-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
148 lines (112 loc) · 5.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
import torch
from os.path import join
from utils.delta import compute_delta
from utils.helpers import accuracy
def training(epochs, loaders, model, optimizer, criterion, prev_list,
rmae_delta_dict, configs):
"""
Performs training and evaluation.
"""
min_test_loss = np.Inf
early_stopping_counter = 0
train_acc_arr, test_acc_arr = [], []
with configs.experiment.train():
for epoch in range(1, epochs+1):
train_loss = 0.0
train_correct = 0.0
train_total = 0.0
test_correct = 0.0
test_total = 0.0
test_loss = 0.0
train_top1, train_top5 = [], []
# train the model
model.train()
for data, labels in loaders['train']:
# move the data and labels to gpu
data, labels = data.cuda(), labels.cuda()
optimizer.zero_grad()
# get model outputs
output = model(data)
# calculate the loss
loss = criterion(output, labels)
# measure top-k accuracy for training.
top1, top5 = accuracy(output, labels, topk=(1, 5))
train_top1.append(top1)
train_top5.append(top5)
# backprop
loss.backward()
# optimize the weights
optimizer.step()
# update the training loss for the batch
train_loss += loss.item()*data.size(0)
# get the predictions for each image in the batch
preds = torch.max(output, 1)[1]
# get the number of correct predictions in the batch
train_correct += np.sum(np.squeeze(
preds.eq(labels.data.view_as(preds))).cpu().numpy())
# accumulate total number of examples
train_total += data.size(0)
train_loss = round(train_loss/len(loaders['train'].dataset), 4)
train_acc = round(((train_correct/train_total) * 100.0), 4)
# epoch top k
epoch_train_t1 = torch.mean(torch.stack(train_top1)).cpu()
epoch_train_t5 = torch.mean(torch.stack(train_top5)).cpu()
configs.experiment.log_metric("accuracy", train_acc, step=epoch)
configs.experiment.log_metric("top-1", epoch_train_t1, step=epoch)
configs.experiment.log_metric("top-5", epoch_train_t5, step=epoch)
configs.experiment.log_metric("loss", train_loss, step=epoch)
# compute layer deltas after epoch.
rmae_delta_dict, prev_list = compute_delta(
model, prev_list, rmae_delta_dict)
# save rmae dict
save_path = join(configs.arr_save_path, configs.exp_name)
np.save(save_path + f"rmae_dict_{epoch}.npy", rmae_delta_dict)
test_top1, test_top5 = [], []
with configs.experiment.test():
model.eval()
with torch.no_grad():
for data, labels in loaders['test']:
data, labels = data.cuda(), labels.cuda()
output = model(data)
loss = criterion(output, labels)
# measure top-k accuracy for test.
top1, top5 = accuracy(output, labels, topk=(1, 5))
test_top1.append(top1)
test_top5.append(top5)
test_loss += loss.item()*data.size(0)
# get the predictions for each image in the batch
preds = torch.max(output, 1)[1]
# get the number of correct predictions in the batch
test_correct += np.sum(np.squeeze(
preds.eq(labels.data.view_as(preds))).cpu().numpy())
# accumulate total number of examples
test_total += data.size(0)
test_loss = round(test_loss/len(loaders['test'].dataset), 4)
test_acc = round(((test_correct/test_total) * 100), 4)
# epoch top k
epoch_test_t1 = torch.mean(torch.stack(test_top1)).cpu()
epoch_test_t5 = torch.mean(torch.stack(test_top5)).cpu()
configs.experiment.log_metric("accuracy", test_acc, step=epoch)
configs.experiment.log_metric("top-1", epoch_test_t1, step=epoch)
configs.experiment.log_metric("top-5", epoch_test_t5, step=epoch)
configs.experiment.log_metric("loss", test_loss, step=epoch)
train_acc_arr.append(train_acc)
test_acc_arr.append(test_acc)
print(
f"Epoch: {epoch} \tTrain Loss: {train_loss} \tTrain Top-1: {epoch_train_t1} \tTrain Top-5: {epoch_train_t5}% \tTest Loss: {test_loss} \tTest Top-1: {epoch_test_t1} \tTest Top-5: {epoch_test_t5}%")
# early stopping
# accumulate consecutive counters
if test_loss < min_test_loss and early_stopping_counter:
early_stopping_counter += 1
min_test_loss = test_loss
else:
min_test_loss = test_loss
early_stopping_counter = 0
# check if we passed tolerance
if early_stopping_counter >= configs.tolerance:
print(f"Saving model at Epoch: {epoch}")
torch.save(model.state_dict(), configs.save_path)
if float(test_acc) >= configs.target_val_acc:
break
return rmae_delta_dict, np.asarray(train_acc_arr), np.asarray(test_acc_arr)