-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
196 lines (160 loc) · 8.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import datetime
import time
import os
import json
import logging
import numpy as np
import random
import torch.utils.data
import torch.backends.cudnn
from torch.utils.tensorboard import SummaryWriter
from shutil import copyfile
from configs.defaults import _C as cfg
from encoding_custom.optimizers import get_optimizer, get_lr_scheduler
from encoding_custom.losses.mtl_loss import MTLLoss
from utilities import metric_utils, train_utils, dist_utils, generic_utils
from encoding_custom.evaluation.evaluators import get_mtl_evaluator
class Trainer:
def __init__(self, args, logger):
self.args = args
dir_name = f'{args.checkname}_{cfg.MODEL.NAME}_{cfg.MODEL.BACKBONE_NAME}_%02d' % args.batch_size
self.root_dir = os.path.join(args.output_dir, f'{args.dataset}/{dir_name}')
train_utils.mkdir(self.root_dir)
copyfile(args.config_file, os.path.join(self.root_dir, args.config_file.split('/')[-1]))
if args.distributed:
dist_utils.init_distributed_mode(args)
if not dist_utils.is_main_process():
args.pretrained = False
self.log_dir = os.path.join(self.root_dir, "summary")
if dist_utils.is_main_process():
self.writer = SummaryWriter(log_dir=self.log_dir)
else:
self.writer = None
logger.disabled = True
self.tasks = [task for task, status in dict(cfg.TASKS_DICT).items() if status]
with open(os.path.join(self.root_dir, 'config.json'), 'w') as fp:
argparse_dict = vars(args)
json.dump(argparse_dict, fp, sort_keys=True, indent=4)
self.device = torch.device(args.device)
self.norm_layer = generic_utils.get_norm_layer(cfg, args)
dataset_train, dataset_val = train_utils.get_dataset(cfg, args)
self.dl_train, self.dl_val = train_utils.get_dataloader(
cfg, args, dataset_train, dataset_val)
self.model = generic_utils.get_model(cfg, args, self.norm_layer, self.tasks)
self.model.to(self.device)
self.start_epoch = train_utils.load_model(args, self.model, self.root_dir)
self.mtl_loss = MTLLoss(cfg, dict(cfg.TASKS_DICT), args.epochs, args.batch_size)
self.mtl_loss.to(self.device)
params_to_optimize = [
{"params": [p for p in self.model.parameters() if p.requires_grad]},
{"params": [p for p in self.mtl_loss.parameters() if p.requires_grad]}]
self.optimizer = get_optimizer(args, params_to_optimize, cfg)
self.lr_scheduler = get_lr_scheduler(args, self.optimizer, cfg)
if args.distributed:
self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model)
self.model = torch.nn.parallel.DistributedDataParallel(
self.model, device_ids=[args.gpu], output_device=args.gpu,
find_unused_parameters=args.find_unused_params)
if dist_utils.is_main_process():
logging.info('Model converted to DDP model with {} '
'cuda devices'.format(torch.cuda.device_count()))
self.task_to_min_or_max = dict(cfg.TASK_TO_MIN_OR_MAX)
def eval_and_save(self, epoch, saver):
task_to_metrics = {task: None for task in self.tasks}
if epoch == 1 or epoch % self.args.eval_frequency == 0 or epoch == self.args.epochs:
val_metric_logger = self.evaluate(epoch=epoch)
for task in self.tasks:
if val_metric_logger is not None:
key_metric = [key for key in val_metric_logger.meters.keys()
if f'key_metrics/{task}' in key]
if len(key_metric) == 1:
task_to_metrics[task] = \
val_metric_logger.meters[key_metric[0]].global_avg
save_dict = {'optimizer': self.optimizer.state_dict(),
'epoch': epoch, 'args': self.args}
if not self.args.distributed:
save_dict.update({'model': self.model.state_dict()})
else:
save_dict.update({'model': self.model.module.state_dict()})
if dist_utils.is_main_process():
saver.save_models(save_dict, epoch, task_to_metrics)
def train_and_evaluate(self):
saver = train_utils.ModelSaver(self.root_dir, self.tasks, self.task_to_min_or_max)
start_time = time.time()
for epoch in range(self.start_epoch, self.args.epochs + 1):
self.train_one_epoch(epoch)
self.eval_and_save(epoch, saver)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logging.info("Training time {}".format(total_time_str))
def train_one_epoch(self, epoch):
self.model.train()
metric_logger = metric_utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('misc/learning_rate', metric_utils.SmoothedValue(
window_size=1, fmt='{value}'))
header = f'Epoch: [{epoch}]'
for cnt, (images, targets) in enumerate(
metric_logger.log_every(self.dl_train, self.args.print_freq, header)):
images, targets = train_utils.move_tensors_to_device(images, targets,
self.device)
predictions = self.model(images, targets=targets)
loss, loss_dict = self.mtl_loss(predictions, targets, epoch=epoch)
metric_logger = train_utils.update_logger(loss_dict, metric_logger)
self.optimizer.zero_grad()
self.mtl_loss.run_backprop(
loss, self.model.module if self.args.distributed else self.model, loss_dict)
self.optimizer.step()
metric_logger.update(**{
'losses/total_loss': loss.item(),
'misc/learning_rate': self.optimizer.param_groups[0]["lr"]})
self.lr_scheduler.step(epoch=None)
if self.writer is not None:
train_utils.log_meters_in_tb(self.writer, metric_logger, epoch, 'train')
def evaluate(self, epoch=None):
if epoch is None:
epoch = self.start_epoch
self.model.eval()
val_metric_logger = metric_utils.MetricLogger(delimiter=" ")
header = 'Validate:'
mtl_evaluator = get_mtl_evaluator(cfg, self.tasks, self.dl_val.dataset, self.root_dir)
with torch.no_grad():
for cnt, (images, targets, image_idxs) in enumerate(
val_metric_logger.log_every(self.dl_val, self.args.print_freq, header)):
images, targets = train_utils.move_tensors_to_device(images, targets,
self.device)
predictions = self.model(images)
loss, loss_dict = self.mtl_loss(predictions, targets)
loss = loss.mean()
val_metric_logger = train_utils.update_logger(loss_dict, val_metric_logger)
val_metric_logger.update(**{'losses/total_loss': loss.item()})
mtl_evaluator.process(targets, predictions, image_idxs)
val_metric_logger.update(**mtl_evaluator.evaluate())
if self.writer is not None:
train_utils.log_meters_in_tb(self.writer, val_metric_logger, epoch, 'val')
train_utils.log_and_dump_metrics(val_metric_logger,
path=self.root_dir, epoch=epoch)
return val_metric_logger
def main():
# os.environ["RANK"] = "0"
# os.environ["WORLD_SIZE"] = "2"
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "6666"
parser = train_utils.parse_args()
args = parser.parse_args()
train_utils.update_config_node(cfg, args)
cfg.freeze()
if args.seed >= 0:
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
random.seed(args.seed)
np.random.seed(args.seed)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
trainer = Trainer(args, logger)
if args.eval_only:
trainer.evaluate()
else:
trainer.train_and_evaluate()
if __name__ == "__main__":
main()