给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1)
,右下角为 (row2, col2)
。
上图子矩阵左上角 (row1, col1) = (2, 1) ,右下角(row2, col2) = (4, 3),该子矩形内元素的总和为 8。
示例:
给定 matrix = [ [3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5] ] sumRegion(2, 1, 4, 3) -> 8 sumRegion(1, 1, 2, 2) -> 11 sumRegion(1, 2, 2, 4) -> 12
提示:
- 你可以假设矩阵不可变。
- 会多次调用
sumRegion
方法。 - 你可以假设
row1 ≤ row2
且col1 ≤ col2
。
动态规划-二维前缀和。
class NumMatrix:
def __init__(self, matrix: List[List[int]]):
m, n = len(matrix), len(matrix[0])
self.pre = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
self.pre[i][j] = self.pre[i - 1][j] + self.pre[i][j - 1] - self.pre[i - 1][j - 1] + matrix[i - 1][j - 1]
def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int:
return self.pre[row2 + 1][col2 + 1] - self.pre[row2 + 1][col1] - self.pre[row1][col2 + 1] + self.pre[row1][col1]
# Your NumMatrix object will be instantiated and called as such:
# obj = NumMatrix(matrix)
# param_1 = obj.sumRegion(row1,col1,row2,col2)
class NumMatrix {
private int[][] pre;
public NumMatrix(int[][] matrix) {
int m = matrix.length, n = matrix[0].length;
pre = new int[m + 1][n + 1];
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
pre[i][j] = pre[i - 1][j] + pre[i][j - 1] - pre[i - 1][j - 1] + matrix[i - 1][j - 1];
}
}
}
public int sumRegion(int row1, int col1, int row2, int col2) {
return pre[row2 + 1][col2 + 1] - pre[row2 + 1][col1] - pre[row1][col2 + 1] + pre[row1][col1];
}
}
/**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix obj = new NumMatrix(matrix);
* int param_1 = obj.sumRegion(row1,col1,row2,col2);
*/
class NumMatrix {
public:
vector<vector<int>> pre;
NumMatrix(vector<vector<int>>& matrix) {
int m = matrix.size(), n = matrix[0].size();
pre.resize(m + 1, vector<int>(n + 1));
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
pre[i][j] = pre[i - 1][j] + pre[i][j - 1] - pre[i - 1][j - 1] + matrix[i - 1][j - 1];
}
}
}
int sumRegion(int row1, int col1, int row2, int col2) {
return pre[row2 + 1][col2 + 1] - pre[row2 + 1][col1] - pre[row1][col2 + 1] + pre[row1][col1];
}
};
/**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix* obj = new NumMatrix(matrix);
* int param_1 = obj->sumRegion(row1,col1,row2,col2);
*/
type NumMatrix struct {
pre [][]int
}
func Constructor(matrix [][]int) NumMatrix {
m, n := len(matrix), len(matrix[0])
pre := make([][]int, m+1)
for i := 0; i < m+1; i++ {
pre[i] = make([]int, n+1)
}
for i := 1; i < m+1; i++ {
for j := 1; j < n+1; j++ {
pre[i][j] = pre[i-1][j] + pre[i][j-1] + -pre[i-1][j-1] + matrix[i-1][j-1]
}
}
return NumMatrix{pre}
}
func (this *NumMatrix) SumRegion(row1 int, col1 int, row2 int, col2 int) int {
return this.pre[row2+1][col2+1] - this.pre[row2+1][col1] - this.pre[row1][col2+1] + this.pre[row1][col1]
}
/**
* Your NumMatrix object will be instantiated and called as such:
* obj := Constructor(matrix);
* param_1 := obj.SumRegion(row1,col1,row2,col2);
*/