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Summary.

We are four art consultants analyzing the prices of auctioned paintings
in Paris from the years 1764 to 1780. The principal objective of our
analysis is to predict the final sale price of auctioned paintings in 18th
century Paris, identifying the driving factors of painting prices and
thereby determining instances of under- and over-valuation.

Data.

The data utilized in the analysis is provided by Hilary Coe Cronheim
and Sandra van Ginhoven, Duke University Art, Art History & Visual
Studies PhD students, as part of the Data Expeditions project spon-
sored by the Rhodes Information Initiative at Duke. To begin, there
are three subsets of the complete data set - one subset for training,
one subset for testing, and one subset for validation. The training sub-
set, which is utilized during exploratory data analysis and initial mod-
elling, is comprised of 1,500 observations (paintings) of 59 variables
that provide information pertaining to the origin and characteristics of
the artworks.1 1 Detailed descriptions of all variables

are available in the attached MD file,
paris_painting_codebook.md.

Research Question.

What are significant predictors for the final auction sale of a given
painting in Paris from the years 1764 to 1780? Is the resulting statis-
tical model diagnostically adequate for the prediction of the sale price
for a given painting?

Why Our Work is Important.

“Speaking in the most basic economic terms, high demand and a
shortage of supply creates high prices for artworks. Art is inherently
unique because there is a limited supply on the market at any given
time” 2. Indisputably, art is extremely important across cultural and 2 referenced from “Art Demys-

tified: What Determines an
Artwork’s Value?”, available at
https://news.artnet.com/market/
art-demystified-artworks-value-533990

economic spheres. Art history provides exposure to and generates
appreciation for historical eras and global culture, and thus correct
art valuation provides a standard metric for both the trained and the
untrained eye to distinguish amongst historical artworks, consequently
influencing the framework of modern art as well.

https://news.artnet.com/market/art-demystified-artworks-value-533990
https://news.artnet.com/market/art-demystified-artworks-value-533990
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Exploratory Data Analysis.

Using EDA and any numerical summaries, get to know the data -
identify what you might consider the 10 best variables for predicting
logprice using scatterplots with other variables represented using
colors or symbols, scatterplot matrices or conditioning plots.

Response Variable.

To begin, we analyze the selected response variable, price, and the
log-transformation of price, to ensure that the response variable is
approximately normally distributed.
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Figure 1: Histogram of Painting Price
Fetched at Auction (Sales Price in
Livres)
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Figure 2: Normal probability plot of
Painting Price Fetched at Auction
(Sales Price in Livres)

From Figure 1, we observe that the distribution of the variable
price, with range from 1 to 29000 (note: 1 livre sterling is approx-
imately equal to $1.30 U.S. dollars), is strongly skewed to the right.
This is corroborated by the normal probability plot for the data, which
fails to conform to a linear trend. This is expected, as it is reason-
able to assume that on average, prices of paintings at auction will
fall within a reasonable budget range: the entire range, however, has
a lower bound greater than 0 and potentially no upper bound - the
price can be whatever an individual is willing and able to pay for a
particular painting.

Given the histogram for price is strongly skewed, we now consider
the log-transformation of the variable. Logarithmic transformation is
a convenient means of transforming a highly skewed variable into a
more closely normally-distributed variable, and this transformation is
commonly used in economics and business for price data.
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Figure 3: Histogram of Log Painting
Price Fetched at Auction (Sales Price
in Livres)
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Figure 4: Normal probability plot of
Log Painting Price Fetched at Auction
(Sales Price in Livres)

The histogram of the variable logprice now exhibits significantly
less skew, and much more closely approximates the normal distribu-
tion. We also observe that the normal probability plot for the data
follows a general linear trend, except in the tail areas of the distri-
bution. We conclude that the conditions for inference regarding the
distribution of the variable of interest are sufficiently met, and we
continue with the exploratory data analysis.

Data Manipulation.

To begin data manipulation, we categorize variables based on data
type and analyze.

We first consider all character variables. We observe that the vari-
able lot should be numeric. We then determine which character
variables should be categorical factor variables, where the number
of unique levels is restricted to less than 153(this is an arbitrary cut- 3 We omit variables sale, subject,

authorstandard, material, mat at this
step. Further analysis determines that
these variables cause multicollinear-
ity and interpretability issues, and
furthermore do not have sufficient
numbers of observations in all levels
to generate robust estimates.

off point, but is necessary - variables with too many levels will not
have enough observations in every level to generate robust estimates).
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To initially handle “NA” and blank observations, we:

• impute a value of “Unknown” to all “n/a” variables for authorstyle,

• a value of unknown (“X”) to all blank observations for winningbiddertype,

• a value of unknown (“X”) to all blank observations for endbuyer,

• a value of “Unknown” to all blank observations for type_intermed,

• a value of “Other” to all blank observations for Shape, and

• a value of “other” to all blank observations for materialCat. DataType Count

character 17
categorical 10
continuous 32

Our initial data analysis reveals that there are 7 unique levels
for the variable Shape. We observe that two levels are “round” and
“ronde”, and two levels are “oval” and “ovale”. We learn that “ronde”
is the French word for “round” and “ovale” is the French word for
“oval”, and thus we combine observations in the respective levels. The
resulting levels are: “squ_rect”, “round”, “oval”, “octagon”, “minia-
ture”, and “Other”.

Similarly, multiple levels of the variable authorstyle are quite
similar: “in the taste of”, “in the taste”, and “taste of”: thus, we
group all of these unique levels into one level, “in the taste of”. A
summary table of the character variables is presented below.

We then coerce all variables in the character type data frame to be
of type factor. Summary of All Initial Character

Variables. Note that here X and Un-
known both stand for missingness or
data not available. Such imputation
may lead to bias in prediction. We
should be careful with these variables.

dealer origin_author origin_cat school_pntg

J:201 A : 7 D/FL:594 A : 1
L:263 D/FL:590 F :483 D/FL:658
P: 93 F :578 I :170 F :608
R:943 G : 26 O :251 G : 1

I :159 S : 2 I :193
S : 11 S : 2
X :129 X : 37

authorstyle winningbiddertype endbuyer type_intermed Shape materialCat

Unknown :1417 D :464 B: 14 B : 11 miniature: 2 canvas:731
after : 26 X :395 C:326 D : 94 octagon : 1 copper:131
in the taste of : 19 C :189 D:470 E : 39 Other : 20 other :229
copy after : 10 U :168 E:127 EB : 1 oval : 19 wood :409
attributed to : 7 E :127 U:168 Unknown:1355 round : 30
in the manner of: 7 DC : 89 X:395 squ_rect :1428
(Other) : 14 (Other): 68
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Missing Data.

We now identify factor, continuous, and discrete numeric variables,
and generate a large data frame with all variables coerced to appro-
priate type. Let us determine which variables have unknown and/or
missing data:
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Figure 5: Determining NA Observa-
tions in the Data

From Figure 5, we observe that the variables authorstyle, type_intermed,
Interm, Height_in, Width_in, Surface_Rect, Diam_in, Surface_Rnd
and Surface all have unknown and/or missing data. We will analyze
these variables further, beginning with authorstyle.

From Figure 6 we observe that data is not missing at random; the
missingness is associated with our response. Thus, we cannot simply
omit observations and we need to further analyze these predictors.
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endbuyer materialCat
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Figure 6: Missingness Effect on
Response
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Figure 7: Counts of Author Style for
Auctioned Paintings

From Figure 7, we observe that the majority of the observations
for the variable authorstyle are “Unknown”, with very few (or no)
observations in the remaining levels. Consequently, this variable will
likely not contribute much information for the prediction of logprice
in any specified model, and the minimal number of observations in-
cluded in the levels may generate extreme standard errors. Given this,
we select not to include this term in model specification.

We will continue to analyze variables in the data set with significant
numbers of NA observations.

Here, we observe that the majority of observations for Diam_in, the
diameter of a painting in inches, and Surface_Rnd, the surface of a
round painting, are NA. We note that the variable Surface, the surface
of a painting in squared inches, effectively captures information for the
size of a given painting. Including this variable in subsequent model
specification captures information provided by the following variables:
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Height_in, Width_in, Surface_Rect and Surface_Rnd. Thus, we will
include Surface in subsequent model specification and omit variables
that are directly related to Surface to avoid issues of multicollinearity.

V ariable NumberofMissing

Diam_in 1469
Surface_Rnd 1374For “NA” values in Surface, we use the package “mice”4 in R.

4 MICE is utilized under the assump-
tion that the missing data are Missing
at Random, MAR, and integrates the
uncertainty within this assumption
into its multiple imputation algorithm
(referenced at https://stats.idre.
ucla.edu/wp-content/uploads/2016/
02/multipleimputation.pdf).

MICE, Multivariate Imputation via Chained Equations, is considered
more robust than imputing a single value (in practice, the mean of the
data) for every missing value.
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Figure 8: Painting Price and Interme-
diary Involvement

We now consider Interm, a binary variable that indicates whether
an intermediary is involved in the transaction of a painting. This
variable consists of 395 NA observations, 960 0 (no) observations, and
145 1 (yes) observations. Given this, we observe that many auctioned
painting sales appear to occur without the involvement of an inter-
mediary. This information is directly related to type_intermed, the
type of intermediary (B = buyer, D = dealer, E = expert), and is
only valid for the observations where an intermediary is involved
in the transaction of a painting. Consequently, we select to omit
type_intermed from the data set. However, we do note that the
variable intermediary may provide information for the prediction of
logprice, as Figure 8 indicates that the median sale price for paint-
ings where an intermediary is involved is noticeably higher than the
median sale price for paintings where an intermediary is not involved.
While the variability is quite high for both the “No” and “Yes” levels,
the boxplot where an intermediary is not involved does not exhibit
significant skew, while the boxplot where an intermediary is involved
exhibits left skew.
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Figure 9: Painting Price and Material
Category

We now look at information pertaining to painting material. We
observe that there are initially 3 variables in the data set that pertain
to painting material: material, materialCat, and mat. The levels
of material are in French, and the English translations are precisely
the levels of the variable materialCat. Additionally, we see that the
variable mat is comprised of more levels (17, excluding “blank” and
“n/a”) than the variable materialCat, and thus is not included in our
data frame (restriction of levels < 15). Let us determine if the variable
materialCat lends information for painting price.

From Figure 9, we observe that the material category with the
greatest number of observations is canvas, and the material category
with the least number of observations is copper. However, the box-
plot indicates that paintings with copper material maintain higher
mean sale prices than paintings with canvas material; this may give
evidence to the statement that “shortage of supply creates high prices
for artworks”.

Finally, we determine that year should be a categorical variable in
the data set. While time variables can be either quantitative or quali-
tative, it is best practice to consider year as a categorical variable: the

https://stats.idre.ucla.edu/wp-content/uploads/2016/02/multipleimputation.pdf
https://stats.idre.ucla.edu/wp-content/uploads/2016/02/multipleimputation.pdf
https://stats.idre.ucla.edu/wp-content/uploads/2016/02/multipleimputation.pdf
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year 1764, for example, is not an explicit measurement of 1,764 units:
it is an indicator of the year of sale for a given painting. The range
of year is (1764, 1780), which creates a factor variable with 17 levels.
Given this, we opt to generate a new variable, YearFactor, with 6
levels:

Level 1: 1764, 1765, 1766
Level 2: 1767, 1768, 1769
Level 3: 1770, 1771, 1772
Level 4: 1773, 1774, 1775
Level 5: 1776, 1777
Level 6: 1778, 1779, 1780
This level determination, while not perfectly equal, maintains

n > 100 observations in each level. Overall, we feel that potentially
important time trends may be lost if the levels are split homogenously
(resulting in year breaks), and so we opt for simple level grouping.
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Figure 10: Transformation of Year to
Group Factor

Identification of Important Variables for the Prediction of Painting
Price.

A boxplot matrix of selected variables of character type for subsequent
model specification:
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Boxplot of Character type predictors

We note that different levels of dealer appear to have different
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medians of sale prices, with dealer “R” maintaining a higher median
sale price than other dealers. We also note that paintings with Span-
ish author, origin classification, and school of painting appear to have
noticeably higher median sale prices than other authors, origin clas-
sifications, and schools of painting (however, we know that there are
limited observations pertaining to Spanish author and origin classifica-
tions in the data set, so this may not be a robust indication). Overall,
all plots indicate trends within the variables that may be important
for prediction of the auction price of paintings.

A boxplot matrix of selected variables of binary factor type for
subsequent model specification:
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Summary Matrix for Binary Factor Variables

As expected, observations that equal 0 for all binary variables do
not contribute information for the auction price of paintings. We note
that the variables lrgfont, if a dealer devotes an additional paragraph
(always written in a larger font size) about a given painting in a cat-
alogue, Interm, if an intermediary is involved in the transaction of a
painting, and prevcoll, if the previous owner of a given painting is
mentioned, all have higher medians and higher price ranges with less
variability than the other included variables. We also note that the
variable history, if a description includes elements of history paint-
ing, appears to be associated with a lower median price on average.
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A scatterplot matrix of the selected variables of continuous numeric
type for subsequent model specification:
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Scatter Plot Matrix for Continuous Numerical Variables

The variable nfigures refers to the number of figures portrayed in
a given painting, if specified. Here, we observe that many paintings
do not include any specified figures, and the prices for these paintings
fall along the entire range of logprice. There may be a slight positive
trend for paintings that do include figures. Given that this is a count
variable with many zeroes, it is not appropriate to transform; previous
research has shown that log-transformed count data generally performs
poorly in model specification5. 5 see O’Hara and Kotze, https:

//besjournals.onlinelibrary.
wiley.com/doi/full/10.1111/j.
2041-210X.2010.00021.x

Continuing, we observe that the plot for position is a null plot
with no trend. The plot for Surface indicates that there may be an
association between the surface of a painting in squared inches and
the price. Given the large range of the variable with several orders of
magnitude, Surface should likely be log-transformed.

To further validate the transformation of Surface, we use the
“powerTransform” method. The “powerTransform” function in R
considers transformations of all variables simultaneously: both the
explanatory variables and the selected response variable. This method
operates under the idea that if the normality of the joint distribution
of (Y, X) is improved, the normality of the conditional distribution
of (Y|X) is improved. The output of the function shows the exact
lambda value to which each variable should be respectively exponen-
tiated. This makes for a quite confusing model that would be difficult
to interpret. So, we consider the output values by the following rules:

• If an output value is close to 1, there is not strong evidence that a
variable transformation is required.

• If an output value is close to 0.5, there is evidence that a square
root transformation of the variable may be required.

• If an output is close to 0, there is evidence that a log transforma-

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.2041-210X.2010.00021.x
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.2041-210X.2010.00021.x
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.2041-210X.2010.00021.x
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.2041-210X.2010.00021.x
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tion of the variable may be required.

Table 5: Power Transformation

Suggest Order

logprice 0.8797628
Surface 0.0528417

From the results of the “powerTransform” method, we conclude
that logprice does not need to be further transformed (as expected,
given that this variable has already been log-transformed) and Surface
should be log-transformed.
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Figure 11: Surface of Painting in
Squared Inches, Log Transformation

To further analyze potentially important predictor variables for
logprice, we generate a random forest model. From the associated
variable importance plot, we observe that the 10 variables resulting
in the greatest increase in MSE are YearFactor, Surface, dealer,
lrgfont, position, endbuyer, origin_author, materialCat, paired,
and finished.
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Figure 12: Variable Importance based
on RandomForest

Discussion of Preliminary Model Part I.

The model we specified in Part I:
logprice ~ year + Surface + nfigures + engraved + prevcoll

+ paired + finished + relig + lands_sc + portrait + materialCat
+ year:finished + year:lrgfont + Surface:artistliving

For specification of this model, we used Akaike information crite-
rion (AIC) for initial variable selection. The AIC is designed to select
the model that produces a probability distribution with the least vari-



final data analysis ii 10

ability from the true population distribution6. While the AIC may 6 referenced from “Akaike Infor-
mation Criterion”, available at
https://www.sciencedirect.com/
topics/medicine-and-dentistry/
akaike-information-criterion

result in a fuller model than the Bayesian information criterion (BIC)
- which penalizes model complexity more heavily - the AIC crite-
rion may lead to higher predictive power. We then relied on Bayesian
model averaging (BMA), which averages over models in a model class
by posterior model probability to encompass the model uncertainty
inherent in the variable selection problem7, to extract the most impor- 7 referenced from “Package BMA”,

available at https://cran.r-project.
org/web/packages/BMA/BMA.pdf

tant variables for use in our linear model. We extracted variables by
obtaining the Highest Probability Model (HPM). Our resulting model
explained approximately 40% of the variation in the training data
(which we considered to be rather low, given the number of variables
included in the model), and maintained coverage and RMSE statistics
that were not better than the null model.

To improve upon our initial model, we now treat year as a factor
variable and include YearFactor (please refer to EDA for a compre-
hensive review of this variable) in model specification instead of year.
Furthermore, we log-transform Surface. Proper treatment and trans-
formation of these variables should improve our model.

Given that logprice is nearly normally distributed, we do not see
an immediate need to diverge from linear regression. Thus, we will
again use AIC and BMA for variable selection. However, we will ex-
tract variables through the Best Predictive Model (BPM) instead of
the HPM, as the BPM concludes with predictions that are closest to
the Bayesian model averaging under squared error loss. Additionally,
we will include more diagnostic plots to assess our model, and fur-
ther analyze potential interaction terms. Then, we will consider more
flexible modelling methods as needed.

Development and Assessment of Model.

With our initial modelling results and improved EDA, we decide to
further explore Bayesian model averaging.

To begin modeling, we use the “bas.lm” function to conduct Bayesian
adaptive sampling for Bayesian model averaging and variable selection
in linear models, via sampling without replacement from a posterior
distribution on models 8. We select the Bayesian information criterion 8 referenced from “bas.lm”, available

at https://www.rdocumentation.
org/packages/BAS/versions/1.5.3/
topics/bas.lm

(BIC) for the prior distributions of the coefficients in the regression
(approximation to the Bayes factor for large samples), and assume
the model prior distribution to be the uniform distribution. Selected
sampling method is Markov Chain Monte Carlo (MCMC). We choose
these priors because we do not have specific information that will in-
form our priors, and we want to generate a model with relatively high
predictive power. We specify a full model where:

• YearFactor is included and year is excluded,

https://www.sciencedirect.com/topics/medicine-and-dentistry/akaike-information-criterion
https://www.sciencedirect.com/topics/medicine-and-dentistry/akaike-information-criterion
https://www.sciencedirect.com/topics/medicine-and-dentistry/akaike-information-criterion
https://cran.r-project.org/web/packages/BMA/BMA.pdf
https://cran.r-project.org/web/packages/BMA/BMA.pdf
https://www.rdocumentation.org/packages/BAS/versions/1.5.3/topics/bas.lm
https://www.rdocumentation.org/packages/BAS/versions/1.5.3/topics/bas.lm
https://www.rdocumentation.org/packages/BAS/versions/1.5.3/topics/bas.lm
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• figures (binary) is excluded given its high association with nfigures
(number of figures in a given painting, if specified)

• origin_cat and school_pntg are excluded to avoid multicollinear-
ity issues with similar variable origin_author

## Warning in model.matrix.default(mt, mf,
## contrasts): non-list contrasts argument
## ignored
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Convergence Plot: Posterior Inclusion Probabilities
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Figure 13: Covergence Plot of BMA

The plot above indicates if the posterior inclusion probability has
converged under the Markov Chain Monte Carlo method. The poste-
rior inclusion probability is the sum of all posterior probabilities asso-
ciated with the models which includes a certain explanatory variable9. 9 referenced from “What’s the mean-

ing of a posterior inclusion probability
(PIP) in Bayesian?”, available at
https://www.animalgenome.org/edu/
concepts/PPI.php

From the plot, we observe that all of the points fall on the theoretical
convergence line, indicating that the number of MCMC iterations is
sufficient for the data in Bayesian model averaging and do not need to
be increased.

Next, we plot the marginal inclusion probability and model space:
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https://www.animalgenome.org/edu/concepts/PPI.php
https://www.animalgenome.org/edu/concepts/PPI.php
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Here, explanatory variables that significantly contribute to the
prediction of auction price for a given painting - that is, explana-
tory variables with high marginal inclusion probabilities - are high-
lighted in blue. From the plot, we observe that the intercept (by
default), dealer, origin_author, diff_origin, artistliving,
Interm, engraved, prevcoll, paired, finished, lrgfont, lands_sc,
portrait, still_life, Surface, and YearFactor all have marginal
inclusion probabilities greater than 0.5. The model space visualization
provides corroboration for the previous results.

The “bas.lm” algorithm leads to a hierarchical model that repre-
sents the full posterior uncertainty after viewing the data10. We now 10 definition referenced from “An

Introduction to Bayesian Thinking:
A Companion to the Statistics with
R Course”, available at https:
//statswithr.github.io/book/
stochastic-explorations-using-mcmc.
html#r-demo-on-bas-package

want to define and generate a concrete model, namely, the best pre-
dictive model (BPM). The BPM concludes with predictions that are
closest to the Bayesian model averaging under squared error loss. Af-
ter generating the BPM model, we output the names of the explana-
tory variables included in the model. These variables are: intercept
(by default), dealer, origin_author, diff_origin, artistliving,
Interm, engraved, prevcoll, paired, finished, lrgfont, lands_sc,
portrait, still_life, other, Surface, and YearFactor. This gener-
ally agrees with the Bayesian model averaging.

From this step, we fit a linear model with all variables identified by
BPM, with additional variables identified in BMA that we feel may
be important. We then use the Akaike information criterion (AIC) for
further variable selection. Using this more parsimonious model, we fit
a model with all possible two-way interactions to capture important
interaction trends that are prevalent within the model and again use
AIC to determine which variables and two-way interactions contribute
significant information for the prediction of auction price of a given
painting.

https://statswithr.github.io/book/stochastic-explorations-using-mcmc.html#r-demo-on-bas-package
https://statswithr.github.io/book/stochastic-explorations-using-mcmc.html#r-demo-on-bas-package
https://statswithr.github.io/book/stochastic-explorations-using-mcmc.html#r-demo-on-bas-package
https://statswithr.github.io/book/stochastic-explorations-using-mcmc.html#r-demo-on-bas-package
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This results in a model that is quite overfit. Thus, we individu-
ally consider which interaction terms appear to be important. For
all interactions involving levels where there are not sufficient num-
bers of observations, the resulting coefficient estimates are coerced to
“NA”. We do not include these interaction terms. Overall, the model
summary indicates that the following interaction terms may be impor-
tant: dealer:difforigin, dealer:artistliving, dealer:paired,
dealer:finished, materialCat:finished, prevcoll:finished,
paired:lrgfont, and paired:YearFactor. To briefly analyze these
interactions, we generate a series of mosaic plots. A mosaic plot al-
lows for identification of interactions between two or more categorical
variables. The widths of the plot boxes correspond to the number of
observations that comprise each level of the variable on the x-axis,
while the heights of the plot boxes correspond to the number of obser-
vations that comprise each level of the variable on the y-axis. Overall,
each plot indicates to some extent that there may potentially be an in-
teraction effect, and we select to include all terms in subsequent model
specification.

0

1

J L P R

DealerD
iff

. A
ut

ho
r 

O
rig

in
: N

o,
 Y

es

0

1

J L P R

Dealer

A
rt

is
t L

iv
in

g:
 N

o,
 Y

es

0

1

J L P R

Dealer

P
ai

re
d:

 N
o,

 Y
es

0

1

J L P R

Dealer

F
in

is
he

d:
 N

o,
 Y

es

0

1

ca
nv

as

co
pp

er
ot

he
r

w
oo

d

Material Category

F
in

is
he

d:
 N

o,
 Y

es

0

1

0 1

Previous Owner Mentioned

F
in

is
he

d:
 N

o,
 Y

es

0

1

0 1

Lrgfont: No, Yes

P
ai

re
d:

 N
o,

 Y
es

0

1

1 2 3 4 5 6

Year Factor

P
ai

re
d:

 N
o,

 Y
es

Figure 14: Mosaic plot

After fitting the model, we determine that all included variables
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and terms contribute to the prediction of the auction price of a given
painting. Performing an ANOVA test, the specified model is statisti-
cally significant at the α = 0.05 level and the results indicate that the
model with all eight identified interaction terms is preferred to a more
parsinomious model.

Model Diagnostics.
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Constant variability of residuals.
We observe that the fitted values form a horizontal line that very

closely conforms to the residual = 0 line. While we note the presence
of potential outliers, the plot indicates that the assumption of constant
variability of residuals is met. We also note that this plot is improved
in comparison to the “Residuals vs Fitted” plot for our initial model.

Nearly normal residuals.
To determine if the model has nearly normal residuals, we gener-

ate a normal probability plot. In the plot, the data are plotted by
residuals generated from a theoretical normal distribution11. The plot 11 referenced from “Normal Probabil-

ity Plot”, available at https://www.
itl.nist.gov/div898/handbook/eda/
section3/normprpl.htm

for the data follows a precise linear trend, and is improved from the
“Normal Q-Q” plot for our initial model.

Homoscedasticity.
The “Scale-Location” plot is used to verify the assumption of equal

variance in linear regression. If the assumption is met, the fitted val-
ues - plotted on the x axis - fall along a horizontal line with equal
scatter. Here, we observe that the fitted values exhibit more equal
scatter across the plot, forming a general horizontal band. Overall, the
assumption of equal variance is met.

Leverage and influential points.
The “Residuals vs Leverage” plot is used to determine the presence

https://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
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of observations with high leverage using Cook’s distance. The Cook’s
distance values are represented by red dashed lines, and observations
that fall outside of the lines are considered to be observations with
high leverage. From the plot above, we observe that no observations
included in the model fit fall outside of the Cook’s distances, and the
trend line very closely follows the horizontal standardized residual = 0
line. While observations 81, 114, and 770 are highlighted as observa-
tions with potentially high leverage relative to the data, the plot does
not strongly indicate the presence of any potentially influential points.

Discussion of how prediction intervals obtained

For linear model, it is very convenient to get the prediction intervals
for new test data, using predict.lm(obj, newdata = testdata,
interval = "prediction")

Model testing

To test the model, we apply 5-folds cross validation on training data
and see if the model has generalization error or still needs to be im-
proved.

Table 6: Average statistics under cross validation

Bias Coverage maxDeviation MeanAbsDeviation RMSE

218.6301 0.95833 18271.60 465.9615 1424.991
218.5635 0.95200 13571.95 489.8815 1477.553

According to the summary table, first line is the evaluation metrics
on training folds and second is on test folds. We observe that model
achieves quite similar results on training folds or test folds, indicating
that there does not exist overfitting issue. The coverage rate is satis-
fying. And when we continue to see how this model perform on test
data, it does a rather good job actually, achieving above 95% coverage
rate and around 1200 RMSE.

Variables

Specific summary of this model is:

Estimate Std..Error 2.5 % 97.5 % Signifance

(Intercept) 0.47516 0.49514 -0.49612 1.44644 .
dealerL 2.59476 0.21932 2.16454 3.02499 ***
dealerP 1.52684 0.25776 1.02121 2.03247 ***
dealerR 2.24380 0.16101 1.92795 2.55965 ***
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Estimate Std..Error 2.5 % 97.5 % Signifance

origin_authorD/FL -0.04039 0.43474 -0.89318 0.81240
origin_authorF -0.74042 0.43656 -1.59678 0.11594 *
origin_authorG -0.17708 0.47466 -1.10818 0.75401
origin_authorI -0.84589 0.44166 -1.71226 0.02048 *
origin_authorS -0.22163 0.54902 -1.29858 0.85532
origin_authorX -0.89358 0.43436 -1.74563 -0.04154 *
diff_origin1 -0.12095 0.23290 -0.57780 0.33591
artistliving1 1.13191 0.22879 0.68312 1.58070 ***
Interm1 0.86578 0.10930 0.65137 1.08019 ***
IntermUnknown -0.67026 0.09249 -0.85170 -0.48882 ***
materialCatcopper 0.16232 0.13490 -0.10229 0.42694 .
materialCatother -0.24270 0.09825 -0.43544 -0.04997 *
materialCatwood 0.07205 0.08673 -0.09809 0.24218 .
engraved1 0.67280 0.13680 0.40445 0.94114 ***
prevcoll1 1.12176 0.15688 0.81403 1.42950 ***
paired1 0.78518 0.23970 0.31497 1.25538 **
finished1 1.07243 0.20294 0.67434 1.47051 ***
lrgfont1 1.07992 0.13352 0.81801 1.34183 ***
lands_sc1 -0.53886 0.11035 -0.75534 -0.32239 ***
portrait1 -0.68798 0.15750 -0.99693 -0.37902 ***
still_life1 -0.55755 0.15331 -0.85828 -0.25682 ***
Surface 0.31739 0.02725 0.26395 0.37084 ***
YearFactor2 1.08189 0.12806 0.83068 1.33310 ***
YearFactor3 0.90859 0.14665 0.62092 1.19626 ***
YearFactor4 1.56294 0.16605 1.23722 1.88866 ***
YearFactor5 1.97140 0.13236 1.71176 2.23104 ***
YearFactor6 0.98568 0.16653 0.65901 1.31236 ***
dealerL:diff_origin1 -0.37768 0.27943 -0.92580 0.17045 .
dealerP:diff_origin1 -0.41213 0.32818 -1.05589 0.23163 .
dealerR:diff_origin1 -0.57504 0.23151 -1.02916 -0.12092 *
dealerL:artistliving1 -0.86159 0.32770 -1.50441 -0.21877 **
dealerP:artistliving1 -0.30106 0.37644 -1.03948 0.43736 .
dealerR:artistliving1 -0.67403 0.24905 -1.16257 -0.18548 **
dealerL:paired1 -1.26006 0.24479 -1.74024 -0.77988 ***
dealerP:paired1 -1.11654 0.34319 -1.78973 -0.44334 **
dealerR:paired1 -0.22626 0.18963 -0.59824 0.14571 .
dealerL:finished1 -0.51248 0.45306 -1.40120 0.37623 .
dealerP:finished1 -1.16842 0.38448 -1.92261 -0.41423 **
dealerR:finished1 -0.52497 0.21972 -0.95598 -0.09396 *
materialCatcopper:finished1 0.34515 0.24763 -0.14060 0.83090 .
materialCatother:finished1 1.05214 0.28840 0.48640 1.61787 ***
materialCatwood:finished1 0.32999 0.18749 -0.03780 0.69778 *
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Estimate Std..Error 2.5 % 97.5 % Signifance

prevcoll1:finished1 -1.07733 0.29902 -1.66390 -0.49077 ***
paired1:lrgfont1 -0.67621 0.23149 -1.13031 -0.22211 **
paired1:YearFactor2 -0.98709 0.20731 -1.39375 -0.58042 ***
paired1:YearFactor3 -0.84221 0.26284 -1.35780 -0.32662 **
paired1:YearFactor4 -0.94210 0.28068 -1.49269 -0.39152 ***
paired1:YearFactor5 -0.83563 0.20330 -1.23443 -0.43684 ***
paired1:YearFactor6 0.35972 0.24819 -0.12714 0.84658 .

From the summary table of variable estimates and confidence in-
tervals, we find out that almost all the predictors are statistically
signifcant in terms of 0.05 level.

Additional statistics:
Residual standard error: 1.137 on

1447 degrees of freedom
Multiple R-squared: 0.6608
Adjusted R-squared: 0.6486
F-statistic: 54.2 on 52 and 1447 DF,

p-value: < 2.2e-16

With interaction terms included and increase of number of factor
levels, it does not make much sense to talk about the interpretation of
one single predictor as it is closed related to other predictors indicated
by the model. We still could observe important variable or variable
combinations that make a painting expensive. For example, pictures
with large font introduced in the subject is expected to be 219.17%
more expensive than those not. Also, pictures with type R dealer and
not living artist is expected to be 14.67% more expensive than those
with other type dealer and artist still live.

To pursue a model with lowest RMSE on test set, we have
developed another model which we think is also very interest-
ing and meaningful to included in the report.

Random Forest & Linear Regression Model.

Now the question is: can we improve the model?
To improve the performance of our model, we now consider a two-

part model: first, we introduce the tree-based method of random
forests to fit an approximate value, and then fit the residual using
linear regression. This implementation is similar to boosting, where
trees are grown sequentially, using information from previously fit
trees.

Overall, the approach is intuitive: we first classify a given painting
in a large class, and then account for differences based on painting
features.

Here, we note that for the variable nfigures, most observations
are 0 with the remaining observations sparsely distributed over a large
range (please refer to EDA for graph). Thus, we will log-transform
this count variable for subsequent model specification.



final data analysis ii 18

After log-transformations, we find that there are linear relation-
ships for both log(Surface) and log(nfigures) on range where the value
is greater than 0. Our objective is to fit a linear specification for ob-
servations with values greater than 0, and fit a point estimation for
observations with values equal to 0.

We use a such a method: (Take log-Surface as an example)

1. Create an indicator ‘logS_n0’, which equals 1 if Surface does not
equal 0, and equals 0 otherwise.

2. Use ‘logS_n0 + logS’ in the model formula. Thus, the final model
could be:

fit | (Surface > 0) = b1 + k ∗ log_S

fit | (Surface = 0) = b0

where b0 ≠ b1.

Random Forest.

First, we fit a random forest using relevant predictors (selected from
previous linear modelling) and analyze fit:
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Fitted logprice vs True logprice

In this plot, we find that when the true value is low (<5), the
model tends to overestimate. When the true value is high (>5), it
will underestimate. Thus, it is clear that there is a pattern between
residuals and logprice. Analyzing further, we have:
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There is a clear linear relationship between the residuals of the
random forest model and the true values. So, we consider fitting the
residuals using linear regression in the next step.

Linear Regression for Residual.

We now fit a linear model with the predictor variables and significant
interactions identified in previous modelling efforts.

Interactions included here are:

• dealer:diff_origin
• engraved:prevcoll
• prevcoll:finished
• paired:lrgfont
• paired:year
• materialCat:finished

How well we fitted residual:
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Prediction Interval

Our final prediction is of the form:

ŷ = ˆyrf + ˆresidualrf

Our assumption of the model is:

y = ˆyrf + ˆresidualrf + ϵ

We can estimate V ar(ϵ) by

ˆV ar(ϵ) = V ar(y − ŷ)

And we can obtain prediction interval of ˆresidualrf from the linear
model.

Unfortunately, we cannot obtain a prediction interval of ˆyrf . In-
stead, what we could do is to give an under-estimated prediction inter-
val based on V ar(ϵ) and ˆresidualrf .

Sepcifically, we assume that:

y ∼ Normal(ŷ, V ar(ϵ) + V ar( ˆresidualrf ))

Thus the prediction interval is:

ŷ ± 1.96 ∗
√

V ar(ϵ) + V ar( ˆresidualrf )

Model evaluation
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Figure 15: Variable Importance based
on RandomForest

From importance plot of random forest model, we see that year,
Surface, winning bidder type, large font, end buyer, dealer and orig-
inal author are important in decision making. Disparate to what we
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observed in EDA, 0/1 factor predictors and nfigures do not appear to
play a relatively important role in the prediction of auction price for a
given painting.

Linear Regression for Residual.
Summary table:

R R2 R2
adj σ2

0.29 0.08 0.02 0.51

Objectively, we should conclude that this linear regression on resid-
ual is not significant. There are only 5 significant variables at the
α = 0.05 level. Furthermore, the model does not explain more than
10% of total variation.

However, we include the regression in our model because there is
a distinct difference in performance on the test data: with this linear
regression step, RMSE on test data could be under 1000; RMSE could
be greater than 1200 if we omit this step.

Besides the discussion of whether to include or omit this step in our
model, we also tried variable selection with AIC. Although this does
result in increased significant predictors, performance on test data is
worse (with RMSE greater than 1200). Thus, we decide to utilize the
full linear model in this step.

Performance
Coverage on training data (in livre):
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We can see that the prediction interval covers most of the true
values, and overall provides a decent fit on points with large values.
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Figure 16: Residual plot on training
data
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Figure 17: QQ plot for residuals

From the residual plot and qq-plot, we see that:

1. Residuals are not distributed equally on the fitted data range. Vari-
ance of residual tends to be smaller at the two ends and becomes
greater in the middle.

2. The model tends to overfit when the fitted value is less than 5, and
tends to underfit when the fitted value is greater than 5.

3. The assumption on our model y = ˆyrf + ˆresidualrf + ϵ is not
correct, because the residuals are not normally distributed, and the
residual depends on true value or fitted value.

Model Evaluation
Before we have access to test data, we use k-fold cross validation on

training data to estimate model performance:
Our estimation of Bias, Coverage, maxDeviation, MeanAbsDevia-

tion, RMSE are:

Table 9: Evaluation on train set

Bias Coverage maxDeviation MeanAbsDeviation RMSE

257.97 0.86 13787.5 456.68 1437.18

Our score on test set is:

Table 10: Evaluation on test set

Bias Coverage maxDeviation MeanAbsDeviation RMSE

144.39 0.91 8046.72 336.36 912.85

Compared to other groups, we have advantages on all of these
scores except coverage. We have lowest Bias, maxDeviation, MeanAbs-
Deviation and RMSE.

Model result
Our prediction of paintings in validation data tells us that these

paintings may have highest prices:
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lot author predicted price

28 Pierre Paul Rubens 10071.169
170 Philippe Wouwermans 9470.833
108 Nicolas Berghem 8899.874
159 Adrien Vanden Veld 7441.713
30 Gerard Dow 6917.518
7 Barthelemi Etienne Murillos 6416.164
167 Karel du Jardin 6268.131
51 Rembrandt Van Rhyn 5909.465
171 Eustache Le Sueur 5699.962
118 Isaac Van Ostade 5387.827

Considering important variables we identified in development pro-
cess, we observed that these paintings have common features in these
variables:

lot year winningbiddertype lrgfont endbuyer dealer origin_author

28 1777 C 1 C R D/FL
170 1767 DC 1 C R D/FL
108 1777 C 1 C R D/FL
159 1776 DC 1 C R D/FL
30 1769 EBC 1 C R D/FL
7 1769 EC 1 C R S
167 1776 DC 1 C R D/FL
51 1777 DC 1 C R D/FL
171 1777 DC 1 C R F
118 1777 DB 1 B R D/FL

Model Disadvantages.

1. Our model does not allow for the calculation of a precise predic-
tion interval. As we mentioned in discussion of residual plot, our
model is based on an assumption that is not validated by our data.
Furthermore, we cannot estimate a prediction interval for a tree
model, and thus we are unable to define a theoretical α-level of our
prediction interval.

2. It is challenging to interpret our model and fully explain the effects
of variables on painting prices because 1. we use random forest, and
2. we incorporate many predictors in the linear model for fitting
residuals.
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3. The performance of our model on test set is likely not representive.
Our estimation of model performance based on k-fold validation
is worse than our score on test data. There is a distinct likelihood
that our model will not perform equally well on validation data.

What We Could Do Better.
If we had additional time to work on this project, we would ideally

first focus more on data cleaning and EDA. We think it would be valu-
able to explore all of the painters in the data set, and determine po-
tential associations between painter characteristics and auction price.
Additionally, it would be interesting to undertake text analysis on the
subject variable, which contains a short description of subject matter.
This could be accomplished utilizing the “sentimentr” package, where
an average sentiment score for a text vector can be generated. By con-
verting text to a numerical value, we could analyze if the subject of a
painting is associated with other explanatory variables:

• for instance, are different types of buyers more likely to purchase
paintings with negative sentiment scores (negative emotionally
charged painting subjects), positive sentiment scores (positive emo-
tionally charged painting subjects), or neutral sentiment scores
(scores approaching zero)?

and, of course, if the subject of a painting provides significant infor-
mation for the prediction of auction price.

Furthermore, although we do feel that linear regression is appro-
priate for the log-transformed price, we would like to further explore
variable transformations and more flexible models.
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