
Static analysis for API error detection in IoT devices
Tapioca: a library for reasoning about web requests at compile-time

Oliver Ford
28 June 2017

Imperial College London

Contents

Motivation

REST APIs

Idea

Tapioca | https://github.com/OJFord/tapioca

1

Motivation

Errors in device communication

Motivation 2

Who will notice?

• Many IoT devices have no user-facing display

• and may not report an error anyway

• Server operator might notice

• but that may not be the device manufacturer

Examples

• Nest thermostat looking up local weather on third-party API
• Communication with a cross-vendor IoT device ‘bridge’

Motivation 3

Who will notice?

• Many IoT devices have no user-facing display
• and may not report an error anyway

• Server operator might notice

• but that may not be the device manufacturer

Examples

• Nest thermostat looking up local weather on third-party API
• Communication with a cross-vendor IoT device ‘bridge’

Motivation 3

Who will notice?

• Many IoT devices have no user-facing display
• and may not report an error anyway

• Server operator might notice

• but that may not be the device manufacturer

Examples

• Nest thermostat looking up local weather on third-party API
• Communication with a cross-vendor IoT device ‘bridge’

Motivation 3

Who will notice?

• Many IoT devices have no user-facing display
• and may not report an error anyway

• Server operator might notice
• but that may not be the device manufacturer

Examples

• Nest thermostat looking up local weather on third-party API
• Communication with a cross-vendor IoT device ‘bridge’

Motivation 3

Who will notice?

• Many IoT devices have no user-facing display
• and may not report an error anyway

• Server operator might notice
• but that may not be the device manufacturer

Examples

• Nest thermostat looking up local weather on third-party API
• Communication with a cross-vendor IoT device ‘bridge’

Motivation 3

Who will notice?

• Many IoT devices have no user-facing display
• and may not report an error anyway

• Server operator might notice
• but that may not be the device manufacturer

Examples

• Nest thermostat looking up local weather on third-party API

• Communication with a cross-vendor IoT device ‘bridge’

Motivation 3

Who will notice?

• Many IoT devices have no user-facing display
• and may not report an error anyway

• Server operator might notice
• but that may not be the device manufacturer

Examples

• Nest thermostat looking up local weather on third-party API
• Communication with a cross-vendor IoT device ‘bridge’

Motivation 3

Test coverage?

• So? Just test it, right?

• > 99% coverage, great!
• Oh...

0.99

Error

rare

usual

Motivation 4

Test coverage?

• So? Just test it, right?
• > 99% coverage, great!

• Oh...

0.99

Error

rare

usual

Motivation 4

Test coverage?

• So? Just test it, right?
• > 99% coverage, great!
• Oh...

0.99

Error

rare

usual

Motivation 4

Server logging?

• Low signal to noise

• Owner/operator may be distinct from device software provider
• Not preventative

Motivation 5

Server logging?

• Low signal to noise
• Owner/operator may be distinct from device software provider

• Not preventative

Motivation 5

Server logging?

• Low signal to noise
• Owner/operator may be distinct from device software provider
• Not preventative

Motivation 5

Formal verification?

• Ideal: total prevention of incorrect code

• Hard, expensive, specialised
• Some research into extending to web services/REST
• But nothing available to the application developer today

Motivation 6

Formal verification?

• Ideal: total prevention of incorrect code
• Hard, expensive, specialised

• Some research into extending to web services/REST
• But nothing available to the application developer today

Motivation 6

Formal verification?

• Ideal: total prevention of incorrect code
• Hard, expensive, specialised
• Some research into extending to web services/REST

• But nothing available to the application developer today

Motivation 6

Formal verification?

• Ideal: total prevention of incorrect code
• Hard, expensive, specialised
• Some research into extending to web services/REST
• But nothing available to the application developer today

Motivation 6

Need to do better

• it should be tested...

• maybe we learn of the error if it’s not...
• hopefully we then fix it...

Not very promising: surely this can be avoided?

Motivation 7

Need to do better

• it should be tested...
• maybe we learn of the error if it’s not...

• hopefully we then fix it...

Not very promising: surely this can be avoided?

Motivation 7

Need to do better

• it should be tested...
• maybe we learn of the error if it’s not...
• hopefully we then fix it...

Not very promising: surely this can be avoided?

Motivation 7

Need to do better

• it should be tested...
• maybe we learn of the error if it’s not...
• hopefully we then fix it...

Not very promising: surely this can be avoided?

Motivation 7

REpresentational State Transfer

REST: a stateless ’app’ model for the web

Classical REST (Fielding’s thesis):

• Stateless applications: ‘state’ contained in request/response

• Resource available at its own URI
• Resource representation may be any hypermedia (HTML, JPEG, …)
• HTTP methods have different semantics, idempotency

REST APIs 8

REST: a stateless ’app’ model for the web

Classical REST (Fielding’s thesis):

• Stateless applications: ‘state’ contained in request/response
• Resource available at its own URI

• Resource representation may be any hypermedia (HTML, JPEG, …)
• HTTP methods have different semantics, idempotency

REST APIs 8

REST: a stateless ’app’ model for the web

Classical REST (Fielding’s thesis):

• Stateless applications: ‘state’ contained in request/response
• Resource available at its own URI
• Resource representation may be any hypermedia (HTML, JPEG, …)

• HTTP methods have different semantics, idempotency

REST APIs 8

REST: a stateless ’app’ model for the web

Classical REST (Fielding’s thesis):

• Stateless applications: ‘state’ contained in request/response
• Resource available at its own URI
• Resource representation may be any hypermedia (HTML, JPEG, …)
• HTTP methods have different semantics, idempotency

REST APIs 8

REST: RPC-ish over JSON

Typical modern ‘REST’ (REST API):

• Resource URIs contain human-readable ‘breadcrumb’ hierarchy

• /foobars is a collection resource
• /foobars/42 is a single entity resource

• JSON resource representation: {"foobars": [{"id": 42}]}

• HTTP verbs have specialised semantics for collection/entity

REST APIs 9

REST: RPC-ish over JSON

Typical modern ‘REST’ (REST API):

• Resource URIs contain human-readable ‘breadcrumb’ hierarchy
• /foobars is a collection resource
• /foobars/42 is a single entity resource

• JSON resource representation: {"foobars": [{"id": 42}]}

• HTTP verbs have specialised semantics for collection/entity

REST APIs 9

REST: RPC-ish over JSON

Typical modern ‘REST’ (REST API):

• Resource URIs contain human-readable ‘breadcrumb’ hierarchy
• /foobars is a collection resource
• /foobars/42 is a single entity resource

• JSON resource representation: {"foobars": [{"id": 42}]}

• HTTP verbs have specialised semantics for collection/entity

REST APIs 9

REST: RPC-ish over JSON

Typical modern ‘REST’ (REST API):

• Resource URIs contain human-readable ‘breadcrumb’ hierarchy
• /foobars is a collection resource
• /foobars/42 is a single entity resource

• JSON resource representation: {"foobars": [{"id": 42}]}

• HTTP verbs have specialised semantics for collection/entity

REST APIs 9

The Problem

let response = http_client.get("api.com/foobar");

// oops, wasn't it plural on the last slide? ^

let json = deserialise_http_response(response.body());
let foobar_list = json["fopbars"];
do_something_with(foobar_list);

// easy typos to make; ^^ harder to spot

‘Stringly-typed’: these errors won’t fail until run-time.

Serialisation of request bodies, query/path params is similarly problematic.

REST APIs 10

The Problem

let response = http_client.get("api.com/foobar");

// oops, wasn't it plural on the last slide? ^

let json = deserialise_http_response(response.body());
let foobar_list = json["fopbars"];
do_something_with(foobar_list);

// easy typos to make; ^^ harder to spot

‘Stringly-typed’: these errors won’t fail until run-time.

Serialisation of request bodies, query/path params is similarly problematic.

REST APIs 10

The Problem

let response = http_client.get("api.com/foobar");

// oops, wasn't it plural on the last slide? ^

let json = deserialise_http_response(response.body());
let foobar_list = json["fopbars"];
do_something_with(foobar_list);

// easy typos to make; ^^ harder to spot

‘Stringly-typed’: these errors won’t fail until run-time.

Serialisation of request bodies, query/path params is similarly problematic.

REST APIs 10

The Problem

let response = http_client.get("api.com/foobar");

// oops, wasn't it plural on the last slide? ^

let json = deserialise_http_response(response.body());
let foobar_list = json["fopbars"];
do_something_with(foobar_list);

// easy typos to make; ^^ harder to spot

‘Stringly-typed’: these errors won’t fail until run-time.

Serialisation of request bodies, query/path params is similarly problematic.

REST APIs 10

The Problem

let response = http_client.get("api.com/foobar");

// oops, wasn't it plural on the last slide? ^

let json = deserialise_http_response(response.body());
let foobar_list = json["fopbars"];
do_something_with(foobar_list);

// easy typos to make; ^^ harder to spot

‘Stringly-typed’: these errors won’t fail until run-time.

Serialisation of request bodies, query/path params is similarly problematic.

REST APIs 10

The Problem

let response = http_client.get("api.com/foobar");

// oops, wasn't it plural on the last slide? ^

let json = deserialise_http_response(response.body());
let foobar_list = json["fopbars"];
do_something_with(foobar_list);

// easy typos to make; ^^ harder to spot

‘Stringly-typed’: these errors won’t fail until run-time.

Serialisation of request bodies, query/path params is similarly problematic.

REST APIs 10

Idea: bring REST semantics ‘into’
the (client) language

‘the language’

Rust fits the bill

:

• Can target embedded devices
• Type-checking enables analysis of bodies, parameters, et al.
• Borrow-checking enables (some) analysis of state

Despite their names, both checkers are really features of Rust’s type
system.

Idea 11

‘the language’

Rust fits the bill:

• Can target embedded devices

• Type-checking enables analysis of bodies, parameters, et al.
• Borrow-checking enables (some) analysis of state

Despite their names, both checkers are really features of Rust’s type
system.

Idea 11

‘the language’

Rust fits the bill:

• Can target embedded devices
• Type-checking enables analysis of bodies, parameters, et al.

• Borrow-checking enables (some) analysis of state

Despite their names, both checkers are really features of Rust’s type
system.

Idea 11

‘the language’

Rust fits the bill:

• Can target embedded devices
• Type-checking enables analysis of bodies, parameters, et al.
• Borrow-checking enables (some) analysis of state

Despite their names, both checkers are really features of Rust’s type
system.

Idea 11

‘the language’

Rust fits the bill:

• Can target embedded devices
• Type-checking enables analysis of bodies, parameters, et al.
• Borrow-checking enables (some) analysis of state

Despite their names, both checkers are really features of Rust’s type
system.

Idea 11

Strong and static (no, that’s not the PM’s new slogan)

• Static: types inferred and verified at compile-time

• idea: types for components of requests, responses

• Strong: invoked methods must be implemented for that type

• resp. fields on that struct, etc.
• idea: enum variant for each response status code

Idea 12

Strong and static (no, that’s not the PM’s new slogan)

• Static: types inferred and verified at compile-time
• idea: types for components of requests, responses

• Strong: invoked methods must be implemented for that type

• resp. fields on that struct, etc.
• idea: enum variant for each response status code

Idea 12

Strong and static (no, that’s not the PM’s new slogan)

• Static: types inferred and verified at compile-time
• idea: types for components of requests, responses

• Strong: invoked methods must be implemented for that type

• resp. fields on that struct, etc.
• idea: enum variant for each response status code

Idea 12

Strong and static (no, that’s not the PM’s new slogan)

• Static: types inferred and verified at compile-time
• idea: types for components of requests, responses

• Strong: invoked methods must be implemented for that type
• resp. fields on that struct, etc.

• idea: enum variant for each response status code

Idea 12

Strong and static (no, that’s not the PM’s new slogan)

• Static: types inferred and verified at compile-time
• idea: types for components of requests, responses

• Strong: invoked methods must be implemented for that type
• resp. fields on that struct, etc.
• idea: enum variant for each response status code

Idea 12

Affine (theory)

A whirlwind introduction

:

• Structural logic: its proof system consists of inference rules
• Contraction rule:

Γ,A,A ` B
Γ,A ` B

• Affine logic: a sub-structural logic, removing contraction
• Affine type system: variables used at most once

• useful for modelling external resources: I/O, locks, ...
• idea: REST resources too?

Idea 13

Affine (theory)

A whirlwind introduction:

• Structural logic: its proof system consists of inference rules

• Contraction rule:
Γ,A,A ` B
Γ,A ` B

• Affine logic: a sub-structural logic, removing contraction
• Affine type system: variables used at most once

• useful for modelling external resources: I/O, locks, ...
• idea: REST resources too?

Idea 13

Affine (theory)

A whirlwind introduction:

• Structural logic: its proof system consists of inference rules
• Contraction rule:

Γ,A,A ` B
Γ,A ` B

• Affine logic: a sub-structural logic, removing contraction
• Affine type system: variables used at most once

• useful for modelling external resources: I/O, locks, ...
• idea: REST resources too?

Idea 13

Affine (theory)

A whirlwind introduction:

• Structural logic: its proof system consists of inference rules
• Contraction rule:

Γ,A,A ` B
Γ,A ` B

• Affine logic: a sub-structural logic, removing contraction

• Affine type system: variables used at most once

• useful for modelling external resources: I/O, locks, ...
• idea: REST resources too?

Idea 13

Affine (theory)

A whirlwind introduction:

• Structural logic: its proof system consists of inference rules
• Contraction rule:

Γ,A,A ` B
Γ,A ` B

• Affine logic: a sub-structural logic, removing contraction
• Affine type system: variables used at most once

• useful for modelling external resources: I/O, locks, ...
• idea: REST resources too?

Idea 13

Affine (theory)

A whirlwind introduction:

• Structural logic: its proof system consists of inference rules
• Contraction rule:

Γ,A,A ` B
Γ,A ` B

• Affine logic: a sub-structural logic, removing contraction
• Affine type system: variables used at most once

• useful for modelling external resources: I/O, locks, ...

• idea: REST resources too?

Idea 13

Affine (theory)

A whirlwind introduction:

• Structural logic: its proof system consists of inference rules
• Contraction rule:

Γ,A,A ` B
Γ,A ` B

• Affine logic: a sub-structural logic, removing contraction
• Affine type system: variables used at most once

• useful for modelling external resources: I/O, locks, ...
• idea: REST resources too?

Idea 13

Affine (practice)

Memory management in Rust

:

• No garbage collection (GC)
• No use after ‘move’ (passing by value)
• No ‘borrowing’ (a reference) that’s already mutably borrowed
• No borrowing for (a ‘lifetime’) longer than scope of owner
• Automatic ‘drop’s (deallocation) at end of scope

Result: no dangling pointers, double-frees, uses-after-free; memory
leaks avoided; all without expensive GC and at compile-time.

Idea 14

Affine (practice)

Memory management in Rust:

• No garbage collection (GC)

• No use after ‘move’ (passing by value)
• No ‘borrowing’ (a reference) that’s already mutably borrowed
• No borrowing for (a ‘lifetime’) longer than scope of owner
• Automatic ‘drop’s (deallocation) at end of scope

Result: no dangling pointers, double-frees, uses-after-free; memory
leaks avoided; all without expensive GC and at compile-time.

Idea 14

Affine (practice)

Memory management in Rust:

• No garbage collection (GC)
• No use after ‘move’ (passing by value)

• No ‘borrowing’ (a reference) that’s already mutably borrowed
• No borrowing for (a ‘lifetime’) longer than scope of owner
• Automatic ‘drop’s (deallocation) at end of scope

Result: no dangling pointers, double-frees, uses-after-free; memory
leaks avoided; all without expensive GC and at compile-time.

Idea 14

Affine (practice)

Memory management in Rust:

• No garbage collection (GC)
• No use after ‘move’ (passing by value)
• No ‘borrowing’ (a reference) that’s already mutably borrowed

• No borrowing for (a ‘lifetime’) longer than scope of owner
• Automatic ‘drop’s (deallocation) at end of scope

Result: no dangling pointers, double-frees, uses-after-free; memory
leaks avoided; all without expensive GC and at compile-time.

Idea 14

Affine (practice)

Memory management in Rust:

• No garbage collection (GC)
• No use after ‘move’ (passing by value)
• No ‘borrowing’ (a reference) that’s already mutably borrowed
• No borrowing for (a ‘lifetime’) longer than scope of owner

• Automatic ‘drop’s (deallocation) at end of scope

Result: no dangling pointers, double-frees, uses-after-free; memory
leaks avoided; all without expensive GC and at compile-time.

Idea 14

Affine (practice)

Memory management in Rust:

• No garbage collection (GC)
• No use after ‘move’ (passing by value)
• No ‘borrowing’ (a reference) that’s already mutably borrowed
• No borrowing for (a ‘lifetime’) longer than scope of owner
• Automatic ‘drop’s (deallocation) at end of scope

Result: no dangling pointers, double-frees, uses-after-free; memory
leaks avoided; all without expensive GC and at compile-time.

Idea 14

Affine (practice)

Memory management in Rust:

• No garbage collection (GC)
• No use after ‘move’ (passing by value)
• No ‘borrowing’ (a reference) that’s already mutably borrowed
• No borrowing for (a ‘lifetime’) longer than scope of owner
• Automatic ‘drop’s (deallocation) at end of scope

Result: no dangling pointers, double-frees, uses-after-free; memory
leaks avoided; all without expensive GC and at compile-time.

Idea 14

Idea: ‘use-after-free’ = ‘use after DELETE’

With Rust’s ‘move’ semantics, our DELETE function can consume a
resource identifier

:
fn get(&ResourceId) -> Response;
fn delete(ResourceId) -> Response;

Affine type system =⇒ a ResourceId moved into delete cannot
be reused.

With this and similar models, we ‘tell’ the compiler how to check for
invalid API use.

Idea 15

Idea: ‘use-after-free’ = ‘use after DELETE’

With Rust’s ‘move’ semantics, our DELETE function can consume a
resource identifier:

fn get(&ResourceId) -> Response;
fn delete(ResourceId) -> Response;

Affine type system =⇒ a ResourceId moved into delete cannot
be reused.

With this and similar models, we ‘tell’ the compiler how to check for
invalid API use.

Idea 15

Idea: ‘use-after-free’ = ‘use after DELETE’

With Rust’s ‘move’ semantics, our DELETE function can consume a
resource identifier:

fn get(&ResourceId) -> Response;
fn delete(ResourceId) -> Response;

Affine type system =⇒ a ResourceId moved into delete cannot
be reused.

With this and similar models, we ‘tell’ the compiler how to check for
invalid API use.

Idea 15

Idea: ‘use-after-free’ = ‘use after DELETE’

With Rust’s ‘move’ semantics, our DELETE function can consume a
resource identifier:

fn get(&ResourceId) -> Response;
fn delete(ResourceId) -> Response;

Affine type system =⇒ a ResourceId moved into delete cannot
be reused.

With this and similar models, we ‘tell’ the compiler how to check for
invalid API use.

Idea 15

Okay... but what’s invalid use?

OpenAPI Initiative’s specification (OAS) allows YAML schema for REST
API description

:

/addresses:
summary: Address book endpoint
get:
description: List addresses in user's address book
responses:

200:
description: List of addresses
content:
application/json:

schema:
type: array
items:
$ref: '#/definitions/Address'

post:
description: Add a new address
requestBody:

$ref: '#/definitions/Address'
responses:

405:
description: Not implemented

Idea 16

Okay... but what’s invalid use?

OpenAPI Initiative’s specification (OAS) allows YAML schema for REST
API description:

/addresses:
summary: Address book endpoint
get:
description: List addresses in user's address book
responses:

200:
description: List of addresses
content:
application/json:

schema:
type: array
items:
$ref: '#/definitions/Address'

post:
description: Add a new address
requestBody:

$ref: '#/definitions/Address'
responses:

405:
description: Not implemented

Idea 16

Translating types

Map REST schema types to Rust types

:

struct Address {
house_no: i32,
street: String,
postcode: String,
country: String,

}

enum OkBody {
Status200(Vec<Address>),
// ...
UnspecifiedCode(String),
MalformedJson(String),

}

// ...

type ResponseBody = Result<OkBody, ErrBody>;

Idea 17

Translating types

Map REST schema types to Rust types:

struct Address {
house_no: i32,
street: String,
postcode: String,
country: String,

}

enum OkBody {
Status200(Vec<Address>),
// ...
UnspecifiedCode(String),
MalformedJson(String),

}

// ...

type ResponseBody = Result<OkBody, ErrBody>;

Idea 17

Translating lifetimes

Tie REST resource lifetimes to Rust variable (reference) lifetimes

:
let provisioned_id = ResourceId_name::from_static("...");

// or:
let response = addresses::post(&address, &auth);
let discovered_id = extract_address_id(&response);

// then:
addresses__name_::get(&discovered_id, &auth);
addresses__name_::delete(discovered_id, &auth);

// ^ moved!

// compile error - use after move:
addresses__name_::get(&discovered_id, &auth);

Idea 18

Translating lifetimes

Tie REST resource lifetimes to Rust variable (reference) lifetimes:
let provisioned_id = ResourceId_name::from_static("...");

// or:
let response = addresses::post(&address, &auth);
let discovered_id = extract_address_id(&response);

// then:
addresses__name_::get(&discovered_id, &auth);
addresses__name_::delete(discovered_id, &auth);

// ^ moved!

// compile error - use after move:
addresses__name_::get(&discovered_id, &auth);

Idea 18

Translating lifetimes

Tie REST resource lifetimes to Rust variable (reference) lifetimes:
let provisioned_id = ResourceId_name::from_static("...");

// or:
let response = addresses::post(&address, &auth);
let discovered_id = extract_address_id(&response);

// then:
addresses__name_::get(&discovered_id, &auth);
addresses__name_::delete(discovered_id, &auth);

// ^ moved!

// compile error - use after move:
addresses__name_::get(&discovered_id, &auth);

Idea 18

Translating lifetimes

Tie REST resource lifetimes to Rust variable (reference) lifetimes:
let provisioned_id = ResourceId_name::from_static("...");

// or:
let response = addresses::post(&address, &auth);
let discovered_id = extract_address_id(&response);

// then:
addresses__name_::get(&discovered_id, &auth);
addresses__name_::delete(discovered_id, &auth);

// ^ moved!

// compile error - use after move:
addresses__name_::get(&discovered_id, &auth);

Idea 18

Tapioca

Code generation

• infer_api!(name, "http://api.io/schema.yml")

• Expanded in-place at compile-time
• A ‘typed HTTP client’ generated under the module name
• Types correspond to definitions in the provided OAS schema

Tapioca | https://github.com/OJFord/tapioca 19

Code generation

• infer_api!(name, "http://api.io/schema.yml")
• Expanded in-place at compile-time

• A ‘typed HTTP client’ generated under the module name
• Types correspond to definitions in the provided OAS schema

Tapioca | https://github.com/OJFord/tapioca 19

Code generation

• infer_api!(name, "http://api.io/schema.yml")
• Expanded in-place at compile-time
• A ‘typed HTTP client’ generated under the module name

• Types correspond to definitions in the provided OAS schema

Tapioca | https://github.com/OJFord/tapioca 19

Code generation

• infer_api!(name, "http://api.io/schema.yml")
• Expanded in-place at compile-time
• A ‘typed HTTP client’ generated under the module name
• Types correspond to definitions in the provided OAS schema

Tapioca | https://github.com/OJFord/tapioca 19

User code

#[macro_use]
extern crate tapioca;

infer_api!(httpbin,
"https://raw.githubusercontent.com/OJFord/ ... /httpbin.yml"

);
use httpbin::ip;

fn main() {
let auth = httpbin::ServerAuth::new();

match ip::get(auth) {
Ok(response) => match response.body() {

ip::get::OkBody::Status200(body)
=> println!("Your IP is {}", body.origin),

_ => printn!("httpbin.org did something unexpected"),
},
Err(response)

=> println!("httpbin.org error: {}", response.body()),
}

}

Tapioca | https://github.com/OJFord/tapioca 20

Feedback

• Interest on /r/Rust community forum

• ‘upvotes’ as appeal metric: 98% like the concept (N ≈ 1.1k)

• ‘Pinch of salt’ (N = 4) survey results:

• 3/4 respondents find it appealing
• 3/4 think it would make them more productive
• 1/4 would actually use it

• 2/4 would prefer a schema-less client
• 1/4 would prefer an RPC framework

Tapioca | https://github.com/OJFord/tapioca 21

Feedback

• Interest on /r/Rust community forum
• ‘upvotes’ as appeal metric: 98% like the concept (N ≈ 1.1k)

• ‘Pinch of salt’ (N = 4) survey results:

• 3/4 respondents find it appealing
• 3/4 think it would make them more productive
• 1/4 would actually use it

• 2/4 would prefer a schema-less client
• 1/4 would prefer an RPC framework

Tapioca | https://github.com/OJFord/tapioca 21

Feedback

• Interest on /r/Rust community forum
• ‘upvotes’ as appeal metric: 98% like the concept (N ≈ 1.1k)

• ‘Pinch of salt’ (N = 4) survey results:

• 3/4 respondents find it appealing
• 3/4 think it would make them more productive
• 1/4 would actually use it

• 2/4 would prefer a schema-less client
• 1/4 would prefer an RPC framework

Tapioca | https://github.com/OJFord/tapioca 21

Feedback

• Interest on /r/Rust community forum
• ‘upvotes’ as appeal metric: 98% like the concept (N ≈ 1.1k)

• ‘Pinch of salt’ (N = 4) survey results:
• 3/4 respondents find it appealing

• 3/4 think it would make them more productive
• 1/4 would actually use it

• 2/4 would prefer a schema-less client
• 1/4 would prefer an RPC framework

Tapioca | https://github.com/OJFord/tapioca 21

Feedback

• Interest on /r/Rust community forum
• ‘upvotes’ as appeal metric: 98% like the concept (N ≈ 1.1k)

• ‘Pinch of salt’ (N = 4) survey results:
• 3/4 respondents find it appealing
• 3/4 think it would make them more productive

• 1/4 would actually use it

• 2/4 would prefer a schema-less client
• 1/4 would prefer an RPC framework

Tapioca | https://github.com/OJFord/tapioca 21

Feedback

• Interest on /r/Rust community forum
• ‘upvotes’ as appeal metric: 98% like the concept (N ≈ 1.1k)

• ‘Pinch of salt’ (N = 4) survey results:
• 3/4 respondents find it appealing
• 3/4 think it would make them more productive
• 1/4 would actually use it

• 2/4 would prefer a schema-less client
• 1/4 would prefer an RPC framework

Tapioca | https://github.com/OJFord/tapioca 21

Feedback

• Interest on /r/Rust community forum
• ‘upvotes’ as appeal metric: 98% like the concept (N ≈ 1.1k)

• ‘Pinch of salt’ (N = 4) survey results:
• 3/4 respondents find it appealing
• 3/4 think it would make them more productive
• 1/4 would actually use it

• 2/4 would prefer a schema-less client
• 1/4 would prefer an RPC framework

Tapioca | https://github.com/OJFord/tapioca 21

Feedback

• Interest on /r/Rust community forum
• ‘upvotes’ as appeal metric: 98% like the concept (N ≈ 1.1k)

• ‘Pinch of salt’ (N = 4) survey results:
• 3/4 respondents find it appealing
• 3/4 think it would make them more productive
• 1/4 would actually use it

• 2/4 would prefer a schema-less client
• 1/4 would prefer an RPC framework

Tapioca | https://github.com/OJFord/tapioca 21

Conclusion

• Prevent some HTTP 4xx (client) errors at compile-time

• Force handling of errors when they do occur
• Boost developer productivity

Tapioca | https://github.com/OJFord/tapioca 22

Conclusion

• Prevent some HTTP 4xx (client) errors at compile-time
• Force handling of errors when they do occur

• Boost developer productivity

Tapioca | https://github.com/OJFord/tapioca 22

Conclusion

• Prevent some HTTP 4xx (client) errors at compile-time
• Force handling of errors when they do occur
• Boost developer productivity

Tapioca | https://github.com/OJFord/tapioca 22

Thank you!

Tapioca | https://github.com/OJFord/tapioca 22

	Motivation
	REST APIs
	Idea
	Tapioca | https://github.com/OJFord/tapioca

