25.01.2018

FINEID SPECIFICATION

FINEID - S1
Electronic ID Application

v3.0
Population Register Centre (VRK) CERTIFIEDBY
Certification Authority Services O Inspecta
P.O. Box 123 1SO 9001
FIN-00531 Helsinki
Finland

http://www.fineid.fi



FINEID SPECIFICATION 25.01.2018

FINEID - S1/v3.0 i

Authors

Name Initials Organization E-mail

Antti Partanen AP VRK antti.partanen@vrk.fi

Markku Sievinen MaSi Gemalto Oy markku.sievanen@gemalto.com
Document history

Version Date Editor Changes Status

0.9 29.06.2016 MaSi Initial version.

1.00 22.11.2016 AP Document accepted. Published version.

1.01 24.01.2018 MaSi Following corrections:

e The content of PIN attributes
return by GET DATA

command corrected (paragraph
3.14.3 Response).

e Unblocking PIN method byte
coding corrected (paragraph
3.14.3 Response).

1.02 25.01.2018 AP Document accepted. Published version.




FINEID SPECIFICATION 25.01.2018

FINEID - S1/v3.0

11

Table of contents

I 0] ({0 Yo [W Lo 110 o IR
1.1 NOIMALIVE FEFEIEINCES ... ... ettt e e et e e e e e e e et e e e e e e ennaaeaaees

1.2 INfOrMatiVe TEIEIEINCES ... et e e e e e e e e eaaaeeaees
1.3 Related FINEID documentation .............. oo e e e e e eees

ADDIEVIAtIONS ... e,

ComMMANd INEEITACE ... e e e
K T S = I (o OSSR USRS

3.2 SELECT FILE ...ttt et

3.2.1  Conditions of Use and SECUIILY .........ceeviiiiiiiiiiiiiieee e

R 0t I N U £ 7 o = PR PR S

It I - Tor U | PR

3.2.2  FOMMAL. ... et e e e
3.2.3  RESPONSE ...ttt e e e e e eanes
3.3 GET RESPONSE ...ttt ettt ettt ettt et e st e e nteete e steesaeesneesnseenseenseesnenannens
3.3.1 Conditions of Use and SECUMLY ...........cuiiiiiiiiiiiiiiie e

I 0 20 Nt B U = T 1= SO PU PP OPPPPPN

3.301.2  SBOUIMEY ettt e e e e e

3.3.2  FOMMAL.... e
3.3.3  RESPONSE ...
3.4 READ BINARY ...ttt ettt ettt sttt sttt et e et e e ea et emeeete e steeeaeeeneeente e beeaneeeaeeaneeas
3.4.1  Conditions of Use and SECUIILY .........ceeviiiiiiiiiiiiieee e
g O I U £ 7 o = PP

g B - Tor U | PP

3B.4.2  FOMMAL. ...t
4.3 RESPONSE ...ttt e e e
3.5 VERIFY oottt ettt et e st e ettt e ke e ene e nte e te e eteeeneeenaeenteenteenneereenreeas
3.5.1 Conditions of Use and SECUMLY ...........cuiiiiiiiiiiiiiiie e
TR I B U = T 1= PP PP OPPPPPN

TR I - o ¥ [ 1SRRI

.52 FOMMAL....coiie e
3.5.3  RESPONSE ...
3.6  MANAGE SECURITY ENVIRONMENT: SET.....ccctiiiiieiiiiie ittt
3.6.1  Conditions of Use and SECUIILY .........ceeviiiiiiiiiiiiiieee e
TG Tt I U -7 o = PP

3.8.1.2  SBCUIMEY .eeeee ettt ettt e st e e anb e e e anreeeeeaae

3.6.2  FOMMAL. ... oo e e
3.6.3  RESPONSE ...ttt

3.7 PERFORM SECURITY OPERATION: HASH.......uei ettt
3.7.1 Conditions of Use and SECUMLY ...........cueiiiiiiiiiiiiiie e




FINEID SPECIFICATION 25.01.2018

FINEID - S1/v3.0 il

B At O U 7 o = PP 21

K A I - o ¥ [ 1SRRI 22

37,2 FOMMAL. .. ittt e 22
3.7.2.1 Hashing Performed Entirely by the Card............cccovieeieiiiiiiceeee e, 22
3.7.2.2 Hashing Performed Partially by the Card ............cccceeeiiiiiii e, 23
3.7.2.3 Hashing Performed Entirely Externally............cccooiiiiiiiii e 24

7.3 RESPONSE ...ttt e e e e 24
3.8 PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE .......cccccoveiienn. 25
3.8.1 Conditions of Use and SECUNLY ..........ccueiiiiiiiiiiiiii e 25
R R P B U - T 1= OSSP PP OPPPPPTN 25
3.8.1.2  SBOUIMEY .ttt ettt e e e e 26

3.8.2  FOMMAL.....oiie e 27
3.8.3  RESPONSE ... 27
3.9 PERFORM SECURITY OPERATION: DECIPHER .......cccoiiitiiiiiesiesee et 28
3.9.1  Conditions of Use and SECUIILY .........eeeviiiiiiiiiiiiiieie e 29

G TR Bt I U £ 7 o = PP S 29
IR T S =Y o1 4 1TSS 30

3.9.2  FOMMAL. ... ot 30
3.9.3  RESPONSE ...ttt e e e 30
3.10 CHANGE REFERENGCE DATA ... .ottt ettt ettt e e emseeeeesteesneeeneeaneeens 31
3.10.1 Conditions of Use and SECUNLY ...........cueiiiiiiiiiiiiiie e 32
T 0T Ot O U = T 1= S SO PP PP OPPPPPN 32
B.10.1.2 SBOUIMEY curtteeeiiiiee ettt e ettt ettt e e e st e e e et e e e e st e e e sba e e e e sanbeeeesanbeeaeeanteeeeeanes 32

3.10.2 FOIMAL.....oeiieeee et 32
3.10.3 RESPONSE ... 33
3.11 RESET RETRY COUNTER .....oiiitiiitiiiii ittt 34
3.11.1 Conditions of Use and SECUIILY .........coeviiiiiiiiiiiiiieee e 34

R Tt I It I T U 7 T = PP 34
TR I Iy Y o 4 1SS 34

N Tt I 2 o] 3 = PRSP 35

N Tt I G T =T o T 1 PRSP R 35
3.12 UPDATE BINARY .ttt ettt ettt ettt et te et e e eaeeameeeseesaeesaeeemeeanseanseesaeesnneannens 36
3.12.1 Conditions of Use and SECUMLY ...........cuiiiiiiiiiiiiiiee e 36

B Tt 2 I I U 7 o = PR 36

K T 1y 7= Yo U | 1SS SRRPRN 36

3.12.2 FOIMAL.....ceiie et 37

R Tt D B (=T oo T SRRSO 37
3.13 ERASE BINARY ..ttt bbbt et ettt h ettt b e bt nneennne 38
3.13.1 Conditions of Use and SECUIILY ..........ooviiiiiiiiiiiiiieee e 39

K TG T Ot O U - T 1P OTRRPPN 39
TR 1 TRy B S =Y o1 4 1SRRI 39

Tt B T o T 0 0 1= | SO 39




FINEID SPECIFICATION 25.01.2018

FINEID - S1/v3.0 v
3133 RESPONSE ... 40
R € I N SRRSO 41
3.14.1 Conditions of Use and SECUIILY .........cooviiiiiiiiiiiiiieee e 41
R Tt I I I U 7 o = PP 41
R Tt I - Tor U | PP 41
14,2 FOIMAL. ... ottt e e e nb e e 41
3143 RESPONSE ...ttt ettt et e e e e e e e e b e e e eanee 44
4 Implementation guidelines for software developer ...........ccccovviiiiieeeicceeeeeiien, 50
4.1 ReSOUrce ManAgEMENT. ......ooui ittt e et e e e e e e e e e e e e e e e e e annbeeeeeeeeeeaannneees 50
4.2 ReSettiNg the Card .......ccceiiiiiiiii et a e e a e 51
4.3 Application/File SEIECHON...........cci i 51
I T O 1N o] o] [ =Y o o SRR 51
44 Path 51
4.5 Authentication ODJECES ........oii i 51
4.6 ACCESSING ODJECES .....eiiiiiiiiiieiit et s e e 52
4.7 Private key operations (Sign and deCrypt).........coooiiiiiiiiiiie e 54
4.7.1  SIigNature OPEratioN.........c.eeiiiiiiiiei et e e e e e e 54
4.7.2 Decryption OPEratioN ... eeeiiiiiie et e e e 54
ST 7 ] PO 56
5.1 What is PACE AUthentiCatioN?..........cooiiiiiiiiiii e 56
5.2 How Does PACE Authentication WOrK? ..........coooiiiiiii e 56
5.3 PACE AUthentiCation LEVEIS ...........oiiiiiiiiii e 57
5.3.1 PACE Authentication ONIY .........oocuiiiiiiiii e 57
5.3.2 PACE Authentication + Secure MeSSaging .........ccueriiiriiiieiiieee e 57
5.3.3 PACE and FINEID application Secure Messaging ........cccceevcuereeiiiireeeiiieeeeniiee e 58
5.3.3.1 Effect of Breaking PACE SM ........cooiiiiiiiie e 59
5.3.4 Impacts of PACE on FINEID application ...........ccccccooiiiiiiiiiiiie e 59

Annex A (Informative): Coding of the File Control Parameters and File Control
Information templates..........cooo i 60

Annex B (informative) Command—Response Pairs............cccccoooviviiiiiieeccieeeeee, 70




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 5(74)

1. Introduction

This document describes the command interface of the Finnish Electronic Identification
(FINEID) application version 3.0.

1.1 Normative references
The most important specifications are listed below:

- ISO, Information Technology - Identification cards - Integrated circuit(s) cards
with contacts
Part 1: Physical Characteristics, ISO/IEC 7816-1
Part 2: Dimensions and location of the contacts, ISO/IEC 7816-2
Part 3: Electronic signals and transmission protocols, ISO/IEC 7816-3
Part 4: Interindustry commands for interchange, ISO/IEC 7816-4
Part 5: Numbering system and registration procedure for application identifiers,
ISO/IEC 7816-5
Part 6: Inter-industry data elements, ISO/IEC 7816-6
Part 8: Security related interindustry commands, ISO/IEC 7816-8
Part 15: Cryptographic information application, ISO/IEC7816-15

- Global Platform, Card Specification, version 2.1.1.

- Technical Guideline TR-03110 (BSI) - Advanced Security Mechanisms for Machine
Readable Travel Documents — Extended Access Control (EAC). V2.10 Part 1 and 3
— 20 March 2012.

1.2 Informative references
The following documents have also influenced this specification:
- PKCS#1 v2.2, RSA Cryptography Standard, October 27, 2012.
- FINEID - S1, Electronic ID application for Finnish Electronic ID card, v2.1.

1.3 Related FINEID documentation

FINEID documentation is available from:

- http://www.fineid.fi




FINEID SPECIFICATION
FINEID - S1/3.0

25.01.2018
6(74)

2 Abbreviations

AC
AID
APDU
ASN.1
CIA
CLA
CT
CRDO
CRT
DF
DO
DST
EF
ELC
FCI
FCP
FINEID
Licc
MF
MSE
PACE
PIN
PKCS
PSO
PUK
RFU
RSA
SC

SE

Access Condition

Application IDentifier

Application Protocol Data Unit
Abstract Syntax Notation One
Cryptographic Information Application
Class byte

Confidentiality Template

Control Reference Data Object
Chinese Remainder Theorem
Dedicated File

Data Object

Digital Signature Template
Elementary File

ELliptic Curve

File Control Information

File Control Parameter

Finnish Electronic Identification
Length of data available on the card
Master File

Manage Security Environment

Password Authenticated Connection Establishment

Personal Identification Number
Public-Key Cryptography Standards
Perform Security Operation

PIN Unblocking Key

Reserved for Future Use

Rivest, Shamir, Adleman

Security Condition

Security Environment




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 7(74)

SFID Short File IDentifier
S/MIME Secure Multipurpose Internet Mail Extensions
SW1-SW2 Status bytes




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 8(74)

3 Command interface

This chapter describes the commands (and their parameters) that shall be supported by
FINEID application. Additional commands may be supported by the application but they
are not normally used by host applications utilizing the FINEID application.

The reader is advised to refer to ISO/IEC 7816-4 and ISO/IEC 7816-8 for more detailed
information about the commands.

Table 1. EID application related commands

Command Standard Functionality
SELECT Global Platform, Select an application on the card.
Card
Specification,
version 2.1.1.
SELECT FILE ISO/IEC 7816-4 | Select a file from the card’s file system
GET RESPONSE ISO/IEC 7816-4 | Read response data from the card
READ BINARY ISO/IEC 7816-4 | Read binary data from a transparent (binary) file
VERIFY ISO/IEC 7816-4 | Verify reference data presented by user (e.g. PIN)

with the reference data stored inside the card.

The current verification status can be also queried
with this command.

MANAGE SECURITY ISO/IEC 7816-8 Set the security environment (algorithms, keys)
ENVIRONMENT: SET that shall be used in the following PERFORM
SECURITY OPERATION commands.

PERFORM SECURITY ISO/IEC 7816-8 Calculate a hash code. The algorithm is specified

OPERATION: HASH with the MSE command.

PERFORM SECURITY ISO/IEC 7816-8 Compute a digital signature with a private key.
OPERATION: The algorithm and key are specified with the
COMPUTE DIGITAL MSE command.

SIGNATURE

PERFORM SECURITY ISO/TIEC 7816-8 Decrypt data with a private key. The algorithm
OPERATION: and key are specified with the MSE command.
DECIPHER

CHANGE REFERENCE ISO/IEC 7816-8 Change the current reference data (e.g. PIN)
DATA

RESET RETRY ISO/IEC 7816-8 Unlock locked reference data (e.g. PIN)
COUNTER

UPDATE BINARY ISO/IEC 7816-4 Update the contents of a transparent (binary) file
ERASE BINARY ISO/IEC 7816-4 Erase the contents of a transparent (binary) file

GET DATA ISO/IEC 7816-4 | Retrieve the public part of a RSA key




FINEID SPECIFICATION
FINEID - S1/3.0

25.01.2018
9(74)

3.1 SELECT

The Select command selects an application on the card. All successive commands are

handled by the selected application until a new application selection is made.

Table 2. SELECT command APDU

Byte Value
CLA 00h
0Ch - secure messaging
INS Adh
P1 04h — select by name (by Application IDentifier (AID))
P2 00h — select first or only occurrence
02h — select next occurrence
Lc length of subsequent data field
Data AID
Le 00h

Table 3. SELECT response APDU

Byte Value
Data File Control Information (FCI)
SW1-SW2 | Status bytes

The content of FCI is described in Annex A.

3.2 SELECT FILE
The SELECT FILE command selects a DF or an EF.

If P1, P2 and Lc are all zero, the command selects the root but returns no data. To select

the root and return the FCI information, you must select it by its file ID (3F0Oh).

Note: Some card implementations may process the command (that is,
0x A4 04 02 00) at the card operating system level before sending it
to the FINEID application. Consequently non nominal cases can
result in an unexpected status word. For all the application nominal

cases, the behaviour is as described here.




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 10(74)

3.21 Conditions of Use and Security

3.2.1.1 Usage

The MF and DFs can be selected by their file identifier, by their path or by their name,
but not by partial name. EFs can be selected by their file identifier or by their path.

The command cannot be used to select a deactivated file.

3.2.1.2 Security

If the EF to be selected is protected by a security attribute, then this security attribute
must be fulfilled in order to perform the SELECT FILE command.

The security attribute specifies if prior mutual authentication is necessary, and if so
whether or not secure messaging is also necessary.

Note: For clarity, the command is described here with the data in
plain text.

3.2.2 Format

Byte Value

CLA 00h - no secure messaging
0Ch - secure messaging
INS A4h
P1 00h - select EF, DF or MF by file identifier

02h - select EF by file identifier under current DF
04h - select DF or MF by name
08h - select file by absolute path from MF

P2 00h - FCI returned in response
04h - FCP returned in response
0Ch - no response

Lc Empty or length of subsequent data field
Data P1=00h
- EF, DF or MF file identifier (or empty = MF)

P1=02h

- EF file identifier
P1=04h

- MF or DF name
P1=08h

- absolute path from MF without the identifier of MF (3F00h)

Le Empty or maximum length of data expected in response




FINEID SPECIFICATION
FINEID - S1/3.0

25.01.2018
11(74)

Note: When P1 is 00h, (file selection by file ID), but not under the
current DF, all the files in the application domain will be searched in
the order of creation. It selects the first file that matches the file ID

specified in the data field, which might not be the file intended.

3.2.3 Response

Byte Value

Data File Control Information (FCI), File Control Parameters or empty

SWI1-SW2 | Status bytes

The card returns the data requested by the P2 reference control parameter, followed by
the SW1, SW2 status codes. The response data is either in the FCI template, the FCP
template or does not exist (P2 = 0Ch).

The FCP template contains the file control parameters that were specified when creating
the file. The content of FCP is described in Annex A.

The FCI information returned by the command (P2 = 00h) is shown in Annex A.

Caution: When the command is sent with secure messaging, the tag
(62h for FCP, 6Fh for FCI) and length of the FCP or FCI template
are absent. Two trailer bytes with the value 00h are appended to the
end of the FCP/FCI data. This is true for DF and EF selection.

Possible values for the SW1, SW2 status codes are as follows:

SW1 | SW2 | Description
90h | 00h | Command processed without error. No FCI data returned
62h | 83h | Deactivated file
64h | 00h | Execution error, file descriptor checksum error.
67h | 00h | Incorrect length, Lc.
6%h | 82h Security status not satisfied, error during secure messaging
69h | 99h | o Select Application Failed
@ PACE authentication not open




FINEID SPECIFICATION
FINEID - S1/3.0

25.01.2018
12(74)

3.3

6Ah | 81h | Function not supported (cannot select MF by path)

6Ah | 82h File not found

6Ah | 86h Incorrect P1, P2 parameter

GET RESPONSE

The GET RESPONSE command returns response data from the card for case 4 APDU
commands.

For example, this command is used in to get response data from commands

3.3.1

- SELECT FILE,
- PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE and
- PERFORM SECURITY OPERATION: DECIPHER.

Conditions of Use and Security

3.3.1.1 Usage

The GET RESPONSE command must be used only after command case 4.

3.3.1.2 Security
The GET RESPONSE command can be accessed freely.

3.3.2

Format
Byte Value
CLA 00h - no secure messaging
0Ch - secure messaging
INS COh
P1 00h
P2 00h
Lc Empty
Data Empty
Le Maximum length of data expected in response




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 13(74)

3.3.3 Response

Byte Value

Data Value of the response

SWI1-SW2 | Status bytes

Most status byte values for this command are managed by the card platform. The
FINEID application can return only the following codes:

SW1 | SW2 | Description
68h | 84h | The chaining mechanism is not available for the command.
90h 00h Successful execution of the command (Le = Licc)

Once taken over, the card platform can also return the following codes:

SW1 | SW2 | Description
6lh | XXh | e< Lice, XXh is the remaining number of available data bytes in the card
69h | 82h Security status not satisfied
6Ch | Licc | ifLe> Licc

3.4 READ BINARY
The READ BINARY command reads all or part of a transparent EF.

There are two ways of referencing the EF:

Implicit selection. In this case, the EF is under the current DF,
and is specified by its short file identifier (SFI). P1 specifies the
SFI and P2 specifies the start address for the read (called the
offset). The command cannot be used for files with an SFI of
1Fh.

Direct selection. In this case the EF must have been previously
selected using the SELECT FILE command. The data is read
directly from the current EF. In this case the offset is specified
over P1 and P2.

The command reads the number of bytes specified in Le from the offset, up to a
maximum of 255 bytes (including secure messaging data if used).




FINEID SPECIFICATION 25.01.2018

FINEID - S1/3.0

3.41

3.4.1.1 Usage

Conditions of Use and Security

The command can be used on any activated EF.

In the case of implicit selection, the EF becomes the current EF after execution of the

command.

3.4.1.2 Security

If the EF containing the data to be read is protected by a security attribute, then this

security attribute must be fulfilled in order to perform the READ BINARY command.

The security attribute specifies if prior mutual authentication is necessary, and if so
whether or not secure messaging is also necessary.

Note: For clarity, the command is described here with the data in

plain text.

3.4.2 Format

Byte Value

CLA 00h - no secure messaging
0Ch - secure messaging
INS BOh
Pl See table below
P2 See table below
Lc Empty

Data Empty

Le Number of bytes to read. If empty or zero, the command reads until the end of the file,
up to a maximum of 255 bytes (including data for secure messaging if SM specified).

Coding of P1 and P2

b8 b7 b6 b5:b4 b3 b2 bl

Hex

Meaning

P1-P2 specifies a 15-bit offset of the data to be read

P1 specifies a short FID and P2 specifies an 8-bit offset of
the data to be read

— short FID (value domain 1 — 30)




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 15(74)

3.4.3 Response

Byte Value

Data Data read from the file

SWI1-SW2 | Status bytes

Possible values for the SW1, SW2 status codes are as follows:

Description

Command processed without error

End of file reached (offset + Le is higher than the end of the file)

Execution error, file descriptor checksum error.

Security status not satisfied, for example:
o The security attributes are not satisfied
@ Error during secure messaging

Conditions of use not satisfied, for example:

[[JSecurity attribute for the current contact/contactless interface is absent,
zero or not BER-TLV coded.

Command not allowed (no current EF)

File not found (b8 of P1 = 1 indicating implicit selection, but no SFI given)

Incorrect P1, P2 (check that the offset is inside the EF and that the SFI is
not 1Fh)

Incorrect P1, P2 (offset outside EF)

SW1 | SW2
90h 00h
62h 82h
64h 00h
69h 82h
69h 85h
69h 86h
6Ah 82h
6Ah 86h
6Bh 00h

3.5 VERIFY

The VERIFY command authenticates a user by comparing the PIN entered in the
command (the verification PIN) with the reference PIN.

If the VERIFY command is successful, the following actions take place:

The reference PIN Try Counter is set to PIN Try Limit.

The reference PIN validated flag is set to true.




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 16(74)

The reference PIN usage counter is decremented by 1 unless its
value is FFh (no limit to the number of times the PIN can be used)
or 00h (already been used maximum allowed number of times).

The reference PINs Credentials Counter can be used.
If the Verify command fails, the following actions take place:

The reference PIN Try Counter is decremented by 1. If the
reference PIN Try Counter reaches zero as a result, the command
returns 6983h.

The reference PIN validated flag is set to false.

The reference PIN usage counter is unchanged.

In “Unverify” Mode:

If the command is used to “unverify” a PIN, a successful execution of the command sets
the reference PIN to “unverified”.

3.5.1 Conditions of Use and Security

3.5.1.1 Usage

The length of the entered PIN must be equal to length of the PIN in the card, otherwise
the VERIFY command fails.

Sending the command with Lc = 00h has a special meaning. It enables you to know if
the PIN has already been successfully presented during the current session. If the PIN
has been successfully presented already, then the VERIFY command returns a status
code of 9000h. If the PIN has not been successfully presented already, the VERIFY
command returns a status code of 63 Cxh, where x is the number of remaining
presentation attempts allowed.

3.5.1.2 Security
The PIN Try Counter and the Usage Counter for the reference PIN must not be zero.
The use of secure messaging is determined by the security attribute of the PIN. If secure

messaging is specified, the verification PIN provided by the terminal must be of the
same length as the reference PIN and its value must match.

Note: For clarity, the command is described with the data in plain
text.




FINEID SPECIFICATION 25.01.2018

FINEID - S1/3.0 17(74)
3.5.2 Format
Byte Value
CLA 00h - no secure messaging
0Ch - secure messaging
INS 20h
P1 00h — Verify mode
FFh — Unverify mode
P2 11h — global PIN
81h-8Fh - local PIN
Lc Empty or length of subsequent data field
Data Empty or verification data (padded to the correct length).
Padding is done according to ISO/IEC 7816-15.
Le Empty

3.5.3 Response

Byte Value
Data Empty
SWI1-SW2 | Status bytes

If Lc = 00h, the command can be used to retrieve the number X of further allowed
retries (SW1-SW2 = 63CXh), or to check whether the verification is not required
(SWI1-SW2 =9000h).

Possible values for the SW1, SW2 status codes are as follows:

SW1 | SW2 | Description

90h | 00h | Command processed without error

63h | Cxh | Reference PIN not verified.”x” attempts remaining

67h | 00h | Incorrectlength, Lc.

69h | 82h Security conditions not satisfied (error during secure messaging)

69h 83h Authentication method blocked (reference PIN blocked)

69h | 84h | PIN Try Counter or PIN Usage Counter for reference PIN has reached zero

69h | 85h | Conditions of use not satisfied, for example:

o Security attribute for the current contact/contactless interface is absent,
zero or not BER-TLV coded. (Possible in “Verify” mode but not
“Unverify” mode).




FINEID SPECIFICATION
FINEID - S1/3.0

25.01.2018
18(74)

3.6 MANAGE SECURITY ENVIRONMENT: SET

69h | 9%h | PACE authentication not open
6Ah | 86h Incorrect P1, P2
6Ah | 88h Referenced data not found

The MANAGE SECURITY ENVIRONMENT: SET command updates a CRT in the

current SE. The value of the CRT in the original SE remains unchanged.

3.6.1

3.6.1.1 Usage

Conditions of Use and Security

The command applies to the current SE only.

3.6.1.2 Security
The MANAGE SECURITY ENVIRONMENT: SET command can be accessed freely.

3.6.2

Note: For clarity, the command is described here with the data in

plain text.
Format
Byte Value
CLA 00h - no secure messaging
0Ch - secure messaging
10h - transmit first portion of data in chaining mode with no secure messaging and wait
for final portion
INS 22h
P1 01000001b = 41h — computation and decipherment
P2 P1=SET
- P2 = AAh hash template (HT)
- P2 =B6h, value of DST in data field
- P2 =B8h, value of CT in data field
Lc Empty or length of subsequent data field
Data Concatenation of CRDOs. CRDOs are the items contained in the CRT. The data does
not contain the tag and length of the CRT.
Le Empty




FINEID SPECIFICATION

FINEID - S1/3.0

25.01.2018

3.6.3 Response

Byte

Value

Data

Empty

SWI1-SW2 | Status bytes

Possible values for the SW1, SW2 status codes are as follows:

The table below describes the Control Reference Data Objects (CRDO) that are

SW1 | SW2 | Description

90h | 00h | Command processed without error

67h | 00h | Incorrect length. Le>30

69h | 82h | Security status not satisfied, error during secure messaging

69h | 85h | Conditions of use not satisfied, for example wrong order of operations or

context of use not respected.

6Ah | 80h | Incorrect data, for example no algorithm ID referenced

6Ah | 86h Incorrect P1, P2

supported in Digital Signature Templates (DST) and Confidentiality Templates (CT).

Table 4. Control Reference Data Objects (CRDO)

Tag Value DST CT
80h Algorithm reference + +
84h Key reference + +

Table 5. MANAGE SECURITY ENVIRONMENT:SET supported P1-P2 combinations

Supported combinations of P1-P2

P1 | P2 Meaning CRDO in Data field contents
data field

'41' | 'AA' | SET SE for hashing HT '80 01 xx'

'41' | 'B6' | SET SE for digital signature DST '8001 xx 84 01 xx'

'41' | 'B8' | SET SE for decipherment CT '8001 xx 84 01 xx *

The supported values for the CRDO algorithm reference (tag 80h) are specified in the

tables below.




FINEID SPECIFICATION 25.01.2018

FINEID - S1/3.0

20(74)

Table 6. Values for the algorithm reference used in Digital Signature Template

Algorithm | Details
reference
0Xh No hash indicated. Either the hash function is defined implicitly or is not applicable.
1Xh SHA-1
3Xh SHA-224
4Xh SHA-256
5Xh SHA-384
6Xh SHA-512
X1h RSA with padding according to ISO 9796-2.
X2h RSASSA-PKCS1-v1_5 signature scheme (according to PKCS#1 v2.2 with RSA
algorithm, compatible with PKCS#1 v1.5)
X3h RSA with padding according to RFC 2409.
X4h ECDSA.
X5h RSA PSS.
XXh All other values are RFU.

The high nibble of the algorithm reference specifies the hash algorithm used (if hashing
is relevant for the algorithm). The low nibble specifies the rest of the details about the

algorithm.

Table 7. Values for the algorithm reference used in Confidentiality Template

Algorithm | Details
reference
1Ah RSASSA PKCS#1 vl.5
1Dh RSAES OAEP SHA-1 (160 bits)
3Dh RSAES OAEP SHA-224
4Dh RSAES OAEP SHA-256
5Dh RSAES OAEP SHA-384
6Dh RSAES OAEP SHA-512

3.7 PERFORM SECURITY OPERATION: HASH

The PERFORM SECURITY OPERATION: HASH provides the hashed message to be
used as input for the computation of a digital signature. There are three different cases:

The hash is performed entirely by card

The hash is performed externally but card performs the final round
of hashing




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 21(74)

The hash is performed entirely outside the card and the
PERFORM SECURITY OPERATION: HASH command is used
to “set” the data in preparation for the PERFORM SECURITY
OPERATION: COMPUTE DIGITAL SIGNATURE command

For information, the following table summarizes the various hash algorithm constants:

Table 8. Hash Algorithm Constants

Hash Length of | Length of the counter indicating the number of Block Length of
intermedi bits already hashed (bytes) 1 length of | message digest
ate hash hash result
algorithm
SHA-1 20 bytes 8 bytes 64 bytes 20 bytes
SHA-224 32 bytes 8 bytes 64 bytes 28 bytes
SHA-256 32 bytes 8 bytes 64 bytes 32 bytes
SHA-384 64 bytes 16 bytes 128 bytes 48 bytes
SHA-512 64 bytes 16 bytes 128 bytes 64 bytes

For the sake of simplicity, the counters indicating the number of bits already hashed can
be coded on 8 or 16 bytes for all supported hash algorithms. However, when coded on
16 bytes, the 8 MSB (leftmost) bytes must be null. Thus a length coded on 8 or 16 bytes
is equivalent.

3.7.1 Conditions of Use and Security

3.7.1.1 Usage

If the data is to be hashed entirely in the card and is more than 64 bytes, divide it into
blocks of 64 bytes or less and perform the PERFORM SECURITY OPERATION:
HASH command for each block. The final command has a different format (see “APDU
Format to Hash the Final Block™). If the data is 64 bytes or less, use the format described
for the final command. If a command other than PERFORM SECURITY OPERATION:
HASH is sent, the hash session ends and previously hashed data is lost.

The result of the PERFORM SECURITY OPERATION: HASH is available until one of
the following occurs:

The FINEID application is deselected or reselected

A further PERFORM SECURITY OPERATION: HASH
command is issued

A MANAGE SECURITY ENVIRONMENT: SET command is
issued




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 22(74)

3.7.1.2 Security
The current SE must contain a DST template or an HT template and the algorithm ID in
this template must be consistent with the format of the command data.

If a MANAGE SECURITY ENVIRONMENT: SET command is sent during a hash
sequence which references a different DST key, the hash sequence is aborted and the
internal “hash integrity flag” is set to “unverified”.

Note: For clarity, the command is described here with the data in
plain text.

3.7.2 Format

This command format varies according to where the hash is performed. Each case is
shown separately.

3.7.2.1 Hashing Performed Entirely by the Card

If the data is more than one block length, the command must be sent for each block. The
block length is 64 bytes or 128 bytes according to the SHA used (see the “block length”
column in Hash Algorithm Constants table).

The APDU format for all the blocks except the last one is as follows:

Byte Value
CLA 00h - no secure messaging
0Ch - secure messaging
INS 2Ah
Pl 90h
P2 80h
Lc Length of subsequent data field
Data Data to be hashed (no more than one block length as shown in “block length” column
in Hash Algorithm Constants table
Le Empty.

The APDU format for the last block or only block if the data is not more than one block
length is as follows:

Byte Value

CLA 00h - no secure messaging
0Ch - secure messaging
INS 2Ah
Pl 90h

P2 AOh




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 23(74)

Lc Length of subsequent data field

Data Data to be hashed (last block, in TLV format as follows (L is the length of the last data
block): 80h || L || last data block).

Le Length of the hash result. This is optional and is used if you want to return the final
value of the hash in the command.

3.7.2.2 Hashing Performed Partially by the Card

In this case, all the data except the final block is hashed outside the card but the card
hashes the final block. The APDU format is as follows:

Byte Value
CLA 00h - no secure messaging
0Ch - secure messaging
INS 2Ah
Pl 90h
P2 AOh
Lc Length of subsequent data field
Data Data is the concatenation of the immediate hash value and the final data block
according to the hash algorithm used, as shown in Input Hash Lengths for Different
Algorithms (SHAs) table.
Le Empty.

Table 9. PSO—Hash Input Data (Hash Performed Partially by the Card)

Tag Length Value
90h XXh NN-byte intermediate hash value || 8—byte or 16—
byte counter (number of bits already hashed).

The length of the counter depends on the SHA
algorithm as shown in in Input Hash Lengths for
Different Algorithms (SHAs) table.

80h L Final data block Where:

L is the length of the final data block, which must
be between 0 and the block lengths as indicated in
in Hash Algorithm Constants table.

Table 10. Input Hash Lengths for Different Algorithms (SHAs)

Hash XX Length of Intermediate Hash (NN bytes) and Counter
SHA-1 1Ch 20 + 8 bytes
SHA-224 28h 32 + 8 bytes
SHA-256 28h 32 + 8 bytes
SHA-384 48h or 50h | 64 + 8 bytes or 64 + 16 bytes
SHA-512 48h or 50h | 64 + 8 bytes or 64 + 16 bytes




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 24(74)

3.7.2.3 Hashing Performed Entirely Externally
In this case, all the data is hashed outside the card. The APDU format is as follows:

Byte Value

CLA 00h - no secure messaging
0Ch - secure messaging
INS 2Ah
Pl 90h
P2 AOh
Lc Length of subsequent data field
Data Hash value, in TLV format as follows (L is the length of the hash value according to

the algorithm ID): 90h || L || hash value).

Algorithm ID  Length of hash value

01h or 02h 1-36 bytes
03h 16-36 bytes
I11hor 12h 20 bytes
32h 28 bytes
41h or 42h 32 bytes
52h 48 bytes
62h 64 bytes
Le Empty.

3.7.3 Response

Byte Value

Data Empty

SW1-SW2 | Status bytes

Possible values for the SW1, SW2 status codes are as follows:

SW1 | SW2 | Description
90h | 00h | Command processed without error
64h | 00h | Incorrect checksum for hash value
68h | 84h | The chaining mechanism is not available for the command.
69h | 82h | Error during secure messaging
69h | 85h | Conditions of use not satisfied, for example:
@ Algorithm ID must be one of those in Values for the algorithm reference
used in Digital Signature Template table.
o Length of input hash data not valid for algorithm ID
@ Security attribute for the current contact/contactless interface is absent,




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 25(74)

zero or not BER-TLV coded.

6%h | 86h | Command not allowed (use of SHA-1 has been prohibited by the
cryptographic environment parameters data object)

6Ah | 80h Incorrect data. Input template in incorrect format

3.8 PERFORM SECURITY OPERATION: COMPUTE DIGITAL
SIGNATURE

The PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE
command is used to compute a digital signature (from either a message or a hash
computation).

A message is always hashed before signing. This hash can be performed by in one of
three ways:

entirely by card
entirely externally

partially externally and partially by card. In this case, the data is
hashed externally but the last block is hashed by the card.

In all cases, card pads the hash to create Digital Signature Input (DSI) and signs this DSI
by wusing the PERFORM SECURITY OPERATION: COMPUTE DIGITAL
SIGNATURE command.

The current SE indicates the keys and algorithms to use for the signature and, if
applicable, the hash algorithm.

3.8.1 Conditions of Use and Security

3.8.1.1 Usage

The command must be preceded by a PERFORM SECURITY OPERATION: HASH
command which provides the hash or sets the hashed data if the hash is performed
entirely externally.

None of the following actions must have taken place in between the execution of the
PERFORM SECURITY OPERATION: HASH command and the PERFORM
SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE command otherwise
the hash data is lost:

Select FINEID application
Another completed hash computation
A MANAGE SECURITY ENVIRONMENT: SET command




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 26(74)

The current SE must contain a DST which refers to a private key. This key must be a
signature key and must have been initialized.

Caution: The key modulus value must be greater than the value of
the padded message to be signed. Remember that messages padded
with ISO 9796-2 padding begin with a padding byte of 6Ah, so any
modulus value beginning with a value less than 6Ah is not allowed. In
such a case, the PERFORM SECURITY OPERATION: COMPUTE
DIGITAL SIGNATURE does not return an error code in its status
bytes, but generates a signature that has no meaning.

3.8.1.2 Security

In the application phase any security attributes set for the private key regarding the
PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE must be
fulfilled.

Note: For clarity, the command is described here with the data in
plain text.

If the signature key has the optional non-repudiation flag activated (value other than 00h
or absent), the applet sets the PIN(s) protecting the key to “unverified” after the
command (so the PIN needs to be presented again if the key is used again).

Note: If more than one PIN is protecting the signature key and the
PINs are to be set to unverified afterwards, the PERFORM
SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE
command unverifies ONE PIN only (the one that first granted
access).

If the signature key has the optional non-repudiation flag deactivated (flag is present and
value is 00h), the applet sets the PIN(s) protecting the key to “verified” after the
command.

If the signature key is protected by more than one PIN defined in the security attributes
as OR, then a correct presentation of any one of the PINs is valid for the PERFORM
SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE command. Thus, if a
PIN had already been verified, the second PIN could be used to authorize another
PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE command,
without the need to re-verify the first PIN. If the security attributes specified an AND




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 27(74)

condition, then all the specified PINs need to be verified for ONE use of the PERFORM
SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE command.

If the signature was not completed because the APDU processing was interrupted due to
the context not being properly established (that is, the applet returns status bytes of 69
82h) the PIN Presentation flag remains untouched.

If the signature key is protected by one or more PINs, and the “Change PIN before first
use” option is active, then these PINs must have been changed at least once since
personalization for the signature key to be available. In other words, the “changed” flag
for the PIN must be true.

If the signature key has a signature counter associated with it, the counter is incremented
when the command is performed successfully. If the incremented counter exceeds the
maximum allowed value, the command fails.

3.8.2 Format

Byte Value

CLA 00h - no secure messaging
0Ch - secure messaging
INS 2Ah
P1 9Eh - digital signature data object is returned in response
P2 9Ah - data field contains data to be signed
Lc Empty

Data Empty

Le Maximum length of the expected length of the response, that is, the length of the
signature with no tag or length bytes.

Note: If the response is greater than 256 bytes including secure
messaging (for example with key lengths of 2,048 bits), the card
opens a retrieval sequence. The sequence differs according to the
communication protocol in use (T=0 or T=1/T=CL). For details see
Annex B.

3.8.3 Response

Byte Value
Data Digital signature




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 28(74)

| SW1-SW2 | Status bytes |

The card returns the value of the digital signature, followed by the SW1, SW2 status
codes. RSA signatures are unformatted. ECDSA signatures are in the format r || s, where
r and s are integers and are the co-ordinates of the point on the elliptic curve that
correspond to the signature value.

Possible values for the SW1, SW2 status codes are as follows:

SW1 | SW2 Description

90h 00h Command processed without error

6%h 82h Security conditions not satisfied, for example:
@ Security attribute not fulfilled for private key
o Error during secure messaging

o PIN protecting the signature key has not been presented (it is valid for
one signature only)

o Integrity of DTBS check failed

6%h 85h Conditions of use not satisfied, for example:

@ No hashed message available from PSO—Hash command.

@ No algorithm or private key in the current SE’s DST.

@ Algorithm not recognized.

o Private key in current SE’s DST is not a digital signature key.

@ Private key in current SE’s DST has not been initialized, that is, at least
one of the elements has not been initialized using the Put Data
command.

@ PIN protecting the signature key has not been changed since
personalization, and the “Change PIN before first use” option is active.
Table 29 on page 35.

o Security attribute for the current contact/contactless interface is absent,
zero or not BER-TLV coded.

69h 86h Command not allowed (use of SHA-1 has been prohibited by the
cryptographic environment parameters data object)

6Ah 84h Signature counter exceeds maximum allowed value.

6Ah 86h Incorrect P1, P2. Must be 9Eh 9Ah

3.9 PERFORM SECURITY OPERATION: DECIPHER

The PERFORM SECURITY OPERATION: DECIPHER command decrypts a message
using a decipher key stored in the card. It returns the message in plain data.

The PERFORM SECURITY OPERATION: DECIPHER command can be used in
“chaining” mode. This means that if the data is too large to be sent in a single




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 29(74)

PERFORM SECURITY OPERATION: DECIPHER command you can send it in two
PERFORM SECURITY OPERATION: DECIPHER commands. The first command is
sent with CLA = 1Xh. This tells the card to wait for the remaining data. Then issue
another PERFORM SECURITY OPERATION: DECIPHER command with CLA= 0Xh.
The card concatenates the data from the first command with that of the second and then
performs the deciphering operation. You will need to use chaining mode to decipher data
that was encrypted using a 2,048-bit key or longer.

3.9.1 Conditions of Use and Security

3.9.1.1 Usage

The private key used to decipher the data must be a decipher key and must be stored in
the confidentiality template (CT - tag B8h) of the current SE. The encrypted message
must be the same length as this key.

If you send the command with CLA = 1Xh to indicate chaining mode, the next
command you issue must be another PERFORM SECURITY OPERATION:
DECIPHER command with CLA = 0Xh, otherwise the chaining mechanism ends and
the data is lost.

The total amount of data that can be sent in “chaining” mode is 742 bytes. If this figure
is exceeded, the chaining session is broken and the card returns the error 6700h.

The message to be decrypted must have been encrypted using one of the following
RSAES (RSA encryption schemes):

RSA with either PKCS #1 v1.5 padding (block type 2 format)

RSA with OAEP padding. The format of OAEP padding is
outside the scope of this document. For more information please
refer to the RSA PKCS#1 v2.1 standard.

Caution: OAEP has an optional label (to be associated with the
message to encrypt), this label is hashed and concatenated with a
padding and the message to encrypt. When deciphering the encoded
data, the service uses the same label and verifies its hash (retrieved
from the deciphered data). The hash of the label is used as an
additional verification token to certify the encrypted data. However it
is not available in the JavaCard 2.2.2 API (this is also true for
JavaCard 3.0.1).

The PKCS #1 V2.1 RSAES OAEP contains inner parameters. The
following parameters have been chosen:

The inner hash is the same as the external hash
The Label is an empty string
The MGF function is the MGF1() defined in PKCS #1 V2.1




FINEID SPECIFICATION 25.01.2018

FINEID - S1/3.0

30(74)

3.9.1.2 Security

If specified, the “Decipher” security attribute for the private key referenced in the CT of
the current SE must be fulfilled.

Note: For clarity, the command is described here with the data in
plain text.

The algorithm ID must be one of those listed in Values for the algorithm reference used
in Confidentiality Template table.

3.9.2 Format
Byte Value
CLA 00h - no secure messaging

0Ch - secure messaging

10h - transmit first portion of data in chaining mode with no secure messaging and wait

for final portion
1Ch - transmit first portion of data in chaining mode with secure messaging and wait
for final portion

INS 2Ah
Pl 80h - decrypted value is returned in response
P2 86h - cryptogram in data field
Lc Length of subsequent data field
Data Cryptogram = PI || encrypted message. The encrypted message must be in the correct
format (please refer to the PKCS#1 standard). PI=81h.
Le Empty or maximum length of data expected in response

Note: The total length of the encrypted message (not including the
81h byte and secure messaging) must be the same length as the key
used to decipher it.

3.9.3 Response

Byte Value
Data Decrypted cryptogram (padding is removed by the card and only the actual data is
returned).
SWI1-SW2 | Status bytes




FINEID SPECIFICATION
FINEID - S1/3.0

25.01.2018
31(74)

Possible values for the SW1, SW2 status codes are as follows:

SW1 | SW2 Description
90h | 00h Command processed without error
67h 00h Incorrect length, Lc, for example:
» Data is not the same length as the private key + 1 for padding indicator
(PD).
» Total data in chaining mode exceeds 742 bytes.
69h | 82h Security status not satisfied:
» Security attribute not fulfilled for private key referenced in CT of
current SE
» Error during secure messaging
69h | 84h Referenced data (private key) invalidated or does not exist
69h | 85h Conditions of use not satisfied, for example:
@ No algorithm or private key in the current SE’s CT
@ Algorithm ID must be 1A, 1D, 3D, 4D, 5D or 6Dh
» Private key in current SE’s CT is not a decipher key (that is, bit 2 of the
private key usage byte is not set to 1) —see Table 83 on page 152
» Private key in current SE’s CT has not been initialized, that is, not all
the elements have been updated using the Put Data command
» Security attribute for the current contact/contactless interface is absent,
zero or not BER-TLV coded.
69h | 86h Command not allowed (Algorithm ID indicates the use of RSAES
OAEP algorithm but without a supported related hash method (i.c.
algolD is ‘xD’ with x outside the values [1,3,4,5,6])
6Ah | 80h Incorrect data, for example:
o PI must be 81h
» The message before encryption and padding was longer than key length
- 11 bytes
» The message before encryption and padding was not in the format
described by Table 121 on page 235 or the correct OAEP format
defined in PKCS#1 V2.1 standard.
» Incorrect tag or tag length (including TLVs used in secure messaging)
» Mismatch between algoID used to cipher the message and the algoID
relevant for Decipher
6Ah | 86h Incorrect P1, P2. Must be 80h 86h

3.10 CHANGE REFERENCE DATA
The CHANGE REFERENCE DATA command replaces the value of the reference PIN

by a new value.




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 32(74)

The current value of the reference PIN must be presented as part of the CHANGE
REFERENCE DATA command.

If the CHANGE REFERENCE DATA command is successful, the following actions
take place:

The reference PIN Try Counter is set to PIN Try Limit.

The reference PIN validated flag is set to false (because the new
value has not yet been verified).

The reference PIN value is updated with the value sent in
CHANGE REFERENCE DATA command.

The reference PIN’s “PIN changed” flag is set to “true”.

The reference PIN usage counter is unchanged.

If the CHANGE REFERENCE DATA command fails, the following actions take place:
The reference PIN Try Counter is decremented by 1.
The reference PIN validated flag is set to false.

The reference PIN usage counter is unchanged.

3.10.1 Conditions of Use and Security
3.10.1.1 Usage

3.10.1.2 Security

The PIN Try Counter and the Usage Counter for both the reference PIN and the change
PIN must not be zero.

Note: For clarity, the command is described with the data in plain
text.

3.10.2 Format

Byte Value

CLA 00h - no secure messaging
0Ch - secure messaging
INS 2Ch
P1 00h - reset retry counter and set new verification data

P2 Reference of the PIN:




FINEID SPECIFICATION 25.01.2018

FINEID - S1/3.0 33(74)
- 11h for global PIN
- 81h—8Fh for local PIN
Lc Length of subsequent data field

Data Resetting code (padded to the correct length: 8—16 bytes (local PIN), 8-12 bytes (global
PIN)) followed by new reference data (padded to the correct length 8—16 bytes (local
PIN), 8-12 bytes (global PIN)).

Padding is done according to ISO/IEC 7816-15.
Le Empty

3.10.3 Response

Byte Value
Data Empty
SW1-SW2 | Status bytes

Possible values for the SW1, SW2 status codes are as follows:

SW1 | SW2 | Description

90h | 00h | Command processed without error

63h | Cxh | Reference PIN not verified.”x” attempts remaining for change PIN

67h | 00h | Incorrect length for example:
@ Lc incorrect
@ Length of new PIN value is not the same as length of existing value

69h | 82h Security conditions not satisfied (error during secure messaging or security
attribute of reference PIN for Change Reference Data is never)

6%h 83h | Authentication method blocked (Change PIN blocked)

69h | 84h | Referenced data invalidated (PIN Try Counter or PIN Usage Counter for
either the reference PIN or the change PIN has reached zero)

69h | 85h | Conditions of use not satisfied, for example:

o Security attribute for the current contact/contactless interface is absent,
zero or not BER-TLV coded.

6Ah | 86h Incorrect P1, P2

6Ah | 88h Referenced data not found




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 34(74)

3.11 RESET RETRY COUNTER

The RESET RETRY COUNTER command is used when a PIN code has been locked
due to too many consecutive unsuccessful verifications. Unlocking a PIN requires a
resetting code (a.k.a. PIN Unlocking Key, PUK) to be presented to the card by the user.

If the RESET RETRY COUNTER command is successfully executed, the following
actions take place:

The reference PIN Try Counter is set to PIN Try Limit.

The reference PIN validated flag is set to false (because the PIN is
not yet verified)

The reference PIN unblocking counter is decremented by 1, unless
its value is ASh (no limit to the number of times reference PIN
can be unblocked) or 00h (already been unblocked maximum
allowed number of times).

The reference PIN usage counter is unchanged.
The PUK Try Counter is set to unblock PUK Try Limit
The PUK validated flag is set to false

The PUK usage counter is decremented by 1 unless its value is
FFh (no limit to the number of times unblock PIN can be used) or
00h (already been used maximum allowed number of times).

If a new value for the reference PIN is specified, the reference
PIN value is updated with the value sent in the RESET RETRY
COUNTER command

If a new value for the reference PIN is specified, the reference
PIN’s “PIN changed” flag is set to “true”

If the RESET RETRY COUNTER command fails, the following actions take place:
The PUK Try Counter is decremented by 1
The PUK validated flag is set to false

3.11.1 Conditions of Use and Security

3.11.1.1 Usage
When used to unblock a PIN, a new value can be given to the reference PIN.

3.11.1.2 Security
None of the following counters must be zero:

The Try Counter of the PUK
The Unblocking Counter of the Reference PIN




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 35(74)

The Usage Counters for both the reference PIN and the PUK.

Note: For clarity, the command is described with the data in plain
text.

3.11.2 Format

Byte Value

CLA 00h - no secure messaging
0Ch - secure messaging
INS 2Ch
P1 00h - reset retry counter and set new verification data
01h — only reset retry counter
P2 Reference of the PIN:
- 11h for global PIN
- 81h—8Fh for local PIN
Lc Empty or length of subsequent data field

Data Empty, or

resetting code (padded to the correct length) followed by new reference data (padded to
the correct length), or

resetting code (padded to the correct length

Padding is done according to ISO/IEC 7816-15.

Le Empty

3.11.3 Response

Byte Value
Data Empty
SWI1-SW2 | Status bytes

If Lc = 00h, status bytes indicate the number X of further allowed retries (SW1-SW2 =
63CXh).

Possible values for the SW1, SW2 status codes are as follows:

SW1 | SW2 | Description

90h | 00h | Command processed without error

63h | Cxh | PUK not verified.”x” attempts remaining for PUK




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 36(74)

67h | 00h | Incorrect length, Lc.

69h | 82h | Security conditions not satisfied (error during secure messaging or security
attribute for the reference PIN is never)

69h | 83h | Authentication method blocked (the FP_PUK needed to unblock the
reference PIN is blocked itself)

69h | 84h | Referenced data invalidated (PIN Unblocking Counter for reference PIN or
PIN Try Counter or PIN Usage Counter for FP_ PUK has reached zero)

69h | 85h | Conditions of use not satisfied, for example:

@ Security attribute for the current contact/contactless interface is absent,
zero or not BER-TLV coded.

6Ah | 86h Incorrect P1, P2

6Ah | 88h Referenced data not found

3.12 UPDATE BINARY

The UPDATE BINARY command is used update the contents of a transparent (binary)
file

There are two ways of referencing the EF:

Implicit selection. In this case, the EF is under the current DF,
and is specified by its short file identifier (SFI). P1 specifies the
SFI and P2 specifies the start address for the update (called the
offset). The command cannot be used for files with an SFI of
1Fh.

Direct selection. In this case the EF must have been previously
selected using the SELECT FILE command. The data is updated
directly in the current EF. In this case the offset is specified over
P1 and P2.

3.12.1 Conditions of Use and Security

3.12.1.1 Usage
The command can be used on any activated EF.

In the case of implicit selection, the EF becomes the current EF after execution of the
command.

3.12.1.2 Security

If the EF to be updated is protected by a security attribute, then this security attribute
must be fulfilled in order to perform the UPDATE BINARY command.




FINEID SPECIFICATION 25.01.2018

FINEID - S1/3.0

37(74)

Note: For clarity, the command is described here with the data in
plain text.

3.12.2 Format

Byte Value
CLA 00h - no secure messaging
0Ch - secure messaging

INS D6h

Pl See table below

P2 See table below

Lc Length of subsequent data field (up to a maximum of 248 bytes)
Data Data to be updated

Le Empty

Table 11. UPDATE BINARY: coding of P1 and P2.

Coding of P1 and P2

b8 b7 b6 b5§b4 b3 b2 b1| Hex Meaning

- - - - - P1-P2 specifies a 15-bit offset of the data to be
| updated

- - - - - P1 specifies a short FID and P2 specifies an 8-bit
offset of the data to be read

X X X X X - — short FID (value domain 1 — 30)

3.12.3 Response

Byte Value
Data Empty
SWI1-SW2 | Status bytes




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 38(74)

Possible values for the SW1, SW2 status codes are as follows:

SW1 | SW2 | Description

90h | 00h | Command processed without error

62h 82h End of file reached (offset + Lc is higher than the end of the file)

64h | 00h | Execution error, file descriptor checksum error.

67h | 00h | Incorrect length, Lc.

68h | 84h | The chaining mechanism is not available for this command.

69h | 82h | Security status not satisfied, for example:
o The security attributes are not satisfied
@ Error during secure messaging

69h | 85h | Conditions of use not satisfied, for example:

» [JSecurity attribute for the current contact/contactless interface is absent,
zero or not BER-TLV coded.

69h | 86h | Command not allowed (no current EF)

6Ah | 82h | File not found (b8 of P1 = 1 indicating implicit selection, but no SFI given)

6Ah | 86h | Incorrect P1, P2 (check that offset is inside the EF and that SFI is not 1Fh)

6Bh | 00h | Incorrect P1, P2 (offset outside EF)

3.13 ERASE BINARY
The ERASE BINARY command is used erase the contents of a transparent (binary) file.
There are two ways of referencing the EF:

Implicit selection. In this case, the EF is under the current DF, and
is specified by its short file identifier (SFI). P1 specifies the SFI
and P2 specifies the start address for the erase (called the offset).
The command cannot be used for files with an SFI of 1Fh.

Direct selection. In this case the EF must have been previously
selected using the SELECT FILE command. The data is erased
directly from the current EF. In this case the offset is specified
over P1 and P2.

The command erases data from the offset until the end of the file is reached or until the
end address in the data field, if one exists.




FINEID SPECIFICATION 25.01.2018

FINEID - S1/3.0 39(74)
Note:
The end address is in fact the address of the first byte NOT to be
erased.

After the ERASE BINARY command has been run, an implicitly
selected EF has its file contents erased and becomes the current
EF.

3.13.1 Conditions of Use and Security

3.13.1.1 Usage

The command can be used on any activated EF.

In the case of implicit selection, the EF becomes the current EF after execution of the
command.

3.13.1.2 Security

If the EF containing the data to be erased is protected by a security attribute, then this
security attribute must be fulfilled in order to perform the ERASE BINARY command.

Note: For clarity, the command is described here with the data in
plain text.

3.13.2 Format

Byte Value
CLA 00h - no secure messaging
0Ch - secure messaging
INS 0Eh
P1 See table below
P2 See table below
Lc 00h — no data field
02h — offset in data field
Data If Empty - indicates the command erases data until the end of the file
If present indicates the offset in bytes of the first byte NOT to be erased
Le Empty




FINEID SPECIFICATION
FINEID - S1/3.0

Table 12. ERASE BINARY:: coding of P1 and P2.

Coding of P1 and P2

Hex Meaning

b8 b7 b6 b5§b4 b3 b2 Bl

0o - - - - - - - P1-P2 specifies a 15-bit offset of the data to be read

1 - - - - - - - P1 specifies a short FID and P2 specifies an 8-bit offset of
the data to be read

1 0 0 xix X X X - — short FID (value domain 1 — 30)

3.13.3 Response

Byte Value
Data Empty
SW1-SW2 | Status bytes

Possible values for the SW1, SW2 status codes are as follows:

SW1 | SW2 | Description
90h | 00h | Command processed without error
62h | 82h | End of file reached (address specified in data field is higher than the end of
the file)
64h | 00h | Execution error, file descriptor checksum error.
67h | 00h |o Incorrect length, Lc.
@ Offset given in data field is not higher than offset of start address in P1
69h | 82h | Security status not satisfied, for example:
o The security attributes are not satisfied
@ Error during secure messaging
69h | 85h | Conditions of use not satisfied, for example:
o Security attribute for the current contact/contactless interface is absent,
zero or not BER-TLV coded.
6%h 86h Command not allowed (no current EF)
6Ah | 82h | File not found (b8 of P1 = 1 indicating implicit selection, but no SFI given)
6Ah | 86h | Incorrect P1, P2 (does not match the functionality)
6Bh | 00h | Incorrect P1, P2 (offset outside EF limits)

25.01.2018
40(74)




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 41(74)

3.14 GET DATA
The GET DATA command is used to retrieve following BER-TLV objects:
Public key elements

PIN information

The data in the response is in TLV format.

3.14.1 Conditions of Use and Security

3.14.1.1 Usage

When retrieving ELC public key elements, the elements must be retrieved individually,
that is, only one element per GET DATA command. For RSA public key elements, the
elements can be retrieved individually or the command can retrieve ALL the elements in
the one command.

3.14.1.2 Security

The use of the GET DATA command depends on the security attributes of the object
whose value is to be retrieved.

Note: For clarity, the command is described here with the data in
plain text.

3.14.2 Format

Byte Value
CLA 00h - no secure messaging
0Ch - secure messaging
INS CBh
P1 00h
P2 FFh
Lc Length of subsequent data field
Data See tables below.
Le Number of bytes expected in response




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 42(74)
Table 13. Get Data Coding Structure — Public Key Element (the modulus in this example)
Tag Length Value Description No. of
Bytes
B6h 03h Tag and length of DST Template 2
83h | 01h KeyID | TLV of public key 3
7Fh 49h | 02h Tag and length of public key template 3
Tag Length
81h | 00h 2
Tag and length of modulus
TOTAL BYTES 10

Note: The length of 00h means that all the element is recovered.

Table 14. Tags for ELC public key elements

Tag Description

81h p: prime modulus according to curve type

82h a: 1st coefficient of curve

83h b: 2nd coefficient of curve

84h G: coordinates X and Y in F; defining a curve point G of order n. DO is formatted as
follows (uncompressed format): 04h ||
XG||YG

85h n: order of the base point (positive prime integer)

86h Q - coordinates X and Y in F defining the public key point Q in E. DO is formatted as

follows (uncompressed format): 04h ||

XQJ YQ

87h

h: cofactor




FINEID SPECIFICATION
FINEID - S1/3.0

25.01.2018
43(74)

Table 15. Get Data Coding Structure — entire RSA public key (modulus and exponent elements)

Tag Length Value Description No. of
Bytes
B6h 03h Tag and length of DST Template 2
83h | 01h KeyID | TLV of public key 3
7Fh 49h Tag of public key template 2
Tag
80h Tag of entire public key 1
TOTAL BYTES 8
Caution:Remember that this would not be possible for ELC public keys.
Table 16. Get Data Coding Structure — PIN Container
Tag Length Value Description No. of
Bytes
AOh 03h Tag Length |Value |Tagand length of FP_PIN Template 2
83h 01lh xxh xxh is FP_PIN Reference as follows: 3
81h-8Fh for local PIN
11h for global PIN

The “PIN changed” flag is returned only if the “Return PIN changed flag” parameter is

set.

Caution: This is not ISO-compliant since the tag AOh means
constructed tag, which this isn’t. However, if you require your
application to be ISO-compliant, you can safely add additional tags
to the AOh template as this will not affect the response data (all the

data for the PIN is returned).




FINEID SPECIFICATION

25.01.2018

FINEID - S1/3.0 44(74)
3.14.3 Response
Byte Value
Data Value of retrieved Data Object. See examples below.
SWI-SW2 | Status bytes
Table 17. Get Data Response Structure — Public Key Element (the modulus in this example)
Tag Length Value Description No. of
Bytes
B6h 03h Tag and length of DST Template 2
83h | 01h KeylD | TLV of public key 3
7Fh 49h | 8183h Tag and length of public key template | 4
Tag Length | Value
81lh | 8180h |ValMod | TLV of modulus (value coded on 128 | 131
bytes)
TOTAL BYTES 140




FINEID SPECIFICATION
FINEID - S1/3.0

25.01.2018
45(74)

Table 18. Get Data Response Structure — entire RSA public key (modulus and exponent elements)

Tag Length Value Description No. of
Bytes
B6h 03h Tag and length of DST Template 2
83h | 01h KeylD | TLV of public key 3
7Fh 49h | 81 8Dh Tag and length of public key template | 4
Tag Length | Value
81h | 81h 80h | ValMod | TLV of modulus (value coded on 128 | 131
bytes)
82h | LEXP ValEXP | TLV of exponent (value coded on 8 10
bytes)
TOTAL BYTES 150
Table 19. Get Data Response Structure — PIN Information
Tag Length Value Description No. of
Bytes
AOh LAO Tag Length |Value |Tag and length of PIN Template 2
83h 01lh xxh xxh is PIN Reference byte (81h-8Fh for |3
local PIN, 11h for global PIN)
8Ch L8C Security Attributes - contact interface  |Var
9Ch L8C 'Securlty Attributes - contactless Var
interface
DFh 21h |04h PIN attributes 7
DFh 27h |02h PIN credentials counter 5
DFh 28h |01h PIN length 4
DFh 2Fh |01h PIN changed flag (1 means PIN has been |3
changed)
TOTAL BYTES Var




FINEID SPECIFICATION
FINEID - S1/3.0

25.01.2018

46(74)

If the PIN being returned is the global PIN, and the global PIN has been initialized
outside FINEID application, the PIN length value is returned as 00h. If however, the
global PIN has been initialized and is managed by the FINEID application, then the PIN

length will be accurate.

The content of PIN attributes are

Field Length Description

#1 1 byte PIN Try Counter. Stores the number of remaining
attempts that can be made to present the correct
PIN before it is blocked.

#2 1 byte Usage counter (range 01h — FFh; FFh means no
limit).

#3 1 byte Unblocking counter (range 00h — OFh or A5h for no
limit)

#4 1 byte Unblocking PIN method. See table below.

Table 20. Unblocking PIN method byte coding

Meaning b8 | b7 b6 | b5 b4 b3 b2 b1l
Unblock  PIN not| O 0 0 0
allowed (neither by

unblock PIN nor by

MS 3DES3 External

Authentication

MS 3DES3 Ext Auth 1

grants unblock PIN

MS 3DES3 Ext Auth

does not grant

unblock PIN

FP_PUK Ref to be X X X X X X X
used

Not checked 1 1 1 1

The range of values for the FP_ PUK reference are 01h — OFh for a local PIN, 11h for the

global PIN.

The unblocking PIN method byte is coded as an OR condition between the MS 3DES3
External Authentication and the FP_ PUK reference. Here are some example values:

84h: Unblocking possible with PIN#4 (PIN ref is 84h)




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 47(74)

40h: Unblocking possible only if MS 3DES3 Ex Auth has taken
place.

C4h: Unblocking possible with PIN#4 or if MS 3DES3 Ex Auth
has taken place.

00h: NEVER

Note: b7 is taken into account EXCEPT when the byte is FFh.

Credentials Counter

Certain objects may be protected by security attributes that specify that user
authentication (PIN) is necessary before access is granted to a particular command. The
security attribute therefore checks the PIN status when the command is issued.

The aim of the credentials counter is to limit the number of times that such checks are
made, either for the current session or for the life of the applet. The counter comes into
operation after a successful PIN verification.

The counter can exist for both local PINs and the global PIN.

Caution: In the case of global PINs, the counter is internal to the
FINEID application. If used by the FINEID application, the counter is
correctly reset in RAM after a successful global PIN presentation.
However it is NOT reset if the global PIN was successfully verified
by another applet. Consequently, the mechanism is not triggered in
such a case and so access requiring the global "PIN is not granted,
even though the global PIN has been successfully verified.

The first byte of the counter is the counter type and can be “RAM”
(00h) or “EEPROM” (80h). The two types of counter work
differently.

RAM Type
The counter limits the number of times that the PIN status is checked for the current

session. A session starts for each successful Verify on a given PIN, and ends when the
credential counter reaches 0. It works as follows:

1 When the PIN is successfully verified, the “current credential
counter value” (stored in RAM) is reset to the credentials counter
value.




FINEID SPECIFICATION
FINEID - S1/3.0

25.01.2018
48(74)

2 Each time a security attribute or any action checks the PIN status

(such as an access condition or a PIN used as an FP_PUK), the
“current credential counter” decrements by 1. The credentials
counter value in the PIN is NOT decremented.

If the current credential counter reaches zero, operations that test
if this PIN access is granted will fail.

EEPROM Type

The counter limits the number of times that the PIN status is checked for the life of the
applet. It works as follows:

1

When the PIN is successfully verified, the counter comes into
operation.

Each time a security attribute or any action checks the PIN status
(such as an access condition or a PIN used as an FP_PUK), the
credentials counter value in the PIN decrements by 1.

If the credentials counter value reaches zero, it remains as zero,
meaning that the PIN can no longer be used for access rights.
However, the PIN can still be used with the CHANGE
REFERENCE DATA and RESET RETRY COUNTER
commands.

The Credentials Counter is a two-byte value coded as follows:

Table 21. Credentials Counter Coding

Counter 00h RAM
Type
80h EEPROM
Counter 00h | @ If RAM type, the current credentials counter in RAM is
Value to set to this value when the PIN is verified. It is the RAM
FEh value that is decremented when the PIN status is checked

— NOT the Counter Value in the PIN.

PIN status is checked

@ If EEPROM type, this value is decremented each time the

true for both types of Credentials Counter.

FFh There is no limit to the number of PIN status checks. This is

The “PIN changed” flag is returned only if the “Return PIN changed flag” parameter
was set to true when the applet was personalized.




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 49(74)

Possible values for the SW1, SW2 status codes are as follows:

SW1 SW2 Description

® 90h @ 00h » Command processed without error

®» 69h o 82h » Security status not satisfied, error during secure messaging

» 69h @ 85h » Conditions of use not satisfied, for example:

o Security attribute for the current contact/contactless interface

is absent, zero or not BER-TLV coded.

@ 6Ah @ 80h @ Incorrect FP_PIN reference or incorrect data field when
retrieving PIN information

» 6Ah @ 86h @ Incorrect P1, P2.




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 50(74)

4

Implementation guidelines for software developer

4.1 Resource management

The FINEID card will be used by multiple host applications running simultaneously in
the same PC. Because the FINEID card is internally a simple state machine, these host
applications share the state of the FINEID card also. This sets some fundamental
requirements for the host applications accessing the shared resource (i.e. the FINEID
card and reader device):

1. Host applications must protect the command sequences they send to the FINEID card
by locking the card exclusively to themselves (and blocking access from others)
while doing these transactions.

2. The length of each transaction should be minimized.

3. Host applications should not assume that the state of the card (e.g. currently selected
application) stays unmodified between transactions. The only exception to that rule
is that the verification status of a successfully verified global PIN should be
unaffected between transactions. Check ISO/IEC 7816-15 for additional
information on global PINs.

WWW browser I S/MIME eMail I Application X I

Microsoft
CryptoAPI

ISO/IEC
7816-15 support

PC/SC Resource Manager I

PKCS #11 Proprietary API

ISO/IEC
7816-15 support

ISO/IEC
7816-15 support

7816-4
7816-8

ISO/IEC 7816-15
file structure

Figure 1. Example scenario of multiple host applications - single card




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 51(74)

4.2 Resetting the card

Unnecessary resetting of the card should be avoided. When using PC/SC interface the
card is reset automatically by the Resource Manager so there is no need for the host
application to explicitly reset the card before starting to use it.

4.3 Application/File selection

4.3.1 CIA application

CIA (Cryptographic Information Application) application is selected using following
Application Identifier (AID):

A0 00 00 00 63 50 4B 43 53 2D 31 35
Selection by Application identifier:

Command CLA|INS | P1 P2 Lc |Data Le
SELECT 00 A4 04 00 0C |A000000063504B43 532D 3135

4.4 Path

CIA uses Path ASN.1 structure to reference various files. The Path.efidOrPath octet
string contains:

- a file identifier if the length of the octet string is two bytes

- an absolute path if the octet string is longer that two bytes and starts with the file
identifier of MF = 3F 00

- a relative path if the octet string is longer than two bytes and starts with the file
identifier of the DF (which is not 3F 00)

4.5 Authentication objects

In CIA all objects (private keys, certificates etc.) can be protected with authentication
objects (i.e. PINs). Each object may contain a pointer to an authentication object e.g. a
private key object may contain a pointer to a PIN object. This means that the private key
operation (decrypt or sign) can be done only after successful verification of the PIN
code.

The following table lists the operations that can be protected with authentication objects
in the CIA sense.




FINEID SPECIFICATION 25.01.2018

FINEID - S1/3.0 52(74)
Table 22. Objects and protected operations
Object type Operations protected with the authentication object
Private key Private key operations

- sign (PSO: COMPUTE DIGITAL SIGNATURE)

- decrypt (PSO: DECIPHER)

Public key Public key operations (not supported in FINEID context)
- verify (PSO: VERIFY DIGITAL SIGNATURE)

- encrypt (PSO: ENCIPHER)

Secret key Secret key operations (not supported in FINEID context)
- encrypt
- decrypt
Certificate Reading the contents of the certificate
Data object Reading the contents of data the object
Authentication The authentication object can be used to unblock this authentication object
object (e.g. unblocking PIN is used).

4.6 Accessing objects

The flowchart below describes one possible solution for accessing objects and fulfilling
the authentication requirements (PIN verifications) of these objects.




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 53(74)

1.BEGIN

. Is object protected
with PIN?

3. Check if user
consent is required?
User consent required

User consent NOT required no
5. Ask PIN 9. Lock card

4. Has this Pl
been already
verified?

from user
(dialog)

yes—p» (prevent other applications
accessing card)

A

\ 4
6. Lock card 10. Object specific
(prevent other applications operations
accessing card)
A 4
A 4 11. Unlock card
7. SELECT
PIN directory
h 4 12. END
8. VERIFY PIN

Figure 2. Example of PIN logic

Verify PIN. Padding is done according to PassWordAttributes (storedLength, padChar).
The P2 value is taken from PassWordAttributes.pwdReference (example value 82):

Command CLA|INS | P1 P2 Lc |Data Le

VERIFY 00 | 20 | 00 | 82 | 0C |313233343536000000 000000 -
(PIN = 123456 in ASCII with 00 padding)

The verification status of a PIN may be dropped automatically to state ‘not verified’ by
the card operating system after performing e.g. a private key operation (Compute Digital
Signature operation). This is indicated by the userConsent element of the private key
object. E.g. userConsent value set to one for a private key object indicates that the card
holder must manually enter the PIN for each Compute Digital Signature operation.
Requiring user interaction for all Compute Digital Signature operations done with a
specific private key is a trade-off between usability and security. It is anticipated that this
feature will be used for performing legally binding non-repudiable digital signatures
only.

The object specific operations in step 10 include the ones listed in the




FINEID SPECIFICATION
FINEID - S1/3.0

25.0

1.2018
54(74)

Table 22.

4.7 Private key operations (sign and decrypt)

There may be multiple private keys in the same CIA application. The host application
must first determine which one of these private keys to use. This can be done e.g. based
on the information inside card holder certificates according to application specific
criteria (e.g. key usage bits and CA policy OIDs). Each certificate contains a pointer to
the corresponding private key object.

4.7.1 Signature operation

It is assumed that corresponding PIN verification has already been done.

Set the following properties into the SE Digital Signature Template:

- algorithm reference (= 42 i.e. RSASSA-PKCS1-v1 5 signature with SHA-256, card
does padding and DigestInfo encapsulating of the hash)

- key reference (= 01 derived from PrivateKeyAttributes.keyReference)

Command | CLA | INS P1 P2 Lc |Data Le
MSE: SET 00 22 41 B6 06 |8001 42 -
DST in data (algorithm reference = 42)
field 840101
(private key reference)
The hash is performed entirely by the card, only one block to hash:
Command |CLA | INS | P1 P2 | Lc¢ |Data Le
PSO: HASH 00 | 2A | 90 | A0 16 |80 144B 52 16 5B 4A B6 54 C3 ES 4F -
64 B5 F1 EE A6 45 D4 6B 65 C8
Sign the hash calculated by the card:
Command |CLA | INS | P1 P2 | Lc |Data Le
PSO: 00 | 2A | 9E | 9A - |- 00
COMPUTE
DIGITAL
SIGNATURE

4.7.2 Decryption operation
It is assumed that corresponding PIN verification has already been done.

Set the following properties into the SE Confidentiality Template:




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 55(74)

- algorithm reference (= 1A i.e. RSASSA PKCS#1 vl1.5 decryption, card removes
padding)

- key reference (= 01 derived from PrivateKeyAttributes.keyReference)

Command |CLA | INS P1 P2 Lc |Data Le
MSE: SET 00 22 41 B8 06 (8001 1A -
CT in data (algorithm reference = 1A)
field 8401 01
(private key reference)

Decrypt the modulus size (example 2048 bits), divided to two APDUSs, the first contains
the 255 bytes and the second rest 2 bytes (notice CLA = 10 in the first APDU):

Command CLA|INS | P1 P2 Lc |Data Le
PSO: 10 | 2A 80 86 FF |81 (padding indicator byte) -
DECIPHER 4B 5216 ... 54 C3 ES
(first 254 bytes of cryptogram)

Command |CLA | INS | P1 P2 | Lc¢ |Data Le
PSO: 00 | 2A | 80 86 02 |52 16 (last 2 bytes of cryptogram) XX
DECIPHER

XX is the maximum length of the decrypted cryptogram. PKCS#1 vl1.5 padding is
removed by the card when using the algorithm 1Ah.

Get the response in T=0 protocol:

Command CLA|INS | P1 P2 Lc |Data Le

GET 00 | CO | 00 00 - - XX
RESPONSE




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 56(74)

5 PACE

5.1 What is PACE Authentication?

Password authenticated connection establishment (PACE) is a service that can be used
by the FINEID application. The PACE Protocol is a password authenticated Diffie-
Hellman key agreement protocol that provides secure communication (secure
messaging) and password-based authentication of the smart card and the inspection
system (that is, the smart card and inspection system share the same password).

PACE is independent of the FINEID application. It interacts between the software
application that wants to communicate with the card and the FINEID application. It is
used with the FINEID application instance as a whole, not with its internal data objects.
You cannot for example set the access condition of an FINEID application data object to
require PACE authentication.

PACE is active once the PACE module is fully personalized. This means:

A CardAccess EF has been created and updated directly below the
MF. This file contains all the information needed by the PACE
application.

The PACE passwords has been configured.

The restriction lists are updated to set up the rights to access
FINEID application. These lists are described in “How Does
PACE Authentication Work?” In FINEID context the contactless
communication is protected by PACE. The only exception is Card
Manager application which can be accessed without PACE
protection, although contactless communication is used.

If present, PACE can specify two levels of security:
PACE authentication only.
PACE authentication + secure messaging (always ENC + MAC).

In FINEID context PACE authentication + secure messaging (always ENC + MAC is
used. These two levels are described in “PACE Authentication Levels”.

5.2 How Does PACE Authentication Work?

If the CardAccess EF is present, PACE is used to determine if the external system is
authorized to access the FINEID application. In FINEID context the contactless
communication is protected by PACE. The only exception is Card Manager




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 57(74)

application,which can be accessed without PACE protection, although contactless
communication is used.

These are the steps.
1 Card power-up or re-set

2 Determine if mode is contact or contactless (based on the
ATR/ATS historical bytes)

3 Read CardAccess EF to determine how card has been
personalized with PACE.

4 Do PACE authentication, then select FINEID application using
PACE secure messaging and continue communication using
PACE secure messaging.

5.3 PACE Authentication Levels

This section provides a brief description of the different authentication levels.

5.3.1 PACE Authentication Only

PACE authentication means that a secret shared by the card and terminal must be
successfully presented in order to access the FINEID application. Typically this is the
global PIN, but it could equally be the card access number (CAN) or the MRZ data. In
FINEID context all these passwords are used.

5.3.2 PACE Authentication + Secure Messaging
PACE secure messaging is applied to an APDU at the platform level. The PACE SM is
then unwrapped and the APDU data is available in clear text for the FINEID application
(with no possibility of the external world seeing this data in clear text, but note the
Caution in “PACE and FINEID application Secure Messaging”). After being processed
by the FINEID application, the APDU is then wrapped in PACE SM again before being
returned to the external world.

The following diagram illustrates this.




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 58(74)

‘0C’ Header ENC || MAC

External World

Unwrap PACE

‘00’ Header Dataln Clear

Normal processing

DataOut (optional) + SW

Wrap PACE

ENC(DataOut +SW) || MAC SW

External World

Although the PACE SM is “unwrapped” before the APDU is sent to FINEID
application, the use of secure messaging does have an impact on the length of APDU
commands and responses at the FINEID application level. Please refer to “Effect on
APDU Command and Response Length”.

5.3.3 PACE and FINEID application Secure Messaging
The important point to note is that PACE SM and FINEID application SM are never in
use at the same time.

Once FINEID application SM is established, the PACE SM “sleeps” until the FINEID
application completes the APDU processing and returns its SW (and maybe DataOut).

Note: PACE SM sleeps only on the logical channel on which FINEID
application is selected and is still active on other logical channels.

PACE SM wakes under one of the following circumstances:
FINEID application secure messaging error

FINEID application is reselected.

Caution: When a FINEID application AES SM session is in
progress, sending an APDU in clear text is considered as an SM error
and therefore wakes PACE SM. In 3DES SM, it is not considered as
an error, therefore the 3DES SM session is not broken and PACE SM




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 59(74)

does not take over. Therefore the only way to guarantee protection
against eavesdropping with the PACE SM is to make sure that the
FINEID application SM is AES.

5.3.3.1 Effect of Breaking PACE SM

If PACE SM is broken (for example, due to an APDU sent with incorrect SM or sent in
clear when SM was expected) then all applications using PACE SM on other logical
channels are deselected on their respective channels.

5.3.4 Impacts of PACE on FINEID application

5.3.41.1 Effect on APDU Command and Response Length

When using PACE SM, the APDU commands are unwrapped before being sent to the
FINEID application. However, because some bytes are taken up with the SM
construction, the unwrapped APDU command is smaller. The effect of this is that there
is a stricter limitation on the number of bytes available for APDU commands at the
FINEID application level.

The same is true when the FINEID application returns data to the software application. It
has to allow for the response to be sent in PACE SM and therefore for some bytes to be
used for the SM. Therefore fewer bytes are available for the response at the FINEID
application level.

The number of bytes taken up by PACE SM construction differs according to whether
the PACE SM is DES or AES.

The maximum number of bytes available for APDU commands and responses are:
For DES PACE SM: 239 bytes
For AES PACE SM: 231 bytes




FINEID SPECIFICATION
FINEID - S1/3.0

25.01.2018
60(74)

Annex A (Informative): Coding of the File Control
Parameters and File Control Information templates

The FCI template returned by SELECT and SELECT FILE commands is a TLV (Tag-
Length-Value) coded data structure.

FCI for DFs
Offset Data Description
0 6Fh Tag of FCl template
1 L Length of FCl data
2 83h Tag of File ID
3 02h Length of File ID
4-5 File ID Value of File ID
6 8Ch Tag of security attributes
7 L Length of security attributes
8 AMB Access mode byte
9—(8+X) SCB Security condition bytes (X)
9+X 84h Tag of DF Name
10+X L Length of DF Name
114X - DF name Value of DF name (up to 16 bytes)

Note: In the example above, the contact interface security attribute
is given (tag 8Ch). This could alternatively be replaced by the

contactless interface security attribute, (tag 9Ch) or both interfaces
could be present.




FINEID SPECIFICATION
FINEID - S1/3.0

25.01.2018
61(74)

FCI for EFs
Offset Data Description
0 6Fh Tag of FCl template
1 L Length of FCl data
2 81h Tag of File Size
3 02h Length of File Size
4-5 File Size | Value of File Size.
6 82h Tag of FDB
7 01h Length of FDB
8 FDB Value of FDB
9 83h Tag of File ID
10 02h Length of File ID
11-12 File ID Value of File ID
13 8Ah Tag of Life Cycle Status byte for file
14 01h Length of Life Cycle Status byte for file
15 Var. Value of Life Cycle Status byte for file
16 8Ch Tag of security attributes
17 L Length of security attributes
18 AMB Access mode byte
19- . e
(18+X) SCBs Security condition bytes (X)

Note: In the example above, the contact interface security attribute
is given (tag 8Ch). This could alternatively be replaced by the
contactless interface security attribute, (tag 9Ch) or both interfaces

could be present.




FINEID SPECIFICATION
FINEID - S1/3.0

25.01.2018
62(74)

FCP for DFs
Tag | Length Tag Length Value | Description
62h 0Bh-— Tag and length of FCP
25h template
82h 01h 38h | TLV of FDB
83h 02h Var. TLV of File ID
8Ch | 02h—-04h Var. TLV of Security attributes
(access mode and
security condition bytes) -
contact interface
9Ch | 02h—-04h Var. TLV of Security attributes
(access mode and
security condition bytes)
- contactless interface
01-
84h Var. TLV of DF name
10h

The DF name is optional and if used must be the final parameter. The FDB and file ID

are mandatory.

Only one security attribute is mandatory (it is possible to have 8Ch or 9Ch or both).
The structure of the FCP of a dedicated file is as follows:

Field Length

FDB 1 byte

File ID 2 bytes
Security 2-4 bytes
Attribute

DF 1-16 bytes
Name

Description
The file descriptor byte (FDB) is set to 38h when a
DF is created.
This is allocated when the file is created.
The security attributes are made up of one Access
Mode byte which indicates the commands to be
“controlled”, followed by 1-3 security condition
bytes which indicate the conditions for each
command indicated in the Access Mode byte.
The security attributes must be present for at least
one of the interfaces (contact or contactless). Both
interfaces can be present if required. The coding is
identical for the contact and contactless interfaces.

This contains the name of the DF up to a maximum
of 16 bytes. It can be used to reference a file in a
command




FINEID SPECIFICATION
FINEID - S1/3.0

25.01.2018
63(74)

FCP for EFs
Tag | Length Tag | Length | Value Description
62h 12h— Tag and length of FCP template
1Eh

81h 02h | Var. | TLV of File size (in bytes)
82h 01h| 01lh | TLV of FDB

83h 02h | Var. | TLV of File ID

8Ah 01h | Var. TLV of Life cycle status

8Ch | 02h—-06h | Var. | TLV of Security attributes (access mode and
security condition bytes) - contact interface

9Ch | 02h—-06h | Var. | TLV of Security attributes - contactless interface

All these elements are mandatory. However only one security attribute is mandatory (it
is possible to have 8Ch or 9Ch or both).

The structure of the FCP of an elementary file is as follows:

Field Length
File Size 2 bytes

FDB 1 byte

Identifier 2 bytes
(FID)

Life 1 byte
Cycle

Status

Security 2-6 bytes
Attribute

Description
This specifies the size of the file.

The file descriptor byte (FDB) is set to 01h, meaning
transparent file, when an EF is created.

This is allocated when the file is created. The short
file identifier corresponds to the 5 least significant
bits of the file identifier. It is used to reference a
file in a command.

The life cycle status shows the status of the EF. The
LCS byte is coded as described in the table below.

The security attributes are made up of one Access
Mode byte which indicates the commands to be
“controlled”, followed by 1-5 security condition
bytes which indicate the conditions for each
command indicated in the Access Mode byte.

The security attributes must be present for at least
one of the interfaces (contact or contactless). Both
interfaces can be present if required. The coding is
identical for the contact and contactless interfaces.




FINEID SPECIFICATION 25.01.2018

FINEID - S1/3.0 64(74)
Table 23. Life Cycle Status byte coding
b8...b5 | b4 | b3 | b2 | bl State
0..0 00|01 CREATED
0..0 00|11 INITIALIZED
0..0 0|1 |-|1 OPERATIONAL (ACTIVATED)
0..0 o|1|-10 OPERATIONAL (DEACTIVATED)
EF Types

All EFs managed by FINEID application are transparent EFs. These have an FDB value
of Olh. A transparent file consists of an unstructured sequence of bytes that can be
accessed by specifying an offset relative to the start of the EF. The offset size is given in
bytes. The first byte of a transparent EF has the relative address 00h.

Security Attributes

Files and data objects are protected by security attributes, that must be fulfilled before
access is granted to the file or data object. These security attributes are defined at the
time of file creation.

Each security attribute is made up of:

One access mode byte (AMB), that defines the command(s) to be
protected against

One security condition byte (SCB) for each bit set to 1 in the
AMB

Fach SCB defines the conditions that must be fulfilled in order to allow the
corresponding command to be performed.

Note:

1 Security attributes are checked by commands only after
personalization.

2 Security Environments do not have security attributes because
they cannot be modified.

The security attributes are coded in TLV format.




FINEID SPECIFICATION

FINEID - S1/3.0

25.01.2018
65(74)

Contact Vs. Contactless interface

Each file or data object can have one security attribute for the contact interface (tag 8Ch)
and/or one security attribute for the contactless interface (tag 9Ch). At least one of these

must be present.

Reminder: The security attributes coding (AMB and SCBs) applies only to the

application phase.
Access Mode Byte

The access mode byte determines the commands that are to be controlled. Its coding has
a different meaning for files and data objects since the commands that are used with

them are different.

Caution: In both cases, if a bit in the AMB is set to zero, that is
there is no corresponding SCB, then the security attribute for the

corresponding command is
NEVER.

The AMB is coded as follows:

Table 24. Access Mode Byte Coding — For DFs

Meaning b8 | b7 | b6 | b5 | b4 | b3 | b2 | bl
0 0 0 0 0

Delete DF (self deletion) 1

Create DF (applies only to the 1

root)

Create EF 1

As DFs can be created under the root only, the Create DF condition is used only by the

root.

Table 25. Access Mode Byte Coding — For EFs

Meaning b8 | b7 | b6 | b5 | b4 | b3 | b2 | bl
0 0 0

Delete EF (current EF) 1

Activate File 1




FINEID SPECIFICATION
FINEID - S1/3.0

25.01.2018
66(74)

Deactivate File

Update Binary, Erase Binary

Read Binary

Bit 8 must be zero for EFs. Bits b7 to bl are independent of each other, that is, more
than one bit can be set to 1.

Table 26. Access Mode Byte Coding — For Data Objects

Meaning Typeof Data | b8 | b7 | b6 | b5 | b4 | b3 | b2 | bl
Object
— 1 0
Reset Ret
ese ey PIN / FP 1
Counter
Change Reference
PIN 1
Data
Verify or PIN / FP or Private 1
PSO-Hash and PSO Key
Compute Digital
Signature
(DTBS)
PSO Compute Private Key 1
Digital
Signature, PSO:
Decipher
Put Data (Update) Secret/.Prlvate/ 1
Public Key
Private Key

DH Key Parameters
Generate PK Pair Private Key
Get Data DH Key Parameters 1

Public Key

Bit 8 must be 1 for data objects, which are for secret keys, private and public keys and

PINSs. Bits b4 and b2 are independent of each other, that is, both can be set to 1.

When bit 5 is used for private keys, it is intended to protect the DSI before performing a

signature.




FINEID SPECIFICATION

FINEID - S1/3.0

25.01.2018
67(74)

Note: The Put Data (Update) and Generate PK Pair commands
share the same bit, b2. It is possible upon SDO creation to define

which of these commands (or both), the access mode bit refers to.

Security Condition Byte

There is one security condition byte (SCB) for each bit set to one in the AMB. Each
SCB is coded as follows:

Meaning

b8

b7

b6

b5

b4

b3

b2

bl

No condition (ALWAYS)

Never

Conditions

At least one condition (OR) (b7 to
b5)

All conditions (AND) (b7 to b5)

Secure Messaging (command &
response)

Mutual Authentication

User Authentication (PIN, FP or MS
3DES3 Auth)

Security Environment Reference

No SE referenced

SE#0001-1110

RFU

Bits 8-5 indicate the conditions that must be fulfilled to access the file or data object.

Bit 7 set to 1 indicates that the command and the response must be sent with secure

messaging.




FINEID SPECIFICATION
FINEID - S1/3.0

Security Attributes Example

The AMB and SCBs are encapsulated together in TLV format under the tag 8Ch for the
contact interface security attribute and the tag 9Ch for the contactless interface security
attribute. The length depends on the number of SM bytes specified in the AMB. The
following table shows an example of how a security attribute could be coded:

Table 27. Security Attributes Coding Example for an EF with Both Interfaces

Tag Length Value| Meaning
(bytes)
8Ch 06h Tag and length of the security attribute for contact
interface (AMB + 4
SCBs)
5Bh | AMBs. All five of the SCB for files are present.
12h | SCB for Delete File command. PIN protection defined
in SE#2.
14h | SCB for Activate File command. PIN protection
defined in SE#4.
35h | SCB for Deactivate File command. Mutual
Authentication OR PIN protection (using the PIN
referenced in SE#5).
B3h | SCB for Update Binary and Erase Binary commands.
Mutual
Authentication AND PIN protection (using the PIN
referenced in SE#3).
00h | SCB for Read Binary command. No condition.
9Ch 04h Tag and length of the security attribute for contactless
interface (AMB + 3
SCBs)
19h | AMB. Three SCBs for files are present.
14h |SCB for Activate File command. PIN protection
defined in SE#4.
35h | SCB for Deactivate File command. Mutual
Authentication OR PIN protection (using the PIN
referenced in SE#5).
00h | SCB for Read Binary command. No condition.

Caution: Care should be taken when coding security attributes,
particularly when they involve security environments and linking

25.01.2018
68(74)




FINEID SPECIFICATION
FINEID - S1/3.0

25.01.2018
69(74)

command usage to life cycle status. To illustrate the potential
problems, here is an example.

A security attribute is coded so that in SE#4, the ACTIVATE FILE
command can be performed only when the life cycle status of the file
is INITIALIZED. If the file is later deactivated by a DEACTIVATE
FILE command, you will never be able to reactivate it in SE#4
because the status cannot revert to INITIALIZED.




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 70(74)

Annex B (informative) Command—Response Pairs

As the command APDU and the response APDU may or may not contain data, there are
four cases of command-response pairs as described in ISO 7816—4. These pairs can be
summarized as follows:

Case 1: No Input/No Output
APDU Command

CLA | INS P1 P2 -
APDU Response
----- swi1 SW2
Case 2s: No Input/Output of Expected Length
APDU Command
CLA | INS P1 P2 - Le
APDU Response:
Data Field swi1 SW2
Case 3s: Input/No Output
APDU Command
CLA INS P1 P2 Lc Data Field
APDU Response
----- swi1 SW2

Case 4s: Input/Output of Expected Length
APDU Command

CLA | INS P1 P2 Lc Data Field Le
APDU Response

Data Field Swi SW2

For Input/Output of expected length, when a command with response parameters/data is
used, the terminal must send a GET RESPONSE command to retrieve the response
message.




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 71(74)

T=0 Protocol

When using the T=0 protocol, FINEID application returns status bytes of SW1 = 61h,
SW2 = Licc (the total number of bytes in the response) and the terminal must send a
GET RESPONSE command to retrieve the response message.

Retrieval Sequence for Large Outgoing Data

If Licc >= 256 bytes, FINEID application returns 61h 00h and opens a retrieval sequence
as follows:

1 The initial command (status 61h 00h - no data is returned).
2 One or more GET RESPONSE commands.

The following table illustrates the possible responses to the first (and possibly
subsequent) Get Response commands where there is more than 256 bytes in the card’s
buffer):

Table 28. Get Response when Licc > 256 Bytes

Data
Le: Li B R |
e: Licc Returned Status Bytes Returned Sequence Open/Closed
Le = 00h (256
¢ ( 256 bytes 61h Licc—256 Open
bytes)
Le < 256 “Le” bytes 61h Licc—Le Open

The following table illustrates the possible responses to the final GET RESPONSE
command (where there is 256 bytes or less in the card’s buffer):

Table 29. Get Response when Licc <= 256 Bytes

Data Sequence
Le: Licc Status Bytes Returned

Returned v Open/Closed
Le > Licc None 6Ch Licc Open
Le = Licc “Licc” bytes 90h 00h Closed
Le < Licc “Le” bytes 61h Licc—Le Open

T=1 and T=CL Protocol

When using the T=1 or T=CL protocol, when Licc is 256 bytes or less, FINEID
application returns one of the following to the initial case 4 command:




FINEID SPECIFICATION
FINEID - S1/3.0

25.01.2018
72(74)

Table 30. Response to Case 4 Command Licc <= 256 bytes

Licc ::ttzrne d Status Bytes Returned f)epqeb:‘e/rgzse d
Le > Licc Licc bytes 90h 00h Closed

Le = Licc Licc bytes 90h 00h Closed

Le < Licc Le 61h XXh (XXh=Licc—Le) Open

Retrieval Sequence for Large Outgoing Data

If Licc > 256 bytes, then one or more GET RESPONSE commands must be sent. With
these protocols the GET RESPONSE command is not sent automatically and must be
explicitly sent by the external device (for example a terminal).

A retrieval sequence opened as follows:

1 The initial command (status 61h 00h - 256 bytes of data are
returned).

2 One or more GET RESPONSE commands.

If there are still more than 256 bytes in the card’s memory buffer, the possible responses
to a GET RESPONSE command are:

Table 31. Get Response when Licc > 256 Bytes

Le = XXh Data Returned | Status Bytes Returned Sequence

- v Open/Closed
Le = 00h (256 bytes) 256 bytes 61h XXh (XXh=Licc—256 Open
Le < Licc Le bytes 61h XXh (XXh=Licc-Le) Open

XXh=00h if XX > 256 bytes

If there are 256 bytes or less in the card’s memory buffer, the possible responses to a
GET RESPONSE command are:

Table 32. Get Response when Licc <= 256 Bytes

S
Le = XXh Data Returned | Status Bytes Returned equence
Open/Closed
Le > Licc Licc bytes 90 00h Closed




FINEID SPECIFICATION
FINEID - S1/3.0

25.01.2018
73(74)

Le = Licc

Licc bytes

90 00h

Closed

Le < Licc

Le bytes

61h XXh (XXh=Licc-Le)

Open

Comparison Example for T=0 and T=1

In this example, a PERFORM SECURITY OPERATION-COMPUTE DIGITAL
SIGNATURE command (PSO-CDS) with a 4096-bit RSA key, using secure messaging

returns 535 bytes of data.

Table 33. T=0 Example Retrieval Sequence when Licc > 256 Bytes

Command Data Status Bytes Returned Sequence Open/
Returned Closed
61h 00h (535 byt
PSO-CDS (Le=00h) None 0h (535 bytes Open
remaining)
Get Response 61h 00h (279 bytes
256 bytes Open
(Le=00h) y remaining) P
Get Response 256 bytes 61h 17h (23 bytes remaining) | Open
(Le=00h)
Get Response
23 byt 90h 00h Closed
(Le=17h) ytes ose

Table 34. T=1 and T=CL Example Retrieval Sequence when Licc > 256 Bytes

Command Data Returned Status Bytes Returned Sequence Open/
Closed

PSO-CDS (Le=00h) 256 bytes 61h 00h (279 bytes remaining) Open

Get Response (Le=00h) 256 bytes 61h 17h (23 bytes remaining) Open

Get Response (Le=17h) 23 bytes 90h 00h Closed

FINEID application does not support extended length for data retrieval, so the retrieval
sequence in T=1 and T=CL protocols is similar to T=0 protocol, except that 256 bytes of
data is returned in the initial command.

All Protocols

After a command returns a status of 61xxh, the next command sent to the FINEID
application must be a GET RESPONSE command, otherwise the retrieval sequence is




FINEID SPECIFICATION 25.01.2018
FINEID - S1/3.0 74(74)

broken. This means the remaining data is lost. The FINEID application processes the
“non GET RESPONSE command” as normal.

When the FINEID application receives a subsequent GET RESPONSE command with a
length “Le” = Licc, the card must return Licc bytes followed by the SW_OK (0x9000h)
status. The retrieval sequence is closed.

When the retrieval sequence is broken or closed, if a GET RESPONSE is sent to the
card, the card returns SW_INS NOT SUPPORTED (0x6D00h).

When using secure messaging on outgoing data, the MAC is computed on the entire data
(concatenation of all the consecutive data fields sent by all the subsequent GET
RESPONSE commands). It is sent just before the status SW_OK.

The GET RESPONSE command used to retrieve the data does not use secure
messaging, regardless of the security attributes.

Caution: The management of errors during a “retrieval sequence” may
differ from one platform to another. The nominal “retrieval sequence” returns
all the data prepared by the application. If an error happens in the “retrieval
sequence” the terminal may not be able to recover the remaining bytes.




© Vaestorekisterikeskus 2018



