
Genetic Malware
Designing payloads for

specific targets

@midnite_runr
@wired33

Infiltrate 2016

Who we are
• Travis Morrow

• AppSec, Mobile, WebTesting, SecOps

• Josh Pitts

• Author of BDF/BDFProxy

• https://github.com/secretsquirrel

• AppSec, RedTeaming, WebTesting, SecOPs

How we got here…

Dude,
I have this algo…

Awesome
Let’s do it..

If you write Malware
you have four

enemies (besides LE)

If you write Malware
you have four

enemies (besides LE)

If you write Malware
you have four

enemies (besides LE)

Conduct Operations
 ^

AntI-
VIR

US
Autom

ated

SANDBOX

Reverse

ENGINEER Crow
dsourcin

g

In
fo Sharin

g

AntI-
VIR

US
Autom

ated

SANDBOX

Reverse

ENGINEER Crow
dsourcin

g

In
fo Sharin

g

• Including Consumer Grade Products

• Founded by the Charlie Sheen of our industry

• Easy to bypass, not really a concern

• Can make you more vulnerable

• Respect for F-Secure and Kaspersky

AntI-
VIR

US

• Including Consumer Grade Products

• Founded by the Charlie Sheen of our industry

• Easy to bypass, not really a concern

• Can make you more vulnerable

• Respect for F-Secure and Kaspersky

AntI-
VIR

US

• Easy to bypass analysis

• A lot of machines are still XP

• They often:

• Have unique ENV vars

• Rarely change external IP

• Have analysis timeouts

Autom
ated

SANDBOX

• Easy to bypass analysis

• A lot of machines are still XP

• They often:

• Have unique ENV vars

• Rarely change external IP

• Have analysis timeouts

Autom
ated

SANDBOX

• Hard to defeat the Reverse Engineer (RE)

• Tricks that defeat AV and Automated
Sandboxes != work on an experienced RE

• If malware payloads decrypt in memory on the
RE’s machine, it can be analyzed

• At best you can only slow down the RE

• Turn RE into a password cracker and you win

Reverse

ENGIN
EER

• Kind of a MMO of Whack-A-Mole

• Magnifies the outcome of easy to fingerprint
malware

• Defeat the RE and this becomes less
effective

Crow
dsourcin

g

In
fo Sharin

g

• Kind of a MMO of Whack-A-Mole

• Magnifies the outcome of easy to fingerprint
malware

• Defeat the RE and this becomes less
effective

Crow
dsourcin

g

In
fo Sharin

g

Enter
Environmental Keying

Enter
Environmental Keying

… a short primer

Clueless Agents
• Environmental Key Generation towards Clueless Agents (1998) - J.
Riordan, B. Schneier

• Several methods for key sources:

• Server required

• Usenet

• Web pages

• (Forward|Backwards)-Time Hash Function

• Host specific

• Mail messages

• File System

• Local network

Clueless Agents
• Environmental Key Generation towards Clueless Agents (1998) - J.
Riordan, B. Schneier

• Several methods for key sources:

• Server required

• Usenet

• Web pages

• (Forward|Backwards)-Time Hash Function

• Host specific

• Mail messages

• File System

• Local network
NO

POC

Secure Triggers

• Foundations for Secure Triggers (2003),
Corelabs

• Did not reference Clueless Agents

• Defeat REs and analysis

• Makes mention of OTP

• Lots of Math (too much)

Secure Triggers

• Foundations for Secure Triggers (2003),
Corelabs

• Did not reference Clueless Agents

• Defeat REs and analysis

• Makes mention of OTP

• Lots of Math (too much)NO
POC

Bradley Virus
• Strong Cryptography Armoured Computer Virus
Forbidding Code Analysis (2004), Eric Filiol

• References Clueless Agents

• Nested encrypted enclaves/payloads

• “Complete source code is not available”

• “[…]cause great concern among the antiviral
community. This is the reason why will not
give any detailed code.

Bradley Virus
• Strong Cryptography Armoured Computer Virus
Forbidding Code Analysis (2004), Eric Filiol

• References Clueless Agents

• Nested encrypted enclaves/payloads

• “Complete source code is not available”

• “[…]cause great concern among the antiviral
community. This is the reason why will not
give any detailed code.NO

POC

Hash and Decrypt

• Mesh design pattern: hash-and-decrypt
(2007), Nate Lawson

• Application of secure triggers to gaming

Hash and Decrypt

• Mesh design pattern: hash-and-decrypt
(2007), Nate Lawson

• Application of secure triggers to gaming NO
POC

Über-Malware

• Malicious Cryptography… Reloaded (CanSecWest
2008) - E.Filiol, F.Raynal

• New: Plausible Deniability!

• Via OTP

• POC was a XOR

Über-Malware

• Malicious Cryptography… Reloaded (CanSecWest
2008) - E.Filiol, F.Raynal

• New: Plausible Deniability!

• Via OTP

• POC was a XOR NO
POC

Impeding Automation
• Impeding Automated Malware Analysis with Environmental-
sensitive Malware (2012), Usenix,(C.Song, et al)

• Did not reference Clueless Agents or the Bradley Virus

• Rediscovers Environmental Keying..

• Examples of Environmental keys

• Great Quotes:

• “Due to time constraints..”

• “[…]exceeds the scope of this paper,[…]

• “At the inception of this paper, concerns were raised[…]”

Impeding Automation
• Impeding Automated Malware Analysis with Environmental-
sensitive Malware (2012), Usenix,(C.Song, et al)

• Did not reference Clueless Agents or the Bradley Virus

• Rediscovers Environmental Keying..

• Examples of Environmental keys

• Great Quotes:

• “Due to time constraints..”

• “[…]exceeds the scope of this paper,[…]

• “At the inception of this paper, concerns were raised[…]”
NO

POC

Researchers have not
released an open source
environmental keying POC

Flashback (2011)

Flashback (2011)

• Mac OS X only malware

• Initial agent sent back UUID of OS to server

• Server used MD5 of UUID to encrypt payload

• Sent back to user and deployed

Gauss (2012)

Gauss (2012)

• Discovered by Kaspersky

• Encrypted Payload “Godel”

• Key derived from directory path in program
files, MD5 hashed for 10k rounds

• Not publicly decrypted to date

Targeted Malware
Compared to Biological/

Chemical Agents

Chemical Agents
• Area effect weapons

• Effective for days to weeks

• For targeting systems:

• Domain specific env vars

• External IP address

• Check system time

Biological Agents
• Viral

• Genetic Targeting

• “Ethnic Weapons”

• For systems targeting:

• Path

• Particular file (OTP)

Targeted Malware
and its use in

Operations

Deploy everywhere
work somewhere

Operational
plausible

deniability

Hidden Command and
Control (C&C)

Hidden C&C

Deployment C&C
1

Hidden C&C

Deployment C&C
1

Hidden C&C

Deployment C&C
1

Hidden C&C

Hidden C&C

Deployment C&C
2

Hidden C&C

Deployment C&C
2

Hidden C&C

Deployment C&C
2

Hidden C&C

Hidden C&C

Deployment C&C
3

Hidden C&C

Deployment C&C
3

Hidden C&C

Deployment C&C
3

Hidden C&C

Deployment C&C
3

Hidden C&C

Deployment C&C
3

Could you imagine a world
where all malware was

targeted?

http://www.livescience.com/45509-hiroshima-nagasaki-atomic-bomb.html

http://www.livescience.com/45509-hiroshima-nagasaki-atomic-bomb.html

https://s-media-cache-ak0.pinimg.com/564x/61/8b/52/618b52fcfefecb3eada6f7bb74e8a5bc.jpg

https://s-media-cache-ak0.pinimg.com/564x/61/8b/52/618b52fcfefecb3eada6f7bb74e8a5bc.jpg

http://mattruple.theworldrace.org/blogphotos/theworldrace/mattruple/salesman.jpg

http://mattruple.theworldrace.org/blogphotos/theworldrace/mattruple/salesman.jpg

E.B.O.W.L.A.

Ethnic BiO Weapon Limited Access

E.B.O.W.L.A.

High Level Overview

E.B.O.W.L.A.

E.B.O.W.L.A.

}

E.B.O.W.L.A.

}

Framework

Framework

Framework

Framework

Framework

Framework

Protection
Mechanisms

Protection
Mechanisms

Key Derivation:
Environmental Factors

Supported Environmentals
• Environment Variables (e.g. %TEMP%, %USERNAME%, %TEMP%, etc)

• File System Path (e.g. C:\windows\temp)

• External IP Range (e.g. 100.10.0.0, 100.0.0.0)

• Time Trigger (e.g. 20160401)

Encryption:

payload_hash = sha512(payload[:-offset_bytes])

key = ((sha512(token1+token2+…)) * Iterations)[:32]

enc_blob = base64(zlib(iv+AES.CFB(key,iv,payload)))

Key Derivation:
Environmental Factors

Decryption:

1) Retrieve environment variables

2) Traverse File System from StartingPoint

3) Combine into all possible combinations and decrypt

** trial_key = sha512(token1 + token2 + …)* Iterations)[:32]

** if(sha512(decryptpayload(iv,enc_blob,trial_key[:-offset_bytes]) ==
payload_hash; continue

Encryption:

payload_hash = sha512(payload[:-offset_bytes])

key = ((sha512(token1+token2+…)) * Iterations)[:32]

enc_blob = base64(zlib(iv+AES.CFB(key,iv,payload)))

Key Derivation:
Environmental Factors

Key Derivation:
Unique File

Encryption:

payload_hash = sha512(payload[:-offset_bytes])

location = rand_location(uniq_key_file)

key = ((sha512(read.location) * Iterations)[:32]

enc_blob = base64(zlib(location + lc.length + iv +
AES.CFB(key,iv,payload)))

Key Derivation:
Unique File

Decryption:

1) Traverse File System from StartingPoint

2) Create a key from every file encountered & Attempt Decryption

** trial_key = sha512(readFile.location)* Iterations)[:32]

** if(sha512(decryptpayload(iv,enc_blob[22:],trial_key)[:-
offset_bytes]) == payload_hash; continue

Encryption:

payload_hash = sha512(payload[:-offset_bytes])

location = rand_location(uniq_key_file)

key = ((sha512(read.location) * Iterations)[:32]

enc_blob = base64(zlib(location + lc.length + iv +
AES.CFB(key,iv,payload)))

Key Derivation:
Unique File

Protection
Mechanisms

Protection
Mechanisms

Protection
Mechanisms

Key Derivation:
One Time Pad (OTP)

Key Derivation:
One Time Pad (OTP)

Pad Creation:

1)payload_hash = sha512(payload[:-offset_bytes])

2)short_len = len(payload)*10%

3)payload_hash_short = sha512(payload)[:short_len]

4)lookup_table(uniqueBinary) = base64(zlib([[offset_loc][len],[offset_loc]
[len], …]))

Key Derivation:
One Time Pad (OTP)

Attacker Payload
Target UniqueBinary

Key Derivation:
One Time Pad (OTP)

Attacker Payload
Target UniqueBinary

Lookup Table

Key Derivation:
One Time Pad (OTP)

Decryption:

1) Traverse File System from StartingPoint

2) Open Each file and build 10%

3) Validate 10% hash Matches then build entire payload

** if(sha512(rebuild_payload(lookup_table,current_file)[:-
offset_bytes] == payload_hash; exec()

Key Derivation:
One Time Pad (OTP)

Outputs
(aka Cyber Pathogens)

Outputs

GO Python

Input/Out
Compatibility

Payload Python GO

x64 x32 x64 x32

Reflective DLL In Memory In Memory

DLL In Memory In Memory

EXE On Disk On Disk In Memory In Memory

ShellCode In Memory In Memory In Memory In Memory

Python Code In Memory In Memory

Usage

$./ebowla.py payload config

$ #Then compile output

The config file

Three Sections

• Overall

• OTP Settings

• Symmetric Settings

Overall Section

Encryption_Type
OPTIONS: OTP ENV

output_type
OPTIONS: Python, GO, Both

payload_type
OPTIONS for GO: EXE, DLL_x86, DLL_x64, SHELLCODE
OPTIONS for PYTHON: EXE, SHELLCODE, CODE

key_iterations
OPTIONS: Any number? Be reasonable.

OTP Settings
otp_type
OPTIONS: full, key

pad
Any file you want. Make sure it has 0-256 bytes represented.

pad_max
Maximum size your pad, support up 256**3 - 1 (≈16MB)

scan_dir
start location for finding the pad
OPTIONS: A fixed path OR an environment variable such as %APPDATA%

byte_width
For use with OTP FULL only
Nominal for speed 8-12
The larger the number the longer it takes to build on the
attacker’s side, but faster to rebuild on the client side.
OPTIONS: A Single number, Example: 8

Symmetric Key
Settings

This has four sections:

•ENV_VARS

•PATH

•IP_RANGES

•SYSTEM_TIME

Symmetric Key
Settings

ENV_VARS
Can be anything, can add whatever you want
if value is ‘’, it is not used. The value is used as a key.

examples:
username = ‘Administrator’ # Used
homepath = ‘’ # Not used

PATH

path
This is used as a key.
OPTIONS: A full static path.

start_loc
Location to start looking for path match
OPTIONS: Static location or Env variable (%PROGRAMFILES%)

Symmetric Key
Settings

IP_RANGES

external_ip_mask
Simple IP MASK, limited to /24 /16 /8
Example: 11.12.13.14, 11.12.13.0, 11.12.0.0, 11.0.0.0

SYSTEM_TIME

Time_Range
Limited to Year, Month, or DAY
Format: YYYYMMDD
Example: 20160401, 20160400, or 20160000

DEMO TIME

DEMO TIME

The Scenario

• An American in Moscow is low on Rubles

• Wants Starcraft really bad

• Answer: BitTorrent a cracked game!

• Unfortunately the cracked starcraft games
are patched with a backdoor targeting the
most current version of BitTorrent

DEMO 1: OTP
• Using BitTorrent.exe as the PAD

• Version 7.9.5, Build 41866, 32bit

• Meterpreter reverse https is the payload via
a first stage DLL

• Searching for the PAD starts in %APPDATA%

• Code delivered through a backdoored/cracked
game

• Download and Execute payload

Torrent C&C

DEMO 1: OTP

Torrent C&C

1. Cracked_game.exe

DEMO 1: OTP

Torrent C&C

1. Cracked_game.exe 2. Ebowla_GO_payload.exe

DEMO 1: OTP

Torrent C&C

1. Cracked_game.exe 2. Ebowla_GO_payload.exe

3. In memory Execution of a
reverse https stage one payload

as a DLL

DEMO 1: OTP

Torrent C&C

1. Cracked_game.exe 2. Ebowla_GO_payload.exe 4. meterpreter.dll
& C&C

3. In memory Execution of a
reverse https stage one payload

as a DLL

DEMO 1: OTP

DEMO 2: Key from File
• Using a location in BitTorrent.exe as the AES
key source

• Version 7.9.5, Build 41866, 32bit

• Pupy EXE reverse https

• Searching starts in %APPDATA%

• Code delivered through a backdoored/cracked
game

• Download and Execute payload

Torrent C&C

DEMO 2: Key from File

Torrent C&C

1. Cracked_game.exe

DEMO 2: Key from File

Torrent C&C

1. Cracked_game.exe 2. Ebowla_GO_payload.exe

DEMO 2: Key from File

Torrent C&C

1. Cracked_game.exe 2. Ebowla_GO_payload.exe

3. In memory execution the Pupy EXE

DEMO 2: Key from File

Torrent C&C

1. Cracked_game.exe 2. Ebowla_GO_payload.exe Pupy C&C

3. In memory execution the Pupy EXE

DEMO 2: Key from File

DEMO 3:Layered Payload
• Using Environmental Factors

• Stage 2:

• Env Vars: Computer Name, number of processors as keys

• GO EXE launching Pupy x64 DLL

• Stage 1:

• Using Date Range and IP Mask as keys

• Python EXE, writes stage 1 to disk and Executes

• Code delivered through a backdoored/cracked game

• Download and Execute payload

Torrent C&C

DEMO 3:Layered Payload

Torrent C&C

1. Cracked_game.exe

DEMO 3:Layered Payload

Torrent C&C

1. Cracked_game.exe 2. Ebowla_multilayer_payload.exe

DEMO 3:Layered Payload

Torrent C&C

1. Cracked_game.exe 2. Ebowla_multilayer_payload.exe

3. PyInstaller EXE => (disk)GO EXE => (memory)Pupy DLL

DEMO 3:Layered Payload

Torrent C&C

1. Cracked_game.exe 2. Ebowla_multilayer_payload.exe Pupy C&C

3. PyInstaller EXE => (disk)GO EXE => (memory)Pupy DLL

DEMO 3:Layered Payload

Known Issues/Bugs
• Previous knowledge requirement

• Chaining payloads:

• GO EXE launching GO via Memory Module - DIE IN A FIRE

• Pyinstaller EXE launching Pyinstaller EXE FROM DISK - Loses
namespace

• GO (memory module) -> Pyinstaller - Just no…

• Metasploit x86 PE EXE template does not work with
MemoryModule

• OTP:

• MZ/DOS Header Leak

This is OK

• Go EXE

• PyInstaller EXE

• Chaining PyInstaller EXE -> GO EXE

Roadmap

• C/C++ loaders/output

• Reflective DLL

• Better chaining of payloads

• OSX/NIX Support

Questions?

Download: https://www.github.com/genetic-malware/Ebowla

@midnite_runr

@wired33

https://matrixbob.files.wordpress.com/2015/03/bio-weapons.gif

Credits

http://static5.businessinsider.com/image/51e418a66bb3f7230a00000e-1200-900/guys-drinking-coffee-in-tel-aviv.jpg

http://blogs-images.forbes.com/benkerschberg/files/2015/02/crowdsourcing-spigot.jpg

https://archive.org/details/P-G_Ohst_Exploitation

https://github.com/vyrus001/go-mimikatz

