-
Notifications
You must be signed in to change notification settings - Fork 8
/
utm2ll.m
201 lines (171 loc) · 6.32 KB
/
utm2ll.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
function [lat,lon]=utm2ll(x,y,f,datum,varargin)
% https://www.engineeringtoolbox.com/utm-latitude-longitude-d_1370.html
% Example: [a b ]= utm2ll( 463385.25 ,3095579.99 , 28); % rawi example
%UTM2LL UTM to Lat/Lon coordinates precise conversion.
% [LAT,LON]=UTM2LL(X,Y,ZONE) converts UTM coordinates X,Y (in meters)
% defined in the UTM ZONE (integer) to latitude LAT and longitude LON
% (in degrees). Default datum is WGS84.
%
% X, Y and F can be scalars, vectors or matrix. Outputs LAT and LON will
% have the same size as inputs.
%
% For southern hemisphere points, use negative zone -ZONE.
%
% UTM2LL(X,Y,ZONE,DATUM) uses specific DATUM for conversion. DATUM can be
% a string in the following list:
% 'wgs84': World Geodetic System 1984 (default)
% 'nad27': North American Datum 1927
% 'clk66': Clarke 1866
% 'nad83': North American Datum 1983
% 'grs80': Geodetic Reference System 1980
% 'int24': International 1924 / Hayford 1909
% or DATUM can be a 2-element vector [A,F] where A is semimajor axis (in
% meters) and F is flattening of the user-defined ellipsoid.
%
% Notice:
% - UTM2LL does not perform cross-datum conversion.
% - precision is near a millimeter.
%
%
% Reference:
% I.G.N., Projection cartographique Mercator Transverse: Algorithmes,
% Notes Techniques NT/G 76, janvier 1995.
%
% Author: Francois Beauducel, <[email protected]>
% Created: 2001-08-23
% Updated: 2015-01-29
% Copyright (c) 2001-2015, François Beauducel, covered by BSD License.
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
% Available datums
datums = [ ...
{ 'wgs84', 6378137.0, 298.257223563 };
{ 'nad83', 6378137.0, 298.257222101 };
{ 'grs80', 6378137.0, 298.257222101 };
{ 'nad27', 6378206.4, 294.978698214 };
{ 'int24', 6378388.0, 297.000000000 };
{ 'clk66', 6378206.4, 294.978698214 };
];
if nargin < 3
error('Not enough input arguments.')
end
if all([numel(x),numel(y)] > 1) && any(size(x) ~= size(y))
error('X and Y must be the same size or scalars.')
end
if ~isnumeric(f) || any(f ~= round(f)) || (~isscalar(f) && any(size(f) ~= size(x)))
error('ZONE must be integer value, scalar or same size as X and/or Y.')
end
if nargin < 4
datum = 'wgs84';
end
if ischar(datum)
if ~any(strcmpi(datum,datums(:,1)))
error('Unkown DATUM name "%s"',datum);
end
k = find(strcmpi(datum,datums(:,1)));
A1 = datums{k,2};
F1 = datums{k,3};
else
if numel(datum) ~= 2
error('User defined DATUM must be a vector [A,F].');
end
A1 = datum(1);
F1 = datum(2);
end
% constants
D0 = 180/pi; % conversion rad to deg
maxiter = 100; % maximum iteration for latitude computation
eps = 1e-11; % minimum residue for latitude computation
K0 = 0.9996; % UTM scale factor
X0 = 500000; % UTM false East (m)
Y0 = 1e7*(f < 0); % UTM false North (m)
P0 = 0; % UTM origin latitude (rad)
L0 = (6*abs(f) - 183)/D0; % UTM origin longitude (rad)
%%%%%%%%%%%% rawi correction
L0 = (6*f - 183)/D0;
% added by Rawi
E1 = sqrt((A1^2 - (A1*(1 - 1/F1))^2)/A1^2); % ellpsoid excentricity
N = K0*A1;
% computing parameters for Mercator Transverse projection
C = coef(E1,0);
YS = Y0 - N*(C(1)*P0 + C(2)*sin(2*P0) + C(3)*sin(4*P0) + C(4)*sin(6*P0) + C(5)*sin(8*P0));
C = coef(E1,1);
zt = complex((y - YS)/N/C(1),(x - X0)/N/C(1));
z = zt - C(2)*sin(2*zt) - C(3)*sin(4*zt) - C(4)*sin(6*zt) - C(5)*sin(8*zt);
L = real(z);
LS = imag(z);
l = L0 + atan(sinh(LS)./cos(L));
p = asin(sin(L)./cosh(LS));
L = log(tan(pi/4 + p/2));
% calculates latitude from the isometric latitude
p = 2*atan(exp(L)) - pi/2;
p0 = NaN;
n = 0;
while any(isnan(p0) | abs(p - p0) > eps) && n < maxiter
p0 = p;
es = E1*sin(p0);
p = 2*atan(((1 + es)./(1 - es)).^(E1/2).*exp(L)) - pi/2;
n = n + 1;
end
if nargout < 2
lat = D0*[p(:),l(:)];
else
lat = p*D0;
lon = l*D0;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function c = coef(e,m)
%COEF Projection coefficients
% COEF(E,M) returns a vector of 5 coefficients from:
% E = first ellipsoid excentricity
% M = 0 for transverse mercator
% M = 1 for transverse mercator reverse coefficients
% M = 2 for merdian arc
if nargin < 2
m = 0;
end
switch m
case 0
c0 = [-175/16384, 0, -5/256, 0, -3/64, 0, -1/4, 0, 1;
-105/4096, 0, -45/1024, 0, -3/32, 0, -3/8, 0, 0;
525/16384, 0, 45/1024, 0, 15/256, 0, 0, 0, 0;
-175/12288, 0, -35/3072, 0, 0, 0, 0, 0, 0;
315/131072, 0, 0, 0, 0, 0, 0, 0, 0];
case 1
c0 = [-175/16384, 0, -5/256, 0, -3/64, 0, -1/4, 0, 1;
1/61440, 0, 7/2048, 0, 1/48, 0, 1/8, 0, 0;
559/368640, 0, 3/1280, 0, 1/768, 0, 0, 0, 0;
283/430080, 0, 17/30720, 0, 0, 0, 0, 0, 0;
4397/41287680, 0, 0, 0, 0, 0, 0, 0, 0];
case 2
c0 = [-175/16384, 0, -5/256, 0, -3/64, 0, -1/4, 0, 1;
-901/184320, 0, -9/1024, 0, -1/96, 0, 1/8, 0, 0;
-311/737280, 0, 17/5120, 0, 13/768, 0, 0, 0, 0;
899/430080, 0, 61/15360, 0, 0, 0, 0, 0, 0;
49561/41287680, 0, 0, 0, 0, 0, 0, 0, 0];
end
c = zeros(size(c0,1),1);
for i = 1:size(c0,1)
c(i) = polyval(c0(i,:),e);
end