

	

OWASP Mobile Application Security Verification Standard v1.1 3

FOREWORD BY BERNHARD MUELLER, OWASP MOBILE PROJECT 5

FRONTISPIECE 7

ABOUT THE STANDARD 7
COPYRIGHT AND LICENSE 7

THE MOBILE APPLICATION SECURITY VERIFICATION STANDARD 8

MOBILE APPSEC MODEL 8
DOCUMENT STRUCTURE 9
VERIFICATION LEVELS IN DETAIL 9
RECOMMENDED USE 9

ASSESSMENT AND CERTIFICATION 12

OWASP'S STANCE ON MASVS CERTIFICATIONS AND TRUST MARKS 12
GUIDANCE FOR CERTIFYING MOBILE APPS 12
USING THE OWASP MOBILE SECURITY TESTING GUIDE (MSTG) 12
THE ROLE OF AUTOMATED SECURITY TESTING TOOLS 13
OTHER USES 13
AS DETAILED SECURITY ARCHITECTURE GUIDANCE 13
AS A REPLACEMENT FOR OFF-THE-SHELF SECURE CODING CHECKLISTS 13
AS A BASIS FOR SECURITY TESTING METHODOLOGIES 13
AS A GUIDE FOR AUTOMATED UNIT AND INTEGRATION TESTS 13
FOR SECURE DEVELOPMENT TRAINING 13

V1: ARCHITECTURE, DESIGN AND THREAT MODELING REQUIREMENTS 14

CONTROL OBJECTIVE 14
SECURITY VERIFICATION REQUIREMENTS 14
REFERENCES 14

V2: DATA STORAGE AND PRIVACY REQUIREMENTS 16

CONTROL OBJECTIVE 16
DEFINITION OF SENSITIVE DATA 16
SECURITY VERIFICATION REQUIREMENTS 16
REFERENCES 17

V3: CRYPTOGRAPHY REQUIREMENTS 18

CONTROL OBJECTIVE 18
SECURITY VERIFICATION REQUIREMENTS 18
REFERENCES 18

V4: AUTHENTICATION AND SESSION MANAGEMENT REQUIREMENTS 19

CONTROL OBJECTIVE 19
SECURITY VERIFICATION REQUIREMENTS 19

OWASP Mobile Application Security Verification Standard v1.1 4

REFERENCES 19

V5: NETWORK COMMUNICATION REQUIREMENTS 21

CONTROL OBJECTIVE 21
SECURITY VERIFICATION REQUIREMENTS 21
REFERENCES 21

V6: PLATFORM INTERACTION REQUIREMENTS 22

CONTROL OBJECTIVE 22
SECURITY VERIFICATION REQUIREMENTS 22
REFERENCES 22

V7: CODE QUALITY AND BUILD SETTING REQUIREMENTS 23

CONTROL OBJECTIVE 23
SECURITY VERIFICATION REQUIREMENTS 23
REFERENCES 23

V8: RESILIENCE REQUIREMENTS 24

CONTROL OBJECTIVE 24
IMPEDE DYNAMIC ANALYSIS AND TAMPERING 24
DEVICE BINDING 25
IMPEDE COMPREHENSION 25
REFERENCES 25

APPENDIX A: GLOSSARY 27

APPENDIX B: REFERENCES 30

OWASP Mobile Application Security Verification Standard v1.1 5

Foreword by Bernhard Mueller, OWASP Mobile Project

Technological revolutions can happen quickly. Less than a decade ago, smartphones were

clunky devices with little keyboards - expensive playthings for tech-savvy business users.

Today, smartphones are an essential part of our lives. We've come to rely on them for

information, navigation and communication, and they are ubiquitous both in business and in our

social lives.

Every new technology introduces new security risks, and keeping up with those changes is one

of the main challenges the security industry faces. The defensive side is always a few steps

behind. For example, the default reflex for many was to apply old ways of doing things:

Smartphones are like small computers, and mobile apps are just like classic software, so surely

the security requirements are similar? But it doesn't work like that. Smartphone operating

systems are different from Desktop operating systems, and mobile apps are different from web

apps. For example, the classical method of signature-based virus scanning doesn't make sense

in modern mobile OS environments: Not only is it incompatible with the mobile app distribution

model, it's also technically impossible due to sandboxing restrictions. Also, some vulnerability

classes, such as buffer overflows and XSS issues, are less relevant in the context of run-of-the-

mill mobile apps than in, say, Desktop apps and web applications (exceptions apply).

Over time, our industry has gotten a better grip on the mobile threat landscape. As it turns out,

mobile security is all about data protection: Apps store our personal information, pictures,

recordings, notes, account data, business information, location and much more. They act as

clients that connect us to services we use on a daily basis, and as communications hubs that

processes each and every message we exchange with others. Compromise a person's

smartphone and you get unfiltered access to that person's life. When we consider that mobile

devices are more readily lost or stolen and mobile malware is on the rise, the need for data

protection becomes even more apparent.

A security standard for mobile apps must therefore focus on how mobile apps handle, store and

protect sensitive information. Even though modern mobile operating systems like iOS and

Android offer good APIs for secure data storage and communication, those have to be

implemented and used correctly in order to be effective. Data storage, inter-app communication,

proper usage of cryptographic APIs and secure network communication are only some of the

aspects that require careful consideration.

An important question in need of industry consensus is how far exactly one should go in

protecting the confidentiality and integrity of data. For example, most of us would agree that a

mobile app should verify the server certificate in a TLS exchange. But what about SSL

certificate pinning? Does not doing it result in a vulnerability? Should this be a requirement if an

app handles sensitive data, or is it maybe even counter-productive? Do we need to encrypt data

stored in SQLite databases, even though the OS sandboxes the app? What is appropriate for

one app might be unrealistic for another. The MASVS is an attempt to standardize these

requirements using verification levels that fit different threat scenarios.

Furthermore, the appearance of root malware and remote administration tools has created

awareness of the fact that mobile operating systems themselves have exploitable flaws, so

containerization strategies are increasingly used to afford additional protection to sensitive data

and prevent client-side tampering. This is where things get complicated. Hardware- backed

security features and OS-level containerization solutions, such as Android for Work and

Samsung Knox, do exist, but they aren't consistently available across different devices. As a

OWASP Mobile Application Security Verification Standard v1.1 6

band aid, it is possible to implement software-based protection measures - but unfortunately,

there are no standards or testing processes for verifying these kinds of protections.

As a result, mobile app security testing reports are all over the place: For example, some testers

report a lack of obfuscation or root detection in an Android app as “security flaw”. On the other

hand, measures like string encryption, debugger detection or control flow obfuscation aren't

considered mandatory. However, this binary way of looking at things doesn't make sense

because resiliency is not a binary proposition: It depends on the particular client-side threats

one aims to defend against. Software protections are not useless, but they can ultimately be

bypassed, so they must never be used as a replacement for security controls.

The overall goal of the MASVS is to offer a baseline for mobile application security (MASVS-

L1), while also allowing for the inclusion of defense-in-depth measures (MASVS-L2) and

protections against client-side threats (MASVS-R). The MASVS is meant to achieve the

following:

• Provide requirements for software architects and developers seeking to develop secure

mobile applications;

• Offer an industry standard that can be tested against in mobile app security reviews;

• Clarify the role of software protection mechanisms in mobile security and provide

requirements to verify their effectiveness;

• Provide specific recommendations as to what level of security is recommended for different

use-cases.

We are aware that 100% industry consensus is impossible to achieve. Nevertheless, we hope

that the MASVS is useful in providing guidance throughout all phases of mobile app

development and testing. As an open source standard, the MASVS will evolve over time, and

we welcome any contributions and suggestions.

OWASP Mobile Application Security Verification Standard v1.1 7

Frontispiece

About the Standard

Welcome to the Mobile Application Security Verification Standard (MASVS) 1.1. The MASVS is

a community effort to establish a framework of security requirements needed to design, develop

and test secure mobile apps on iOS and Android.

The MASVS is a culmination of community effort and industry feedback. We expect this

standard to evolve over time and welcome feedback from the community. The best way to get in

contact with us is via the OWASP Mobile Project Slack channel:

https://owasp.slack.com/messages/project-mobile_omtg/details/

Accounts can be created at the following URL:

http://owasp.herokuapp.com/.

Copyright and License

 Copyright © 2018 The OWASP Foundation. This document is released under

the Creative Commons Attribution ShareAlike 3.0 license. For any reuse or distribution, you

must make clear to others the license terms of this work.

Project Leads Lead Author Contributors and Reviewers

Bernhard Mueller,
Sven Schleier

Bernhard Mueller Abdessamad Temmar,
Abhinav Sejpal,
Alexander Antukh,
Anant Shrivastava,
Ben Gardiner,
Francesco Stillavato,
Jeroen Willemsen,
Manuel Delgado,
Nikhil Soni,
Prabhant Singh,
Roberto Martelloni,
Stephen Corbiaux,
Stephen Reda,
Sjoerd Langkemper,
Stefaan Seys,
Sven Schleier and
Yogesh Sharma

This document started as a fork of the OWASP Application Security Verification Standard

(ASVS) written by Jim Manico.

OWASP Mobile Application Security Verification Standard v1.1 8

The Mobile Application Security Verification Standard

The MASVS can be used to establish a level of confidence in the security of mobile apps. The

requirements were developed with the following objectives in mind:

• Use as a metric - To provide a security standard against which existing mobile apps can be

compared by developers and application owners;

• Use as guidance - To provide guidance during all phases of mobile app development and

testing;

• Use during procurement - To provide a baseline for mobile app security verification.

Mobile AppSec Model

The MASVS defines two strict security verification levels (L1 and L2), as well a set of reverse

engineering resiliency requirements (MASVS-R) that is flexible, i.e. adaptable to an app-specific

threat model. MASVS-L1 and MASVS-L2 contain generic security requirements and are

recommended for all mobile apps (L1) and apps that handle highly sensitive data (L2). MASVS-

R covers additional protective controls that can be applied if preventing client-side threats is a

design goal.

Fulfilling the requirements in MASVS-L1 results in a secure app that follows security best

practices and doesn't suffer from common vulnerabilities. MASVS-L2 adds additional defense-

in-depth controls such as SSL pinning, resulting in an app that is resilient against more

sophisticated attacks - assuming the security controls of the mobile operating system are intact

and the end user is not viewed as a potential adversary. Fulfilling all, or subsets of, the software

protection requirements in MASVS-R helps impede specific client-side threats where the end

user is malicious and/or the mobile OS is compromised.

Note that software protection controls listed in MASVS-R and described in the OWASP
Mobile Testing Guide can ultimately be bypassed and must never be used as a
replacement for security controls. Instead, they are intended to add threat-specific,
additional protective controls to apps that also fulfil the MASVS requirements in MASVS
L1 or L2.

Figure 1: Security Verification Levels. MASVS-L1 provides a solid security baseline that is appropriate for most
mobile apps.

MASVS-L2 adds defense-in-depth-controls. MASVS-R represents an optional protective layer for impeding reverse
engineering and tampering.

OWASP Mobile Application Security Verification Standard v1.1 9

Document Structure

The first part of the MASVS contains a description of the security model and available

verification levels, followed by recommendations on how to use the standard in practice. The

detailed security requirements, along with a mapping to the verification levels, are listed in the

second part. The requirements have been grouped into eight categories (V1 to V8) based on

technical objective / scope. The following nomenclature is used throughout the MASVS and

MSTG:

• Requirement category: MASVS-Vx, e.g. MASVS-V2: Data Storage and Privacy

• Requirement: MASVS-Vx.y, e.g. MASVS-V2.2: "No sensitive data is written to application

logs."

Verification Levels in Detail

MASVS-L1: Standard Security

A mobile app that achieves MASVS-L1 adheres to mobile application security best practices. It

fulfills basic requirements in terms of code quality, handling of sensitive data, and interaction

with the mobile environment. A testing process must be in place to verify the security controls.

This level is appropriate for all mobile applications.

MASVS-L2: Defense-in-Depth

MASVS-L2 introduces advanced security controls that go beyond the standard requirements. To

fulfil L2, a threat model must exist, and security must be an integral part of the app's

architecture and design. This level is appropriate for applications that handle sensitive data,

such as mobile banking.

MASVS-R: Resiliency Against Reverse Engineering and Tampering

The app has state-of-the-art security, and is also resilient against specific, clearly defined client-

side attacks, such as tampering, modding, or reverse engineering to extract sensitive code or

data. Such an app either leverages hardware security features or sufficiently strong and

verifiable software protection techniques. MASVS-R is applicable to apps that handle highly

sensitive data and may serve as a means of protecting intellectual property or tamper-proofing

an app.

Recommended Use

Apps can be verified against MASVS L1 or L2 based on prior risk assessment and overall level

of security required. L1 is applicable to all mobile apps, while L2 is generally recommended for

apps that handle more sensitive data and/or functionality. MASVS-R (or parts of it) can be

applied to verify resiliency against specific threats, such as repackaging or extraction of

sensitive data, in addition to proper security verification.

In summary, The following verification types are available:

• MASVS-L1

• MASVS-L1+R

• MASVS-L2

• MASVS-L2+R

OWASP Mobile Application Security Verification Standard v1.1 10

The different combinations reflect different grades of security and resiliency. The goal is to allow

for flexibility: For example, a mobile game might not warrant adding MASVS-L2 security controls

such as 2-factor authentication for usability reasons, but have a strong business need for

tampering prevention.

What Verification Type to Choose

Implementing the requirements of MASVS L2 increases security, while at the same time

increasing cost of development and potentially worsening the end user experience (the classical

trade-off). In general, L2 should be used for apps whenever it makes sense from a risk vs. cost

perspective (i.e., where the potential loss caused by a compromise confidentiality or integrity is

higher than the cost incurred by the additional security controls). A risk assessment should be

the first step before applying the MASVS.

Examples

MASVS-L1
• All mobile apps. MASVS-L1 lists security best practices that can be followed with a

reasonable impact on development cost and user experience. Apply the requirements in

MASVS-L1 for any app that don't qualify for one of the higher levels.

MASVS-L2
• Health-Care Industry: Mobile apps that store personally identifiable information that

can be used for identity theft, fraudulent payments, or a variety of fraud schemes.
For the US healthcare sector, compliance considerations include the Health
Insurance Portability and Accountability Act (HIPAA) Privacy, Security, Breach
Notification Rules and Patient Safety Rule.

• Financial Industry: Apps that enable access to highly sensitive information like
credit card numbers, personal information, or allow the user to move funds. These
apps warrant additional security controls to prevent fraud. Financial apps need to
ensure compliance to the Payment Card Industry Data Security Standard (PCI
DSS), Gramm Leech Bliley Act and Sarbanes-Oxley Act (SOX).

MASVS L1+R
• Mobile apps where IP protection is a business goal. The resiliency controls listed in

MASVS-R can be used to increase the effort needed to obtain the original source
code and to impede tampering / cracking.

• Gaming Industry: Games with an essential need to prevent modding and cheating,
such as competitive online games. Cheating is an important issue in online games,
as a large amount of cheaters leads to a disgruntled the player base and can
ultimately cause a game to fail. MASVS-R provides basic anti-tampering controls to
help increase the effort for cheaters.

OWASP Mobile Application Security Verification Standard v1.1 11

MASVS L2+R
• Financial Industry: Online banking apps that allow the user to move funds, where

techniques code injection and instrumentation on compromised devices pose a
risk. In this case, controls from MASVS-R can be used to impede tampering, raising
the bar for malware authors.

• All mobile apps that, by design, need to store sensitive data on the mobile device,
and at the same time must support a wide range of devices and operating system
versions. In this case, resiliency controls can be used as an defense-in-depth
measure to increase the effort for attackers aiming to extract the sensitive data.

OWASP Mobile Application Security Verification Standard v1.1 12

Assessment and Certification

OWASP's Stance on MASVS Certifications and Trust Marks

OWASP, as a vendor-neutral not-for-profit organization, does not certify any vendors, verifiers

or software.

All such assurance assertions, trust marks, or certifications are not officially vetted, registered,

or certified by OWASP, so an organization relying upon such a view needs to be cautious of the

trust placed in any third party or trust mark claiming ASVS certification.

This should not inhibit organizations from offering such assurance services, as long as they do

not claim official OWASP certification.

Guidance for Certifying Mobile Apps

The recommended way of verifying compliance of a mobile app with the MASVS is by

performing an "open book" review, meaning that the testers are granted access to key

resources such as architects and developers of the app, project documentation, source code,

and authenticated access to endpoints, including access to at least one user account for each

role.

It is important to note that the MASVS only covers security of the (client-side) mobile app and

the network communication between the app and its remote endpoint(s), as well as a few basic

and generic requirements related to user authentication and session management. It does not

contain specific requirements for the remote services (e.g. web services) associated with the

app, safe for a limited set of generic requirements pertaining to authentication and session

management. However, MASVS V1 specifies that remote services must be covered by the

overall threat model, and be verified against appropriate standards, such as the OWASP ASVS.

A certifying organization must include in any report the scope of the verification (particularly if a

key component is out of scope), a summary of verification findings, including passed and failed

tests, with clear indications of how to resolve the failed tests. Keeping detailed work papers,

screenshots or movies, scripts to reliably and repeatedly exploit an issue, and electronic records

of testing, such as intercepting proxy logs and associated notes such as a cleanup list, is

considered standard industry practice. It is not sufficient to simply run a tool and report on the

failures; this does not provide sufficient evidence that all issues at a certifying level have been

tested and tested thoroughly. In case of dispute, there should be sufficient supportive evidence

to demonstrate that every verified requirement has indeed been tested.

Using the OWASP Mobile Security Testing Guide (MSTG)

The OWASP MSTG is a manual for testing the security of mobile apps. It describes the

technical processes for verifying the requirements listed in the MASVS. The MSTG includes a

list of test cases, each of which map to a requirement in the MASVS. While the MASVS

requirements are high-level and generic, the MSTG provides in-depth recommendations and

testing procedures on a per-mobile-OS basis.

OWASP Mobile Application Security Verification Standard v1.1 13

The Role of Automated Security Testing Tools

The use of source code scanners and black-box testing tools is encouraged in order to increase

efficiency whenever possible. It is however not possible to complete MASVS verification using

automated tools alone: Every mobile app is different, and understanding the overall architecture,

business logic, and technical pitfalls of the specific technologies and frameworks being used, is

a mandatory requirement to verify security of the app.

Other Uses

As Detailed Security Architecture Guidance

One of the more common uses for the Mobile Application Security Verification Standard is as a

resource for security architects. The two major security architecture frameworks, SABSA or

TOGAF, are missing a great deal of information that is necessary to complete mobile application

security architecture reviews. MASVS can be used to fill in those gaps by allowing security

architects to choose better controls for issues common to mobile apps.

As a Replacement for Off-the-shelf Secure Coding Checklists

Many organizations can benefit from adopting the MASVS, by choosing one of the two levels, or

by forking MASVS and changing what is required for each application's risk level in a domain-

specific way. We encourage this type of forking as long as traceability is maintained, so that if

an app has passed requirement 4.1, this means the same thing for forked copies as the

standard evolves.

As a Basis for Security Testing Methodologies

A good mobile app security testing methodology should cover all requirements listed in the

MASVS. The OWASP Mobile Security Testing Guide (MSTG) describes black-box and white-

box test cases for each verification requirement.

As a Guide for Automated Unit and Integration Tests

The MASVS is designed to be highly testable, with the sole exception of architectural

requirements. Automated unit, integration and acceptance testing based on the MASVS

requirements can be integrated in the continuous development lifecycle. This not only increases

developer security awareness, but also improves the overall quality of the resulting apps, and

reduces the amount of findings during security testing in the pre-release phase.

For Secure Development Training

MASVS can also be used to define characteristics of secure mobile apps. Many "secure coding"

courses are simply ethical hacking courses with a light smear of coding tips. This does not help

developers. Instead, secure development courses can use the MASVS, with a strong focus on

the proactive controls documented in the MASVS, rather than e.g. the Top 10 code security

issues.

OWASP Mobile Application Security Verification Standard v1.1 14

V1: Architecture, Design and Threat Modeling Requirements

Control Objective

In a perfect world, security would be considered throughout all phases of development. In reality

however, security is often only a consideration at a late stage in the SDLC. Besides the

technical controls, the MASVS requires processes to be in place that ensure that the security

has been explicitly addressed when planning the architecture of the mobile app, and that the

functional and security roles of all components are known. Since most mobile applications act

as clients to remote services, it must be ensured that appropriate security standards are also

applied to those services - testing the mobile app in isolation is not sufficient.

The category “V1” lists requirements pertaining to architecture and design of the app. As such,

this is the only category that does not map to technical test cases in the OWASP Mobile Testing

Guide. To cover topics such as threat modelling, secure SDLC, key management, users of the

MASVS should consult the respective OWASP projects and/or other standards such as the

ones linked below.

Security Verification Requirements

The requirements for MASVS-L1 and MASVS-L2 are listed below.

Description L1 L2

1.1 All app components are identified and known to be needed. � �

1.2 Security controls are never enforced only on the client side, but on the

respective remote endpoints.

� �

1.3 A high-level architecture for the mobile app and all connected remote

services has been defined and security has been addressed in that

architecture.

� �

1.4 Data considered sensitive in the context of the mobile app is clearly identified. � �

1.5 All app components are defined in terms of the business functions and/or

security functions they provide.

 �

1.6 A threat model for the mobile app and the associated remote services has

been produced that identifies potential threats and countermeasures.

 �

1.7 All security controls have a centralized implementation. �

1.8 There is an explicit policy for how cryptographic keys (if any) are managed,

and the lifecycle of cryptographic keys is enforced. Ideally, follow a key

management standard such as NIST SP 800-57.

 �

1.9 A mechanism for enforcing updates of the mobile app exists. �

1.10 Security is addressed within all parts of the software development lifecycle. �

References

For more information, see also:

• OWASP Mobile Top 10: M10 - Extraneous Functionality:

https://www.owasp.org/index.php/Mobile_Top_10_2016-M10-Extraneous_Functionality

OWASP Mobile Application Security Verification Standard v1.1 15

• OWASP Security Architecture cheat sheet:

https://www.owasp.org/index.php/Application_Security_Architecture_Cheat_Sheet

• OWASP Thread modelling: https://www.owasp.org/index.php/Application_Threat_Modeling

• OWASP Secure SDLC Cheat Sheet:

https://www.owasp.org/index.php/Secure_SDLC_Cheat_Sheet

• Microsoft SDL: https://www.microsoft.com/en-us/sdl/

• NIST SP 800-57: http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-

revised2_Mar08-2007.pdf

OWASP Mobile Application Security Verification Standard v1.1 16

V2: Data Storage and Privacy Requirements

Control Objective

The protection of sensitive data, such as user credentials and private information, is a key focus

in mobile security. Firstly, sensitive data can be unintentionally exposed to other apps running

on the same device if operating system mechanisms like IPC are used improperly. Data may

also unintentionally leak to cloud storage, backups, or the keyboard cache. Additionally, mobile

devices can be lost or stolen more easily compared to other types of devices, so an adversary

gaining physical access is a more likely scenario. In that case, additional protections can be

implemented to make retrieving the sensitive data more difficult.

Note that, as the MASVS is app-centric, it does not cover device-level policies such as those

enforced by MDM solutions. We encourage the use of such policies in an Enterprise context to

further enhance data security.

Definition of Sensitive Data

Sensitive data in the context of the MASVS pertains to both user credentials and any other data

considered sensitive in the particular context, such as:

• Personally identifiable information (PII) that can be abused for identity theft: Social security

numbers, credit card numbers, bank account numbers, health information;

• Highly sensitive data that would lead to reputational harm and/or financial costs if

compromised: Contractual information, information covered by non-disclosure agreements,

management information;

• Any data that must be protected by law or for compliance reasons.

Security Verification Requirements

The vast majority of data disclosure issues can be prevented by following simple rules. Most of

the controls listed in this chapter are mandatory for all verification levels.

Description L1 L2

2.1 System credential storage facilities are used appropriately to store sensitive

data, such as PII, user credentials or cryptographic keys.

� �

2.2 No sensitive data should be stored outside of the app container or system

credential storage facilities.

� �

2.3 No sensitive data is written to application logs. � �

2.4 No sensitive data is shared with third parties unless it is a necessary part of

the architecture.

� �

2.5 The keyboard cache is disabled on text inputs that process sensitive data. � �

2.6 No sensitive data is exposed via IPC mechanisms. � �

2.7 No sensitive data, such as passwords or pins, is exposed through the user

interface.

� �

2.8 No sensitive data is included in backups generated by the mobile operating

system.

 �

OWASP Mobile Application Security Verification Standard v1.1 17

2.9 The app removes sensitive data from views when backgrounded. �

2.10 The app does not hold sensitive data in memory longer than necessary, and

memory is cleared explicitly after use.

 �

2.11 The app enforces a minimum device-access-security policy, such as requiring

the user to set a device passcode.

 �

2.12 The app educates the user about the types of personally identifiable

information processed, as well as security best practices the user should

follow in using the app.

 �

References

The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the

requirements listed in this section.

• For Android - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05d-

Testing-Data-Storage.md

• For iOS - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06d-Testing-

Data-Storage.md

For more information, see also:

• OWASP Mobile Top 10: M2 - Insecure Data Storage:

https://www.owasp.org/index.php/Mobile_Top_10_2016-M2-Insecure_Data_Storage

• CWE: https://cwe.mitre.org/data/definitions/922.html

OWASP Mobile Application Security Verification Standard v1.1 18

V3: Cryptography Requirements

Control Objective

Cryptography is an essential ingredient when it comes to protecting data stored on a mobile

device. It is also a category where things can go horribly wrong, especially when standard

conventions are not followed. The purpose of the controls in this chapter is to ensure that the

verified application uses cryptography according to industry best practices, including:

• Use of proven cryptographic libraries;

• Proper choice and configuration of cryptographic primitives;

• A suitable random number generator wherever randomness is required.

Security Verification Requirements
Description L1 L2

3.1 The app does not rely on symmetric cryptography with hardcoded keys as a

sole method of encryption.

� �

3.2 The app uses proven implementations of cryptographic primitives. � �

3.3 The app uses cryptographic primitives that are appropriate for the particular

use-case, configured with parameters that adhere to industry best practices.

� �

3.4 The app does not use cryptographic protocols or algorithms that are widely

considered depreciated for security purposes.

� �

3.5 The app doesn't re-use the same cryptographic key for multiple purposes. � �

3.6 All random values are generated using a sufficiently secure random number

generator.

� �

References

The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the

requirements listed in this section.

• Android - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05e-Testing-

Cryptography.md

• iOS - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06e-Testing-

Cryptography.md

For more information, see also:

• OWASP Mobile Top 10: M5 - Insufficient Cryptography

• CWE: https://cwe.mitre.org/data/definitions/310.html

OWASP Mobile Application Security Verification Standard v1.1 19

V4: Authentication and Session Management Requirements

Control Objective

In most cases, users logging into a remote service is an integral part of the overall mobile app

architecture. Even though most of the logic happens at the endpoint, MASVS defines some

basic requirements regarding how user accounts and sessions are to be managed.

Security Verification Requirements
Description L1 L2

4.1 If the app provides users access to a remote service, some form of

authentication, such as username/password authentication, is performed at

the remote endpoint.

� �

4.2 If stateful session management is used, the remote endpoint uses randomly

generated session identifiers to authenticate client requests without sending

the user's credentials.

� �

4.3 If stateless token-based authentication is used, the server provides a token

that has been signed using a secure algorithm.

� �

4.4 The remote endpoint terminates the existing session when the user logs out. � �

4.5 A password policy exists and is enforced at the remote endpoint. � �

4.6 The remote endpoint implements a mechanism to protect against the

submission of credentials an excessive number of times.

� �

4.7 Biometric authentication, if any, is not event-bound (i.e. using an API that

simply returns "true" or "false"). Instead, it is based on unlocking the

keychain/keystore.

 �

4.8 Sessions are invalidated at the remote endpoint after a predefined period of

inactivity and access tokens expire.

 �

4.9 A second factor of authentication exists at the remote endpoint and the 2FA

requirement is consistently enforced.

 �

4.10 Sensitive transactions require step-up authentication. �

4.11 The app informs the user of all login activities with their account. Users are

able view a list of devices used to access the account, and to block specific

devices.

 �

References

The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the

requirements listed in this section.

• For Android - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05f-

Testing-Authentication.md

• For iOS - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06f-Testing-

Authentication-and-Session-Management.md

OWASP Mobile Application Security Verification Standard v1.1 20

For more information, see also:

• OWASP Mobile Top 10: M4 - Insecure Authentication, M6 - Insecure Authorization

• CWE: https://cwe.mitre.org/data/definitions/287.html

OWASP Mobile Application Security Verification Standard v1.1 21

V5: Network Communication Requirements

Control Objective

The purpose of the controls listed in this section is to ensure the confidentiality and integrity of

information exchanged between the mobile app and remote service endpoints. At the very least,

a mobile app must set up a secure, encrypted channel for network communication using the

TLS protocol with appropriate settings. Level 2 lists additional defense-in-depth measure such

as SSL pinning.

Security Verification Requirements
Description L1 L2

5.1 Data is encrypted on the network using TLS. The secure channel is used

consistently throughout the app.

� �

5.2 The TLS settings are in line with current best practices, or as close as possible

if the mobile operating system does not support the recommended standards.

� �

5.3 The app verifies the X.509 certificate of the remote endpoint when the secure

channel is established. Only certificates signed by a trusted CA are accepted.

� �

5.4 The app either uses its own certificate store, or pins the endpoint certificate or

public key, and subsequently does not establish connections with endpoints

that offer a different certificate or key, even if signed by a trusted CA.

 �

5.5 The app doesn't rely on a single insecure communication channel (email or

SMS) for critical operations, such as enrollments and account recovery.

 �

5.6 The app only depends on up-to-date connectivity and security libraries. �

References

The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the

requirements listed in this section.

• Android - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05g-Testing-

Network-Communication.md

• iOS - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06g-Testing-

Network-Communication.md

For more information, see also:

• OWASP Mobile Top 10: M3 - Insecure Communication:

https://www.owasp.org/index.php/Mobile_Top_10_2016-M3-Insecure_Communication

• CWE: https://cwe.mitre.org/data/definitions/319.html

• CWE: https://cwe.mitre.org/data/definitions/295.html

OWASP Mobile Application Security Verification Standard v1.1 22

V6: Platform Interaction Requirements

Control Objective

The controls in this group ensure that the app uses platform APIs and standard components in a

secure manner. Additionally, the controls cover communication between apps (IPC).

Security Verification Requirements
Description L1 L2

6.1 The app only requests the minimum set of permissions necessary. � �

6.2 All inputs from external sources and the user are validated and if necessary

sanitized. This includes data received via the UI, IPC mechanisms such as

intents, custom URLs, and network sources.

� �

6.3 The app does not export sensitive functionality via custom URL schemes,

unless these mechanisms are properly protected.

� �

6.4 The app does not export sensitive functionality through IPC facilities, unless

these mechanisms are properly protected.

� �

6.5 JavaScript is disabled in WebViews unless explicitly required. � �

6.6 WebViews are configured to allow only the minimum set of protocol handlers

required (ideally, only https is supported). Potentially dangerous handlers, such

as file, tel and app-id, are disabled.

� �

6.7 If native methods of the app are exposed to a WebView, verify that the

WebView only renders JavaScript contained within the app package.

� �

6.8 Object deserialization, if any, is implemented using safe serialization APIs. � �

References

The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the

requirements listed in this section.

• Android - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05h-Testing-

Platform-Interaction.md

• iOS - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06h-Testing-

Platform-Interaction.md

For more information, see also:

• OWASP Mobile Top 10: M1 - Improper Platform Usage

• CWE: https://cwe.mitre.org/data/definitions/20.html

• CWE: https://cwe.mitre.org/data/definitions/749.html

OWASP Mobile Application Security Verification Standard v1.1 23

V7: Code Quality and Build Setting Requirements

Control Objective

The goal of this control is to ensure that basic security coding practices are followed in

developing the app, and that "free" security features offered by the compiler are activated.

Security Verification Requirements
Description L1 L2

7.1 The app is signed and provisioned with valid certificate. � �

7.2 The app has been built in release mode, with settings appropriate for a release

build (e.g. non-debuggable).

� �

7.3 Debugging symbols have been removed from native binaries. � �

7.4 Debugging code has been removed, and the app does not log verbose errors

or debugging messages.

� �

7.5 All third party components used by the mobile app, such as libraries and

frameworks, are identified, and checked for known vulnerabilities.

� �

7.6 The app catches and handles possible exceptions. � �

7.7 Error handling logic in security controls denies access by default. � �

7.8 In unmanaged code, memory is allocated, freed and used securely. � �

7.9 Free security features offered by the toolchain, such as byte-code minification,

stack protection, PIE support and automatic reference counting, are activated.

� �

References

The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the

requirements listed in this section.

• Android - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05i-Testing-

Code-Quality-and-Build-Settings.md

• iOS - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06i-Testing-Code-

Quality-and-Build-Settings.md

For more information, see also:

• OWASP Mobile Top 10: M7 - Client Code Quality

• CWE: https://cwe.mitre.org/data/definitions/119.html

• CWE: https://cwe.mitre.org/data/definitions/89.html

• CWE: https://cwe.mitre.org/data/definitions/388.html

• CWE: https://cwe.mitre.org/data/definitions/489.html

OWASP Mobile Application Security Verification Standard v1.1 24

V8: Resilience Requirements

Control objective

This section covers defense-in-depth measures recommended for apps that process, or give

access to, sensitive data or functionality. Lack of any of these controls does not cause a

vulnerability - instead, they are meant to increase the app's resilience against reverse

engineering and specific client-side attacks.

The controls in this section should be applied as needed, based on an assessment of the risks

caused by unauthorized tampering with the app and/or reverse engineering of the code. We

suggest consulting the OWASP document "Technical Risks of Reverse Engineering and

Unauthorized Code Modification Reverse Engineering and Code Modification Prevention" (see

references below) for a list business risks as well as associated technical threats.

For any of the controls in the list below to be effective, the app must fulfil at least all of MASVS-

L1 (i.e., solid security controls must be in place), as well as all lower-numbered requirements in

V8. For examples, the obfuscation controls listed in under "impede comprehension" must be

combined with "app isolation", "impede dynamic analysis and tampering" and "device binding".

Note that software protections must never be used as a replacement for security
controls. The controls listed in MASVR-R are intended to add threat-specific, additional
protective controls to apps that also fulfil the MASVS security requirements.

The following considerations apply:

i. A threat model must be defined that clearly outlines the client-side threats defended
against. Additionally, the grade of protection the scheme is meant to provide must
be specified. For example, a stated goal could be to force authors of targeted
malware seeking to instrument the app to invest significant manual reverse
engineering effort.

ii. The threat model must be sensical. For example, hiding a cryptographic key in a
white-box implementation is besides the point if the attacker can simply code-lift the
white-box as a whole.

iii. The effectiveness of the protection should always be verified by a human expert
with experience in testing the particular types of anti-tampering and obfuscation
used (see also the "reverse engineering" and "assessing software protections"
chapters in the Mobile Security Testing Guide).

Impede Dynamic Analysis and Tampering
Description R

8.1 The app detects, and responds to, the presence of a rooted or jailbroken device

either by alerting the user or terminating the app.

�

8.2 The app prevents debugging and/or detects, and responds to, a debugger being

attached. All available debugging protocols must be covered.

�

8.3 The app detects, and responds to, tampering with executable files and critical data

within its own sandbox.

�

OWASP Mobile Application Security Verification Standard v1.1 25

8.4 The app detects, and responds to, the presence of widely used reverse engineering

tools and frameworks on the device.

�

8.5 The app detects, and responds to, being run in an emulator. �

8.6 The app detects, and responds to, tampering the code and data in its own memory

space.

�

8.7 The app implements multiple mechanisms in each defense category (8.1 to 8.6).

Note that resiliency scales with the amount, diversity of the originality of the

mechanisms used.

�

8.8 The detection mechanisms trigger responses of different types, including delayed

and stealthy responses.

�

8.9 Obfuscation is applied to programmatic defenses, which in turn impede de-

obfuscation via dynamic analysis.

�

Device Binding
Description R

8.10 The app implements a 'device binding' functionality using a device fingerprint

derived from multiple properties unique to the device.

�

Impede Comprehension
Description R

8.11 All executable files and libraries belonging to the app are either encrypted on the

file level and/or important code and data segments inside the executables are

encrypted or packed. Trivial static analysis does not reveal important code or data.

�

8.12 If the goal of obfuscation is to protect sensitive computations, an obfuscation

scheme is used that is both appropriate for the particular task and robust against

manual and automated de-obfuscation methods, considering currently published

research. The effectiveness of the obfuscation scheme must be verified through

manual testing. Note that hardware-based isolation features are preferred over

obfuscation whenever possible.

�

References

The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the

requirements listed in this section.

• Android - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05j-Testing-

Resiliency-Against-Reverse-Engineering.md

• iOS - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06j-Testing-

Resiliency-Against-Reverse-Engineering.md

For more information, see also:

• OWASP Mobile Top 10: M8 - Code Tampering, M9 - Reverse Engineering

• WASP Reverse Engineering Threats -

https://www.owasp.org/index.php/Technical_Risks_of_Reverse_Engineering_and_Unautho

rized_Code_Modification

OWASP Mobile Application Security Verification Standard v1.1 26

• OWASP Reverse Engineering and Code Modification Prevention -

https://www.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification

_Prevention_Project

OWASP Mobile Application Security Verification Standard v1.1 27

Appendix A: Glossary

• 2FA – Two-factor authentication (2FA) adds a second level of authentication to an account

log-in.

• Address Space Layout Randomization (ASLR) – A technique to make exploiting

memory corruption bugs more difficult.

• Application Security – Application-level security focuses on the analysis of components

that comprise the application layer of the Open Systems Interconnection Reference Model

(OSI Model), rather than focusing on for example the underlying operating system or

connected networks.

• Application Security Verification – The technical assessment of an application against

the OWASP MASVS.

• Application Security Verification Report – A report that documents the overall results

and supporting analysis produced by the verifier for a particular application.

• Authentication – The verification of the claimed identity of an application user.

• Automated Verification – The use of automated tools (either dynamic analysis tools,

static analysis tools, or both) that use vulnerability signatures to find problems.

• Black box testing – It is a method of software testing that examines the functionality of an

application without peering into its internal structures or workings.

• Component – a self-contained unit of code, with associated disk and network interfaces

that communicates with other components.

• Cross-Site Scripting (XSS) – A security vulnerability typically found in web applications

allowing the injection of client-side scripts into content.

• Cryptographic module – Hardware, software, and/or firmware that implements

cryptographic algorithms and/or generates cryptographic keys.

• CWE - CWE is a community-developed list of common software security weaknesses. It

serves as a common language, a measuring stick for software security tools, and as a

baseline for weakness identification, mitigation, and prevention efforts.

• DAST –Dynamic application security testing (DAST) technologies are designed to detect

conditions indicative of a security vulnerability in an application in its running state.

• Design Verification – The technical assessment of the security architecture of an

application.

• Dynamic Verification – The use of automated tools that use vulnerability signatures to

find problems during the execution of an application.

• Globally Unique Identifier (GUID) – a unique reference number used as an identifier in

software.

• Hyper Text Transfer Protocol (HTTP) – An application protocol for distributed,

collaborative, hypermedia information systems. It is the foundation of data communication

for the World Wide Web.

• Hardcoded keys – Cryptographic keys which are stored in the device itself.

• IPC – Inter Process Communications,In IPC Processes communicate with each other and

with the kernel to coordinate their activities.

• Input Validation – The canonicalization and validation of untrusted user input.

• JAVA Bytecode - Java bytecode is the instruction set of the Java virtual machine(JVM).

Each bytecode is composed of one, or in some cases two bytes that represent the

instruction (opcode), along with zero or more bytes for passing parameters.

OWASP Mobile Application Security Verification Standard v1.1 28

• Malicious Code – Code introduced into an application during its development

unbeknownst to the application owner, which circumvents the application's intended

security policy. Not the same as malware such as a virus or worm!

• Malware – Executable code that is introduced into an application during runtime without

the knowledge of the application user or administrator.

• Open Web Application Security Project (OWASP) – The Open Web Application Security

Project (OWASP) is a worldwide free and open community focused on improving the

security of application software. Our mission is to make application security "visible," so

that people and organizations can make informed decisions about application security

risks. See: http://www.owasp.org/

• Personally Identifiable Information (PII) - is information that can be used on its own or

with other information to identify, contact, or locate a single person, or to identify an

individual in context.

• PIE – Position-independent executable (PIE) is a body of machine code that, being placed

somewhere in the primary memory, executes properly regardless of its absolute address.

• PKI – A PKI is an arrangement that binds public keys with respective identities of entities.

The binding is established through a process of registration and issuance of certificates at

and by a certificate authority (CA).

• SAST – Static application security testing (SAST) is a set of technologies designed to

analyze application source code, byte code and binaries for coding and design conditions

that are indicative of security vulnerabilities. SAST solutions analyze an application from

the “inside out” in a nonrunning state.

• SDLC – Software development lifecycle.

• Security Architecture – An abstraction of an application's design that identifies and

describes where and how security controls are used, and also identifies and describes the

location and sensitivity of both user and application data.

• Security Configuration – The runtime configuration of an application that affects how

security controls are used.

• Security Control – A function or component that performs a security check (e.g. an

access control check) or when called results in a security effect (e.g. generating an audit

record).

• SQL Injection (SQLi) – A code injection technique used to attack data driven applications,

in which malicious SQL statements are inserted into an entry point.

• SSO Authentication – Single Sign On(SSO) occurs when a user logs in to one Client and

is then signed in to other Clients automatically, regardless of the platform, technology, or

domain the user is using. For example when you log in in google you automatically login in

the youtube , docs and mail service.

• Threat Modeling - A technique consisting of developing increasingly refined security

architectures to identify threat agents, security zones, security controls, and important

technical and business assets.

• Transport Layer Security – Cryptographic protocols that provide communication security

over the Internet

• URI/URL/URL fragments – A Uniform Resource Identifier is a string of characters used to

identify a name or a web resource. A Uniform Resource Locator is often used as a

reference to a resource.

• User acceptance testing (UAT)– Traditionally a test environment that behaves like the

production environment where all software testing is performed before going live.

OWASP Mobile Application Security Verification Standard v1.1 29

• Verifier – The person or team that is reviewing an application against the OWASP ASVS

requirements.

• Whitelist – A list of permitted data or operations, for example a list of characters that are

allowed to perform input validation.

• X.509 Certificate – An X.509 certificate is a digital certificate that uses the widely accepted

international X.509 public key infrastructure (PKI) standard to verify that a public key

belongs to the user, computer or service identity contained within the certificate.

OWASP Mobile Application Security Verification Standard v1.1 30

Appendix B: References

The following OWASP projects are most likely to be useful to users/adopters of this standard:

• OWASP Mobile Security Project -

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project

• OWASP Mobile Security Testing Guide -

https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide

• OWASP Mobile Top 10 Risks -

https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-

_Top_Ten_Mobile_Risks

• OWASP Reverse Engineering and Code Modification Prevention -

https://www.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification

_Prevention_Project

Similarly, the following web sites are most likely to be useful to users/adopters of this standard:

• MITRE Common Weakness Enumeration - http://cwe.mitre.org/

• PCI Security Standards Council - https://www.pcisecuritystandards.org

• PCI Data Security Standard (DSS) v3.0 Requirements and Security Assessment

Procedures https://www.pcisecuritystandards.org/documents/PCI_DSS_v3.pdf

