First Person Action Recognition: different approaches exploiting
Self-Supervised Task and two-in-one Flow Modulation

Paolo Alberto
Politecnico di Torino, Italy
5278098@studenti.polito.it

Abstract

In this paper we explore different methods for perform-
ing a first-person action recognition task on the GTEA61
dataset. We start by implementing a structure based on
Ego-RNN: a two-stream architecture that works separately
on the frames of the videos and on motion features extracted
from optical flow. We then try to improve on top of this ar-
chitecture by implementing a self-supervised task capable
of working jointly on spatial and temporal features.
Finally, we implement a two-in-one stream architecture,
embedding RGB and optical flow into a single stream.

1. Introduction

The classification of human actions from videos has
been one of the most challenging and well studied tasks in
computer vision, and it has the potential of creating a great
impact across a large number of applications.

However, the majority of the studies on the subject con-
centrates on third person action recognition. While this
classification task has seen a lot of progress over time,
the more niche task of detecting first-person actions and
activities can still be considered as a less explored field, and
has seen some interesting developments in recent years.

One of the most important differences of this task is the
presence of ego-motions, caused by the movement of the
user, that is usually wearing the camera on the head or body.

Another challenging problem that arises when dealing
with first person videos is the need to perform activity
recognition: while classic action recognition consists of
identifying a simple motion pattern (take, put, open...), in
an activity recognition task we are working on a more fine-
grained scale (take coffee, put cheese, open chocolate...).
When working with this kind of data the same object will
be involved in multiple actions. Because of that, it becomes
important to take into account both the objects and the
motions characterizing the user performing the action.

Lorenzo De Nisi
Politecnico di Torino, Italy
s276545@studenti.polito.it

Carmine De Stefano
Politecnico di Torino, Italy
s278176@studenti.polito.it

2. Related Works

In a 2018 paper, Sudhakaran et al. [3] proposed to
address the first person recognition task by combining an
architecture for the analysis of the frames with a temporal
network, capable of learning from image features with
spatial attention. This architecture, called Ego-RNN, is
used as the starting point for our experiments.

One of the problems of this model is that frames and
optical flow features are learned separately, merging the
two branches only at the end of the model. Taking this into
account, we expand on this architecture by implementing
the self-supervised task proposed by Planamente et al. [1]].

We implement this step by creating a self-supervised
motion segmentation task, and feeding the backbone of
the Ego-RNN network to it. As a result of the added MS
task, the backbone will try to learn features regarding the
object movements, that are supposed to be beneficial to the
classification task.

After implementing the MS task both as originally
conceived in the paper and as a regression problem, we
take it a step further, by applying a motion condition and
a motion modulation layer to our model, following the
schema suggested by Zhao and Snoek [5]], with the goal of
using the features from this layers to modulate the RGB
network.

All of models presented in this paper were trained
and validated on the GTEAG61 dataset: a fine-grained
collection of videos corresponding to 61 actions, performed
by 4 different users. The code related to the various steps
described above, together with some animated gifs and the
downloadable weights of the models, is made available at
https://github.com/FPAR-NET/FPAR.

https://github.com/FPAR-NET/FPAR

3. Implementation of Ego-RNN

A ResNet-34 network pre-trained on ImageNet is
implemented as the backbone for this model. This network
is used together with a spatial attention layer in order to
obtain image features with spatial attention. In this layer,
we calculate the class activation map of the winning class,
and we convert it to a probability map by applying softmax.

The features obtained allow us to encode both tempo-
ral and spatial dimensions at the same time, by using
a convLSTM module. The output of the convLSTM is
then fed to an average pooling layer and finally to a fully
connected module for classification.

For the first stage we keep the weights of the pre-trained

ResNet-34 locked, while training only the parts of the
model without any trained weights yet (the convLSTM
module and the final classifier). In this stage, as stated
in [3], the network is trained for 200 epochs, with an initial
learning rate of 1073, and a step down policy characterized
by a decay factor of 0.1 after 25, 75 and 150 epochs. The
best accuracy obtained with this parameters, with 16 frame
videos, is 46.5%. For the second stage we train also the
spatial attention layer, together with the last layer of the
ResNet and its fully connected layer. With this changes
in place, we expect to see an increase in the network’s
performance, since in this stage our model will do a better
job at learning spatial and temporal features.
For this phase, as done in the first stage, the hyperparam-
eters used are the same of the original paper: 150 epochs
of training with a learning rate of 10~*, decayed after 25
and 75 epochs by a factor of 0.1. The increase in accuracy
is consistent with the expected results, and in line with the
results obtained by Sudhakaran et al. [3].

For comparison, the RGB network was also trained
without the spatial attention layer, obtaining 47.3% accu-
racy in the best of cases. In combination with the above
convLSTM-attention model, another method often adopted
in literature ([3[][2][4]) for action recognition tasks, is the
use of stacked optical flow images, in order to train the
temporal stream to recognise actions from motion. The
flow images are taken from the provided dataset, they are
arranged in stacks of 5 and are then fed to a temporal net-
work based on a ResNet-34 model pretrained on ImageNet.
For the first run, the same parameters of the original paper
were used, and the model was trained for 750 epochs, with
a learning rate of 1072, decayed after 150, 300 and 500
epochs by a factor of 0.5. With this run, the best accuracy
obtained on the validation set was slightly above 40%.

After training spatial and temporal features separately,
the original paper proposes to concatenate the output of
the two networks, adding a new fully connected layer to

get the class scores, and performing a fine-tuning for 250
epochs. The best accuracy on the validation set, with 16
frame videos as inputs, was of about 63%.

However, when looking at the loss, we can see that a lot
of overfitting is happening on the training set. We can
speculate that, since the original model was trained on a
larger quantity of data (25 frames instead of 7/16), the
original Ego-RNN model had more features to learn with
respect to ours. Because of that, our implementation of
Ego-RNN takes less time before it begins to overfit.

Two stream loss with flow750

‘ —— Train

35 —— Validation

3.0 ‘
25

20 | \‘AIN\/\/\/\/\M

1.5 |
|

Loss

10

\M\\

A

\

0 . MWWM”M”*WHUMNWWWM'

0.0

o] 50 100 150 200 250
Epochs

Twwo stream loss with flow300

3.5 | —— Train

| —— Validation
3.0 ‘l
2.5 ‘

2.0

Loss

1.0

w\
]\‘M\W’L\‘ \/\/\/\/J\/\/
”\Mu‘n“\\ M

|
0.5 o, k'\/U'"\MW'FWW"fWW s

0 50 100 150 200 250
Epochs

Figure 1. Loss of the two stream network before and after the re-
duction of epochs

Moreover, if we analyse the behaviour of the two models
that compose the two-stream model, we can see that the
temporal network has the same problem. This model, in
fact, starts to overfit when less than half of the training is
completed, and after about 300 epochs the accuracy on
the validation doesn’t change too much anymore, with just
some random fluctuations. Since the original model saves
just the model with the highest accuracy on the validation
set, it may happen that, due to random fluctuations, the
saved model is found in the last epochs, even if at that

= : 2
m

W

>/ Conv > pool—» Layer1 _» Layer2 _, Layer3 _, Llayerd _ 5 Avg 5 FC 35 sofimax —»
(64) (64) (128) (256) (512)

\ s

Spatial T

e D Attention
Layer C i
[

ConvLSTM —>| Avg.Pool —>1 Classifier

Figure 2. Self-supervised network architecture

point the model is overfitting, and there are no relevant
improvements.

In figure [I] we plot the effect of this change on the
two-stream loss before and after the reduction of the
number of flow epochs from 750 to 300. We also make
available the loss of the temporal branch in appendix (
figure[9).

Assuming that this behaviour of the temporal-warp flow
could have repercussions on the whole two-stream model,
we decided to train it again for just 300 epochs. This
approach proved to be beneficial, and was able to mitigate
the overfitting effect on the two-stream model as well.
After this changes were put in place, great improvements
on the two-stream metrics were achieved, with the accuracy
reaching 73.7% in the 16 frame case.

For the remaining part of this report, we will use this better
performing version of the temporal network, and we will
be referring to it as "flow300”.

Complete results regarding the different training steps of
the network are shown in the table below.

’ Configurations \ 7 Frames 16 frames ‘
ConvLSTM 37.7% 46.5%
ConvLSTM-attention 55.2% 64.9%
Temporal-warp flow 42.2% 42.2%
Two-stream (joint train) 57% 73.7%

Table 1. Results of the experiments on the GTEA61 dataset

4. Adding a self-supervised task

Until now, the motion and temporal networks were
trained separately. As suggested by Planamente ef al. [1I],
we try to implement a motion segmentation self-supervised
task on top of the second stage of the Ego-RNN network,
in order to learn jointly information related to motion and
frames. Another advantage that comes with this network is
that, differently from Ego-RNN, it can be trained end-to-
end in a single run.

As we can see from the schema above, the output of
Ego-RNN’s layer 4 is fed to the MS task: a simple branch
composed of a convolutional block capable of reducing the
channels from 512 to 100, and a fully connected layer of
size 49, followed by a softmax. The output of the MS task
is used to calculate the per-pixel cross-entropy between the
computed 7x7 image and the ground truth, obtained from
the motion maps already available in the original dataset.

These mmaps are down sampled to a 7x7 matrix, and each
of the resulting 49 pixels is set to 0 or 1 depending on a
given threshold. For the first run, the threshold was set
to 0.5. However, setting it to O proved to be beneficial
and increased the performance of the self-supervised
task. For the calculation of the L,,, loss, we used the
binary_cross_entropy function provided by PyTorch. In
the beginning, the results obtained by training this model
were not comparable to the ones of the two-stream network
implemented in the previous section, and even doing some
hyperparameter optimization didn’t provide great improve-
ments. However, a turning point was reached by reducing
the kernel size of the convolutional layer in the MS task

Figure 3. Mmaps after down sampling

from 7 to 1. This value is admittedly an unconventional
choice, and the improvement obtained by using it can be
explained by the fact that, with this value, the MS task is
not losing information about the motion clues that we are
trying to encode with this self-supervised task.

After this changes were put in place, the best accu-
racy obtained on the validation set was 67.5%, obtained
with 150 epochs of training, a batch size of 32, an initial
learning rate of 10~ and a step down policy characterized
by a decay factor of 0.1 after 25 and 75 epochs. For the
various configuration of hyperparameters that were tried
with this self-supervised model, we refer to table |2| in the
dedicated section.

For this task we can consider ourselves satisfied with the
results obtained. However, when looking at these metrics
(and more generally at the other accuracy values reported
in this paper), an important thing to remember is that the
validation was done on a small number of samples, since
the dataset used for this project is relatively small for a
deep learning task of this kind, especially if compared with
other similar datasets (e.g. Epic Kitchens).

5. CAM visualization

Inside the spatial attention layer of Ego-RNN we take
advantage of the average pooling of the ResNet34 model
to compute class activation maps as proposed by Zhou et
al. [6], in order to identify the regions of the image that
were used to predict the winning class. To do it, we just
need to map the predicted class score back to the previous
convolutional layer, thus highlighting the class-specific
regions that are being activated the most. While these
maps have a useful purpose in the inner workings of the
network, they can also be visualized, and used to find out
the importance that the classificator gives to the different
regions in the image.

We can visualize the effect of the self-supervised task
by plotting the class activation maps before and after the

implementation of the MS task. As we can see from
the image below, before training the self-supervised task
the model is focusing on the plate, while afterwards the
network is capable of better identifying the jar. In the
second example, the focus shifts from the container to the
lid when identifying the opening of mayonnaise.

Figure 4. Class activation maps before and after the introduction
of the MS task.

The complete animations related to the displayed im-
ages, together with some other examples on self-made
videos, are made available in the provided GitHub
repository, together with the code.

6. Self supervised task as a regression problem

Since we are using a threshold to arbitrarily decide

if a pixel of the motion maps is switched on or off, we
could argue that some useful information is lost during
this process. A better idea would be to use a regression
technique instead.
To achieve this goal, we add a sigmoid to the head of the
MS task. We also need to remove the threshold-based
conversion of the mmaps that we implemented in the
original self-supervised task, and we have to change the
loss function used for the calculation of £,,,,.

In order to find an efficient loss function we used an
empirical approach, performing experiments with various
functions. After some runs, the best performing param-
eters used for this task were obtained when training for

150 epochs, a batch size of 16, with a step down policy
implemented after 50 and 100 epochs. All of the various
loss functions were implemented with this hyperparameters
in place. The best validation accuracy (72.8%) was found
with the use of the Mean Squared Error loss:

n 2

MSE — Zi:l(iz—yi))

We mention also another interesting loss function that

we implemented with good results: the Kullback—Leibler

divergence. This formula is defined, for two discrete proba-

bility distributions P and Q defined on the same probability
space X, as:

Da(PlQ =Y Pere(55) @
TeEX

While not providing the best accuracy value in absolute
terms, the run performed with this loss provided an accept-
able accuracy nonetheless, and it proved to be helpful in
lowering the overfitting effect when used in the experiments
described further on (two-in-one stream action detection).

At the end of the self-supervised task training, we
need to merge the obtained loss together with the one
coming from the RGB branch. However, when looking
at the value of these two losses, we notice that they are
often characterized by different orders of magnitude. For
example, in the case of the Kullback—Leibler loss, we
notice that its value is about one order of magnitude smaller
than the L. value. There is a discrepancy also with the use
of MSE, with a value that is four times higher with respect
to L.

An idea in this case would be to weight one of them, in
order to have comparable values when merging the losses
together. However, repeating the training with this change
in place didn’t prove to bring improvements, so we decided
to move on to the hyperparameter optimization phase,
keeping the original implementation with the unweighted
losses.

The best accuracy on the validation set obtained when
applying the MSE loss was 72.8%. For the results obtained
with the other loss functions we refer to table Blin the next
section.

To compare this model with the original self-supervised
task, we can plot the loss obtained with the regression
task and compare it to the one obtained before. We can
also visualize the 7x7 maps and compare it with the ones
obtained.

7. Hyperparameter optimization

Some hyperparameter tweaking was performed after the
implementation of the self-supervised task. We changed

Loss of the classification problem

2.4 F —— Train
l\ —— Validation
2.2 I
2.0
w 1.8
(0]
S
16
1.4
1.2
1.0
0 20 40 60 80 100 120 140
Epochs
Loss of the regression problem (KL loss)
—— Train
25 —— Validation
2.0
w
g
— 15
1.0 T —
W

0 20 40 60 80 100 120 140
Epochs

Figure 5. Loss before and after the regression task

epochs, batch size, step size (which is the number of epochs
before the application of a step down policy on learning
rate) and type of optimizer. The results are shown in the
table below.

’ Epochs Batchsize Stepsize Optimizer \ Accuracy ‘
150 32 [25,75] Adam 67.5%
200 32 [50, 100] Adam 64.9%
150 32 [25,75] SGD 53.5%
150 16 [50, 100] Adam 67.5%
150 16 [25,75] Adam 51.7%

Table 2. Hyperparameter optimization on self-supervised task

For the implementation of the regression problem, the ex-
periments were mainly focused on experimenting different
loss functions for the £, loss of the self-supervised task.
The details of these experiments, trained for 150 epochs, a
batch size of 16 and a step size of [50, 100], are shown in
the table below.

After these experiments on different loss functions,

Conv
(64)

Conv
(64) J

Other

@—}Poo\a Layer1 —» Layer2 _, layer3 _, Layer4 _ Layers

(64) (128) (256) (512)

Figure 6. Two-in-one network architecture

| Loss function | Accuracy |
L1 67.5%
Smooth L1 70.2%
MSE 72.8%
Soft-margin 66.7%
Kullback—Leibler 70.2%

Table 3. Accuracy with different loss functions

we tried to re-train the two-stream model by using the best
weights obtained with the regressive task, in combination
with the usual flow300 weights obtained from the original
temporal network. While increasing the overfitting effect
by a lot, there was actually a slight improvement on the
validation accuracy, reaching a value of 74.5% with the KL
loss.

8. Two-in-one stream action detection

In 2019, Zhao and Snoek [5] proposed a method to

embed RGB and optical-flow into a single two-in-one
stream, with the goal of performing spatio-temporal action
detection with a model that can be trained end-to-end in
a single run and can be easily implemented on top of a
two-stream action detection model.
This allows us do conduct some more experiments with
the optical flow images (that we stopped using in favour of
mmaps computation), while reducing the higher computa-
tional costs required by the two separate streams that come
as a disadvantage with the implementation of Ego-RNN.

This is achieved with the addition of two new layers:

a motion condition and a motion modulation layer. The
first layer applies a series of convolutions to the initial
flow images, with the goal of generating some simple
features from them. After this, the motion modulation layer
learns a pair of affine transformations parameters 8 and
v through the use of two parallel series of convolutional
layers. These parameters are then used in order to modulate
the information coming from the first convolutional layer
of the RGB network, by applying to the RGB features F'"9°
the following transformation:

MA(FT9%) = O Fr9° 4 5 (3)

Where © is an element-wise multiplication operation.

Due to the limitations given by the Colab hardware, we
were forced to reduce the batch size to 4, increasing by a
lot the training time. With the first implementation of this
model we obtained an accuracy of 66.7%, reaching a metric
similar to the one obtained with the first self-supervised task
that we implemented before, and showing the effectiveness
of this kind of approach.

In order to visualize better the mechanics involved in the
implemented motion layers, we can plot the output of the
first convolution before and after the application of the two
motion layers, and also the inputs coming from [and .

As a last experiment, we tried to train the motion lay-
ers together with the first convolution of the RGB network.
This is done since this layer can be considered as a part of
the first block of our network, together with motion layers.
Because of that, it makes sense to try training this first stage
all together. The experiment was performed multiple times,

Figure 7. Gray-scale visualizations of pre-motion layers, beta,
gamma and post-motion layers

with MSE, KL, and also without the MS task at all. A first
training was done starting from the first stage (convLSTM),
to compare the results with the other approaches.
Training also the first convolution proved to be beneficial in
some cases, with an accuracy of 71% obtained with the KL
loss. However, as we can see from the ﬁgure@ there was
also an increase in overfitting. This overfitting was even
greater with the MSE loss, and that is probably the reason
why the MS task with KL loss was the best performing after
the training of Motion Layers + convl.

In the following table we can see all the details regard-
ing the changes in accuracy obtained after the training of
motion layers together with convl.

\ Network | Motion Layers ML+convl |
ConvLSTM 66.7% 62.3%
ConvLSTM attention 62.3% 65.7%
MS task with KL 67.5% 71.0%
MS task with MSE 70.2% 67.5%

Table 4. Hyperparameter optimization on self-supervised task

Training motion layers (convLSTM-attention)
2.50 —— Train
—— Validation
2.25

2.00

Loss

1.50

125

1.00

0.75

0 20 40 60 80 100 120 140
Epochs

Training motion layers + convl (convLSTM-attention)

2.50 —— Train
—— Validation

2.25

2.00

Loss

1.50

125

1.00

0.75
0 20 40 60 80 100 120 140
Epochs

Figure 8. Loss of the two-in-one model before and after the joint
training on motion layers + convl

9. Conclusion

To summarize the steps followed during this project, we

provided an implementation of Ego-RNN with 7 and 16
frames, obtaining acceptable results. We implemented a
Motion Segmentation task on top of the Ego-RNN back-
bone, obtaining good results, especially with the implemen-
tation of a regressive version of said task. We observed how
a lighter, end-to-end trainable two-in-one model is capable
of providing some good accuracy values, that are compara-
ble with the results obtained before.
Finally, we plotted a confusion and a correlation matrix for
each of the three networks analysed in the project. When
looking at the correlation matrices (I3} [I3] [T7), we have
an interesting insight: the division between the different
actions characterizing the activities(open, close, take...) is
clearly visible in the plots. A possible idea to expand on the
topic in the future would be to create specialized branches
for the classification of action and objects separately.

References

(1]

(2]

(3]

(4]

(]

(6]

M. Planamente, A. Bottino, and B. Caputo. Joint encoding of
appearance and motion features with self-supervision for first
person action recognition, 2020.

K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos, 2014.

S. Sudhakaran and O. Lanz. Attention is all we need: Nailing
down object-centric attention for egocentric activity recogni-
tion, 2018.

L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and
L. V. Gool. Temporal segment networks: Towards good prac-
tices for deep action recognition, 2016.

J. Zhao and C. G. M. Snoek. Dance with flow: Two-in-one
stream action detection. 2019.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba.
Learning deep features for discriminative localization, 2015.

Additional material

Loss

Loss

Flow branch (750 epochs) Flow branch (300 epochs)

45

—— Train —— Train
—— Validation —— \alidation
4
3
0
w
3
2
1
0 100 200 300 400 500 600 700 0 50 100 150 200 250 300
Epochs Epochs
Figure 9. Loss of the temporal network before and after the reduction of epochs
Loss of the regression problem (MSE loss) Loss of the regression problem (Smooth L1 loss)
2.50 —— Train 250 —— Train
—— Validation —— \alidation
2.25
2.00
175
1.50
1.25
1.00
0.75
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Epochs Epochs
Figure 10. Loss of the regression task with two other functions
Training motion layers separately Training motion layers + convl
250 —— Train 20 —— Train
—— \Validation —— \alidation
2.25
2.00
175
1.50
1.25
1.00
0.75
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Epochs Epochs

Figure 11. Loss of the two-in-one model before and after the joint training on motion layers + conv1, with KL loss

close_chocolate [0]
close_coffee [1]
close_honey [2]

close_jam [3]
close_ketchup [4]
close_ 15

close_mustard [6]

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9][10111112113114115116]117118119120121122123]24125126 127128]29130131 [32 33134135136 137138139140141 142143144 145146 147

11521531541

close_peanut [7]
close_sugar [8]
close_water [9]
fold_bread [10]

open_cheese [11]
open_chocolate [12]
open_coffee [13]
open_honey [14]
open_jam [15]
open_ketchup [16]
open_r [17]
open_mustard [18]

open_peanut [19]
open_sugar [20]
open_tea [21]
open_water [22]
pour_chocolate,bread [23]
pour_coffee,spoon,cup [24]
pour_honey bread [25]
pour_honey,cup [26]
pour_ketchup,hotdog,bread [27]
20ur_mayonnaise,cheese,bread [28]
pour_mustard,cheese,bread [29]
pour_mustard,hotdog,bread [30]
pour_sugar,spoon,cup [31]
pour_water,cup [32]
put_bread,bread [33]
put_bread,cheese, bread [34]
put_cheese,bread [35]
put_hotdog,bread [36]
scoop_coffee,spoon [37]
scoop_jam,spoon [38]

scoop_peanut,spoon [39]

scoop_sugar,spoon [40]
shake_tea,cup [41]

spread_jam,spoon,bread [42]

spread_peanut,spoonbread [43]

stir_spoon,cup [44]

take_bread [45]

take_cheese [46]

take_chocolate [47]

take_coffee [48]
take_cup [49]

take_honey [50]

take_hotdog [51]

take_jam [52]

take_ketchup [53]

take._r [54]

take_mustard [55]

take_peanut [56]
take_spoon [57]

take_sugar [58]

take_tea [59]

take_water [60]

Figure 12. Confusion matrix for the two stream network

10

dose_chocolate
dlose_coffee

dlose_honey
dlose_ja
close_ketchup
dlose_mayonnaise
dlose_mustard
close_peanut
close_sugar
close_water
fold_bread
open_cheese
open_chiocolate
open_coffee
open_honey
open_jam
open hetchup
open_mayonnaise
open_mustard
open_peanut

open_sugar
N te
open_water

pour_chocolate bread
pour_coffee,spoon,cup

pour_honey,bread
pour_honéy,cup
pour_ketchup,hdtdog,bread
pour_mayonnaise.cheese,bread
pour_mustard,cheese bread
pour”mustard;hotdog bread
pour_sugar,spoon,cup

pour_water,cup

put_bread,bread
put_bread,cheese,bread
put_ cheese,bread
put_hotdog.bread
scoop_coffee spoon

scoop_jam,spoon
sCo0p_peanut;spoon

Sco0p_sugar,spoon

shake_tea,cup
spread_jam,spoon,bread
spread_peanut/spoon bread

stir_spoon,cup

take_bread

take_cheese
take_chiocolate
take_coffee

take_cup

take_honey
take_hotdog
take_jam
take_ketchup
take_mayonnaise
fake_mustard
take_peanut

take_spoon

take_sugar

take_water

Figure 13. Correlation matrix for the two stream network features before classification

close_chocolate [0]
close_coffee [1]
close_honey [2]

close_jam [3]
close_ketchup [4]
close_ 15

close_mustard [6]

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9][10111112113114115116]117118119120121122123]24125126 127128]29130131 [32 33134135136 137138139140141 142143144 145146 147

Ll

11521531541

close_peanut [7]
close_sugar [8]
close_water [9]
fold_bread [10]

open_cheese [11]
open_chocolate [12]
open_coffee [13]
open_honey [14]
open_jam [15]
open_ketchup [16]
open_r [17]
open_mustard [18]

"=

open_peanut [19]
open_sugar [20]
open_tea [21]
open_water [22]
pour_chocolate,bread [23]
pour_coffee,spoon,cup [24]
pour_honey bread [25]
pour_honey,cup [26]
pour_ketchup,hotdog,bread [27]
20ur_mayonnaise,cheese,bread [28]
pour_mustard,cheese,bread [29]
pour_mustard,hotdog,bread [30]
pour_sugar,spoon,cup [31]
pour_water,cup [32]
put_bread,bread [33]
put_bread,cheese, bread [34]
put_cheese,bread [35]
put_hotdog,bread [36]
scoop_coffee,spoon [37]
scoop_jam,spoon [38]

scoop_peanut,spoon [39]

scoop_sugar,spoon [40]
shake_tea,cup [41]

spread_jam,spoon,bread [42]

spread_peanut,spoonbread [43]

stir_spoon,cup [44]

take_bread [45]

take_cheese [46]

take_chocolate [47]

take_coffee [48]
take_cup [49]

take_honey [50]

take_hotdog [51]

take_jam [52]

take_ketchup [53]

take._r [54]

take_mustard [55]

take_peanut [56]
take_spoon [57]

take_sugar [58]

take_tea [59]

take_water [60]

Figure 14. Confusion matrix for the MS task model

12

o

20 40 60 80 100

dose_chocolate
dlose_coffee

dlose_honey
dlose_jam
close_ketchup
dlose_mayonnaise
dlose_mustard
close_peanut
close_sugar
close_water
fold_bread
open_cheese
open_chiocolate
open_coffee
open_honey
open_jam

open hetchup
open_mayonnaise
open_mustard
open_peanut

open_sugar
N te
open_water

pour_chocolate bread
pour_coffee,spoon,cup

pour_honey,bread
pour_honéy,cup
pour_ketchup,hdtdog,bread
pour_mayonnaise.cheese,bread
pour_mustard,cheese bread
pour”mustard;hotdog bread
pour_sugar,spoon,cup

pour_water,cup

put_bread,bread

put_bread,cheese,bread
ut_ cheese,bread
put_hotdog.bread
scoop_coffee,spoon

scoop_jam,spoon
scoop_peanutspoon

5C00p_sugar,spoon

ake_tea,cup
spread_jam,spoan, bread
spread_peanut,spoon,bread

stir_spoon,cup

take_bread

take_cheese
take_chiocolate
take_coffee

take_cup

take_honey
take_hotdog
take_jam
take_ketchup
take_mayonnaise
fake_mustard
take_peanut

take_spoon

take_sugar

take_water

Figure 15. Correlation matrix for the MS task model features before classification

13

close_chocolate [0]
close_coffee [1]
close_honey [2]

close_jam [3]
close_ketchup [4]

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9][10111112113114115116]117118119120121122123]24125126 127128]29130131 [32 33134135136 137138139140141 142143144 145146 147

11521531541

7

close._ (5]
close_mustard [6]
close_peanut [7]
close_sugar [8]
close_water [9]
fold_bread [10]
open_cheese [11]
open_chocolate [12]
open_coffee [13]
open_honey [14]
open_jam [15]
open_ketchup [16]
open_r [17]

open_mustard [18]
open_peanut [19]

open_sugar [20]

open_tea [21]

open_water [22]
pour_chocolate,bread [23]
pour_coffee,spoon,cup [24]
pour_honey bread [25]
pour_honey,cup [26]
pour_ketchup,hotdog,bread [27]
20ur_mayonnaise,cheese bread [28]
pour_mustard,cheese,bread [29]
pour_mustard,hotdog,bread [30]
pour_sugar,spoon,cup [31]
pour_water,cup [32]
put_bread,bread [33]
put_bread,cheese, bread [34]
put_cheese,bread [35]
put_hotdog,bread [36]
scoop_coffee,spoon [37]
scoop_jam,spoon [38]
scoop_peanut,spoon [39]
scoop_sugar,spoon [40]
shake_tea,cup [41]
spread_jam,spoon,bread [42]
spread_peanut,spoon,bread [43]
stir_spoon,cup [44]

take_bread [45]

take_cheese [46]
take_chocolate [47]

take_coffee [48]

take_cup [49]

take_honey [50]

take_hotdog [51]

take_jam [52]

take_ketchup [53]

take._r [54]

take_mustard [55]
take_peanut [56]
take_spoon [57]
take_sugar [58]
take_tea [59]
take_water [60]

Figure 16. Confusion matrix for the two-in-one model

14

dose_chocolate
dlose_coffee

dlose_honey
dlose_jam
close_ketchup
dlose_mayonnaise
dlose_mustard
close_peanut
close_sugar
close_water
fold_bread
open_cheese
open_chiocolate
open_coffee
open_honey
open_jam

open hetchup
open_mayonnaise
open_mustard
open_peanut

open_sugar
N te
open_water

pour_chocolate bread
pour_coffee,spoon,cup

pour_honey,bread
pour_honéy,cup
pour_ketchup,hdtdog,bread
pour_mayonnaise.cheese,bread
pour_mustard,cheese bread
pour”mustard;hotdog bread
pour_sugar,spoon,cup

pour_water,cup

put_bread,bread

put_bread,cheese,bread
ut_ cheese,bread
put_hotdog.bread
scoop_coffee,spoon

scoop_jam,spoon
scoop_peanutspoon

5C00p_sugar,spoon

ake_tea,cup
spread_jam,spoan, bread
spread_peanut,spoon,bread

stir_spoon,cup

take_bread

take_cheese
take_chiocolate
take_coffee

take_cup

take_honey
take_hotdog
take_jam
take_ketchup
take_mayonnaise
fake_mustard
take_peanut

take_spoon

take_sugar

take_water

Figure 17. Correlation matrix for the two-in-one model features before classification

15

