(- | %, 0,%uw, 1) + ¢ = > _ Elog p(y: | xi, W, B, 0) + log p(w; | yu) + ¢
_‘u)j

i=1

N N
1 .
= 0 +0 S @w; + w0y @iy — (O wa E(Wi) + E(B))) +¢
i=1 =1

k#j

Recall the normal distribution

_ 1 1 T
log p(w |, ) = log Af(w| 1, 7™) = — 1 log(2) + 1+ log(r) ~ L (w — s
! 1 2 T2
= log(2m) + > log(7) 5TW — GH + wrp
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VB for Bayesian linear regression: updating ¢(w;)

We choose the variational distribution so that

N
log g(w;) = E log p(- | %, 0,%uw, 1) + ¢ = > _ Elog p(y: | xi, W, B, 0) + log p(w; | yu) + ¢
B i=1
1 N N
=—50w + 0> (@f)wi + w0 Y wii(yi — O ik E(Wk) + E(B))) + ¢
i=1 i=1 k#j

Thus, we see that ¢(w;) is normally distributed with
@ precision 7 < (yw + 03N | (1))
@ mean p 103 wi(yi — (X, zin E(Wi) +E(B)))

Recall the normal distribution

_ 1 1 T
log p(w | . ) = log Afw| 1, 7™) = — 1 log(2) + 1 log(r) — Z (w — s
! 1 12 T2
= log(2m) + > log(7) 5TW — GH + wrp
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VB for Bayesian linear regression: updating ¢(b)

We choose the variational distribution so that

N
logg(b) = E logp(-|W,B,0,7) +c=_ Elogp(y | xi, W,0) +logp(b| ) + ¢

W
a0; i=1

N
_%(% +ON)B + b <9 > (i - E(W)Txi)) +e

i=1
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VB for Bayesian linear regression: updating ¢(b)

We choose the variational distribution so that

N
logg(b) = E logp(-|W,B,0,7) +c=> Elogp(y: | xi, W,0) +logp(b| ) + ¢

s
a0; i=1

= _%(% +ON)® +b <9 Z(;,,, - m(W)Tx,t)) +ec

=1

Recall the normal distribution

_ 1 1 T
logp(b| 4 7) = log A'(b] s, 7") = ~ log(2m) + 3 log(r) — (b~ )’

= —% log(2m) + %log(T) — %TbQ — %#2 + b
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VB for Bayesian linear regression: updating ¢(b)

We choose the variational distribution so that

N
logg(b) = E logp(-|W,B,0,7) +c=> Elogp(y: | xi, W,0) +logp(b| ) + ¢

—w :
a0; i=1

N

1 A2 T
= —5("/}; +9A\ )b +b <9 ;(!//, *E(W) X,j)) +c
Thus, we get that ¢(b) is normally distributed with

@ precision 7 < (v, + 6N)
@ mean u <+ 7 0N (i —E(WNxi)

Recall the normal distribution

_ 1 1 T
logp(b| 4 7) = log A'(b] s, 7") = ~ log(2m) + 3 log(r) — (b~ )’

= —% log(2m) + %log(T) — %TbQ — %#2 + b
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