Nordic probabilistic AI school Variational Inference and Optimization

Helge Langseth, Andrés Masegosa, and Thomas Dyhre Nielsen

June 13, 2023

Stochastic Gradient Ascent

A small side-step: Gradient Ascent

Why do we talk about this?

We want a way to optimize ELBO using gradient methods. If we can do Bayesian inference as optimization it will play well with, e.g., deep learning frameworks.

Gradient ascent algorithm for maximizing a function $f(\lambda)$:

- Initialize $\lambda^{(0)}$ randomly.
- **2** For t = 1, ...:

$$\boldsymbol{\lambda}^{(t)} \leftarrow \boldsymbol{\lambda}^{(t-1)} + \rho \cdot \nabla_{\boldsymbol{\lambda}} f\left(\boldsymbol{\lambda}^{(t-1)}\right)$$

 $oldsymbol{\lambda}^{(t)}$ converges to a (local) optimum of $f(\cdot)$ if:

- *f* is "sufficiently nice";
- The learning-rate ρ is "sufficiently small".

... and Stochastic Gradient Ascent

"Standard" gradient ascent is not enough for ELBO optimization

We won't be able to calculate $\nabla_{\lambda} \mathcal{L}(q(\theta | \lambda))$ exactly for (at least) two reasons:

- We may have to resolve to mini-batching (gradient from "random subset")
- We may not be able to calculate the gradient exactly even for a mini-batch

... and Stochastic Gradient Ascent

"Standard" gradient ascent is not enough for ELBO optimization

We won't be able to calculate $\nabla_{\lambda} \mathcal{L} (q(\theta | \lambda))$ exactly for (at least) two reasons:

- We may have to resolve to mini-batching (gradient from "random subset")
- We may not be able to calculate the gradient exactly even for a mini-batch

Stochastic gradient ascent algorithm for maximizing a function $f(\lambda)$:

If we have access to $\mathbf{g}(\boldsymbol{\lambda})$ – an **unbiased estimate** of the gradient – it still works!

Initialize $\lambda^{(0)}$ randomly.

For
$$t=1,\ldots$$
: $oldsymbol{\lambda}^{(t)} \leftarrow oldsymbol{\lambda}^{(t-1)} +
ho_t \cdot \mathbf{g}\left(oldsymbol{\lambda}^{(t-1)}
ight)$

 λ_t converges to a (local) optimum of $f(\cdot)$ if:

- f is "sufficiently nice";
- $\mathbf{g}(\boldsymbol{\lambda})$ is a random variable with $\mathbb{E}[\mathbf{g}(\boldsymbol{\lambda})] = \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\lambda})$ and $\operatorname{Var}[\mathbf{g}(\boldsymbol{\lambda})] < \infty$.
- The learning-rates $\{\rho_t\}$ is a Robbins-Monro sequence:

•
$$\sum_t \rho_t = \infty$$

• $\sum_t \rho_t^2 < \infty$

Black Box Variational Inference

Main idea: Cast inference as an optimization problem

Optimize the ELBO by stochastic gradient ascent over the parameters λ . If that works, Bayesian inference can be **seamlessly integrated** with building-blocks from other gradient-based machine learning approaches (like deep learning).

Algorithm: Maximize
$$\mathcal{L}\left(q
ight)=\mathbb{E}_{q}\left[\lograc{p(m{ heta},\mathcal{D})}{q(m{ heta}|m{\lambda})}
ight]$$
 by gradient ascent

- Initialization:
 - $t \leftarrow 0;$
 - $\hat{\lambda}_0 \leftarrow$ random initialization;
 - $\{\rho_t\} \leftarrow$ a Robbins-Monro sequence.
- Repeat until negligible improvement in terms of $\mathcal{L}(q)$:

•
$$t \leftarrow t+1;$$

• $\hat{\boldsymbol{\lambda}}_{t} \leftarrow \hat{\boldsymbol{\lambda}}_{t-1} + \rho_t \nabla_{\boldsymbol{\lambda}} \mathcal{L}(q)|_{\hat{\boldsymbol{\lambda}}_{t-1}};$

Important issue:

Can we calculate $\nabla_{\lambda} \mathcal{L}(q)$ efficiently without adding new restrictive assumptions?

BBVI - calculating the gradient

The algorithm requires that we can find

$$\nabla_{\lambda} \mathcal{L} (q) = \nabla_{\lambda} \mathbb{E}_{\theta \sim q_{\lambda}} \left[\log \frac{p(\theta, D)}{q(\theta \mid \lambda)} \right].$$

Tricky: How can we move the gradient inside the expectation?

• We would typically approximate an expectation by a sample average:

$$\mathbb{E}_{\boldsymbol{\theta} \sim q_{\boldsymbol{\lambda}}}\left[f(\boldsymbol{\theta}, \boldsymbol{\lambda})\right] \approx \frac{1}{M} \sum_{j=1}^{M} f(\boldsymbol{\theta}_j, \boldsymbol{\lambda}), \text{ with } \{\boldsymbol{\theta}_1, \dots \boldsymbol{\theta}_M\} \text{ sampled from } q_{\boldsymbol{\lambda}}(\boldsymbol{\theta} \,|\, \boldsymbol{\lambda}).$$

• This doesn't work when taking a gradient related to the sampling distribution.

BBVI - calculating the gradient

The algorithm requires that we can find

$$\nabla_{\lambda} \mathcal{L} (q) = \nabla_{\lambda} \mathbb{E}_{\theta \sim q_{\lambda}} \left[\log \frac{p(\theta, D)}{q(\theta \mid \lambda)} \right].$$

Solution: Use these properties to simplify the equation:

③ $\mathbb{E}_q \left[\nabla_{\lambda} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right] = 0$ for any density function $q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})$.

Now it follows that

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} (q) = \mathbb{E}_{\boldsymbol{\theta} \sim q_{\boldsymbol{\lambda}}} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right].$$

This is the so-called score-function gradient.

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} (q) = \mathbb{E}_{\boldsymbol{\theta} \sim \boldsymbol{q}} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right]$$

.

• We still only need access to the joint distribution $p(\theta, D)$ – not $p(\theta | D)$.

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} (q) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right].$$

• We still only need access to the joint distribution $p(\theta, D)$ – not $p(\theta | D)$.

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q) = \mathbb{E}_{\boldsymbol{\theta} \sim \boldsymbol{q}} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right].$$

• $q(\theta | \lambda)$ factorizes under MF, s.t. we can optimize per variable: $q(\theta_i | \lambda_i)$.

• We still only need access to the joint distribution $p(\theta, D)$ – not $p(\theta | D)$.

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} (q) = \mathbb{E}_{\boldsymbol{\theta} \sim \boldsymbol{q}} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{\boldsymbol{q}(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log \boldsymbol{q}(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right].$$

• $q(\theta \mid \lambda)$ factorizes under MF, s.t. we can optimize per variable: $q(\theta_i \mid \lambda_i)$.

• We must calculate $\nabla_{\lambda_i} \log q (\theta_i | \lambda_i)$, which is also known as the "score function".

• We still only need access to the joint distribution $p(\theta, D)$ – not $p(\theta | D)$.

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} (q) = \mathbb{E}_{\boldsymbol{\theta} \sim \boldsymbol{q}} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right]$$

• $q(\theta \mid \lambda)$ factorizes under MF, s.t. we can optimize per variable: $q(\theta_i \mid \lambda_i)$.

- We must calculate $\nabla_{\lambda_i} \log q \left(\theta_i \, | \, \lambda_i \right)$, which is also known as the "score function".
- The expectation will be approximated using a sample $\{\theta_1, \ldots, \theta_M\}$ generated from $q(\theta | \lambda)$. Hence we require that we can **sample from** each $q(\theta_i | \lambda_i)$.

• We still only need access to the joint distribution $p(\theta, D)$ – not $p(\theta | D)$.

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} (q) = \mathbb{E}_{\boldsymbol{\theta} \sim \boldsymbol{q}} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right]$$

• $q(\theta | \lambda)$ factorizes under MF, s.t. we can optimize per variable: $q(\theta_i | \lambda_i)$.

- We must calculate $\nabla_{\lambda_i} \log q (\theta_i | \lambda_i)$, which is also known as the "score function".
- The expectation will be approximated using a sample $\{\theta_1, \ldots, \theta_M\}$ generated from $q(\theta | \lambda)$. Hence we require that we can **sample from** each $q(\theta_i | \lambda_i)$.

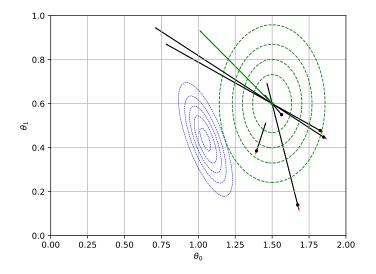
Calculating the gradient - in summary

We have observed the data \mathcal{D} , and our current estimate for λ is $\hat{\lambda}$. Then

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q)|_{\boldsymbol{\lambda}=\hat{\boldsymbol{\lambda}}} \approx \frac{1}{M} \sum_{j=1}^{M} \log \frac{p(\boldsymbol{\theta}_{j}, \mathcal{D})}{q(\boldsymbol{\theta}_{j} \mid \hat{\boldsymbol{\lambda}})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_{j} \mid \hat{\boldsymbol{\lambda}}),$$

where $\{\boldsymbol{\theta}_1, \dots \boldsymbol{\theta}_M\}$ are samples from $q(\cdot | \hat{\boldsymbol{\lambda}})$. Typically *M* is small.

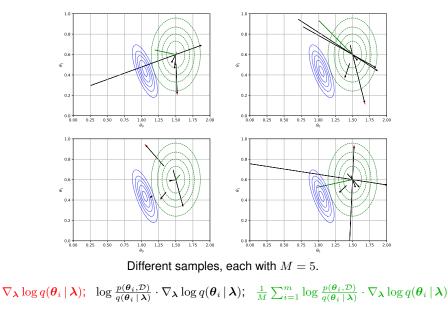
Does it work?



 $\nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_i \mid \boldsymbol{\lambda}); \quad \log \frac{p(\boldsymbol{\theta}_i, \mathcal{D})}{q(\boldsymbol{\theta}_i \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_i \mid \boldsymbol{\lambda}); \quad \frac{1}{M} \sum_{i=1}^m \log \frac{p(\boldsymbol{\theta}_i, \mathcal{D})}{q(\boldsymbol{\theta}_i \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_i \mid \boldsymbol{\lambda})$

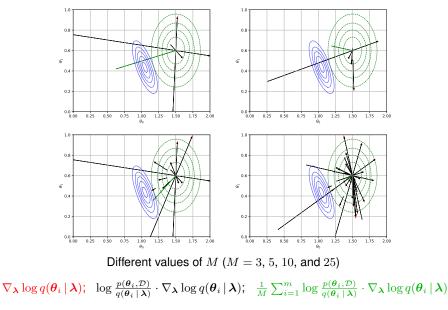
Length of gradients increased for visibility. Graphics inspired by Arto Klami @ ProbAl2021.

Does it work?



Length of gradients increased for visibility. Graphics inspired by Arto Klami @ ProbAl2021.

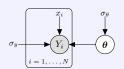
Does it work?



Length of gradients increased for visibility. Graphics inspired by Arto Klami @ ProbAl2021.

Black Box Variational Inference

Code Task: Score-function gradient for linear regression



•
$$\boldsymbol{\theta} = \{w_0, w_1\}, \boldsymbol{\theta} \sim \mathcal{N}(\mathbf{0}, \sigma_{\theta} \cdot \mathbf{I}_{2 \times 2})$$

• $Y_i \mid \{\boldsymbol{\theta}, x_i, \sigma_y\} \sim \mathcal{N}(w_0 + w_1 \cdot x_i, \sigma_y^2)$
• We choose $q_j(\theta_j \mid \boldsymbol{\lambda}_j) = \mathcal{N}(\theta_j \mid \mu_j, \sigma_j^2)$, so

In this task you will implement the score-function gradient:

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} (q) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right].$$

 $\boldsymbol{\lambda}_i = \{\mu_i, \sigma_i\}$

Look at Exercise 1 in the notebook
 Day2-AfterLunch/students_BBVI.ipynb.
 Calculate ∇_λ log q(θ | λ), i.e., ∂/∂μ log N(μ, σ²) and ∂/∂σ log N(μ, σ²) by hand.
 Implement your results in the function score_function_gradient.

Let's try to find another trick to compute:

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) = \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \right].$$

Let's try to find another trick to compute:

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} (q) = \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \right].$$

Let's assume $q(\theta|\lambda)$ can be *reparametrized*:

$$\epsilon \sim \phi(\epsilon)$$

 $\theta = f(\epsilon, \lambda)$

where $\phi(\epsilon)$ is some simple distribution that does not depend on λ and $f(\epsilon, \lambda)$ is a deterministic transformation.

Let's try to find another trick to compute:

$$\nabla_{\lambda} \mathcal{L} (q) = \nabla_{\lambda} \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \right].$$

Let's assume $q(\theta|\lambda)$ can be *reparametrized*:

$$\epsilon \sim \phi(\epsilon)$$

 $\theta = f(\epsilon, \lambda)$

where $\phi(\epsilon)$ is some simple distribution that does not depend on λ and $f(\epsilon, \lambda)$ is a deterministic transformation.

The common example is $q(\theta|\lambda) = \mathcal{N}(\mu, \sigma)$ reparametrized using

$$\boldsymbol{\epsilon} \sim \mathcal{N}(0,1)$$

$$\theta = \mu + \sigma \epsilon$$

If $q(\theta|\lambda)$ can be *reparametrized*:

$$\epsilon \sim \phi(\epsilon)$$

 $\theta = f(\epsilon, \lambda)$

If $q(\theta|\lambda)$ can be *reparametrized*:

$$\epsilon \sim \phi(\epsilon)$$

 $\theta = f(\epsilon, \lambda)$

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} (q) = \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \right]$$

If $q(\theta|\lambda)$ can be *reparametrized*:

$$\begin{array}{lll} \boldsymbol{\epsilon} & \sim & \phi(\boldsymbol{\epsilon}) \\ \boldsymbol{\theta} & = & f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \end{array}$$

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} (q) = \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \right]$$

= $\nabla_{\boldsymbol{\lambda}} \mathbb{E}_{\boldsymbol{\epsilon} \sim \phi} \left[\log \frac{p(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}), \mathcal{D})}{q(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \mid \boldsymbol{\lambda})} \right]$

If $q(\theta|\lambda)$ can be *reparametrized*:

$$\epsilon \sim \phi(\epsilon)$$

 $\theta = f(\epsilon, \lambda)$

$$\nabla_{\lambda} \mathcal{L} (q) = \nabla_{\lambda} \mathbb{E}_{\theta \sim q} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \right]$$
$$= \nabla_{\lambda} \mathbb{E}_{\epsilon \sim \phi} \left[\log \frac{p(f(\epsilon, \lambda), \mathcal{D})}{q(f(\epsilon, \lambda) \mid \lambda)} \right]$$
$$= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\lambda} \log \frac{p(f(\epsilon, \lambda), \mathcal{D})}{q(f(\epsilon, \lambda) \mid \lambda)} \right]$$

If $q(\theta|\lambda)$ can be *reparametrized*:

$$\epsilon \sim \phi(\epsilon)$$

 $\theta = f(\epsilon, \lambda)$

Now we can do something different:

$$\begin{aligned} \nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) &= \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \right] \\ &= \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{\epsilon \sim \phi} \left[\log \frac{p(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}), \mathcal{D})}{q(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \mid \boldsymbol{\lambda})} \right] \\ &= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\boldsymbol{\lambda}} \log \frac{p(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}), \mathcal{D})}{q(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \mid \boldsymbol{\lambda})} \right] \\ &= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) + \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right] \end{aligned}$$
(slide 7 - point 3)

•

If $q(\theta|\lambda)$ can be *reparametrized*:

$$\epsilon \sim \phi(\epsilon)$$

 $\theta = f(\epsilon, \lambda)$

$$\begin{aligned} \nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) &= \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \right] \\ &= \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{\epsilon \sim \phi} \left[\log \frac{p(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}), \mathcal{D})}{q(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \mid \boldsymbol{\lambda})} \right] \\ &= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\boldsymbol{\lambda}} \log \frac{p(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}), \mathcal{D})}{q(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \mid \boldsymbol{\lambda})} \right] \\ &= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) + \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right] \quad \text{(slide 7 - point 3)} \\ &= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \right] \end{aligned}$$

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) \quad = \quad \mathbb{E}_{\boldsymbol{\epsilon} \sim \phi} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \right]$$

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q) = \mathbb{E}_{\boldsymbol{\epsilon} \sim \boldsymbol{\phi}} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \right]$$
$$\approx \frac{1}{M} \sum_{j=1}^{M} \nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}_{j}, \mathcal{D})}{q(\boldsymbol{\theta}_{j} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) : \boldsymbol{\epsilon}_{j} \sim \boldsymbol{\phi}(\boldsymbol{\epsilon}), \ \boldsymbol{\theta}_{j} = f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda})$$

$$\begin{split} \nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) &= \mathbb{E}_{\boldsymbol{\epsilon} \sim \boldsymbol{\phi}} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \right] \\ &\approx \frac{1}{M} \sum_{j=1}^{M} \nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}_{j}, \mathcal{D})}{q(\boldsymbol{\theta}_{j} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) \quad : \, \boldsymbol{\epsilon}_{j} \sim \boldsymbol{\phi}(\boldsymbol{\epsilon}), \; \boldsymbol{\theta}_{j} = f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) \\ &= \frac{1}{M} \sum_{j=1}^{M} \left(\underbrace{\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}_{j}, \mathcal{D})}_{\text{Model's Gradient}} - \nabla_{\boldsymbol{\theta}} \log q(\boldsymbol{\theta}_{j} \mid \boldsymbol{\lambda}) \right) \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) \end{split}$$

$$\begin{split} \nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) &= \mathbb{E}_{\boldsymbol{\epsilon} \sim \phi} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \right] \\ &\approx \frac{1}{M} \sum_{j=1}^{M} \nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}_{j}, \mathcal{D})}{q(\boldsymbol{\theta}_{j} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) \quad : \, \boldsymbol{\epsilon}_{j} \sim \phi(\boldsymbol{\epsilon}), \, \, \boldsymbol{\theta}_{j} = f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) \\ &= \frac{1}{M} \sum_{j=1}^{M} \left(\underbrace{\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}_{j}, \mathcal{D})}_{\text{Model's Gradient}} - \nabla_{\boldsymbol{\theta}} \log q(\boldsymbol{\theta}_{j} \mid \boldsymbol{\lambda}) \right) \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) \end{split}$$

This gradient estimator directly uses model's gradients

$$\begin{aligned} \nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) &= \mathbb{E}_{\boldsymbol{\epsilon} \sim \boldsymbol{\phi}} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \right] \\ &\approx \frac{1}{M} \sum_{j=1}^{M} \nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}_{j}, \mathcal{D})}{q(\boldsymbol{\theta}_{j} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) \quad : \boldsymbol{\epsilon}_{j} \sim \boldsymbol{\phi}(\boldsymbol{\epsilon}), \ \boldsymbol{\theta}_{j} = f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) \\ &= \frac{1}{M} \sum_{j=1}^{M} \left(\underbrace{\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}_{j}, \mathcal{D})}_{\text{Model's Gradient}} - \nabla_{\boldsymbol{\theta}} \log q(\boldsymbol{\theta}_{j} \mid \boldsymbol{\lambda}) \right) \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) \end{aligned}$$

This gradient estimator directly uses model's gradients

• While the score function estimator does not.

$$\begin{aligned} \nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) &= \mathbb{E}_{\boldsymbol{\epsilon} \sim \phi} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \right] \\ &\approx \frac{1}{M} \sum_{j=1}^{M} \nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}_{j}, \mathcal{D})}{q(\boldsymbol{\theta}_{j} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) \quad : \boldsymbol{\epsilon}_{j} \sim \phi(\boldsymbol{\epsilon}), \ \boldsymbol{\theta}_{j} = f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) \\ &= \frac{1}{M} \sum_{j=1}^{M} \left(\underbrace{\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}_{j}, \mathcal{D})}_{\text{Models Gradient}} - \nabla_{\boldsymbol{\theta}} \log q(\boldsymbol{\theta}_{j} \mid \boldsymbol{\lambda}) \right) \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) \end{aligned}$$

This gradient estimator directly uses model's gradients

- While the score function estimator does not.
- $\log p(\theta, D)$ needs to be differentiable wrt θ (i.e. no discrete variables).
- $q(\theta|\lambda)$ needs to be differentiable and reparametrizable

Reparameterization can be done for a (growing) set of distributions:

Target	$p(z; \theta)$	Base $p(\epsilon)$	One-liner $g(\epsilon; \theta)$
Exponential	$\exp(-x); x > 0$	$\epsilon \sim [0;1]$	$\ln(1/\epsilon)$
Cauchy	$\frac{1}{\pi(1+x^2)}$	$\epsilon \sim [0;1]$	$\tan(\pi\epsilon)$
Laplace	$\mathcal{L}(0; 1) = \exp((- x)$	$\epsilon \sim [0;1]$	$\ln(\frac{e_1}{e_2})$
Laplace	$\mathcal{L}(\mu; b)$	$\epsilon \sim [0;1]$	$\mu - bsgn(\epsilon) \ln (1 - 2 \epsilon)$
Std Gaussian	$\mathcal{N}(0;1)$	$\epsilon \sim [0;1]$	$\sqrt{\ln(\frac{1}{\epsilon_1})}\cos(2\pi\epsilon_2)$
Gaussian	$\mathcal{N}(\mu; RR^\top)$	$\epsilon \sim \mathcal{N}(0;1)$	$\mu + R\epsilon$
Rademacher	$Rad(\frac{1}{2})$	$\epsilon \sim \textit{Bern}(\tfrac{1}{2})$	2e - 1
Log-Normal	$\ln \mathcal{N}(\mu;\sigma)$	$\epsilon \sim \mathcal{N}(\mu;\sigma^2)$	$\exp(\epsilon)$
Inv Gamma	$i\mathcal{G}(k;\theta)$	$\epsilon \sim \mathcal{G}(k;\theta^{-1})$	$\frac{1}{c}$

Table from http://blog.shakirm.com/2015/10/ machine-learning-trick-of-the-day-4-reparameterisation-tricks/

Reparameterization can be done for a (growing) set of distributions:

traget $p(z; \theta)$ Base $p(c)$ One-liner $g(e;$ Exponential $exp(x); x > 0$ $e \sim [0; 1]$ $ln(1e)$ Cauchy $\frac{1}{\pi(1+x^2)}$ $e \sim [0; 1]$ $ln(fe)$ Laplace $L(0; 1) = exp$ $e \sim [0; 1]$ $ln(\frac{e_i}{c_i})$ Laplace $L(\mu; b)$ $e \sim [0; 1]$ $\mu - bsgn(e) \ln (1 - 2le)$ Std Gaussian $\mathcal{N}(0; 1)$ $e \sim [0; 1]$ $\sqrt{\ln(e_i)} \cos (2e_i)$	9)
Cauchy $\frac{1}{\pi(1+\epsilon^2)}$ $\epsilon \sim [0,1]$ $tan(re)$ Laplace $\mathcal{L}(0;1) = exp$ $\epsilon \sim [0;1]$ $ln(\frac{e_1}{e_2})$ Laplace $\mathcal{L}(0;1) = exp$ $\epsilon \sim [0;1]$ $ln(\frac{e_1}{e_2})$ Laplace $\mathcal{L}(\mu; b)$ $\epsilon \sim [0;1]$ $\mu - bsgn(\epsilon) ln$ Std Gaussian $\mathcal{N}(0;1)$ $\epsilon \sim [0;1]$ $\sqrt{ln(\frac{1}{e_1})} cos$	
Laplace $\mathcal{L}(0; 1) = \exp$ $e \sim [0; 1]$ $\ln(\frac{e_1}{e_2})$ Laplace $\mathcal{L}(\mu; b)$ $e \sim [0; 1]$ $\mu - bsgn(e) \ln (1 - 2 e)$ Std Gaussian $\mathcal{N}(0; 1)$ $e \sim [0; 1]$ $\sqrt{\ln(\frac{1}{e_1})} \cos$	
$\begin{array}{c} \mathcal{L}(v_1) \text{sep} v \in (v_1) \text{in} \mathcal{L}_{v_2} \\ \text{Laplace} \mathcal{L}(\mu; b) e \sim [0; 1] \mu - bsgn(e) \ln \\ (1 - 2 e) \\ \text{Std Gaussian} \mathcal{N}(0; 1) e \sim [0; 1] \sqrt{\ln(\frac{1}{e_1})} \cos \end{array}$	
$(1 - 2 \epsilon)$ Std Gaussian $\mathcal{N}(0; 1)$ $\varepsilon \sim [0; 1]$ $\sqrt{\ln(\frac{1}{\epsilon_l})} \cos \theta$	
$\sqrt{\ln(\frac{1}{c_1})} \cos (0, 1)$	
Gaussian $\mathcal{N}(\mu; RR^{\top})$ $\epsilon \sim \mathcal{N}(0; 1)$ $\mu + R\epsilon$	
Rademacher $Rad(\frac{1}{2})$ $\epsilon \sim Bern(\frac{1}{2})$ $2\epsilon - 1$	
Log-Normal $\ln \mathcal{N}(\mu; \sigma) \qquad \epsilon \sim \mathcal{N}(\mu; \sigma^2) = \exp(\epsilon)$	
Inv Gamma $i\mathcal{G}(k;\theta)$ $\epsilon \sim \mathcal{G}(k;\theta^{-1})$ $\frac{1}{\epsilon}$	

Table from http://blog.shakirm.com/2015/10/ machine-learning-trick-of-the-day-4-reparameterisation-tricks/

A nice survey (very active area of research)

Zhang, Cheng, et al. "Advances in variational inference." IEEE transactions on pattern analysis and machine intelligence 41.8 (2018): 2008-2026.

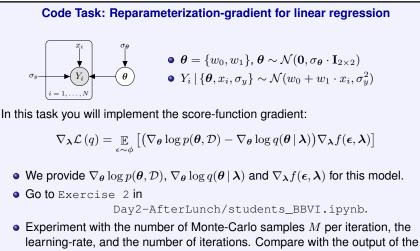
Score-function gradient Reparameterized gradient 1.0 1.0 0.8 0.8 0.6 0.6 θ θ 0.4 0.4 0.2 0.2 0.0 0.0 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 θο θη

Length of gradients increased for visibility. Graphics inspired by Arto Klami @ ProbAl2021.

Notice the direction of each sample's gradient:

- Score-function gradient: Towards the mode of q
- Reparameterization-gradient: (Approximately) towards high density region of the exact posterior p(θ|D).

Code-task: Reparameterization-gradient for linear regression



Score Function Gradient.

- Requires $q(\theta|\lambda)$ to be **reparametrizable**.
- Requires $\ln p(\mathcal{D}, \theta)$ and $\ln q(\theta | \lambda)$ be differentiable (i.e. no categorical variables).

- Requires $q(\theta|\lambda)$ to be **reparametrizable**.
- Requires $\ln p(\mathcal{D}, \theta)$ and $\ln q(\theta | \lambda)$ be differentiable (i.e. no categorical variables).

Score Function: Gradients point towards the mode of the approximation, and the only way the model influences them is through $\log p(D, \theta)$ in the weights.

- Requires $q(\theta|\lambda)$ to be **reparametrizable**.
- Requires $\ln p(\mathcal{D}, \theta)$ and $\ln q(\theta | \lambda)$ be differentiable (i.e. no categorical variables).

Score Function: Gradients point towards the mode of the approximation, and the only way the model influences them is through $\log p(D, \theta)$ in the weights.

- Only requires $\ln q(\theta|\lambda)$ to be differentiable.
- No requirements for $\ln p(\mathcal{D}, \theta)$ (only to be computable).

- Requires $q(\theta|\lambda)$ to be **reparametrizable**.
- Requires $\ln p(\mathcal{D}, \theta)$ and $\ln q(\theta | \lambda)$ be differentiable (i.e. no categorical variables).

Score Function: Gradients point towards the mode of the approximation, and the only way the model influences them is through $\log p(D, \theta)$ in the weights.

- Only requires $\ln q(\theta|\lambda)$ to be differentiable.
- No requirements for $\ln p(\mathcal{D}, \theta)$ (only to be computable).

Takeaway Message

Score Function is more general, but Reparametrization is better if applicable.

(Manual) Define your data model and the prior.

 $p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$

(Manual) Define your data model and the prior.

 $p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$

(Manual/Automatic) Define the variational distribution

 $q(oldsymbol{ heta}|oldsymbol{\lambda})$

(Manual) Define your data model and the prior.

 $p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$

(Manual/Automatic) Define the variational distribution

 $q(\boldsymbol{\theta}|\boldsymbol{\lambda})$

(Automatic) Optimize the ELBO:

 $\boldsymbol{\lambda}_{t+1} = \boldsymbol{\lambda}_t + \rho \nabla_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{\lambda}_t)$

(Manual) Define your data model and the prior.

 $p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$

(Manual/Automatic) Define the variational distribution

 $q(\boldsymbol{\theta}|\boldsymbol{\lambda})$

(Automatic) Optimize the ELBO:

$$\boldsymbol{\lambda}_{t+1} = \boldsymbol{\lambda}_t + \rho \nabla_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{\lambda}_t)$$

• Using either score-funtion or reparametrization gradients.

(Manual) Define your data model and the prior.

 $p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$

(Manual/Automatic) Define the variational distribution

 $q(\boldsymbol{\theta}|\boldsymbol{\lambda})$

(Automatic) Optimize the ELBO:

$$\boldsymbol{\lambda}_{t+1} = \boldsymbol{\lambda}_t + \rho \nabla_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{\lambda}_t)$$

- Using either score-funtion or reparametrization gradients.
- Automatic-Differentiation engines take care of gradients.

(Manual) Define your data model and the prior.

 $p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$

(Manual/Automatic) Define the variational distribution

 $q(\boldsymbol{\theta}|\boldsymbol{\lambda})$

(Automatic) Optimize the ELBO:

$$\boldsymbol{\lambda}_{t+1} = \boldsymbol{\lambda}_t + \rho \nabla_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{\lambda}_t)$$

- Using either score-funtion or reparametrization gradients.
- Automatic-Differentiation engines take care of gradients.
- (Automatic) Approximate inference result

$$q(\boldsymbol{\theta}|\boldsymbol{\lambda}^{\star}) = \arg\min_{q} \operatorname{KL}\left(q(\boldsymbol{\theta}|\boldsymbol{\lambda})||p(\boldsymbol{\theta}|\mathcal{D})\right)$$

Probabilistic programming: Variational inference in Pyro

Pyro

Pyro (pyro.ai) is a Python library for probabilistic modeling, inference, and criticism, integrated with PyTorch.

Modeling:	 Directed graphical models Neural networks (via nn.Module)
Inference:	 Variational inference – including BBVI, SVI Monte Carlo – including Importance sampling and Hamiltonian Monte Carlo
	•
Criticism:	Point-based evaluationsPosterior predictive checks

... and there are also many other possibilities

 ${\tt Tensorflow}$ is integrating probabilistic thinking into its core, ${\tt InferPy}$ is a local alternative, etc.

Simple example

 $\begin{array}{ll} \text{temp} & \sim \mathcal{N}(15,2) \\ \text{sensor} & \sim \mathcal{N}(\text{temp},1) \end{array}$

p(sensor = 18, temp)

Simple example

 $\begin{array}{ll} \text{temp} & \sim \mathcal{N}(15,2) \\ \text{sensor} & \sim \mathcal{N}(\text{temp},1) \end{array}$

p(sensor = 18, temp)

Pyro models:

- random variables ⇔ pyro.sample
- observations ⇔ pyro.sample with the obs argument

Simple example

 $\begin{array}{ll} \mbox{temp} & \sim \mathcal{N}(15,2) \\ \mbox{sensor} & \sim \mathcal{N}(\mbox{temp},1) \end{array}$

p(sensor = 18, temp)

Pyro models:

- random variables ⇔ pyro.sample
- observations ⇔ pyro.sample with the obs argument

```
# #The observations
0 obs = { 'sensor ': torch.tensor(18.0) }

4 def model(obs):
5 temp = pyro.sample('temp', dist.Normal(15.0, 2.0))
6 sensor = pyro.sample('sensor', dist.Normal(temp, 1.0), obs=obs['sensor'])
```

 $p(\mathsf{temp}|\mathsf{sensor} = 18)$

p(temp|sensor = 18)

Variational Solution

 $\min_{q} \operatorname{KL}\left(q(\mathsf{temp}) || p(\mathsf{temp}|\mathsf{sensor}=18)\right)$

p(temp|sensor = 18)

Variational Solution

 $\min_{q} \operatorname{KL}\left(q(\mathsf{temp}) || p(\mathsf{temp}|\mathsf{sensor}=18)\right)$

Pyro Guides:

• Define the q **distributions** in variational settings.

p(temp|sensor = 18)

Variational Solution

 $\min_{q} \operatorname{KL}\left(\frac{q(\mathsf{temp})}{p}(\mathsf{temp}|\mathsf{sensor}=18)\right)$

Pyro Guides:

- Define the *q* distributions in variational settings.
- Build proposal distributions in importance sampling, MCMC.

• ...

Pyro guides

Pyro Guides:

- Guides are arbitrary stochastic functions.
- Guides produces samples for those variables of the model which are not observed.

Pyro guides

Pyro Guides:

- Guides are arbitrary stochastic functions.
- Guides produces samples for those variables of the model which are not observed.

Guide requirements

- the guide has the same input signature as the model
- 2 all unobserved sample statements that appear in the model appear in the guide.

Example

```
1 #The observations
2 obs = {'sensor': torch.tensor(18.0)}
3
4 def model(obs):
5   temp = pyro.sample('temp', dist.Normal(15.0, 2.0))
6   sensor = pyro.sample('sensor', dist.Normal(temp, 1.0), obs=obs['sensor'])
```

```
#The guide
def guide(obs):
    a = pyro.param("mean", torch.tensor(0.0))
    b = pyro.param("scale", torch.tensor(1.), constraint=constraints.positive)
    temp = pyro.sample('temp', dist.Normal(a, b))
```

