
4.6: Ambiguity of Grammars

In this section, we say what it means for a grammar to be ambiguous.

We also give a straightforward method for disambiguating grammars

for languages with operators of various precedences and associativities,

and consider an efficient parsing algorithm for such disambiguated

grammars.
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Motivating Example

Suppose G is our grammar of arithmetic expressions:

E→ E〈plus〉E | E〈times〉E | 〈openPar〉E〈closPar〉 | 〈id〉.

Question: are there multiple ways of parsing the string

〈id〉〈times〉〈id〉〈plus〉〈id〉 according to this grammar?

Answer: Yes:
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Definition

In pt
1
, multiplication has higher precedence than addition; in pt

2
, the

situation is reversed. Because there are multiple ways of parsing this

string, we say that our grammar is “ambiguous”.

A grammar G is ambiguous iff there is a w ∈ (alphabetG)∗ such

that w is the yield of multiple valid parse trees for G whose root labels

are sG; otherwise, G is unambiguous.
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Examples

The grammar

A→% | 0A1A | 1A0A

is a grammar generating all elements of {0, 1}∗ with a diff of 0, for

the diff function such that diff 0 = −1 and diff 1 = 1.

It is ambiguous as, e.g., 0101 can be parsed as 0%1(01) or 0(10)1%.

In Section 4.5, we saw another grammar for this language:

A→% | 0BA | 1CA,

B→ 1 | 0BB,

C→ 0 | 1CC,

which turns out to be unambiguous.

The reason is that ΠB is all elements of {0, 1}∗ with a diff of 1, but

with no proper prefixes with positive diff ’s, and ΠC has the

corresponding property for 0/negative.
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Disambiguating Grammars of Operators

Not every ambiguous grammar can be turned into an equivalent

unambiguous one. However, we can use a simple technique to

disambiguate our grammar of arithmetic expressions, and this

technique works for many commonly occurring grammars involving

operators of various precedences and associativities.

Since there are two binary operators in our language of arithmetic

expressions, we have to decide:

• whether multiplication has higher or lower precedence than

addition; and

• whether multiplication and addition are left or right associative.

As usual, we’ll make multiplication have higher precedence than

addition, and let addition and multiplication be left associative.
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Example Disambiguation

As a first step towards disambiguating our grammar, we can form a

new grammar with the three variables: E (expressions), T (terms) and

F (factors), start variable E and productions:

E→ T | E〈plus〉E,

T→ F | T〈times〉T,

F→ 〈id〉 | 〈openPar〉E〈closPar〉.

The idea is that the lowest precedence operator “lives” at the highest

level of the grammar, that the highest precedence operator lives at the

middle level of the grammar, and that the basic expressions, including

the parenthesized expressions, live at the lowest level of the grammar.
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Example Disambiguation

Now, there is only one way to parse the string 〈id〉〈times〉〈id〉〈plus〉〈id〉,

since, if we begin by using the production E→ T, our yield will only

include a 〈plus〉 if this symbol occurs within parentheses.

If we had more levels of precedence in our language, we would simply

add more levels to our grammar.
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Example Disambiguation

On the other hand, there are still two ways of parsing the string

〈id〉〈plus〉〈id〉〈plus〉〈id〉: with left associativity or right associativity. To

finish disambiguating our grammar, we must break the symmetry of

the right-sides of the productions

E→ E〈plus〉E,

T→ T〈times〉T,

turning one of the E’s into T, and one of the T’s into F. To make our

operators be left associative, we must use left recursion, changing the

second E to T, and the second T to F; right associativity would result

from making the opposite choices, i.e., using right recursion.
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Example Disambiguation

Thus, our unambiguous grammar of arithmetic expressions is

E→ T | E〈plus〉T,

T→ F | T〈times〉F,

F→ 〈id〉 | 〈openPar〉E〈closPar〉.

It can be proved that this grammar is indeed unambiguous, and that it

is equivalent to the original grammar.
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Example Disambiguation

Now, the only parse of 〈id〉〈times〉〈id〉〈plus〉〈id〉 is
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Example Disambiguation

And, the only parse of 〈id〉〈plus〉〈id〉〈plus〉〈id〉 is
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Top-down Parsing for Grammars of Operators

Top-down parsing is a simple and efficient parsing method for

unambiguous grammars of operators like

E→ T | E〈plus〉T,

T→ F | T〈times〉F,

F→ 〈id〉 | 〈openPar〉E〈closPar〉.
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Parsing

Let E , T and F be all of the parse trees that are valid for our

grammar, have yields containing no variables, and whose root labels

are E, T and F, respectively.

Because this grammar has three mutually recursive variables, we will

need three mutually recursive parsing functions,

parE ∈ Str→Option(E × Str),

parT ∈ Str→Option(T × Str),

parF ∈ Str→Option(F × Str),

which attempt to parse an element pt of E , T or F out of a string w,

returning none to indicate failure, and some(pt , y), where y is the

remainder of w, otherwise.
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Parsing

Given a string w, parE operates as follows. Because all elements of E

have yields beginning with the yield of an element of T , it starts by

evaluating parTw. If this results in none, it returns none.

Otherwise, it results in some(pt , x), for some pt ∈ T and x ∈ Str, in

which case parE returns parELoop(E(pt), x), where

parELoop ∈ E × Str→Option(E × Str) is defined recursively, as

follows.

Given (pt , x) ∈ E × Str, parELoop proceeds as follows.

• If x = 〈plus〉y for some y, then parELoop evaluates parT y.

– If this results in none, then parELoop returns none.

– Otherwise, it results in some(pt ′, z) for some pt ′ ∈ T and

z ∈ Str, and parELoop returns

parELoop(E(pt, 〈plus〉, pt ′), z).

• Otherwise, parELoop returns some(pt , x).

The function parT operates analogously.
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Parsing

Given a string w, parF proceeds as follows.

• If w = 〈id〉x for some x, then it returns some(F (〈id〉), x).

• Otherwise, if w = 〈openPar〉x, then parF evaluates parEx.

– If this results in none, it returns none.

– Otherwise, this results in some(pt , y) for some pt ∈ E and

y ∈ Str.

∗ If y = 〈closPar〉z for some z, then parF returns

some(F (〈openPar〉, pt, 〈closPar〉), z).

∗ Otherwise, parF returns none.

• Otherwise parF returns none.
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Parsing

Given a string w to parse, the algorithm evaluates parEw. If the

result of this evaluation is:

• none, then the algorithm reports failure;

• some(pt ,%), then the algorithm returns pt ;

• some(pt , y), where y 6= %, then the algorithm reports failure,

because not all of the input could be parsed.
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