We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
1.系统环境:Ubuntu 22.04.2 2.MegEngine版本:1.13.0 3.python版本:3.10.12 4.模型名称:atss_res18_coco_3x_800size
1.训练
python official/vision/detection/tools/train.py -f official/vision/detection/configs/atss_res18_coco_3x_800size.py -n 1 -d data/coco/
2.convert
python convert.py -f official/vision/detection/configs/atss_res18_coco_3x_800size.py -w log-of-atss_res18_coco_3x_800size/epoch_9.pkl -i official/assets/cat.jpg
**##转换代码** import numpy as np import megengine.functional as F import megengine.hub from megengine import jit, tensor import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import SGD from official.vision.detection.tools.data_mapper import data_mapper from official.vision.detection.tools.utils import DetEvaluator, import_from_file import megengine.traced_module as tm import argparse import bisect import copy import os import time import cv2 def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument("-i", "--image", type=str) return parser if __name__ == "__main__": parser = make_parser() args = parser.parse_args() current_network = import_from_file(args.file) cfg = current_network.Cfg() cfg.backbone_pretrained = False model = current_network.Net(cfg) ori_img = cv2.imread(args.image) image, im_info = DetEvaluator.process_inputs( ori_img.copy(), model.cfg.test_image_short_size, model.cfg.test_image_max_size, ) state_dict = mge.load(args.weight_file) if "state_dict" in state_dict: state_dict = state_dict["state_dict"] model.load_state_dict(state_dict) model.eval() traced_resnet = tm.trace_module(model, mge.tensor(image),im_info=mge.tensor(im_info)) # 可以在这里进行基于 trace_module 的图手术,以及模型转换 traced_resnet.eval() mge.save(traced_resnet,"test.tm") @jit.trace(symbolic=True, capture_as_const=True) def infer_func(data, im_info, model): pred = model(data,im_info) return pred output = infer_func(mge.tensor(image),im_info=mge.tensor(im_info), model=traced_resnet) infer_func.dump("log-of-atss_res18_coco_3x_800size/test.mge", arg_names=["data"])
25 17:37:50[mgb] WRN [dnn] Cudnn8 will jit ptx code with cache. You can set CUDA_CACHE_MAXSIZE and CUDA_CACHE_PATH environment var to avoid repeat jit(very slow). For example `export CUDA_CACHE_MAXSIZE=2147483647` and `export CUDA_CACHE_PATH=/data/.cuda_cache` 25 17:37:53[mgb] ERR error while applying optimization pass PassConvertToCompatible: bad input shape for polyadic operator: {256}, {1,256,136,100} backtrace: /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(_ZN3mgb13MegBrainErrorC1ERKSs+0x4a) [0x7fdfdad5590a] /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(+0x2db7867) [0x7fdfdadb7867] /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(_ZN6megdnn12ErrorHandler15on_megdnn_errorERKSs+0x14) [0x7fdfde9d86a4] /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(+0x6a078d8) [0x7fdfdea078d8] /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(+0x6a07a91) [0x7fdfdea07a91] /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(_ZN3mgb3opr8Elemwise20get_output_var_shapeEN6megdnn5param8Elemwise4ModeERKNS2_11SmallVectorINS2_11TensorShapeELj4EEE+0x37) [0x7fdfdaf150e7] /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(_ZNK3mgb3opr8Elemwise20get_output_var_shapeERKN6megdnn11SmallVectorINS2_11TensorShapeELj4EEERS5_+0x29) [0x7fdfdaf1e0c9] /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(_ZN3mgb2cg5mixin24OutshapePureByInshapeOpr10infer_descEmRN6megdnn11TensorShapeERKNS0_12static_infer6InpValE+0x19d) [0x7fdfdade9e0d] /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(_ZN3mgb2cg12static_infer22StaticInferManagerImpl13TagShapeTrait8do_inferERKNS1_6InpValE+0x57) [0x7fdfdae0b437] /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(+0x2e0b292) [0x7fdfdae0b292] Traceback (most recent call last): File "/home/csy/megvii/Models/convert.py", line 63, in <module> infer_func.dump("log-of-atss_res18_coco_3x_800size/test.mge", arg_names=["data"]) File "/home/csy/.local/lib/python3.10/site-packages/megengine/jit/tracing.py", line 1183, in dump dump_content, dump_info = G.dump_graph( File "/home/csy/.local/lib/python3.10/site-packages/megengine/core/tensor/megbrain_graph.py", line 456, in dump_graph dump_content = _imperative_rt.dump_graph( RuntimeError: bad input shape for polyadic operator: {256}, {1,256,136,100} backtrace: /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(_ZN3mgb13MegBrainErrorC1ERKSs+0x4a) [0x7fdfdad5590a] /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(+0x2db7867) [0x7fdfdadb7867] /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(_ZN6megdnn12ErrorHandler15on_megdnn_errorERKSs+0x14) [0x7fdfde9d86a4] /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(+0x6a078d8) [0x7fdfdea078d8] /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(+0x6a07a91) [0x7fdfdea07a91] /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(_ZN3mgb3opr8Elemwise20get_output_var_shapeEN6megdnn5param8Elemwise4ModeERKNS2_11SmallVectorINS2_11TensorShapeELj4EEE+0x37) [0x7fdfdaf150e7] /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(_ZNK3mgb3opr8Elemwise20get_output_var_shapeERKN6megdnn11SmallVectorINS2_11TensorShapeELj4EEERS5_+0x29) [0x7fdfdaf1e0c9] /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(_ZN3mgb2cg5mixin24OutshapePureByInshapeOpr10infer_descEmRN6megdnn11TensorShapeERKNS0_12static_infer6InpValE+0x19d) [0x7fdfdade9e0d] /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(_ZN3mgb2cg12static_infer22StaticInferManagerImpl13TagShapeTrait8do_inferERKNS1_6InpValE+0x57) [0x7fdfdae0b437] /home/csy/.local/lib/python3.10/site-packages/megengine/core/lib/libmegengine_shared.so(+0x2e0b292) [0x7fdfdae0b292]
The text was updated successfully, but these errors were encountered:
Sorry, something went wrong.
@FateScript 大佬帮忙看看
No branches or pull requests
环境
1.系统环境:Ubuntu 22.04.2
2.MegEngine版本:1.13.0
3.python版本:3.10.12
4.模型名称:atss_res18_coco_3x_800size
复现步骤
1.训练
2.convert
请提供关键的代码片段便于追查问题
请提供完整的日志及报错信息
The text was updated successfully, but these errors were encountered: