# This file is a part of Julia. License is MIT: http://julialang.org/license ### Multidimensional iterators module IteratorsMD import Base: eltype, length, size, start, done, next, last, in, getindex, setindex!, linearindexing, min, max, zero, one, isless, eachindex, ndims, iteratorsize, to_index importall ..Base.Operators import Base: simd_outer_range, simd_inner_length, simd_index using Base: LinearFast, LinearSlow, AbstractCartesianIndex, fill_to_length, tail export CartesianIndex, CartesianRange # CartesianIndex immutable CartesianIndex{N} <: AbstractCartesianIndex{N} I::NTuple{N,Int} CartesianIndex(index::NTuple{N,Integer}) = new(index) end CartesianIndex{N}(index::NTuple{N,Integer}) = CartesianIndex{N}(index) (::Type{CartesianIndex})(index::Integer...) = CartesianIndex(index) (::Type{CartesianIndex{N}}){N}(index::Vararg{Integer,N}) = CartesianIndex{N}(index) # Allow passing tuples smaller than N (::Type{CartesianIndex{N}}){N}(index::Tuple) = CartesianIndex{N}(fill_to_length(index, 1, Val{N})) (::Type{CartesianIndex{N}}){N}(index::Integer...) = CartesianIndex{N}(index) (::Type{CartesianIndex{N}}){N}() = CartesianIndex{N}(()) # Un-nest passed CartesianIndexes CartesianIndex(index::Union{Integer, CartesianIndex}...) = CartesianIndex(flatten(index)) flatten(I::Tuple{}) = I flatten(I::Tuple{Any}) = I flatten{N}(I::Tuple{CartesianIndex{N}}) = I[1].I @inline flatten(I) = _flatten(I...) @inline _flatten() = () @inline _flatten(i, I...) = (i, _flatten(I...)...) @inline _flatten(i::CartesianIndex, I...) = (i.I..., _flatten(I...)...) CartesianIndex(index::Tuple{Vararg{Union{Integer, CartesianIndex}}}) = CartesianIndex(index...) # length length{N}(::CartesianIndex{N})=N length{N}(::Type{CartesianIndex{N}})=N # indexing getindex(index::CartesianIndex, i::Integer) = index.I[i] # zeros and ones zero{N}(::CartesianIndex{N}) = zero(CartesianIndex{N}) zero{N}(::Type{CartesianIndex{N}}) = CartesianIndex(ntuple(x -> 0, Val{N})) one{N}(::CartesianIndex{N}) = one(CartesianIndex{N}) one{N}(::Type{CartesianIndex{N}}) = CartesianIndex(ntuple(x -> 1, Val{N})) # arithmetic, min/max (-){N}(index::CartesianIndex{N}) = CartesianIndex{N}(map(-, index.I)) (+){N}(index1::CartesianIndex{N}, index2::CartesianIndex{N}) = CartesianIndex{N}(map(+, index1.I, index2.I)) (-){N}(index1::CartesianIndex{N}, index2::CartesianIndex{N}) = CartesianIndex{N}(map(-, index1.I, index2.I)) min{N}(index1::CartesianIndex{N}, index2::CartesianIndex{N}) = CartesianIndex{N}(map(min, index1.I, index2.I)) max{N}(index1::CartesianIndex{N}, index2::CartesianIndex{N}) = CartesianIndex{N}(map(max, index1.I, index2.I)) (+){N}(index::CartesianIndex{N}, i::Integer) = CartesianIndex{N}(map(x->x+i, index.I)) (+){N}(i::Integer, index::CartesianIndex{N}) = index+i (-){N}(index::CartesianIndex{N}, i::Integer) = CartesianIndex{N}(map(x->x-i, index.I)) (-){N}(i::Integer, index::CartesianIndex{N}) = CartesianIndex{N}(map(x->i-x, index.I)) (*){N}(a::Integer, index::CartesianIndex{N}) = CartesianIndex{N}(map(x->a*x, index.I)) (*)(index::CartesianIndex,a::Integer)=*(a,index) # comparison @inline isless{N}(I1::CartesianIndex{N}, I2::CartesianIndex{N}) = _isless(0, I1.I, I2.I) @inline function _isless{N}(ret, I1::NTuple{N,Int}, I2::NTuple{N,Int}) newret = ifelse(ret==0, icmp(I1[N], I2[N]), ret) _isless(newret, Base.front(I1), Base.front(I2)) end _isless(ret, ::Tuple{}, ::Tuple{}) = ifelse(ret==1, true, false) icmp(a, b) = ifelse(isless(a,b), 1, ifelse(a==b, 0, -1)) # Iteration immutable CartesianRange{I<:CartesianIndex} start::I stop::I end CartesianRange{N}(index::CartesianIndex{N}) = CartesianRange(one(index), index) CartesianRange(::Tuple{}) = CartesianRange{CartesianIndex{0}}(CartesianIndex{0}(()),CartesianIndex{0}(())) CartesianRange{N}(sz::NTuple{N,Int}) = CartesianRange(CartesianIndex(sz)) CartesianRange{N}(rngs::NTuple{N,Union{Integer,AbstractUnitRange}}) = CartesianRange(CartesianIndex(map(first, rngs)), CartesianIndex(map(last, rngs))) ndims(R::CartesianRange) = length(R.start) ndims{I<:CartesianIndex}(::Type{CartesianRange{I}}) = length(I) eachindex(::LinearSlow, A::AbstractArray) = CartesianRange(indices(A)) @inline eachindex(::LinearSlow, A::AbstractArray, B::AbstractArray...) = CartesianRange(maxsize((), A, B...)) maxsize(sz) = sz @inline maxsize(sz, A, B...) = maxsize(maxt(sz, size(A)), B...) @inline maxt(a::Tuple{}, b::Tuple{}) = () @inline maxt(a::Tuple{}, b::Tuple) = b @inline maxt(a::Tuple, b::Tuple{}) = a @inline maxt(a::Tuple, b::Tuple) = (max(a[1], b[1]), maxt(tail(a), tail(b))...) eltype{I}(::Type{CartesianRange{I}}) = I iteratorsize{I}(::Type{CartesianRange{I}}) = Base.HasShape() @inline function start{I<:CartesianIndex}(iter::CartesianRange{I}) if any(map(>, iter.start.I, iter.stop.I)) return iter.stop+1 end iter.start end @inline function next{I<:CartesianIndex}(iter::CartesianRange{I}, state) state, I(inc(state.I, iter.start.I, iter.stop.I)) end # increment & carry @inline inc(::Tuple{}, ::Tuple{}, ::Tuple{}) = () @inline inc(state::Tuple{Int}, start::Tuple{Int}, stop::Tuple{Int}) = (state[1]+1,) @inline function inc(state, start, stop) if state[1] < stop[1] return (state[1]+1,tail(state)...) end newtail = inc(tail(state), tail(start), tail(stop)) (start[1], newtail...) end @inline done{I<:CartesianIndex}(iter::CartesianRange{I}, state) = state.I[end] > iter.stop.I[end] # 0-d cartesian ranges are special-cased to iterate once and only once start{I<:CartesianIndex{0}}(iter::CartesianRange{I}) = false next{I<:CartesianIndex{0}}(iter::CartesianRange{I}, state) = iter.start, true done{I<:CartesianIndex{0}}(iter::CartesianRange{I}, state) = state size{I<:CartesianIndex}(iter::CartesianRange{I}) = map(dimlength, iter.start.I, iter.stop.I) dimlength(start, stop) = stop-start+1 length(iter::CartesianRange) = prod(size(iter)) last(iter::CartesianRange) = iter.stop to_index(c::CartesianIndex) = c @inline function in{I<:CartesianIndex}(i::I, r::CartesianRange{I}) _in(true, i.I, r.start.I, r.stop.I) end _in(b, ::Tuple{}, ::Tuple{}, ::Tuple{}) = b @inline _in(b, i, start, stop) = _in(b & (start[1] <= i[1] <= stop[1]), tail(i), tail(start), tail(stop)) simd_outer_range(iter::CartesianRange{CartesianIndex{0}}) = iter function simd_outer_range{I}(iter::CartesianRange{I}) start = CartesianIndex(tail(iter.start.I)) stop = CartesianIndex(tail(iter.stop.I)) CartesianRange(start, stop) end simd_inner_length{I<:CartesianIndex{0}}(iter::CartesianRange{I}, ::CartesianIndex) = 1 simd_inner_length(iter::CartesianRange, I::CartesianIndex) = iter.stop[1]-iter.start[1]+1 simd_index{I<:CartesianIndex{0}}(iter::CartesianRange{I}, ::CartesianIndex, I1::Int) = iter.start @inline function simd_index{N}(iter::CartesianRange, Ilast::CartesianIndex{N}, I1::Int) CartesianIndex((I1+iter.start[1], Ilast.I...)) end # Split out the first N elements of a tuple @inline split{N}(t, V::Type{Val{N}}) = _split((), t, V) @inline _split(tN, trest, V) = _split((tN..., trest[1]), tail(trest), V) # exit either when we've exhausted the input tuple or when tN has length N @inline _split{N}(tN::NTuple{N}, ::Tuple{}, ::Type{Val{N}}) = tN, () # ambig. @inline _split{N}(tN, ::Tuple{}, ::Type{Val{N}}) = tN, () @inline _split{N}(tN::NTuple{N}, trest, ::Type{Val{N}}) = tN, trest end # IteratorsMD using .IteratorsMD ## Support for SubArray with arrays of CartesianIndex function _indices_sub{N}(S::SubArray, pinds, i1::AbstractArray{CartesianIndex{N}}, I...) @_inline_meta (unsafe_indices(i1)..., _indices_sub(S, IteratorsMD.split(pinds, Val{N})[2], I...)...) end ## Bounds-checking with CartesianIndex @inline checkbounds_indices(::Type{Bool}, ::Tuple{}, I::Tuple{CartesianIndex,Vararg{Any}}) = checkbounds_indices(Bool, (), (I[1].I..., tail(I)...)) @inline checkbounds_indices(::Type{Bool}, IA::Tuple{Any}, I::Tuple{CartesianIndex,Vararg{Any}}) = checkbounds_indices(Bool, IA, (I[1].I..., tail(I)...)) @inline checkbounds_indices(::Type{Bool}, IA::Tuple, I::Tuple{CartesianIndex,Vararg{Any}}) = checkbounds_indices(Bool, IA, (I[1].I..., tail(I)...)) # Support indexing with an array of CartesianIndex{N}s # Here we try to consume N of the indices (if there are that many available) # The first two simply handle ambiguities @inline function checkbounds_indices{N}(::Type{Bool}, ::Tuple{}, I::Tuple{AbstractArray{CartesianIndex{N}},Vararg{Any}}) checkindex(Bool, (), I[1]) & checkbounds_indices(Bool, (), tail(I)) end @inline function checkbounds_indices{N}(::Type{Bool}, IA::Tuple{Any}, I::Tuple{AbstractArray{CartesianIndex{N}},Vararg{Any}}) checkindex(Bool, IA, I[1]) & checkbounds_indices(Bool, (), tail(I)) end @inline function checkbounds_indices{N}(::Type{Bool}, IA::Tuple, I::Tuple{AbstractArray{CartesianIndex{N}},Vararg{Any}}) IA1, IArest = IteratorsMD.split(IA, Val{N}) checkindex(Bool, IA1, I[1]) & checkbounds_indices(Bool, IArest, tail(I)) end function checkindex{N}(::Type{Bool}, inds::Tuple, I::AbstractArray{CartesianIndex{N}}) b = true for i in I b &= checkbounds_indices(Bool, inds, (i,)) end b end # combined count of all indices, including CartesianIndex and # AbstractArray{CartesianIndex} # rather than returning N, it returns an NTuple{N,Bool} so the result is inferrable @inline index_ndims(i1, I...) = (true, index_ndims(I...)...) @inline function index_ndims{N}(i1::CartesianIndex{N}, I...) (map(x->true, i1.I)..., index_ndims(I...)...) end @inline function index_ndims{N}(i1::AbstractArray{CartesianIndex{N}}, I...) (ntuple(x->true, Val{N})..., index_ndims(I...)...) end index_ndims() = () # Recursively compute the lengths of a list of indices, without dropping scalars # These need to be inlined for more than 3 indexes # Trailing CartesianIndex{0}s and arrays thereof are strange when used as # trailing indexes -- they behave as though they were never there for the # purposes of generalized linear indexing. typealias CI0 Union{CartesianIndex{0}, AbstractArray{CartesianIndex{0}}} index_lengths(A::AbstractArray, I::Colon) = (_length(A),) @inline index_lengths(A::AbstractArray, I...) = index_lengths_dim(A, 1, I...) index_lengths_dim(A, dim) = () index_lengths_dim(A, dim, ::Colon) = (trailingsize(indices(A), dim),) index_lengths_dim(A, dim, ::Colon, i::CI0, I::CI0...) = (trailingsize(indices(A), dim), index_lengths_dim(A, dim+1, i, I...)...) @inline index_lengths_dim(A, dim, ::Colon, i, I...) = (_length(indices(A, dim)), index_lengths_dim(A, dim+1, i, I...)...) @inline index_lengths_dim(A, dim, ::Real, I...) = (1, index_lengths_dim(A, dim+1, I...)...) @inline index_lengths_dim{N}(A, dim, ::CartesianIndex{N}, I...) = (1, index_lengths_dim(A, dim+N, I...)...) @inline index_lengths_dim(A, dim, i::AbstractArray, I...) = (length(i), index_lengths_dim(A, dim+1, I...)...) @inline index_lengths_dim(A, dim, i::AbstractArray{Bool}, I...) = (sum(i), index_lengths_dim(A, dim+1, I...)...) @inline index_lengths_dim{N}(A, dim, i::AbstractArray{CartesianIndex{N}}, I...) = (length(i), index_lengths_dim(A, dim+N, I...)...) # shape of array to create for getindex() with indexes I, dropping scalars # returns a Tuple{Vararg{AbstractUnitRange}} of indices index_shape(A::AbstractArray, I::Colon) = (linearindices(A),) @inline index_shape(A::AbstractArray, I...) = index_shape_dim(indices(A), I...) @inline index_shape_dim(inds::Tuple{Any}, ::Colon) = inds @inline index_shape_dim(inds, ::Colon) = (OneTo(trailingsize(inds)),) @inline index_shape_dim(inds, ::Colon, i::CI0, I::CI0...) = (OneTo(trailingsize(inds)), index_shape_dim((), i, I...)...) @inline function index_shape_dim(inds, ::Colon, i, I...) inds1, indstail = IteratorsMD.split(inds, Val{1}) (inds1..., index_shape_dim(indstail, i, I...)...) end @inline index_shape_dim(inds, ::Real...) = () @inline index_shape_dim(inds, ::Real, I...) = index_shape_dim(safe_tail(inds), I...) @inline index_shape_dim{N}(inds, ::CartesianIndex{N}, I...) = index_shape_dim(IteratorsMD.split(inds, Val{N})[2], I...) @inline index_shape_dim(inds, i::AbstractArray, I...) = (indices(i)..., index_shape_dim(safe_tail(inds), I...)...) @inline index_shape_dim(inds, i::AbstractArray{Bool}, I...) = (OneTo(sum(i)), index_shape_dim(safe_tail(inds), I...)...) # single CartesianIndex version not needed because of call to flatten in _getindex... # ...but array of CartesianIndex is not covered @inline function index_shape_dim{N}(inds, i::AbstractArray{CartesianIndex{N}}, I...) indsN, indstail = IteratorsMD.split(inds, Val{N}) (indices(i)..., index_shape_dim(indstail, I...)...) end # Convert Colon indices into explicit indices @inline decolon(A::AbstractArray, ::Colon) = (linearindices(A),) @inline decolon(A::AbstractArray, I...) = decolon_dim(indices(A), I...) @inline decolon_dim(inds) = () @inline decolon_dim(inds::Tuple{Any}, ::Colon) = inds @inline decolon_dim(inds, ::Colon) = (OneTo(trailingsize(inds)),) @inline decolon_dim(inds, ::Colon, i::CI0, I::CI0...) = (OneTo(trailingsize(inds)), i, I...) @inline function decolon_dim(inds, ::Colon, I...) inds1, indstail = IteratorsMD.split(inds, Val{1}) (maybe_oneto(inds1...), decolon_dim(indstail, I...)...) end @inline decolon_dim(inds, i1, I...) = (i1, decolon_dim(safe_tail(inds), I...)...) @inline function decolon_dim{N}(inds, i1::AbstractArray{CartesianIndex{N}}, I...) indsN, indstail = IteratorsMD.split(inds, Val{N}) (i1, decolon_dim(indstail, I...)...) end maybe_oneto(i) = i maybe_oneto() = OneTo(1) ### From abstractarray.jl: Internal multidimensional indexing definitions ### getindex(x::Number, i::CartesianIndex{0}) = x getindex(t::Tuple, I...) = getindex(t, IteratorsMD.flatten(I)...) # These are not defined on directly on getindex to avoid # ambiguities for AbstractArray subtypes. See the note in abstractarray.jl # Note that it's most efficient to call checkbounds first, and then to_index @inline function _getindex{T,N}(l::LinearIndexing, A::AbstractArray{T,N}, I::Vararg{Union{Real, AbstractArray, Colon},N}) @boundscheck checkbounds(A, I...) _unsafe_getindex(l, A, I...) end # Explicitly allow linear indexing with one non-scalar index @inline function _getindex(l::LinearIndexing, A::AbstractArray, i::Union{Real, AbstractArray, Colon}) @boundscheck checkbounds(A, i) _unsafe_getindex(l, _maybe_reshape(l, A, (i,)), i) end # But we can speed up LinearSlow arrays by reshaping them to vectors: _maybe_reshape(::LinearFast, A::AbstractArray, i) = A _maybe_reshape(::LinearSlow, A::AbstractVector, i) = A @inline _maybe_reshape(::LinearSlow, A::AbstractArray, i) = _maybe_reshape(LinearSlow(), index_ndims(i...), A) @inline _maybe_reshape{T,N}(::LinearIndexing, ::NTuple{N}, A::AbstractArray{T,N}) = A @inline _maybe_reshape{N}(::LinearIndexing, ::NTuple{N}, A) = reshape(A, Val{N}) @inline function _getindex{N}(l::LinearIndexing, A::AbstractArray, I::Vararg{Union{Real, AbstractArray, Colon},N}) # TODO: DEPRECATE FOR #14770 @boundscheck checkbounds(A, I...) _unsafe_getindex(l, _maybe_reshape(l, A, I), I...) end @generated function _unsafe_getindex(::LinearIndexing, A::AbstractArray, I::Union{Real, AbstractArray, Colon}...) N = length(I) quote # This is specifically *not* inlined. @nexprs $N d->(I_d = to_index(I[d])) shape = @ncall $N index_shape A I dest = similar(A, shape) map(unsafe_length, indices(dest)) == map(unsafe_length, shape) || throw_checksize_error(dest, shape) @ncall $N _unsafe_getindex! dest A I end end # logical indexing optimization - don't use find (within to_index) function _unsafe_getindex(::LinearIndexing, src::AbstractArray, I::AbstractArray{Bool}) shape = index_shape(src, I) dest = similar(src, shape) map(unsafe_length, indices(dest)) == map(unsafe_length, shape) || throw_checksize_error(dest, shape) D = eachindex(dest) Ds = start(D) for (b, s) in zip(I, eachindex(src)) @inbounds if b d, Ds = next(D, Ds) dest[d] = src[s] end end dest end # specialized form for LinearFast function _unsafe_getindex(::LinearFast, src::AbstractArray, I::AbstractArray{Bool}) shape = index_shape(src, I) dest = similar(src, shape) map(unsafe_length, indices(dest)) == map(unsafe_length, shape) || throw_checksize_error(dest, shape) D = eachindex(dest) Ds = start(D) s = first(linearindices(src))-1 for i in eachindex(I) s += 1 @inbounds if I[i] d, Ds = next(D, Ds) dest[d] = src[s] end end dest end # Always index with the exactly indices provided. @generated function _unsafe_getindex!(dest::AbstractArray, src::AbstractArray, I::Union{Real, AbstractArray, Colon}...) N = length(I) quote $(Expr(:meta, :inline)) @nexprs $N d->(I_d = I[d]) J = @ncall $N decolon src I @nexprs $N d->(J_d = J[d]) D = eachindex(dest) Ds = start(D) @inbounds @nloops $N j d->J_d begin d, Ds = next(D, Ds) dest[d] = @ncall $N getindex src j end dest end end @noinline throw_checksize_error(A, sz) = throw(DimensionMismatch("output array is the wrong size; expected $sz, got $(size(A))")) ## setindex! ## # For multi-element setindex!, we check bounds, convert the indices (to_index), # and ensure the value to set is either an AbstractArray or a Repeated scalar # before redispatching to the _unsafe_batchsetindex! _iterable(v::AbstractArray) = v _iterable(v) = Iterators.repeated(v) @inline function _setindex!{T,N}(l::LinearIndexing, A::AbstractArray{T,N}, x, J::Vararg{Union{Real,AbstractArray,Colon},N}) @boundscheck checkbounds(A, J...) _unsafe_setindex!(l, A, x, J...) end @inline function _setindex!(l::LinearIndexing, A::AbstractArray, x, j::Union{Real,AbstractArray,Colon}) @boundscheck checkbounds(A, j) _unsafe_setindex!(l, _maybe_reshape(l, A, (j,)), x, j) A end @inline function _setindex!{N}(l::LinearIndexing, A::AbstractArray, x, J::Vararg{Union{Real, AbstractArray, Colon},N}) # TODO: DEPRECATE FOR #14770 @boundscheck checkbounds(A, J...) _unsafe_setindex!(l, _maybe_reshape(l, A, J), x, J...) A end @inline function _unsafe_setindex!(::LinearIndexing, A::AbstractArray, x, J::Union{Real,AbstractArray,Colon}...) _unsafe_batchsetindex!(A, _iterable(x), to_indexes(J...)...) end # 1-d logical indexing: override the above to avoid calling find (in to_index) function _unsafe_setindex!(::LinearIndexing, A::AbstractArray, x, I::AbstractArray{Bool}) X = _iterable(x) Xs = start(X) c = 0 @inbounds for (iA, i) in zip(eachindex(A), eachindex(I)) Ii = I[i] if Ii done(X, Xs) && throw_setindex_mismatch(x, c+1) (v, Xs) = next(X, Xs) A[iA] = v c += 1 end end setindex_shape_check(X, c) A end # specialized form for LinearFast function _unsafe_setindex!(::LinearFast, A::AbstractArray, x, I::AbstractArray{Bool}) X = _iterable(x) Xs = start(X) iA = 0 c = 0 for i in eachindex(I) iA += 1 @inbounds if I[i] done(X, Xs) && throw_setindex_mismatch(x, c+1) (v, Xs) = next(X, Xs) A[iA] = v c += 1 end end setindex_shape_check(X, c) A end @generated function _unsafe_batchsetindex!(A::AbstractArray, X, I::Union{Real,AbstractArray,Colon}...) N = length(I) quote @nexprs $N d->(I_d = I[d]) idxlens = @ncall $N index_lengths A I @ncall $N setindex_shape_check X (d->idxlens[d]) J = @ncall $N decolon A I @nexprs $N d->(J_d = J[d]) Xs = start(X) @inbounds @nloops $N j d->J_d begin v, Xs = next(X, Xs) @ncall $N setindex! A v j end A end end @propagate_inbounds function _getindex{T,N}(l::LinearIndexing, A::AbstractArray{T,N}, I::Union{Real,AbstractArray,Colon,CartesianIndex}...) getindex(A, IteratorsMD.flatten(I)...) end @propagate_inbounds function _setindex!{T,N}(l::LinearIndexing, A::AbstractArray{T,N}, v, I::Union{Real,AbstractArray,Colon,CartesianIndex}...) setindex!(A, v, IteratorsMD.flatten(I)...) end ## @generated function findn{T,N}(A::AbstractArray{T,N}) quote nnzA = countnz(A) @nexprs $N d->(I_d = Array{Int}(nnzA)) k = 1 @nloops $N i A begin @inbounds if (@nref $N A i) != zero(T) @nexprs $N d->(I_d[k] = i_d) k += 1 end end @ntuple $N I end end for (f, fmod, op) = ((:cummin, :_cummin!, :min), (:cummax, :_cummax!, :max)) @eval function ($f)(v::AbstractVector) n = length(v) cur_val = v[1] res = similar(v, n) res[1] = cur_val for i in 2:n cur_val = ($op)(v[i], cur_val) res[i] = cur_val end return res end @eval function ($f)(A::AbstractArray, axis::Integer) axis > 0 || throw(ArgumentError("axis must be a positive integer")) res = similar(A) axis > ndims(A) && return copy!(res, A) inds = indices(A) if isempty(inds[axis]) return res end R1 = CartesianRange(inds[1:axis-1]) R2 = CartesianRange(inds[axis+1:end]) ($fmod)(res, A, R1, R2, axis) end @eval @noinline function ($fmod)(res, A::AbstractArray, R1::CartesianRange, R2::CartesianRange, axis::Integer) inds = indices(A, axis) i1 = first(inds) for I2 in R2 for I1 in R1 res[I1, i1, I2] = A[I1, i1, I2] end for i = i1+1:last(inds) for I1 in R1 res[I1, i, I2] = ($op)(A[I1, i, I2], res[I1, i-1, I2]) end end end res end @eval ($f)(A::AbstractArray) = ($f)(A, 1) end """ cumsum(A, dim=1) Cumulative sum along a dimension `dim` (defaults to 1). See also [`cumsum!`](:func:`cumsum!`) to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow). ```jldoctest julia> a = [1 2 3; 4 5 6] 2×3 Array{Int64,2}: 1 2 3 4 5 6 julia> cumsum(a,1) 2×3 Array{Int64,2}: 1 2 3 5 7 9 julia> cumsum(a,2) 2×3 Array{Int64,2}: 1 3 6 4 9 15 ``` """ cumsum{T}(A::AbstractArray{T}, axis::Integer=1) = cumsum!(similar(A, Base.rcum_promote_type(+, T)), A, axis) cumsum!(B, A::AbstractArray) = cumsum!(B, A, 1) """ cumprod(A, dim=1) Cumulative product along a dimension `dim` (defaults to 1). See also [`cumprod!`](:func:`cumprod!`) to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow). ```jldoctest julia> a = [1 2 3; 4 5 6] 2×3 Array{Int64,2}: 1 2 3 4 5 6 julia> cumprod(a,1) 2×3 Array{Int64,2}: 1 2 3 4 10 18 julia> cumprod(a,2) 2×3 Array{Int64,2}: 1 2 6 4 20 120 ``` """ cumprod(A::AbstractArray, axis::Integer=1) = cumprod!(similar(A), A, axis) cumprod!(B, A) = cumprod!(B, A, 1) cumsum!(B, A, axis::Integer) = cumop!(+, B, A, axis) cumprod!(B, A, axis::Integer) = cumop!(*, B, A, axis) function cumop!(op, B, A, axis::Integer) axis > 0 || throw(ArgumentError("axis must be a positive integer")) inds_t = indices(A) indices(B) == inds_t || throw(DimensionMismatch("shape of B must match A")) axis > ndims(A) && return copy!(B, A) isempty(inds_t[axis]) && return B if axis == 1 # We can accumulate to a temporary variable, which allows # register usage and will be slightly faster ind1 = inds_t[1] @inbounds for I in CartesianRange(tail(inds_t)) tmp = convert(eltype(B), A[first(ind1), I]) B[first(ind1), I] = tmp for i_1 = first(ind1)+1:last(ind1) tmp = op(tmp, A[i_1, I]) B[i_1, I] = tmp end end else R1 = CartesianRange(indices(A)[1:axis-1]) # not type-stable R2 = CartesianRange(indices(A)[axis+1:end]) _cumop!(op, B, A, R1, inds_t[axis], R2) # use function barrier end return B end @noinline function _cumop!(op, B, A, R1, ind, R2) # Copy the initial element in each 1d vector along dimension `axis` i = first(ind) @inbounds for J in R2, I in R1 B[I, i, J] = A[I, i, J] end # Accumulate @inbounds for J in R2, i in first(ind)+1:last(ind), I in R1 B[I, i, J] = op(B[I, i-1, J], A[I, i, J]) end B end ### from abstractarray.jl function fill!{T}(A::AbstractArray{T}, x) xT = convert(T, x) for I in eachindex(A) @inbounds A[I] = xT end A end function copy!{T,N}(dest::AbstractArray{T,N}, src::AbstractArray{T,N}) @boundscheck checkbounds(dest, indices(src)...) for I in eachindex(linearindexing(src,dest), src) @inbounds dest[I] = src[I] end dest end function copy!(dest::AbstractArray, Rdest::CartesianRange, src::AbstractArray, Rsrc::CartesianRange) isempty(Rdest) && return dest size(Rdest) == size(Rsrc) || throw(ArgumentError("source and destination must have same size (got $(size(Rsrc)) and $(size(Rdest)))")) @boundscheck checkbounds(dest, Rdest.start) @boundscheck checkbounds(dest, Rdest.stop) @boundscheck checkbounds(src, Rsrc.start) @boundscheck checkbounds(src, Rsrc.stop) deltaI = Rdest.start - Rsrc.start for I in Rsrc @inbounds dest[I+deltaI] = src[I] end dest end # circshift! circshift!(dest::AbstractArray, src, ::Tuple{}) = copy!(dest, src) """ circshift!(dest, src, shifts) Circularly shift the data in `src`, storing the result in `dest`. `shifts` specifies the amount to shift in each dimension. The `dest` array must be distinct from the `src` array (they cannot alias each other). See also `circshift`. """ @noinline function circshift!{T,N}(dest::AbstractArray{T,N}, src, shiftamt::DimsInteger) dest === src && throw(ArgumentError("dest and src must be separate arrays")) inds = indices(src) indices(dest) == inds || throw(ArgumentError("indices of src and dest must match (got $inds and $(indices(dest)))")) _circshift!(dest, (), src, (), inds, fill_to_length(shiftamt, 0, Val{N})) end circshift!(dest::AbstractArray, src, shiftamt) = circshift!(dest, src, (shiftamt...,)) # For each dimension, we copy the first half of src to the second half # of dest, and the second half of src to the first half of dest. This # uses a recursive bifurcation strategy so that these splits can be # encoded by ranges, which means that we need only one call to `mod` # per dimension rather than one call per index. # `rdest` and `rsrc` are tuples-of-ranges that grow one dimension at a # time; when all the dimensions have been filled in, you call `copy!` # for that block. In other words, in two dimensions schematically we # have the following call sequence (--> means a call): # circshift!(dest, src, shiftamt) --> # _circshift!(dest, src, ("first half of dim1",)) --> # _circshift!(dest, src, ("first half of dim1", "first half of dim2")) --> copy! # _circshift!(dest, src, ("first half of dim1", "second half of dim2")) --> copy! # _circshift!(dest, src, ("second half of dim1",)) --> # _circshift!(dest, src, ("second half of dim1", "first half of dim2")) --> copy! # _circshift!(dest, src, ("second half of dim1", "second half of dim2")) --> copy! @inline function _circshift!(dest, rdest, src, rsrc, inds::Tuple{AbstractUnitRange,Vararg{Any}}, shiftamt::Tuple{Integer,Vararg{Any}}) ind1, d = inds[1], shiftamt[1] s = mod(d, length(ind1)) sf, sl = first(ind1)+s, last(ind1)-s r1, r2 = first(ind1):sf-1, sf:last(ind1) r3, r4 = first(ind1):sl, sl+1:last(ind1) tinds, tshiftamt = tail(inds), tail(shiftamt) _circshift!(dest, (rdest..., r1), src, (rsrc..., r4), tinds, tshiftamt) _circshift!(dest, (rdest..., r2), src, (rsrc..., r3), tinds, tshiftamt) end # At least one of inds, shiftamt is empty function _circshift!(dest, rdest, src, rsrc, inds, shiftamt) copy!(dest, CartesianRange(rdest), src, CartesianRange(rsrc)) end # circcopy! """ circcopy!(dest, src) Copy `src` to `dest`, indexing each dimension modulo its length. `src` and `dest` must have the same size, but can be offset in their indices; any offset results in a (circular) wraparound. If the arrays have overlapping indices, then on the domain of the overlap `dest` agrees with `src`. ```julia julia> src = reshape(collect(1:16), (4,4)) 4×4 Array{Int64,2}: 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 julia> dest = OffsetArray{Int}((0:3,2:5)) julia> circcopy!(dest, src) OffsetArrays.OffsetArray{Int64,2,Array{Int64,2}} with indices 0:3×2:5: 8 12 16 4 5 9 13 1 6 10 14 2 7 11 15 3 julia> dest[1:3,2:4] == src[1:3,2:4] true ``` """ function circcopy!(dest, src) dest === src && throw(ArgumentError("dest and src must be separate arrays")) indssrc, indsdest = indices(src), indices(dest) if (szsrc = map(length, indssrc)) != (szdest = map(length, indsdest)) throw(DimensionMismatch("src and dest must have the same sizes (got $szsrc and $szdest)")) end shift = map((isrc, idest)->first(isrc)-first(idest), indssrc, indsdest) all(x->x==0, shift) && return copy!(dest, src) _circcopy!(dest, (), indsdest, src, (), indssrc) end # This uses the same strategy described above for _circshift! @inline function _circcopy!(dest, rdest, indsdest::Tuple{AbstractUnitRange,Vararg{Any}}, src, rsrc, indssrc::Tuple{AbstractUnitRange,Vararg{Any}}) indd1, inds1 = indsdest[1], indssrc[1] l = length(indd1) s = mod(first(inds1)-first(indd1), l) sdf = first(indd1)+s rd1, rd2 = first(indd1):sdf-1, sdf:last(indd1) ssf = last(inds1)-s rs1, rs2 = first(inds1):ssf, ssf+1:last(inds1) tindsd, tindss = tail(indsdest), tail(indssrc) _circcopy!(dest, (rdest..., rd1), tindsd, src, (rsrc..., rs2), tindss) _circcopy!(dest, (rdest..., rd2), tindsd, src, (rsrc..., rs1), tindss) end # At least one of indsdest, indssrc are empty (and both should be, since we've checked) function _circcopy!(dest, rdest, indsdest, src, rsrc, indssrc) copy!(dest, CartesianRange(rdest), src, CartesianRange(rsrc)) end ### BitArrays ## getindex # contiguous multidimensional indexing: if the first dimension is a range, # we can get some performance from using copy_chunks! @inline function _unsafe_getindex!(X::BitArray, B::BitArray, I0::Union{UnitRange{Int},Colon}) copy_chunks!(X.chunks, 1, B.chunks, indexoffset(I0)+1, index_lengths(B, I0)[1]) return X end # Optimization where the inner dimension is contiguous improves perf dramatically @generated function _unsafe_getindex!(X::BitArray, B::BitArray, I0::Union{Colon,UnitRange{Int}}, I::Union{Int,UnitRange{Int},Colon}...) N = length(I) quote $(Expr(:meta, :inline)) @nexprs $N d->(I_d = I[d]) idxlens = @ncall $N index_lengths B I0 d->I[d] f0 = indexoffset(I0)+1 l0 = idxlens[1] gap_lst_1 = 0 @nexprs $N d->(gap_lst_{d+1} = idxlens[d+1]) stride = 1 ind = f0 @nexprs $N d->begin stride *= size(B, d) stride_lst_d = stride ind += stride * indexoffset(I_d) gap_lst_{d+1} *= stride end storeind = 1 Xc, Bc = X.chunks, B.chunks @nloops($N, i, d->(1:idxlens[d+1]), d->nothing, # PRE d->(ind += stride_lst_d - gap_lst_d), # POST begin # BODY copy_chunks!(Xc, storeind, Bc, ind, l0) storeind += l0 end) return X end end # in the general multidimensional non-scalar case, can we do about 10% better # in most cases by manually hoisting the bitarray chunks access out of the loop # (This should really be handled by the compiler or with an immutable BitArray) @generated function _unsafe_getindex!(X::BitArray, B::BitArray, I::Union{Int,AbstractArray{Int},Colon}...) N = length(I) quote $(Expr(:meta, :inline)) stride_1 = 1 @nexprs $N d->(stride_{d+1} = stride_d*size(B, d)) $(Symbol(:offset_, N)) = 1 ind = 0 Xc, Bc = X.chunks, B.chunks idxlens = @ncall $N index_lengths B d->I[d] @nloops $N i d->(1:idxlens[d]) d->(@inbounds offset_{d-1} = offset_d + (I[d][i_d]-1)*stride_d) begin ind += 1 unsafe_bitsetindex!(Xc, unsafe_bitgetindex(Bc, offset_0), ind) end return X end end ## setindex! # contiguous multidimensional indexing: if the first dimension is a range, # we can get some performance from using copy_chunks! @inline function setindex!(B::BitArray, X::Union{BitArray,Array}, I0::Union{Colon,UnitRange{Int}}) @boundscheck checkbounds(B, I0) l0 = index_lengths(B, I0)[1] setindex_shape_check(X, l0) l0 == 0 && return B f0 = indexoffset(I0)+1 copy_to_bitarray_chunks!(B.chunks, f0, X, 1, l0) return B end @inline function setindex!(B::BitArray, x, I0::Union{Colon,UnitRange{Int}}) @boundscheck checkbounds(B, I0) y = Bool(x) l0 = index_lengths(B, I0)[1] l0 == 0 && return B f0 = indexoffset(I0)+1 fill_chunks!(B.chunks, y, f0, l0) return B end @inline function setindex!(B::BitArray, X::Union{BitArray,Array}, I0::Union{Colon,UnitRange{Int}}, I::Union{Int,UnitRange{Int},Colon}...) @boundscheck checkbounds(B, I0, I...) _unsafe_setindex!(B, X, I0, I...) end @generated function _unsafe_setindex!(B::BitArray, X::Union{BitArray,Array}, I0::Union{Colon,UnitRange{Int}}, I::Union{Int,UnitRange{Int},Colon}...) N = length(I) rangeexp = [I[d] === Colon ? :(1:size(B, $(d+1))) : :(I[$d]) for d = 1:N] quote idxlens = @ncall $N index_lengths B I0 d->I[d] @ncall $N setindex_shape_check X idxlens[1] d->idxlens[d+1] isempty(X) && return B f0 = indexoffset(I0)+1 l0 = idxlens[1] gap_lst_1 = 0 @nexprs $N d->(gap_lst_{d+1} = idxlens[d+1]) stride = 1 ind = f0 @nexprs $N d->begin stride *= size(B, d) stride_lst_d = stride ind += stride * indexoffset(I[d]) gap_lst_{d+1} *= stride end refind = 1 Bc = B.chunks @nloops($N, i, d->$rangeexp[d], d->nothing, # PRE d->(ind += stride_lst_d - gap_lst_d), # POST begin # BODY copy_to_bitarray_chunks!(Bc, ind, X, refind, l0) refind += l0 end) return B end end @inline function setindex!(B::BitArray, x, I0::Union{Colon,UnitRange{Int}}, I::Union{Int,UnitRange{Int},Colon}...) @boundscheck checkbounds(B, I0, I...) _unsafe_setindex!(B, x, I0, I...) end @generated function _unsafe_setindex!(B::BitArray, x, I0::Union{Colon,UnitRange{Int}}, I::Union{Int,UnitRange{Int},Colon}...) N = length(I) rangeexp = [I[d] === Colon ? :(1:size(B, $(d+1))) : :(I[$d]) for d = 1:N] quote y = Bool(x) idxlens = @ncall $N index_lengths B I0 d->I[d] f0 = indexoffset(I0)+1 l0 = idxlens[1] l0 == 0 && return B @nexprs $N d->(isempty(I[d]) && return B) gap_lst_1 = 0 @nexprs $N d->(gap_lst_{d+1} = idxlens[d+1]) stride = 1 ind = f0 @nexprs $N d->begin stride *= size(B, d) stride_lst_d = stride ind += stride * indexoffset(I[d]) gap_lst_{d+1} *= stride end @nloops($N, i, d->$rangeexp[d], d->nothing, # PRE d->(ind += stride_lst_d - gap_lst_d), # POST fill_chunks!(B.chunks, y, ind, l0) # BODY ) return B end end ## findn @generated function findn{N}(B::BitArray{N}) quote nnzB = countnz(B) I = ntuple(x->Array{Int}(nnzB), $N) if nnzB > 0 count = 1 @nloops $N i B begin if (@nref $N B i) # TODO: should avoid bounds checking @nexprs $N d->(I[d][count] = i_d) count += 1 end end end return I end end ## isassigned @generated function isassigned(B::BitArray, I_0::Int, I::Int...) N = length(I) quote @nexprs $N d->(I_d = I[d]) stride = 1 index = I_0 @nexprs $N d->begin l = size(B,d) stride *= l 1 <= I_{d-1} <= l || return false index += (I_d - 1) * stride end return isassigned(B, index) end end ## permutedims ## Permute array dims ## function permutedims(B::StridedArray, perm) dimsB = size(B) ndimsB = length(dimsB) (ndimsB == length(perm) && isperm(perm)) || throw(ArgumentError("no valid permutation of dimensions")) dimsP = ntuple(i->dimsB[perm[i]], ndimsB)::typeof(dimsB) P = similar(B, dimsP) permutedims!(P, B, perm) end function checkdims_perm{TP,TB,N}(P::AbstractArray{TP,N}, B::AbstractArray{TB,N}, perm) indsB = indices(B) length(perm) == N || throw(ArgumentError("expected permutation of size $N, but length(perm)=$(length(perm))")) isperm(perm) || throw(ArgumentError("input is not a permutation")) indsP = indices(P) for i = 1:length(perm) indsP[i] == indsB[perm[i]] || throw(DimensionMismatch("destination tensor of incorrect size")) end nothing end for (V, PT, BT) in [((:N,), BitArray, BitArray), ((:T,:N), Array, StridedArray)] @eval @generated function permutedims!{$(V...)}(P::$PT{$(V...)}, B::$BT{$(V...)}, perm) quote checkdims_perm(P, B, perm) #calculates all the strides strides_1 = 0 @nexprs $N d->(strides_{d+1} = stride(B, perm[d])) #Creates offset, because indexing starts at 1 offset = 1 - sum(@ntuple $N d->strides_{d+1}) if isa(B, SubArray) offset += first_index(B::SubArray) - 1 B = B.parent end ind = 1 @nexprs 1 d->(counts_{$N+1} = strides_{$N+1}) # a trick to set counts_($N+1) @nloops($N, i, P, d->(counts_d = strides_d), # PRE d->(counts_{d+1} += strides_{d+1}), # POST begin # BODY sumc = sum(@ntuple $N d->counts_{d+1}) @inbounds P[ind] = B[sumc+offset] ind += 1 end) return P end end end ## unique across dim # TODO: this doesn't fit into the new hashing scheme in any obvious way immutable Prehashed hash::UInt end hash(x::Prehashed) = x.hash """ unique(itr[, dim]) Returns an array containing only the unique elements of the iterable `itr`, in the order that the first of each set of equivalent elements originally appears. If `dim` is specified, returns unique regions of the array `itr` along `dim`. """ @generated function unique{T,N}(A::AbstractArray{T,N}, dim::Int) inds = inds -> zeros(UInt, inds) quote 1 <= dim <= $N || return copy(A) hashes = similar($inds, indices(A, dim)) # Compute hash for each row k = 0 @nloops $N i A d->(if d == dim; k = i_d; end) begin @inbounds hashes[k] = hash(hashes[k], hash((@nref $N A i))) end # Collect index of first row for each hash uniquerow = similar(Array{Int}, indices(A, dim)) firstrow = Dict{Prehashed,Int}() for k = indices(A, dim) uniquerow[k] = get!(firstrow, Prehashed(hashes[k]), k) end uniquerows = collect(values(firstrow)) # Check for collisions collided = similar(falses, indices(A, dim)) @inbounds begin @nloops $N i A d->(if d == dim k = i_d j_d = uniquerow[k] else j_d = i_d end) begin if (@nref $N A j) != (@nref $N A i) collided[k] = true end end end if any(collided) nowcollided = similar(BitArray, indices(A, dim)) while any(collided) # Collect index of first row for each collided hash empty!(firstrow) for j = indices(A, dim) collided[j] || continue uniquerow[j] = get!(firstrow, Prehashed(hashes[j]), j) end for v in values(firstrow) push!(uniquerows, v) end # Check for collisions fill!(nowcollided, false) @nloops $N i A d->begin if d == dim k = i_d j_d = uniquerow[k] (!collided[k] || j_d == k) && continue else j_d = i_d end end begin if (@nref $N A j) != (@nref $N A i) nowcollided[k] = true end end (collided, nowcollided) = (nowcollided, collided) end end @nref $N A d->d == dim ? sort!(uniquerows) : (indices(A, d)) end end indexoffset(i) = first(i)-1 indexoffset(::Colon) = 0 """ extrema(A,dims) -> Array{Tuple} Compute the minimum and maximum elements of an array over the given dimensions. """ function extrema(A::AbstractArray, dims) sz = [size(A)...] sz[[dims...]] = 1 B = Array{Tuple{eltype(A),eltype(A)}}(sz...) return extrema!(B, A) end @generated function extrema!{T,N}(B, A::AbstractArray{T,N}) return quote sA = size(A) sB = size(B) @nloops $N i B begin AI = @nref $N A i (@nref $N B i) = (AI, AI) end Bmax = sB Istart = ones(Int,ndims(A)) Istart[([sB...].==1) & ([sA...].!=1)] = 2 @inbounds @nloops $N i d->(Istart[d]:size(A,d)) begin AI = @nref $N A i @nexprs $N d->(j_d = min(Bmax[d], i_{d})) BJ = @nref $N B j if AI < BJ[1] (@nref $N B j) = (AI, BJ[2]) elseif AI > BJ[2] (@nref $N B j) = (BJ[1], AI) end end return B end end