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Motivation



Errors in device communication
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Who will notice?

• Many IoT devices have no user-facing display

• and may not report an error anyway

• Server operator might notice

• but that may not be the device manufacturer

Examples

• Nest thermostat looking up local weather on third-party API
• Communication with a cross-vendor IoT device ‘bridge’
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Test coverage?

• So? Just test it, right?

• > 99% coverage, great!
• Oh...
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Server logging?

• Low signal to noise

• Owner/operator may be distinct from device software provider
• Not preventative
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Formal verification?

• Ideal: total prevention of incorrect code

• Hard, expensive, specialised
• Some research into extending to web services/REST
• But nothing available to the application developer today
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Need to do better

• it should be tested...

• maybe we learn of the error if it’s not...
• hopefully we then fix it...

Not very promising: surely this can be avoided?
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REpresentational State Transfer



REST: a stateless ’app’ model for the web

Classical REST (Fielding’s thesis):

• Stateless applications: ‘state’ contained in request/response

• Resource available at its own URI
• Resource representation may be any hypermedia (HTML, JPEG, …)
• HTTP methods have different semantics, idempotency
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REST: RPC-ish over JSON

Typical modern ‘REST’ (REST API):

• Resource URIs contain human-readable ‘breadcrumb’ hierarchy

• /foobars is a collection resource
• /foobars/42 is a single entity resource

• JSON resource representation: {"foobars": [{"id": 42}]}

• HTTP verbs have specialised semantics for collection/entity
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The Problem

let response = http_client.get("api.com/foobar");

// oops, wasn't it plural on the last slide? ^

let json = deserialise_http_response(response.body());
let foobar_list = json["fopbars"];
do_something_with(foobar_list);

// easy typos to make; ^^ harder to spot

‘Stringly-typed’: these errors won’t fail until run-time.

Serialisation of request bodies, query/path params is similarly problematic.
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Idea: bring REST semantics ‘into’
the (client) language



‘the language’

Rust fits the bill

:

• Can target embedded devices
• Type-checking enables analysis of bodies, parameters, et al.
• Borrow-checking enables (some) analysis of state

Despite their names, both checkers are really features of Rust’s type
system.
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Strong and static (no, that’s not the PM’s new slogan)

• Static: types inferred and verified at compile-time

• idea: types for components of requests, responses

• Strong: invoked methods must be implemented for that type

• resp. fields on that struct, etc.
• idea: enum variant for each response status code
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Affine (theory)

A whirlwind introduction

:

• Structural logic: its proof system consists of inference rules
• Contraction rule:

Γ,A,A ` B
Γ,A ` B

• Affine logic: a sub-structural logic, removing contraction
• Affine type system: variables used at most once

• useful for modelling external resources: I/O, locks, ...
• idea: REST resources too?
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Affine (practice)

Memory management in Rust

:

• No garbage collection (GC)
• No use after ‘move’ (passing by value)
• No ‘borrowing’ (a reference) that’s already mutably borrowed
• No borrowing for (a ‘lifetime’) longer than scope of owner
• Automatic ‘drop’s (deallocation) at end of scope

Result: no dangling pointers, double-frees, uses-after-free; memory
leaks avoided; all without expensive GC and at compile-time.

Idea 14



Affine (practice)

Memory management in Rust:

• No garbage collection (GC)

• No use after ‘move’ (passing by value)
• No ‘borrowing’ (a reference) that’s already mutably borrowed
• No borrowing for (a ‘lifetime’) longer than scope of owner
• Automatic ‘drop’s (deallocation) at end of scope

Result: no dangling pointers, double-frees, uses-after-free; memory
leaks avoided; all without expensive GC and at compile-time.

Idea 14



Affine (practice)

Memory management in Rust:

• No garbage collection (GC)
• No use after ‘move’ (passing by value)

• No ‘borrowing’ (a reference) that’s already mutably borrowed
• No borrowing for (a ‘lifetime’) longer than scope of owner
• Automatic ‘drop’s (deallocation) at end of scope

Result: no dangling pointers, double-frees, uses-after-free; memory
leaks avoided; all without expensive GC and at compile-time.

Idea 14



Affine (practice)

Memory management in Rust:

• No garbage collection (GC)
• No use after ‘move’ (passing by value)
• No ‘borrowing’ (a reference) that’s already mutably borrowed

• No borrowing for (a ‘lifetime’) longer than scope of owner
• Automatic ‘drop’s (deallocation) at end of scope

Result: no dangling pointers, double-frees, uses-after-free; memory
leaks avoided; all without expensive GC and at compile-time.

Idea 14



Affine (practice)

Memory management in Rust:

• No garbage collection (GC)
• No use after ‘move’ (passing by value)
• No ‘borrowing’ (a reference) that’s already mutably borrowed
• No borrowing for (a ‘lifetime’) longer than scope of owner

• Automatic ‘drop’s (deallocation) at end of scope

Result: no dangling pointers, double-frees, uses-after-free; memory
leaks avoided; all without expensive GC and at compile-time.

Idea 14



Affine (practice)

Memory management in Rust:

• No garbage collection (GC)
• No use after ‘move’ (passing by value)
• No ‘borrowing’ (a reference) that’s already mutably borrowed
• No borrowing for (a ‘lifetime’) longer than scope of owner
• Automatic ‘drop’s (deallocation) at end of scope

Result: no dangling pointers, double-frees, uses-after-free; memory
leaks avoided; all without expensive GC and at compile-time.

Idea 14



Affine (practice)

Memory management in Rust:

• No garbage collection (GC)
• No use after ‘move’ (passing by value)
• No ‘borrowing’ (a reference) that’s already mutably borrowed
• No borrowing for (a ‘lifetime’) longer than scope of owner
• Automatic ‘drop’s (deallocation) at end of scope

Result: no dangling pointers, double-frees, uses-after-free; memory
leaks avoided; all without expensive GC and at compile-time.

Idea 14



Idea: ‘use-after-free’ = ‘use after DELETE’

With Rust’s ‘move’ semantics, our DELETE function can consume a
resource identifier

:
fn get(&ResourceId) -> Response;
fn delete(ResourceId) -> Response;

Affine type system =⇒ a ResourceId moved into delete cannot
be reused.

With this and similar models, we ‘tell’ the compiler how to check for
invalid API use.

Idea 15
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Okay... but what’s invalid use?

OpenAPI Initiative’s specification (OAS) allows YAML schema for REST
API description

:

/addresses:
summary: Address book endpoint
get:
description: List addresses in user's address book
responses:

200:
description: List of addresses
content:
application/json:

schema:
type: array
items:
$ref: '#/definitions/Address'

post:
description: Add a new address
requestBody:

$ref: '#/definitions/Address'
responses:

405:
description: Not implemented

Idea 16
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Translating types

Map REST schema types to Rust types

:

struct Address {
house_no: i32,
street: String,
postcode: String,
country: String,

}

enum OkBody {
Status200(Vec<Address>),
// ...
UnspecifiedCode(String),
MalformedJson(String),

}

// ...

type ResponseBody = Result<OkBody, ErrBody>;

Idea 17
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Translating lifetimes

Tie REST resource lifetimes to Rust variable (reference) lifetimes

:
let provisioned_id = ResourceId_name::from_static("...");

// or:
let response = addresses::post(&address, &auth);
let discovered_id = extract_address_id(&response);

// then:
addresses__name_::get(&discovered_id, &auth);
addresses__name_::delete(discovered_id, &auth);

// ^ moved!

// compile error - use after move:
addresses__name_::get(&discovered_id, &auth);

Idea 18
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Tapioca



Code generation

• infer_api!(name, "http://api.io/schema.yml")

• Expanded in-place at compile-time
• A ‘typed HTTP client’ generated under the module name
• Types correspond to definitions in the provided OAS schema

Tapioca | https://github.com/OJFord/tapioca 19
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User code

#[macro_use]
extern crate tapioca;

infer_api!(httpbin,
"https://raw.githubusercontent.com/OJFord/ ... /httpbin.yml"

);
use httpbin::ip;

fn main() {
let auth = httpbin::ServerAuth::new();

match ip::get(auth) {
Ok(response) => match response.body() {

ip::get::OkBody::Status200(body)
=> println!("Your IP is {}", body.origin),

_ => printn!("httpbin.org did something unexpected"),
},
Err(response)

=> println!("httpbin.org error: {}", response.body()),
}

}

Tapioca | https://github.com/OJFord/tapioca 20



Feedback

• Interest on /r/Rust community forum

• ‘upvotes’ as appeal metric: 98% like the concept (N ≈ 1.1k)

• ‘Pinch of salt’ (N = 4) survey results:

• 3/4 respondents find it appealing
• 3/4 think it would make them more productive
• 1/4 would actually use it

• 2/4 would prefer a schema-less client
• 1/4 would prefer an RPC framework

Tapioca | https://github.com/OJFord/tapioca 21
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Conclusion

• Prevent some HTTP 4xx (client) errors at compile-time

• Force handling of errors when they do occur
• Boost developer productivity
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Thank you!
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