

Project Documentation

Computer Organization & Assembly Language

Fall-2023

Submitted To:

Ms. Fatima Aslam

Submitted By:

Ghulam Mustafa Fa-2022/BSCS/188
Ammad Rasheed Fa-2022/BSCS/199
Faizan Ali Fa-2022/BSCS/187
Abubakar Ajmal Fa-2022/BSCS/208
Ahsan Ilahi Fa-2022/BSCS/210

Department of Computer Science,
Lahore Garrison University, Lahore, Main Campus.

[January 20th, 2024]

Abstract

Arcade OS is an operating system designed to provide a platform for retro gaming, developed in

Assembly Language. It is designed to be bootable and run directly on the System using BIOS. Arcade

OS offers a nostalgic journey with an old-school Command Line Interface paying homage to the MS-

DOS era. The project focuses on three main aspects providing a collection of retro games, a classic

Command Line Interface (CLI), and ensuring a smooth booting experience.

Introduction

Overview

Arcade OS, at its core, is an exploration into the technicalities of assembly language. It consists

of a minimalistic Command Line Interface (CLI) paying tribute to MS-DOS. The system enables

the execution of classic arcade games directly on bare metal, delivering a unique experience.

Arcade OS is a practical endeavor with the ability to boot on the system and not confined to a

specific medium. The flexibility ensures that the retro gaming experience is accessible on any

system. A carefully crafted bootable platform, reliving the golden era of classic arcade gaming.

Motivation

Arcade OS is driven by the motivation of preserving the essence of classic arcade gaming and

the simplicity of the Command Line Interface. In a world, dominated by technological

advancements, Arcade OS takes a step back and helps its users relive the MS-DOS era. The

Arcade OS is also was created to test and delve into the world of Assembly Language

Programming embracing its power and facing the challenges it provides the developers with.

Project Scope:

The scope of our Arcade OS project is the development of a minimalistic Operating system

purely dedicated to Retro-Gaming. It includes the designing of a bootable program written in

x86 NASM Syntax Assembly Language, emphasizing the simplicity and nostalgia of Command

Line Interface (CLI) and a system for direct execution of text-based retro games on bare-metal.

• Inclusions:
Bootable OS, Command Line Interface, Classic Text- Based Games, Flexible Boot Support,

Nostalgic MS-DOS Experience.

• Exclusions:
The Project does not include: Real-time System Information or Custom Theme Setting

due to time constraints. Features like Advanced Graphics and Animations, Sound Effects

or Multiplayer Support was also not added.

Features

• Command Line Interface (CLI)

Arcade OS features a minimalistic CLI, inspired by MS-DOS. The CLI serves as the

point where the user interacts with the Arcade OS. It focuses on functionality and

code over a graphical look.

• Classic Arcade Games

The system offers several built-in games and users can add their games in the

upcoming updates of the Arcade OS. The games run on bare metal without

needing anything else to run the games.

Games included in the Arcade OS beta are:

• SNAKE

• TETRIS

• BRICKS

• Bootable Capability

Arcade OS is designed to be bootable and flexible for users. It works from both

floppy disks and disk images ensuring a nostalgic experience.

• Assembly Language Powers

The project uses the powers of assembly language programming, allowing us

developers to use assembly language to craft software that runs on bare-metal.

• Nostalgic MS-DOS experience

Arcade OS remains lightweight and sticks to its minimalist CLI design focusing on

speed and efficiency and providing a Nostalgic MS-DOS computing experience so

that users can relive the joys and experiences of classic arcade-based gaming

environments.

Architecture and System Requirements

Arcade OS is designed for x86 Processor Architecture and has very few system requirements

making it compatible with running on various hardware.

The system requirements are:

• Processor: x86

• Memory: 512MB RAM

• Storage: 2MB

• Boot Medium: USB, Floppy Disks or Emulators

• Display: Standard VGA

• Input: Keyboard Only

Project Development

Code Documentation

1. Bootloader (boot.asm):

Overview:

Initializes the system by setting up the environment and loads main components into the

memory.

Memory Layout:

• Loaded at 0x0000_7c00.

• Files are loaded at 0x0000_7e00.

• The shell is loaded at 0x0000_8000.

(Bootloader Successfully being loaded)

Initialization:

• Set up the segment registers (DS, ES, SS).

• Initializes and sets up the stack pointers.

• Sets the video mode to 80x25 text mode and changes the color scheme.

Loading Files:

• Reads file names from sector 2on the USB flash drive.

• Loads the shell from sector 3.

User Interaction:

• Displays a Welcome Greeting.

• Waits for a key press before proceeding to jump to shell/home screen main menu.

• Video Mode and Colors: Sets background color to red.

• BIOS interrupts to manipulate video mode and colors.

(Arcade OS boot.asm main screen)

Procedure for Printing Strings:

• A procedure print_string to display strings.

• BIOS interrupts to print characters.

Reading Sectors:

• A procedure read_sector to read a single sector from the drive.

• Uses BIOS interrupt 0x13 for I/O operations.

Error Handling:

• Displays an error message if it fails to read a sector.

2. List (list. asm):

Overview:

Lists available games and provides functionality to execute them.

Memory Layout:

• Loaded at 0x0000_7e00.

Initialization:

• Sets up the environment similar to the bootloader.

Printing Available Games:

• A procedure print_files to display available games and other games.

• Retrieves file names from the file list.

(List Command Fetching available games/commands)

User Interaction:

• A message to press any key for the menu.

• Waits for a key press than proceeds returning to the shell.

Video Mode and Colors:

• Sets background color to red.

3. Shell (shell.asm):

Overview:

A command-line interface for user interaction. It also searches and executes entered

games.

Memory Layout:

• Loaded at 0x0000_8000.

Initialization:

• Same environment setup as the bootloader.

User Interface Loop:

• Continuously prompts the user for input.

• Allows users to enter commands.

• Typing and Deleting Characters from the Prompt

(Shell.asm main page)

Command Processing:

• Processes the input and searches for game names or the command.

• Executes the selected game or the game.

File Search:

• A procedure search_file for comparing the input with available file names.

• Executes the corresponding game/command if a match is found.

(Handling User Input)

Game Execution:

• Utilizes BIOS disk I/O interrupts to load and execute games.

Procedure for Printing Strings:

• Reuses the print_string procedure.

Error Handling:

• Displays an error message if no file is found.

(File Not Found)

4. Time (time.asm):

Overview:

Lists available games and provides functionality to execute them.

Memory Layout:

• Loaded at 0x0000_8400.

Initialization:

• Changes the color of the shell and shows current time (Not available in beta version because of time

constraint).

(Time Command Execution)

User Interaction:

• A message to press any key for the menu.

• Waits for a key press than proceeds returning to the shell.

Video Mode and Colors:

• Sets background color to yellow.

5. Files (files.asm):

Overview:

Contains the list of available games and commands. The List Command uses this file to read and display

the names on the screen.

Memory Layout:

• Loaded at 0x0000_8400.

Memory Map

Start End Description Size
0×0000-0000 0×0000-01FF Boot Loader 512 bytes

0×0000-0200 0×0000-03FF File Loader 512 bytes

0×0000-0400 0×0000-05FF Shell 512 bytes

0×0000-0600 0×0000-07FF List Command 512 bytes

0×0000-0800 0×0000-09FF Snake Game 512 bytes

0×0000-0A00 0×0000-0BFF Tetros 512 bytes

0×0000-0C00 0×0000-0DFF Bricks 512 bytes

0×0000-0CE0 0×0000-0FFF Time 512 bytes

(This Memory Map Visualizes the files and the addresses they are present at)

GAMES

1. Tetris:

Tetris is a classic block game that challenges players to manipulate shapes falling from top to

bottom these shapes are known as bricks too. The Tetris game in Arcade OS contributes a lot to

the overall gaming and nostalgic experience within the operating system.

Game Logic

New Brick Generation:

• Randomly select a brick.

• Starting position at row 4 and column 38.

Collision Detection:

• Collisions with other bricks or boundaries.

• Ends the game if a collision is detected with the boundaries.

User Input Handling:

• Waits for user input.

• Handles Arrow keys for brick movement and rotation.

Row Clearing:

• Clears rows when they are filled.

Macros

• sleep: Sleeps for the given number of microseconds.

• select_brick: Chooses a brick at random.

• clear_screen: Sets video mode and hides the cursor.

Features

Implemented:

1. Different Brick Colors.

2. Hidden Cursor.

3. Movement: Left/Right Arrows.

4. Brick Rotation: Up Arrow.

5. Fast Drop: Down Arrow.

6. Random Brick Selection.

7. Clean Playing Field after filled row.

Missing (Due to Size):

1. Scores & Highscores.

2. Introductory Animation.

3. Game Over Message & Restart.

4. Next Brick Preview.

5. Speed Increase Mechanism.

Controls

• Arrow Keys Left/Right: Move Left Right

• Up Key: Rotate the shape

• Down Key: Fast Drop

2. Bricks

 Bricks is a game involving bricks, which is a breakout-style game one of the most classic games

from the Retro-Gaming era. The game features a paddle, a ball, and bricks on the screen. The

objective is to break the bricks with the ball using the paddle provided.

Game Logic

Initialization:

• Video mode of 80x25 with 16 colors.

• Initializes the stack and global variables.

Level Setup:

• Draws borders and bricks for the new level.

• The new level is started after completing the last.

Ball Movement:

• Controls the ball movement based on input.

• Collision detection with the paddle, borders, and bricks.

Paddle Control:

• Allows the player to control the paddle.

• Handles left and right movement of the paddle.

Score and Lives:

• Updates the player's score.

• Manages the balls count.

Game Flow:

• The game loop continues until all balls are popped.

Macros:

• wait_frame: Pauses the game for a short time.

• locate_ball: Calculates the position of the ball.

• update_score: Updates and displays the score.

Controls

• Left Shift: Start Game.

• Left CTRL: Move Paddle Left

• Left ALT: Move Paddle Right

Limitations

• Graphics and Animation (due to 512 bytes limit)

• Sound Effects (due to 512 bytes limit)

• No Increase in Speed (due to 512 bytes limit)

• No Game Over Screen (due to 512 bytes limit)

3. Snake:

Snake is a classic arcade game and without Snake the Arcade OS is incomplete. The game

challenges players to control a snake, consume food, and grow longer. As the snake grows, the

game becomes challenging, requiring players to traverse the snake without colliding with its

own body or the game boundaries.

Features

Snake Movement:

• The snake moves continuously in a single direction.

• Players can control the snake using arrow keys.

Food Consumption:

• Food items appear on the screen.

• The snake eats food, it grows longer.

(Snake Size After consumption of 3 fruits)

Collision Detection:

• The game detects collisions with the snake's own body and walls.

• Colliding results in the end of the game.

(if snake hits the wall)

Score Tracking:

• Players earn points for each food item.

• Score increases with each food consumed.

Game Over Handling:

• Displays game-over message when the snake collides.

• Option to restart the game.

(if snake hits the itself)

Limitations

• Graphics and Animation (due to 512 bytes limit)

• Sound Effects (due to 512 bytes limit)

• Game State Transitions (due to 512 bytes limit)

• No Increase in Speed (due to 512 bytes limit)

• No Walls Graphics (due to 512 bytes limit)

Controls

• Up Key: Move Snake Up.

• Down Key: Move Snake Down.

• Left Key: Move Snake Left.

• Right Key: Move Snake Right.

• Q: Quit Game/Return to Shell

Techniques and Concepts Used in Arcade OS

Boot Sector:

The x86 boot sector is the entry point during system boot.

Implementation:

• Used in boot.asm.

• Directives [bits 16] and [org 0x7c00] define 16-bit assembly.

• BIOS interrupts (int 0x10, int 0x13) video/storage access.

CHS (Cylinder-Head-Sector) :

Legacy addressing for hard drive access using cylinder, head, and sector.

Implementation:

• Used in boot. asm.

• mov dl, 0x80 specifies drive.

• int 0x13 BIOS interrupt for reading sectors.

Video Mode Setting:

Configuring the display modes for output/information.

Implementation:

• Used in boot.asm.

• mov ah, 0x00 and int 0x10 BIOS interrupts set video mode.

Memory Segmentation:

Organizes memory into segments for efficient use.

Implementation:

• Used in boot.asm.

• mov ax, 0, mov ds, ax, mov es, ax, mov ss, ax initializing the segment registers.

Command-Line Interface (CLI) Implementation:

 Provides a text-based interface for interaction.

Implementation:

• Used in shell.asm.

• User input using BIOS interrupts (int 0x10, int 0x16, int 0x13).

• File search by comparing input with available names.

BIOS Interrupts Usage:

Software interrupts for BIOS functions.

Implementation:

• Used in boot.asm, files.asm, and shell.asm.

• int 0x10, int 0x16, int 0x13 used for video mode, keyboard input, and storage access.

Development Tools and Technologies Used in Arcade OS

Assembly Language:

The primary language used for building the Arcade OS, getting low-level control over the

system.

Variation: x86 Assembly (NASM Syntax)

NASM (Netwide Assembler):

NASM served as the assembler to compile the assembly code into machine-readable

format.

Usage: NASM was integral to the build process, translating assembly code into

executable binaries.

BIOS (Basic Input/Output System):

The basic firmware interface for input and output operations in the system.

Usage: BIOS interrupts, such as int 0x10 and int 0x13, were used for video mode setting,

storage device access, and other important functions. Interacting with BIOS was crucial

for initializing the system and file handling.

QEMU (Quick Emulator):

QEMU, enabling testing of the operating system without physical hardware.

Usage: QEMU played an important role in the testing phase. The Arcade OS image file

was loaded into QEMU to simulate its execution without the PC. This allowed our group

to debug system behavior in a controlled environment. Commands such as qemu-

system-x86_64 were used to launch the emulator.

GitHub:

GitHub served as our version control system, source code management, and group

collaboration.

Usage: Git was used for collaborative development, allowing our group to work on the

code at the same time.

Testing and Evaluation:

To ensure the quality and reliability of our Arcade OS, testing and evaluation was performed

primarily through QEMU. The traditional testing methods (Unit testing, System Testing) were

not used due to the project constraints, but the QEMU evaluation still served effectively for

simulating our code in a virtual environment.

Results and Achievements

Key Outcomes:

The development of Arcade OS yielded a lot of outcomes, both achievements and challenges:

• Successful Booting

• CLI Implementation

• Games Execution and Functionality

• Assembly Language Proficiency

Challenges Faced:

A notable number of challenges were faced by our group, the key difficulties we faced include:

• Size Limitation due to Boot Sector 512-byte Constraint.

• Limited Colors and graphics options.

• Features Exclusions due to Project Deadline.

• Limited Testing on bare-metal hardware.

Future Enhancements

While Arcade OS has achieved the primary goals, there is still room for future enhancements

and refinements to provide a better user experience and more functionality. Some areas of

improvement that our group wanted to work on but was not able to due to the time constraint

included:

• Expanded Game Library

• Graphical Enhancements

• Custom Theme Settings

• Real-Time System Information

• Multiplayer Support

Conclusion

In conclusion, Arcade OS provides the users with a nostalgic journey into the era of classic

gaming and the MS-DOS Command line interface (CLI) experience. The project delivers a

minimalistic still functional operating System with a CLI. The desire for preserving the essence

of retro gaming and embracing the development challenges that are provided by the Assembly

language made Arcade OS a unique project workable on nearly any system without any

additional requirements or dependency. bootable platform ensures flexibility.

 While some features were missing the project still achieves all its core goals of being

simple and efficient. The implemented games – Snake, Tetris, Bricks – shows the power of the

our system providing users with engaging gaming experience.

 The development involved overcoming challenges boot sector initialization, memory

map, game logics. Techniques like CHS addressing, x86 Real Mode and BIOS interrupts were

used.

References

• OS Wiki - CHS Addresses: https://en.wikipedia.org/wiki/Cylinder-head-sector

• x86 Real Mode: https://wiki.osdev.org/Real_Mode

• x86 Real Mode Memory Segmentation: https://wiki.osdev.org/Segmentation

• x86 Memory Map: https://wiki.osdev.org/Memory_Map_(x86)

• x86 BIOS Interrupts: http://www.ablmcc.edu.hk/~scy/CIT/8086_bios_and_dos_interrupts.htm

• x86 Assembly Registers: https://www.assemblylanguagetuts.com/x86-assembly-registers-explained/

• x86 Assembly Instructions: https://www.aldeid.com/wiki/X86-assembly/Instructions

• NASM (Netwide Assembler): https://nasm.us/

• QEMU (Quick Emulator): https://www.qemu.org/

Appendix

Complete Code

Boot.asm:

[bits 16]
[org 0x7c00]
%define BOOTSECTOR_ADDR 0x7c00
%define FILES_ADDR 0x0000_7E00
%define SHELL_ADDR 0x800
%define THEME_ADDR 0x0000_8400
mov si, success_message
call print_string
mov ah, 0x00
int 0x16
mov ah, 0x00
mov al, 0x03
int 0x10
mov ah, 0x0b
mov bh, 0
mov bl, 0x04
mov cx, 0
mov dx, 0
int 0x10
mov ax, 0
mov ds, ax
mov es, ax
mov ss, ax
mov bp, BOOTSECTOR_ADDR
mov sp, bp

mov si, welcome_message
call print_string
mov si, press_any_key_message
call print_string
mov ah, 0x00
int 0x16
mov bx, FILES_ADDR
mov cl, 2
call read_sector
mov ax, SHELL_ADDR
mov es, ax
mov bx, 0
mov cl, 3
call read_sector
jmp SHELL_ADDR:0x0000
print_string:
 cld
 mov ah, 0x0e
 mov bh, 0
 mov bl, 0x04
 .next_char:
 lodsb
 cmp al, 0
 je .return
 int 0x10
 jmp .next_char

 .return: ret
read_sector:
 mov ah, 0x02
 mov al, 1
mov ch, 0
 mov dh, 0
 mov dl, 0x80
 int 0x13
 jc .error
 ret
 .error:
 mov si, error_message
 call print_string
 jmp $
success_message db 'ArcadeOS(Beta)
is loaded!', 10, 13, 0
welcome_message db ' ___ ____
_________ ____ ______ ____
_____', 10, 13,' / | / __ \/ ____/ |
/ __ \/ ____/ / __ \/ ___/', 10, 13,' /
/| | / /_/ / / / /| | / / / / __/ / / /
/__ \ ', 10, 13,' / ___ |/ _, _/ /___/
___ |/ /_/ / /___ / /_/ /___/ / ', 10,
13,'/_/ |_/_/ |_|____/_/
|_/_____/_____/ ____//____/', 10,
13, 0
press_any_key_message db
10,13,'Press any key for menu...', 10,
13, 0
error_message db 'Failed to read
sector from USB!', 10, 13, 0
times 510 - ($ - $$) db 0
dw 0xaa55

Files.asm:

[bits 16]

; list of available games

db 'list', 0, 0, 0, 0

db 'snake', 0, 0, 0

db 'tetros', 0, 0

db 'bricks', 0, 0

db 'time', 0, 0

times 512 - ($ - $$) db 0

List.asm:

[bits 16]
[org 0x7c00]

%define OFFSET 8
%define FILES_ADDR 0x7e00
%define SHELL_SEGMENT 0x800

int 0x10
mov ax, 0
mov ds, ax
mov es, ax
mov ss, ax
mov bp, 0x7c00
mov sp, bp
mov ah, 0x00
mov al, 0x03
int 0x10

mov ah, 0x0b
mov bh, 0
mov bl, 0x04
mov cx, 0
mov dx, 0
int 0x10

call print_files
mov si, press_any_key
call print_string
mov ah, 0x00
int 0x16
jmp SHELL_SEGMENT:0x0000

print_files:
 cld
 mov bx, 0

 .next_file:
 mov ax, [file_list + bx]
 cmp ax, no_file
 je .return
 mov si, ax
 call print_string
 mov si, new_line
 call print_string
 add bx, 2
 jmp .next_file

 .return: ret

print_string:
 cld
 mov ah, 0x0e
 .next_char:
 lodsb
 cmp al, 0
 je .return
 int 0x10
 jmp .next_char
 .return: ret
press_any_key db 10, 13, 'press any key to return to
shell...', 0
new_line db 10, 13
no_file dw 0
file_list dw FILES_ADDR, FILES_ADDR + OFFSET,
FILES_ADDR + 2 * OFFSET, FILES_ADDR + 3 * OFFSET,
FILES_ADDR + 4 * OFFSET, FILES_ADDR + 5 * OFFSET,
FILES_ADDR + 6 * OFFSET, no_file

times 512 - ($ - $$) db 0

Shell.asm:

[bits 16]
[org 0x8000]

%define BOOTSECTOR_SEGMENT 0x7c0
%define BOOTSECTOR_ADDR 0x7c00
%define FILES_ADDR 0x7e00
%define OFFSET 8

 int 0x10
 mov ah, 0x0e
 mov al, 0
 int 0x10
 mov ah, 0x0e
 mov al, 8
 int 0x10

 cmp al, 0
 je .return_true
 jmp .next_byte

 .return_true:
 mov cl, 1
 ret

%define ENTER_KEY 0x1c
%define BACKSPACE_KEY 0x0e

mov ax, 0
mov ds, ax
mov es, ax
mov ss, ax
mov bp, 0x7c00
mov sp, bp
mov ah, 0x00
mov al, 0x03
int 0x10

mov si, intro
call print_string

; main OS loop
shell_loop:
 mov si, user_prompt
 call print_string
 mov di, user_input
 mov al, 0
 times 20 stosb
 mov di, user_input

 .next_byte:
 mov ah, 0x00
 int 0x16
 cmp ah, ENTER_KEY
 je .search
 cmp ah, BACKSPACE_KEY
 je .erase_char
 stosb
 mov ah, 0x0e
 int 0x10
 jmp .next_byte

 .erase_char:
 mov ah, 0x03
 int 0x10
 cmp dl, 3
 je .next_byte
 mov ah, 0x0e
 mov al, 8

intro db
'|===============================|',10,13,'|-
------ARCADE OS (BETA)--------|',10,13,'|
|',10,13,'| Type "list" to list the Games |', 10,
13,'|===============================|', 0
user_prompt db 10, 13, ' $ ', 0
user_input times 20 db 0
new_line db 10, 13

 mov al, 0
 dec di
 stosb
 dec di
 jmp .next_byte

 .search:
 call search_file

 jmp shell_loop

search_file:
 cmp byte [user_input], 0
 je .return

 mov bx, 0
 mov dl, 3

 .next_game:
 mov ax, [file_list + bx]
 cmp ax, no_file
 je .no_file_found
 add bx, 2
 inc dl
 call compare_strings
 cmp cl, 1
 je execute
 jmp .next_game

 .no_file_found:
 mov si, error_no_file
 call print_string
 ret
 .return: ret

compare_strings:
 cld
 mov di, user_input
 mov si, ax

 .next_byte:
 lodsb
 scasb
 jne .return_false
 jmp $

error_message db 'Failed to
read sector from USB!', 10,
13, 0
error_no_file db 10, 13, 'No
file found!', 0

 .return_false:
 mov cl, 0
 ret

execute:
 mov ax, BOOTSECTOR_SEGMENT
 mov es, ax
 mov bx, 0
 mov cl, dl
 call read_sector
 jmp
BOOTSECTOR_SEGMENT:0x0000

print_string:
 cld
 mov ah, 0x0e
 mov bh, 0
 mov bl, 0x0F

.next_char:
 lodsb
 cmp al, 0
 je .return
 int 0x10
 jmp .next_char

.return:
 ret

read_sector:
 mov ah, 0x02
 mov al, 1
 mov ch, 0
 mov dh, 0
 mov dl, 0x80
 int 0x13
 jc .error
 ret

 .error:
 mov si, error_message
 call print_string

no_file dw 0
file_list dw FILES_ADDR, FILES_ADDR + OFFSET,
FILES_ADDR + 2 * OFFSET, FILES_ADDR + 3 *
OFFSET, FILES_ADDR + 4 * OFFSET, FILES_ADDR + 5
* OFFSET, FILES_ADDR + 6 * OFFSET, no_file

times 512 - ($ - $$) db 0

Time.asm:

mov ax, 0 ; set ACCUMULATOR REGISTER to
0
mov ds, ax ; set DATA SEGMENT to 0
mov es, ax ; set EXTRA SEGMENT to 0
mov ss, ax ; set STACK SEGMENT to 0
mov bp, 0x7c00 ; set STACK BASE to
0x0000_7c00
mov sp, bp ; set STACK POINTER to
0x0000_7c00
; Set video mode to 80x25 text mode (change the value of
al)
mov ah, 0x0e ; BIOS teletype output
mov al, '>'
int 0x10
mov al, ' '
int 0x10
mov al, '-'
; Set background color to white and text color to black
mov ah, 0x0b
mov bh, 0 ; Page number
mov bl, 0x0C ; Text color: black (lower 4 bits),
Background color: white (higher 4 bits)
mov cx, 0 ; Starting column
mov dx, 0 ; Ending column
int 0x10
; Wait for a keypress
mov ah, 0
int 0x16
; Clear the screen
mov ah, 0x06
mov al, 0

int 0x10
mov al, '-'
int 0x10
mov al, ':'
int 0x10
mov al, '-'
int 0x10
mov al, '-'
int 0x10
mov al, ' '
int 0x10
mov al, 'A'
int 0x10
mov al, 'M'
int 0x10
mov bh, 0
mov cx, 0
mov dh, 24
int 0x10
message db 'Time Feature Not Availible Yet in Beta
Version', 0
; Jump back to the shell
jmp 0x0000:0x7e00

Bricks.asm:

%ifdef com_file
 org 0x0100
%else
 org 0x7c00
%endif

old_time: equ 16

 mov al,4
 push ax
 mov bp,sp
another_level:
 mov word [bp+bricks],273
 xor di,di
 mov ax,0x01b1

 stosw
 inc ah
 cmp ah,0x08
 jne .4
 mov ah,0x01
.4:
 loop .3

ball_x: equ 14
ball_y: equ 12
ball_xs: equ 10
ball_ys: equ 8
beep: equ 6
bricks: equ 4
balls: equ 2
score: equ 0

start:
 mov ax,0x0002
 int 0x10
 mov ax,0xb800
 mov ds,ax
 mov es,ax
 sub sp,32
 xor ax,ax
 push ax
 int 0x16
 test al,0x04

je .1
 mov byte [di+6],0
 mov byte [di+8],0
 sub di,byte 4
 cmp di,0x0f02
 ja .1
 mov di,0x0f02
.1:
 test al,0x08
 je .2
 xor ax,ax
 stosw
 stosw
 stosw
 stosw
 stosw
 pop di
 mov bx,[bp+ball_x]
 mov ax,[bp+ball_y]
 call locate_ball
 test byte [bp+ball_y],0x80
 mov ah,0x60
 je .12
 mov ah,0x06
.12: mov al,0xdc
 mov [bx],ax
 push bx
 pop si
.14:
 mov bx,[bp+ball_x]
 mov ax,[bp+ball_y]
 add bx,[bp+ball_xs]

 mov cx,80
 cld
 rep stosw
 mov cl,24
.1:
 stosw
 mov ax,0x20
 push cx
 cmp cl,23
 jnb .2
 sub cl,15
 jbe .2
 mov al,0xdb
 mov ah,cl
.2:
 mov cl,39
.3:
 stosw
test ah,ah
 jnz .9
 neg word [bp+ball_ys]
.9: jmp .14
.3:
 cmp al,0xdf
 jne .4
 sub bx,di
 sub bx,byte 4
 mov cl,6
 shl bx,cl
 mov [bp+ball_xs],bx
 mov word [bp+ball_ys],0xff80
 mov cx,2711
 call speaker
 pop bx
 pop ax
 jmp .14
.4:
 cmp al,0xdb
 jne .5
 mov cx,1355
 call speaker
 test bl,2
 jne .10
 dec bx
 dec bx
.10: xor ax,ax
 mov [bx],ax
 mov [bx+2],ax
 inc word [bp+score]
 neg word [bp+ball_ys]
 pop bx
 pop ax
 dec word [bp+bricks]

 pop cx
 mov ax,0x01b1
 stosw
 loop .1
 mov di,0x0f4a
another_ball:
 mov byte [bp+ball_x+1],0x28
 mov byte [bp+ball_y+1],0x14
 xor ax,ax
 mov [bp+ball_xs],ax
 mov [bp+ball_ys],ax
 mov byte [bp+beep],0x01
 mov si,0x0ffe
game_loop:
 call wait_frame
 mov word [si],0x0000
 call update_score
 mov ah,0x02
1: call wait_frame.2
 int 0x20
wait_frame:
.0:
 mov ah,0x00
 int 0x1a
 cmp dx,[bp+old_time]
 je .0
 mov [bp+old_time],dx
 dec byte [bp+beep]
 jne .1
.2:
 in al,0x61
 and al,0xfc
 out 0x61,al
.1:
 ret
speaker:
 mov al,0xb6
 out 0x43,al
 mov al,cl
 out 0x42,al
 mov al,ch
 out 0x42,al
 in al,0x61
 or al,0x03
 out 0x61,al
 mov byte [bp+beep],3
 ret
locate_ball:
 mov al,0xa0
 mul ah
 mov bl,bh
 mov bh,0
 shl bx,1

 add ax,[bp+ball_ys]
 push ax
 push bx
 call locate_ball
 mov al,[bx]
 cmp al,0xb1
 jne .3
 mov cx,5423
 call speaker
 pop bx
 pop ax
 cmp bh,0x4f
 je .8
 test bh,bh
 jne .7
.8:
 neg word [bp+ball_xs]
.7:

.3: mov [bx],ax
 dec bx
 dec bx

 jne .14
 jmp another_level
.5:
 pop bx
 pop ax
.6:
 mov [bp+ball_x],bx
 mov [bp+ball_y],ax
 cmp ah,0x19
 je ball_lost
 jmp game_loop
ball_lost:
 mov cx,10846
 call speaker
 mov word [si],0
 dec byte [bp+balls]
 js .1
 jmp another_ball
 ret
%ifdef com_file
%else%endif

 add bx,ax
 ret
update_score:
 mov bx,0x0f98
 mov ax,[bp+score]
 call .1
 mov al,[bp+balls]
.1:
 xor cx,cx
.2: inc cx
 sub ax,10
 jnc .2
 add ax,0x0a3a
 call .3
 xchg ax,cx
 dec ax
 jnz .1

 times 510-($-$$) db 0x4f
 db 0x55,0xaa

Tetros.asm:

%endif

%macro sleep 1
 pusha
 xor cx, cx
 mov dx, %1
 mov ah, 0x86
 int 0x15
 popa
%endmacro

%macro select_brick 0
 mov ah, 2
 int 0x1a
 mov al, byte [seed_value]
 xor ax, dx
 mov bl, 31
 mul bl
 inc ax
 mov byte [seed_value], al
 xor dx, dx
 mov bx, 7
 div bx
 shl dl, 3
 xchg ax, dx
%endmacro

%macro clear_screen 0

: push cx
 inc dh
 mov dl, field_left_col
 mov cx, field_width
 mov bx, 0x78
 call set_and_write
 cmp dh, 21
 je ib
 inc dx
 mov cx, inner_width
 xor bx, bx
 call set_and_write
ib: pop cx
 loop ia
%endmacro

delay: equ 0x7f00
seed_value: equ 0x7f02

section .text

start_tetris:
 xor ax, ax
 mov ds, ax
 init_screen
new_brick:
 mov byte [delay], 100
 select_brick

 pop ax
 jz no_key
 call clear_brick
 cmp ch, 0x4b
 je left_arrow
 cmp ch, 0x48
 je up_arrow
 cmp ch, 0x4d
 je right_arrow

 mov byte [delay], 10
 jmp clear_keys
left_arrow:
 dec dx
 call check_collision
 je clear_keys
 inc dx
 jmp clear_keys
right_arrow:
 inc dx
 call check_collision
 je clear_keys
 dec dx
 jmp clear_keys
up_arrow:
 mov bl, al
 inc ax
 inc ax

 xor ax, ax
 int 0x10
 mov ah, 1
 mov cx, 0x2607
 int 0x10
%endmacro

field_left_col: equ 13
field_width: equ 14
inner_width: equ 12
inner_first_col: equ 14
start_row_col: equ 0x0412

%macro init_screen 0
 clear_screen
 mov dh, 3
 mov cx, 18
 inc dh
 call check_collision
 je lp
 dec dh
 call print_brick
 call check_filled
 jmp new_brick

set_and_write:
 mov ah, 2
 int 0x10
 mov ax, 0x0920
ia
 int 0x10
 ret

set_and_read:
 mov ah, 2
 int 0x10
 mov ah, 8
 int 0x10
 ret

replace_current_row 0
 pusha
 mov dl, inner_first_col
 mov cx, inner_width
cf_aa:
 push cx
 dec dh
 call set_and_read
 inc dh
 mov bl, ah
 mov cl, 1
 call set_and_write
 inc dx

 mov dx, start_row_col
lp:
 call check_collision
 jne $
 call print_brick

wait_or_keyboard:
 xor cx, cx
 mov cl, byte [delay]
wait_a:
 push cx
 sleep 3000

 push ax
 mov ah, 1
 int 0x16
 mov cx, ax
cf_loop:
 call set_and_read
 shr ah, 4
 jz cf_is_zero
 inc bx
 inc dx
cf_is_zero:
 loop cf_loop
 cmp bl, inner_width
 jne next_row
replace_next_row:
 replace_current_row
 dec dh
 jnz replace_next_row
 call check_filled
cf_done:
 popa
 ret

clear_brick:
 xor bx, bx
 jmp print_brick_no_color
print_brick:
 mov bl, al
 shr bl, 3
 inc bx
 shl bl, 4
print_brick_no_color:
 inc bx
 mov di, bx
 jmp check_collision_main
 ; BL = color of brick
 ; DX = position (DH = row), AL
= brick offset
 ; return: flag
check_collision:

 test al, 00000111b
 jnz nf
 sub al, 8
nf: call check_collision
 je clear_keys
 mov al, bl
clear_keys:
 call print_brick
 push ax
 xor ah, ah
 int 0x16
 pop ax
no_key:
 pop cx
 loop wait_a

 call clear_brick
 mov cx, 1
 call set_and_write
 popa
 jmp is_zero_a
ee:
 call set_and_read
 shr ah, 4
 jz is_zero_a
 inc bx
is_zero_a:
 pop ax

is_zero:
 shl ax, 1
 inc dx
 loop zz
 sub dl, 4
 inc dh
 pop cx
 loop cc
 or bl, bl
 popa
 ret

bricks:
 db 01000100b, 01000100b,
00000000b, 11110000b
 db 01000100b, 01000100b,
00000000b, 11110000b
 db 01100000b, 00100010b,
00000000b, 11100010b
 db 01000000b, 01100100b,
00000000b, 10001110b
 db 01100000b, 01000100b,
00000000b, 00101110b

 pop cx
 loop cf_aa
 popa
%endmacro

check_filled:
 pusha
 mov dh, 21
next_row:
 dec dh
 jz cf_done
 xor bx, bx
 mov cx, inner_width
 mov dl, inner_first_col
 pusha
 mov bx, di
 xor al, al

%ifndef DEBUG
times 446-($-$$) db 0
 db 0x80

 mov di, 0
check_collision_main:
 pusha
 xor bx, bx
 mov bl, al
 mov ax, word [bricks + bx]
 xor bx, bx
 mov cx, 4
cc:
 push cx
 mov cl, 4
zz:
 test ah, 10000000b
 jz is_zero
 push ax
 or di, di
 jz ee
 db 0x00, 0x01, 0x00

%endif
 db 0x17
 db 0x00, 0x02, 0x00
 db 0x00, 0x00, 0x00, 0x00
 db 0x02, 0x00, 0x00, 0x00

 db 00100000b, 01100010b,
00000000b, 11101000b
 db 00000000b, 01100110b,
00000000b, 01100110b
 db 00000000b, 01100110b,
00000000b, 01100110b
 db 00000000b, 11000110b,
01000000b, 00100110b
 db 00000000b, 11000110b,
01000000b, 00100110b
 db 00000000b, 01001110b,
01000000b, 01001100b
 db 00000000b, 11100100b,
10000000b, 10001100b
 db 00000000b, 01101100b,
01000000b, 10001100b
 db 00000000b, 01101100b,
01000000b, 10001100b
times 510-($-$$) db 0
 db 0x55
 db 0xaa

Note:

The code updates will be available on the GitHub repository: https://github.com/Musxeto/ArcadeOS.git

