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Preface



Section 1. New for the Second Edition
The first edition of this book was published in 2012, during a time when open
source data analysis libraries for Python (such as pandas) were very new and
developing rapidly. In this updated and expanded second edition, I have
overhauled the chapters to account both for incompatible changes and
deprecations as well as new features that have occurred in the last five years.
I’ve also added fresh content to introduce tools that either did not exist in
2012 or had not matured enough to make the first cut. Finally, I have tried to
avoid writing about new or cutting-edge open source projects that may not
have had a chance to mature. I would like readers of this edition to find that
the content is still almost as relevant in 2020 or 2021 as it is in 2017.

The major updates in this second edition include:
All code, including the Python tutorial, updated for Python 3.6 (the first
edition used Python 2.7)

Updated Python installation instructions for the Anaconda Python
Distribution and other needed Python packages

Updates for the latest versions of the pandas library in 2017

A new chapter on some more advanced pandas tools, and some other
usage tips

A brief introduction to using statsmodels and scikit-learn

I also reorganized a significant portion of the content from the first edition to
make the book more accessible to newcomers.



Section 2. Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

CAUTION
This element indicates a warning or caution.



Section 3. Using Code Examples
You can find data files and related material for each chapter is available in
this book’s GitHub repository at http://github.com/wesm/pydata-book.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a program
that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “Python for Data
Analysis by Wes McKinney (O’Reilly). Copyright 2017 Wes McKinney,
978-1-491-95766-0.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

http://github.com/wesm/pydata-book
mailto:permissions@oreilly.com


Section 4. O’Reilly Safari
NOTE

Safari (formerly Safari Books Online) is a membership-based training and
reference platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths,
interactive tutorials, and curated playlists from over 250 publishers, including
O’Reilly Media, Harvard Business Review, Prentice Hall Professional,
Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
Adobe, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning,
New Riders, McGraw-Hill, Jones & Bartlett, and Course Technology, among
others.

For more information, please visit http://oreilly.com/safari.

http://oreilly.com/safari
http://www.oreilly.com/safari


Section 5. How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
http://bit.ly/python_data_analysis_2e.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

http://bit.ly/python_data_analysis_2e
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


Section 6. Acknowledgments
This work is the product of many years of fruitful discussions, collaborations,
and assistance with and from many people around the world. I’d like to thank
a few of them.



In Memoriam: John D. Hunter (1968–2012)
Our dear friend and colleague John D. Hunter passed away after a battle with
colon cancer on August 28, 2012. This was only a short time after I’d
completed the final manuscript for this book’s first edition.

John’s impact and legacy in the Python scientific and data communities
would be hard to overstate. In addition to developing matplotlib in the early
2000s (a time when Python was not nearly so popular), he helped shape the
culture of a critical generation of open source developers who’ve become
pillars of the Python ecosystem that we now often take for granted.

I was lucky enough to connect with John early in my open source career in
January 2010, just after releasing pandas 0.1. His inspiration and mentorship
helped me push forward, even in the darkest of times, with my vision for
pandas and Python as a first-class data analysis language.

John was very close with Fernando Pérez and Brian Granger, pioneers of
IPython, Jupyter, and many other initiatives in the Python community. We
had hoped to work on a book together, the four of us, but I ended up being
the one with the most free time. I am sure he would be proud of what we’ve
accomplished, as individuals and as a community, over the last five years.



Acknowledgments for the Second Edition (2017)
It has been five years almost to the day since I completed the manuscript for
this book’s first edition in July 2012. A lot has changed. The Python
community has grown immensely, and the ecosystem of open source
software around it has flourished.

This new edition of the book would not exist if not for the tireless efforts of
the pandas core developers, who have grown the project and its user
community into one of the cornerstones of the Python data science
ecosystem. These include, but are not limited to, Tom Augspurger, Joris van
den Bossche, Chris Bartak, Phillip Cloud, gfyoung, Andy Hayden, Masaaki
Horikoshi, Stephan Hoyer, Adam Klein, Wouter Overmeire, Jeff Reback,
Chang She, Skipper Seabold, Jeff Tratner, and y-p.

On the actual writing of this second edition, I would like to thank the
O’Reilly staff who helped me patiently with the writing process. This
includes Marie Beaugureau, Ben Lorica, and Colleen Toporek. I again had
outstanding technical reviewers with Tom Augpurger, Paul Barry, Hugh
Brown, Jonathan Coe, and Andreas Müller contributing. Thank you.

This book’s first edition has been translated into many foreign languages,
including Chinese, French, German, Japanese, Korean, and Russian.
Translating all this content and making it available to a broader audience is a
huge and often thankless effort. Thank you for helping more people in the
world learn how to program and use data analysis tools.

I am also lucky to have had support for my continued open source
development efforts from Cloudera and Two Sigma Investments over the last
few years. With open source software projects more thinly resourced than
ever relative to the size of user bases, it is becoming increasingly important
for businesses to provide support for development of key open source
projects. It’s the right thing to do.



Acknowledgments for the First Edition (2012)
It would have been difficult for me to write this book without the support of a
large number of people.

On the O’Reilly staff, I’m very grateful for my editors, Meghan Blanchette
and Julie Steele, who guided me through the process. Mike Loukides also
worked with me in the proposal stages and helped make the book a reality.

I received a wealth of technical review from a large cast of characters. In
particular, Martin Blais and Hugh Brown were incredibly helpful in
improving the book’s examples, clarity, and organization from cover to
cover. James Long, Drew Conway, Fernando Pérez, Brian Granger, Thomas
Kluyver, Adam Klein, Josh Klein, Chang She, and Stéfan van der Walt each
reviewed one or more chapters, providing pointed feedback from many
different perspectives.

I got many great ideas for examples and datasets from friends and colleagues
in the data community, among them: Mike Dewar, Jeff Hammerbacher,
James Johndrow, Kristian Lum, Adam Klein, Hilary Mason, Chang She, and
Ashley Williams.

I am of course indebted to the many leaders in the open source scientific
Python community who’ve built the foundation for my development work
and gave encouragement while I was writing this book: the IPython core
team (Fernando Pérez, Brian Granger, Min Ragan-Kelly, Thomas Kluyver,
and others), John Hunter, Skipper Seabold, Travis Oliphant, Peter Wang, Eric
Jones, Robert Kern, Josef Perktold, Francesc Alted, Chris Fonnesbeck, and
too many others to mention. Several other people provided a great deal of
support, ideas, and encouragement along the way: Drew Conway, Sean
Taylor, Giuseppe Paleologo, Jared Lander, David Epstein, John Krowas,
Joshua Bloom, Den Pilsworth, John Myles-White, and many others I’ve
forgotten.

I’d also like to thank a number of people from my formative years. First, my
former AQR colleagues who’ve cheered me on in my pandas work over the
years: Alex Reyfman, Michael Wong, Tim Sargen, Oktay Kurbanov,



Matthew Tschantz, Roni Israelov, Michael Katz, Chris Uga, Prasad
Ramanan, Ted Square, and Hoon Kim. Lastly, my academic advisors Haynes
Miller (MIT) and Mike West (Duke).

I received significant help from Phillip Cloud and Joris Van den Bossche in
2014 to update the book’s code examples and fix some other inaccuracies due
to changes in pandas.

On the personal side, Casey provided invaluable day-to-day support during
the writing process, tolerating my highs and lows as I hacked together the
final draft on top of an already overcommitted schedule. Lastly, my parents,
Bill and Kim, taught me to always follow my dreams and to never settle for
less.



Chapter 1. Preliminaries



1.1 What Is This Book About?
This book is concerned with the nuts and bolts of manipulating, processing,
cleaning, and crunching data in Python. My goal is to offer a guide to the
parts of the Python programming language and its data-oriented library
ecosystem and tools that will equip you to become an effective data analyst.
While “data analysis” is in the title of the book, the focus is specifically on
Python programming, libraries, and tools as opposed to data analysis
methodology. This is the Python programming you need for data analysis.



What Kinds of Data?
When I say “data,” what am I referring to exactly? The primary focus is on
structured data, a deliberately vague term that encompasses many different
common forms of data, such as:

Tabular or spreadsheet-like data in which each column may be a
different type (string, numeric, date, or otherwise). This includes most
kinds of data commonly stored in relational databases or tab- or comma-
delimited text files.

Multidimensional arrays (matrices).

Multiple tables of data interrelated by key columns (what would be
primary or foreign keys for a SQL user).

Evenly or unevenly spaced time series.

This is by no means a complete list. Even though it may not always be
obvious, a large percentage of datasets can be transformed into a structured
form that is more suitable for analysis and modeling. If not, it may be
possible to extract features from a dataset into a structured form. As an
example, a collection of news articles could be processed into a word
frequency table, which could then be used to perform sentiment analysis.

Most users of spreadsheet programs like Microsoft Excel, perhaps the most
widely used data analysis tool in the world, will not be strangers to these
kinds of data.



1.2 Why Python for Data Analysis?
For many people, the Python programming language has strong appeal. Since
its first appearance in 1991, Python has become one of the most popular
interpreted programming languages, along with Perl, Ruby, and others.
Python and Ruby have become especially popular since 2005 or so for
building websites using their numerous web frameworks, like Rails (Ruby)
and Django (Python). Such languages are often called scripting languages, as
they can be used to quickly write small programs, or scripts to automate other
tasks. I don’t like the term “scripting language,” as it carries a connotation
that they cannot be used for building serious software. Among interpreted
languages, for various historical and cultural reasons, Python has developed a
large and active scientific computing and data analysis community. In the last
10 years, Python has gone from a bleeding-edge or “at your own risk”
scientific computing language to one of the most important languages for
data science, machine learning, and general software development in
academia and industry.

For data analysis and interactive computing and data visualization, Python
will inevitably draw comparisons with other open source and commercial
programming languages and tools in wide use, such as R, MATLAB, SAS,
Stata, and others. In recent years, Python’s improved support for libraries
(such as pandas and scikit-learn) has made it a popular choice for data
analysis tasks. Combined with Python’s overall strength for general-purpose
software engineering, it is an excellent option as a primary language for
building data applications.



Python as Glue
Part of Python’s success in scientific computing is the ease of integrating C,
C++, and FORTRAN code. Most modern computing environments share a
similar set of legacy FORTRAN and C libraries for doing linear algebra,
optimization, integration, fast Fourier transforms, and other such algorithms.
The same story has held true for many companies and national labs that have
used Python to glue together decades’ worth of legacy software.

Many programs consist of small portions of code where most of the time is
spent, with large amounts of “glue code” that doesn’t run often. In many
cases, the execution time of the glue code is insignificant; effort is most
fruitfully invested in optimizing the computational bottlenecks, sometimes by
moving the code to a lower-level language like C.



Solving the “Two-Language” Problem
In many organizations, it is common to research, prototype, and test new
ideas using a more specialized computing language like SAS or R and then
later port those ideas to be part of a larger production system written in, say,
Java, C#, or C++. What people are increasingly finding is that Python is a
suitable language not only for doing research and prototyping but also for
building the production systems. Why maintain two development
environments when one will suffice? I believe that more and more companies
will go down this path, as there are often significant organizational benefits to
having both researchers and software engineers using the same set of
programming tools.



Why Not Python?
While Python is an excellent environment for building many kinds of
analytical applications and general-purpose systems, there are a number of
uses for which Python may be less suitable.

As Python is an interpreted programming language, in general most Python
code will run substantially slower than code written in a compiled language
like Java or C++. As programmer time is often more valuable than CPU time,
many are happy to make this trade-off. However, in an application with very
low latency or demanding resource utilization requirements (e.g., a high-
frequency trading system), the time spent programming in a lower-level (but
also lower-productivity) language like C++ to achieve the maximum possible
performance might be time well spent.

Python can be a challenging language for building highly concurrent,
multithreaded applications, particularly applications with many CPU-bound
threads. The reason for this is that it has what is known as the global
interpreter lock (GIL), a mechanism that prevents the interpreter from
executing more than one Python instruction at a time. The technical reasons
for why the GIL exists are beyond the scope of this book. While it is true that
in many big data processing applications, a cluster of computers may be
required to process a dataset in a reasonable amount of time, there are still
situations where a single-process, multithreaded system is desirable.

This is not to say that Python cannot execute truly multithreaded, parallel
code. Python C extensions that use native multithreading (in C or C++) can
run code in parallel without being impacted by the GIL, so long as they do
not need to regularly interact with Python objects.



1.3 Essential Python Libraries
For those who are less familiar with the Python data ecosystem and the
libraries used throughout the book, I will give a brief overview of some of
them.



NumPy
NumPy, short for Numerical Python, has long been a cornerstone of
numerical computing in Python. It provides the data structures, algorithms,
and library glue needed for most scientific applications involving numerical
data in Python. NumPy contains, among other things:

A fast and efficient multidimensional array object ndarray

Functions for performing element-wise computations with arrays or
mathematical operations between arrays

Tools for reading and writing array-based datasets to disk

Linear algebra operations, Fourier transform, and random number
generation

A mature C API to enable Python extensions and native C or C++ code
to access NumPy’s data structures and computational facilities

Beyond the fast array-processing capabilities that NumPy adds to Python, one
of its primary uses in data analysis is as a container for data to be passed
between algorithms and libraries. For numerical data, NumPy arrays are more
efficient for storing and manipulating data than the other built-in Python data
structures. Also, libraries written in a lower-level language, such as C or
Fortran, can operate on the data stored in a NumPy array without copying
data into some other memory representation. Thus, many numerical
computing tools for Python either assume NumPy arrays as a primary data
structure or else target seamless interoperability with NumPy.

http://numpy.org


pandas
pandas provides high-level data structures and functions designed to make
working with structured or tabular data fast, easy, and expressive. Since its
emergence in 2010, it has helped enable Python to be a powerful and
productive data analysis environment. The primary objects in pandas that will
be used in this book are the DataFrame, a tabular, column-oriented data
structure with both row and column labels, and the Series, a one-
dimensional labeled array object.

pandas blends the high-performance, array-computing ideas of NumPy with
the flexible data manipulation capabilities of spreadsheets and relational
databases (such as SQL). It provides sophisticated indexing functionality to
make it easy to reshape, slice and dice, perform aggregations, and select
subsets of data. Since data manipulation, preparation, and cleaning is such an
important skill in data analysis, pandas is one of the primary focuses of this
book.

As a bit of background, I started building pandas in early 2008 during my
tenure at AQR Capital Management, a quantitative investment management
firm. At the time, I had a distinct set of requirements that were not well
addressed by any single tool at my disposal:

Data structures with labeled axes supporting automatic or explicit data
alignment — this prevents common errors resulting from misaligned
data and working with differently indexed data coming from different
sources

Integrated time series functionality

The same data structures handle both time series data and non–time
series data

Arithmetic operations and reductions that preserve metadata

Flexible handling of missing data

http://pandas.pydata.org


Merge and other relational operations found in popular databases (SQL-
based, for example)

I wanted to be able to do all of these things in one place, preferably in a
language well suited to general-purpose software development. Python was a
good candidate language for this, but at that time there was not an integrated
set of data structures and tools providing this functionality. As a result of
having been built initially to solve finance and business analytics problems,
pandas features especially deep time series functionality and tools well suited
for working with time-indexed data generated by business processes.

For users of the R language for statistical computing, the DataFrame name
will be familiar, as the object was named after the similar R data.frame
object. Unlike Python, data frames are built into the R programming language
and its standard library. As a result, many features found in pandas are
typically either part of the R core implementation or provided by add-on
packages.

The pandas name itself is derived from panel data, an econometrics term for
multidimensional structured datasets, and a play on the phrase Python data
analysis itself.



matplotlib
matplotlib is the most popular Python library for producing plots and other
two-dimensional data visualizations. It was originally created by John D.
Hunter and is now maintained by a large team of developers. It is designed
for creating plots suitable for publication. While there are other visualization
libraries available to Python programmers, matplotlib is the most widely used
and as such has generally good integration with the rest of the ecosystem. I
think it is a safe choice as a default visualization tool.

http://matplotlib.org


IPython and Jupyter
The IPython project began in 2001 as Fernando Pérez’s side project to make
a better interactive Python interpreter. In the subsequent 16 years it has
become one of the most important tools in the modern Python data stack.
While it does not provide any computational or data analytical tools by itself,
IPython is designed from the ground up to maximize your productivity in
both interactive computing and software development. It encourages an
execute-explore workflow instead of the typical edit-compile-run workflow
of many other programming languages. It also provides easy access to your
operating system’s shell and filesystem. Since much of data analysis coding
involves exploration, trial and error, and iteration, IPython can help you get
the job done faster.

In 2014, Fernando and the IPython team announced the Jupyter project, a
broader initiative to design language-agnostic interactive computing tools.
The IPython web notebook became the Jupyter notebook, with support now
for over 40 programming languages. The IPython system can now be used as
a kernel (a programming language mode) for using Python with Jupyter.

IPython itself has become a component of the much broader Jupyter open
source project, which provides a productive environment for interactive and
exploratory computing. Its oldest and simplest “mode” is as an enhanced
Python shell designed to accelerate the writing, testing, and debugging of
Python code. You can also use the IPython system through the Jupyter
Notebook, an interactive web-based code “notebook” offering support for
dozens of programming languages. The IPython shell and Jupyter notebooks
are especially useful for data exploration and visualization.

The Jupyter notebook system also allows you to author content in Markdown
and HTML, providing you a means to create rich documents with code and
text. Other programming languages have also implemented kernels for
Jupyter to enable you to use languages other than Python in Jupyter.

For me personally, IPython is usually involved with the majority of my
Python work, including running, debugging, and testing code.

http://ipython.org
http://jupyter.org


In the accompanying book materials, you will find Jupyter notebooks
containing all the code examples from each chapter.

http://github.com/wesm/pydata-book


SciPy
SciPy is a collection of packages addressing a number of different standard
problem domains in scientific computing. Here is a sampling of the packages
included:

scipy.integrate

Numerical integration routines and differential equation solvers

scipy.linalg

Linear algebra routines and matrix decompositions extending beyond
those provided in numpy.linalg

scipy.optimize

Function optimizers (minimizers) and root finding algorithms

scipy.signal

Signal processing tools

scipy.sparse

Sparse matrices and sparse linear system solvers

scipy.special

Wrapper around SPECFUN, a Fortran library implementing many
common mathematical functions, such as the gamma function

scipy.stats

Standard continuous and discrete probability distributions (density
functions, samplers, continuous distribution functions), various
statistical tests, and more descriptive statistics

Together NumPy and SciPy form a reasonably complete and mature
computational foundation for many traditional scientific computing
applications.

http://scipy.org


scikit-learn
Since the project’s inception in 2010, scikit-learn has become the premier
general-purpose machine learning toolkit for Python programmers. In just
seven years, it has had over 1,500 contributors from around the world. It
includes submodules for such models as:

Classification: SVM, nearest neighbors, random forest, logistic
regression, etc.

Regression: Lasso, ridge regression, etc.

Clustering: k-means, spectral clustering, etc.

Dimensionality reduction: PCA, feature selection, matrix factorization,
etc.

Model selection: Grid search, cross-validation, metrics

Preprocessing: Feature extraction, normalization

Along with pandas, statsmodels, and IPython, scikit-learn has been critical
for enabling Python to be a productive data science programming language.
While I won’t be able to include a comprehensive guide to scikit-learn in this
book, I will give a brief introduction to some of its models and how to use
them with the other tools presented in the book.

http://scikit-learn.org


statsmodels
statsmodels is a statistical analysis package that was seeded by work from
Stanford University statistics professor Jonathan Taylor, who implemented a
number of regression analysis models popular in the R programming
language. Skipper Seabold and Josef Perktold formally created the new
statsmodels project in 2010 and since then have grown the project to a critical
mass of engaged users and contributors. Nathaniel Smith developed the Patsy
project, which provides a formula or model specification framework for
statsmodels inspired by R’s formula system.

Compared with scikit-learn, statsmodels contains algorithms for classical
(primarily frequentist) statistics and econometrics. This includes such
submodules as:

Regression models: Linear regression, generalized linear models, robust
linear models, linear mixed effects models, etc.

Analysis of variance (ANOVA)

Time series analysis: AR, ARMA, ARIMA, VAR, and other models

Nonparametric methods: Kernel density estimation, kernel regression

Visualization of statistical model results

statsmodels is more focused on statistical inference, providing uncertainty
estimates and p-values for parameters. scikit-learn, by contrast, is more
prediction-focused.

As with scikit-learn, I will give a brief introduction to statsmodels and how to
use it with NumPy and pandas.

http://statsmodels.org


1.4 Installation and Setup
Since everyone uses Python for different applications, there is no single
solution for setting up Python and required add-on packages. Many readers
will not have a complete Python development environment suitable for
following along with this book, so here I will give detailed instructions to get
set up on each operating system. I recommend using the free Anaconda
distribution. At the time of this writing, Anaconda is offered in both Python
2.7 and 3.6 forms, though this might change at some point in the future. This
book uses Python 3.6, and I encourage you to use Python 3.6 or higher.



Windows
To get started on Windows, download the Anaconda installer. I recommend
following the installation instructions for Windows available on the
Anaconda download page, which may have changed between the time this
book was published and when you are reading this.

Now, let’s verify that things are configured correctly. To open the Command
Prompt application (also known as cmd.exe), right-click the Start menu and
select Command Prompt. Try starting the Python interpreter by typing
python. You should see a message that matches the version of Anaconda you
installed:

C:\Users\wesm>python
Python 3.5.2 |Anaconda 4.1.1 (64-bit)| (default, Jul  5 2016, 11:41:13)
[MSC v.1900 64 bit (AMD64)] on win32
>>>

To exit the shell, press Ctrl-D (on Linux or macOS), Ctrl-Z (on Windows), or
type the command exit() and press Enter.

http://anaconda.com/downloads


Apple (OS X, macOS)
Download the OS X Anaconda installer, which should be named something
like Anaconda3-4.1.0-MacOSX-x86_64.pkg. Double-click the .pkg file to run
the installer. When the installer runs, it automatically appends the Anaconda
executable path to your .bash_profile file. This is located at
/Users/$USER/.bash_profile.

To verify everything is working, try launching IPython in the system shell
(open the Terminal application to get a command prompt):

$ ipython

To exit the shell, press Ctrl-D or type exit() and press Enter.



GNU/Linux
Linux details will vary a bit depending on your Linux flavor, but here I give
details for such distributions as Debian, Ubuntu, CentOS, and Fedora. Setup
is similar to OS X with the exception of how Anaconda is installed. The
installer is a shell script that must be executed in the terminal. Depending on
whether you have a 32-bit or 64-bit system, you will either need to install the
x86 (32-bit) or x86_64 (64-bit) installer. You will then have a file named
something similar to Anaconda3-4.1.0-Linux-x86_64.sh. To install it, execute
this script with bash:

$ bash Anaconda3-4.1.0-Linux-x86_64.sh

NOTE
Some Linux distributions have versions of all the required Python packages in
their package managers and can be installed using a tool like apt. The setup
described here uses Anaconda, as it’s both easily reproducible across
distributions and simpler to upgrade packages to their latest versions.

After accepting the license, you will be presented with a choice of where to
put the Anaconda files. I recommend installing the files in the default
location in your home directory — for example, /home/$USER/anaconda
(with your username, naturally).

The Anaconda installer may ask if you wish to prepend its bin/ directory to
your $PATH variable. If you have any problems after installation, you can do
this yourself by modifying your .bashrc (or .zshrc, if you are using the zsh
shell) with something akin to:

export PATH=/home/$USER/anaconda/bin:$PATH

After doing this you can either start a new terminal process or execute your
.bashrc again with source ~/.bashrc.



Installing or Updating Python Packages
At some point while reading, you may wish to install additional Python
packages that are not included in the Anaconda distribution. In general, these
can be installed with the following command:

conda install package_name

If this does not work, you may also be able to install the package using the
pip package management tool:

pip install package_name

You can update packages by using the conda update command:

conda update package_name

pip also supports upgrades using the --upgrade flag:

pip install --upgrade package_name

You will have several opportunities to try out these commands throughout the
book.

CAUTION
While you can use both conda and pip to install packages, you should not
attempt to update conda packages with pip, as doing so can lead to environment
problems. When using Anaconda or Miniconda, it’s best to first try updating
with conda.



Python 2 and Python 3
The first version of the Python 3.x line of interpreters was released at the end
of 2008. It included a number of changes that made some previously written
Python 2.x code incompatible. Because 17 years had passed since the very
first release of Python in 1991, creating a “breaking” release of Python 3 was
viewed to be for the greater good given the lessons learned during that time.

In 2012, much of the scientific and data analysis community was still using
Python 2.x because many packages had not been made fully Python 3
compatible. Thus, the first edition of this book used Python 2.7. Now, users
are free to choose between Python 2.x and 3.x and in general have full library
support with either flavor.

However, Python 2.x will reach its development end of life in 2020
(including critical security patches), and so it is no longer a good idea to start
new projects in Python 2.7. Therefore, this book uses Python 3.6, a widely
deployed, well-supported stable release. We have begun to call Python 2.x
“Legacy Python” and Python 3.x simply “Python.” I encourage you to do the
same.

This book uses Python 3.6 as its basis. Your version of Python may be newer
than 3.6, but the code examples should be forward compatible. Some code
examples may work differently or not at all in Python 2.7.



Integrated Development Environments (IDEs) and Text
Editors
When asked about my standard development environment, I almost always
say “IPython plus a text editor.” I typically write a program and iteratively
test and debug each piece of it in IPython or Jupyter notebooks. It is also
useful to be able to play around with data interactively and visually verify
that a particular set of data manipulations is doing the right thing. Libraries
like pandas and NumPy are designed to be easy to use in the shell.

When building software, however, some users may prefer to use a more
richly featured IDE rather than a comparatively primitive text editor like
Emacs or Vim. Here are some that you can explore:

PyDev (free), an IDE built on the Eclipse platform

PyCharm from JetBrains (subscription-based for commercial users, free
for open source developers)

Python Tools for Visual Studio (for Windows users)

Spyder (free), an IDE currently shipped with Anaconda

Komodo IDE (commercial)

Due to the popularity of Python, most text editors, like Atom and Sublime
Text 2, have excellent Python support.



1.5 Community and Conferences
Outside of an internet search, the various scientific and data-related Python
mailing lists are generally helpful and responsive to questions. Some to take a
look at include:

pydata: A Google Group list for questions related to Python for data
analysis and pandas

pystatsmodels: For statsmodels or pandas-related questions

Mailing list for scikit-learn (scikit-learn@python.org) and machine
learning in Python, generally

numpy-discussion: For NumPy-related questions

scipy-user: For general SciPy or scientific Python questions

I deliberately did not post URLs for these in case they change. They can be
easily located via an internet search.

Each year many conferences are held all over the world for Python
programmers. If you would like to connect with other Python programmers
who share your interests, I encourage you to explore attending one, if
possible. Many conferences have financial support available for those who
cannot afford admission or travel to the conference. Here are some to
consider:

PyCon and EuroPython: The two main general Python conferences in
North America and Europe, respectively

SciPy and EuroSciPy: Scientific-computing-oriented conferences in
North America and Europe, respectively

PyData: A worldwide series of regional conferences targeted at data
science and data analysis use cases

International and regional PyCon conferences (see http://pycon.org for a

http://pycon.org


complete listing)



1.6 Navigating This Book
If you have never programmed in Python before, you will want to spend
some time in Chapters 2 and 3, where I have placed a condensed tutorial on
Python language features and the IPython shell and Jupyter notebooks. These
things are prerequisite knowledge for the remainder of the book. If you have
Python experience already, you may instead choose to skim or skip these
chapters.

Next, I give a short introduction to the key features of NumPy, leaving more
advanced NumPy use for Appendix A. Then, I introduce pandas and devote
the rest of the book to data analysis topics applying pandas, NumPy, and
matplotlib (for visualization). I have structured the material in the most
incremental way possible, though there is occasionally some minor cross-
over between chapters, with a few isolated cases where concepts are used that
haven’t necessarily been introduced yet.

While readers may have many different end goals for their work, the tasks
required generally fall into a number of different broad groups:

Interacting with the outside world
Reading and writing with a variety of file formats and data stores

Preparation
Cleaning, munging, combining, normalizing, reshaping, slicing and
dicing, and transforming data for analysis

Transformation
Applying mathematical and statistical operations to groups of datasets to
derive new datasets (e.g., aggregating a large table by group variables)

Modeling and computation
Connecting your data to statistical models, machine learning algorithms,
or other computational tools

Presentation



Creating interactive or static graphical visualizations or textual
summaries



Code Examples
Most of the code examples in the book are shown with input and output as it
would appear executed in the IPython shell or in Jupyter notebooks:

In [5]: CODE EXAMPLE
Out[5]: OUTPUT

When you see a code example like this, the intent is for you to type in the
example code in the In block in your coding environment and execute it by
pressing the Enter key (or Shift-Enter in Jupyter). You should see output
similar to what is shown in the Out block.



Data for Examples
Datasets for the examples in each chapter are hosted in a GitHub repository.
You can download this data either by using the Git version control system on
the command line or by downloading a zip file of the repository from the
website. If you run into problems, navigate to my website for up-to-date
instructions about obtaining the book materials.

I have made every effort to ensure that it contains everything necessary to
reproduce the examples, but I may have made some mistakes or omissions. If
so, please send me an email: book@wesmckinney.com. The best way to report
errors in the book is on the errata page on the O’Reilly website.

http://github.com/wesm/pydata-book
http://wesmckinney.com
http://bit.ly/pyDataAnalysis_errata


Import Conventions
The Python community has adopted a number of naming conventions for
commonly used modules:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import statsmodels as sm

This means that when you see np.arange, this is a reference to the arange
function in NumPy. This is done because it’s considered bad practice in
Python software development to import everything (from numpy import *)
from a large package like NumPy.



Jargon
I’ll use some terms common both to programming and data science that you
may not be familiar with. Thus, here are some brief definitions:

Munge/munging/wrangling
Describes the overall process of manipulating unstructured and/or messy
data into a structured or clean form. The word has snuck its way into the
jargon of many modern-day data hackers. “Munge” rhymes with
“grunge.”

Pseudocode
A description of an algorithm or process that takes a code-like form
while likely not being actual valid source code.

Syntactic sugar
Programming syntax that does not add new features, but makes
something more convenient or easier to type.



Chapter 2. Python Language Basics,
IPython, and Jupyter Notebooks

When I wrote the first edition of this book in 2011 and 2012, there were
fewer resources available for learning about doing data analysis in Python.
This was partially a chicken-and-egg problem; many libraries that we now
take for granted, like pandas, scikit-learn, and statsmodels, were
comparatively immature back then. In 2017, there is now a growing literature
on data science, data analysis, and machine learning, supplementing the prior
works on general-purpose scientific computing geared toward computational
scientists, physicists, and professionals in other research fields. There are also
excellent books about learning the Python programming language itself and
becoming an effective software engineer.

As this book is intended as an introductory text in working with data in
Python, I feel it is valuable to have a self-contained overview of some of the
most important features of Python’s built-in data structures and libraries from
the perspective of data manipulation. So, I will only present roughly enough
information in this chapter and Chapter 3 to enable you to follow along with
the rest of the book.

In my opinion, it is not necessary to become proficient at building good
software in Python to be able to productively do data analysis. I encourage
you to use the IPython shell and Jupyter notebooks to experiment with the
code examples and to explore the documentation for the various types,
functions, and methods. While I’ve made best efforts to present the book
material in an incremental form, you may occasionally encounter things that
have not yet been fully introduced.

Much of this book focuses on table-based analytics and data preparation tools
for working with large datasets. In order to use those tools you must often
first do some munging to corral messy data into a more nicely tabular (or
structured) form. Fortunately, Python is an ideal language for rapidly



whipping your data into shape. The greater your facility with Python the
language, the easier it will be for you to prepare new datasets for analysis.

Some of the tools in this book are best explored from a live IPython or
Jupyter session. Once you learn how to start up IPython and Jupyter, I
recommend that you follow along with the examples so you can experiment
and try different things. As with any keyboard-driven console-like
environment, developing muscle-memory for the common commands is also
part of the learning curve.

NOTE
There are introductory Python concepts that this chapter does not cover, like
classes and object-oriented programming, which you may find useful in your
foray into data analysis in Python.

To deepen your Python language knowledge, I recommend that you supplement
this chapter with the official Python tutorial and potentially one of the many
excellent books on general-purpose Python programming. Some
recommendations to get you started include:

Python Cookbook, Third Edition, by David Beazley and Brian K. Jones
(O’Reilly)

Fluent Python by Luciano Ramalho (O’Reilly)

Effective Python by Brett Slatkin (Pearson)

http://docs.python.org


2.1 The Python Interpreter
Python is an interpreted language. The Python interpreter runs a program by
executing one statement at a time. The standard interactive Python interpreter
can be invoked on the command line with the python command:

$ python
Python 3.6.0 | packaged by conda-forge | (default, Jan 13 2017, 23:17:12)
[GCC 4.8.2 20140120 (Red Hat 4.8.2-15)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> a = 5
>>> print(a)
5

The >>> you see is the prompt where you’ll type code expressions. To exit
the Python interpreter and return to the command prompt, you can either type
exit() or press Ctrl-D.

Running Python programs is as simple as calling python with a .py file as its
first argument. Suppose we had created hello_world.py with these contents:

print('Hello world')

You can run it by executing the following command (the hello_world.py file
must be in your current working terminal directory):

$ python hello_world.py
Hello world

While some Python programmers execute all of their Python code in this
way, those doing data analysis or scientific computing make use of IPython,
an enhanced Python interpreter, or Jupyter notebooks, web-based code
notebooks originally created within the IPython project. I give an
introduction to using IPython and Jupyter in this chapter and have included a
deeper look at IPython functionality in Appendix A. When you use the %run
command, IPython executes the code in the specified file in the same process,
enabling you to explore the results interactively when it’s done:



$ ipython
Python 3.6.0 | packaged by conda-forge | (default, Jan 13 2017, 23:17:12)
Type "copyright", "credits" or "license" for more information.

IPython 5.1.0 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.

In [1]: %run hello_world.py
Hello world

In [2]:

The default IPython prompt adopts the numbered In [2]: style compared
with the standard >>> prompt.



2.2 IPython Basics
In this section, we’ll get you up and running with the IPython shell and
Jupyter notebook, and introduce you to some of the essential concepts.



Running the IPython Shell
You can launch the IPython shell on the command line just like launching the
regular Python interpreter except with the ipython command:

$ ipython
Python 3.6.0 | packaged by conda-forge | (default, Jan 13 2017, 23:17:12)
Type "copyright", "credits" or "license" for more information.

IPython 5.1.0 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.

In [1]: a = 5

In [2]: a
Out[2]: 5

You can execute arbitrary Python statements by typing them in and pressing
Return (or Enter). When you type just a variable into IPython, it renders a
string representation of the object:

In [5]: import numpy as np

In [6]: data = {i : np.random.randn() for i in range(7)}

In [7]: data
Out[7]: 
{0: -0.20470765948471295,
 1: 0.47894333805754824,
 2: -0.5194387150567381,
 3: -0.55573030434749,
 4: 1.9657805725027142,
 5: 1.3934058329729904,
 6: 0.09290787674371767}

The first two lines are Python code statements; the second statement creates a
variable named data that refers to a newly created Python dictionary. The
last line prints the value of data in the console.

Many kinds of Python objects are formatted to be more readable, or pretty-
printed, which is distinct from normal printing with print. If you printed the



above data variable in the standard Python interpreter, it would be much less
readable:

>>> from numpy.random import randn
>>> data = {i : randn() for i in range(7)}
>>> print(data)
{0: -1.5948255432744511, 1: 0.10569006472787983, 2: 1.972367135977295,
3: 0.15455217573074576, 4: -0.24058577449429575, 5: -1.2904897053651216,
6: 0.3308507317325902}

IPython also provides facilities to execute arbitrary blocks of code (via a
somewhat glorified copy-and-paste approach) and whole Python scripts. You
can also use the Jupyter notebook to work with larger blocks of code, as we’ll
soon see.



Running the Jupyter Notebook
One of the major components of the Jupyter project is the notebook, a type of
interactive document for code, text (with or without markup), data
visualizations, and other output. The Jupyter notebook interacts with kernels,
which are implementations of the Jupyter interactive computing protocol in
any number of programming languages. Python’s Jupyter kernel uses the
IPython system for its underlying behavior.

To start up Jupyter, run the command jupyter notebook in a terminal:

$ jupyter notebook
[I 15:20:52.739 NotebookApp] Serving notebooks from local directory:
/home/wesm/code/pydata-book
[I 15:20:52.739 NotebookApp] 0 active kernels
[I 15:20:52.739 NotebookApp] The Jupyter Notebook is running at:
http://localhost:8888/
[I 15:20:52.740 NotebookApp] Use Control-C to stop this server and shut down
all kernels (twice to skip confirmation).
Created new window in existing browser session.

On many platforms, Jupyter will automatically open up in your default web
browser (unless you start it with --no-browser). Otherwise, you can navigate
to the HTTP address printed when you started the notebook, here
http://localhost:8888/. See Figure 2-1 for what this looks like in Google
Chrome.

NOTE
Many people use Jupyter as a local computing environment, but it can also be
deployed on servers and accessed remotely. I won’t cover those details here, but
encourage you to explore this topic on the internet if it’s relevant to your needs.



Figure 2-1. Jupyter notebook landing page

To create a new notebook, click the New button and select the “Python 3” or
“conda [default]” option. You should see something like Figure 2-2. If this is
your first time, try clicking on the empty code “cell” and entering a line of
Python code. Then press Shift-Enter to execute it.



Figure 2-2. Jupyter new notebook view

When you save the notebook (see “Save and Checkpoint” under the notebook
File menu), it creates a file with the extension .ipynb. This is a self-contained
file format that contains all of the content (including any evaluated code
output) currently in the notebook. These can be loaded and edited by other
Jupyter users. To load an existing notebook, put the file in the same directory
where you started the notebook process (or in a subfolder within it), then
double-click the name from the landing page. You can try it out with the
notebooks from my wesm/pydata-book repository on GitHub. See Figure 2-3.

While the Jupyter notebook can feel like a distinct experience from the
IPython shell, nearly all of the commands and tools in this chapter can be
used in either environment.



Figure 2-3. Jupyter example view for an existing notebook



Tab Completion
On the surface, the IPython shell looks like a cosmetically different version
of the standard terminal Python interpreter (invoked with python). One of the
major improvements over the standard Python shell is tab completion, found
in many IDEs or other interactive computing analysis environments. While
entering expressions in the shell, pressing the Tab key will search the
namespace for any variables (objects, functions, etc.) matching the characters
you have typed so far:

In [1]: an_apple = 27

In [2]: an_example = 42

In [3]: an<Tab>
an_apple    and         an_example  any

In this example, note that IPython displayed both the two variables I defined
as well as the Python keyword and and built-in function any. Naturally, you
can also complete methods and attributes on any object after typing a period:

In [3]: b = [1, 2, 3]

In [4]: b.<Tab>
b.append  b.count   b.insert  b.reverse
b.clear   b.extend  b.pop     b.sort
b.copy    b.index   b.remove

The same goes for modules:

In [1]: import datetime

In [2]: datetime.<Tab>
datetime.date          datetime.MAXYEAR       datetime.timedelta
datetime.datetime      datetime.MINYEAR       datetime.timezone
datetime.datetime_CAPI datetime.time          datetime.tzinfo

In the Jupyter notebook and newer versions of IPython (5.0 and higher), the
autocompletions show up in a drop-down box rather than as text output.



NOTE
Note that IPython by default hides methods and attributes starting with
underscores, such as magic methods and internal “private” methods and
attributes, in order to avoid cluttering the display (and confusing novice users!).
These, too, can be tab-completed, but you must first type an underscore to see
them. If you prefer to always see such methods in tab completion, you can
change this setting in the IPython configuration. See the IPython documentation
to find out how to do this.

Tab completion works in many contexts outside of searching the interactive
namespace and completing object or module attributes. When typing
anything that looks like a file path (even in a Python string), pressing the Tab
key will complete anything on your computer’s filesystem matching what
you’ve typed:

In [7]: datasets/movielens/<Tab>
datasets/movielens/movies.dat    datasets/movielens/README
datasets/movielens/ratings.dat   datasets/movielens/users.dat

In [7]: path = 'datasets/movielens/<Tab>
datasets/movielens/movies.dat    datasets/movielens/README
datasets/movielens/ratings.dat   datasets/movielens/users.dat

Combined with the %run command (see “The %run Command”), this
functionality can save you many keystrokes.

Another area where tab completion saves time is in the completion of
function keyword arguments (and including the = sign!). See Figure 2-4.



Figure 2-4. Autocomplete function keywords in Jupyter notebook

We’ll have a closer look at functions in a little bit.



Introspection
Using a question mark (?) before or after a variable will display some general
information about the object:

In [8]: b = [1, 2, 3]

In [9]: b?
Type:       list
String Form:[1, 2, 3]
Length:     3
Docstring:
list() -> new empty list
list(iterable) -> new list initialized from iterable's items

In [10]: print?
Docstring:
print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.
Optional keyword arguments:
file:  a file-like object (stream); defaults to the current sys.stdout.
sep:   string inserted between values, default a space.
end:   string appended after the last value, default a newline.
flush: whether to forcibly flush the stream.
Type:      builtin_function_or_method

This is referred to as object introspection. If the object is a function or
instance method, the docstring, if defined, will also be shown. Suppose we’d
written the following function (which you can reproduce in IPython or
Jupyter):

def add_numbers(a, b):
    """
    Add two numbers together

    Returns
    -------
    the_sum : type of arguments
    """
    return a + b

Then using ? shows us the docstring:

In [11]: add_numbers?
Signature: add_numbers(a, b)



Docstring:
Add two numbers together

Returns
-------
the_sum : type of arguments
File:      <ipython-input-9-6a548a216e27>
Type:      function

Using ?? will also show the function’s source code if possible:

In [12]: add_numbers??
Signature: add_numbers(a, b)
Source:
def add_numbers(a, b):
    """
    Add two numbers together

    Returns
    -------
    the_sum : type of arguments
    """
    return a + b
File:      <ipython-input-9-6a548a216e27>
Type:      function

? has a final usage, which is for searching the IPython namespace in a
manner similar to the standard Unix or Windows command line. A number of
characters combined with the wildcard (*) will show all names matching the
wildcard expression. For example, we could get a list of all functions in the
top-level NumPy namespace containing load:

In [13]: np.*load*?
np.__loader__
np.load
np.loads
np.loadtxt
np.pkgload



The %run Command
You can run any file as a Python program inside the environment of your
IPython session using the %run command. Suppose you had the following
simple script stored in ipython_script_test.py:

def f(x, y, z):
    return (x + y) / z

a = 5
b = 6
c = 7.5

result = f(a, b, c)

You can execute this by passing the filename to %run:

In [14]: %run ipython_script_test.py

The script is run in an empty namespace (with no imports or other variables
defined) so that the behavior should be identical to running the program on
the command line using python script.py. All of the variables (imports,
functions, and globals) defined in the file (up until an exception, if any, is
raised) will then be accessible in the IPython shell:

In [15]: c
Out [15]: 7.5

In [16]: result
Out[16]: 1.4666666666666666

If a Python script expects command-line arguments (to be found in
sys.argv), these can be passed after the file path as though run on the
command line.

NOTE
Should you wish to give a script access to variables already defined in the
interactive IPython namespace, use %run -i instead of plain %run.



In the Jupyter notebook, you may also use the related %load magic function,
which imports a script into a code cell:

>>> %load ipython_script_test.py

    def f(x, y, z):
        return (x + y) / z

    a = 5
    b = 6
    c = 7.5

    result = f(a, b, c)

Interrupting running code
Pressing Ctrl-C while any code is running, whether a script through %run or a
long-running command, will cause a KeyboardInterrupt to be raised. This
will cause nearly all Python programs to stop immediately except in certain
unusual cases.

WARNING
When a piece of Python code has called into some compiled extension modules,
pressing Ctrl-C will not always cause the program execution to stop
immediately. In such cases, you will have to either wait until control is returned
to the Python interpreter, or in more dire circumstances, forcibly terminate the
Python process.



Executing Code from the Clipboard
If you are using the Jupyter notebook, you can copy and paste code into any
code cell and execute it. It is also possible to run code from the clipboard in
the IPython shell. Suppose you had the following code in some other
application:

x = 5
y = 7
if x > 5:
    x += 1

    y = 8

The most foolproof methods are the %paste and %cpaste magic functions.
%paste takes whatever text is in the clipboard and executes it as a single
block in the shell:

In [17]: %paste
x = 5
y = 7
if x > 5:
    x += 1

    y = 8
## -- End pasted text --

%cpaste is similar, except that it gives you a special prompt for pasting code
into:

In [18]: %cpaste
Pasting code; enter '--' alone on the line to stop or use Ctrl-D.
:x = 5
:y = 7
:if x > 5:
:    x += 1
:
:    y = 8
:--

With the %cpaste block, you have the freedom to paste as much code as you
like before executing it. You might decide to use %cpaste in order to look at



the pasted code before executing it. If you accidentally paste the wrong code,
you can break out of the %cpaste prompt by pressing Ctrl-C.



Terminal Keyboard Shortcuts
IPython has many keyboard shortcuts for navigating the prompt (which will
be familiar to users of the Emacs text editor or the Unix bash shell) and
interacting with the shell’s command history. Table 2-1 summarizes some of
the most commonly used shortcuts. See Figure 2-5 for an illustration of a few
of these, such as cursor movement.

Figure 2-5. Illustration of some keyboard shortcuts in the IPython shell

Table 2-1. Standard IPython keyboard shortcuts

Keyboard
shortcut

Description

Ctrl-P or up-
arrow

Search backward in command history for commands starting with
currently entered text

Ctrl-N or down-
arrow

Search forward in command history for commands starting with
currently entered text

Ctrl-R Readline-style reverse history search (partial matching)

Ctrl-Shift-V Paste text from clipboard

Ctrl-C Interrupt currently executing code

Ctrl-A Move cursor to beginning of line

Ctrl-E Move cursor to end of line

Ctrl-K Delete text from cursor until end of line

Ctrl-U Discard all text on current line

Ctrl-F Move cursor forward one character



Ctrl-B Move cursor back one character

Ctrl-L Clear screen

Note that Jupyter notebooks have a largely separate set of keyboard shortcuts
for navigation and editing. Since these shortcuts have evolved more rapidly
than IPython’s, I encourage you to explore the integrated help system in the
Jupyter notebook’s menus.



About Magic Commands
IPython’s special commands (which are not built into Python itself) are
known as “magic” commands. These are designed to facilitate common tasks
and enable you to easily control the behavior of the IPython system. A magic
command is any command prefixed by the percent symbol %. For example,
you can check the execution time of any Python statement, such as a matrix
multiplication, using the %timeit magic function (which will be discussed in
more detail later):

In [20]: a = np.random.randn(100, 100)

In [20]: %timeit np.dot(a, a)
10000 loops, best of 3: 20.9 µs per loop

Magic commands can be viewed as command-line programs to be run within
the IPython system. Many of them have additional “command-line” options,
which can all be viewed (as you might expect) using ?:

In [21]: %debug?
Docstring:
::

  %debug [--breakpoint FILE:LINE] [statement [statement ...]]

Activate the interactive debugger.

This magic command support two ways of activating debugger.
One is to activate debugger before executing code.  This way, you
can set a break point, to step through the code from the point.
You can use this mode by giving statements to execute and optionally
a breakpoint.

The other one is to activate debugger in post-mortem mode.  You can
activate this mode simply running %debug without any argument.
If an exception has just occurred, this lets you inspect its stack
frames interactively.  Note that this will always work only on the last
traceback that occurred, so you must call this quickly after an
exception that you wish to inspect has fired, because if another one
occurs, it clobbers the previous one.

If you want IPython to automatically do this on every exception, see
the %pdb magic for more details.

positional arguments:



  statement             Code to run in debugger. You can omit this in cell
                        magic mode.

optional arguments:
  --breakpoint <FILE:LINE>, -b <FILE:LINE>
                        Set break point at LINE in FILE.

Magic functions can be used by default without the percent sign, as long as
no variable is defined with the same name as the magic function in question.
This feature is called automagic and can be enabled or disabled with
%automagic.

Some magic functions behave like Python functions and their output can be
assigned to a variable:

In [22]: %pwd
Out[22]: '/home/wesm/code/pydata-book

In [23]: foo = %pwd

In [24]: foo
Out[24]: '/home/wesm/code/pydata-book'

Since IPython’s documentation is accessible from within the system, I
encourage you to explore all of the special commands available by typing
%quickref or %magic. Table 2-2 highlights some of the most critical ones for
being productive in interactive computing and Python development in
IPython.

Table 2-2. Some frequently used IPython magic commands

Command Description

%quickref Display the IPython Quick Reference Card

%magic Display detailed documentation for all of the available magic commands

%debug Enter the interactive debugger at the bottom of the last exception traceback

%hist Print command input (and optionally output) history

%pdb Automatically enter debugger after any exception

%paste Execute preformatted Python code from clipboard

%cpaste Open a special prompt for manually pasting Python code to be executed



%reset Delete all variables/names defined in interactive namespace

%page
OBJECT

Pretty-print the object and display it through a pager

%run
script.py

Run a Python script inside IPython

%prun
statement

Execute statement with cProfile and report the profiler output

%time
statement

Report the execution time of a single statement

%timeit
statement

Run a statement multiple times to compute an ensemble average execution
time; useful for timing code with very short execution time

%who,
%who_ls,
%whos

Display variables defined in interactive namespace, with varying levels of
information/verbosity

%xdel
variable

Delete a variable and attempt to clear any references to the object in the
IPython internals



Matplotlib Integration
One reason for IPython’s popularity in analytical computing is that it
integrates well with data visualization and other user interface libraries like
matplotlib. Don’t worry if you have never used matplotlib before; it will be
discussed in more detail later in this book. The %matplotlib magic function
configures its integration with the IPython shell or Jupyter notebook. This is
important, as otherwise plots you create will either not appear (notebook) or
take control of the session until closed (shell).

In the IPython shell, running %matplotlib sets up the integration so you can
create multiple plot windows without interfering with the console session:

In [26]: %matplotlib
Using matplotlib backend: Qt4Agg

In Jupyter, the command is a little different (Figure 2-6):

In [26]: %matplotlib inline

Figure 2-6. Jupyter inline matplotlib plotting



2.3 Python Language Basics
In this section, I will give you an overview of essential Python programming
concepts and language mechanics. In the next chapter, I will go into more
detail about Python’s data structures, functions, and other built-in tools.



Language Semantics
The Python language design is distinguished by its emphasis on readability,
simplicity, and explicitness. Some people go so far as to liken it to
“executable pseudocode.”

Indentation, not braces
Python uses whitespace (tabs or spaces) to structure code instead of using
braces as in many other languages like R, C++, Java, and Perl. Consider a
for loop from a sorting algorithm:

for x in array:
    if x < pivot:
        less.append(x)
    else:
        greater.append(x)

A colon denotes the start of an indented code block after which all of the
code must be indented by the same amount until the end of the block.

Love it or hate it, significant whitespace is a fact of life for Python
programmers, and in my experience it can make Python code more readable
than other languages I’ve used. While it may seem foreign at first, you will
hopefully grow accustomed in time.

NOTE
I strongly recommend using four spaces as your default indentation and
replacing tabs with four spaces. Many text editors have a setting that will
replace tab stops with spaces automatically (do this!). Some people use tabs or a
different number of spaces, with two spaces not being terribly uncommon. By
and large, four spaces is the standard adopted by the vast majority of Python
programmers, so I recommend doing that in the absence of a compelling reason
otherwise.

As you can see by now, Python statements also do not need to be terminated



by semicolons. Semicolons can be used, however, to separate multiple
statements on a single line:

a = 5; b = 6; c = 7

Putting multiple statements on one line is generally discouraged in Python as
it often makes code less readable.

Everything is an object
An important characteristic of the Python language is the consistency of its
object model. Every number, string, data structure, function, class, module,
and so on exists in the Python interpreter in its own “box,” which is referred
to as a Python object. Each object has an associated type (e.g., string or
function) and internal data. In practice this makes the language very flexible,
as even functions can be treated like any other object.

Comments
Any text preceded by the hash mark (pound sign) # is ignored by the Python
interpreter. This is often used to add comments to code. At times you may
also want to exclude certain blocks of code without deleting them. An easy
solution is to comment out the code:

results = []
for line in file_handle:
    # keep the empty lines for now
    # if len(line) == 0:
    #   continue
    results.append(line.replace('foo', 'bar'))

Comments can also occur after a line of executed code. While some
programmers prefer comments to be placed in the line preceding a particular
line of code, this can be useful at times:

print("Reached this line")  # Simple status report

Function and object method calls
You call functions using parentheses and passing zero or more arguments,



optionally assigning the returned value to a variable:

result = f(x, y, z)
g()

Almost every object in Python has attached functions, known as methods,
that have access to the object’s internal contents. You can call them using the
following syntax:

obj.some_method(x, y, z)

Functions can take both positional and keyword arguments:

result = f(a, b, c, d=5, e='foo')

More on this later.

Variables and argument passing
When assigning a variable (or name) in Python, you are creating a reference
to the object on the righthand side of the equals sign. In practical terms,
consider a list of integers:

In [8]: a = [1, 2, 3]

Suppose we assign a to a new variable b:

In [9]: b = a

In some languages, this assignment would cause the data [1, 2, 3] to be
copied. In Python, a and b actually now refer to the same object, the original
list [1, 2, 3] (see Figure 2-7 for a mockup). You can prove this to yourself
by appending an element to a and then examining b:

In [10]: a.append(4)

In [11]: b
Out[11]: [1, 2, 3, 4]



Figure 2-7. Two references for the same object

Understanding the semantics of references in Python and when, how, and
why data is copied is especially critical when you are working with larger
datasets in Python.

NOTE
Assignment is also referred to as binding, as we are binding a name to an
object. Variable names that have been assigned may occasionally be referred to
as bound variables.

When you pass objects as arguments to a function, new local variables are
created referencing the original objects without any copying. If you bind a
new object to a variable inside a function, that change will not be reflected in
the parent scope. It is therefore possible to alter the internals of a mutable
argument. Suppose we had the following function:

def append_element(some_list, element):
    some_list.append(element)

Then we have:

In [27]: data = [1, 2, 3]

In [28]: append_element(data, 4)



In [29]: data
Out[29]: [1, 2, 3, 4]

Dynamic references, strong types
In contrast with many compiled languages, such as Java and C++, object
references in Python have no type associated with them. There is no problem
with the following:

In [12]: a = 5

In [13]: type(a)
Out[13]: int

In [14]: a = 'foo'

In [15]: type(a)
Out[15]: str

Variables are names for objects within a particular namespace; the type
information is stored in the object itself. Some observers might hastily
conclude that Python is not a “typed language.” This is not true; consider this
example:

In [16]: '5' + 5
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-16-f9dbf5f0b234> in <module>()
----> 1 '5' + 5
TypeError: must be str, not int

In some languages, such as Visual Basic, the string '5' might get implicitly
converted (or casted) to an integer, thus yielding 10. Yet in other languages,
such as JavaScript, the integer 5 might be casted to a string, yielding the
concatenated string '55'. In this regard Python is considered a strongly typed
language, which means that every object has a specific type (or class), and
implicit conversions will occur only in certain obvious circumstances, such as
the following:

In [17]: a = 4.5

In [18]: b = 2



# String formatting, to be visited later
In [19]: print('a is {0}, b is {1}'.format(type(a), type(b)))
a is <class 'float'>, b is <class 'int'>

In [20]: a / b
Out[20]: 2.25

Knowing the type of an object is important, and it’s useful to be able to write
functions that can handle many different kinds of input. You can check that
an object is an instance of a particular type using the isinstance function:

In [21]: a = 5

In [22]: isinstance(a, int)
Out[22]: True

isinstance can accept a tuple of types if you want to check that an object’s
type is among those present in the tuple:

In [23]: a = 5; b = 4.5

In [24]: isinstance(a, (int, float))
Out[24]: True

In [25]: isinstance(b, (int, float))
Out[25]: True

Attributes and methods
Objects in Python typically have both attributes (other Python objects stored
“inside” the object) and methods (functions associated with an object that can
have access to the object’s internal data). Both of them are accessed via the
syntax obj.attribute_name:

In [1]: a = 'foo'

In [2]: a.<Press Tab>
a.capitalize  a.format      a.isupper     a.rindex      a.strip
a.center      a.index       a.join        a.rjust       a.swapcase
a.count       a.isalnum     a.ljust       a.rpartition  a.title
a.decode      a.isalpha     a.lower       a.rsplit      a.translate
a.encode      a.isdigit     a.lstrip      a.rstrip      a.upper
a.endswith    a.islower     a.partition   a.split       a.zfill
a.expandtabs  a.isspace     a.replace     a.splitlines
a.find        a.istitle     a.rfind       a.startswith



Attributes and methods can also be accessed by name via the getattr
function:

In [27]: getattr(a, 'split')
Out[27]: <function str.split>

In other languages, accessing objects by name is often referred to as
“reflection.” While we will not extensively use the functions getattr and
related functions hasattr and setattr in this book, they can be used very
effectively to write generic, reusable code.

Duck typing
Often you may not care about the type of an object but rather only whether it
has certain methods or behavior. This is sometimes called “duck typing,”
after the saying “If it walks like a duck and quacks like a duck, then it’s a
duck.” For example, you can verify that an object is iterable if it implemented
the iterator protocol. For many objects, this means it has a __iter__ “magic
method,” though an alternative and better way to check is to try using the
iter function:

def isiterable(obj):
    try:
        iter(obj)
        return True
    except TypeError: # not iterable
        return False

This function would return True for strings as well as most Python collection
types:

In [29]: isiterable('a string')
Out[29]: True

In [30]: isiterable([1, 2, 3])
Out[30]: True

In [31]: isiterable(5)
Out[31]: False

A place where I use this functionality all the time is to write functions that



can accept multiple kinds of input. A common case is writing a function that
can accept any kind of sequence (list, tuple, ndarray) or even an iterator. You
can first check if the object is a list (or a NumPy array) and, if it is not,
convert it to be one:

if not isinstance(x, list) and isiterable(x):
    x = list(x)

Imports
In Python a module is simply a file with the .py extension containing Python
code. Suppose that we had the following module:

# some_module.py
PI = 3.14159

def f(x):
    return x + 2

def g(a, b):
    return a + b

If we wanted to access the variables and functions defined in
some_module.py, from another file in the same directory we could do:

import some_module
result = some_module.f(5)
pi = some_module.PI

Or equivalently:

from some_module import f, g, PI
result = g(5, PI)

By using the as keyword you can give imports different variable names:

import some_module as sm
from some_module import PI as pi, g as gf

r1 = sm.f(pi)
r2 = gf(6, pi)

Binary operators and comparisons



Most of the binary math operations and comparisons are as you might expect:

In [32]: 5 - 7
Out[32]: -2

In [33]: 12 + 21.5
Out[33]: 33.5

In [34]: 5 <= 2
Out[34]: False

See Table 2-3 for all of the available binary operators.

To check if two references refer to the same object, use the is keyword. is
not is also perfectly valid if you want to check that two objects are not the
same:

In [35]: a = [1, 2, 3]

In [36]: b = a

In [37]: c = list(a)

In [38]: a is b
Out[38]: True

In [39]: a is not c
Out[39]: True

Since list always creates a new Python list (i.e., a copy), we can be sure that
c is distinct from a. Comparing with is is not the same as the == operator,
because in this case we have:

In [40]: a == c
Out[40]: True

A very common use of is and is not is to check if a variable is None, since
there is only one instance of None:

In [41]: a = None

In [42]: a is None
Out[42]: True

Table 2-3. Binary operators



Table 2-3. Binary operators

Operation Description

a + b Add a and b

a - b Subtract b from a

a * b Multiply a by b

a / b Divide a by b

a // b Floor-divide a by b, dropping any fractional remainder

a ** b Raise a to the b power

a & b True if both a and b are True; for integers, take the bitwise AND

a | b True if either a or b is True; for integers, take the bitwise OR

a ^ b For booleans, True if a or b is True, but not both; for integers, take the bitwise
EXCLUSIVE-OR

a == b True if a equals b

a != b True if a is not equal to b

a <= b, a <
b

True if a is less than (less than or equal) to b

a > b, a >=
b

True if a is greater than (greater than or equal) to b

a is b True if a and b reference the same Python object

a is not b True if a and b reference different Python objects

Mutable and immutable objects
Most objects in Python, such as lists, dicts, NumPy arrays, and most user-
defined types (classes), are mutable. This means that the object or values that
they contain can be modified:

In [43]: a_list = ['foo', 2, [4, 5]]

In [44]: a_list[2] = (3, 4)

In [45]: a_list
Out[45]: ['foo', 2, (3, 4)]

Others, like strings and tuples, are immutable:



In [46]: a_tuple = (3, 5, (4, 5))

In [47]: a_tuple[1] = 'four'
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-47-b7966a9ae0f1> in <module>()
----> 1 a_tuple[1] = 'four'
TypeError: 'tuple' object does not support item assignment

Remember that just because you can mutate an object does not mean that you
always should. Such actions are known as side effects. For example, when
writing a function, any side effects should be explicitly communicated to the
user in the function’s documentation or comments. If possible, I recommend
trying to avoid side effects and favor immutability, even though there may be
mutable objects involved.



Scalar Types
Python along with its standard library has a small set of built-in types for
handling numerical data, strings, boolean (True or False) values, and dates
and time. These “single value” types are sometimes called scalar types and
we refer to them in this book as scalars. See Table 2-4 for a list of the main
scalar types. Date and time handling will be discussed separately, as these are
provided by the datetime module in the standard library.

Table 2-4. Standard Python scalar types

Type Description

None The Python “null” value (only one instance of the None object exists)

str String type; holds Unicode (UTF-8 encoded) strings

bytes Raw ASCII bytes (or Unicode encoded as bytes)

float Double-precision (64-bit) floating-point number (note there is no separate double
type)

bool A True or False value

int Arbitrary precision signed integer

Numeric types
The primary Python types for numbers are int and float. An int can store
arbitrarily large numbers:

In [48]: ival = 17239871

In [49]: ival ** 6
Out[49]: 26254519291092456596965462913230729701102721

Floating-point numbers are represented with the Python float type. Under
the hood each one is a double-precision (64-bit) value. They can also be
expressed with scientific notation:

In [50]: fval = 7.243



In [51]: fval2 = 6.78e-5

Integer division not resulting in a whole number will always yield a floating-
point number:

In [52]: 3 / 2
Out[52]: 1.5

To get C-style integer division (which drops the fractional part if the result is
not a whole number), use the floor division operator //:

In [53]: 3 // 2
Out[53]: 1

Strings
Many people use Python for its powerful and flexible built-in string
processing capabilities. You can write string literals using either single
quotes ' or double quotes ":

a = 'one way of writing a string'
b = "another way"

For multiline strings with line breaks, you can use triple quotes, either ''' or
""":

c = """
This is a longer string that
spans multiple lines
"""

It may surprise you that this string c actually contains four lines of text; the
line breaks after """ and after lines are included in the string. We can count
the new line characters with the count method on c:

In [55]: c.count('\n')
Out[55]: 3

Python strings are immutable; you cannot modify a string:



In [56]: a = 'this is a string'

In [57]: a[10] = 'f'
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-57-5ca625d1e504> in <module>()
----> 1 a[10] = 'f'
TypeError: 'str' object does not support item assignment

In [58]: b = a.replace('string', 'longer string')

In [59]: b
Out[59]: 'this is a longer string'

Afer this operation, the variable a is unmodified:

In [60]: a
Out[60]: 'this is a string'

Many Python objects can be converted to a string using the str function:

In [61]: a = 5.6

In [62]: s = str(a)

In [63]: print(s)
5.6

Strings are a sequence of Unicode characters and therefore can be treated like
other sequences, such as lists and tuples (which we will explore in more
detail in the next chapter):

In [64]: s = 'python'

In [65]: list(s)
Out[65]: ['p', 'y', 't', 'h', 'o', 'n']

In [66]: s[:3]
Out[66]: 'pyt'

The syntax s[:3] is called slicing and is implemented for many kinds of
Python sequences. This will be explained in more detail later on, as it is used
extensively in this book.

The backslash character \ is an escape character, meaning that it is used to



specify special characters like newline \n or Unicode characters. To write a
string literal with backslashes, you need to escape them:

In [67]: s = '12\\34'

In [68]: print(s)
12\34

If you have a string with a lot of backslashes and no special characters, you
might find this a bit annoying. Fortunately you can preface the leading quote
of the string with r, which means that the characters should be interpreted as
is:

In [69]: s = r'this\has\no\special\characters'

In [70]: s
Out[70]: 'this\\has\\no\\special\\characters'

The r stands for raw.

Adding two strings together concatenates them and produces a new string:

In [71]: a = 'this is the first half '

In [72]: b = 'and this is the second half'

In [73]: a + b
Out[73]: 'this is the first half and this is the second half'

String templating or formatting is another important topic. The number of
ways to do so has expanded with the advent of Python 3, and here I will
briefly describe the mechanics of one of the main interfaces. String objects
have a format method that can be used to substitute formatted arguments into
the string, producing a new string:

In [74]: template = '{0:.2f} {1:s} are worth US${2:d}'

In this string,
{0:.2f} means to format the first argument as a floating-point number
with two decimal places.



{1:s} means to format the second argument as a string.

{2:d} means to format the third argument as an exact integer.

To substitute arguments for these format parameters, we pass a sequence of
arguments to the format method:

In [75]: template.format(4.5560, 'Argentine Pesos', 1)
Out[75]: '4.56 Argentine Pesos are worth US$1'

String formatting is a deep topic; there are multiple methods and numerous
options and tweaks available to control how values are formatted in the
resulting string. To learn more, I recommend consulting the official Python
documentation.

I discuss general string processing as it relates to data analysis in more detail
in Chapter 8.

Bytes and Unicode
In modern Python (i.e., Python 3.0 and up), Unicode has become the first-
class string type to enable more consistent handling of ASCII and non-ASCII
text. In older versions of Python, strings were all bytes without any explicit
Unicode encoding. You could convert to Unicode assuming you knew the
character encoding. Let’s look at an example:

In [76]: val = "español"

In [77]: val
Out[77]: 'español'

We can convert this Unicode string to its UTF-8 bytes representation using
the encode method:

In [78]: val_utf8 = val.encode('utf-8')

In [79]: val_utf8
Out[79]: b'espa\xc3\xb1ol'

In [80]: type(val_utf8)
Out[80]: bytes

https://docs.python.org/3.6/library/string.html


Assuming you know the Unicode encoding of a bytes object, you can go
back using the decode method:

In [81]: val_utf8.decode('utf-8')
Out[81]: 'español'

While it’s become preferred to use UTF-8 for any encoding, for historical
reasons you may encounter data in any number of different encodings:

In [82]: val.encode('latin1')
Out[82]: b'espa\xf1ol'

In [83]: val.encode('utf-16')
Out[83]: b'\xff\xfee\x00s\x00p\x00a\x00\xf1\x00o\x00l\x00'

In [84]: val.encode('utf-16le')
Out[84]: b'e\x00s\x00p\x00a\x00\xf1\x00o\x00l\x00'

It is most common to encounter bytes objects in the context of working with
files, where implicitly decoding all data to Unicode strings may not be
desired.

Though you may seldom need to do so, you can define your own byte literals
by prefixing a string with b:

In [85]: bytes_val = b'this is bytes'

In [86]: bytes_val
Out[86]: b'this is bytes'

In [87]: decoded = bytes_val.decode('utf8')

In [88]: decoded  # this is str (Unicode) now
Out[88]: 'this is bytes'

Booleans
The two boolean values in Python are written as True and False.
Comparisons and other conditional expressions evaluate to either True or
False. Boolean values are combined with the and and or keywords:

In [89]: True and True
Out[89]: True



In [90]: False or True
Out[90]: True

Type casting
The str, bool, int, and float types are also functions that can be used to
cast values to those types:

In [91]: s = '3.14159'

In [92]: fval = float(s)

In [93]: type(fval)
Out[93]: float

In [94]: int(fval)
Out[94]: 3

In [95]: bool(fval)
Out[95]: True

In [96]: bool(0)
Out[96]: False

None
None is the Python null value type. If a function does not explicitly return a
value, it implicitly returns None:

In [97]: a = None

In [98]: a is None
Out[98]: True

In [99]: b = 5

In [100]: b is not None
Out[100]: True

None is also a common default value for function arguments:

def add_and_maybe_multiply(a, b, c=None):
    result = a + b

    if c is not None:
        result = result * c

    return result



While a technical point, it’s worth bearing in mind that None is not only a
reserved keyword but also a unique instance of NoneType:

In [101]: type(None)
Out[101]: NoneType

Dates and times
The built-in Python datetime module provides datetime, date, and time
types. The datetime type, as you may imagine, combines the information
stored in date and time and is the most commonly used:

In [102]: from datetime import datetime, date, time

In [103]: dt = datetime(2011, 10, 29, 20, 30, 21)

In [104]: dt.day
Out[104]: 29

In [105]: dt.minute
Out[105]: 30

Given a datetime instance, you can extract the equivalent date and time
objects by calling methods on the datetime of the same name:

In [106]: dt.date()
Out[106]: datetime.date(2011, 10, 29)

In [107]: dt.time()
Out[107]: datetime.time(20, 30, 21)

The strftime method formats a datetime as a string:

In [108]: dt.strftime('%m/%d/%Y %H:%M')
Out[108]: '10/29/2011 20:30'

Strings can be converted (parsed) into datetime objects with the strptime
function:

In [109]: datetime.strptime('20091031', '%Y%m%d')
Out[109]: datetime.datetime(2009, 10, 31, 0, 0)



See Table 2-5 for a full list of format specifications.

When you are aggregating or otherwise grouping time series data, it will
occasionally be useful to replace time fields of a series of datetimes — for
example, replacing the minute and second fields with zero:

In [110]: dt.replace(minute=0, second=0)
Out[110]: datetime.datetime(2011, 10, 29, 20, 0)

Since datetime.datetime is an immutable type, methods like these always
produce new objects.

The difference of two datetime objects produces a datetime.timedelta
type:

In [111]: dt2 = datetime(2011, 11, 15, 22, 30)

In [112]: delta = dt2 - dt

In [113]: delta
Out[113]: datetime.timedelta(17, 7179)

In [114]: type(delta)
Out[114]: datetime.timedelta

The output timedelta(17, 7179) indicates that the timedelta encodes an
offset of 17 days and 7,179 seconds.

Adding a timedelta to a datetime produces a new shifted datetime:

In [115]: dt
Out[115]: datetime.datetime(2011, 10, 29, 20, 30, 21)

In [116]: dt + delta
Out[116]: datetime.datetime(2011, 11, 15, 22, 30)

Table 2-5. Datetime format specification (ISO C89 compatible)

Type Description

%Y Four-digit year

%y Two-digit year

%m Two-digit month [01, 12]



%d Two-digit day [01, 31]

%H Hour (24-hour clock) [00, 23]

%I Hour (12-hour clock) [01, 12]

%M Two-digit minute [00, 59]

%S Second [00, 61] (seconds 60, 61 account for leap seconds)

%w Weekday as integer [0 (Sunday), 6]

%U Week number of the year [00, 53]; Sunday is considered the first day of the week,
and days before the first Sunday of the year are “week 0”

%W Week number of the year [00, 53]; Monday is considered the first day of the week,
and days before the first Monday of the year are “week 0”

%z UTC time zone offset as +HHMM or -HHMM; empty if time zone naive

%F Shortcut for %Y-%m-%d (e.g., 2012-4-18)

%D Shortcut for %m/%d/%y (e.g., 04/18/12)



Control Flow
Python has several built-in keywords for conditional logic, loops, and other
standard control flow concepts found in other programming languages.

if, elif, and else
The if statement is one of the most well-known control flow statement types.
It checks a condition that, if True, evaluates the code in the block that
follows:

if x < 0:
    print('It's negative')

An if statement can be optionally followed by one or more elif blocks and a
catch-all else block if all of the conditions are False:

if x < 0:
    print('It's negative')
elif x == 0:
    print('Equal to zero')
elif 0 < x < 5:
    print('Positive but smaller than 5')
else:
    print('Positive and larger than or equal to 5')

If any of the conditions is True, no further elif or else blocks will be
reached. With a compound condition using and or or, conditions are
evaluated left to right and will short-circuit:

In [117]: a = 5; b = 7

In [118]: c = 8; d = 4

In [119]: if a < b or c > d:
   .....:     print('Made it')
Made it

In this example, the comparison c > d never gets evaluated because the first
comparison was True.



It is also possible to chain comparisons:

In [120]: 4 > 3 > 2 > 1
Out[120]: True

for loops
for loops are for iterating over a collection (like a list or tuple) or an iterater.
The standard syntax for a for loop is:

for value in collection:
    # do something with value

You can advance a for loop to the next iteration, skipping the remainder of
the block, using the continue keyword. Consider this code, which sums up
integers in a list and skips None values:

sequence = [1, 2, None, 4, None, 5]
total = 0
for value in sequence:
    if value is None:
        continue
    total += value

A for loop can be exited altogether with the break keyword. This code sums
elements of the list until a 5 is reached:

sequence = [1, 2, 0, 4, 6, 5, 2, 1]
total_until_5 = 0
for value in sequence:
    if value == 5:
        break
    total_until_5 += value

The break keyword only terminates the innermost for loop; any outer for
loops will continue to run:

In [121]: for i in range(4):
   .....:     for j in range(4):
   .....:         if j > i:
   .....:             break
   .....:         print((i, j))
   .....:



(0, 0)
(1, 0)
(1, 1)
(2, 0)
(2, 1)
(2, 2)
(3, 0)
(3, 1)
(3, 2)
(3, 3)

As we will see in more detail, if the elements in the collection or iterator are
sequences (tuples or lists, say), they can be conveniently unpacked into
variables in the for loop statement:

for a, b, c in iterator:
    # do something

while loops
A while loop specifies a condition and a block of code that is to be executed
until the condition evaluates to False or the loop is explicitly ended with
break:

x = 256
total = 0
while x > 0:
    if total > 500:
        break
    total += x
    x = x // 2

pass
pass is the “no-op” statement in Python. It can be used in blocks where no
action is to be taken (or as a placeholder for code not yet implemented); it is
only required because Python uses whitespace to delimit blocks:

if x < 0:
    print('negative!')
elif x == 0:
    # TODO: put something smart here
    pass
else:
    print('positive!')



range
The range function returns an iterator that yields a sequence of evenly spaced
integers:

In [122]: range(10)
Out[122]: range(0, 10)

In [123]: list(range(10))
Out[123]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Both a start, end, and step (which may be negative) can be given:

In [124]: list(range(0, 20, 2))
Out[124]: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

In [125]: list(range(5, 0, -1))
Out[125]: [5, 4, 3, 2, 1]

As you can see, range produces integers up to but not including the endpoint.
A common use of range is for iterating through sequences by index:

seq = [1, 2, 3, 4]
for i in range(len(seq)):
    val = seq[i]

While you can use functions like list to store all the integers generated by
range in some other data structure, often the default iterator form will be
what you want. This snippet sums all numbers from 0 to 99,999 that are
multiples of 3 or 5:

sum = 0
for i in range(100000):
    # % is the modulo operator
    if i % 3 == 0 or i % 5 == 0:
        sum += i

While the range generated can be arbitrarily large, the memory use at any
given time may be very small.

Ternary expressions



A ternary expression in Python allows you to combine an if-else block that
produces a value into a single line or expression. The syntax for this in
Python is:

value = true-expr if condition else false-expr

Here, true-expr and false-expr can be any Python expressions. It has the
identical effect as the more verbose:

if condition:
    value = true-expr
else:
    value = false-expr

This is a more concrete example:

In [126]: x = 5

In [127]: 'Non-negative' if x >= 0 else 'Negative'
Out[127]: 'Non-negative'

As with if-else blocks, only one of the expressions will be executed. Thus,
the “if” and “else” sides of the ternary expression could contain costly
computations, but only the true branch is ever evaluated.

While it may be tempting to always use ternary expressions to condense your
code, realize that you may sacrifice readability if the condition as well as the
true and false expressions are very complex.



Chapter 3. Built-in Data Structures,
Functions, and Files

This chapter discusses capabilities built into the Python language that will be
used ubiquitously throughout the book. While add-on libraries like pandas
and NumPy add advanced computational functionality for larger datasets,
they are designed to be used together with Python’s built-in data
manipulation tools.

We’ll start with Python’s workhorse data structures: tuples, lists, dicts, and
sets. Then, we’ll discuss creating your own reusable Python functions.
Finally, we’ll look at the mechanics of Python file objects and interacting
with your local hard drive.



3.1 Data Structures and Sequences
Python’s data structures are simple but powerful. Mastering their use is a
critical part of becoming a proficient Python programmer.



Tuple
A tuple is a fixed-length, immutable sequence of Python objects. The easiest
way to create one is with a comma-separated sequence of values:

In [1]: tup = 4, 5, 6

In [2]: tup
Out[2]: (4, 5, 6)

When you’re defining tuples in more complicated expressions, it’s often
necessary to enclose the values in parentheses, as in this example of creating
a tuple of tuples:

In [3]: nested_tup = (4, 5, 6), (7, 8)

In [4]: nested_tup
Out[4]: ((4, 5, 6), (7, 8))

You can convert any sequence or iterator to a tuple by invoking tuple:

In [5]: tuple([4, 0, 2])
Out[5]: (4, 0, 2)

In [6]: tup = tuple('string')

In [7]: tup
Out[7]: ('s', 't', 'r', 'i', 'n', 'g')

Elements can be accessed with square brackets [] as with most other
sequence types. As in C, C++, Java, and many other languages, sequences are
0-indexed in Python:

In [8]: tup[0]
Out[8]: 's'

While the objects stored in a tuple may be mutable themselves, once the tuple
is created it’s not possible to modify which object is stored in each slot:

In [9]: tup = tuple(['foo', [1, 2], True])



In [10]: tup[2] = False
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-10-c7308343b841> in <module>()
----> 1 tup[2] = False
TypeError: 'tuple' object does not support item assignment

If an object inside a tuple is mutable, such as a list, you can modify it in-
place:

In [11]: tup[1].append(3)

In [12]: tup
Out[12]: ('foo', [1, 2, 3], True)

You can concatenate tuples using the + operator to produce longer tuples:

In [13]: (4, None, 'foo') + (6, 0) + ('bar',)
Out[13]: (4, None, 'foo', 6, 0, 'bar')

Multiplying a tuple by an integer, as with lists, has the effect of concatenating
together that many copies of the tuple:

In [14]: ('foo', 'bar') * 4
Out[14]: ('foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'bar')

Note that the objects themselves are not copied, only the references to them.

Unpacking tuples
If you try to assign to a tuple-like expression of variables, Python will
attempt to unpack the value on the righthand side of the equals sign:

In [15]: tup = (4, 5, 6)

In [16]: a, b, c = tup

In [17]: b
Out[17]: 5

Even sequences with nested tuples can be unpacked:

In [18]: tup = 4, 5, (6, 7)



In [19]: a, b, (c, d) = tup

In [20]: d
Out[20]: 7

Using this functionality you can easily swap variable names, a task which in
many languages might look like:

tmp = a
a = b
b = tmp

But, in Python, the swap can be done like this:

In [21]: a, b = 1, 2

In [22]: a
Out[22]: 1

In [23]: b
Out[23]: 2

In [24]: b, a = a, b

In [25]: a
Out[25]: 2

In [26]: b
Out[26]: 1

A common use of variable unpacking is iterating over sequences of tuples or
lists:

In [27]: seq = [(1, 2, 3), (4, 5, 6), (7, 8, 9)]

In [28]: for a, b, c in seq:
   ....:     print('a={0}, b={1}, c={2}'.format(a, b, c))
a=1, b=2, c=3
a=4, b=5, c=6
a=7, b=8, c=9

Another common use is returning multiple values from a function. I’ll cover
this in more detail later.

The Python language recently acquired some more advanced tuple unpacking
to help with situations where you may want to “pluck” a few elements from



the beginning of a tuple. This uses the special syntax *rest, which is also
used in function signatures to capture an arbitrarily long list of positional
arguments:

In [29]: values = 1, 2, 3, 4, 5

In [30]: a, b, *rest = values

In [31]: a, b
Out[31]: (1, 2)

In [32]: rest
Out[32]: [3, 4, 5]

This rest bit is sometimes something you want to discard; there is nothing
special about the rest name. As a matter of convention, many Python
programmers will use the underscore (_) for unwanted variables:

In [33]: a, b, *_ = values

Tuple methods
Since the size and contents of a tuple cannot be modified, it is very light on
instance methods. A particularly useful one (also available on lists) is count,
which counts the number of occurrences of a value:

In [34]: a = (1, 2, 2, 2, 3, 4, 2)

In [35]: a.count(2)
Out[35]: 4



List
In contrast with tuples, lists are variable-length and their contents can be
modified in-place. You can define them using square brackets [] or using the
list type function:

In [36]: a_list = [2, 3, 7, None]

In [37]: tup = ('foo', 'bar', 'baz')

In [38]: b_list = list(tup)

In [39]: b_list
Out[39]: ['foo', 'bar', 'baz']

In [40]: b_list[1] = 'peekaboo'

In [41]: b_list
Out[41]: ['foo', 'peekaboo', 'baz']

Lists and tuples are semantically similar (though tuples cannot be modified)
and can be used interchangeably in many functions.

The list function is frequently used in data processing as a way to
materialize an iterator or generator expression:

In [42]: gen = range(10)

In [43]: gen
Out[43]: range(0, 10)

In [44]: list(gen)
Out[44]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Adding and removing elements
Elements can be appended to the end of the list with the append method:

In [45]: b_list.append('dwarf')

In [46]: b_list
Out[46]: ['foo', 'peekaboo', 'baz', 'dwarf']

Using insert you can insert an element at a specific location in the list:



In [47]: b_list.insert(1, 'red')

In [48]: b_list
Out[48]: ['foo', 'red', 'peekaboo', 'baz', 'dwarf']

The insertion index must be between 0 and the length of the list, inclusive.

WARNING
insert is computationally expensive compared with append, because references
to subsequent elements have to be shifted internally to make room for the new
element. If you need to insert elements at both the beginning and end of a
sequence, you may wish to explore collections.deque, a double-ended queue,
for this purpose.

The inverse operation to insert is pop, which removes and returns an
element at a particular index:

In [49]: b_list.pop(2)
Out[49]: 'peekaboo'

In [50]: b_list
Out[50]: ['foo', 'red', 'baz', 'dwarf']

Elements can be removed by value with remove, which locates the first such
value and removes it from the last:

In [51]: b_list.append('foo')

In [52]: b_list
Out[52]: ['foo', 'red', 'baz', 'dwarf', 'foo']

In [53]: b_list.remove('foo')

In [54]: b_list
Out[54]: ['red', 'baz', 'dwarf', 'foo']

If performance is not a concern, by using append and remove, you can use a
Python list as a perfectly suitable “multiset” data structure.

Check if a list contains a value using the in keyword:



In [55]: 'dwarf' in b_list
Out[55]: True

The keyword not can be used to negate in:

In [56]: 'dwarf' not in b_list
Out[56]: False

Checking whether a list contains a value is a lot slower than doing so with
dicts and sets (to be introduced shortly), as Python makes a linear scan across
the values of the list, whereas it can check the others (based on hash tables) in
constant time.

Concatenating and combining lists
Similar to tuples, adding two lists together with + concatenates them:

In [57]: [4, None, 'foo'] + [7, 8, (2, 3)]
Out[57]: [4, None, 'foo', 7, 8, (2, 3)]

If you have a list already defined, you can append multiple elements to it
using the extend method:

In [58]: x = [4, None, 'foo']

In [59]: x.extend([7, 8, (2, 3)])

In [60]: x
Out[60]: [4, None, 'foo', 7, 8, (2, 3)]

Note that list concatenation by addition is a comparatively expensive
operation since a new list must be created and the objects copied over. Using
extend to append elements to an existing list, especially if you are building
up a large list, is usually preferable. Thus,

everything = []
for chunk in list_of_lists:
    everything.extend(chunk)

is faster than the concatenative alternative:



everything = []
for chunk in list_of_lists:
    everything = everything + chunk

Sorting
You can sort a list in-place (without creating a new object) by calling its sort
function:

In [61]: a = [7, 2, 5, 1, 3]

In [62]: a.sort()

In [63]: a
Out[63]: [1, 2, 3, 5, 7]

sort has a few options that will occasionally come in handy. One is the
ability to pass a secondary sort key — that is, a function that produces a value
to use to sort the objects. For example, we could sort a collection of strings
by their lengths:

In [64]: b = ['saw', 'small', 'He', 'foxes', 'six']

In [65]: b.sort(key=len)

In [66]: b
Out[66]: ['He', 'saw', 'six', 'small', 'foxes']

Soon, we’ll look at the sorted function, which can produce a sorted copy of a
general sequence.

Binary search and maintaining a sorted list
The built-in bisect module implements binary search and insertion into a
sorted list. bisect.bisect finds the location where an element should be
inserted to keep it sorted, while bisect.insort actually inserts the element
into that location:

In [67]: import bisect

In [68]: c = [1, 2, 2, 2, 3, 4, 7]

In [69]: bisect.bisect(c, 2)



Out[69]: 4

In [70]: bisect.bisect(c, 5)
Out[70]: 6

In [71]: bisect.insort(c, 6)

In [72]: c
Out[72]: [1, 2, 2, 2, 3, 4, 6, 7]

CAUTION
The bisect module functions do not check whether the list is sorted, as doing
so would be computationally expensive. Thus, using them with an unsorted list
will succeed without error but may lead to incorrect results.

Slicing
You can select sections of most sequence types by using slice notation, which
in its basic form consists of start:stop passed to the indexing operator []:

In [73]: seq = [7, 2, 3, 7, 5, 6, 0, 1]

In [74]: seq[1:5]
Out[74]: [2, 3, 7, 5]

Slices can also be assigned to with a sequence:

In [75]: seq[3:4] = [6, 3]

In [76]: seq
Out[76]: [7, 2, 3, 6, 3, 5, 6, 0, 1]

While the element at the start index is included, the stop index is not
included, so that the number of elements in the result is stop - start.

Either the start or stop can be omitted, in which case they default to the
start of the sequence and the end of the sequence, respectively:

In [77]: seq[:5]
Out[77]: [7, 2, 3, 6, 3]

In [78]: seq[3:]



Out[78]: [6, 3, 5, 6, 0, 1]

Negative indices slice the sequence relative to the end:

In [79]: seq[-4:]
Out[79]: [5, 6, 0, 1]

In [80]: seq[-6:-2]
Out[80]: [6, 3, 5, 6]

Slicing semantics takes a bit of getting used to, especially if you’re coming
from R or MATLAB. See Figure 3-1 for a helpful illustration of slicing with
positive and negative integers. In the figure, the indices are shown at the “bin
edges” to help show where the slice selections start and stop using positive or
negative indices.

A step can also be used after a second colon to, say, take every other
element:

In [81]: seq[::2]
Out[81]: [7, 3, 3, 6, 1]

A clever use of this is to pass -1, which has the useful effect of reversing a
list or tuple:

In [82]: seq[::-1]
Out[82]: [1, 0, 6, 5, 3, 6, 3, 2, 7]



Figure 3-1. Illustration of Python slicing conventions



Built-in Sequence Functions
Python has a handful of useful sequence functions that you should familiarize
yourself with and use at any opportunity.

enumerate
It’s common when iterating over a sequence to want to keep track of the
index of the current item. A do-it-yourself approach would look like:

i = 0
for value in collection:
   # do something with value
   i += 1

Since this is so common, Python has a built-in function, enumerate, which
returns a sequence of (i, value) tuples:

for i, value in enumerate(collection):
   # do something with value

When you are indexing data, a helpful pattern that uses enumerate is
computing a dict mapping the values of a sequence (which are assumed to
be unique) to their locations in the sequence:

In [83]: some_list = ['foo', 'bar', 'baz']

In [84]: mapping = {}

In [85]: for i, v in enumerate(some_list):
   ....:     mapping[v] = i

In [86]: mapping
Out[86]: {'bar': 1, 'baz': 2, 'foo': 0}

sorted
The sorted function returns a new sorted list from the elements of any
sequence:

In [87]: sorted([7, 1, 2, 6, 0, 3, 2])



Out[87]: [0, 1, 2, 2, 3, 6, 7]

In [88]: sorted('horse race')
Out[88]: [' ', 'a', 'c', 'e', 'e', 'h', 'o', 'r', 'r', 's']

The sorted function accepts the same arguments as the sort method on lists.

zip
zip “pairs” up the elements of a number of lists, tuples, or other sequences to
create a list of tuples:

In [89]: seq1 = ['foo', 'bar', 'baz']

In [90]: seq2 = ['one', 'two', 'three']

In [91]: zipped = zip(seq1, seq2)

In [92]: list(zipped)
Out[92]: [('foo', 'one'), ('bar', 'two'), ('baz', 'three')]

zip can take an arbitrary number of sequences, and the number of elements it
produces is determined by the shortest sequence:

In [93]: seq3 = [False, True]

In [94]: list(zip(seq1, seq2, seq3))
Out[94]: [('foo', 'one', False), ('bar', 'two', True)]

A very common use of zip is simultaneously iterating over multiple
sequences, possibly also combined with enumerate:

In [95]: for i, (a, b) in enumerate(zip(seq1, seq2)):
   ....:     print('{0}: {1}, {2}'.format(i, a, b))
   ....:
0: foo, one
1: bar, two
2: baz, three

Given a “zipped” sequence, zip can be applied in a clever way to “unzip” the
sequence. Another way to think about this is converting a list of rows into a
list of columns. The syntax, which looks a bit magical, is:

In [96]: pitchers = [('Nolan', 'Ryan'), ('Roger', 'Clemens'),



   ....:             ('Schilling', 'Curt')]

In [97]: first_names, last_names = zip(*pitchers)

In [98]: first_names
Out[98]: ('Nolan', 'Roger', 'Schilling')

In [99]: last_names
Out[99]: ('Ryan', 'Clemens', 'Curt')

reversed
reversed iterates over the elements of a sequence in reverse order:

In [100]: list(reversed(range(10)))
Out[100]: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Keep in mind that reversed is a generator (to be discussed in some more
detail later), so it does not create the reversed sequence until materialized
(e.g., with list or a for loop).



dict
dict is likely the most important built-in Python data structure. A more
common name for it is hash map or associative array. It is a flexibly sized
collection of key-value pairs, where key and value are Python objects. One
approach for creating one is to use curly braces {} and colons to separate
keys and values:

In [101]: empty_dict = {}

In [102]: d1 = {'a' : 'some value', 'b' : [1, 2, 3, 4]}

In [103]: d1
Out[103]: {'a': 'some value', 'b': [1, 2, 3, 4]}

You can access, insert, or set elements using the same syntax as for accessing
elements of a list or tuple:

In [104]: d1[7] = 'an integer'

In [105]: d1
Out[105]: {'a': 'some value', 'b': [1, 2, 3, 4], 7: 'an integer'}

In [106]: d1['b']
Out[106]: [1, 2, 3, 4]

You can check if a dict contains a key using the same syntax used for
checking whether a list or tuple contains a value:

In [107]: 'b' in d1
Out[107]: True

You can delete values either using the del keyword or the pop method (which
simultaneously returns the value and deletes the key):

In [108]: d1[5] = 'some value'

In [109]: d1
Out[109]: 
{'a': 'some value',
 'b': [1, 2, 3, 4],
 7: 'an integer',



 5: 'some value'}

In [110]: d1['dummy'] = 'another value'

In [111]: d1
Out[111]: 
{'a': 'some value',
 'b': [1, 2, 3, 4],
 7: 'an integer',
 5: 'some value',
 'dummy': 'another value'}

In [112]: del d1[5]

In [113]: d1
Out[113]: 
{'a': 'some value',
 'b': [1, 2, 3, 4],
 7: 'an integer',
 'dummy': 'another value'}

In [114]: ret = d1.pop('dummy')

In [115]: ret
Out[115]: 'another value'

In [116]: d1
Out[116]: {'a': 'some value', 'b': [1, 2, 3, 4], 7: 'an integer'}

The keys and values method give you iterators of the dict’s keys and values,
respectively. While the key-value pairs are not in any particular order, these
functions output the keys and values in the same order:

In [117]: list(d1.keys())
Out[117]: ['a', 'b', 7]

In [118]: list(d1.values())
Out[118]: ['some value', [1, 2, 3, 4], 'an integer']

You can merge one dict into another using the update method:

In [119]: d1.update({'b' : 'foo', 'c' : 12})

In [120]: d1
Out[120]: {'a': 'some value', 'b': 'foo', 7: 'an integer', 'c': 12}

The update method changes dicts in-place, so any existing keys in the data
passed to update will have their old values discarded.



Creating dicts from sequences
It’s common to occasionally end up with two sequences that you want to pair
up element-wise in a dict. As a first cut, you might write code like this:

mapping = {}
for key, value in zip(key_list, value_list):
    mapping[key] = value

Since a dict is essentially a collection of 2-tuples, the dict function accepts a
list of 2-tuples:

In [121]: mapping = dict(zip(range(5), reversed(range(5))))

In [122]: mapping
Out[122]: {0: 4, 1: 3, 2: 2, 3: 1, 4: 0}

Later we’ll talk about dict comprehensions, another elegant way to construct
dicts.

Default values
It’s very common to have logic like:

if key in some_dict:
    value = some_dict[key]
else:
    value = default_value

Thus, the dict methods get and pop can take a default value to be returned, so
that the above if-else block can be written simply as:

value = some_dict.get(key, default_value)

get by default will return None if the key is not present, while pop will raise
an exception. With setting values, a common case is for the values in a dict to
be other collections, like lists. For example, you could imagine categorizing a
list of words by their first letters as a dict of lists:

In [123]: words = ['apple', 'bat', 'bar', 'atom', 'book']



In [124]: by_letter = {}

In [125]: for word in words:
   .....:     letter = word[0]
   .....:     if letter not in by_letter:
   .....:         by_letter[letter] = [word]
   .....:     else:
   .....:         by_letter[letter].append(word)
   .....:

In [126]: by_letter
Out[126]: {'a': ['apple', 'atom'], 'b': ['bat', 'bar', 'book']}

The setdefault dict method is for precisely this purpose. The preceding for
loop can be rewritten as:

for word in words:
    letter = word[0]
    by_letter.setdefault(letter, []).append(word)

The built-in collections module has a useful class, defaultdict, which
makes this even easier. To create one, you pass a type or function for
generating the default value for each slot in the dict:

from collections import defaultdict
by_letter = defaultdict(list)
for word in words:
    by_letter[word[0]].append(word)

Valid dict key types
While the values of a dict can be any Python object, the keys generally have
to be immutable objects like scalar types (int, float, string) or tuples (all the
objects in the tuple need to be immutable, too). The technical term here is
hashability. You can check whether an object is hashable (can be used as a
key in a dict) with the hash function:

In [127]: hash('string')
Out[127]: 5023931463650008331

In [128]: hash((1, 2, (2, 3)))
Out[128]: 1097636502276347782

In [129]: hash((1, 2, [2, 3])) # fails because lists are mutable
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)



<ipython-input-129-800cd14ba8be> in <module>()
----> 1 hash((1, 2, [2, 3])) # fails because lists are mutable
TypeError: unhashable type: 'list'

To use a list as a key, one option is to convert it to a tuple, which can be
hashed as long as its elements also can:

In [130]: d = {}

In [131]: d[tuple([1, 2, 3])] = 5

In [132]: d
Out[132]: {(1, 2, 3): 5}



set
A set is an unordered collection of unique elements. You can think of them
like dicts, but keys only, no values. A set can be created in two ways: via the
set function or via a set literal with curly braces:

In [133]: set([2, 2, 2, 1, 3, 3])
Out[133]: {1, 2, 3}

In [134]: {2, 2, 2, 1, 3, 3}
Out[134]: {1, 2, 3}

Sets support mathematical set operations like union, intersection, difference,
and symmetric difference. Consider these two example sets:

In [135]: a = {1, 2, 3, 4, 5}

In [136]: b = {3, 4, 5, 6, 7, 8}

The union of these two sets is the set of distinct elements occurring in either
set. This can be computed with either the union method or the | binary
operator:

In [137]: a.union(b)
Out[137]: {1, 2, 3, 4, 5, 6, 7, 8}

In [138]: a | b
Out[138]: {1, 2, 3, 4, 5, 6, 7, 8}

The intersection contains the elements occurring in both sets. The & operator
or the intersection method can be used:

In [139]: a.intersection(b)
Out[139]: {3, 4, 5}

In [140]: a & b
Out[140]: {3, 4, 5}

See Table 3-1 for a list of commonly used set methods.

Table 3-1. Python set operations



Table 3-1. Python set operations

Function Alternative
syntax

Description

a.add(x) N/A Add element x to the set a

a.clear() N/A Reset the set a to an empty state,
discarding all of its elements

a.remove(x) N/A Remove element x from the set a

a.pop() N/A Remove an arbitrary element from the set
a, raising KeyError if the set is empty

a.union(b) a | b All of the unique elements in a and b

a.update(b) a |= b Set the contents of a to be the union of
the elements in a and b

a.intersection(b) a & b All of the elements in both a and b

a.intersection_update(b) a &= b Set the contents of a to be the intersection
of the elements in a and b

a.difference(b) a - b The elements in a that are not in b

a.difference_update(b) a -= b Set a to the elements in a that are not in b

a.symmetric_difference(b) a ^ b All of the elements in either a or b but not
both

a.symmetric_difference_update(b) a ^= b Set a to contain the elements in either a or
b but not both

a.issubset(b) N/A True if the elements of a are all contained
in b

a.issuperset(b) N/A True if the elements of b are all contained
in a

a.isdisjoint(b) N/A True if a and b have no elements in
common

All of the logical set operations have in-place counterparts, which enable you
to replace the contents of the set on the left side of the operation with the
result. For very large sets, this may be more efficient:

In [141]: c = a.copy()

In [142]: c |= b



In [143]: c
Out[143]: {1, 2, 3, 4, 5, 6, 7, 8}

In [144]: d = a.copy()

In [145]: d &= b

In [146]: d
Out[146]: {3, 4, 5}

Like dicts, set elements generally must be immutable. To have list-like
elements, you must convert it to a tuple:

In [147]: my_data = [1, 2, 3, 4]

In [148]: my_set = {tuple(my_data)}

In [149]: my_set
Out[149]: {(1, 2, 3, 4)}

You can also check if a set is a subset of (is contained in) or a superset of
(contains all elements of) another set:

In [150]: a_set = {1, 2, 3, 4, 5}

In [151]: {1, 2, 3}.issubset(a_set)
Out[151]: True

In [152]: a_set.issuperset({1, 2, 3})
Out[152]: True

Sets are equal if and only if their contents are equal:

In [153]: {1, 2, 3} == {3, 2, 1}
Out[153]: True



List, Set, and Dict Comprehensions
List comprehensions are one of the most-loved Python language features.
They allow you to concisely form a new list by filtering the elements of a
collection, transforming the elements passing the filter in one concise
expression. They take the basic form:

[expr for val in collection if condition]

This is equivalent to the following for loop:

result = []
for val in collection:
    if condition:
        result.append(expr)

The filter condition can be omitted, leaving only the expression. For example,
given a list of strings, we could filter out strings with length 2 or less and also
convert them to uppercase like this:

In [154]: strings = ['a', 'as', 'bat', 'car', 'dove', 'python']

In [155]: [x.upper() for x in strings if len(x) > 2]
Out[155]: ['BAT', 'CAR', 'DOVE', 'PYTHON']

Set and dict comprehensions are a natural extension, producing sets and dicts
in an idiomatically similar way instead of lists. A dict comprehension looks
like this:

dict_comp = {key-expr : value-expr for value in collection
             if condition}

A set comprehension looks like the equivalent list comprehension except
with curly braces instead of square brackets:

set_comp = {expr for value in collection if condition}

Like list comprehensions, set and dict comprehensions are mostly



conveniences, but they similarly can make code both easier to write and read.
Consider the list of strings from before. Suppose we wanted a set containing
just the lengths of the strings contained in the collection; we could easily
compute this using a set comprehension:

In [156]: unique_lengths = {len(x) for x in strings}

In [157]: unique_lengths
Out[157]: {1, 2, 3, 4, 6}

We could also express this more functionally using the map function,
introduced shortly:

In [158]: set(map(len, strings))
Out[158]: {1, 2, 3, 4, 6}

As a simple dict comprehension example, we could create a lookup map of
these strings to their locations in the list:

In [159]: loc_mapping = {val : index for index, val in enumerate(strings)}

In [160]: loc_mapping
Out[160]: {'a': 0, 'as': 1, 'bat': 2, 'car': 3, 'dove': 4, 'python': 5}

Nested list comprehensions
Suppose we have a list of lists containing some English and Spanish names:

In [161]: all_data = [['John', 'Emily', 'Michael', 'Mary', 'Steven'],
   .....:             ['Maria', 'Juan', 'Javier', 'Natalia', 'Pilar']]

You might have gotten these names from a couple of files and decided to
organize them by language. Now, suppose we wanted to get a single list
containing all names with two or more e’s in them. We could certainly do
this with a simple for loop:

names_of_interest = []
for names in all_data:
    enough_es = [name for name in names if name.count('e') >= 2]
    names_of_interest.extend(enough_es)



You can actually wrap this whole operation up in a single nested list
comprehension, which will look like:

In [162]: result = [name for names in all_data for name in names
   .....:           if name.count('e') >= 2]

In [163]: result
Out[163]: ['Steven']

At first, nested list comprehensions are a bit hard to wrap your head around.
The for parts of the list comprehension are arranged according to the order of
nesting, and any filter condition is put at the end as before. Here is another
example where we “flatten” a list of tuples of integers into a simple list of
integers:

In [164]: some_tuples = [(1, 2, 3), (4, 5, 6), (7, 8, 9)]

In [165]: flattened = [x for tup in some_tuples for x in tup]

In [166]: flattened
Out[166]: [1, 2, 3, 4, 5, 6, 7, 8, 9]

Keep in mind that the order of the for expressions would be the same if you
wrote a nested for loop instead of a list comprehension:

flattened = []

for tup in some_tuples:
    for x in tup:
        flattened.append(x)

You can have arbitrarily many levels of nesting, though if you have more
than two or three levels of nesting you should probably start to question
whether this makes sense from a code readability standpoint. It’s important to
distinguish the syntax just shown from a list comprehension inside a list
comprehension, which is also perfectly valid:

In [167]: [[x for x in tup] for tup in some_tuples]
Out[167]: [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

This produces a list of lists, rather than a flattened list of all of the inner



elements.



3.2 Functions
Functions are the primary and most important method of code organization
and reuse in Python. As a rule of thumb, if you anticipate needing to repeat
the same or very similar code more than once, it may be worth writing a
reusable function. Functions can also help make your code more readable by
giving a name to a group of Python statements.

Functions are declared with the def keyword and returned from with the
return keyword:

def my_function(x, y, z=1.5):
    if z > 1:
        return z * (x + y)
    else:
        return z / (x + y)

There is no issue with having multiple return statements. If Python reaches
the end of a function without encountering a return statement, None is
returned automatically.

Each function can have positional arguments and keyword arguments.
Keyword arguments are most commonly used to specify default values or
optional arguments. In the preceding function, x and y are positional
arguments while z is a keyword argument. This means that the function can
be called in any of these ways:

my_function(5, 6, z=0.7)
my_function(3.14, 7, 3.5)
my_function(10, 20)

The main restriction on function arguments is that the keyword arguments
must follow the positional arguments (if any). You can specify keyword
arguments in any order; this frees you from having to remember which order
the function arguments were specified in and only what their names are.



NOTE
It is possible to use keywords for passing positional arguments as well. In the
preceding example, we could also have written:

my_function(x=5, y=6, z=7)
my_function(y=6, x=5, z=7)

In some cases this can help with readability.



Namespaces, Scope, and Local Functions
Functions can access variables in two different scopes: global and local. An
alternative and more descriptive name describing a variable scope in Python
is a namespace. Any variables that are assigned within a function by default
are assigned to the local namespace. The local namespace is created when the
function is called and immediately populated by the function’s arguments.
After the function is finished, the local namespace is destroyed (with some
exceptions that are outside the purview of this chapter). Consider the
following function:

def func():
    a = []
    for i in range(5):
        a.append(i)

When func() is called, the empty list a is created, five elements are
appended, and then a is destroyed when the function exits. Suppose instead
we had declared a as follows:

a = []
def func():
    for i in range(5):
        a.append(i)

Assigning variables outside of the function’s scope is possible, but those
variables must be declared as global via the global keyword:

In [168]: a = None

In [169]: def bind_a_variable():
   .....:     global a
   .....:     a = []
   .....: bind_a_variable()
   .....:

In [170]: print(a)
[]



CAUTION
I generally discourage use of the global keyword. Typically global variables
are used to store some kind of state in a system. If you find yourself using a lot
of them, it may indicate a need for object-oriented programming (using classes).



Returning Multiple Values
When I first programmed in Python after having programmed in Java and
C++, one of my favorite features was the ability to return multiple values
from a function with simple syntax. Here’s an example:

def f():
    a = 5
    b = 6
    c = 7
    return a, b, c

a, b, c = f()

In data analysis and other scientific applications, you may find yourself doing
this often. What’s happening here is that the function is actually just returning
one object, namely a tuple, which is then being unpacked into the result
variables. In the preceding example, we could have done this instead:

return_value = f()

In this case, return_value would be a 3-tuple with the three returned
variables. A potentially attractive alternative to returning multiple values like
before might be to return a dict instead:

def f():
    a = 5
    b = 6
    c = 7
    return {'a' : a, 'b' : b, 'c' : c}

This alternative technique can be useful depending on what you are trying to
do.



Functions Are Objects
Since Python functions are objects, many constructs can be easily expressed
that are difficult to do in other languages. Suppose we were doing some data
cleaning and needed to apply a bunch of transformations to the following list
of strings:

In [171]: states = ['   Alabama ', 'Georgia!', 'Georgia', 'georgia', 
'FlOrIda',
   .....:           'south   carolina##', 'West virginia?']

Anyone who has ever worked with user-submitted survey data has seen
messy results like these. Lots of things need to happen to make this list of
strings uniform and ready for analysis: stripping whitespace, removing
punctuation symbols, and standardizing on proper capitalization. One way to
do this is to use built-in string methods along with the re standard library
module for regular expressions:

import re

def clean_strings(strings):
    result = []
    for value in strings:
        value = value.strip()
        value = re.sub('[!#?]', '', value)
        value = value.title()
        result.append(value)
    return result

The result looks like this:

In [173]: clean_strings(states)
Out[173]: 
['Alabama',
 'Georgia',
 'Georgia',
 'Georgia',
 'Florida',
 'South   Carolina',
 'West Virginia']

An alternative approach that you may find useful is to make a list of the



operations you want to apply to a particular set of strings:

def remove_punctuation(value):
    return re.sub('[!#?]', '', value)

clean_ops = [str.strip, remove_punctuation, str.title]

def clean_strings(strings, ops):
    result = []
    for value in strings:
        for function in ops:
            value = function(value)
        result.append(value)
    return result

Then we have the following:

In [175]: clean_strings(states, clean_ops)
Out[175]: 
['Alabama',
 'Georgia',
 'Georgia',
 'Georgia',
 'Florida',
 'South   Carolina',
 'West Virginia']

A more functional pattern like this enables you to easily modify how the
strings are transformed at a very high level. The clean_strings function is
also now more reusable and generic.

You can use functions as arguments to other functions like the built-in map
function, which applies a function to a sequence of some kind:

In [176]: for x in map(remove_punctuation, states):
   .....:     print(x)
Alabama 
Georgia
Georgia
georgia
FlOrIda
south   carolina
West virginia



Anonymous (Lambda) Functions
Python has support for so-called anonymous or lambda functions, which are a
way of writing functions consisting of a single statement, the result of which
is the return value. They are defined with the lambda keyword, which has no
meaning other than “we are declaring an anonymous function”:

def short_function(x):
    return x * 2

equiv_anon = lambda x: x * 2

I usually refer to these as lambda functions in the rest of the book. They are
especially convenient in data analysis because, as you’ll see, there are many
cases where data transformation functions will take functions as arguments.
It’s often less typing (and clearer) to pass a lambda function as opposed to
writing a full-out function declaration or even assigning the lambda function
to a local variable. For example, consider this silly example:

def apply_to_list(some_list, f):
    return [f(x) for x in some_list]

ints = [4, 0, 1, 5, 6]
apply_to_list(ints, lambda x: x * 2)

You could also have written [x * 2 for x in ints], but here we were able
to succinctly pass a custom operator to the apply_to_list function.

As another example, suppose you wanted to sort a collection of strings by the
number of distinct letters in each string:

In [177]: strings = ['foo', 'card', 'bar', 'aaaa', 'abab']

Here we could pass a lambda function to the list’s sort method:

In [178]: strings.sort(key=lambda x: len(set(list(x))))

In [179]: strings
Out[179]: ['aaaa', 'foo', 'abab', 'bar', 'card']



NOTE
One reason lambda functions are called anonymous functions is that , unlike
functions declared with the def keyword, the function object itself is never
given an explicit __name__ attribute.



Currying: Partial Argument Application
Currying is computer science jargon (named after the mathematician Haskell
Curry) that means deriving new functions from existing ones by partial
argument application. For example, suppose we had a trivial function that
adds two numbers together:

def add_numbers(x, y):
    return x + y

Using this function, we could derive a new function of one variable,
add_five, that adds 5 to its argument:

add_five = lambda y: add_numbers(5, y)

The second argument to add_numbers is said to be curried. There’s nothing
very fancy here, as all we’ve really done is define a new function that calls an
existing function. The built-in functools module can simplify this process
using the partial function:

from functools import partial
add_five = partial(add_numbers, 5)



Generators
Having a consistent way to iterate over sequences, like objects in a list or
lines in a file, is an important Python feature. This is accomplished by means
of the iterator protocol, a generic way to make objects iterable. For example,
iterating over a dict yields the dict keys:

In [180]: some_dict = {'a': 1, 'b': 2, 'c': 3}

In [181]: for key in some_dict:
   .....:     print(key)
a
b
c

When you write for key in some_dict, the Python interpreter first attempts
to create an iterator out of some_dict:

In [182]: dict_iterator = iter(some_dict)

In [183]: dict_iterator
Out[183]: <dict_keyiterator at 0x7fbbd5a9f908>

An iterator is any object that will yield objects to the Python interpreter when
used in a context like a for loop. Most methods expecting a list or list-like
object will also accept any iterable object. This includes built-in methods
such as min, max, and sum, and type constructors like list and tuple:

In [184]: list(dict_iterator)
Out[184]: ['a', 'b', 'c']

A generator is a concise way to construct a new iterable object. Whereas
normal functions execute and return a single result at a time, generators
return a sequence of multiple results lazily, pausing after each one until the
next one is requested. To create a generator, use the yield keyword instead
of return in a function:

def squares(n=10):
    print('Generating squares from 1 to {0}'.format(n ** 2))



    for i in range(1, n + 1):
        yield i ** 2

When you actually call the generator, no code is immediately executed:

In [186]: gen = squares()

In [187]: gen
Out[187]: <generator object squares at 0x7fbbd5ab4570>

It is not until you request elements from the generator that it begins executing
its code:

In [188]: for x in gen:
   .....:     print(x, end=' ')
Generating squares from 1 to 100
1 4 9 16 25 36 49 64 81 100

Generator expresssions
Another even more concise way to make a generator is by using a generator
expression. This is a generator analogue to list, dict, and set comprehensions;
to create one, enclose what would otherwise be a list comprehension within
parentheses instead of brackets:

In [189]: gen = (x ** 2 for x in range(100))

In [190]: gen
Out[190]: <generator object <genexpr> at 0x7fbbd5ab29e8>

This is completely equivalent to the following more verbose generator:

def _make_gen():
    for x in range(100):
        yield x ** 2
gen = _make_gen()

Generator expressions can be used instead of list comprehensions as function
arguments in many cases:

In [191]: sum(x ** 2 for x in range(100))
Out[191]: 328350

In [192]: dict((i, i **2) for i in range(5))



Out[192]: {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

itertools module
The standard library itertools module has a collection of generators for
many common data algorithms. For example, groupby takes any sequence
and a function, grouping consecutive elements in the sequence by return
value of the function. Here’s an example:

In [193]: import itertools

In [194]: first_letter = lambda x: x[0]

In [195]: names = ['Alan', 'Adam', 'Wes', 'Will', 'Albert', 'Steven']

In [196]: for letter, names in itertools.groupby(names, first_letter):
   .....:     print(letter, list(names)) # names is a generator
A ['Alan', 'Adam']
W ['Wes', 'Will']
A ['Albert']
S ['Steven']

See Table 3-2 for a list of a few other itertools functions I’ve frequently
found helpful. You may like to check out the official Python documentation
for more on this useful built-in utility module.

Table 3-2. Some useful itertools functions

Function Description

combinations(iterable,
k)

Generates a sequence of all possible k-tuples of elements in the
iterable, ignoring order and without replacement (see also the
companion function combinations_with_replacement)

permutations(iterable,
k)

Generates a sequence of all possible k-tuples of elements in the
iterable, respecting order

groupby(iterable[,
keyfunc])

Generates (key, sub-iterator) for each unique key

product(*iterables,
repeat=1)

Generates the Cartesian product of the input iterables as tuples,
similar to a nested for loop

https://docs.python.org/3/library/itertools.html


Errors and Exception Handling
Handling Python errors or exceptions gracefully is an important part of
building robust programs. In data analysis applications, many functions only
work on certain kinds of input. As an example, Python’s float function is
capable of casting a string to a floating-point number, but fails with
ValueError on improper inputs:

In [197]: float('1.2345')
Out[197]: 1.2345

In [198]: float('something')
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-198-439904410854> in <module>()
----> 1 float('something')
ValueError: could not convert string to float: 'something'

Suppose we wanted a version of float that fails gracefully, returning the
input argument. We can do this by writing a function that encloses the call to
float in a try/except block:

def attempt_float(x):
    try:
        return float(x)
    except:
        return x

The code in the except part of the block will only be executed if float(x)
raises an exception:

In [200]: attempt_float('1.2345')
Out[200]: 1.2345

In [201]: attempt_float('something')
Out[201]: 'something'

You might notice that float can raise exceptions other than ValueError:

In [202]: float((1, 2))
---------------------------------------------------------------------------



TypeError                                 Traceback (most recent call last)
<ipython-input-202-842079ebb635> in <module>()
----> 1 float((1, 2))
TypeError: float() argument must be a string or a number, not 'tuple'

You might want to only suppress ValueError, since a TypeError (the input
was not a string or numeric value) might indicate a legitimate bug in your
program. To do that, write the exception type after except:

def attempt_float(x):
    try:
        return float(x)
    except ValueError:
        return x

We have then:

In [204]: attempt_float((1, 2))
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-204-9bdfd730cead> in <module>()
----> 1 attempt_float((1, 2))
<ipython-input-203-3e06b8379b6b> in attempt_float(x)
      1 def attempt_float(x):
      2     try:
----> 3         return float(x)
      4     except ValueError:
      5         return x
TypeError: float() argument must be a string or a number, not 'tuple'

You can catch multiple exception types by writing a tuple of exception types
instead (the parentheses are required):

def attempt_float(x):
    try:
        return float(x)
    except (TypeError, ValueError):
        return x

In some cases, you may not want to suppress an exception, but you want
some code to be executed regardless of whether the code in the try block
succeeds or not. To do this, use finally:

f = open(path, 'w')



try:
    write_to_file(f)
finally:
    f.close()

Here, the file handle f will always get closed. Similarly, you can have code
that executes only if the try: block succeeds using else:

f = open(path, 'w')

try:
    write_to_file(f)
except:
    print('Failed')
else:
    print('Succeeded')
finally:
    f.close()

Exceptions in IPython
If an exception is raised while you are %run-ing a script or executing any
statement, IPython will by default print a full call stack trace (traceback) with
a few lines of context around the position at each point in the stack:

In [10]: %run examples/ipython_bug.py
---------------------------------------------------------------------------
AssertionError                            Traceback (most recent call last)
/home/wesm/code/pydata-book/examples/ipython_bug.py in <module>()
     13     throws_an_exception()
     14
---> 15 calling_things()

/home/wesm/code/pydata-book/examples/ipython_bug.py in calling_things()
     11 def calling_things():
     12     works_fine()
---> 13     throws_an_exception()
     14
     15 calling_things()

/home/wesm/code/pydata-book/examples/ipython_bug.py in throws_an_exception()
      7     a = 5
      8     b = 6
----> 9     assert(a + b == 10)
     10
     11 def calling_things():

AssertionError:



Having additional context by itself is a big advantage over the standard
Python interpreter (which does not provide any additional context). You can
control the amount of context shown using the %xmode magic command, from
Plain (same as the standard Python interpreter) to Verbose (which inlines
function argument values and more). As you will see later in the chapter, you
can step into the stack (using the %debug or %pdb magics) after an error has
occurred for interactive post-mortem debugging.



3.3 Files and the Operating System
Most of this book uses high-level tools like pandas.read_csv to read data
files from disk into Python data structures. However, it’s important to
understand the basics of how to work with files in Python. Fortunately, it’s
very simple, which is one reason why Python is so popular for text and file
munging.

To open a file for reading or writing, use the built-in open function with
either a relative or absolute file path:

In [207]: path = 'examples/segismundo.txt'

In [208]: f = open(path)

By default, the file is opened in read-only mode 'r'. We can then treat the
file handle f like a list and iterate over the lines like so:

for line in f:
    pass

The lines come out of the file with the end-of-line (EOL) markers intact, so
you’ll often see code to get an EOL-free list of lines in a file like:

In [209]: lines = [x.rstrip() for x in open(path)]

In [210]: lines
Out[210]: 
['Sueña el rico en su riqueza,',
 'que más cuidados le ofrece;',
 '',
 'sueña el pobre que padece',
 'su miseria y su pobreza;',
 '',
 'sueña el que a medrar empieza,',
 'sueña el que afana y pretende,',
 'sueña el que agravia y ofende,',
 '',
 'y en el mundo, en conclusión,',
 'todos sueñan lo que son,',
 'aunque ninguno lo entiende.',
 '']



When you use open to create file objects, it is important to explicitly close the
file when you are finished with it. Closing the file releases its resources back
to the operating system:

In [211]: f.close()

One of the ways to make it easier to clean up open files is to use the with
statement:

In [212]: with open(path) as f:
   .....:     lines = [x.rstrip() for x in f]

This will automatically close the file f when exiting the with block.

If we had typed f = open(path, 'w'), a new file at examples/segismundo.txt
would have been created (be careful!), overwriting any one in its place. There
is also the 'x' file mode, which creates a writable file but fails if the file path
already exists. See Table 3-3 for a list of all valid file read/write modes.

For readable files, some of the most commonly used methods are read, seek,
and tell. read returns a certain number of characters from the file. What
constitutes a “character” is determined by the file’s encoding (e.g., UTF-8) or
simply raw bytes if the file is opened in binary mode:

In [213]: f = open(path)

In [214]: f.read(10)
Out[214]: 'Sueña el r'

In [215]: f2 = open(path, 'rb')  # Binary mode

In [216]: f2.read(10)
Out[216]: b'Sue\xc3\xb1a el '

The read method advances the file handle’s position by the number of bytes
read. tell gives you the current position:

In [217]: f.tell()
Out[217]: 11

In [218]: f2.tell()



Out[218]: 10

Even though we read 10 characters from the file, the position is 11 because it
took that many bytes to decode 10 characters using the default encoding. You
can check the default encoding in the sys module:

In [219]: import sys

In [220]: sys.getdefaultencoding()
Out[220]: 'utf-8'

seek changes the file position to the indicated byte in the file:

In [221]: f.seek(3)
Out[221]: 3

In [222]: f.read(1)
Out[222]: 'ñ'

Lastly, we remember to close the files:

In [223]: f.close()

In [224]: f2.close()

Table 3-3. Python file modes

Mode Description

r Read-only mode

w Write-only mode; creates a new file (erasing the data for any file with the same
name)

x Write-only mode; creates a new file, but fails if the file path already exists

a Append to existing file (create the file if it does not already exist)

r+ Read and write

b Add to mode for binary files (i.e., 'rb' or 'wb')

t Text mode for files (automatically decoding bytes to Unicode). This is the default
if not specified. Add t to other modes to use this (i.e., 'rt' or 'xt')



To write text to a file, you can use the file’s write or writelines methods.
For example, we could create a version of prof_mod.py with no blank lines
like so:

In [225]: with open('tmp.txt', 'w') as handle:
   .....:     handle.writelines(x for x in open(path) if len(x) > 1)

In [226]: with open('tmp.txt') as f:
   .....:     lines = f.readlines()

In [227]: lines
Out[227]: 
['Sueña el rico en su riqueza,\n',
 'que más cuidados le ofrece;\n',
 'sueña el pobre que padece\n',
 'su miseria y su pobreza;\n',
 'sueña el que a medrar empieza,\n',
 'sueña el que afana y pretende,\n',
 'sueña el que agravia y ofende,\n',
 'y en el mundo, en conclusión,\n',
 'todos sueñan lo que son,\n',
 'aunque ninguno lo entiende.\n']

See Table 3-4 for many of the most commonly used file methods.

Table 3-4. Important Python file methods or attributes

Method Description

read([size]) Return data from file as a string, with optional size argument
indicating the number of bytes to read

readlines([size]) Return list of lines in the file, with optional size argument

write(str) Write passed string to file

writelines(strings) Write passed sequence of strings to the file

close() Close the handle

flush() Flush the internal I/O buffer to disk

seek(pos) Move to indicated file position (integer)

tell() Return current file position as integer

closed True if the file is closed



Bytes and Unicode with Files
The default behavior for Python files (whether readable or writable) is text
mode, which means that you intend to work with Python strings (i.e.,
Unicode). This contrasts with binary mode, which you can obtain by
appending b onto the file mode. Let’s look at the file (which contains non-
ASCII characters with UTF-8 encoding) from the previous section:

In [230]: with open(path) as f:
   .....:     chars = f.read(10)

In [231]: chars
Out[231]: 'Sueña el r'

UTF-8 is a variable-length Unicode encoding, so when I requested some
number of characters from the file, Python reads enough bytes (which could
be as few as 10 or as many as 40 bytes) from the file to decode that many
characters. If I open the file in 'rb' mode instead, read requests exact
numbers of bytes:

In [232]: with open(path, 'rb') as f:
   .....:     data = f.read(10)

In [233]: data
Out[233]: b'Sue\xc3\xb1a el '

Depending on the text encoding, you may be able to decode the bytes to a
str object yourself, but only if each of the encoded Unicode characters is
fully formed:

In [234]: data.decode('utf8')
Out[234]: 'Sueña el '

In [235]: data[:4].decode('utf8')
---------------------------------------------------------------------------
UnicodeDecodeError                        Traceback (most recent call last)
<ipython-input-235-300e0af10bb7> in <module>()
----> 1 data[:4].decode('utf8')
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xc3 in position 3: 
unexpecte
d end of data



Text mode, combined with the encoding option of open, provides a
convenient way to convert from one Unicode encoding to another:

In [236]: sink_path = 'sink.txt'

In [237]: with open(path) as source:
   .....:     with open(sink_path, 'xt', encoding='iso-8859-1') as sink:
   .....:         sink.write(source.read())

In [238]: with open(sink_path, encoding='iso-8859-1') as f:
   .....:     print(f.read(10))
Sueña el r

Beware using seek when opening files in any mode other than binary. If the
file position falls in the middle of the bytes defining a Unicode character,
then subsequent reads will result in an error:

In [240]: f = open(path)

In [241]: f.read(5)
Out[241]: 'Sueña'

In [242]: f.seek(4)
Out[242]: 4

In [243]: f.read(1)
---------------------------------------------------------------------------
UnicodeDecodeError                        Traceback (most recent call last)
<ipython-input-243-7841103e33f5> in <module>()
----> 1 f.read(1)
/miniconda/envs/book-env/lib/python3.6/codecs.py in decode(self, input, 
final)
    319         # decode input (taking the buffer into account)
    320         data = self.buffer + input
--> 321         (result, consumed) = self._buffer_decode(data, self.errors, 
final
)
    322         # keep undecoded input until the next call
    323         self.buffer = data[consumed:]
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb1 in position 0: 
invalid s
tart byte

In [244]: f.close()

If you find yourself regularly doing data analysis on non-ASCII text data,
mastering Python’s Unicode functionality will prove valuable. See Python’s
online documentation for much more.

https://docs.python.org/


3.4 Conclusion
With some of the basics and the Python environment and language now
under our belt, it’s time to move on and learn about NumPy and array-
oriented computing in Python.



Chapter 4. NumPy Basics: Arrays
and Vectorized Computation

NumPy, short for Numerical Python, is one of the most important
foundational packages for numerical computing in Python. Most
computational packages providing scientific functionality use NumPy’s array
objects as the lingua franca for data exchange.

Here are some of the things you’ll find in NumPy:
ndarray, an efficient multidimensional array providing fast array-
oriented arithmetic operations and flexible broadcasting capabilities.

Mathematical functions for fast operations on entire arrays of data
without having to write loops.

Tools for reading/writing array data to disk and working with memory-
mapped files.

Linear algebra, random number generation, and Fourier transform
capabilities.

A C API for connecting NumPy with libraries written in C, C++, or
FORTRAN.

Because NumPy provides an easy-to-use C API, it is straightforward to pass
data to external libraries written in a low-level language and also for external
libraries to return data to Python as NumPy arrays. This feature has made
Python a language of choice for wrapping legacy C/C++/Fortran codebases
and giving them a dynamic and easy-to-use interface.

While NumPy by itself does not provide modeling or scientific functionality,
having an understanding of NumPy arrays and array-oriented computing will
help you use tools with array-oriented semantics, like pandas, much more
effectively. Since NumPy is a large topic, I will cover many advanced



NumPy features like broadcasting in more depth later (see Appendix A).

For most data analysis applications, the main areas of functionality I’ll focus
on are:

Fast vectorized array operations for data munging and cleaning,
subsetting and filtering, transformation, and any other kinds of
computations

Common array algorithms like sorting, unique, and set operations

Efficient descriptive statistics and aggregating/summarizing data

Data alignment and relational data manipulations for merging and
joining together heterogeneous datasets

Expressing conditional logic as array expressions instead of loops with
if-elif-else branches

Group-wise data manipulations (aggregation, transformation, function
application)

While NumPy provides a computational foundation for general numerical
data processing, many readers will want to use pandas as the basis for most
kinds of statistics or analytics, especially on tabular data. pandas also
provides some more domain-specific functionality like time series
manipulation, which is not present in NumPy.

NOTE
Array-oriented computing in Python traces its roots back to 1995, when Jim
Hugunin created the Numeric library. Over the next 10 years, many scientific
programming communities began doing array programming in Python, but the
library ecosystem had become fragmented in the early 2000s. In 2005, Travis
Oliphant was able to forge the NumPy project from the then Numeric and
Numarray projects to bring the community together around a single array
computing framework.



One of the reasons NumPy is so important for numerical computations in
Python is because it is designed for efficiency on large arrays of data. There
are a number of reasons for this:

NumPy internally stores data in a contiguous block of memory,
independent of other built-in Python objects. NumPy’s library of
algorithms written in the C language can operate on this memory
without any type checking or other overhead. NumPy arrays also use
much less memory than built-in Python sequences.

NumPy operations perform complex computations on entire arrays
without the need for Python for loops.

To give you an idea of the performance difference, consider a NumPy array
of one million integers, and the equivalent Python list:

In [7]: import numpy as np

In [8]: my_arr = np.arange(1000000)

In [9]: my_list = list(range(1000000))

Now let’s multiply each sequence by 2:

In [10]: %time for _ in range(10): my_arr2 = my_arr * 2
CPU times: user 20 ms, sys: 50 ms, total: 70 ms
Wall time: 72.4 ms

In [11]: %time for _ in range(10): my_list2 = [x * 2 for x in my_list]
CPU times: user 760 ms, sys: 290 ms, total: 1.05 s
Wall time: 1.05 s

NumPy-based algorithms are generally 10 to 100 times faster (or more) than
their pure Python counterparts and use significantly less memory.



4.1 The NumPy ndarray: A Multidimensional Array
Object
One of the key features of NumPy is its N-dimensional array object, or
ndarray, which is a fast, flexible container for large datasets in Python.
Arrays enable you to perform mathematical operations on whole blocks of
data using similar syntax to the equivalent operations between scalar
elements.

To give you a flavor of how NumPy enables batch computations with similar
syntax to scalar values on built-in Python objects, I first import NumPy and
generate a small array of random data:

In [12]: import numpy as np

# Generate some random data
In [13]: data = np.random.randn(2, 3)

In [14]: data
Out[14]: 
array([[-0.2047,  0.4789, -0.5194],
       [-0.5557,  1.9658,  1.3934]])

I then write mathematical operations with data:

In [15]: data * 10
Out[15]: 
array([[ -2.0471,   4.7894,  -5.1944],
       [ -5.5573,  19.6578,  13.9341]])

In [16]: data + data
Out[16]: 
array([[-0.4094,  0.9579, -1.0389],
       [-1.1115,  3.9316,  2.7868]])

In the first example, all of the elements have been multiplied by 10. In the
second, the corresponding values in each “cell” in the array have been added
to each other.

NOTE



In this chapter and throughout the book, I use the standard NumPy convention
of always using import numpy as np. You are, of course, welcome to put from
numpy import * in your code to avoid having to write np., but I advise against
making a habit of this. The numpy namespace is large and contains a number of
functions whose names conflict with built-in Python functions (like min and
max).

An ndarray is a generic multidimensional container for homogeneous data;
that is, all of the elements must be the same type. Every array has a shape, a
tuple indicating the size of each dimension, and a dtype, an object describing
the data type of the array:

In [17]: data.shape
Out[17]: (2, 3)

In [18]: data.dtype
Out[18]: dtype('float64')

This chapter will introduce you to the basics of using NumPy arrays, and
should be sufficient for following along with the rest of the book. While it’s
not necessary to have a deep understanding of NumPy for many data
analytical applications, becoming proficient in array-oriented programming
and thinking is a key step along the way to becoming a scientific Python
guru.

NOTE
Whenever you see “array,” “NumPy array,” or “ndarray” in the text, with few
exceptions they all refer to the same thing: the ndarray object.



Creating ndarrays
The easiest way to create an array is to use the array function. This accepts
any sequence-like object (including other arrays) and produces a new NumPy
array containing the passed data. For example, a list is a good candidate for
conversion:

In [19]: data1 = [6, 7.5, 8, 0, 1]

In [20]: arr1 = np.array(data1)

In [21]: arr1
Out[21]: array([ 6. ,  7.5,  8. ,  0. ,  1. ])

Nested sequences, like a list of equal-length lists, will be converted into a
multidimensional array:

In [22]: data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]

In [23]: arr2 = np.array(data2)

In [24]: arr2
Out[24]: 
array([[1, 2, 3, 4],
       [5, 6, 7, 8]])

Since data2 was a list of lists, the NumPy array arr2 has two dimensions
with shape inferred from the data. We can confirm this by inspecting the ndim
and shape attributes:

In [25]: arr2.ndim
Out[25]: 2

In [26]: arr2.shape
Out[26]: (2, 4)

Unless explicitly specified (more on this later), np.array tries to infer a good
data type for the array that it creates. The data type is stored in a special
dtype metadata object; for example, in the previous two examples we have:

In [27]: arr1.dtype



Out[27]: dtype('float64')

In [28]: arr2.dtype
Out[28]: dtype('int64')

In addition to np.array, there are a number of other functions for creating
new arrays. As examples, zeros and ones create arrays of 0s or 1s,
respectively, with a given length or shape. empty creates an array without
initializing its values to any particular value. To create a higher dimensional
array with these methods, pass a tuple for the shape:

In [29]: np.zeros(10)
Out[29]: array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])

In [30]: np.zeros((3, 6))
Out[30]: 
array([[ 0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

In [31]: np.empty((2, 3, 2))
Out[31]: 
array([[[ 0.,  0.],
        [ 0.,  0.],
        [ 0.,  0.]],
       [[ 0.,  0.],
        [ 0.,  0.],
        [ 0.,  0.]]])

CAUTION
It’s not safe to assume that np.empty will return an array of all zeros. In some
cases, it may return uninitialized “garbage” values.

arange is an array-valued version of the built-in Python range function:

In [32]: np.arange(15)
Out[32]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])

See Table 4-1 for a short list of standard array creation functions. Since
NumPy is focused on numerical computing, the data type, if not specified,
will in many cases be float64 (floating point).



Table 4-1. Array creation functions

Function Description

array Convert input data (list, tuple, array, or other sequence type) to an ndarray
either by inferring a dtype or explicitly specifying a dtype; copies the input
data by default

asarray Convert input to ndarray, but do not copy if the input is already an ndarray

arange Like the built-in range but returns an ndarray instead of a list

ones,
ones_like

Produce an array of all 1s with the given shape and dtype; ones_like takes
another array and produces a ones array of the same shape and dtype

zeros,
zeros_like

Like ones and ones_like but producing arrays of 0s instead

empty,
empty_like

Create new arrays by allocating new memory, but do not populate with any
values like ones and zeros

full,
full_like

Produce an array of the given shape and dtype with all values set to the
indicated “fill value” full_like takes another array and produces a filled array
of the same shape and dtype

eye,
identity

Create a square N × N identity matrix (1s on the diagonal and 0s elsewhere)



Data Types for ndarrays
The data type or dtype is a special object containing the information (or
metadata, data about data) the ndarray needs to interpret a chunk of memory
as a particular type of data:

In [33]: arr1 = np.array([1, 2, 3], dtype=np.float64)

In [34]: arr2 = np.array([1, 2, 3], dtype=np.int32)

In [35]: arr1.dtype
Out[35]: dtype('float64')

In [36]: arr2.dtype
Out[36]: dtype('int32')

dtypes are a source of NumPy’s flexibility for interacting with data coming
from other systems. In most cases they provide a mapping directly onto an
underlying disk or memory representation, which makes it easy to read and
write binary streams of data to disk and also to connect to code written in a
low-level language like C or Fortran. The numerical dtypes are named the
same way: a type name, like float or int, followed by a number indicating
the number of bits per element. A standard double-precision floating-point
value (what’s used under the hood in Python’s float object) takes up 8 bytes
or 64 bits. Thus, this type is known in NumPy as float64. See Table 4-2 for
a full listing of NumPy’s supported data types.

NOTE
Don’t worry about memorizing the NumPy dtypes, especially if you’re a new
user. It’s often only necessary to care about the general kind of data you’re
dealing with, whether floating point, complex, integer, boolean, string, or
general Python object. When you need more control over how data are stored in
memory and on disk, especially large datasets, it is good to know that you have
control over the storage type.

Table 4-2. NumPy data types



Table 4-2. NumPy data types

Type Type
code

Description

int8, uint8 i1, u1 Signed and unsigned 8-bit (1 byte) integer types

int16, uint16 i2, u2 Signed and unsigned 16-bit integer types

int32, uint32 i4, u4 Signed and unsigned 32-bit integer types

int64, uint64 i8, u8 Signed and unsigned 64-bit integer types

float16 f2 Half-precision floating point

float32 f4 or
f

Standard single-precision floating point; compatible with C
float

float64 f8 or
d

Standard double-precision floating point; compatible with C
double and Python float object

float128 f16 or
g

Extended-precision floating point

complex64,
complex128,
complex256

c8,
c16,
c32

Complex numbers represented by two 32, 64, or 128 floats,
respectively

bool ? Boolean type storing True and False values

object O Python object type; a value can be any Python object

string_ S Fixed-length ASCII string type (1 byte per character); for
example, to create a string dtype with length 10, use 'S10'

unicode_ U Fixed-length Unicode type (number of bytes platform specific);
same specification semantics as string_ (e.g., 'U10')

You can explicitly convert or cast an array from one dtype to another using
ndarray’s astype method:

In [37]: arr = np.array([1, 2, 3, 4, 5])

In [38]: arr.dtype
Out[38]: dtype('int64')

In [39]: float_arr = arr.astype(np.float64)

In [40]: float_arr.dtype
Out[40]: dtype('float64')



In this example, integers were cast to floating point. If I cast some floating-
point numbers to be of integer dtype, the decimal part will be truncated:

In [41]: arr = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])

In [42]: arr
Out[42]: array([  3.7,  -1.2,  -2.6,   0.5,  12.9,  10.1])

In [43]: arr.astype(np.int32)
Out[43]: array([ 3, -1, -2,  0, 12, 10], dtype=int32)

If you have an array of strings representing numbers, you can use astype to
convert them to numeric form:

In [44]: numeric_strings = np.array(['1.25', '-9.6', '42'], dtype=np.string_)

In [45]: numeric_strings.astype(float)
Out[45]: array([  1.25,  -9.6 ,  42.  ])

CAUTION
It’s important to be cautious when using the numpy.string_ type, as string data
in NumPy is fixed size and may truncate input without warning. pandas has
more intuitive out-of-the-box behavior on non-numeric data.

If casting were to fail for some reason (like a string that cannot be converted
to float64), a ValueError will be raised. Here I was a bit lazy and wrote
float instead of np.float64; NumPy aliases the Python types to its own
equivalent data dtypes.

You can also use another array’s dtype attribute:

In [46]: int_array = np.arange(10)

In [47]: calibers = np.array([.22, .270, .357, .380, .44, .50], 
dtype=np.float64)

In [48]: int_array.astype(calibers.dtype)
Out[48]: array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.])

There are shorthand type code strings you can also use to refer to a dtype:



In [49]: empty_uint32 = np.empty(8, dtype='u4')

In [50]: empty_uint32
Out[50]: 
array([         0, 1075314688,          0, 1075707904,          0,
       1075838976,          0, 1072693248], dtype=uint32)

NOTE
Calling astype always creates a new array (a copy of the data), even if the new
dtype is the same as the old dtype.



Arithmetic with NumPy Arrays
Arrays are important because they enable you to express batch operations on
data without writing any for loops. NumPy users call this vectorization. Any
arithmetic operations between equal-size arrays applies the operation
element-wise:

In [51]: arr = np.array([[1., 2., 3.], [4., 5., 6.]])

In [52]: arr
Out[52]: 
array([[ 1.,  2.,  3.],
       [ 4.,  5.,  6.]])

In [53]: arr * arr
Out[53]: 
array([[  1.,   4.,   9.],
       [ 16.,  25.,  36.]])

In [54]: arr - arr
Out[54]: 
array([[ 0.,  0.,  0.],
       [ 0.,  0.,  0.]])

Arithmetic operations with scalars propagate the scalar argument to each
element in the array:

In [55]: 1 / arr
Out[55]: 
array([[ 1.    ,  0.5   ,  0.3333],
       [ 0.25  ,  0.2   ,  0.1667]])

In [56]: arr ** 0.5
Out[56]: 
array([[ 1.    ,  1.4142,  1.7321],
       [ 2.    ,  2.2361,  2.4495]])

Comparisons between arrays of the same size yield boolean arrays:

In [57]: arr2 = np.array([[0., 4., 1.], [7., 2., 12.]])

In [58]: arr2
Out[58]: 
array([[  0.,   4.,   1.],
       [  7.,   2.,  12.]])



In [59]: arr2 > arr
Out[59]: 
array([[False,  True, False],
       [ True, False,  True]], dtype=bool)

Operations between differently sized arrays is called broadcasting and will
be discussed in more detail in Appendix A. Having a deep understanding of
broadcasting is not necessary for most of this book.



Basic Indexing and Slicing
NumPy array indexing is a rich topic, as there are many ways you may want
to select a subset of your data or individual elements. One-dimensional arrays
are simple; on the surface they act similarly to Python lists:

In [60]: arr = np.arange(10)

In [61]: arr
Out[61]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [62]: arr[5]
Out[62]: 5

In [63]: arr[5:8]
Out[63]: array([5, 6, 7])

In [64]: arr[5:8] = 12

In [65]: arr
Out[65]: array([ 0,  1,  2,  3,  4, 12, 12, 12,  8,  9])

As you can see, if you assign a scalar value to a slice, as in arr[5:8] = 12,
the value is propagated (or broadcasted henceforth) to the entire selection.
An important first distinction from Python’s built-in lists is that array slices
are views on the original array. This means that the data is not copied, and
any modifications to the view will be reflected in the source array.

To give an example of this, I first create a slice of arr:

In [66]: arr_slice = arr[5:8]

In [67]: arr_slice
Out[67]: array([12, 12, 12])

Now, when I change values in arr_slice, the mutations are reflected in the
original array arr:

In [68]: arr_slice[1] = 12345

In [69]: arr
Out[69]: array([    0,     1,     2,     3,     4,    12, 12345,    12,     
8,   
  9])



The “bare” slice [:] will assign to all values in an array:

In [70]: arr_slice[:] = 64

In [71]: arr
Out[71]: array([ 0,  1,  2,  3,  4, 64, 64, 64,  8,  9])

If you are new to NumPy, you might be surprised by this, especially if you
have used other array programming languages that copy data more eagerly.
As NumPy has been designed to be able to work with very large arrays, you
could imagine performance and memory problems if NumPy insisted on
always copying data.

CAUTION
If you want a copy of a slice of an ndarray instead of a view, you will need to
explicitly copy the array — for example, arr[5:8].copy().

With higher dimensional arrays, you have many more options. In a two-
dimensional array, the elements at each index are no longer scalars but rather
one-dimensional arrays:

In [72]: arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

In [73]: arr2d[2]
Out[73]: array([7, 8, 9])

Thus, individual elements can be accessed recursively. But that is a bit too
much work, so you can pass a comma-separated list of indices to select
individual elements. So these are equivalent:

In [74]: arr2d[0][2]
Out[74]: 3

In [75]: arr2d[0, 2]
Out[75]: 3



See Figure 4-1 for an illustration of indexing on a two-dimensional array. I
find it helpful to think of axis 0 as the “rows” of the array and axis 1 as the
“columns.”

Figure 4-1. Indexing elements in a NumPy array

In multidimensional arrays, if you omit later indices, the returned object will
be a lower dimensional ndarray consisting of all the data along the higher
dimensions. So in the 2 × 2 × 3 array arr3d:

In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 
12]]])



In [77]: arr3d
Out[77]: 
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

arr3d[0] is a 2 × 3 array:

In [78]: arr3d[0]
Out[78]: 
array([[1, 2, 3],
       [4, 5, 6]])

Both scalar values and arrays can be assigned to arr3d[0]:

In [79]: old_values = arr3d[0].copy()

In [80]: arr3d[0] = 42

In [81]: arr3d
Out[81]: 
array([[[42, 42, 42],
        [42, 42, 42]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

In [82]: arr3d[0] = old_values

In [83]: arr3d
Out[83]: 
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

Similarly, arr3d[1, 0] gives you all of the values whose indices start with
(1, 0), forming a 1-dimensional array:

In [84]: arr3d[1, 0]
Out[84]: array([7, 8, 9])

This expression is the same as though we had indexed in two steps:

In [85]: x = arr3d[1]

In [86]: x



Out[86]: 
array([[ 7,  8,  9],
       [10, 11, 12]])

In [87]: x[0]
Out[87]: array([7, 8, 9])

Note that in all of these cases where subsections of the array have been
selected, the returned arrays are views.

Indexing with slices
Like one-dimensional objects such as Python lists, ndarrays can be sliced
with the familiar syntax:

In [88]: arr
Out[88]: array([ 0,  1,  2,  3,  4, 64, 64, 64,  8,  9])

In [89]: arr[1:6]
Out[89]: array([ 1,  2,  3,  4, 64])

Consider the two-dimensional array from before, arr2d. Slicing this array is a
bit different:

In [90]: arr2d
Out[90]: 
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])

In [91]: arr2d[:2]
Out[91]: 
array([[1, 2, 3],
       [4, 5, 6]])

As you can see, it has sliced along axis 0, the first axis. A slice, therefore,
selects a range of elements along an axis. It can be helpful to read the
expression arr2d[:2] as “select the first two rows of arr2d.”

You can pass multiple slices just like you can pass multiple indexes:

In [92]: arr2d[:2, 1:]
Out[92]: 
array([[2, 3],
       [5, 6]])



When slicing like this, you always obtain array views of the same number of
dimensions. By mixing integer indexes and slices, you get lower dimensional
slices.

For example, I can select the second row but only the first two columns like
so:

In [93]: arr2d[1, :2]
Out[93]: array([4, 5])

Similarly, I can select the third column but only the first two rows like so:

In [94]: arr2d[:2, 2]
Out[94]: array([3, 6])

See Figure 4-2 for an illustration. Note that a colon by itself means to take the
entire axis, so you can slice only higher dimensional axes by doing:

In [95]: arr2d[:, :1]
Out[95]: 
array([[1],
       [4],
       [7]])

Of course, assigning to a slice expression assigns to the whole selection:

In [96]: arr2d[:2, 1:] = 0

In [97]: arr2d
Out[97]: 
array([[1, 0, 0],
       [4, 0, 0],
       [7, 8, 9]])



Figure 4-2. Two-dimensional array slicing



Boolean Indexing
Let’s consider an example where we have some data in an array and an array
of names with duplicates. I’m going to use here the randn function in
numpy.random to generate some random normally distributed data:

In [98]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 
'Joe'])

In [99]: data = np.random.randn(7, 4)

In [100]: names
Out[100]: 
array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'],
      dtype='<U4')

In [101]: data
Out[101]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.0072, -1.2962,  0.275 ,  0.2289],
       [ 1.3529,  0.8864, -2.0016, -0.3718],
       [ 1.669 , -0.4386, -0.5397,  0.477 ],
       [ 3.2489, -1.0212, -0.5771,  0.1241],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [-0.7135, -0.8312, -2.3702, -1.8608]])

Suppose each name corresponds to a row in the data array and we wanted to
select all the rows with corresponding name 'Bob'. Like arithmetic
operations, comparisons (such as ==) with arrays are also vectorized. Thus,
comparing names with the string 'Bob' yields a boolean array:

In [102]: names == 'Bob'
Out[102]: array([ True, False, False,  True, False, False, False], 
dtype=bool)

This boolean array can be passed when indexing the array:

In [103]: data[names == 'Bob']
Out[103]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.669 , -0.4386, -0.5397,  0.477 ]])

The boolean array must be of the same length as the array axis it’s indexing.



You can even mix and match boolean arrays with slices or integers (or
sequences of integers; more on this later).

CAUTION
Boolean selection will not fail if the boolean array is not the correct length, so I
recommend care when using this feature.

In these examples, I select from the rows where names == 'Bob' and index
the columns, too:

In [104]: data[names == 'Bob', 2:]
Out[104]: 
array([[ 0.769 ,  1.2464],
       [-0.5397,  0.477 ]])

In [105]: data[names == 'Bob', 3]
Out[105]: array([ 1.2464,  0.477 ])

To select everything but 'Bob', you can either use != or negate the condition
using ~:

In [106]: names != 'Bob'
Out[106]: array([False,  True,  True, False,  True,  True,  True], 
dtype=bool)

In [107]: data[~(names == 'Bob')]
Out[107]: 
array([[ 1.0072, -1.2962,  0.275 ,  0.2289],
       [ 1.3529,  0.8864, -2.0016, -0.3718],
       [ 3.2489, -1.0212, -0.5771,  0.1241],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [-0.7135, -0.8312, -2.3702, -1.8608]])

The ~ operator can be useful when you want to invert a general condition:

In [108]: cond = names == 'Bob'

In [109]: data[~cond]
Out[109]: 
array([[ 1.0072, -1.2962,  0.275 ,  0.2289],
       [ 1.3529,  0.8864, -2.0016, -0.3718],
       [ 3.2489, -1.0212, -0.5771,  0.1241],



       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [-0.7135, -0.8312, -2.3702, -1.8608]])

Selecting two of the three names to combine multiple boolean conditions, use
boolean arithmetic operators like & (and) and | (or):

In [110]: mask = (names == 'Bob') | (names == 'Will')

In [111]: mask
Out[111]: array([ True, False,  True,  True,  True, False, False], 
dtype=bool)

In [112]: data[mask]
Out[112]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.3529,  0.8864, -2.0016, -0.3718],
       [ 1.669 , -0.4386, -0.5397,  0.477 ],
       [ 3.2489, -1.0212, -0.5771,  0.1241]])

Selecting data from an array by boolean indexing always creates a copy of
the data, even if the returned array is unchanged.

CAUTION
The Python keywords and and or do not work with boolean arrays. Use & (and)
and | (or) instead.

Setting values with boolean arrays works in a common-sense way. To set all
of the negative values in data to 0 we need only do:

In [113]: data[data < 0] = 0

In [114]: data
Out[114]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.0072,  0.    ,  0.275 ,  0.2289],
       [ 1.3529,  0.8864,  0.    ,  0.    ],
       [ 1.669 ,  0.    ,  0.    ,  0.477 ],
       [ 3.2489,  0.    ,  0.    ,  0.1241],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [ 0.    ,  0.    ,  0.    ,  0.    ]])

Setting whole rows or columns using a one-dimensional boolean array is also



easy:

In [115]: data[names != 'Joe'] = 7

In [116]: data
Out[116]: 
array([[ 7.    ,  7.    ,  7.    ,  7.    ],
       [ 1.0072,  0.    ,  0.275 ,  0.2289],
       [ 7.    ,  7.    ,  7.    ,  7.    ],
       [ 7.    ,  7.    ,  7.    ,  7.    ],
       [ 7.    ,  7.    ,  7.    ,  7.    ],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [ 0.    ,  0.    ,  0.    ,  0.    ]])

As we will see later, these types of operations on two-dimensional data are
convenient to do with pandas.



Fancy Indexing
Fancy indexing is a term adopted by NumPy to describe indexing using
integer arrays. Suppose we had an 8 × 4 array:

In [117]: arr = np.empty((8, 4))

In [118]: for i in range(8):
   .....:     arr[i] = i

In [119]: arr
Out[119]: 
array([[ 0.,  0.,  0.,  0.],
       [ 1.,  1.,  1.,  1.],
       [ 2.,  2.,  2.,  2.],
       [ 3.,  3.,  3.,  3.],
       [ 4.,  4.,  4.,  4.],
       [ 5.,  5.,  5.,  5.],
       [ 6.,  6.,  6.,  6.],
       [ 7.,  7.,  7.,  7.]])

To select out a subset of the rows in a particular order, you can simply pass a
list or ndarray of integers specifying the desired order:

In [120]: arr[[4, 3, 0, 6]]
Out[120]: 
array([[ 4.,  4.,  4.,  4.],
       [ 3.,  3.,  3.,  3.],
       [ 0.,  0.,  0.,  0.],
       [ 6.,  6.,  6.,  6.]])

Hopefully this code did what you expected! Using negative indices selects
rows from the end:

In [121]: arr[[-3, -5, -7]]
Out[121]: 
array([[ 5.,  5.,  5.,  5.],
       [ 3.,  3.,  3.,  3.],
       [ 1.,  1.,  1.,  1.]])

Passing multiple index arrays does something slightly different; it selects a
one-dimensional array of elements corresponding to each tuple of indices:

In [122]: arr = np.arange(32).reshape((8, 4))



In [123]: arr
Out[123]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19],
       [20, 21, 22, 23],
       [24, 25, 26, 27],
       [28, 29, 30, 31]])

In [124]: arr[[1, 5, 7, 2], [0, 3, 1, 2]]
Out[124]: array([ 4, 23, 29, 10])

We’ll look at the reshape method in more detail in Appendix A.

Here the elements (1, 0), (5, 3), (7, 1), and (2, 2) were selected.
Regardless of how many dimensions the array has (here, only 2), the result of
fancy indexing is always one-dimensional.

The behavior of fancy indexing in this case is a bit different from what some
users might have expected (myself included), which is the rectangular region
formed by selecting a subset of the matrix’s rows and columns. Here is one
way to get that:

In [125]: arr[[1, 5, 7, 2]][:, [0, 3, 1, 2]]
Out[125]: 
array([[ 4,  7,  5,  6],
       [20, 23, 21, 22],
       [28, 31, 29, 30],
       [ 8, 11,  9, 10]])

Keep in mind that fancy indexing, unlike slicing, always copies the data into
a new array.



Transposing Arrays and Swapping Axes
Transposing is a special form of reshaping that similarly returns a view on the
underlying data without copying anything. Arrays have the transpose
method and also the special T attribute:

In [126]: arr = np.arange(15).reshape((3, 5))

In [127]: arr
Out[127]: 
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])

In [128]: arr.T
Out[128]: 
array([[ 0,  5, 10],
       [ 1,  6, 11],
       [ 2,  7, 12],
       [ 3,  8, 13],
       [ 4,  9, 14]])

When doing matrix computations, you may do this very often — for
example, when computing the inner matrix product using np.dot:

In [129]: arr = np.random.randn(6, 3)

In [130]: arr
Out[130]: 
array([[-0.8608,  0.5601, -1.2659],
       [ 0.1198, -1.0635,  0.3329],
       [-2.3594, -0.1995, -1.542 ],
       [-0.9707, -1.307 ,  0.2863],
       [ 0.378 , -0.7539,  0.3313],
       [ 1.3497,  0.0699,  0.2467]])

In [131]: np.dot(arr.T, arr)
Out[131]: 
array([[ 9.2291,  0.9394,  4.948 ],
       [ 0.9394,  3.7662, -1.3622],
       [ 4.948 , -1.3622,  4.3437]])

For higher dimensional arrays, transpose will accept a tuple of axis numbers
to permute the axes (for extra mind bending):

In [132]: arr = np.arange(16).reshape((2, 2, 4))



In [133]: arr
Out[133]: 
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7]],
       [[ 8,  9, 10, 11],
        [12, 13, 14, 15]]])

In [134]: arr.transpose((1, 0, 2))
Out[134]: 
array([[[ 0,  1,  2,  3],
        [ 8,  9, 10, 11]],
       [[ 4,  5,  6,  7],
        [12, 13, 14, 15]]])

Here, the axes have been reordered with the second axis first, the first axis
second, and the last axis unchanged.

Simple transposing with .T is a special case of swapping axes. ndarray has
the method swapaxes, which takes a pair of axis numbers and switches the
indicated axes to rearrange the data:

In [135]: arr
Out[135]: 
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7]],
       [[ 8,  9, 10, 11],
        [12, 13, 14, 15]]])

In [136]: arr.swapaxes(1, 2)
Out[136]: 
array([[[ 0,  4],
        [ 1,  5],
        [ 2,  6],
        [ 3,  7]],
       [[ 8, 12],
        [ 9, 13],
        [10, 14],
        [11, 15]]])

swapaxes similarly returns a view on the data without making a copy.



4.2 Universal Functions: Fast Element-Wise Array
Functions
A universal function, or ufunc, is a function that performs element-wise
operations on data in ndarrays. You can think of them as fast vectorized
wrappers for simple functions that take one or more scalar values and
produce one or more scalar results.

Many ufuncs are simple element-wise transformations, like sqrt or exp:

In [137]: arr = np.arange(10)

In [138]: arr
Out[138]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [139]: np.sqrt(arr)
Out[139]: 
array([ 0.    ,  1.    ,  1.4142,  1.7321,  2.    ,  2.2361,  2.4495,
        2.6458,  2.8284,  3.    ])

In [140]: np.exp(arr)
Out[140]: 
array([    1.    ,     2.7183,     7.3891,    20.0855,    54.5982,
         148.4132,   403.4288,  1096.6332,  2980.958 ,  8103.0839])

These are referred to as unary ufuncs. Others, such as add or maximum, take
two arrays (thus, binary ufuncs) and return a single array as the result:

In [141]: x = np.random.randn(8)

In [142]: y = np.random.randn(8)

In [143]: x
Out[143]: 
array([-0.0119,  1.0048,  1.3272, -0.9193, -1.5491,  0.0222,  0.7584,
       -0.6605])

In [144]: y
Out[144]: 
array([ 0.8626, -0.01  ,  0.05  ,  0.6702,  0.853 , -0.9559, -0.0235,
       -2.3042])

In [145]: np.maximum(x, y)
Out[145]: 
array([ 0.8626,  1.0048,  1.3272,  0.6702,  0.853 ,  0.0222,  0.7584,
       -0.6605])



Here, numpy.maximum computed the element-wise maximum of the elements
in x and y.

While not common, a ufunc can return multiple arrays. modf is one example,
a vectorized version of the built-in Python divmod; it returns the fractional
and integral parts of a floating-point array:

In [146]: arr = np.random.randn(7) * 5

In [147]: arr
Out[147]: array([-3.2623, -6.0915, -6.663 ,  5.3731,  3.6182,  3.45  ,  
5.0077])

In [148]: remainder, whole_part = np.modf(arr)

In [149]: remainder
Out[149]: array([-0.2623, -0.0915, -0.663 ,  0.3731,  0.6182,  0.45  ,  
0.0077])

In [150]: whole_part
Out[150]: array([-3., -6., -6.,  5.,  3.,  3.,  5.])

Ufuncs accept an optional out argument that allows them to operate in-place
on arrays:

In [151]: arr
Out[151]: array([-3.2623, -6.0915, -6.663 ,  5.3731,  3.6182,  3.45  ,  
5.0077])

In [152]: np.sqrt(arr)
Out[152]: array([    nan,     nan,     nan,  2.318 ,  1.9022,  1.8574,  
2.2378])

In [153]: np.sqrt(arr, arr)
Out[153]: array([    nan,     nan,     nan,  2.318 ,  1.9022,  1.8574,  
2.2378])

In [154]: arr
Out[154]: array([    nan,     nan,     nan,  2.318 ,  1.9022,  1.8574,  
2.2378])

See Tables 4-3 and 4-4 for a listing of available ufuncs.

Table 4-3. Unary ufuncs

Function Description



abs, fabs Compute the absolute value element-wise for integer,
floating-point, or complex values

sqrt Compute the square root of each element (equivalent to arr
** 0.5)

square Compute the square of each element (equivalent to arr **
2)

exp Compute the exponent ex of each element

log, log10, log2, log1p Natural logarithm (base e), log base 10, log base 2, and
log(1 + x), respectively

sign Compute the sign of each element: 1 (positive), 0 (zero), or
–1 (negative)

ceil Compute the ceiling of each element (i.e., the smallest
integer greater than or equal to that number)

floor Compute the floor of each element (i.e., the largest integer
less than or equal to each element)

rint Round elements to the nearest integer, preserving the dtype

modf Return fractional and integral parts of array as a separate
array

isnan Return boolean array indicating whether each value is NaN
(Not a Number)

isfinite, isinf Return boolean array indicating whether each element is
finite (non-inf, non-NaN) or infinite, respectively

cos, cosh, sin, sinh, tan,
tanh

Regular and hyperbolic trigonometric functions

arccos, arccosh, arcsin,
arcsinh, arctan, arctanh

Inverse trigonometric functions

logical_not Compute truth value of not x element-wise (equivalent to
~arr).

Table 4-4. Binary universal functions

Function Description

add Add corresponding elements in arrays

subtract Subtract elements in second array from first array



multiply Multiply array elements

divide, floor_divide Divide or floor divide (truncating the remainder)

power Raise elements in first array to powers indicated in
second array

maximum, fmax Element-wise maximum; fmax ignores NaN

minimum, fmin Element-wise minimum; fmin ignores NaN

mod Element-wise modulus (remainder of division)

copysign Copy sign of values in second argument to values in first
argument

greater, greater_equal, less,
less_equal, equal, not_equal

Perform element-wise comparison, yielding boolean
array (equivalent to infix operators >, >=, <, <=, ==, !=)

logical_and, logical_or,
logical_xor

Compute element-wise truth value of logical operation
(equivalent to infix operators & |, ^)



4.3 Array-Oriented Programming with Arrays
Using NumPy arrays enables you to express many kinds of data processing
tasks as concise array expressions that might otherwise require writing loops.
This practice of replacing explicit loops with array expressions is commonly
referred to as vectorization. In general, vectorized array operations will often
be one or two (or more) orders of magnitude faster than their pure Python
equivalents, with the biggest impact in any kind of numerical computations.
Later, in Appendix A, I explain broadcasting, a powerful method for
vectorizing computations.

As a simple example, suppose we wished to evaluate the function sqrt(x^2
+ y^2) across a regular grid of values. The np.meshgrid function takes two
1D arrays and produces two 2D matrices corresponding to all pairs of (x, y)
in the two arrays:

In [155]: points = np.arange(-5, 5, 0.01) # 1000 equally spaced points

In [156]: xs, ys = np.meshgrid(points, points)

In [157]: ys
Out[157]: 
array([[-5.  , -5.  , -5.  , ..., -5.  , -5.  , -5.  ],
       [-4.99, -4.99, -4.99, ..., -4.99, -4.99, -4.99],
       [-4.98, -4.98, -4.98, ..., -4.98, -4.98, -4.98],
       ..., 
       [ 4.97,  4.97,  4.97, ...,  4.97,  4.97,  4.97],
       [ 4.98,  4.98,  4.98, ...,  4.98,  4.98,  4.98],
       [ 4.99,  4.99,  4.99, ...,  4.99,  4.99,  4.99]])

Now, evaluating the function is a matter of writing the same expression you
would write with two points:

In [158]: z = np.sqrt(xs ** 2 + ys ** 2)

In [159]: z
Out[159]: 
array([[ 7.0711,  7.064 ,  7.0569, ...,  7.0499,  7.0569,  7.064 ],
       [ 7.064 ,  7.0569,  7.0499, ...,  7.0428,  7.0499,  7.0569],
       [ 7.0569,  7.0499,  7.0428, ...,  7.0357,  7.0428,  7.0499],
       ..., 
       [ 7.0499,  7.0428,  7.0357, ...,  7.0286,  7.0357,  7.0428],



       [ 7.0569,  7.0499,  7.0428, ...,  7.0357,  7.0428,  7.0499],
       [ 7.064 ,  7.0569,  7.0499, ...,  7.0428,  7.0499,  7.0569]])

As a preview of Chapter 9, I use matplotlib to create visualizations of this
two-dimensional array:

In [160]: import matplotlib.pyplot as plt

In [161]: plt.imshow(z, cmap=plt.cm.gray); plt.colorbar()
Out[161]: <matplotlib.colorbar.Colorbar at 0x7f715e3fa630>

In [162]: plt.title("Image plot of $\sqrt{x^2 + y^2}$ for a grid of values")
Out[162]: <matplotlib.text.Text at 0x7f715d2de748>

See Figure 4-3. Here I used the matplotlib function imshow to create an image
plot from a two-dimensional array of function values.



Figure 4-3. Plot of function evaluated on grid



Expressing Conditional Logic as Array Operations
The numpy.where function is a vectorized version of the ternary expression x
if condition else y. Suppose we had a boolean array and two arrays of
values:

In [165]: xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5])

In [166]: yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5])

In [167]: cond = np.array([True, False, True, True, False])

Suppose we wanted to take a value from xarr whenever the corresponding
value in cond is True, and otherwise take the value from yarr. A list
comprehension doing this might look like:

In [168]: result = [(x if c else y)
   .....:           for x, y, c in zip(xarr, yarr, cond)]

In [169]: result
Out[169]: [1.1000000000000001, 2.2000000000000002, 1.3, 1.3999999999999999, 
2.5]

This has multiple problems. First, it will not be very fast for large arrays
(because all the work is being done in interpreted Python code). Second, it
will not work with multidimensional arrays. With np.where you can write
this very concisely:

In [170]: result = np.where(cond, xarr, yarr)

In [171]: result
Out[171]: array([ 1.1,  2.2,  1.3,  1.4,  2.5])

The second and third arguments to np.where don’t need to be arrays; one or
both of them can be scalars. A typical use of where in data analysis is to
produce a new array of values based on another array. Suppose you had a
matrix of randomly generated data and you wanted to replace all positive
values with 2 and all negative values with –2. This is very easy to do with



np.where:

In [172]: arr = np.random.randn(4, 4)

In [173]: arr
Out[173]: 
array([[-0.5031, -0.6223, -0.9212, -0.7262],
       [ 0.2229,  0.0513, -1.1577,  0.8167],
       [ 0.4336,  1.0107,  1.8249, -0.9975],
       [ 0.8506, -0.1316,  0.9124,  0.1882]])

In [174]: arr > 0
Out[174]: 
array([[False, False, False, False],
       [ True,  True, False,  True],
       [ True,  True,  True, False],
       [ True, False,  True,  True]], dtype=bool)

In [175]: np.where(arr > 0, 2, -2)
Out[175]: 
array([[-2, -2, -2, -2],
       [ 2,  2, -2,  2],
       [ 2,  2,  2, -2],
       [ 2, -2,  2,  2]])

You can combine scalars and arrays when using np.where. For example, I
can replace all positive values in arr with the constant 2 like so:

In [176]: np.where(arr > 0, 2, arr) # set only positive values to 2
Out[176]: 
array([[-0.5031, -0.6223, -0.9212, -0.7262],
       [ 2.    ,  2.    , -1.1577,  2.    ],
       [ 2.    ,  2.    ,  2.    , -0.9975],
       [ 2.    , -0.1316,  2.    ,  2.    ]])

The arrays passed to np.where can be more than just equal-sized arrays or
scalars.



Mathematical and Statistical Methods
A set of mathematical functions that compute statistics about an entire array
or about the data along an axis are accessible as methods of the array class.
You can use aggregations (often called reductions) like sum, mean, and std
(standard deviation) either by calling the array instance method or using the
top-level NumPy function.

Here I generate some normally distributed random data and compute some
aggregate statistics:

In [177]: arr = np.random.randn(5, 4)

In [178]: arr
Out[178]: 
array([[ 2.1695, -0.1149,  2.0037,  0.0296],
       [ 0.7953,  0.1181, -0.7485,  0.585 ],
       [ 0.1527, -1.5657, -0.5625, -0.0327],
       [-0.929 , -0.4826, -0.0363,  1.0954],
       [ 0.9809, -0.5895,  1.5817, -0.5287]])

In [179]: arr.mean()
Out[179]: 0.19607051119998253

In [180]: np.mean(arr)
Out[180]: 0.19607051119998253

In [181]: arr.sum()
Out[181]: 3.9214102239996507

Functions like mean and sum take an optional axis argument that computes
the statistic over the given axis, resulting in an array with one fewer
dimension:

In [182]: arr.mean(axis=1)
Out[182]: array([ 1.022 ,  0.1875, -0.502 , -0.0881,  0.3611])

In [183]: arr.sum(axis=0)
Out[183]: array([ 3.1693, -2.6345,  2.2381,  1.1486])

Here, arr.mean(1) means “compute mean across the columns” where
arr.sum(0) means “compute sum down the rows.”



Other methods like cumsum and cumprod do not aggregate, instead producing
an array of the intermediate results:

In [184]: arr = np.array([0, 1, 2, 3, 4, 5, 6, 7])

In [185]: arr.cumsum()
Out[185]: array([ 0,  1,  3,  6, 10, 15, 21, 28])

In multidimensional arrays, accumulation functions like cumsum return an
array of the same size, but with the partial aggregates computed along the
indicated axis according to each lower dimensional slice:

In [186]: arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])

In [187]: arr
Out[187]: 
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])

In [188]: arr.cumsum(axis=0)
Out[188]: 
array([[ 0,  1,  2],
       [ 3,  5,  7],
       [ 9, 12, 15]])

In [189]: arr.cumprod(axis=1)
Out[189]: 
array([[  0,   0,   0],
       [  3,  12,  60],
       [  6,  42, 336]])

See Table 4-5 for a full listing. We’ll see many examples of these methods in
action in later chapters.

Table 4-5. Basic array statistical methods

Method Description

sum Sum of all the elements in the array or along an axis; zero-length arrays have
sum 0

mean Arithmetic mean; zero-length arrays have NaN mean

std, var Standard deviation and variance, respectively, with optional degrees of
freedom adjustment (default denominator n)



min, max Minimum and maximum

argmin,
argmax

Indices of minimum and maximum elements, respectively

cumsum Cumulative sum of elements starting from 0

cumprod Cumulative product of elements starting from 1



Methods for Boolean Arrays
Boolean values are coerced to 1 (True) and 0 (False) in the preceding
methods. Thus, sum is often used as a means of counting True values in a
boolean array:

In [190]: arr = np.random.randn(100)

In [191]: (arr > 0).sum() # Number of positive values
Out[191]: 42

There are two additional methods, any and all, useful especially for boolean
arrays. any tests whether one or more values in an array is True, while all
checks if every value is True:

In [192]: bools = np.array([False, False, True, False])

In [193]: bools.any()
Out[193]: True

In [194]: bools.all()
Out[194]: False

These methods also work with non-boolean arrays, where non-zero elements
evaluate to True.



Sorting
Like Python’s built-in list type, NumPy arrays can be sorted in-place with the
sort method:

In [195]: arr = np.random.randn(6)

In [196]: arr
Out[196]: array([ 0.6095, -0.4938,  1.24  , -0.1357,  1.43  , -0.8469])

In [197]: arr.sort()

In [198]: arr
Out[198]: array([-0.8469, -0.4938, -0.1357,  0.6095,  1.24  ,  1.43  ])

You can sort each one-dimensional section of values in a multidimensional
array in-place along an axis by passing the axis number to sort:

In [199]: arr = np.random.randn(5, 3)

In [200]: arr
Out[200]: 
array([[ 0.6033,  1.2636, -0.2555],
       [-0.4457,  0.4684, -0.9616],
       [-1.8245,  0.6254,  1.0229],
       [ 1.1074,  0.0909, -0.3501],
       [ 0.218 , -0.8948, -1.7415]])

In [201]: arr.sort(1)

In [202]: arr
Out[202]: 
array([[-0.2555,  0.6033,  1.2636],
       [-0.9616, -0.4457,  0.4684],
       [-1.8245,  0.6254,  1.0229],
       [-0.3501,  0.0909,  1.1074],
       [-1.7415, -0.8948,  0.218 ]])

The top-level method np.sort returns a sorted copy of an array instead of
modifying the array in-place. A quick-and-dirty way to compute the quantiles
of an array is to sort it and select the value at a particular rank:

In [203]: large_arr = np.random.randn(1000)

In [204]: large_arr.sort()



In [205]: large_arr[int(0.05 * len(large_arr))] # 5% quantile
Out[205]: -1.5311513550102103

For more details on using NumPy’s sorting methods, and more advanced
techniques like indirect sorts, see Appendix A. Several other kinds of data
manipulations related to sorting (e.g., sorting a table of data by one or more
columns) can also be found in pandas.



Unique and Other Set Logic
NumPy has some basic set operations for one-dimensional ndarrays. A
commonly used one is np.unique, which returns the sorted unique values in
an array:

In [206]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 
'Joe'])

In [207]: np.unique(names)
Out[207]: 
array(['Bob', 'Joe', 'Will'],
      dtype='<U4')

In [208]: ints = np.array([3, 3, 3, 2, 2, 1, 1, 4, 4])

In [209]: np.unique(ints)
Out[209]: array([1, 2, 3, 4])

Contrast np.unique with the pure Python alternative:

In [210]: sorted(set(names))
Out[210]: ['Bob', 'Joe', 'Will']

Another function, np.in1d, tests membership of the values in one array in
another, returning a boolean array:

In [211]: values = np.array([6, 0, 0, 3, 2, 5, 6])

In [212]: np.in1d(values, [2, 3, 6])
Out[212]: array([ True, False, False,  True,  True, False,  True], 
dtype=bool)

See Table 4-6 for a listing of set functions in NumPy.

Table 4-6. Array set operations

Method Description

unique(x) Compute the sorted, unique elements in x

intersect1d(x,
y)

Compute the sorted, common elements in x and y



union1d(x, y) Compute the sorted union of elements

in1d(x, y) Compute a boolean array indicating whether each element of x is
contained in y

setdiff1d(x, y) Set difference, elements in x that are not in y

setxor1d(x, y) Set symmetric differences; elements that are in either of the arrays, but
not both



4.4 File Input and Output with Arrays
NumPy is able to save and load data to and from disk either in text or binary
format. In this section I only discuss NumPy’s built-in binary format, since
most users will prefer pandas and other tools for loading text or tabular data
(see Chapter 6 for much more).

np.save and np.load are the two workhorse functions for efficiently saving
and loading array data on disk. Arrays are saved by default in an
uncompressed raw binary format with file extension .npy:

In [213]: arr = np.arange(10)

In [214]: np.save('some_array', arr)

If the file path does not already end in .npy, the extension will be appended.
The array on disk can then be loaded with np.load:

In [215]: np.load('some_array.npy')
Out[215]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

You save multiple arrays in an uncompressed archive using np.savez and
passing the arrays as keyword arguments:

In [216]: np.savez('array_archive.npz', a=arr, b=arr)

When loading an .npz file, you get back a dict-like object that loads the
individual arrays lazily:

In [217]: arch = np.load('array_archive.npz')

In [218]: arch['b']
Out[218]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

If your data compresses well, you may wish to use numpy.savez_compressed
instead:

In [219]: np.savez_compressed('arrays_compressed.npz', a=arr, b=arr)



4.5 Linear Algebra
Linear algebra, like matrix multiplication, decompositions, determinants, and
other square matrix math, is an important part of any array library. Unlike
some languages like MATLAB, multiplying two two-dimensional arrays with
* is an element-wise product instead of a matrix dot product. Thus, there is a
function dot, both an array method and a function in the numpy namespace,
for matrix multiplication:

In [223]: x = np.array([[1., 2., 3.], [4., 5., 6.]])

In [224]: y = np.array([[6., 23.], [-1, 7], [8, 9]])

In [225]: x
Out[225]: 
array([[ 1.,  2.,  3.],
       [ 4.,  5.,  6.]])

In [226]: y
Out[226]: 
array([[  6.,  23.],
       [ -1.,   7.],
       [  8.,   9.]])

In [227]: x.dot(y)
Out[227]: 
array([[  28.,   64.],
       [  67.,  181.]])

x.dot(y) is equivalent to np.dot(x, y):

In [228]: np.dot(x, y)
Out[228]: 
array([[  28.,   64.],
       [  67.,  181.]])

A matrix product between a two-dimensional array and a suitably sized one-
dimensional array results in a one-dimensional array:

In [229]: np.dot(x, np.ones(3))
Out[229]: array([  6.,  15.])



The @ symbol (as of Python 3.5) also works as an infix operator that performs
matrix multiplication:

In [230]: x @ np.ones(3)
Out[230]: array([  6.,  15.])

numpy.linalg has a standard set of matrix decompositions and things like
inverse and determinant. These are implemented under the hood via the same
industry-standard linear algebra libraries used in other languages like
MATLAB and R, such as BLAS, LAPACK, or possibly (depending on your
NumPy build) the proprietary Intel MKL (Math Kernel Library):

In [231]: from numpy.linalg import inv, qr

In [232]: X = np.random.randn(5, 5)

In [233]: mat = X.T.dot(X)

In [234]: inv(mat)
Out[234]: 
array([[  933.1189,   871.8258, -1417.6902, -1460.4005,  1782.1391],
       [  871.8258,   815.3929, -1325.9965, -1365.9242,  1666.9347],
       [-1417.6902, -1325.9965,  2158.4424,  2222.0191, -2711.6822],
       [-1460.4005, -1365.9242,  2222.0191,  2289.0575, -2793.422 ],
       [ 1782.1391,  1666.9347, -2711.6822, -2793.422 ,  3409.5128]])

In [235]: mat.dot(inv(mat))
Out[235]: 
array([[ 1.,  0., -0., -0., -0.],
       [-0.,  1.,  0.,  0.,  0.],
       [ 0.,  0.,  1.,  0.,  0.],
       [-0.,  0.,  0.,  1., -0.],
       [-0.,  0.,  0.,  0.,  1.]])

In [236]: q, r = qr(mat)

In [237]: r
Out[237]: 
array([[-1.6914,  4.38  ,  0.1757,  0.4075, -0.7838],
       [ 0.    , -2.6436,  0.1939, -3.072 , -1.0702],
       [ 0.    ,  0.    , -0.8138,  1.5414,  0.6155],
       [ 0.    ,  0.    ,  0.    , -2.6445, -2.1669],
       [ 0.    ,  0.    ,  0.    ,  0.    ,  0.0002]])

The expression X.T.dot(X) computes the dot product of X with its transpose
X.T.



See Table 4-7 for a list of some of the most commonly used linear algebra
functions.

Table 4-7. Commonly used numpy.linalg functions

Function Description

diag Return the diagonal (or off-diagonal) elements of a square matrix as a 1D
array, or convert a 1D array into a square matrix with zeros on the off-diagonal

dot Matrix multiplication

trace Compute the sum of the diagonal elements

det Compute the matrix determinant

eig Compute the eigenvalues and eigenvectors of a square matrix

inv Compute the inverse of a square matrix

pinv Compute the Moore-Penrose pseudo-inverse of a matrix

qr Compute the QR decomposition

svd Compute the singular value decomposition (SVD)

solve Solve the linear system Ax = b for x, where A is a square matrix

lstsq Compute the least-squares solution to Ax = b



4.6 Pseudorandom Number Generation
The numpy.random module supplements the built-in Python random with
functions for efficiently generating whole arrays of sample values from many
kinds of probability distributions. For example, you can get a 4 × 4 array of
samples from the standard normal distribution using normal:

In [238]: samples = np.random.normal(size=(4, 4))

In [239]: samples
Out[239]: 
array([[ 0.5732,  0.1933,  0.4429,  1.2796],
       [ 0.575 ,  0.4339, -0.7658, -1.237 ],
       [-0.5367,  1.8545, -0.92  , -0.1082],
       [ 0.1525,  0.9435, -1.0953, -0.144 ]])

Python’s built-in random module, by contrast, only samples one value at a
time. As you can see from this benchmark, numpy.random is well over an
order of magnitude faster for generating very large samples:

In [240]: from random import normalvariate

In [241]: N = 1000000

In [242]: %timeit samples = [normalvariate(0, 1) for _ in range(N)]
1.77 s +- 126 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)

In [243]: %timeit np.random.normal(size=N)
61.7 ms +- 1.32 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)

We say that these are pseudorandom numbers because they are generated by
an algorithm with deterministic behavior based on the seed of the random
number generator. You can change NumPy’s random number generation seed
using np.random.seed:

In [244]: np.random.seed(1234)

The data generation functions in numpy.random use a global random seed. To
avoid global state, you can use numpy.random.RandomState to create a



random number generator isolated from others:

In [245]: rng = np.random.RandomState(1234)

In [246]: rng.randn(10)
Out[246]: 
array([ 0.4714, -1.191 ,  1.4327, -0.3127, -0.7206,  0.8872,  0.8596,
       -0.6365,  0.0157, -2.2427])

See Table 4-8 for a partial list of functions available in numpy.random. I’ll
give some examples of leveraging these functions’ ability to generate large
arrays of samples all at once in the next section.

Table 4-8. Partial list of numpy.random functions

Function Description

seed Seed the random number generator

permutation Return a random permutation of a sequence, or return a permuted range

shuffle Randomly permute a sequence in-place

rand Draw samples from a uniform distribution

randint Draw random integers from a given low-to-high range

randn Draw samples from a normal distribution with mean 0 and standard
deviation 1 (MATLAB-like interface)

binomial Draw samples from a binomial distribution

normal Draw samples from a normal (Gaussian) distribution

beta Draw samples from a beta distribution

chisquare Draw samples from a chi-square distribution

gamma Draw samples from a gamma distribution

uniform Draw samples from a uniform [0, 1) distribution



4.7 Example: Random Walks
The simulation of random walks provides an illustrative application of
utilizing array operations. Let’s first consider a simple random walk starting
at 0 with steps of 1 and –1 occurring with equal probability.

Here is a pure Python way to implement a single random walk with 1,000
steps using the built-in random module:

In [247]: import random
   .....: position = 0
   .....: walk = [position]
   .....: steps = 1000
   .....: for i in range(steps):
   .....:     step = 1 if random.randint(0, 1) else -1
   .....:     position += step
   .....:     walk.append(position)
   .....:

See Figure 4-4 for an example plot of the first 100 values on one of these
random walks:

In [249]: plt.plot(walk[:100])

https://en.wikipedia.org/wiki/Random_walk


Figure 4-4. A simple random walk

You might make the observation that walk is simply the cumulative sum of
the random steps and could be evaluated as an array expression. Thus, I use
the np.random module to draw 1,000 coin flips at once, set these to 1 and –1,
and compute the cumulative sum:

In [251]: nsteps = 1000

In [252]: draws = np.random.randint(0, 2, size=nsteps)

In [253]: steps = np.where(draws > 0, 1, -1)

In [254]: walk = steps.cumsum()

From this we can begin to extract statistics like the minimum and maximum
value along the walk’s trajectory:

In [255]: walk.min()
Out[255]: -3

In [256]: walk.max()



Out[256]: 31

A more complicated statistic is the first crossing time, the step at which the
random walk reaches a particular value. Here we might want to know how
long it took the random walk to get at least 10 steps away from the origin 0 in
either direction. np.abs(walk) >= 10 gives us a boolean array indicating
where the walk has reached or exceeded 10, but we want the index of the first
10 or –10. Turns out, we can compute this using argmax, which returns the
first index of the maximum value in the boolean array (True is the maximum
value):

In [257]: (np.abs(walk) >= 10).argmax()
Out[257]: 37

Note that using argmax here is not always efficient because it always makes a
full scan of the array. In this special case, once a True is observed we know it
to be the maximum value.



Simulating Many Random Walks at Once
If your goal was to simulate many random walks, say 5,000 of them, you can
generate all of the random walks with minor modifications to the preceding
code. If passed a 2-tuple, the numpy.random functions will generate a two-
dimensional array of draws, and we can compute the cumulative sum across
the rows to compute all 5,000 random walks in one shot:

In [258]: nwalks = 5000

In [259]: nsteps = 1000

In [260]: draws = np.random.randint(0, 2, size=(nwalks, nsteps)) # 0 or 1

In [261]: steps = np.where(draws > 0, 1, -1)

In [262]: walks = steps.cumsum(1)

In [263]: walks
Out[263]: 
array([[  1,   0,   1, ...,   8,   7,   8],
       [  1,   0,  -1, ...,  34,  33,  32],
       [  1,   0,  -1, ...,   4,   5,   4],
       ..., 
       [  1,   2,   1, ...,  24,  25,  26],
       [  1,   2,   3, ...,  14,  13,  14],
       [ -1,  -2,  -3, ..., -24, -23, -22]])

Now, we can compute the maximum and minimum values obtained over all
of the walks:

In [264]: walks.max()
Out[264]: 138

In [265]: walks.min()
Out[265]: -133

Out of these walks, let’s compute the minimum crossing time to 30 or –30.
This is slightly tricky because not all 5,000 of them reach 30. We can check
this using the any method:

In [266]: hits30 = (np.abs(walks) >= 30).any(1)

In [267]: hits30



Out[267]: array([False,  True, False, ..., False,  True, False], dtype=bool)

In [268]: hits30.sum() # Number that hit 30 or -30
Out[268]: 3410

We can use this boolean array to select out the rows of walks that actually
cross the absolute 30 level and call argmax across axis 1 to get the crossing
times:

In [269]: crossing_times = (np.abs(walks[hits30]) >= 30).argmax(1)

In [270]: crossing_times.mean()
Out[270]: 498.88973607038122

Feel free to experiment with other distributions for the steps other than equal-
sized coin flips. You need only use a different random number generation
function, like normal to generate normally distributed steps with some mean
and standard deviation:

In [271]: steps = np.random.normal(loc=0, scale=0.25,
   .....:                          size=(nwalks, nsteps))



4.8 Conclusion
While much of the rest of the book will focus on building data wrangling
skills with pandas, we will continue to work in a similar array-based style. In
Appendix A, we will dig deeper into NumPy features to help you further
develop your array computing skills.



Chapter 5. Getting Started with
pandas

pandas will be a major tool of interest throughout much of the rest of the
book. It contains data structures and data manipulation tools designed to
make data cleaning and analysis fast and easy in Python. pandas is often used
in tandem with numerical computing tools like NumPy and SciPy, analytical
libraries like statsmodels and scikit-learn, and data visualization libraries like
matplotlib. pandas adopts significant parts of NumPy’s idiomatic style of
array-based computing, especially array-based functions and a preference for
data processing without for loops.

While pandas adopts many coding idioms from NumPy, the biggest
difference is that pandas is designed for working with tabular or
heterogeneous data. NumPy, by contrast, is best suited for working with
homogeneous numerical array data.

Since becoming an open source project in 2010, pandas has matured into a
quite large library that’s applicable in a broad set of real-world use cases. The
developer community has grown to over 800 distinct contributors, who’ve
been helping build the project as they’ve used it to solve their day-to-day data
problems.

Throughout the rest of the book, I use the following import convention for
pandas:

In [1]: import pandas as pd

Thus, whenever you see pd. in code, it’s referring to pandas. You may also
find it easier to import Series and DataFrame into the local namespace since
they are so frequently used:

In [2]: from pandas import Series, DataFrame



5.1 Introduction to pandas Data Structures
To get started with pandas, you will need to get comfortable with its two
workhorse data structures: Series and DataFrame. While they are not a
universal solution for every problem, they provide a solid, easy-to-use basis
for most applications.



Series
A Series is a one-dimensional array-like object containing a sequence of
values (of similar types to NumPy types) and an associated array of data
labels, called its index. The simplest Series is formed from only an array of
data:

In [11]: obj = pd.Series([4, 7, -5, 3])

In [12]: obj
Out[12]: 
0    4
1    7
2   -5
3    3
dtype: int64

The string representation of a Series displayed interactively shows the index
on the left and the values on the right. Since we did not specify an index for
the data, a default one consisting of the integers 0 through N - 1 (where N is
the length of the data) is created. You can get the array representation and
index object of the Series via its values and index attributes, respectively:

In [13]: obj.values
Out[13]: array([ 4,  7, -5,  3])

In [14]: obj.index  # like range(4)
Out[14]: RangeIndex(start=0, stop=4, step=1)

Often it will be desirable to create a Series with an index identifying each
data point with a label:

In [15]: obj2 = pd.Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])

In [16]: obj2
Out[16]: 
d    4
b    7
a   -5
c    3
dtype: int64

In [17]: obj2.index
Out[17]: Index(['d', 'b', 'a', 'c'], dtype='object')



Compared with NumPy arrays, you can use labels in the index when selecting
single values or a set of values:

In [18]: obj2['a']
Out[18]: -5

In [19]: obj2['d'] = 6

In [20]: obj2[['c', 'a', 'd']]
Out[20]: 
c    3
a   -5
d    6
dtype: int64

Here ['c', 'a', 'd'] is interpreted as a list of indices, even though it
contains strings instead of integers.

Using NumPy functions or NumPy-like operations, such as filtering with a
boolean array, scalar multiplication, or applying math functions, will preserve
the index-value link:

In [21]: obj2[obj2 > 0]
Out[21]: 
d    6
b    7
c    3
dtype: int64

In [22]: obj2 * 2
Out[22]: 
d    12
b    14
a   -10
c     6
dtype: int64

In [23]: np.exp(obj2)
Out[23]: 
d     403.428793
b    1096.633158
a       0.006738
c      20.085537
dtype: float64

Another way to think about a Series is as a fixed-length, ordered dict, as it is
a mapping of index values to data values. It can be used in many contexts
where you might use a dict:



In [24]: 'b' in obj2
Out[24]: True

In [25]: 'e' in obj2
Out[25]: False

Should you have data contained in a Python dict, you can create a Series from
it by passing the dict:

In [26]: sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 
5000}

In [27]: obj3 = pd.Series(sdata)

In [28]: obj3
Out[28]: 
Ohio      35000
Oregon    16000
Texas     71000
Utah       5000
dtype: int64

When you are only passing a dict, the index in the resulting Series will have
the dict’s keys in sorted order. You can override this by passing the dict keys
in the order you want them to appear in the resulting Series:

In [29]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [30]: obj4 = pd.Series(sdata, index=states)

In [31]: obj4
Out[31]: 
California        NaN
Ohio          35000.0
Oregon        16000.0
Texas         71000.0
dtype: float64

Here, three values found in sdata were placed in the appropriate locations,
but since no value for 'California' was found, it appears as NaN (not a
number), which is considered in pandas to mark missing or NA values. Since
'Utah' was not included in states, it is excluded from the resulting object.

I will use the terms “missing” or “NA” interchangeably to refer to missing
data. The isnull and notnull functions in pandas should be used to detect



missing data:

In [32]: pd.isnull(obj4)
Out[32]: 
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool

In [33]: pd.notnull(obj4)
Out[33]: 
California    False
Ohio           True
Oregon         True
Texas          True
dtype: bool

Series also has these as instance methods:

In [34]: obj4.isnull()
Out[34]: 
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool

I discuss working with missing data in more detail in Chapter 7.

A useful Series feature for many applications is that it automatically aligns by
index label in arithmetic operations:

In [35]: obj3
Out[35]: 
Ohio      35000
Oregon    16000
Texas     71000
Utah       5000
dtype: int64

In [36]: obj4
Out[36]: 
California        NaN
Ohio          35000.0
Oregon        16000.0
Texas         71000.0
dtype: float64

In [37]: obj3 + obj4
Out[37]: 



California         NaN
Ohio           70000.0
Oregon         32000.0
Texas         142000.0
Utah               NaN
dtype: float64

Data alignment features will be addressed in more detail later. If you have
experience with databases, you can think about this as being similar to a join
operation.

Both the Series object itself and its index have a name attribute, which
integrates with other key areas of pandas functionality:

In [38]: obj4.name = 'population'

In [39]: obj4.index.name = 'state'

In [40]: obj4
Out[40]: 
state
California        NaN
Ohio          35000.0
Oregon        16000.0
Texas         71000.0
Name: population, dtype: float64

A Series’s index can be altered in-place by assignment:

In [41]: obj
Out[41]: 
0    4
1    7
2   -5
3    3
dtype: int64

In [42]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [43]: obj
Out[43]: 
Bob      4
Steve    7
Jeff    -5
Ryan     3
dtype: int64



DataFrame
A DataFrame represents a rectangular table of data and contains an ordered
collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can
be thought of as a dict of Series all sharing the same index. Under the hood,
the data is stored as one or more two-dimensional blocks rather than a list,
dict, or some other collection of one-dimensional arrays. The exact details of
DataFrame’s internals are outside the scope of this book.

NOTE
While a DataFrame is physically two-dimensional, you can use it to represent
higher dimensional data in a tabular format using hierarchical indexing, a
subject we will discuss in Chapter 8 and an ingredient in some of the more
advanced data-handling features in pandas.

There are many ways to construct a DataFrame, though one of the most
common is from a dict of equal-length lists or NumPy arrays:

data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
        'year': [2000, 2001, 2002, 2001, 2002, 2003],
        'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
frame = pd.DataFrame(data)

The resulting DataFrame will have its index assigned automatically as with
Series, and the columns are placed in sorted order:

In [45]: frame
Out[45]: 
   pop   state  year
0  1.5    Ohio  2000
1  1.7    Ohio  2001
2  3.6    Ohio  2002
3  2.4  Nevada  2001
4  2.9  Nevada  2002
5  3.2  Nevada  2003



If you are using the Jupyter notebook, pandas DataFrame objects will be
displayed as a more browser-friendly HTML table.

For large DataFrames, the head method selects only the first five rows:

In [46]: frame.head()
Out[46]: 
   pop   state  year
0  1.5    Ohio  2000
1  1.7    Ohio  2001
2  3.6    Ohio  2002
3  2.4  Nevada  2001
4  2.9  Nevada  2002

If you specify a sequence of columns, the DataFrame’s columns will be
arranged in that order:

In [47]: pd.DataFrame(data, columns=['year', 'state', 'pop'])
Out[47]: 
   year   state  pop
0  2000    Ohio  1.5
1  2001    Ohio  1.7
2  2002    Ohio  3.6
3  2001  Nevada  2.4
4  2002  Nevada  2.9
5  2003  Nevada  3.2

If you pass a column that isn’t contained in the dict, it will appear with
missing values in the result:

In [48]: frame2 = pd.DataFrame(data, columns=['year', 'state', 'pop', 
'debt'],
   ....:                       index=['one', 'two', 'three', 'four',
   ....:                              'five', 'six'])

In [49]: frame2
Out[49]: 
       year   state  pop debt
one    2000    Ohio  1.5  NaN
two    2001    Ohio  1.7  NaN
three  2002    Ohio  3.6  NaN
four   2001  Nevada  2.4  NaN
five   2002  Nevada  2.9  NaN
six    2003  Nevada  3.2  NaN

In [50]: frame2.columns
Out[50]: Index(['year', 'state', 'pop', 'debt'], dtype='object')



A column in a DataFrame can be retrieved as a Series either by dict-like
notation or by attribute:

In [51]: frame2['state']
Out[51]: 
one        Ohio
two        Ohio
three      Ohio
four     Nevada
five     Nevada
six      Nevada
Name: state, dtype: object

In [52]: frame2.year
Out[52]: 
one      2000
two      2001
three    2002
four     2001
five     2002
six      2003
Name: year, dtype: int64

NOTE
Attribute-like access (e.g., frame2.year) and tab completion of column names
in IPython is provided as a convenience.

frame2[column] works for any column name, but frame2.column only works
when the column name is a valid Python variable name.

Note that the returned Series have the same index as the DataFrame, and their
name attribute has been appropriately set.

Rows can also be retrieved by position or name with the special loc attribute
(much more on this later):

In [53]: frame2.loc['three']
Out[53]: 
year     2002
state    Ohio
pop       3.6
debt      NaN
Name: three, dtype: object



Columns can be modified by assignment. For example, the empty 'debt'
column could be assigned a scalar value or an array of values:

In [54]: frame2['debt'] = 16.5

In [55]: frame2
Out[55]: 
       year   state  pop  debt
one    2000    Ohio  1.5  16.5
two    2001    Ohio  1.7  16.5
three  2002    Ohio  3.6  16.5
four   2001  Nevada  2.4  16.5
five   2002  Nevada  2.9  16.5
six    2003  Nevada  3.2  16.5

In [56]: frame2['debt'] = np.arange(6.)

In [57]: frame2
Out[57]: 
       year   state  pop  debt
one    2000    Ohio  1.5   0.0
two    2001    Ohio  1.7   1.0
three  2002    Ohio  3.6   2.0
four   2001  Nevada  2.4   3.0
five   2002  Nevada  2.9   4.0
six    2003  Nevada  3.2   5.0

When you are assigning lists or arrays to a column, the value’s length must
match the length of the DataFrame. If you assign a Series, its labels will be
realigned exactly to the DataFrame’s index, inserting missing values in any
holes:

In [58]: val = pd.Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])

In [59]: frame2['debt'] = val

In [60]: frame2
Out[60]: 
       year   state  pop  debt
one    2000    Ohio  1.5   NaN
two    2001    Ohio  1.7  -1.2
three  2002    Ohio  3.6   NaN
four   2001  Nevada  2.4  -1.5
five   2002  Nevada  2.9  -1.7
six    2003  Nevada  3.2   NaN

Assigning a column that doesn’t exist will create a new column. The del
keyword will delete columns as with a dict.



As an example of del, I first add a new column of boolean values where the
state column equals 'Ohio':

In [61]: frame2['eastern'] = frame2.state == 'Ohio'

In [62]: frame2
Out[62]: 
       year   state  pop  debt  eastern
one    2000    Ohio  1.5   NaN     True
two    2001    Ohio  1.7  -1.2     True
three  2002    Ohio  3.6   NaN     True
four   2001  Nevada  2.4  -1.5    False
five   2002  Nevada  2.9  -1.7    False
six    2003  Nevada  3.2   NaN    False

CAUTION
New columns cannot be created with the frame2.eastern syntax.

The del method can then be used to remove this column:

In [63]: del frame2['eastern']

In [64]: frame2.columns
Out[64]: Index(['year', 'state', 'pop', 'debt'], dtype='object')

CAUTION
The column returned from indexing a DataFrame is a view on the underlying
data, not a copy. Thus, any in-place modifications to the Series will be reflected
in the DataFrame. The column can be explicitly copied with the Series’s copy
method.

Another common form of data is a nested dict of dicts:

In [65]: pop = {'Nevada': {2001: 2.4, 2002: 2.9},
   ....:        'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}}

If the nested dict is passed to the DataFrame, pandas will interpret the outer



dict keys as the columns and the inner keys as the row indices:

In [66]: frame3 = pd.DataFrame(pop)

In [67]: frame3
Out[67]: 
      Nevada  Ohio
2000     NaN   1.5
2001     2.4   1.7
2002     2.9   3.6

You can transpose the DataFrame (swap rows and columns) with similar
syntax to a NumPy array:

In [68]: frame3.T
Out[68]: 
        2000  2001  2002
Nevada   NaN   2.4   2.9
Ohio     1.5   1.7   3.6

The keys in the inner dicts are combined and sorted to form the index in the
result. This isn’t true if an explicit index is specified:

In [69]: pd.DataFrame(pop, index=[2001, 2002, 2003])
Out[69]: 
      Nevada  Ohio
2001     2.4   1.7
2002     2.9   3.6
2003     NaN   NaN

Dicts of Series are treated in much the same way:

In [70]: pdata = {'Ohio': frame3['Ohio'][:-1],
   ....:          'Nevada': frame3['Nevada'][:2]}

In [71]: pd.DataFrame(pdata)
Out[71]: 
      Nevada  Ohio
2000     NaN   1.5
2001     2.4   1.7

For a complete list of things you can pass the DataFrame constructor, see
Table 5-1.

If a DataFrame’s index and columns have their name attributes set, these will



also be displayed:

In [72]: frame3.index.name = 'year'; frame3.columns.name = 'state'

In [73]: frame3
Out[73]: 
state  Nevada  Ohio
year               
2000      NaN   1.5
2001      2.4   1.7
2002      2.9   3.6

As with Series, the values attribute returns the data contained in the
DataFrame as a two-dimensional ndarray:

In [74]: frame3.values
Out[74]: 
array([[ nan,  1.5],
       [ 2.4,  1.7],
       [ 2.9,  3.6]])

If the DataFrame’s columns are different dtypes, the dtype of the values array
will be chosen to accommodate all of the columns:

In [75]: frame2.values
Out[75]: 
array([[2000, 'Ohio', 1.5, nan],
       [2001, 'Ohio', 1.7, -1.2],
       [2002, 'Ohio', 3.6, nan],
       [2001, 'Nevada', 2.4, -1.5],
       [2002, 'Nevada', 2.9, -1.7],
       [2003, 'Nevada', 3.2, nan]], dtype=object)

Table 5-1. Possible data inputs to DataFrame constructor

Type Notes

2D ndarray A matrix of data, passing optional row and column labels

dict of arrays,
lists, or tuples

Each sequence becomes a column in the DataFrame; all sequences must
be the same length

NumPy
structured/record
array

Treated as the “dict of arrays” case



dict of Series Each value becomes a column; indexes from each Series are unioned
together to form the result’s row index if no explicit index is passed

dict of dicts Each inner dict becomes a column; keys are unioned to form the row
index as in the “dict of Series” case

List of dicts or
Series

Each item becomes a row in the DataFrame; union of dict keys or
Series indexes become the DataFrame’s column labels

List of lists or
tuples

Treated as the “2D ndarray” case

Another
DataFrame

The DataFrame’s indexes are used unless different ones are passed

NumPy
MaskedArray

Like the “2D ndarray” case except masked values become NA/missing
in the DataFrame result



Index Objects
pandas’s Index objects are responsible for holding the axis labels and other
metadata (like the axis name or names). Any array or other sequence of labels
you use when constructing a Series or DataFrame is internally converted to
an Index:

In [76]: obj = pd.Series(range(3), index=['a', 'b', 'c'])

In [77]: index = obj.index

In [78]: index
Out[78]: Index(['a', 'b', 'c'], dtype='object')

In [79]: index[1:]
Out[79]: Index(['b', 'c'], dtype='object')

Index objects are immutable and thus can’t be modified by the user:

index[1] = 'd'  # TypeError

Immutability makes it safer to share Index objects among data structures:

In [80]: labels = pd.Index(np.arange(3))

In [81]: labels
Out[81]: Int64Index([0, 1, 2], dtype='int64')

In [82]: obj2 = pd.Series([1.5, -2.5, 0], index=labels)

In [83]: obj2
Out[83]: 
0    1.5
1   -2.5
2    0.0
dtype: float64

In [84]: obj2.index is labels
Out[84]: True

CAUTION
Some users will not often take advantage of the capabilities provided by
indexes, but because some operations will yield results containing indexed data,



it’s important to understand how they work.

In addition to being array-like, an Index also behaves like a fixed-size set:

In [85]: frame3
Out[85]: 
state  Nevada  Ohio
year               
2000      NaN   1.5
2001      2.4   1.7
2002      2.9   3.6

In [86]: frame3.columns
Out[86]: Index(['Nevada', 'Ohio'], dtype='object', name='state')

In [87]: 'Ohio' in frame3.columns
Out[87]: True

In [88]: 2003 in frame3.index
Out[88]: False

Unlike Python sets, a pandas Index can contain duplicate labels:

In [89]: dup_labels = pd.Index(['foo', 'foo', 'bar', 'bar'])

In [90]: dup_labels
Out[90]: Index(['foo', 'foo', 'bar', 'bar'], dtype='object')

Selections with duplicate labels will select all occurrences of that label.

Each Index has a number of methods and properties for set logic, which
answer other common questions about the data it contains. Some useful ones
are summarized in Table 5-2.

Table 5-2. Some Index methods and properties

Method Description

append Concatenate with additional Index objects, producing a new Index

difference Compute set difference as an Index

intersection Compute set intersection

union Compute set union

isin Compute boolean array indicating whether each value is contained in the



passed collection

delete Compute new Index with element at index i deleted

drop Compute new Index by deleting passed values

insert Compute new Index by inserting element at index i

is_monotonic Returns True if each element is greater than or equal to the previous element

is_unique Returns True if the Index has no duplicate values

unique Compute the array of unique values in the Index



5.2 Essential Functionality
This section will walk you through the fundamental mechanics of interacting
with the data contained in a Series or DataFrame. In the chapters to come, we
will delve more deeply into data analysis and manipulation topics using
pandas. This book is not intended to serve as exhaustive documentation for
the pandas library; instead, we’ll focus on the most important features,
leaving the less common (i.e., more esoteric) things for you to explore on
your own.



Reindexing
An important method on pandas objects is reindex, which means to create a
new object with the data conformed to a new index. Consider an example:

In [91]: obj = pd.Series([4.5, 7.2, -5.3, 3.6], index=['d', 'b', 'a', 'c'])

In [92]: obj
Out[92]: 
d    4.5
b    7.2
a   -5.3
c    3.6
dtype: float64

Calling reindex on this Series rearranges the data according to the new
index, introducing missing values if any index values were not already
present:

In [93]: obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])

In [94]: obj2
Out[94]: 
a   -5.3
b    7.2
c    3.6
d    4.5
e    NaN
dtype: float64

For ordered data like time series, it may be desirable to do some interpolation
or filling of values when reindexing. The method option allows us to do this,
using a method such as ffill, which forward-fills the values:

In [95]: obj3 = pd.Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])

In [96]: obj3
Out[96]: 
0      blue
2    purple
4    yellow
dtype: object

In [97]: obj3.reindex(range(6), method='ffill')
Out[97]: 



0      blue
1      blue
2    purple
3    purple
4    yellow
5    yellow
dtype: object

With DataFrame, reindex can alter either the (row) index, columns, or both.
When passed only a sequence, it reindexes the rows in the result:

In [98]: frame = pd.DataFrame(np.arange(9).reshape((3, 3)),
   ....:                      index=['a', 'c', 'd'],
   ....:                      columns=['Ohio', 'Texas', 'California'])

In [99]: frame
Out[99]: 
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

In [100]: frame2 = frame.reindex(['a', 'b', 'c', 'd'])

In [101]: frame2
Out[101]: 
   Ohio  Texas  California
a   0.0    1.0         2.0
b   NaN    NaN         NaN
c   3.0    4.0         5.0
d   6.0    7.0         8.0

The columns can be reindexed with the columns keyword:

In [102]: states = ['Texas', 'Utah', 'California']

In [103]: frame.reindex(columns=states)
Out[103]: 
   Texas  Utah  California
a      1   NaN           2
c      4   NaN           5
d      7   NaN           8

See Table 5-3 for more about the arguments to reindex.

As we’ll explore in more detail, you can reindex more succinctly by label-
indexing with loc, and many users prefer to use it exclusively:

In [104]: frame.loc[['a', 'b', 'c', 'd'], states]



Out[104]: 
   Texas  Utah  California
a    1.0   NaN         2.0
b    NaN   NaN         NaN
c    4.0   NaN         5.0
d    7.0   NaN         8.0

Table 5-3. reindex function arguments

Argument Description

index New sequence to use as index. Can be Index instance or any other sequence-
like Python data structure. An Index will be used exactly as is without any
copying.

method Interpolation (fill) method; 'ffill' fills forward, while 'bfill' fills
backward.

fill_value Substitute value to use when introducing missing data by reindexing.

limit When forward- or backfilling, maximum size gap (in number of elements) to
fill.

tolerance When forward- or backfilling, maximum size gap (in absolute numeric
distance) to fill for inexact matches.

level Match simple Index on level of MultiIndex; otherwise select subset of.

copy If True, always copy underlying data even if new index is equivalent to old
index; if False, do not copy the data when the indexes are equivalent.



Dropping Entries from an Axis
Dropping one or more entries from an axis is easy if you already have an
index array or list without those entries. As that can require a bit of munging
and set logic, the drop method will return a new object with the indicated
value or values deleted from an axis:

In [105]: obj = pd.Series(np.arange(5.), index=['a', 'b', 'c', 'd', 'e'])

In [106]: obj
Out[106]: 
a    0.0
b    1.0
c    2.0
d    3.0
e    4.0
dtype: float64

In [107]: new_obj = obj.drop('c')

In [108]: new_obj
Out[108]: 
a    0.0
b    1.0
d    3.0
e    4.0
dtype: float64

In [109]: obj.drop(['d', 'c'])
Out[109]: 
a    0.0
b    1.0
e    4.0
dtype: float64

With DataFrame, index values can be deleted from either axis. To illustrate
this, we first create an example DataFrame:

In [110]: data = pd.DataFrame(np.arange(16).reshape((4, 4)),
   .....:                     index=['Ohio', 'Colorado', 'Utah', 'New York'],
   .....:                     columns=['one', 'two', 'three', 'four'])

In [111]: data
Out[111]: 
          one  two  three  four
Ohio        0    1      2     3
Colorado    4    5      6     7
Utah        8    9     10    11



New York   12   13     14    15

Calling drop with a sequence of labels will drop values from the row labels
(axis 0):

In [112]: data.drop(['Colorado', 'Ohio'])
Out[112]: 
          one  two  three  four
Utah        8    9     10    11
New York   12   13     14    15

You can drop values from the columns by passing axis=1 or
axis='columns':

In [113]: data.drop('two', axis=1)
Out[113]: 
          one  three  four
Ohio        0      2     3
Colorado    4      6     7
Utah        8     10    11
New York   12     14    15

In [114]: data.drop(['two', 'four'], axis='columns')
Out[114]: 
          one  three
Ohio        0      2
Colorado    4      6
Utah        8     10
New York   12     14

Many functions, like drop, which modify the size or shape of a Series or
DataFrame, can manipulate an object in-place without returning a new
object:

In [115]: obj.drop('c', inplace=True)

In [116]: obj
Out[116]: 
a    0.0
b    1.0
d    3.0
e    4.0
dtype: float64

Be careful with the inplace, as it destroys any data that is dropped.



Indexing, Selection, and Filtering
Series indexing (obj[...]) works analogously to NumPy array indexing,
except you can use the Series’s index values instead of only integers. Here
are some examples of this:

In [117]: obj = pd.Series(np.arange(4.), index=['a', 'b', 'c', 'd'])

In [118]: obj
Out[118]: 
a    0.0
b    1.0
c    2.0
d    3.0
dtype: float64

In [119]: obj['b']
Out[119]: 1.0

In [120]: obj[1]
Out[120]: 1.0

In [121]: obj[2:4]
Out[121]: 
c    2.0
d    3.0
dtype: float64

In [122]: obj[['b', 'a', 'd']]
Out[122]: 
b    1.0
a    0.0
d    3.0
dtype: float64

In [123]: obj[[1, 3]]
Out[123]: 
b    1.0
d    3.0
dtype: float64

In [124]: obj[obj < 2]
Out[124]: 
a    0.0
b    1.0
dtype: float64

Slicing with labels behaves differently than normal Python slicing in that the
endpoint is inclusive:



In [125]: obj['b':'c']
Out[125]: 
b    1.0
c    2.0
dtype: float64

Setting using these methods modifies the corresponding section of the Series:

In [126]: obj['b':'c'] = 5

In [127]: obj
Out[127]: 
a    0.0
b    5.0
c    5.0
d    3.0
dtype: float64

Indexing into a DataFrame is for retrieving one or more columns either with a
single value or sequence:

In [128]: data = pd.DataFrame(np.arange(16).reshape((4, 4)),
   .....:                     index=['Ohio', 'Colorado', 'Utah', 'New York'],
   .....:                     columns=['one', 'two', 'three', 'four'])

In [129]: data
Out[129]: 
          one  two  three  four
Ohio        0    1      2     3
Colorado    4    5      6     7
Utah        8    9     10    11
New York   12   13     14    15

In [130]: data['two']
Out[130]: 
Ohio         1
Colorado     5
Utah         9
New York    13
Name: two, dtype: int64

In [131]: data[['three', 'one']]
Out[131]: 
          three  one
Ohio          2    0
Colorado      6    4
Utah         10    8
New York     14   12

Indexing like this has a few special cases. First, slicing or selecting data with



a boolean array:

In [132]: data[:2]
Out[132]: 
          one  two  three  four
Ohio        0    1      2     3
Colorado    4    5      6     7

In [133]: data[data['three'] > 5]
Out[133]: 
          one  two  three  four
Colorado    4    5      6     7
Utah        8    9     10    11
New York   12   13     14    15

The row selection syntax data[:2] is provided as a convenience. Passing a
single element or a list to the [] operator selects columns.

Another use case is in indexing with a boolean DataFrame, such as one
produced by a scalar comparison:

In [134]: data < 5
Out[134]: 
            one    two  three   four
Ohio       True   True   True   True
Colorado   True  False  False  False
Utah      False  False  False  False
New York  False  False  False  False

In [135]: data[data < 5] = 0

In [136]: data
Out[136]: 
          one  two  three  four
Ohio        0    0      0     0
Colorado    0    5      6     7
Utah        8    9     10    11
New York   12   13     14    15

This makes DataFrame syntactically more like a two-dimensional NumPy
array in this particular case.

Selection with loc and iloc
For DataFrame label-indexing on the rows, I introduce the special indexing
operators loc and iloc. They enable you to select a subset of the rows and
columns from a DataFrame with NumPy-like notation using either axis labels



(loc) or integers (iloc).

As a preliminary example, let’s select a single row and multiple columns by
label:

In [137]: data.loc['Colorado', ['two', 'three']]
Out[137]: 
two      5
three    6
Name: Colorado, dtype: int64

We’ll then perform some similar selections with integers using iloc:

In [138]: data.iloc[2, [3, 0, 1]]
Out[138]: 
four    11
one      8
two      9
Name: Utah, dtype: int64

In [139]: data.iloc[2]
Out[139]: 
one       8
two       9
three    10
four     11
Name: Utah, dtype: int64

In [140]: data.iloc[[1, 2], [3, 0, 1]]
Out[140]: 
          four  one  two
Colorado     7    0    5
Utah        11    8    9

Both indexing functions work with slices in addition to single labels or lists
of labels:

In [141]: data.loc[:'Utah', 'two']
Out[141]: 
Ohio        0
Colorado    5
Utah        9
Name: two, dtype: int64

In [142]: data.iloc[:, :3][data.three > 5]
Out[142]: 
          one  two  three
Colorado    0    5      6
Utah        8    9     10
New York   12   13     14



So there are many ways to select and rearrange the data contained in a pandas
object. For DataFrame, Table 5-4 provides a short summary of many of them.
As you’ll see later, there are a number of additional options for working with
hierarchical indexes.

NOTE
When originally designing pandas, I felt that having to type frame[:, col] to
select a column was too verbose (and error-prone), since column selection is
one of the most common operations. I made the design trade-off to push all of
the fancy indexing behavior (both labels and integers) into the ix operator. In
practice, this led to many edge cases in data with integer axis labels, so the
pandas team decided to create the loc and iloc operators to deal with strictly
label-based and integer-based indexing, respectively.

The ix indexing operator still exists, but it is deprecated. I do not recommend
using it.

Table 5-4. Indexing options with DataFrame

Type Notes

df[val] Select single column or sequence of columns from the DataFrame;
special case conveniences: boolean array (filter rows), slice (slice rows),
or boolean DataFrame (set values based on some criterion)

df.loc[val] Selects single row or subset of rows from the DataFrame by label

df.loc[:, val] Selects single column or subset of columns by label

df.loc[val1,
val2]

Select both rows and columns by label

df.iloc[where] Selects single row or subset of rows from the DataFrame by integer
position

df.iloc[:,
where]

Selects single column or subset of columns by integer position

df.iloc[where_i,
where_j]

Select both rows and columns by integer position

df.at[label_i,
label_j]

Select a single scalar value by row and column label



df.iat[i, j] Select a single scalar value by row and column position (integers)

reindex method Select either rows or columns by labels

get_value,
set_value

methods

Select single value by row and column label



Integer Indexes
Working with pandas objects indexed by integers is something that often trips
up new users due to some differences with indexing semantics on built-in
Python data structures like lists and tuples. For example, you might not
expect the following code to generate an error:

ser = pd.Series(np.arange(3.))
ser
ser[-1]

In this case, pandas could “fall back” on integer indexing, but it’s difficult to
do this in general without introducing subtle bugs. Here we have an index
containing 0, 1, 2, but inferring what the user wants (label-based indexing or
position-based) is difficult:

In [144]: ser
Out[144]: 
0    0.0
1    1.0
2    2.0
dtype: float64

On the other hand, with a non-integer index, there is no potential for
ambiguity:

In [145]: ser2 = pd.Series(np.arange(3.), index=['a', 'b', 'c'])

In [146]: ser2[-1]
Out[146]: 2.0

To keep things consistent, if you have an axis index containing integers, data
selection will always be label-oriented. For more precise handling, use loc
(for labels) or iloc (for integers):

In [147]: ser[:1]
Out[147]: 
0    0.0
dtype: float64

In [148]: ser.loc[:1]



Out[148]: 
0    0.0
1    1.0
dtype: float64

In [149]: ser.iloc[:1]
Out[149]: 
0    0.0
dtype: float64



Arithmetic and Data Alignment
An important pandas feature for some applications is the behavior of
arithmetic between objects with different indexes. When you are adding
together objects, if any index pairs are not the same, the respective index in
the result will be the union of the index pairs. For users with database
experience, this is similar to an automatic outer join on the index labels. Let’s
look at an example:

In [150]: s1 = pd.Series([7.3, -2.5, 3.4, 1.5], index=['a', 'c', 'd', 'e'])

In [151]: s2 = pd.Series([-2.1, 3.6, -1.5, 4, 3.1],
   .....:                index=['a', 'c', 'e', 'f', 'g'])

In [152]: s1
Out[152]: 
a    7.3
c   -2.5
d    3.4
e    1.5
dtype: float64

In [153]: s2
Out[153]: 
a   -2.1
c    3.6
e   -1.5
f    4.0
g    3.1
dtype: float64

Adding these together yields:

In [154]: s1 + s2
Out[154]: 
a    5.2
c    1.1
d    NaN
e    0.0
f    NaN
g    NaN
dtype: float64

The internal data alignment introduces missing values in the label locations
that don’t overlap. Missing values will then propagate in further arithmetic



computations.

In the case of DataFrame, alignment is performed on both the rows and the
columns:

In [155]: df1 = pd.DataFrame(np.arange(9.).reshape((3, 3)), 
columns=list('bcd'),
   .....:                    index=['Ohio', 'Texas', 'Colorado'])

In [156]: df2 = pd.DataFrame(np.arange(12.).reshape((4, 3)), 
columns=list('bde'),
   .....:                    index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [157]: df1
Out[157]: 
            b    c    d
Ohio      0.0  1.0  2.0
Texas     3.0  4.0  5.0
Colorado  6.0  7.0  8.0

In [158]: df2
Out[158]: 
          b     d     e
Utah    0.0   1.0   2.0
Ohio    3.0   4.0   5.0
Texas   6.0   7.0   8.0
Oregon  9.0  10.0  11.0

Adding these together returns a DataFrame whose index and columns are the
unions of the ones in each DataFrame:

In [159]: df1 + df2
Out[159]: 
            b   c     d   e
Colorado  NaN NaN   NaN NaN
Ohio      3.0 NaN   6.0 NaN
Oregon    NaN NaN   NaN NaN
Texas     9.0 NaN  12.0 NaN
Utah      NaN NaN   NaN NaN

Since the 'c' and 'e' columns are not found in both DataFrame objects, they
appear as all missing in the result. The same holds for the rows whose labels
are not common to both objects.

If you add DataFrame objects with no column or row labels in common, the
result will contain all nulls:

In [160]: df1 = pd.DataFrame({'A': [1, 2]})



In [161]: df2 = pd.DataFrame({'B': [3, 4]})

In [162]: df1
Out[162]: 
   A
0  1
1  2

In [163]: df2
Out[163]: 
   B
0  3
1  4

In [164]: df1 - df2
Out[164]: 
    A   B
0 NaN NaN
1 NaN NaN

Arithmetic methods with fill values
In arithmetic operations between differently indexed objects, you might want
to fill with a special value, like 0, when an axis label is found in one object
but not the other:

In [165]: df1 = pd.DataFrame(np.arange(12.).reshape((3, 4)),
   .....:                    columns=list('abcd'))

In [166]: df2 = pd.DataFrame(np.arange(20.).reshape((4, 5)),
   .....:                    columns=list('abcde'))

In [167]: df2.loc[1, 'b'] = np.nan

In [168]: df1
Out[168]: 
     a    b     c     d
0  0.0  1.0   2.0   3.0
1  4.0  5.0   6.0   7.0
2  8.0  9.0  10.0  11.0

In [169]: df2
Out[169]: 
      a     b     c     d     e
0   0.0   1.0   2.0   3.0   4.0
1   5.0   NaN   7.0   8.0   9.0
2  10.0  11.0  12.0  13.0  14.0
3  15.0  16.0  17.0  18.0  19.0

Adding these together results in NA values in the locations that don’t
overlap:



In [170]: df1 + df2
Out[170]: 
      a     b     c     d   e
0   0.0   2.0   4.0   6.0 NaN
1   9.0   NaN  13.0  15.0 NaN
2  18.0  20.0  22.0  24.0 NaN
3   NaN   NaN   NaN   NaN NaN

Using the add method on df1, I pass df2 and an argument to fill_value:

In [171]: df1.add(df2, fill_value=0)
Out[171]: 
      a     b     c     d     e
0   0.0   2.0   4.0   6.0   4.0
1   9.0   5.0  13.0  15.0   9.0
2  18.0  20.0  22.0  24.0  14.0
3  15.0  16.0  17.0  18.0  19.0

See Table 5-5 for a listing of Series and DataFrame methods for arithmetic.
Each of them has a counterpart, starting with the letter r, that has arguments
flipped. So these two statements are equivalent:

In [172]: 1 / df1
Out[172]: 
          a         b         c         d
0       inf  1.000000  0.500000  0.333333
1  0.250000  0.200000  0.166667  0.142857
2  0.125000  0.111111  0.100000  0.090909

In [173]: df1.rdiv(1)
Out[173]: 
          a         b         c         d
0       inf  1.000000  0.500000  0.333333
1  0.250000  0.200000  0.166667  0.142857
2  0.125000  0.111111  0.100000  0.090909

Relatedly, when reindexing a Series or DataFrame, you can also specify a
different fill value:

In [174]: df1.reindex(columns=df2.columns, fill_value=0)
Out[174]: 
     a    b     c     d  e
0  0.0  1.0   2.0   3.0  0
1  4.0  5.0   6.0   7.0  0
2  8.0  9.0  10.0  11.0  0

Table 5-5. Flexible arithmetic methods



Method Description

add, radd Methods for addition (+)

sub, rsub Methods for subtraction (-)

div, rdiv Methods for division (/)

floordiv, rfloordiv Methods for floor division (//)

mul, rmul Methods for multiplication (*)

pow, rpow Methods for exponentiation (**)

Operations between DataFrame and Series
As with NumPy arrays of different dimensions, arithmetic between
DataFrame and Series is also defined. First, as a motivating example,
consider the difference between a two-dimensional array and one of its rows:

In [175]: arr = np.arange(12.).reshape((3, 4))

In [176]: arr
Out[176]: 
array([[  0.,   1.,   2.,   3.],
       [  4.,   5.,   6.,   7.],
       [  8.,   9.,  10.,  11.]])

In [177]: arr[0]
Out[177]: array([ 0.,  1.,  2.,  3.])

In [178]: arr - arr[0]
Out[178]: 
array([[ 0.,  0.,  0.,  0.],
       [ 4.,  4.,  4.,  4.],
       [ 8.,  8.,  8.,  8.]])

When we subtract arr[0] from arr, the subtraction is performed once for
each row. This is referred to as broadcasting and is explained in more detail
as it relates to general NumPy arrays in Appendix A. Operations between a
DataFrame and a Series are similar:

In [179]: frame = pd.DataFrame(np.arange(12.).reshape((4, 3)),
   .....:                      columns=list('bde'),
   .....:                      index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [180]: series = frame.iloc[0]



In [181]: frame
Out[181]: 
          b     d     e
Utah    0.0   1.0   2.0
Ohio    3.0   4.0   5.0
Texas   6.0   7.0   8.0
Oregon  9.0  10.0  11.0

In [182]: series
Out[182]: 
b    0.0
d    1.0
e    2.0
Name: Utah, dtype: float64

By default, arithmetic between DataFrame and Series matches the index of
the Series on the DataFrame’s columns, broadcasting down the rows:

In [183]: frame - series
Out[183]: 
          b    d    e
Utah    0.0  0.0  0.0
Ohio    3.0  3.0  3.0
Texas   6.0  6.0  6.0
Oregon  9.0  9.0  9.0

If an index value is not found in either the DataFrame’s columns or the
Series’s index, the objects will be reindexed to form the union:

In [184]: series2 = pd.Series(range(3), index=['b', 'e', 'f'])

In [185]: frame + series2
Out[185]: 
          b   d     e   f
Utah    0.0 NaN   3.0 NaN
Ohio    3.0 NaN   6.0 NaN
Texas   6.0 NaN   9.0 NaN
Oregon  9.0 NaN  12.0 NaN

If you want to instead broadcast over the columns, matching on the rows, you
have to use one of the arithmetic methods. For example:

In [186]: series3 = frame['d']

In [187]: frame
Out[187]: 
          b     d     e
Utah    0.0   1.0   2.0
Ohio    3.0   4.0   5.0



Texas   6.0   7.0   8.0
Oregon  9.0  10.0  11.0

In [188]: series3
Out[188]: 
Utah       1.0
Ohio       4.0
Texas      7.0
Oregon    10.0
Name: d, dtype: float64

In [189]: frame.sub(series3, axis='index')
Out[189]: 
          b    d    e
Utah   -1.0  0.0  1.0
Ohio   -1.0  0.0  1.0
Texas  -1.0  0.0  1.0
Oregon -1.0  0.0  1.0

The axis number that you pass is the axis to match on. In this case we mean
to match on the DataFrame’s row index (axis='index' or axis=0) and
broadcast across.



Function Application and Mapping
NumPy ufuncs (element-wise array methods) also work with pandas objects:

In [190]: frame = pd.DataFrame(np.random.randn(4, 3), columns=list('bde'),
   .....:                      index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [191]: frame
Out[191]: 
               b         d         e
Utah   -0.204708  0.478943 -0.519439
Ohio   -0.555730  1.965781  1.393406
Texas   0.092908  0.281746  0.769023
Oregon  1.246435  1.007189 -1.296221

In [192]: np.abs(frame)
Out[192]: 
               b         d         e
Utah    0.204708  0.478943  0.519439
Ohio    0.555730  1.965781  1.393406
Texas   0.092908  0.281746  0.769023
Oregon  1.246435  1.007189  1.296221

Another frequent operation is applying a function on one-dimensional arrays
to each column or row. DataFrame’s apply method does exactly this:

In [193]: f = lambda x: x.max() - x.min()

In [194]: frame.apply(f)
Out[194]: 
b    1.802165
d    1.684034
e    2.689627
dtype: float64

Here the function f, which computes the difference between the maximum
and minimum of a Series, is invoked once on each column in frame. The
result is a Series having the columns of frame as its index.

If you pass axis='columns' to apply, the function will be invoked once per
row instead:

In [195]: frame.apply(f, axis='columns')
Out[195]: 
Utah      0.998382



Ohio      2.521511
Texas     0.676115
Oregon    2.542656
dtype: float64

Many of the most common array statistics (like sum and mean) are DataFrame
methods, so using apply is not necessary.

The function passed to apply need not return a scalar value; it can also return
a Series with multiple values:

In [196]: def f(x):
   .....:     return pd.Series([x.min(), x.max()], index=['min', 'max'])

In [197]: frame.apply(f)
Out[197]: 
            b         d         e
min -0.555730  0.281746 -1.296221
max  1.246435  1.965781  1.393406

Element-wise Python functions can be used, too. Suppose you wanted to
compute a formatted string from each floating-point value in frame. You can
do this with applymap:

In [198]: format = lambda x: '%.2f' % x

In [199]: frame.applymap(format)
Out[199]: 
            b     d      e
Utah    -0.20  0.48  -0.52
Ohio    -0.56  1.97   1.39
Texas    0.09  0.28   0.77
Oregon   1.25  1.01  -1.30

The reason for the name applymap is that Series has a map method for
applying an element-wise function:

In [200]: frame['e'].map(format)
Out[200]: 
Utah      -0.52
Ohio       1.39
Texas      0.77
Oregon    -1.30
Name: e, dtype: object



Sorting and Ranking
Sorting a dataset by some criterion is another important built-in operation. To
sort lexicographically by row or column index, use the sort_index method,
which returns a new, sorted object:

In [201]: obj = pd.Series(range(4), index=['d', 'a', 'b', 'c'])

In [202]: obj.sort_index()
Out[202]: 
a    1
b    2
c    3
d    0
dtype: int64

With a DataFrame, you can sort by index on either axis:

In [203]: frame = pd.DataFrame(np.arange(8).reshape((2, 4)),
   .....:                      index=['three', 'one'],
   .....:                      columns=['d', 'a', 'b', 'c'])

In [204]: frame.sort_index()
Out[204]: 
       d  a  b  c
one    4  5  6  7
three  0  1  2  3

In [205]: frame.sort_index(axis=1)
Out[205]: 
       a  b  c  d
three  1  2  3  0
one    5  6  7  4

The data is sorted in ascending order by default, but can be sorted in
descending order, too:

In [206]: frame.sort_index(axis=1, ascending=False)
Out[206]: 
       d  c  b  a
three  0  3  2  1
one    4  7  6  5

To sort a Series by its values, use its sort_values method:



In [207]: obj = pd.Series([4, 7, -3, 2])

In [208]: obj.sort_values()
Out[208]: 
2   -3
3    2
0    4
1    7
dtype: int64

Any missing values are sorted to the end of the Series by default:

In [209]: obj = pd.Series([4, np.nan, 7, np.nan, -3, 2])

In [210]: obj.sort_values()
Out[210]: 
4   -3.0
5    2.0
0    4.0
2    7.0
1    NaN
3    NaN
dtype: float64

When sorting a DataFrame, you can use the data in one or more columns as
the sort keys. To do so, pass one or more column names to the by option of
sort_values:

In [211]: frame = pd.DataFrame({'b': [4, 7, -3, 2], 'a': [0, 1, 0, 1]})

In [212]: frame
Out[212]: 
   a  b
0  0  4
1  1  7
2  0 -3
3  1  2

In [213]: frame.sort_values(by='b')
Out[213]: 
   a  b
2  0 -3
3  1  2
0  0  4
1  1  7

To sort by multiple columns, pass a list of names:

In [214]: frame.sort_values(by=['a', 'b'])



Out[214]: 
   a  b
2  0 -3
0  0  4
3  1  2
1  1  7

Ranking assigns ranks from one through the number of valid data points in an
array. The rank methods for Series and DataFrame are the place to look; by
default rank breaks ties by assigning each group the mean rank:

In [215]: obj = pd.Series([7, -5, 7, 4, 2, 0, 4])

In [216]: obj.rank()
Out[216]: 
0    6.5
1    1.0
2    6.5
3    4.5
4    3.0
5    2.0
6    4.5
dtype: float64

Ranks can also be assigned according to the order in which they’re observed
in the data:

In [217]: obj.rank(method='first')
Out[217]: 
0    6.0
1    1.0
2    7.0
3    4.0
4    3.0
5    2.0
6    5.0
dtype: float64

Here, instead of using the average rank 6.5 for the entries 0 and 2, they
instead have been set to 6 and 7 because label 0 precedes label 2 in the data.

You can rank in descending order, too:

# Assign tie values the maximum rank in the group
In [218]: obj.rank(ascending=False, method='max')
Out[218]: 
0    2.0
1    7.0



2    2.0
3    4.0
4    5.0
5    6.0
6    4.0
dtype: float64

See Table 5-6 for a list of tie-breaking methods available.

DataFrame can compute ranks over the rows or the columns:

In [219]: frame = pd.DataFrame({'b': [4.3, 7, -3, 2], 'a': [0, 1, 0, 1],
   .....:                       'c': [-2, 5, 8, -2.5]})

In [220]: frame
Out[220]: 
   a    b    c
0  0  4.3 -2.0
1  1  7.0  5.0
2  0 -3.0  8.0
3  1  2.0 -2.5

In [221]: frame.rank(axis='columns')
Out[221]: 
     a    b    c
0  2.0  3.0  1.0
1  1.0  3.0  2.0
2  2.0  1.0  3.0
3  2.0  3.0  1.0

Table 5-6. Tie-breaking methods with rank

Method Description

'average' Default: assign the average rank to each entry in the equal group

'min' Use the minimum rank for the whole group

'max' Use the maximum rank for the whole group

'first' Assign ranks in the order the values appear in the data

'dense' Like method='min', but ranks always increase by 1 in between groups rather
than the number of equal elements in a group



Axis Indexes with Duplicate Labels
Up until now all of the examples we’ve looked at have had unique axis labels
(index values). While many pandas functions (like reindex) require that the
labels be unique, it’s not mandatory. Let’s consider a small Series with
duplicate indices:

In [222]: obj = pd.Series(range(5), index=['a', 'a', 'b', 'b', 'c'])

In [223]: obj
Out[223]: 
a    0
a    1
b    2
b    3
c    4
dtype: int64

The index’s is_unique property can tell you whether its labels are unique or
not:

In [224]: obj.index.is_unique
Out[224]: False

Data selection is one of the main things that behaves differently with
duplicates. Indexing a label with multiple entries returns a Series, while
single entries return a scalar value:

In [225]: obj['a']
Out[225]: 
a    0
a    1
dtype: int64

In [226]: obj['c']
Out[226]: 4

This can make your code more complicated, as the output type from indexing
can vary based on whether a label is repeated or not.

The same logic extends to indexing rows in a DataFrame:



In [227]: df = pd.DataFrame(np.random.randn(4, 3), index=['a', 'a', 'b', 
'b'])

In [228]: df
Out[228]: 
          0         1         2
a  0.274992  0.228913  1.352917
a  0.886429 -2.001637 -0.371843
b  1.669025 -0.438570 -0.539741
b  0.476985  3.248944 -1.021228

In [229]: df.loc['b']
Out[229]: 
          0         1         2
b  1.669025 -0.438570 -0.539741
b  0.476985  3.248944 -1.021228



5.3 Summarizing and Computing Descriptive Statistics
pandas objects are equipped with a set of common mathematical and
statistical methods. Most of these fall into the category of reductions or
summary statistics, methods that extract a single value (like the sum or mean)
from a Series or a Series of values from the rows or columns of a DataFrame.
Compared with the similar methods found on NumPy arrays, they have built-
in handling for missing data. Consider a small DataFrame:

In [230]: df = pd.DataFrame([[1.4, np.nan], [7.1, -4.5],
   .....:                    [np.nan, np.nan], [0.75, -1.3]],
   .....:                   index=['a', 'b', 'c', 'd'],
   .....:                   columns=['one', 'two'])

In [231]: df
Out[231]: 
    one  two
a  1.40  NaN
b  7.10 -4.5
c   NaN  NaN
d  0.75 -1.3

Calling DataFrame’s sum method returns a Series containing column sums:

In [232]: df.sum()
Out[232]: 
one    9.25
two   -5.80
dtype: float64

Passing axis='columns' or axis=1 sums across the columns instead:

In [233]: df.sum(axis='columns')
Out[233]: 
a    1.40
b    2.60
c     NaN
d   -0.55
dtype: float64

NA values are excluded unless the entire slice (row or column in this case) is
NA. This can be disabled with the skipna option:



In [234]: df.mean(axis='columns', skipna=False)
Out[234]: 
a      NaN
b    1.300
c      NaN
d   -0.275
dtype: float64

See Table 5-7 for a list of common options for each reduction method.

Table 5-7. Options for reduction methods

Method Description

axis Axis to reduce over; 0 for DataFrame’s rows and 1 for columns

skipna Exclude missing values; True by default

level Reduce grouped by level if the axis is hierarchically indexed (MultiIndex)

Some methods, like idxmin and idxmax, return indirect statistics like the
index value where the minimum or maximum values are attained:

In [235]: df.idxmax()
Out[235]: 
one    b
two    d
dtype: object

Other methods are accumulations:

In [236]: df.cumsum()
Out[236]: 
    one  two
a  1.40  NaN
b  8.50 -4.5
c   NaN  NaN
d  9.25 -5.8

Another type of method is neither a reduction nor an accumulation. describe
is one such example, producing multiple summary statistics in one shot:

In [237]: df.describe()
Out[237]: 
            one       two
count  3.000000  2.000000



mean   3.083333 -2.900000
std    3.493685  2.262742
min    0.750000 -4.500000
25%    1.075000 -3.700000
50%    1.400000 -2.900000
75%    4.250000 -2.100000
max    7.100000 -1.300000

On non-numeric data, describe produces alternative summary statistics:

In [238]: obj = pd.Series(['a', 'a', 'b', 'c'] * 4)

In [239]: obj.describe()
Out[239]: 
count     16
unique     3
top        a
freq       8
dtype: object

See Table 5-8 for a full list of summary statistics and related methods.

Table 5-8. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin,
argmax

Compute index locations (integers) at which minimum or maximum value
obtained, respectively

idxmin,
idxmax

Compute index labels at which minimum or maximum value obtained,
respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

prod Product of all values

var Sample variance of values



std Sample standard deviation of values

skew Sample skewness (third moment) of values

kurt Sample kurtosis (fourth moment) of values

cumsum Cumulative sum of values

cummin,
cummax

Cumulative minimum or maximum of values, respectively

cumprod Cumulative product of values

diff Compute first arithmetic difference (useful for time series)

pct_change Compute percent changes



Correlation and Covariance
Some summary statistics, like correlation and covariance, are computed from
pairs of arguments. Let’s consider some DataFrames of stock prices and
volumes obtained from Yahoo! Finance using the add-on pandas-
datareader package. If you don’t have it installed already, it can be obtained
via conda or pip:

conda install pandas-datareader

I use the pandas_datareader module to download some data for a few stock
tickers:

import pandas_datareader.data as web
all_data = {ticker: web.get_data_yahoo(ticker)
            for ticker in ['AAPL', 'IBM', 'MSFT', 'GOOG']}

price = pd.DataFrame({ticker: data['Adj Close']
                     for ticker, data in all_data.items()})
volume = pd.DataFrame({ticker: data['Volume']
                      for ticker, data in all_data.items()})

CAUTION
It’s possible by the time you are reading this that Yahoo! Finance no longer
exists since Yahoo! was acquired by Verizon in 2017. Refer to the pandas-
datareader documentation online for the latest functionality.

I now compute percent changes of the prices, a time series operation which
will be explored further in Chapter 11:

In [242]: returns = price.pct_change()

In [243]: returns.tail()
Out[243]: 
                AAPL      GOOG       IBM      MSFT
Date                                              
2016-10-17 -0.000680  0.001837  0.002072 -0.003483
2016-10-18 -0.000681  0.019616 -0.026168  0.007690
2016-10-19 -0.002979  0.007846  0.003583 -0.002255



2016-10-20 -0.000512 -0.005652  0.001719 -0.004867
2016-10-21 -0.003930  0.003011 -0.012474  0.042096

The corr method of Series computes the correlation of the overlapping, non-
NA, aligned-by-index values in two Series. Relatedly, cov computes the
covariance:

In [244]: returns['MSFT'].corr(returns['IBM'])
Out[244]: 0.49976361144151144

In [245]: returns['MSFT'].cov(returns['IBM'])
Out[245]: 8.8706554797035462e-05

Since MSFT is a valid Python attribute, we can also select these columns using
more concise syntax:

In [246]: returns.MSFT.corr(returns.IBM)
Out[246]: 0.49976361144151144

DataFrame’s corr and cov methods, on the other hand, return a full
correlation or covariance matrix as a DataFrame, respectively:

In [247]: returns.corr()
Out[247]: 
          AAPL      GOOG       IBM      MSFT
AAPL  1.000000  0.407919  0.386817  0.389695
GOOG  0.407919  1.000000  0.405099  0.465919
IBM   0.386817  0.405099  1.000000  0.499764
MSFT  0.389695  0.465919  0.499764  1.000000

In [248]: returns.cov()
Out[248]: 
          AAPL      GOOG       IBM      MSFT
AAPL  0.000277  0.000107  0.000078  0.000095
GOOG  0.000107  0.000251  0.000078  0.000108
IBM   0.000078  0.000078  0.000146  0.000089
MSFT  0.000095  0.000108  0.000089  0.000215

Using DataFrame’s corrwith method, you can compute pairwise correlations
between a DataFrame’s columns or rows with another Series or DataFrame.
Passing a Series returns a Series with the correlation value computed for each
column:



In [249]: returns.corrwith(returns.IBM)
Out[249]: 
AAPL    0.386817
GOOG    0.405099
IBM     1.000000
MSFT    0.499764
dtype: float64

Passing a DataFrame computes the correlations of matching column names.
Here I compute correlations of percent changes with volume:

In [250]: returns.corrwith(volume)
Out[250]: 
AAPL   -0.075565
GOOG   -0.007067
IBM    -0.204849
MSFT   -0.092950
dtype: float64

Passing axis='columns' does things row-by-row instead. In all cases, the
data points are aligned by label before the correlation is computed.



Unique Values, Value Counts, and Membership
Another class of related methods extracts information about the values
contained in a one-dimensional Series. To illustrate these, consider this
example:

In [251]: obj = pd.Series(['c', 'a', 'd', 'a', 'a', 'b', 'b', 'c', 'c'])

The first function is unique, which gives you an array of the unique values in
a Series:

In [252]: uniques = obj.unique()

In [253]: uniques
Out[253]: array(['c', 'a', 'd', 'b'], dtype=object)

The unique values are not necessarily returned in sorted order, but could be
sorted after the fact if needed (uniques.sort()). Relatedly, value_counts
computes a Series containing value frequencies:

In [254]: obj.value_counts()
Out[254]: 
c    3
a    3
b    2
d    1
dtype: int64

The Series is sorted by value in descending order as a convenience.
value_counts is also available as a top-level pandas method that can be used
with any array or sequence:

In [255]: pd.value_counts(obj.values, sort=False)
Out[255]: 
a    3
b    2
c    3
d    1
dtype: int64



isin performs a vectorized set membership check and can be useful in
filtering a dataset down to a subset of values in a Series or column in a
DataFrame:

In [256]: obj
Out[256]: 
0    c
1    a
2    d
3    a
4    a
5    b
6    b
7    c
8    c
dtype: object

In [257]: mask = obj.isin(['b', 'c'])

In [258]: mask
Out[258]: 
0     True
1    False
2    False
3    False
4    False
5     True
6     True
7     True
8     True
dtype: bool

In [259]: obj[mask]
Out[259]: 
0    c
5    b
6    b
7    c
8    c
dtype: object

Related to isin is the Index.get_indexer method, which gives you an index
array from an array of possibly non-distinct values into another array of
distinct values:

In [260]: to_match = pd.Series(['c', 'a', 'b', 'b', 'c', 'a'])

In [261]: unique_vals = pd.Series(['c', 'b', 'a'])

In [262]: pd.Index(unique_vals).get_indexer(to_match)
Out[262]: array([0, 2, 1, 1, 0, 2])



See Table 5-9 for a reference on these methods.

Table 5-9. Unique, value counts, and set membership methods

Method Description

isin Compute boolean array indicating whether each Series value is contained in
the passed sequence of values

match Compute integer indices for each value in an array into another array of
distinct values; helpful for data alignment and join-type operations

unique Compute array of unique values in a Series, returned in the order observed

value_counts Return a Series containing unique values as its index and frequencies as its
values, ordered count in descending order

In some cases, you may want to compute a histogram on multiple related
columns in a DataFrame. Here’s an example:

In [263]: data = pd.DataFrame({'Qu1': [1, 3, 4, 3, 4],
   .....:                      'Qu2': [2, 3, 1, 2, 3],
   .....:                      'Qu3': [1, 5, 2, 4, 4]})

In [264]: data
Out[264]: 
   Qu1  Qu2  Qu3
0    1    2    1
1    3    3    5
2    4    1    2
3    3    2    4
4    4    3    4

Passing pandas.value_counts to this DataFrame’s apply function gives:

In [265]: result = data.apply(pd.value_counts).fillna(0)

In [266]: result
Out[266]: 
   Qu1  Qu2  Qu3
1  1.0  1.0  1.0
2  0.0  2.0  1.0
3  2.0  2.0  0.0
4  2.0  0.0  2.0
5  0.0  0.0  1.0

Here, the row labels in the result are the distinct values occurring in all of the



columns. The values are the respective counts of these values in each column.



5.4 Conclusion
In the next chapter, we’ll discuss tools for reading (or loading) and writing
datasets with pandas. After that, we’ll dig deeper into data cleaning,
wrangling, analysis, and visualization tools using pandas.



Chapter 6. Data Loading, Storage,
and File Formats

Accessing data is a necessary first step for using most of the tools in this
book. I’m going to be focused on data input and output using pandas, though
there are numerous tools in other libraries to help with reading and writing
data in various formats.

Input and output typically falls into a few main categories: reading text files
and other more efficient on-disk formats, loading data from databases, and
interacting with network sources like web APIs.



6.1 Reading and Writing Data in Text Format
pandas features a number of functions for reading tabular data as a
DataFrame object. Table 6-1 summarizes some of them, though read_csv
and read_table are likely the ones you’ll use the most.

Table 6-1. Parsing functions in pandas

Function Description

read_csv Load delimited data from a file, URL, or file-like object; use comma as
default delimiter

read_table Load delimited data from a file, URL, or file-like object; use tab ('\t') as
default delimiter

read_fwf Read data in fixed-width column format (i.e., no delimiters)

read_clipboard Version of read_table that reads data from the clipboard; useful for
converting tables from web pages

read_excel Read tabular data from an Excel XLS or XLSX file

read_hdf Read HDF5 files written by pandas

read_html Read all tables found in the given HTML document

read_json Read data from a JSON (JavaScript Object Notation) string representation

read_msgpack Read pandas data encoded using the MessagePack binary format

read_pickle Read an arbitrary object stored in Python pickle format

read_sas Read a SAS dataset stored in one of the SAS system’s custom storage
formats

read_sql Read the results of a SQL query (using SQLAlchemy) as a pandas
DataFrame

read_stata Read a dataset from Stata file format

read_feather Read the Feather binary file format

I’ll give an overview of the mechanics of these functions, which are meant to
convert text data into a DataFrame. The optional arguments for these
functions may fall into a few categories:



Indexing
Can treat one or more columns as the returned DataFrame, and whether
to get column names from the file, the user, or not at all.

Type inference and data conversion
This includes the user-defined value conversions and custom list of
missing value markers.

Datetime parsing
Includes combining capability, including combining date and time
information spread over multiple columns into a single column in the
result.

Iterating
Support for iterating over chunks of very large files.

Unclean data issues
Skipping rows or a footer, comments, or other minor things like numeric
data with thousands separated by commas.

Because of how messy data in the real world can be, some of the data loading
functions (especially read_csv) have grown very complex in their options
over time. It’s normal to feel overwhelmed by the number of different
parameters (read_csv has over 50 as of this writing). The online pandas
documentation has many examples about how each of them works, so if
you’re struggling to read a particular file, there might be a similar enough
example to help you find the right parameters.

Some of these functions, like pandas.read_csv, perform type inference,
because the column data types are not part of the data format. That means
you don’t necessarily have to specify which columns are numeric, integer,
boolean, or string. Other data formats, like HDF5, Feather, and msgpack,
have the data types stored in the format.

Handling dates and other custom types can require extra effort. Let’s start
with a small comma-separated (CSV) text file:



In [8]: !cat examples/ex1.csv
a,b,c,d,message
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

NOTE
Here I used the Unix cat shell command to print the raw contents of the file to
the screen. If you’re on Windows, you can use type instead of cat to achieve
the same effect.

Since this is comma-delimited, we can use read_csv to read it into a
DataFrame:

In [9]: df = pd.read_csv('examples/ex1.csv')

In [10]: df
Out[10]: 
   a   b   c   d message
0  1   2   3   4   hello
1  5   6   7   8   world
2  9  10  11  12     foo

We could also have used read_table and specified the delimiter:

In [11]: pd.read_table('examples/ex1.csv', sep=',')
Out[11]: 
   a   b   c   d message
0  1   2   3   4   hello
1  5   6   7   8   world
2  9  10  11  12     foo

A file will not always have a header row. Consider this file:

In [12]: !cat examples/ex2.csv
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

To read this file, you have a couple of options. You can allow pandas to
assign default column names, or you can specify names yourself:



In [13]: pd.read_csv('examples/ex2.csv', header=None)
Out[13]: 
   0   1   2   3      4
0  1   2   3   4  hello
1  5   6   7   8  world
2  9  10  11  12    foo

In [14]: pd.read_csv('examples/ex2.csv', names=['a', 'b', 'c', 'd', 
'message'])
Out[14]: 
   a   b   c   d message
0  1   2   3   4   hello
1  5   6   7   8   world
2  9  10  11  12     foo

Suppose you wanted the message column to be the index of the returned
DataFrame. You can either indicate you want the column at index 4 or named
'message' using the index_col argument:

In [15]: names = ['a', 'b', 'c', 'd', 'message']

In [16]: pd.read_csv('examples/ex2.csv', names=names, index_col='message')
Out[16]: 
         a   b   c   d
message               
hello    1   2   3   4
world    5   6   7   8
foo      9  10  11  12

In the event that you want to form a hierarchical index from multiple
columns, pass a list of column numbers or names:

In [17]: !cat examples/csv_mindex.csv
key1,key2,value1,value2
one,a,1,2
one,b,3,4
one,c,5,6
one,d,7,8
two,a,9,10
two,b,11,12
two,c,13,14
two,d,15,16

In [18]: parsed = pd.read_csv('examples/csv_mindex.csv',
   ....:                      index_col=['key1', 'key2'])

In [19]: parsed
Out[19]: 
           value1  value2
key1 key2                
one  a          1       2



     b          3       4
     c          5       6
     d          7       8
two  a          9      10
     b         11      12
     c         13      14
     d         15      16

In some cases, a table might not have a fixed delimiter, using whitespace or
some other pattern to separate fields. Consider a text file that looks like this:

In [20]: list(open('examples/ex3.txt'))
Out[20]: 
['            A         B         C\n',
 'aaa -0.264438 -1.026059 -0.619500\n',
 'bbb  0.927272  0.302904 -0.032399\n',
 'ccc -0.264273 -0.386314 -0.217601\n',
 'ddd -0.871858 -0.348382  1.100491\n']

While you could do some munging by hand, the fields here are separated by a
variable amount of whitespace. In these cases, you can pass a regular
expression as a delimiter for read_table. This can be expressed by the
regular expression \s+, so we have then:

In [21]: result = pd.read_table('examples/ex3.txt', sep='\s+')

In [22]: result
Out[22]: 
            A         B         C
aaa -0.264438 -1.026059 -0.619500
bbb  0.927272  0.302904 -0.032399
ccc -0.264273 -0.386314 -0.217601
ddd -0.871858 -0.348382  1.100491

Because there was one fewer column name than the number of data rows,
read_table infers that the first column should be the DataFrame’s index in
this special case.

The parser functions have many additional arguments to help you handle the
wide variety of exception file formats that occur (see a partial listing in
Table 6-2). For example, you can skip the first, third, and fourth rows of a file
with skiprows:

In [23]: !cat examples/ex4.csv



# hey!
a,b,c,d,message
# just wanted to make things more difficult for you
# who reads CSV files with computers, anyway?
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo
In [24]: pd.read_csv('examples/ex4.csv', skiprows=[0, 2, 3])
Out[24]: 
   a   b   c   d message
0  1   2   3   4   hello
1  5   6   7   8   world
2  9  10  11  12     foo

Handling missing values is an important and frequently nuanced part of the
file parsing process. Missing data is usually either not present (empty string)
or marked by some sentinel value. By default, pandas uses a set of commonly
occurring sentinels, such as NA and NULL:

In [25]: !cat examples/ex5.csv
something,a,b,c,d,message
one,1,2,3,4,NA
two,5,6,,8,world
three,9,10,11,12,foo
In [26]: result = pd.read_csv('examples/ex5.csv')

In [27]: result
Out[27]: 
  something  a   b     c   d message
0       one  1   2   3.0   4     NaN
1       two  5   6   NaN   8   world
2     three  9  10  11.0  12     foo

In [28]: pd.isnull(result)
Out[28]: 
   something      a      b      c      d  message
0      False  False  False  False  False     True
1      False  False  False   True  False    False
2      False  False  False  False  False    False

The na_values option can take either a list or set of strings to consider
missing values:

In [29]: result = pd.read_csv('examples/ex5.csv', na_values=['NULL'])

In [30]: result
Out[30]: 
  something  a   b     c   d message
0       one  1   2   3.0   4     NaN
1       two  5   6   NaN   8   world



2     three  9  10  11.0  12     foo

Different NA sentinels can be specified for each column in a dict:

In [31]: sentinels = {'message': ['foo', 'NA'], 'something': ['two']}

In [32]: pd.read_csv('examples/ex5.csv', na_values=sentinels)
Out[32]: 
  something  a   b     c   d message
0       one  1   2   3.0   4     NaN
1       NaN  5   6   NaN   8   world
2     three  9  10  11.0  12     NaN

Table 6-2 lists some frequently used options in pandas.read_csv and
pandas.read_table.

Table 6-2. Some read_csv/read_table function arguments

Argument Description

path String indicating filesystem location, URL, or file-like object

sep or
delimiter

Character sequence or regular expression to use to split fields in each row

header Row number to use as column names; defaults to 0 (first row), but should
be None if there is no header row

index_col Column numbers or names to use as the row index in the result; can be a
single name/number or a list of them for a hierarchical index

names List of column names for result, combine with header=None

skiprows Number of rows at beginning of file to ignore or list of row numbers
(starting from 0) to skip.

na_values Sequence of values to replace with NA.

comment Character(s) to split comments off the end of lines.

parse_dates Attempt to parse data to datetime; False by default. If True, will attempt to
parse all columns. Otherwise can specify a list of column numbers or name
to parse. If element of list is tuple or list, will combine multiple columns
together and parse to date (e.g., if date/time split across two columns).

keep_date_col If joining columns to parse date, keep the joined columns; False by default.

converters Dict containing column number of name mapping to functions (e.g.,
{'foo': f} would apply the function f to all values in the 'foo' column).



dayfirst When parsing potentially ambiguous dates, treat as international format
(e.g., 7/6/2012 -> June 7, 2012); False by default.

date_parser Function to use to parse dates.

nrows Number of rows to read from beginning of file.

iterator Return a TextParser object for reading file piecemeal.

chunksize For iteration, size of file chunks.

skip_footer Number of lines to ignore at end of file.

verbose Print various parser output information, like the number of missing values
placed in non-numeric columns.

encoding Text encoding for Unicode (e.g., 'utf-8' for UTF-8 encoded text).

squeeze If the parsed data only contains one column, return a Series.

thousands Separator for thousands (e.g., ',' or '.').



Reading Text Files in Pieces
When processing very large files or figuring out the right set of arguments to
correctly process a large file, you may only want to read in a small piece of a
file or iterate through smaller chunks of the file.

Before we look at a large file, we make the pandas display settings more
compact:

In [33]: pd.options.display.max_rows = 10

Now we have:

In [34]: result = pd.read_csv('examples/ex6.csv')

In [35]: result
Out[35]: 
           one       two     three      four key
0     0.467976 -0.038649 -0.295344 -1.824726   L
1    -0.358893  1.404453  0.704965 -0.200638   B
2    -0.501840  0.659254 -0.421691 -0.057688   G
3     0.204886  1.074134  1.388361 -0.982404   R
4     0.354628 -0.133116  0.283763 -0.837063   Q
...        ...       ...       ...       ...  ..
9995  2.311896 -0.417070 -1.409599 -0.515821   L
9996 -0.479893 -0.650419  0.745152 -0.646038   E
9997  0.523331  0.787112  0.486066  1.093156   K
9998 -0.362559  0.598894 -1.843201  0.887292   G
9999 -0.096376 -1.012999 -0.657431 -0.573315   0
[10000 rows x 5 columns]

If you want to only read a small number of rows (avoiding reading the entire
file), specify that with nrows:

In [36]: pd.read_csv('examples/ex6.csv', nrows=5)
Out[36]: 
        one       two     three      four key
0  0.467976 -0.038649 -0.295344 -1.824726   L
1 -0.358893  1.404453  0.704965 -0.200638   B
2 -0.501840  0.659254 -0.421691 -0.057688   G
3  0.204886  1.074134  1.388361 -0.982404   R
4  0.354628 -0.133116  0.283763 -0.837063   Q

To read a file in pieces, specify a chunksize as a number of rows:



In [37]: chunker = pd.read_csv('examples/ex6.csv', chunksize=1000)

In [38]: chunker
Out[38]: <pandas.io.parsers.TextFileReader at 0x7f6b1e2672e8>

The TextParser object returned by read_csv allows you to iterate over the
parts of the file according to the chunksize. For example, we can iterate over
ex6.csv, aggregating the value counts in the 'key' column like so:

chunker = pd.read_csv('examples/ex6.csv', chunksize=1000)

tot = pd.Series([])
for piece in chunker:
    tot = tot.add(piece['key'].value_counts(), fill_value=0)

tot = tot.sort_values(ascending=False)

We have then:

In [40]: tot[:10]
Out[40]: 
E    368.0
X    364.0
L    346.0
O    343.0
Q    340.0
M    338.0
J    337.0
F    335.0
K    334.0
H    330.0
dtype: float64

TextParser is also equipped with a get_chunk method that enables you to
read pieces of an arbitrary size.



Writing Data to Text Format
Data can also be exported to a delimited format. Let’s consider one of the
CSV files read before:

In [41]: data = pd.read_csv('examples/ex5.csv')

In [42]: data
Out[42]: 
  something  a   b     c   d message
0       one  1   2   3.0   4     NaN
1       two  5   6   NaN   8   world
2     three  9  10  11.0  12     foo

Using DataFrame’s to_csv method, we can write the data out to a comma-
separated file:

In [43]: data.to_csv('examples/out.csv')

In [44]: !cat examples/out.csv
,something,a,b,c,d,message
0,one,1,2,3.0,4,
1,two,5,6,,8,world
2,three,9,10,11.0,12,foo

Other delimiters can be used, of course (writing to sys.stdout so it prints the
text result to the console):

In [45]: import sys

In [46]: data.to_csv(sys.stdout, sep='|')
|something|a|b|c|d|message
0|one|1|2|3.0|4|
1|two|5|6||8|world
2|three|9|10|11.0|12|foo

Missing values appear as empty strings in the output. You might want to
denote them by some other sentinel value:

In [47]: data.to_csv(sys.stdout, na_rep='NULL')
,something,a,b,c,d,message
0,one,1,2,3.0,4,NULL
1,two,5,6,NULL,8,world
2,three,9,10,11.0,12,foo



With no other options specified, both the row and column labels are written.
Both of these can be disabled:

In [48]: data.to_csv(sys.stdout, index=False, header=False)
one,1,2,3.0,4,
two,5,6,,8,world
three,9,10,11.0,12,foo

You can also write only a subset of the columns, and in an order of your
choosing:

In [49]: data.to_csv(sys.stdout, index=False, columns=['a', 'b', 'c'])
a,b,c
1,2,3.0
5,6,
9,10,11.0

Series also has a to_csv method:

In [50]: dates = pd.date_range('1/1/2000', periods=7)

In [51]: ts = pd.Series(np.arange(7), index=dates)

In [52]: ts.to_csv('examples/tseries.csv')

In [53]: !cat examples/tseries.csv
2000-01-01,0
2000-01-02,1
2000-01-03,2
2000-01-04,3
2000-01-05,4
2000-01-06,5
2000-01-07,6



Working with Delimited Formats
It’s possible to load most forms of tabular data from disk using functions like
pandas.read_table. In some cases, however, some manual processing may
be necessary. It’s not uncommon to receive a file with one or more
malformed lines that trip up read_table. To illustrate the basic tools,
consider a small CSV file:

In [54]: !cat examples/ex7.csv
"a","b","c"
"1","2","3"
"1","2","3"

For any file with a single-character delimiter, you can use Python’s built-in
csv module. To use it, pass any open file or file-like object to csv.reader:

import csv
f = open('examples/ex7.csv')

reader = csv.reader(f)

Iterating through the reader like a file yields tuples of values with any quote
characters removed:

In [56]: for line in reader:
   ....:     print(line)
['a', 'b', 'c']
['1', '2', '3']
['1', '2', '3']

From there, it’s up to you to do the wrangling necessary to put the data in the
form that you need it. Let’s take this step by step. First, we read the file into a
list of lines:

In [57]: with open('examples/ex7.csv') as f:
   ....:     lines = list(csv.reader(f))

Then, we split the lines into the header line and the data lines:



In [58]: header, values = lines[0], lines[1:]

Then we can create a dictionary of data columns using a dictionary
comprehension and the expression zip(*values), which transposes rows to
columns:

In [59]: data_dict = {h: v for h, v in zip(header, zip(*values))}

In [60]: data_dict
Out[60]: {'a': ('1', '1'), 'b': ('2', '2'), 'c': ('3', '3')}

CSV files come in many different flavors. To define a new format with a
different delimiter, string quoting convention, or line terminator, we define a
simple subclass of csv.Dialect:

class my_dialect(csv.Dialect):
    lineterminator = '\n'
    delimiter = ';'
    quotechar = '"'
    quoting = csv.QUOTE_MINIMAL

reader = csv.reader(f, dialect=my_dialect)

We can also give individual CSV dialect parameters as keywords to
csv.reader without having to define a subclass:

reader = csv.reader(f, delimiter='|')

The possible options (attributes of csv.Dialect) and what they do can be
found in Table 6-3.

Table 6-3. CSV dialect options

Argument Description

delimiter One-character string to separate fields; defaults to ','.

lineterminator Line terminator for writing; defaults to '\r\n'. Reader ignores this and
recognizes cross-platform line terminators.

quotechar Quote character for fields with special characters (like a delimiter);
default is '"'.



quoting Quoting convention. Options include csv.QUOTE_ALL (quote all fields),
csv.QUOTE_MINIMAL (only fields with special characters like the
delimiter), csv.QUOTE_NONNUMERIC, and csv.QUOTE_NONE (no quoting). See
Python’s documentation for full details. Defaults to QUOTE_MINIMAL.

skipinitialspace Ignore whitespace after each delimiter; default is False.

doublequote How to handle quoting character inside a field; if True, it is doubled (see
online documentation for full detail and behavior).

escapechar String to escape the delimiter if quoting is set to csv.QUOTE_NONE;
disabled by default.

NOTE
For files with more complicated or fixed multicharacter delimiters, you will not
be able to use the csv module. In those cases, you’ll have to do the line splitting
and other cleanup using string’s split method or the regular expression method
re.split.

To write delimited files manually, you can use csv.writer. It accepts an
open, writable file object and the same dialect and format options as
csv.reader:

with open('mydata.csv', 'w') as f:
    writer = csv.writer(f, dialect=my_dialect)
    writer.writerow(('one', 'two', 'three'))
    writer.writerow(('1', '2', '3'))
    writer.writerow(('4', '5', '6'))
    writer.writerow(('7', '8', '9'))



JSON Data
JSON (short for JavaScript Object Notation) has become one of the standard
formats for sending data by HTTP request between web browsers and other
applications. It is a much more free-form data format than a tabular text form
like CSV. Here is an example:

obj = """
{"name": "Wes",
 "places_lived": ["United States", "Spain", "Germany"],
 "pet": null,
 "siblings": [{"name": "Scott", "age": 30, "pets": ["Zeus", "Zuko"]},
              {"name": "Katie", "age": 38,
               "pets": ["Sixes", "Stache", "Cisco"]}]
}
"""

JSON is very nearly valid Python code with the exception of its null value
null and some other nuances (such as disallowing trailing commas at the end
of lists). The basic types are objects (dicts), arrays (lists), strings, numbers,
booleans, and nulls. All of the keys in an object must be strings. There are
several Python libraries for reading and writing JSON data. I’ll use json here,
as it is built into the Python standard library. To convert a JSON string to
Python form, use json.loads:

In [62]: import json

In [63]: result = json.loads(obj)

In [64]: result
Out[64]: 
{'name': 'Wes',
 'pet': None,
 'places_lived': ['United States', 'Spain', 'Germany'],
 'siblings': [{'age': 30, 'name': 'Scott', 'pets': ['Zeus', 'Zuko']},
  {'age': 38, 'name': 'Katie', 'pets': ['Sixes', 'Stache', 'Cisco']}]}

json.dumps, on the other hand, converts a Python object back to JSON:

In [65]: asjson = json.dumps(result)



How you convert a JSON object or list of objects to a DataFrame or some
other data structure for analysis will be up to you. Conveniently, you can pass
a list of dicts (which were previously JSON objects) to the DataFrame
constructor and select a subset of the data fields:

In [66]: siblings = pd.DataFrame(result['siblings'], columns=['name', 'age'])

In [67]: siblings
Out[67]: 
    name  age
0  Scott   30
1  Katie   38

The pandas.read_json can automatically convert JSON datasets in specific
arrangements into a Series or DataFrame. For example:

In [68]: !cat examples/example.json
[{"a": 1, "b": 2, "c": 3},
 {"a": 4, "b": 5, "c": 6},
 {"a": 7, "b": 8, "c": 9}]

The default options for pandas.read_json assume that each object in the
JSON array is a row in the table:

In [69]: data = pd.read_json('examples/example.json')

In [70]: data
Out[70]: 
   a  b  c
0  1  2  3
1  4  5  6
2  7  8  9

For an extended example of reading and manipulating JSON data (including
nested records), see the USDA Food Database example in Chapter 7.

If you need to export data from pandas to JSON, one way is to use the
to_json methods on Series and DataFrame:

In [71]: print(data.to_json())
{"a":{"0":1,"1":4,"2":7},"b":{"0":2,"1":5,"2":8},"c":{"0":3,"1":6,"2":9}}

In [72]: print(data.to_json(orient='records'))
[{"a":1,"b":2,"c":3},{"a":4,"b":5,"c":6},{"a":7,"b":8,"c":9}]



XML and HTML: Web Scraping
Python has many libraries for reading and writing data in the ubiquitous
HTML and XML formats. Examples include lxml, Beautiful Soup, and
html5lib. While lxml is comparatively much faster in general, the other
libraries can better handle malformed HTML or XML files.

pandas has a built-in function, read_html, which uses libraries like lxml and
Beautiful Soup to automatically parse tables out of HTML files as DataFrame
objects. To show how this works, I downloaded an HTML file (used in the
pandas documentation) from the United States FDIC government agency
showing bank failures.1 First, you must install some additional libraries used
by read_html:

conda install lxml
pip install beautifulsoup4 html5lib

If you are not using conda, pip install lxml will likely also work.

The pandas.read_html function has a number of options, but by default it
searches for and attempts to parse all tabular data contained within <table>
tags. The result is a list of DataFrame objects:

In [73]: tables = pd.read_html('examples/fdic_failed_bank_list.html')

In [74]: len(tables)
Out[74]: 1

In [75]: failures = tables[0]

In [76]: failures.head()
Out[76]: 
                      Bank Name             City  ST   CERT  \
0                   Allied Bank         Mulberry  AR     91   
1  The Woodbury Banking Company         Woodbury  GA  11297   
2        First CornerStone Bank  King of Prussia  PA  35312   
3            Trust Company Bank          Memphis  TN   9956   
4    North Milwaukee State Bank        Milwaukee  WI  20364   
                 Acquiring Institution        Closing Date       Updated Date   
0                         Today's Bank  September 23, 2016  November 17, 2016  
1                          United Bank     August 19, 2016  November 17, 2016   
2  First-Citizens Bank & Trust Company         May 6, 2016  September 6, 2016   
3           The Bank of Fayette County      April 29, 2016  September 6, 2016   

http://lxml.de


4  First-Citizens Bank & Trust Company      March 11, 2016      June 16, 2016  

Because failures has many columns, pandas inserts a line break character \.

As you will learn in later chapters, from here we could proceed to do some
data cleaning and analysis, like computing the number of bank failures by
year:

In [77]: close_timestamps = pd.to_datetime(failures['Closing Date'])

In [78]: close_timestamps.dt.year.value_counts()
Out[78]: 
2010    157
2009    140
2011     92
2012     51
2008     25
       ... 
2004      4
2001      4
2007      3
2003      3
2000      2
Name: Closing Date, Length: 15, dtype: int64

Parsing XML with lxml.objectify
XML (eXtensible Markup Language) is another common structured data
format supporting hierarchical, nested data with metadata. The book you are
currently reading was actually created from a series of large XML
documents.

Earlier, I showed the pandas.read_html function, which uses either lxml or
Beautiful Soup under the hood to parse data from HTML. XML and HTML
are structurally similar, but XML is more general. Here, I will show an
example of how to use lxml to parse data from a more general XML format.

The New York Metropolitan Transportation Authority (MTA) publishes a
number of data series about its bus and train services. Here we’ll look at the
performance data, which is contained in a set of XML files. Each train or bus
service has a different file (like Performance_MNR.xml for the Metro-North
Railroad) containing monthly data as a series of XML records that look like
this:

http://www.mta.info/developers/download.html


<INDICATOR>
  <INDICATOR_SEQ>373889</INDICATOR_SEQ>
  <PARENT_SEQ></PARENT_SEQ>
  <AGENCY_NAME>Metro-North Railroad</AGENCY_NAME>
  <INDICATOR_NAME>Escalator Availability</INDICATOR_NAME>
  <DESCRIPTION>Percent of the time that escalators are operational
  systemwide. The availability rate is based on physical observations 
performed
  the morning of regular business days only. This is a new indicator the 
agency
  began reporting in 2009.</DESCRIPTION>
  <PERIOD_YEAR>2011</PERIOD_YEAR>
  <PERIOD_MONTH>12</PERIOD_MONTH>
  <CATEGORY>Service Indicators</CATEGORY>
  <FREQUENCY>M</FREQUENCY>
  <DESIRED_CHANGE>U</DESIRED_CHANGE>
  <INDICATOR_UNIT>%</INDICATOR_UNIT>
  <DECIMAL_PLACES>1</DECIMAL_PLACES>
  <YTD_TARGET>97.00</YTD_TARGET>
  <YTD_ACTUAL></YTD_ACTUAL>
  <MONTHLY_TARGET>97.00</MONTHLY_TARGET>
  <MONTHLY_ACTUAL></MONTHLY_ACTUAL>
</INDICATOR>

Using lxml.objectify, we parse the file and get a reference to the root node
of the XML file with getroot:

from lxml import objectify

path = 'examples/mta_perf/Performance_MNR.xml'
parsed = objectify.parse(open(path))
root = parsed.getroot()

root.INDICATOR returns a generator yielding each <INDICATOR> XML
element. For each record, we can populate a dict of tag names (like
YTD_ACTUAL) to data values (excluding a few tags):

data = []

skip_fields = ['PARENT_SEQ', 'INDICATOR_SEQ',
               'DESIRED_CHANGE', 'DECIMAL_PLACES']

for elt in root.INDICATOR:
    el_data = {}
    for child in elt.getchildren():
        if child.tag in skip_fields:
            continue
        el_data[child.tag] = child.pyval
    data.append(el_data)



Lastly, convert this list of dicts into a DataFrame:

In [81]: perf = pd.DataFrame(data)

In [82]: perf.head()
Out[82]: 
Empty DataFrame
Columns: []
Index: []

XML data can get much more complicated than this example. Each tag can
have metadata, too. Consider an HTML link tag, which is also valid XML:

from io import StringIO
tag = '<a href="http://www.google.com">Google</a>'
root = objectify.parse(StringIO(tag)).getroot()

You can now access any of the fields (like href) in the tag or the link text:

In [84]: root
Out[84]: <Element a at 0x7f6b15817748>

In [85]: root.get('href')
Out[85]: 'http://www.google.com'

In [86]: root.text
Out[86]: 'Google'



6.2 Binary Data Formats
One of the easiest ways to store data (also known as serialization) efficiently
in binary format is using Python’s built-in pickle serialization. pandas
objects all have a to_pickle method that writes the data to disk in pickle
format:

In [87]: frame = pd.read_csv('examples/ex1.csv')

In [88]: frame
Out[88]: 
   a   b   c   d message
0  1   2   3   4   hello
1  5   6   7   8   world
2  9  10  11  12     foo

In [89]: frame.to_pickle('examples/frame_pickle')

You can read any “pickled” object stored in a file by using the built-in
pickle directly, or even more conveniently using pandas.read_pickle:

In [90]: pd.read_pickle('examples/frame_pickle')
Out[90]: 
   a   b   c   d message
0  1   2   3   4   hello
1  5   6   7   8   world
2  9  10  11  12     foo

CAUTION
pickle is only recommended as a short-term storage format. The problem is
that it is hard to guarantee that the format will be stable over time; an object
pickled today may not unpickle with a later version of a library. We have tried
to maintain backward compatibility when possible, but at some point in the
future it may be necessary to “break” the pickle format.

pandas has built-in support for two more binary data formats: HDF5 and
MessagePack. I will give some HDF5 examples in the next section, but I
encourage you to explore different file formats to see how fast they are and



how well they work for your analysis. Some other storage formats for pandas
or NumPy data include:

bcolz
A compressable column-oriented binary format based on the Blosc
compression library.

Feather
A cross-language column-oriented file format I designed with the R
programming community’s Hadley Wickham. Feather uses the Apache
Arrow columnar memory format.

http://bcolz.blosc.org/
http://github.com/wesm/feather
http://hadley.nz/
http://apache.arrow.org


Using HDF5 Format
HDF5 is a well-regarded file format intended for storing large quantities of
scientific array data. It is available as a C library, and it has interfaces
available in many other languages, including Java, Julia, MATLAB, and
Python. The “HDF” in HDF5 stands for hierarchical data format. Each
HDF5 file can store multiple datasets and supporting metadata. Compared
with simpler formats, HDF5 supports on-the-fly compression with a variety
of compression modes, enabling data with repeated patterns to be stored more
efficiently. HDF5 can be a good choice for working with very large datasets
that don’t fit into memory, as you can efficiently read and write small
sections of much larger arrays.

While it’s possible to directly access HDF5 files using either the PyTables or
h5py libraries, pandas provides a high-level interface that simplifies storing
Series and DataFrame object. The HDFStore class works like a dict and
handles the low-level details:

In [92]: frame = pd.DataFrame({'a': np.random.randn(100)})

In [93]: store = pd.HDFStore('mydata.h5')

In [94]: store['obj1'] = frame

In [95]: store['obj1_col'] = frame['a']

In [96]: store
Out[96]: 
<class 'pandas.io.pytables.HDFStore'>
File path: mydata.h5
/obj1                frame        (shape->[100,1])                                
        
/obj1_col            series       (shape->[100])                                  
        
/obj2                frame_table  (typ->appendable,nrows->100,ncols-
>1,indexers->
[index])
/obj3                frame_table  (typ->appendable,nrows->100,ncols-
>1,indexers->
[index])

Objects contained in the HDF5 file can then be retrieved with the same dict-
like API:



In [97]: store['obj1']
Out[97]: 
           a
0  -0.204708
1   0.478943
2  -0.519439
3  -0.555730
4   1.965781
..       ...
95  0.795253
96  0.118110
97 -0.748532
98  0.584970
99  0.152677
[100 rows x 1 columns]

HDFStore supports two storage schemas, 'fixed' and 'table'. The latter is
generally slower, but it supports query operations using a special syntax:

In [98]: store.put('obj2', frame, format='table')

In [99]: store.select('obj2', where=['index >= 10 and index <= 15'])
Out[99]: 
           a
10  1.007189
11 -1.296221
12  0.274992
13  0.228913
14  1.352917
15  0.886429

In [100]: store.close()

The put is an explicit version of the store['obj2'] = frame method but
allows us to set other options like the storage format.

The pandas.read_hdf function gives you a shortcut to these tools:

In [101]: frame.to_hdf('mydata.h5', 'obj3', format='table')

In [102]: pd.read_hdf('mydata.h5', 'obj3', where=['index < 5'])
Out[102]: 
          a
0 -0.204708
1  0.478943
2 -0.519439
3 -0.555730
4  1.965781



NOTE
If you are processing data that is stored on remote servers, like Amazon S3 or
HDFS, using a different binary format designed for distributed storage like
Apache Parquet may be more suitable. Python for Parquet and other such
storage formats is still developing, so I do not write about them in this book.

If you work with large quantities of data locally, I would encourage you to
explore PyTables and h5py to see how they can suit your needs. Since many
data analysis problems are I/O-bound (rather than CPU-bound), using a tool
like HDF5 can massively accelerate your applications.

CAUTION
HDF5 is not a database. It is best suited for write-once, read-many datasets.
While data can be added to a file at any time, if multiple writers do so
simultaneously, the file can become corrupted.

http://parquet.apache.org


Reading Microsoft Excel Files
pandas also supports reading tabular data stored in Excel 2003 (and higher)
files using either the ExcelFile class or pandas.read_excel function.
Internally these tools use the add-on packages xlrd and openpyxl to read
XLS and XLSX files, respectively. You may need to install these manually
with pip or conda.

To use ExcelFile, create an instance by passing a path to an xls or xlsx file:

In [104]: xlsx = pd.ExcelFile('examples/ex1.xlsx')

Data stored in a sheet can then be read into DataFrame with parse:

In [105]: pd.read_excel(xlsx, 'Sheet1')
Out[105]: 
   a   b   c   d message
0  1   2   3   4   hello
1  5   6   7   8   world
2  9  10  11  12     foo

If you are reading multiple sheets in a file, then it is faster to create the
ExcelFile, but you can also simply pass the filename to
pandas.read_excel:

In [106]: frame = pd.read_excel('examples/ex1.xlsx', 'Sheet1')

In [107]: frame
Out[107]: 
   a   b   c   d message
0  1   2   3   4   hello
1  5   6   7   8   world
2  9  10  11  12     foo

To write pandas data to Excel format, you must first create an ExcelWriter,
then write data to it using pandas objects’ to_excel method:

In [108]: writer = pd.ExcelWriter('examples/ex2.xlsx')

In [109]: frame.to_excel(writer, 'Sheet1')



In [110]: writer.save()

You can also pass a file path to to_excel and avoid the ExcelWriter:

In [111]: frame.to_excel('examples/ex2.xlsx')



6.3 Interacting with Web APIs
Many websites have public APIs providing data feeds via JSON or some
other format. There are a number of ways to access these APIs from Python;
one easy-to-use method that I recommend is the requests package.

To find the last 30 GitHub issues for pandas on GitHub, we can make a GET
HTTP request using the add-on requests library:

In [113]: import requests

In [114]: url = 'https://api.github.com/repos/pandas-dev/pandas/issues'

In [115]: resp = requests.get(url)

In [116]: resp
Out[116]: <Response [200]>

The Response object’s json method will return a dictionary containing JSON
parsed into native Python objects:

In [117]: data = resp.json()

In [118]: data[0]['title']
Out[118]: 'Period does not round down for frequencies less that 1 hour'

Each element in data is a dictionary containing all of the data found on a
GitHub issue page (except for the comments). We can pass data directly to
DataFrame and extract fields of interest:

In [119]: issues = pd.DataFrame(data, columns=['number', 'title',
   .....:                                      'labels', 'state'])

In [120]: issues
Out[120]: 
    number                                              title  \
0    17666  Period does not round down for frequencies les...   
1    17665           DOC: improve docstring of function where   
2    17664               COMPAT: skip 32-bit test on int repr   
3    17662                          implement Delegator class   
4    17654  BUG: Fix series rename called with str alterin...   
..     ...                                                ...   
25   17603  BUG: Correctly localize naive datetime strings...   

http://docs.python-requests.org


26   17599                     core.dtypes.generic --> cython   
27   17596   Merge cdate_range functionality into bdate_range   
28   17587  Time Grouper bug fix when applied for list gro...   
29   17583  BUG: fix tz-aware DatetimeIndex + TimedeltaInd...   
                                               labels state  
0                                                  []  open  
1   [{'id': 134699, 'url': 'https://api.github.com...  open  
2   [{'id': 563047854, 'url': 'https://api.github....  open  
3                                                  []  open  
4   [{'id': 76811, 'url': 'https://api.github.com/...  open  
..                                                ...   ...  
25  [{'id': 76811, 'url': 'https://api.github.com/...  open  
26  [{'id': 49094459, 'url': 'https://api.github.c...  open  
27  [{'id': 35818298, 'url': 'https://api.github.c...  open  
28  [{'id': 233160, 'url': 'https://api.github.com...  open  
29  [{'id': 76811, 'url': 'https://api.github.com/...  open  
[30 rows x 4 columns]

With a bit of elbow grease, you can create some higher-level interfaces to
common web APIs that return DataFrame objects for easy analysis.



6.4 Interacting with Databases
In a business setting, most data may not be stored in text or Excel files. SQL-
based relational databases (such as SQL Server, PostgreSQL, and MySQL)
are in wide use, and many alternative databases have become quite popular.
The choice of database is usually dependent on the performance, data
integrity, and scalability needs of an application.

Loading data from SQL into a DataFrame is fairly straightforward, and
pandas has some functions to simplify the process. As an example, I’ll create
a SQLite database using Python’s built-in sqlite3 driver:

In [121]: import sqlite3

In [122]: query = """
   .....: CREATE TABLE test
   .....: (a VARCHAR(20), b VARCHAR(20),
   .....:  c REAL,        d INTEGER
   .....: );"""

In [123]: con = sqlite3.connect('mydata.sqlite')

In [124]: con.execute(query)
Out[124]: <sqlite3.Cursor at 0x7f6b12a50f10>

In [125]: con.commit()

Then, insert a few rows of data:

In [126]: data = [('Atlanta', 'Georgia', 1.25, 6),
   .....:         ('Tallahassee', 'Florida', 2.6, 3),
   .....:         ('Sacramento', 'California', 1.7, 5)]

In [127]: stmt = "INSERT INTO test VALUES(?, ?, ?, ?)"

In [128]: con.executemany(stmt, data)
Out[128]: <sqlite3.Cursor at 0x7f6b15c66ce0>

In [129]: con.commit()

Most Python SQL drivers (PyODBC, psycopg2, MySQLdb, pymssql, etc.)
return a list of tuples when selecting data from a table:



In [130]: cursor = con.execute('select * from test')

In [131]: rows = cursor.fetchall()

In [132]: rows
Out[132]: 
[('Atlanta', 'Georgia', 1.25, 6),
 ('Tallahassee', 'Florida', 2.6, 3),
 ('Sacramento', 'California', 1.7, 5)]

You can pass the list of tuples to the DataFrame constructor, but you also
need the column names, contained in the cursor’s description attribute:

In [133]: cursor.description
Out[133]: 
(('a', None, None, None, None, None, None),
 ('b', None, None, None, None, None, None),
 ('c', None, None, None, None, None, None),
 ('d', None, None, None, None, None, None))

In [134]: pd.DataFrame(rows, columns=[x[0] for x in cursor.description])
Out[134]: 
             a           b     c  d
0      Atlanta     Georgia  1.25  6
1  Tallahassee     Florida  2.60  3
2   Sacramento  California  1.70  5

This is quite a bit of munging that you’d rather not repeat each time you
query the database. The SQLAlchemy project is a popular Python SQL
toolkit that abstracts away many of the common differences between SQL
databases. pandas has a read_sql function that enables you to read data
easily from a general SQLAlchemy connection. Here, we’ll connect to the
same SQLite database with SQLAlchemy and read data from the table
created before:

In [135]: import sqlalchemy as sqla

In [136]: db = sqla.create_engine('sqlite:///mydata.sqlite')

In [137]: pd.read_sql('select * from test', db)
Out[137]: 
             a           b     c  d
0      Atlanta     Georgia  1.25  6
1  Tallahassee     Florida  2.60  3
2   Sacramento  California  1.70  5

http://www.sqlalchemy.org/


6.5 Conclusion
Getting access to data is frequently the first step in the data analysis process.
We have looked at a number of useful tools in this chapter that should help
you get started. In the upcoming chapters we will dig deeper into data
wrangling, data visualization, time series analysis, and other topics.

For the full list, see https://www.fdic.gov/bank/individual/failed/banklist.html.1

https://www.fdic.gov/bank/individual/failed/banklist.html


Chapter 7. Data Cleaning and
Preparation

During the course of doing data analysis and modeling, a significant amount
of time is spent on data preparation: loading, cleaning, transforming, and
rearranging. Such tasks are often reported to take up 80% or more of an
analyst’s time. Sometimes the way that data is stored in files or databases is
not in the right format for a particular task. Many researchers choose to do ad
hoc processing of data from one form to another using a general-purpose
programming language, like Python, Perl, R, or Java, or Unix text-processing
tools like sed or awk. Fortunately, pandas, along with the built-in Python
language features, provides you with a high-level, flexible, and fast set of
tools to enable you to manipulate data into the right form.

If you identify a type of data manipulation that isn’t anywhere in this book or
elsewhere in the pandas library, feel free to share your use case on one of the
Python mailing lists or on the pandas GitHub site. Indeed, much of the design
and implementation of pandas has been driven by the needs of real-world
applications.

In this chapter I discuss tools for missing data, duplicate data, string
manipulation, and some other analytical data transformations. In the next
chapter, I focus on combining and rearranging datasets in various ways.



7.1 Handling Missing Data
Missing data occurs commonly in many data analysis applications. One of
the goals of pandas is to make working with missing data as painless as
possible. For example, all of the descriptive statistics on pandas objects
exclude missing data by default.

The way that missing data is represented in pandas objects is somewhat
imperfect, but it is functional for a lot of users. For numeric data, pandas uses
the floating-point value NaN (Not a Number) to represent missing data. We
call this a sentinel value that can be easily detected:

In [10]: string_data = pd.Series(['aardvark', 'artichoke', np.nan, 
'avocado'])

In [11]: string_data
Out[11]: 
0     aardvark
1    artichoke
2          NaN
3      avocado
dtype: object

In [12]: string_data.isnull()
Out[12]: 
0    False
1    False
2     True
3    False
dtype: bool

In pandas, we’ve adopted a convention used in the R programming language
by referring to missing data as NA, which stands for not available. In
statistics applications, NA data may either be data that does not exist or that
exists but was not observed (through problems with data collection, for
example). When cleaning up data for analysis, it is often important to do
analysis on the missing data itself to identify data collection problems or
potential biases in the data caused by missing data.

The built-in Python None value is also treated as NA in object arrays:

In [13]: string_data[0] = None



In [14]: string_data.isnull()
Out[14]: 
0     True
1    False
2     True
3    False
dtype: bool

There is work ongoing in the pandas project to improve the internal details of
how missing data is handled, but the user API functions, like pandas.isnull,
abstract away many of the annoying details. See Table 7-1 for a list of some
functions related to missing data handling.

Table 7-1. NA handling methods

Argument Description

dropna Filter axis labels based on whether values for each label have missing data,
with varying thresholds for how much missing data to tolerate.

fillna Fill in missing data with some value or using an interpolation method such as
'ffill' or 'bfill'.

isnull Return boolean values indicating which values are missing/NA.

notnull Negation of isnull.



Filtering Out Missing Data
There are a few ways to filter out missing data. While you always have the
option to do it by hand using pandas.isnull and boolean indexing, the
dropna can be helpful. On a Series, it returns the Series with only the non-
null data and index values:

In [15]: from numpy import nan as NA

In [16]: data = pd.Series([1, NA, 3.5, NA, 7])

In [17]: data.dropna()
Out[17]: 
0    1.0
2    3.5
4    7.0
dtype: float64

This is equivalent to:

In [18]: data[data.notnull()]
Out[18]: 
0    1.0
2    3.5
4    7.0
dtype: float64

With DataFrame objects, things are a bit more complex. You may want to
drop rows or columns that are all NA or only those containing any NAs.
dropna by default drops any row containing a missing value:

In [19]: data = pd.DataFrame([[1., 6.5, 3.], [1., NA, NA],
   ....:                      [NA, NA, NA], [NA, 6.5, 3.]])

In [20]: cleaned = data.dropna()

In [21]: data
Out[21]: 
     0    1    2
0  1.0  6.5  3.0
1  1.0  NaN  NaN
2  NaN  NaN  NaN
3  NaN  6.5  3.0

In [22]: cleaned



Out[22]: 
     0    1    2
0  1.0  6.5  3.0

Passing how='all' will only drop rows that are all NA:

In [23]: data.dropna(how='all')
Out[23]: 
     0    1    2
0  1.0  6.5  3.0
1  1.0  NaN  NaN
3  NaN  6.5  3.0

To drop columns in the same way, pass axis=1:

In [24]: data[4] = NA

In [25]: data
Out[25]: 
     0    1    2   4
0  1.0  6.5  3.0 NaN
1  1.0  NaN  NaN NaN
2  NaN  NaN  NaN NaN
3  NaN  6.5  3.0 NaN

In [26]: data.dropna(axis=1, how='all')
Out[26]: 
     0    1    2
0  1.0  6.5  3.0
1  1.0  NaN  NaN
2  NaN  NaN  NaN
3  NaN  6.5  3.0

A related way to filter out DataFrame rows tends to concern time series data.
Suppose you want to keep only rows containing a certain number of
observations. You can indicate this with the thresh argument:

In [27]: df = pd.DataFrame(np.random.randn(7, 3))

In [28]: df.iloc[:4, 1] = NA

In [29]: df.iloc[:2, 2] = NA

In [30]: df
Out[30]: 
          0         1         2
0 -0.204708       NaN       NaN
1 -0.555730       NaN       NaN
2  0.092908       NaN  0.769023



3  1.246435       NaN -1.296221
4  0.274992  0.228913  1.352917
5  0.886429 -2.001637 -0.371843
6  1.669025 -0.438570 -0.539741

In [31]: df.dropna()
Out[31]: 
          0         1         2
4  0.274992  0.228913  1.352917
5  0.886429 -2.001637 -0.371843
6  1.669025 -0.438570 -0.539741

In [32]: df.dropna(thresh=2)
Out[32]: 
          0         1         2
2  0.092908       NaN  0.769023
3  1.246435       NaN -1.296221
4  0.274992  0.228913  1.352917
5  0.886429 -2.001637 -0.371843
6  1.669025 -0.438570 -0.539741



Filling In Missing Data
Rather than filtering out missing data (and potentially discarding other data
along with it), you may want to fill in the “holes” in any number of ways. For
most purposes, the fillna method is the workhorse function to use. Calling
fillna with a constant replaces missing values with that value:

In [33]: df.fillna(0)
Out[33]: 
          0         1         2
0 -0.204708  0.000000  0.000000
1 -0.555730  0.000000  0.000000
2  0.092908  0.000000  0.769023
3  1.246435  0.000000 -1.296221
4  0.274992  0.228913  1.352917
5  0.886429 -2.001637 -0.371843
6  1.669025 -0.438570 -0.539741

Calling fillna with a dict, you can use a different fill value for each column:

In [34]: df.fillna({1: 0.5, 2: 0})
Out[34]: 
          0         1         2
0 -0.204708  0.500000  0.000000
1 -0.555730  0.500000  0.000000
2  0.092908  0.500000  0.769023
3  1.246435  0.500000 -1.296221
4  0.274992  0.228913  1.352917
5  0.886429 -2.001637 -0.371843
6  1.669025 -0.438570 -0.539741

fillna returns a new object, but you can modify the existing object in-place:

In [35]: _ = df.fillna(0, inplace=True)

In [36]: df
Out[36]: 
          0         1         2
0 -0.204708  0.000000  0.000000
1 -0.555730  0.000000  0.000000
2  0.092908  0.000000  0.769023
3  1.246435  0.000000 -1.296221
4  0.274992  0.228913  1.352917
5  0.886429 -2.001637 -0.371843
6  1.669025 -0.438570 -0.539741



The same interpolation methods available for reindexing can be used with
fillna:

In [37]: df = pd.DataFrame(np.random.randn(6, 3))

In [38]: df.iloc[2:, 1] = NA

In [39]: df.iloc[4:, 2] = NA

In [40]: df
Out[40]: 
          0         1         2
0  0.476985  3.248944 -1.021228
1 -0.577087  0.124121  0.302614
2  0.523772       NaN  1.343810
3 -0.713544       NaN -2.370232
4 -1.860761       NaN       NaN
5 -1.265934       NaN       NaN

In [41]: df.fillna(method='ffill')
Out[41]: 
          0         1         2
0  0.476985  3.248944 -1.021228
1 -0.577087  0.124121  0.302614
2  0.523772  0.124121  1.343810
3 -0.713544  0.124121 -2.370232
4 -1.860761  0.124121 -2.370232
5 -1.265934  0.124121 -2.370232

In [42]: df.fillna(method='ffill', limit=2)
Out[42]: 
          0         1         2
0  0.476985  3.248944 -1.021228
1 -0.577087  0.124121  0.302614
2  0.523772  0.124121  1.343810
3 -0.713544  0.124121 -2.370232
4 -1.860761       NaN -2.370232
5 -1.265934       NaN -2.370232

With fillna you can do lots of other things with a little creativity. For
example, you might pass the mean or median value of a Series:

In [43]: data = pd.Series([1., NA, 3.5, NA, 7])

In [44]: data.fillna(data.mean())
Out[44]: 
0    1.000000
1    3.833333
2    3.500000
3    3.833333
4    7.000000
dtype: float64



See Table 7-2 for a reference on fillna.

Table 7-2. fillna function arguments

Argument Description

value Scalar value or dict-like object to use to fill missing values

method Interpolation; by default 'ffill' if function called with no other arguments

axis Axis to fill on; default axis=0

inplace Modify the calling object without producing a copy

limit For forward and backward filling, maximum number of consecutive periods
to fill



7.2 Data Transformation
So far in this chapter we’ve been concerned with rearranging data. Filtering,
cleaning, and other transformations are another class of important operations.



Removing Duplicates
Duplicate rows may be found in a DataFrame for any number of reasons.
Here is an example:

In [45]: data = pd.DataFrame({'k1': ['one', 'two'] * 3 + ['two'],
   ....:                      'k2': [1, 1, 2, 3, 3, 4, 4]})

In [46]: data
Out[46]: 
    k1  k2
0  one   1
1  two   1
2  one   2
3  two   3
4  one   3
5  two   4
6  two   4

The DataFrame method duplicated returns a boolean Series indicating
whether each row is a duplicate (has been observed in a previous row) or not:

In [47]: data.duplicated()
Out[47]: 
0    False
1    False
2    False
3    False
4    False
5    False
6     True
dtype: bool

Relatedly, drop_duplicates returns a DataFrame where the duplicated
array is False:

In [48]: data.drop_duplicates()
Out[48]: 
    k1  k2
0  one   1
1  two   1
2  one   2
3  two   3
4  one   3
5  two   4



Both of these methods by default consider all of the columns; alternatively,
you can specify any subset of them to detect duplicates. Suppose we had an
additional column of values and wanted to filter duplicates only based on the
'k1' column:

In [49]: data['v1'] = range(7)

In [50]: data.drop_duplicates(['k1'])
Out[50]: 
    k1  k2  v1
0  one   1   0
1  two   1   1

duplicated and drop_duplicates by default keep the first observed value
combination. Passing keep='last' will return the last one:

In [51]: data.drop_duplicates(['k1', 'k2'], keep='last')
Out[51]: 
    k1  k2  v1
0  one   1   0
1  two   1   1
2  one   2   2
3  two   3   3
4  one   3   4
6  two   4   6



Transforming Data Using a Function or Mapping
For many datasets, you may wish to perform some transformation based on
the values in an array, Series, or column in a DataFrame. Consider the
following hypothetical data collected about various kinds of meat:

In [52]: data = pd.DataFrame({'food': ['bacon', 'pulled pork', 'bacon',
   ....:                               'Pastrami', 'corned beef', 'Bacon',
   ....:                               'pastrami', 'honey ham', 'nova lox'],
   ....:                      'ounces': [4, 3, 12, 6, 7.5, 8, 3, 5, 6]})

In [53]: data
Out[53]: 
          food  ounces
0        bacon     4.0
1  pulled pork     3.0
2        bacon    12.0
3     Pastrami     6.0
4  corned beef     7.5
5        Bacon     8.0
6     pastrami     3.0
7    honey ham     5.0
8     nova lox     6.0

Suppose you wanted to add a column indicating the type of animal that each
food came from. Let’s write down a mapping of each distinct meat type to the
kind of animal:

meat_to_animal = {
  'bacon': 'pig',
  'pulled pork': 'pig',
  'pastrami': 'cow',
  'corned beef': 'cow',
  'honey ham': 'pig',
  'nova lox': 'salmon'
}

The map method on a Series accepts a function or dict-like object containing a
mapping, but here we have a small problem in that some of the meats are
capitalized and others are not. Thus, we need to convert each value to
lowercase using the str.lower Series method:

In [55]: lowercased = data['food'].str.lower()



In [56]: lowercased
Out[56]: 
0          bacon
1    pulled pork
2          bacon
3       pastrami
4    corned beef
5          bacon
6       pastrami
7      honey ham
8       nova lox
Name: food, dtype: object

In [57]: data['animal'] = lowercased.map(meat_to_animal)

In [58]: data
Out[58]: 
          food  ounces  animal
0        bacon     4.0     pig
1  pulled pork     3.0     pig
2        bacon    12.0     pig
3     Pastrami     6.0     cow
4  corned beef     7.5     cow
5        Bacon     8.0     pig
6     pastrami     3.0     cow
7    honey ham     5.0     pig
8     nova lox     6.0  salmon

We could also have passed a function that does all the work:

In [59]: data['food'].map(lambda x: meat_to_animal[x.lower()])
Out[59]: 
0       pig
1       pig
2       pig
3       cow
4       cow
5       pig
6       cow
7       pig
8    salmon
Name: food, dtype: object

Using map is a convenient way to perform element-wise transformations and
other data cleaning–related operations.



Replacing Values
Filling in missing data with the fillna method is a special case of more
general value replacement. As you’ve already seen, map can be used to
modify a subset of values in an object but replace provides a simpler and
more flexible way to do so. Let’s consider this Series:

In [60]: data = pd.Series([1., -999., 2., -999., -1000., 3.])

In [61]: data
Out[61]: 
0       1.0
1    -999.0
2       2.0
3    -999.0
4   -1000.0
5       3.0
dtype: float64

The -999 values might be sentinel values for missing data. To replace these
with NA values that pandas understands, we can use replace, producing a
new Series (unless you pass inplace=True):

In [62]: data.replace(-999, np.nan)
Out[62]: 
0       1.0
1       NaN
2       2.0
3       NaN
4   -1000.0
5       3.0
dtype: float64

If you want to replace multiple values at once, you instead pass a list and then
the substitute value:

In [63]: data.replace([-999, -1000], np.nan)
Out[63]: 
0    1.0
1    NaN
2    2.0
3    NaN
4    NaN
5    3.0



dtype: float64

To use a different replacement for each value, pass a list of substitutes:

In [64]: data.replace([-999, -1000], [np.nan, 0])
Out[64]: 
0    1.0
1    NaN
2    2.0
3    NaN
4    0.0
5    3.0
dtype: float64

The argument passed can also be a dict:

In [65]: data.replace({-999: np.nan, -1000: 0})
Out[65]: 
0    1.0
1    NaN
2    2.0
3    NaN
4    0.0
5    3.0
dtype: float64

NOTE
The data.replace method is distinct from data.str.replace, which performs
string substitution element-wise. We look at these string methods on Series later
in the chapter.



Renaming Axis Indexes
Like values in a Series, axis labels can be similarly transformed by a function
or mapping of some form to produce new, differently labeled objects. You
can also modify the axes in-place without creating a new data structure.
Here’s a simple example:

In [66]: data = pd.DataFrame(np.arange(12).reshape((3, 4)),
   ....:                     index=['Ohio', 'Colorado', 'New York'],
   ....:                     columns=['one', 'two', 'three', 'four'])

Like a Series, the axis indexes have a map method:

In [67]: transform = lambda x: x[:4].upper()

In [68]: data.index.map(transform)
Out[68]: Index(['OHIO', 'COLO', 'NEW '], dtype='object')

You can assign to index, modifying the DataFrame in-place:

In [69]: data.index = data.index.map(transform)

In [70]: data
Out[70]: 
      one  two  three  four
OHIO    0    1      2     3
COLO    4    5      6     7
NEW     8    9     10    11

If you want to create a transformed version of a dataset without modifying
the original, a useful method is rename:

In [71]: data.rename(index=str.title, columns=str.upper)
Out[71]: 
      ONE  TWO  THREE  FOUR
Ohio    0    1      2     3
Colo    4    5      6     7
New     8    9     10    11

Notably, rename can be used in conjunction with a dict-like object providing
new values for a subset of the axis labels:



In [72]: data.rename(index={'OHIO': 'INDIANA'},
   ....:             columns={'three': 'peekaboo'})
Out[72]: 
         one  two  peekaboo  four
INDIANA    0    1         2     3
COLO       4    5         6     7
NEW        8    9        10    11

rename saves you from the chore of copying the DataFrame manually and
assigning to its index and columns attributes. Should you wish to modify a
dataset in-place, pass inplace=True:

In [73]: data.rename(index={'OHIO': 'INDIANA'}, inplace=True)

In [74]: data
Out[74]: 
         one  two  three  four
INDIANA    0    1      2     3
COLO       4    5      6     7
NEW        8    9     10    11



Discretization and Binning
Continuous data is often discretized or otherwise separated into “bins” for
analysis. Suppose you have data about a group of people in a study, and you
want to group them into discrete age buckets:

In [75]: ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]

Let’s divide these into bins of 18 to 25, 26 to 35, 36 to 60, and finally 61 and
older. To do so, you have to use cut, a function in pandas:

In [76]: bins = [18, 25, 35, 60, 100]

In [77]: cats = pd.cut(ages, bins)

In [78]: cats
Out[78]: 
[(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (25, 35], (60, 100], 
(35,
 60], (35, 60], (25, 35]]
Length: 12
Categories (4, interval[int64]): [(18, 25] < (25, 35] < (35, 60] < (60, 100]]

The object pandas returns is a special Categorical object. The output you
see describes the bins computed by pandas.cut. You can treat it like an array
of strings indicating the bin name; internally it contains a categories array
specifying the distinct category names along with a labeling for the ages data
in the codes attribute:

In [79]: cats.codes
Out[79]: array([0, 0, 0, 1, 0, 0, 2, 1, 3, 2, 2, 1], dtype=int8)

In [80]: cats.categories
Out[80]: 
IntervalIndex([(18, 25], (25, 35], (35, 60], (60, 100]]
              closed='right',
              dtype='interval[int64]')

In [81]: pd.value_counts(cats)
Out[81]: 
(18, 25]     5
(35, 60]     3
(25, 35]     3



(60, 100]    1
dtype: int64

Note that pd.value_counts(cats) are the bin counts for the result of
pandas.cut.

Consistent with mathematical notation for intervals, a parenthesis means that
the side is open, while the square bracket means it is closed (inclusive). You
can change which side is closed by passing right=False:

In [82]: pd.cut(ages, [18, 26, 36, 61, 100], right=False)
Out[82]: 
[[18, 26), [18, 26), [18, 26), [26, 36), [18, 26), ..., [26, 36), [61, 100), 
[36,
 61), [36, 61), [26, 36)]
Length: 12
Categories (4, interval[int64]): [[18, 26) < [26, 36) < [36, 61) < [61, 100)]

You can also pass your own bin names by passing a list or array to the
labels option:

In [83]: group_names = ['Youth', 'YoungAdult', 'MiddleAged', 'Senior']

In [84]: pd.cut(ages, bins, labels=group_names)
Out[84]: 
[Youth, Youth, Youth, YoungAdult, Youth, ..., YoungAdult, Senior, MiddleAged, 
Mid
dleAged, YoungAdult]
Length: 12
Categories (4, object): [Youth < YoungAdult < MiddleAged < Senior]

If you pass an integer number of bins to cut instead of explicit bin edges, it
will compute equal-length bins based on the minimum and maximum values
in the data. Consider the case of some uniformly distributed data chopped
into fourths:

In [85]: data = np.random.rand(20)

In [86]: pd.cut(data, 4, precision=2)
Out[86]: 
[(0.34, 0.55], (0.34, 0.55], (0.76, 0.97], (0.76, 0.97], (0.34, 0.55], ..., 
(0.34
, 0.55], (0.34, 0.55], (0.55, 0.76], (0.34, 0.55], (0.12, 0.34]]
Length: 20
Categories (4, interval[float64]): [(0.12, 0.34] < (0.34, 0.55] < (0.55, 



0.76] < 
(0.76, 0.97]]

The precision=2 option limits the decimal precision to two digits.

A closely related function, qcut, bins the data based on sample quantiles.
Depending on the distribution of the data, using cut will not usually result in
each bin having the same number of data points. Since qcut uses sample
quantiles instead, by definition you will obtain roughly equal-size bins:

In [87]: data = np.random.randn(1000)  # Normally distributed

In [88]: cats = pd.qcut(data, 4)  # Cut into quartiles

In [89]: cats
Out[89]: 
[(-0.0265, 0.62], (0.62, 3.928], (-0.68, -0.0265], (0.62, 3.928], (-0.0265, 
0.62]
, ..., (-0.68, -0.0265], (-0.68, -0.0265], (-2.95, -0.68], (0.62, 3.928], 
(-0.68,
 -0.0265]]
Length: 1000
Categories (4, interval[float64]): [(-2.95, -0.68] < (-0.68, -0.0265] < 
(-0.0265,
 0.62] <
                                    (0.62, 3.928]]

In [90]: pd.value_counts(cats)
Out[90]: 
(0.62, 3.928]       250
(-0.0265, 0.62]     250
(-0.68, -0.0265]    250
(-2.95, -0.68]      250
dtype: int64

Similar to cut you can pass your own quantiles (numbers between 0 and 1,
inclusive):

In [91]: pd.qcut(data, [0, 0.1, 0.5, 0.9, 1.])
Out[91]: 
[(-0.0265, 1.286], (-0.0265, 1.286], (-1.187, -0.0265], (-0.0265, 1.286], 
(-0.026
5, 1.286], ..., (-1.187, -0.0265], (-1.187, -0.0265], (-2.95, -1.187], 
(-0.0265, 
1.286], (-1.187, -0.0265]]
Length: 1000
Categories (4, interval[float64]): [(-2.95, -1.187] < (-1.187, -0.0265] < 
(-0.026
5, 1.286] <



                                    (1.286, 3.928]]

We’ll return to cut and qcut later in the chapter during our discussion of
aggregation and group operations, as these discretization functions are
especially useful for quantile and group analysis.



Detecting and Filtering Outliers
Filtering or transforming outliers is largely a matter of applying array
operations. Consider a DataFrame with some normally distributed data:

In [92]: data = pd.DataFrame(np.random.randn(1000, 4))

In [93]: data.describe()
Out[93]: 
                 0            1            2            3
count  1000.000000  1000.000000  1000.000000  1000.000000
mean      0.049091     0.026112    -0.002544    -0.051827
std       0.996947     1.007458     0.995232     0.998311
min      -3.645860    -3.184377    -3.745356    -3.428254
25%      -0.599807    -0.612162    -0.687373    -0.747478
50%       0.047101    -0.013609    -0.022158    -0.088274
75%       0.756646     0.695298     0.699046     0.623331
max       2.653656     3.525865     2.735527     3.366626

Suppose you wanted to find values in one of the columns exceeding 3 in
absolute value:

In [94]: col = data[2]

In [95]: col[np.abs(col) > 3]
Out[95]: 
41    -3.399312
136   -3.745356
Name: 2, dtype: float64

To select all rows having a value exceeding 3 or –3, you can use the any
method on a boolean DataFrame:

In [96]: data[(np.abs(data) > 3).any(1)]
Out[96]: 
            0         1         2         3
41   0.457246 -0.025907 -3.399312 -0.974657
60   1.951312  3.260383  0.963301  1.201206
136  0.508391 -0.196713 -3.745356 -1.520113
235 -0.242459 -3.056990  1.918403 -0.578828
258  0.682841  0.326045  0.425384 -3.428254
322  1.179227 -3.184377  1.369891 -1.074833
544 -3.548824  1.553205 -2.186301  1.277104
635 -0.578093  0.193299  1.397822  3.366626
782 -0.207434  3.525865  0.283070  0.544635
803 -3.645860  0.255475 -0.549574 -1.907459



Values can be set based on these criteria. Here is code to cap values outside
the interval –3 to 3:

In [97]: data[np.abs(data) > 3] = np.sign(data) * 3

In [98]: data.describe()
Out[98]: 
                 0            1            2            3
count  1000.000000  1000.000000  1000.000000  1000.000000
mean      0.050286     0.025567    -0.001399    -0.051765
std       0.992920     1.004214     0.991414     0.995761
min      -3.000000    -3.000000    -3.000000    -3.000000
25%      -0.599807    -0.612162    -0.687373    -0.747478
50%       0.047101    -0.013609    -0.022158    -0.088274
75%       0.756646     0.695298     0.699046     0.623331
max       2.653656     3.000000     2.735527     3.000000

The statement np.sign(data) produces 1 and –1 values based on whether the
values in data are positive or negative:

In [99]: np.sign(data).head()
Out[99]: 
     0    1    2    3
0 -1.0  1.0 -1.0  1.0
1  1.0 -1.0  1.0 -1.0
2  1.0  1.0  1.0 -1.0
3 -1.0 -1.0  1.0 -1.0
4 -1.0  1.0 -1.0 -1.0



Permutation and Random Sampling
Permuting (randomly reordering) a Series or the rows in a DataFrame is easy
to do using the numpy.random.permutation function. Calling permutation
with the length of the axis you want to permute produces an array of integers
indicating the new ordering:

In [100]: df = pd.DataFrame(np.arange(5 * 4).reshape((5, 4)))

In [101]: sampler = np.random.permutation(5)

In [102]: sampler
Out[102]: array([3, 1, 4, 2, 0])

That array can then be used in iloc-based indexing or the equivalent take
function:

In [103]: df
Out[103]: 
    0   1   2   3
0   0   1   2   3
1   4   5   6   7
2   8   9  10  11
3  12  13  14  15
4  16  17  18  19

In [104]: df.take(sampler)
Out[104]: 
    0   1   2   3
3  12  13  14  15
1   4   5   6   7
4  16  17  18  19
2   8   9  10  11
0   0   1   2   3

To select a random subset without replacement, you can use the sample
method on Series and DataFrame:

In [105]: df.sample(n=3)
Out[105]: 
    0   1   2   3
3  12  13  14  15
4  16  17  18  19
2   8   9  10  11



To generate a sample with replacement (to allow repeat choices), pass
replace=True to sample:

In [106]: choices = pd.Series([5, 7, -1, 6, 4])

In [107]: draws = choices.sample(n=10, replace=True)

In [108]: draws
Out[108]: 
4    4
1    7
4    4
2   -1
0    5
3    6
1    7
4    4
0    5
4    4
dtype: int64



Computing Indicator/Dummy Variables
Another type of transformation for statistical modeling or machine learning
applications is converting a categorical variable into a “dummy” or
“indicator” matrix. If a column in a DataFrame has k distinct values, you
would derive a matrix or DataFrame with k columns containing all 1s and 0s.
pandas has a get_dummies function for doing this, though devising one
yourself is not difficult. Let’s return to an earlier example DataFrame:

In [109]: df = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],
   .....:                    'data1': range(6)})

In [110]: pd.get_dummies(df['key'])
Out[110]: 
   a  b  c
0  0  1  0
1  0  1  0
2  1  0  0
3  0  0  1
4  1  0  0
5  0  1  0

In some cases, you may want to add a prefix to the columns in the indicator
DataFrame, which can then be merged with the other data. get_dummies has
a prefix argument for doing this:

In [111]: dummies = pd.get_dummies(df['key'], prefix='key')

In [112]: df_with_dummy = df[['data1']].join(dummies)

In [113]: df_with_dummy
Out[113]: 
   data1  key_a  key_b  key_c
0      0      0      1      0
1      1      0      1      0
2      2      1      0      0
3      3      0      0      1
4      4      1      0      0
5      5      0      1      0

If a row in a DataFrame belongs to multiple categories, things are a bit more
complicated. Let’s look at the MovieLens 1M dataset, which is investigated
in more detail in Chapter 14:



In [114]: mnames = ['movie_id', 'title', 'genres']

In [115]: movies = pd.read_table('datasets/movielens/movies.dat', sep='::',
   .....:                        header=None, names=mnames)

In [116]: movies[:10]
Out[116]: 
   movie_id                               title                        genres
0         1                    Toy Story (1995)   Animation|Children's|Comedy
1         2                      Jumanji (1995)  Adventure|Children's|Fantasy
2         3             Grumpier Old Men (1995)                Comedy|Romance
3         4            Waiting to Exhale (1995)                  Comedy|Drama
4         5  Father of the Bride Part II (1995)                        Comedy
5         6                         Heat (1995)         Action|Crime|Thriller
6         7                      Sabrina (1995)                Comedy|Romance
7         8                 Tom and Huck (1995)          Adventure|Children's
8         9                 Sudden Death (1995)                        Action
9        10                    GoldenEye (1995)     Action|Adventure|Thriller

Adding indicator variables for each genre requires a little bit of wrangling.
First, we extract the list of unique genres in the dataset:

In [117]: all_genres = []

In [118]: for x in movies.genres:
   .....:     all_genres.extend(x.split('|'))

In [119]: genres = pd.unique(all_genres)

Now we have:

In [120]: genres
Out[120]: 
array(['Animation', "Children's", 'Comedy', 'Adventure', 'Fantasy',
       'Romance', 'Drama', 'Action', 'Crime', 'Thriller', 'Horror',
       'Sci-Fi', 'Documentary', 'War', 'Musical', 'Mystery', 'Film-Noir',
       'Western'], dtype=object)

One way to construct the indicator DataFrame is to start with a DataFrame of
all zeros:

In [121]: zero_matrix = np.zeros((len(movies), len(genres)))

In [122]: dummies = pd.DataFrame(zero_matrix, columns=genres)

Now, iterate through each movie and set entries in each row of dummies to 1.
To do this, we use the dummies.columns to compute the column indices for



each genre:

In [123]: gen = movies.genres[0]

In [124]: gen.split('|')
Out[124]: ['Animation', "Children's", 'Comedy']

In [125]: dummies.columns.get_indexer(gen.split('|'))
Out[125]: array([0, 1, 2])

Then, we can use .iloc to set values based on these indices:

In [126]: for i, gen in enumerate(movies.genres):
   .....:     indices = dummies.columns.get_indexer(gen.split('|'))
   .....:     dummies.iloc[i, indices] = 1
   .....:

Then, as before, you can combine this with movies:

In [127]: movies_windic = movies.join(dummies.add_prefix('Genre_'))

In [128]: movies_windic.iloc[0]
Out[128]: 
movie_id                                       1
title                           Toy Story (1995)
genres               Animation|Children's|Comedy
Genre_Animation                                1
Genre_Children's                               1
Genre_Comedy                                   1
Genre_Adventure                                0
Genre_Fantasy                                  0
Genre_Romance                                  0
Genre_Drama                                    0
                                ...             
Genre_Crime                                    0
Genre_Thriller                                 0
Genre_Horror                                   0
Genre_Sci-Fi                                   0
Genre_Documentary                              0
Genre_War                                      0
Genre_Musical                                  0
Genre_Mystery                                  0
Genre_Film-Noir                                0
Genre_Western                                  0
Name: 0, Length: 21, dtype: object

NOTE
For much larger data, this method of constructing indicator variables with



multiple membership is not especially speedy. It would be better to write a
lower-level function that writes directly to a NumPy array, and then wrap the
result in a DataFrame.

A useful recipe for statistical applications is to combine get_dummies with a
discretization function like cut:

In [129]: np.random.seed(12345)

In [130]: values = np.random.rand(10)

In [131]: values
Out[131]: 
array([ 0.9296,  0.3164,  0.1839,  0.2046,  0.5677,  0.5955,  0.9645,
        0.6532,  0.7489,  0.6536])

In [132]: bins = [0, 0.2, 0.4, 0.6, 0.8, 1]

In [133]: pd.get_dummies(pd.cut(values, bins))
Out[133]: 
   (0.0, 0.2]  (0.2, 0.4]  (0.4, 0.6]  (0.6, 0.8]  (0.8, 1.0]
0           0           0           0           0           1
1           0           1           0           0           0
2           1           0           0           0           0
3           0           1           0           0           0
4           0           0           1           0           0
5           0           0           1           0           0
6           0           0           0           0           1
7           0           0           0           1           0
8           0           0           0           1           0
9           0           0           0           1           0

We set the random seed with numpy.random.seed to make the example
deterministic. We will look again at pandas.get_dummies later in the book.



7.3 String Manipulation
Python has long been a popular raw data manipulation language in part due to
its ease of use for string and text processing. Most text operations are made
simple with the string object’s built-in methods. For more complex pattern
matching and text manipulations, regular expressions may be needed. pandas
adds to the mix by enabling you to apply string and regular expressions
concisely on whole arrays of data, additionally handling the annoyance of
missing data.



String Object Methods
In many string munging and scripting applications, built-in string methods
are sufficient. As an example, a comma-separated string can be broken into
pieces with split:

In [134]: val = 'a,b,  guido'

In [135]: val.split(',')
Out[135]: ['a', 'b', '  guido']

split is often combined with strip to trim whitespace (including line
breaks):

In [136]: pieces = [x.strip() for x in val.split(',')]

In [137]: pieces
Out[137]: ['a', 'b', 'guido']

These substrings could be concatenated together with a two-colon delimiter
using addition:

In [138]: first, second, third = pieces

In [139]: first + '::' + second + '::' + third
Out[139]: 'a::b::guido'

But this isn’t a practical generic method. A faster and more Pythonic way is
to pass a list or tuple to the join method on the string '::':

In [140]: '::'.join(pieces)
Out[140]: 'a::b::guido'

Other methods are concerned with locating substrings. Using Python’s in
keyword is the best way to detect a substring, though index and find can
also be used:

In [141]: 'guido' in val
Out[141]: True



In [142]: val.index(',')
Out[142]: 1

In [143]: val.find(':')
Out[143]: -1

Note the difference between find and index is that index raises an exception
if the string isn’t found (versus returning –1):

In [144]: val.index(':')
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-144-280f8b2856ce> in <module>()
----> 1 val.index(':')
ValueError: substring not found

Relatedly, count returns the number of occurrences of a particular substring:

In [145]: val.count(',')
Out[145]: 2

replace will substitute occurrences of one pattern for another. It is
commonly used to delete patterns, too, by passing an empty string:

In [146]: val.replace(',', '::')
Out[146]: 'a::b::  guido'

In [147]: val.replace(',', '')
Out[147]: 'ab  guido'

See Table 7-3 for a listing of some of Python’s string methods.

Regular expressions can also be used with many of these operations, as you’ll
see.

Table 7-3. Python built-in string methods

Argument Description

count Return the number of non-overlapping occurrences of substring in the string.

endswith Returns True if string ends with suffix.

startswith Returns True if string starts with prefix.

join Use string as delimiter for concatenating a sequence of other strings.



index Return position of first character in substring if found in the string; raises
ValueError if not found.

find Return position of first character of first occurrence of substring in the string;
like index, but returns –1 if not found.

rfind Return position of first character of last occurrence of substring in the string;
returns –1 if not found.

replace Replace occurrences of string with another string.

strip,
rstrip,
lstrip

Trim whitespace, including newlines; equivalent to x.strip() (and rstrip,
lstrip, respectively) for each element.

split Break string into list of substrings using passed delimiter.

lower Convert alphabet characters to lowercase.

upper Convert alphabet characters to uppercase.

casefold Convert characters to lowercase, and convert any region-specific variable
character combinations to a common comparable form.

ljust,
rjust

Left justify or right justify, respectively; pad opposite side of string with
spaces (or some other fill character) to return a string with a minimum width.



Regular Expressions
Regular expressions provide a flexible way to search or match (often more
complex) string patterns in text. A single expression, commonly called a
regex, is a string formed according to the regular expression language.
Python’s built-in re module is responsible for applying regular expressions to
strings; I’ll give a number of examples of its use here.

NOTE
The art of writing regular expressions could be a chapter of its own and thus is
outside the book’s scope. There are many excellent tutorials and references
available on the internet and in other books.

The re module functions fall into three categories: pattern matching,
substitution, and splitting. Naturally these are all related; a regex describes a
pattern to locate in the text, which can then be used for many purposes. Let’s
look at a simple example: suppose we wanted to split a string with a variable
number of whitespace characters (tabs, spaces, and newlines). The regex
describing one or more whitespace characters is \s+:

In [148]: import re

In [149]: text = "foo    bar\t baz  \tqux"

In [150]: re.split('\s+', text)
Out[150]: ['foo', 'bar', 'baz', 'qux']

When you call re.split('\s+', text), the regular expression is first
compiled, and then its split method is called on the passed text. You can
compile the regex yourself with re.compile, forming a reusable regex object:

In [151]: regex = re.compile('\s+')

In [152]: regex.split(text)
Out[152]: ['foo', 'bar', 'baz', 'qux']



If, instead, you wanted to get a list of all patterns matching the regex, you can
use the findall method:

In [153]: regex.findall(text)
Out[153]: ['    ', '\t ', '  \t']

NOTE
To avoid unwanted escaping with \ in a regular expression, use raw string
literals like r'C:\x' instead of the equivalent 'C:\\x'.

Creating a regex object with re.compile is highly recommended if you
intend to apply the same expression to many strings; doing so will save CPU
cycles.

match and search are closely related to findall. While findall returns all
matches in a string, search returns only the first match. More rigidly, match
only matches at the beginning of the string. As a less trivial example, let’s
consider a block of text and a regular expression capable of identifying most
email addresses:

text = """Dave dave@google.com
Steve steve@gmail.com
Rob rob@gmail.com
Ryan ryan@yahoo.com
"""
pattern = r'[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}'

# re.IGNORECASE makes the regex case-insensitive
regex = re.compile(pattern, flags=re.IGNORECASE)

Using findall on the text produces a list of the email addresses:

In [155]: regex.findall(text)
Out[155]: 
['dave@google.com',
 'steve@gmail.com',
 'rob@gmail.com',
 'ryan@yahoo.com']



search returns a special match object for the first email address in the text.
For the preceding regex, the match object can only tell us the start and end
position of the pattern in the string:

In [156]: m = regex.search(text)

In [157]: m
Out[157]: <_sre.SRE_Match object; span=(5, 20), match='dave@google.com'>

In [158]: text[m.start():m.end()]
Out[158]: 'dave@google.com'

regex.match returns None, as it only will match if the pattern occurs at the
start of the string:

In [159]: print(regex.match(text))
None

Relatedly, sub will return a new string with occurrences of the pattern
replaced by the a new string:

In [160]: print(regex.sub('REDACTED', text))
Dave REDACTED
Steve REDACTED
Rob REDACTED
Ryan REDACTED

Suppose you wanted to find email addresses and simultaneously segment
each address into its three components: username, domain name, and domain
suffix. To do this, put parentheses around the parts of the pattern to segment:

In [161]: pattern = r'([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})'

In [162]: regex = re.compile(pattern, flags=re.IGNORECASE)

A match object produced by this modified regex returns a tuple of the pattern
components with its groups method:

In [163]: m = regex.match('wesm@bright.net')

In [164]: m.groups()
Out[164]: ('wesm', 'bright', 'net')



findall returns a list of tuples when the pattern has groups:

In [165]: regex.findall(text)
Out[165]: 
[('dave', 'google', 'com'),
 ('steve', 'gmail', 'com'),
 ('rob', 'gmail', 'com'),
 ('ryan', 'yahoo', 'com')]

sub also has access to groups in each match using special symbols like \1 and
\2. The symbol \1 corresponds to the first matched group, \2 corresponds to
the second, and so forth:

In [166]: print(regex.sub(r'Username: \1, Domain: \2, Suffix: \3', text))
Dave Username: dave, Domain: google, Suffix: com
Steve Username: steve, Domain: gmail, Suffix: com
Rob Username: rob, Domain: gmail, Suffix: com
Ryan Username: ryan, Domain: yahoo, Suffix: com

There is much more to regular expressions in Python, most of which is
outside the book’s scope. Table 7-4 provides a brief summary.

Table 7-4. Regular expression methods

Argument Description

findall Return all non-overlapping matching patterns in a string as a list

finditer Like findall, but returns an iterator

match Match pattern at start of string and optionally segment pattern components
into groups; if the pattern matches, returns a match object, and otherwise None

search Scan string for match to pattern; returning a match object if so; unlike match,
the match can be anywhere in the string as opposed to only at the beginning

split Break string into pieces at each occurrence of pattern

sub, subn Replace all (sub) or first n occurrences (subn) of pattern in string with
replacement expression; use symbols \1, \2, ... to refer to match group
elements in the replacement string



Vectorized String Functions in pandas
Cleaning up a messy dataset for analysis often requires a lot of string
munging and regularization. To complicate matters, a column containing
strings will sometimes have missing data:

In [167]: data = {'Dave': 'dave@google.com', 'Steve': 'steve@gmail.com',
   .....:         'Rob': 'rob@gmail.com', 'Wes': np.nan}

In [168]: data = pd.Series(data)

In [169]: data
Out[169]: 
Dave     dave@google.com
Rob        rob@gmail.com
Steve    steve@gmail.com
Wes                  NaN
dtype: object

In [170]: data.isnull()
Out[170]: 
Dave     False
Rob      False
Steve    False
Wes       True
dtype: bool

You can apply string and regular expression methods can be applied (passing
a lambda or other function) to each value using data.map, but it will fail on
the NA (null) values. To cope with this, Series has array-oriented methods for
string operations that skip NA values. These are accessed through Series’s
str attribute; for example, we could check whether each email address has
'gmail' in it with str.contains:

In [171]: data.str.contains('gmail')
Out[171]: 
Dave     False
Rob       True
Steve     True
Wes        NaN
dtype: object

Regular expressions can be used, too, along with any re options like
IGNORECASE:



In [172]: pattern
Out[172]: '([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\\.([A-Z]{2,4})'

In [173]: data.str.findall(pattern, flags=re.IGNORECASE)
Out[173]: 
Dave     [(dave, google, com)]
Rob        [(rob, gmail, com)]
Steve    [(steve, gmail, com)]
Wes                        NaN
dtype: object

There are a couple of ways to do vectorized element retrieval. Either use
str.get or index into the str attribute:

In [174]: matches = data.str.match(pattern, flags=re.IGNORECASE)

In [175]: matches
Out[175]: 
Dave     True
Rob      True
Steve    True
Wes       NaN
dtype: object

To access elements in the embedded lists, we can pass an index to either of
these functions:

In [176]: matches.str.get(1)
Out[176]: 
Dave    NaN
Rob     NaN
Steve   NaN
Wes     NaN
dtype: float64

In [177]: matches.str[0]
Out[177]: 
Dave    NaN
Rob     NaN
Steve   NaN
Wes     NaN
dtype: float64

You can similarly slice strings using this syntax:

In [178]: data.str[:5]
Out[178]: 
Dave     dave@



Rob      rob@g
Steve    steve
Wes        NaN
dtype: object

See Table 7-5 for more pandas string methods.

Table 7-5. Partial listing of vectorized string methods

Method Description

cat Concatenate strings element-wise with optional delimiter

contains Return boolean array if each string contains pattern/regex

count Count occurrences of pattern

extract Use a regular expression with groups to extract one or more strings from a
Series of strings; the result will be a DataFrame with one column per group

endswith Equivalent to x.endswith(pattern) for each element

startswith Equivalent to x.startswith(pattern) for each element

findall Compute list of all occurrences of pattern/regex for each string

get Index into each element (retrieve i-th element)

isalnum Equivalent to built-in str.alnum

isalpha Equivalent to built-in str.isalpha

isdecimal Equivalent to built-in str.isdecimal

isdigit Equivalent to built-in str.isdigit

islower Equivalent to built-in str.islower

isnumeric Equivalent to built-in str.isnumeric

isupper Equivalent to built-in str.isupper

join Join strings in each element of the Series with passed separator

len Compute length of each string

lower,
upper

Convert cases; equivalent to x.lower() or x.upper() for each element

match Use re.match with the passed regular expression on each element, returning
matched groups as list

pad Add whitespace to left, right, or both sides of strings



center Equivalent to pad(side='both')

repeat Duplicate values (e.g., s.str.repeat(3) is equivalent to x * 3 for each string)

replace Replace occurrences of pattern/regex with some other string

slice Slice each string in the Series

split Split strings on delimiter or regular expression

strip Trim whitespace from both sides, including newlines

rstrip Trim whitespace on right side

lstrip Trim whitespace on left side



7.4 Conclusion
Effective data preparation can significantly improve productive by enabling
you to spend more time analyzing data and less time getting it ready for
analysis. We have explored a number of tools in this chapter, but the
coverage here is by no means comprehensive. In the next chapter, we will
explore pandas’s joining and grouping functionality.



Chapter 8. Data Wrangling: Join,
Combine, and Reshape

In many applications, data may be spread across a number of files or
databases or be arranged in a form that is not easy to analyze. This chapter
focuses on tools to help combine, join, and rearrange data.

First, I introduce the concept of hierarchical indexing in pandas, which is
used extensively in some of these operations. I then dig into the particular
data manipulations. You can see various applied usages of these tools in
Chapter 14.



8.1 Hierarchical Indexing
Hierarchical indexing is an important feature of pandas that enables you to
have multiple (two or more) index levels on an axis. Somewhat abstractly, it
provides a way for you to work with higher dimensional data in a lower
dimensional form. Let’s start with a simple example; create a Series with a
list of lists (or arrays) as the index:

In [9]: data = pd.Series(np.random.randn(9),
   ...:                  index=[['a', 'a', 'a', 'b', 'b', 'c', 'c', 'd', 
'd'],
   ...:                         [1, 2, 3, 1, 3, 1, 2, 2, 3]])

In [10]: data
Out[10]: 
a  1   -0.204708
   2    0.478943
   3   -0.519439
b  1   -0.555730
   3    1.965781
c  1    1.393406
   2    0.092908
d  2    0.281746
   3    0.769023
dtype: float64

What you’re seeing is a prettified view of a Series with a MultiIndex as its
index. The “gaps” in the index display mean “use the label directly above”:

In [11]: data.index
Out[11]: 
MultiIndex(levels=[['a', 'b', 'c', 'd'], [1, 2, 3]],
           labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 2, 0, 1, 1, 2]])

With a hierarchically indexed object, so-called partial indexing is possible,
enabling you to concisely select subsets of the data:

In [12]: data['b']
Out[12]: 
1   -0.555730
3    1.965781
dtype: float64

In [13]: data['b':'c']



Out[13]: 
b  1   -0.555730
   3    1.965781
c  1    1.393406
   2    0.092908
dtype: float64

In [14]: data.loc[['b', 'd']]
Out[14]: 
b  1   -0.555730
   3    1.965781
d  2    0.281746
   3    0.769023
dtype: float64

Selection is even possible from an “inner” level:

In [15]: data.loc[:, 2]
Out[15]: 
a    0.478943
c    0.092908
d    0.281746
dtype: float64

Hierarchical indexing plays an important role in reshaping data and group-
based operations like forming a pivot table. For example, you could rearrange
the data into a DataFrame using its unstack method:

In [16]: data.unstack()
Out[16]: 
          1         2         3
a -0.204708  0.478943 -0.519439
b -0.555730       NaN  1.965781
c  1.393406  0.092908       NaN
d       NaN  0.281746  0.769023

The inverse operation of unstack is stack:

In [17]: data.unstack().stack()
Out[17]: 
a  1   -0.204708
   2    0.478943
   3   -0.519439
b  1   -0.555730
   3    1.965781
c  1    1.393406
   2    0.092908
d  2    0.281746
   3    0.769023



dtype: float64

stack and unstack will be explored in more detail later in this chapter.

With a DataFrame, either axis can have a hierarchical index:

In [18]: frame = pd.DataFrame(np.arange(12).reshape((4, 3)),
   ....:                      index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]],
   ....:                      columns=[['Ohio', 'Ohio', 'Colorado'],
   ....:                               ['Green', 'Red', 'Green']])

In [19]: frame
Out[19]: 
     Ohio     Colorado
    Green Red    Green
a 1     0   1        2
  2     3   4        5
b 1     6   7        8
  2     9  10       11

The hierarchical levels can have names (as strings or any Python objects). If
so, these will show up in the console output:

In [20]: frame.index.names = ['key1', 'key2']

In [21]: frame.columns.names = ['state', 'color']

In [22]: frame
Out[22]: 
state      Ohio     Colorado
color     Green Red    Green
key1 key2                   
a    1        0   1        2
     2        3   4        5
b    1        6   7        8
     2        9  10       11

CAUTION
Be careful to distinguish the index names 'state' and 'color' from the row
labels.

With partial column indexing you can similarly select groups of columns:

In [23]: frame['Ohio']



Out[23]: 
color      Green  Red
key1 key2            
a    1         0    1
     2         3    4
b    1         6    7
     2         9   10

A MultiIndex can be created by itself and then reused; the columns in the
preceding DataFrame with level names could be created like this:

MultiIndex.from_arrays([['Ohio', 'Ohio', 'Colorado'], ['Green', 'Red', 
'Green']],
                       names=['state', 'color'])



Reordering and Sorting Levels
At times you will need to rearrange the order of the levels on an axis or sort
the data by the values in one specific level. The swaplevel takes two level
numbers or names and returns a new object with the levels interchanged (but
the data is otherwise unaltered):

In [24]: frame.swaplevel('key1', 'key2')
Out[24]: 
state      Ohio     Colorado
color     Green Red    Green
key2 key1                   
1    a        0   1        2
2    a        3   4        5
1    b        6   7        8
2    b        9  10       11

sort_index, on the other hand, sorts the data using only the values in a single
level. When swapping levels, it’s not uncommon to also use sort_index so
that the result is lexicographically sorted by the indicated level:

In [25]: frame.sort_index(level=1)
Out[25]: 
state      Ohio     Colorado
color     Green Red    Green
key1 key2                   
a    1        0   1        2
b    1        6   7        8
a    2        3   4        5
b    2        9  10       11

In [26]: frame.swaplevel(0, 1).sort_index(level=0)
Out[26]: 
state      Ohio     Colorado
color     Green Red    Green
key2 key1                   
1    a        0   1        2
     b        6   7        8
2    a        3   4        5
     b        9  10       11

NOTE
Data selection performance is much better on hierarchically indexed objects if



the index is lexicographically sorted starting with the outermost level — that is,
the result of calling sort_index(level=0) or sort_index().



Summary Statistics by Level
Many descriptive and summary statistics on DataFrame and Series have a
level option in which you can specify the level you want to aggregate by on
a particular axis. Consider the above DataFrame; we can aggregate by level
on either the rows or columns like so:

In [27]: frame.sum(level='key2')
Out[27]: 
state  Ohio     Colorado
color Green Red    Green
key2                    
1         6   8       10
2        12  14       16

In [28]: frame.sum(level='color', axis=1)
Out[28]: 
color      Green  Red
key1 key2            
a    1         2    1
     2         8    4
b    1        14    7
     2        20   10

Under the hood, this utilizes pandas’s groupby machinery, which will be
discussed in more detail later in the book.



Indexing with a DataFrame’s columns
It’s not unusual to want to use one or more columns from a DataFrame as the
row index; alternatively, you may wish to move the row index into the
DataFrame’s columns. Here’s an example DataFrame:

In [29]: frame = pd.DataFrame({'a': range(7), 'b': range(7, 0, -1),
   ....:                       'c': ['one', 'one', 'one', 'two', 'two',
   ....:                             'two', 'two'],
   ....:                       'd': [0, 1, 2, 0, 1, 2, 3]})

In [30]: frame
Out[30]: 
   a  b    c  d
0  0  7  one  0
1  1  6  one  1
2  2  5  one  2
3  3  4  two  0
4  4  3  two  1
5  5  2  two  2
6  6  1  two  3

DataFrame’s set_index function will create a new DataFrame using one or
more of its columns as the index:

In [31]: frame2 = frame.set_index(['c', 'd'])

In [32]: frame2
Out[32]: 
       a  b
c   d      
one 0  0  7
    1  1  6
    2  2  5
two 0  3  4
    1  4  3
    2  5  2
    3  6  1

By default the columns are removed from the DataFrame, though you can
leave them in:

In [33]: frame.set_index(['c', 'd'], drop=False)
Out[33]: 
       a  b    c  d
c   d              



one 0  0  7  one  0
    1  1  6  one  1
    2  2  5  one  2
two 0  3  4  two  0
    1  4  3  two  1
    2  5  2  two  2
    3  6  1  two  3

reset_index, on the other hand, does the opposite of set_index; the
hierarchical index levels are moved into the columns:

In [34]: frame2.reset_index()
Out[34]: 
     c  d  a  b
0  one  0  0  7
1  one  1  1  6
2  one  2  2  5
3  two  0  3  4
4  two  1  4  3
5  two  2  5  2
6  two  3  6  1



8.2 Combining and Merging Datasets
Data contained in pandas objects can be combined together in a number of
ways:

pandas.merge connects rows in DataFrames based on one or more keys.
This will be familiar to users of SQL or other relational databases, as it
implements database join operations.

pandas.concat concatenates or “stacks” together objects along an axis.

The combine_first instance method enables splicing together
overlapping data to fill in missing values in one object with values from
another.

I will address each of these and give a number of examples. They’ll be
utilized in examples throughout the rest of the book.



Database-Style DataFrame Joins
Merge or join operations combine datasets by linking rows using one or more
keys. These operations are central to relational databases (e.g., SQL-based).
The merge function in pandas is the main entry point for using these
algorithms on your data.

Let’s start with a simple example:

In [35]: df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
   ....:                     'data1': range(7)})

In [36]: df2 = pd.DataFrame({'key': ['a', 'b', 'd'],
   ....:                     'data2': range(3)})

In [37]: df1
Out[37]: 
   data1 key
0      0   b
1      1   b
2      2   a
3      3   c
4      4   a
5      5   a
6      6   b

In [38]: df2
Out[38]: 
   data2 key
0      0   a
1      1   b
2      2   d

This is an example of a many-to-one join; the data in df1 has multiple rows
labeled a and b, whereas df2 has only one row for each value in the key
column. Calling merge with these objects we obtain:

In [39]: pd.merge(df1, df2)
Out[39]: 
   data1 key  data2
0      0   b      1
1      1   b      1
2      6   b      1
3      2   a      0
4      4   a      0
5      5   a      0



Note that I didn’t specify which column to join on. If that information is not
specified, merge uses the overlapping column names as the keys. It’s a good
practice to specify explicitly, though:

In [40]: pd.merge(df1, df2, on='key')
Out[40]: 
   data1 key  data2
0      0   b      1
1      1   b      1
2      6   b      1
3      2   a      0
4      4   a      0
5      5   a      0

If the column names are different in each object, you can specify them
separately:

In [41]: df3 = pd.DataFrame({'lkey': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
   ....:                     'data1': range(7)})

In [42]: df4 = pd.DataFrame({'rkey': ['a', 'b', 'd'],
   ....:                     'data2': range(3)})

In [43]: pd.merge(df3, df4, left_on='lkey', right_on='rkey')
Out[43]: 
   data1 lkey  data2 rkey
0      0    b      1    b
1      1    b      1    b
2      6    b      1    b
3      2    a      0    a
4      4    a      0    a
5      5    a      0    a

You may notice that the 'c' and 'd' values and associated data are missing
from the result. By default merge does an 'inner' join; the keys in the result
are the intersection, or the common set found in both tables. Other possible
options are 'left', 'right', and 'outer'. The outer join takes the union of
the keys, combining the effect of applying both left and right joins:

In [44]: pd.merge(df1, df2, how='outer')
Out[44]: 
   data1 key  data2
0    0.0   b    1.0
1    1.0   b    1.0
2    6.0   b    1.0
3    2.0   a    0.0



4    4.0   a    0.0
5    5.0   a    0.0
6    3.0   c    NaN
7    NaN   d    2.0

See Table 8-1 for a summary of the options for how.

Table 8-1. Different join types with how argument

Option Behavior

'inner' Use only the key combinations observed in both tables

'left' Use all key combinations found in the left table

'right' Use all key combinations found in the right table

'output' Use all key combinations observed in both tables together

Many-to-many merges have well-defined, though not necessarily intuitive,
behavior. Here’s an example:

In [45]: df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],
   ....:                     'data1': range(6)})

In [46]: df2 = pd.DataFrame({'key': ['a', 'b', 'a', 'b', 'd'],
   ....:                     'data2': range(5)})

In [47]: df1
Out[47]: 
   data1 key
0      0   b
1      1   b
2      2   a
3      3   c
4      4   a
5      5   b

In [48]: df2
Out[48]: 
   data2 key
0      0   a
1      1   b
2      2   a
3      3   b
4      4   d

In [49]: pd.merge(df1, df2, on='key', how='left')
Out[49]: 
    data1 key  data2
0       0   b    1.0



1       0   b    3.0
2       1   b    1.0
3       1   b    3.0
4       2   a    0.0
5       2   a    2.0
6       3   c    NaN
7       4   a    0.0
8       4   a    2.0
9       5   b    1.0
10      5   b    3.0

Many-to-many joins form the Cartesian product of the rows. Since there were
three 'b' rows in the left DataFrame and two in the right one, there are six
'b' rows in the result. The join method only affects the distinct key values
appearing in the result:

In [50]: pd.merge(df1, df2, how='inner')
Out[50]: 
   data1 key  data2
0      0   b      1
1      0   b      3
2      1   b      1
3      1   b      3
4      5   b      1
5      5   b      3
6      2   a      0
7      2   a      2
8      4   a      0
9      4   a      2

To merge with multiple keys, pass a list of column names:

In [51]: left = pd.DataFrame({'key1': ['foo', 'foo', 'bar'],
   ....:                      'key2': ['one', 'two', 'one'],
   ....:                      'lval': [1, 2, 3]})

In [52]: right = pd.DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'],
   ....:                       'key2': ['one', 'one', 'one', 'two'],
   ....:                       'rval': [4, 5, 6, 7]})

In [53]: pd.merge(left, right, on=['key1', 'key2'], how='outer')
Out[53]: 
  key1 key2  lval  rval
0  foo  one   1.0   4.0
1  foo  one   1.0   5.0
2  foo  two   2.0   NaN
3  bar  one   3.0   6.0
4  bar  two   NaN   7.0



To determine which key combinations will appear in the result depending on
the choice of merge method, think of the multiple keys as forming an array of
tuples to be used as a single join key (even though it’s not actually
implemented that way).

CAUTION
When you’re joining columns-on-columns, the indexes on the passed
DataFrame objects are discarded.

A last issue to consider in merge operations is the treatment of overlapping
column names. While you can address the overlap manually (see the earlier
section on renaming axis labels), merge has a suffixes option for specifying
strings to append to overlapping names in the left and right DataFrame
objects:

In [54]: pd.merge(left, right, on='key1')
Out[54]: 
  key1 key2_x  lval key2_y  rval
0  foo    one     1    one     4
1  foo    one     1    one     5
2  foo    two     2    one     4
3  foo    two     2    one     5
4  bar    one     3    one     6
5  bar    one     3    two     7

In [55]: pd.merge(left, right, on='key1', suffixes=('_left', '_right'))
Out[55]: 
  key1 key2_left  lval key2_right  rval
0  foo       one     1        one     4
1  foo       one     1        one     5
2  foo       two     2        one     4
3  foo       two     2        one     5
4  bar       one     3        one     6
5  bar       one     3        two     7

See Table 8-2 for an argument reference on merge. Joining using the
DataFrame’s row index is the subject of the next section.

Table 8-2. merge function arguments



Argument Description

left DataFrame to be merged on the left side.

right DataFrame to be merged on the right side.

how One of 'inner', 'outer', 'left', or 'right'; defaults to 'inner'.

on Column names to join on. Must be found in both DataFrame objects. If not
specified and no other join keys given, will use the intersection of the
column names in left and right as the join keys.

left_on Columns in left DataFrame to use as join keys.

right_on Analogous to left_on for left DataFrame.

left_index Use row index in left as its join key (or keys, if a MultiIndex).

right_index Analogous to left_index.

sort Sort merged data lexicographically by join keys; True by default (disable to
get better performance in some cases on large datasets).

suffixes Tuple of string values to append to column names in case of overlap; defaults
to ('_x', '_y') (e.g., if 'data' in both DataFrame objects, would appear as
'data_x' and 'data_y' in result).

copy If False, avoid copying data into resulting data structure in some exceptional
cases; by default always copies.

indicator Adds a special column _merge that indicates the source of each row; values
will be 'left_only', 'right_only', or 'both' based on the origin of the joined
data in each row.



Merging on Index
In some cases, the merge key(s) in a DataFrame will be found in its index. In
this case, you can pass left_index=True or right_index=True (or both) to
indicate that the index should be used as the merge key:

In [56]: left1 = pd.DataFrame({'key': ['a', 'b', 'a', 'a', 'b', 'c'],
   ....:                       'value': range(6)})

In [57]: right1 = pd.DataFrame({'group_val': [3.5, 7]}, index=['a', 'b'])

In [58]: left1
Out[58]: 
  key  value
0   a      0
1   b      1
2   a      2
3   a      3
4   b      4
5   c      5

In [59]: right1
Out[59]: 
   group_val
a        3.5
b        7.0

In [60]: pd.merge(left1, right1, left_on='key', right_index=True)
Out[60]: 
  key  value  group_val
0   a      0        3.5
2   a      2        3.5
3   a      3        3.5
1   b      1        7.0
4   b      4        7.0

Since the default merge method is to intersect the join keys, you can instead
form the union of them with an outer join:

In [61]: pd.merge(left1, right1, left_on='key', right_index=True, 
how='outer')
Out[61]: 
  key  value  group_val
0   a      0        3.5
2   a      2        3.5
3   a      3        3.5
1   b      1        7.0
4   b      4        7.0
5   c      5        NaN



With hierarchically indexed data, things are more complicated, as joining on
index is implicitly a multiple-key merge:

In [62]: lefth = pd.DataFrame({'key1': ['Ohio', 'Ohio', 'Ohio',
   ....:                                'Nevada', 'Nevada'],
   ....:                       'key2': [2000, 2001, 2002, 2001, 2002],
   ....:                       'data': np.arange(5.)})

In [63]: righth = pd.DataFrame(np.arange(12).reshape((6, 2)),
   ....:                       index=[['Nevada', 'Nevada', 'Ohio', 'Ohio',
   ....:                               'Ohio', 'Ohio'],
   ....:                              [2001, 2000, 2000, 2000, 2001, 2002]],
   ....:                       columns=['event1', 'event2'])

In [64]: lefth
Out[64]: 
   data    key1  key2
0   0.0    Ohio  2000
1   1.0    Ohio  2001
2   2.0    Ohio  2002
3   3.0  Nevada  2001
4   4.0  Nevada  2002

In [65]: righth
Out[65]: 
             event1  event2
Nevada 2001       0       1
       2000       2       3
Ohio   2000       4       5
       2000       6       7
       2001       8       9
       2002      10      11

In this case, you have to indicate multiple columns to merge on as a list (note
the handling of duplicate index values with how='outer'):

In [66]: pd.merge(lefth, righth, left_on=['key1', 'key2'], right_index=True)
Out[66]: 
   data    key1  key2  event1  event2
0   0.0    Ohio  2000       4       5
0   0.0    Ohio  2000       6       7
1   1.0    Ohio  2001       8       9
2   2.0    Ohio  2002      10      11
3   3.0  Nevada  2001       0       1

In [67]: pd.merge(lefth, righth, left_on=['key1', 'key2'],
   ....:          right_index=True, how='outer')
Out[67]: 
   data    key1  key2  event1  event2
0   0.0    Ohio  2000     4.0     5.0
0   0.0    Ohio  2000     6.0     7.0
1   1.0    Ohio  2001     8.0     9.0



2   2.0    Ohio  2002    10.0    11.0
3   3.0  Nevada  2001     0.0     1.0
4   4.0  Nevada  2002     NaN     NaN
4   NaN  Nevada  2000     2.0     3.0

Using the indexes of both sides of the merge is also possible:

In [68]: left2 = pd.DataFrame([[1., 2.], [3., 4.], [5., 6.]],
   ....:                      index=['a', 'c', 'e'],
   ....:                      columns=['Ohio', 'Nevada'])

In [69]: right2 = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [13, 14]],
   ....:                       index=['b', 'c', 'd', 'e'],
   ....:                       columns=['Missouri', 'Alabama'])

In [70]: left2
Out[70]: 
   Ohio  Nevada
a   1.0     2.0
c   3.0     4.0
e   5.0     6.0

In [71]: right2
Out[71]: 
   Missouri  Alabama
b       7.0      8.0
c       9.0     10.0
d      11.0     12.0
e      13.0     14.0

In [72]: pd.merge(left2, right2, how='outer', left_index=True, 
right_index=True)
Out[72]: 
   Ohio  Nevada  Missouri  Alabama
a   1.0     2.0       NaN      NaN
b   NaN     NaN       7.0      8.0
c   3.0     4.0       9.0     10.0
d   NaN     NaN      11.0     12.0
e   5.0     6.0      13.0     14.0

DataFrame has a convenient join instance for merging by index. It can also
be used to combine together many DataFrame objects having the same or
similar indexes but non-overlapping columns. In the prior example, we could
have written:

In [73]: left2.join(right2, how='outer')
Out[73]: 
   Ohio  Nevada  Missouri  Alabama
a   1.0     2.0       NaN      NaN
b   NaN     NaN       7.0      8.0
c   3.0     4.0       9.0     10.0



d   NaN     NaN      11.0     12.0
e   5.0     6.0      13.0     14.0

In part for legacy reasons (i.e., much earlier versions of pandas), DataFrame’s
join method performs a left join on the join keys, exactly preserving the left
frame’s row index. It also supports joining the index of the passed DataFrame
on one of the columns of the calling DataFrame:

In [74]: left1.join(right1, on='key')
Out[74]: 
  key  value  group_val
0   a      0        3.5
1   b      1        7.0
2   a      2        3.5
3   a      3        3.5
4   b      4        7.0
5   c      5        NaN

Lastly, for simple index-on-index merges, you can pass a list of DataFrames
to join as an alternative to using the more general concat function described
in the next section:

In [75]: another = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [16., 
17.]],
   ....:                        index=['a', 'c', 'e', 'f'],
   ....:                        columns=['New York', 'Oregon'])

In [76]: another
Out[76]: 
   New York  Oregon
a       7.0     8.0
c       9.0    10.0
e      11.0    12.0
f      16.0    17.0

In [77]: left2.join([right2, another])
Out[77]: 
   Ohio  Nevada  Missouri  Alabama  New York  Oregon
a   1.0     2.0       NaN      NaN       7.0     8.0
c   3.0     4.0       9.0     10.0       9.0    10.0
e   5.0     6.0      13.0     14.0      11.0    12.0

In [78]: left2.join([right2, another], how='outer')
Out[78]: 
   Ohio  Nevada  Missouri  Alabama  New York  Oregon
a   1.0     2.0       NaN      NaN       7.0     8.0
b   NaN     NaN       7.0      8.0       NaN     NaN
c   3.0     4.0       9.0     10.0       9.0    10.0
d   NaN     NaN      11.0     12.0       NaN     NaN



e   5.0     6.0      13.0     14.0      11.0    12.0
f   NaN     NaN       NaN      NaN      16.0    17.0



Concatenating Along an Axis
Another kind of data combination operation is referred to interchangeably as
concatenation, binding, or stacking. NumPy’s concatenate function can do
this with NumPy arrays:

In [79]: arr = np.arange(12).reshape((3, 4))

In [80]: arr
Out[80]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

In [81]: np.concatenate([arr, arr], axis=1)
Out[81]: 
array([[ 0,  1,  2,  3,  0,  1,  2,  3],
       [ 4,  5,  6,  7,  4,  5,  6,  7],
       [ 8,  9, 10, 11,  8,  9, 10, 11]])

In the context of pandas objects such as Series and DataFrame, having
labeled axes enable you to further generalize array concatenation. In
particular, you have a number of additional things to think about:

If the objects are indexed differently on the other axes, should we
combine the distinct elements in these axes or use only the shared values
(the intersection)?

Do the concatenated chunks of data need to be identifiable in the
resulting object?

Does the “concatenation axis” contain data that needs to be preserved?
In many cases, the default integer labels in a DataFrame are best
discarded during concatenation.

The concat function in pandas provides a consistent way to address each of
these concerns. I’ll give a number of examples to illustrate how it works.
Suppose we have three Series with no index overlap:

In [82]: s1 = pd.Series([0, 1], index=['a', 'b'])



In [83]: s2 = pd.Series([2, 3, 4], index=['c', 'd', 'e'])

In [84]: s3 = pd.Series([5, 6], index=['f', 'g'])

Calling concat with these objects in a list glues together the values and
indexes:

In [85]: pd.concat([s1, s2, s3])
Out[85]: 
a    0
b    1
c    2
d    3
e    4
f    5
g    6
dtype: int64

By default concat works along axis=0, producing another Series. If you pass
axis=1, the result will instead be a DataFrame (axis=1 is the columns):

In [86]: pd.concat([s1, s2, s3], axis=1)
Out[86]: 
     0    1    2
a  0.0  NaN  NaN
b  1.0  NaN  NaN
c  NaN  2.0  NaN
d  NaN  3.0  NaN
e  NaN  4.0  NaN
f  NaN  NaN  5.0
g  NaN  NaN  6.0

In this case there is no overlap on the other axis, which as you can see is the
sorted union (the 'outer' join) of the indexes. You can instead intersect
them by passing join='inner':

In [87]: s4 = pd.concat([s1, s3])

In [88]: s4
Out[88]: 
a    0
b    1
f    5
g    6
dtype: int64

In [89]: pd.concat([s1, s4], axis=1)



Out[89]: 
     0  1
a  0.0  0
b  1.0  1
f  NaN  5
g  NaN  6

In [90]: pd.concat([s1, s4], axis=1, join='inner')
Out[90]: 
   0  1
a  0  0
b  1  1

In this last example, the 'f' and 'g' labels disappeared because of the
join='inner' option.

You can even specify the axes to be used on the other axes with join_axes:

In [91]: pd.concat([s1, s4], axis=1, join_axes=[['a', 'c', 'b', 'e']])
Out[91]: 
     0    1
a  0.0  0.0
c  NaN  NaN
b  1.0  1.0
e  NaN  NaN

A potential issue is that the concatenated pieces are not identifiable in the
result. Suppose instead you wanted to create a hierarchical index on the
concatenation axis. To do this, use the keys argument:

In [92]: result = pd.concat([s1, s1, s3], keys=['one', 'two', 'three'])

In [93]: result
Out[93]: 
one    a    0
       b    1
two    a    0
       b    1
three  f    5
       g    6
dtype: int64

In [94]: result.unstack()
Out[94]: 
         a    b    f    g
one    0.0  1.0  NaN  NaN
two    0.0  1.0  NaN  NaN
three  NaN  NaN  5.0  6.0



In the case of combining Series along axis=1, the keys become the
DataFrame column headers:

In [95]: pd.concat([s1, s2, s3], axis=1, keys=['one', 'two', 'three'])
Out[95]: 
   one  two  three
a  0.0  NaN    NaN
b  1.0  NaN    NaN
c  NaN  2.0    NaN
d  NaN  3.0    NaN
e  NaN  4.0    NaN
f  NaN  NaN    5.0
g  NaN  NaN    6.0

The same logic extends to DataFrame objects:

In [96]: df1 = pd.DataFrame(np.arange(6).reshape(3, 2), index=['a', 'b', 
'c'],
   ....:                    columns=['one', 'two'])

In [97]: df2 = pd.DataFrame(5 + np.arange(4).reshape(2, 2), index=['a', 'c'],
   ....:                    columns=['three', 'four'])

In [98]: df1
Out[98]: 
   one  two
a    0    1
b    2    3
c    4    5

In [99]: df2
Out[99]: 
   three  four
a      5     6
c      7     8

In [100]: pd.concat([df1, df2], axis=1, keys=['level1', 'level2'])
Out[100]: 
  level1     level2     
     one two  three four
a      0   1    5.0  6.0
b      2   3    NaN  NaN
c      4   5    7.0  8.0

If you pass a dict of objects instead of a list, the dict’s keys will be used for
the keys option:

In [101]: pd.concat({'level1': df1, 'level2': df2}, axis=1)
Out[101]: 
  level1     level2     



     one two  three four
a      0   1    5.0  6.0
b      2   3    NaN  NaN
c      4   5    7.0  8.0

There are additional arguments governing how the hierarchical index is
created (see Table 8-3). For example, we can name the created axis levels
with the names argument:

In [102]: pd.concat([df1, df2], axis=1, keys=['level1', 'level2'],
   .....:           names=['upper', 'lower'])
Out[102]: 
upper level1     level2     
lower    one two  three four
a          0   1    5.0  6.0
b          2   3    NaN  NaN
c          4   5    7.0  8.0

A last consideration concerns DataFrames in which the row index does not
contain any relevant data:

In [103]: df1 = pd.DataFrame(np.random.randn(3, 4), columns=['a', 'b', 'c', 
'd'])

In [104]: df2 = pd.DataFrame(np.random.randn(2, 3), columns=['b', 'd', 'a'])

In [105]: df1
Out[105]: 
          a         b         c         d
0  1.246435  1.007189 -1.296221  0.274992
1  0.228913  1.352917  0.886429 -2.001637
2 -0.371843  1.669025 -0.438570 -0.539741

In [106]: df2
Out[106]: 
          b         d         a
0  0.476985  3.248944 -1.021228
1 -0.577087  0.124121  0.302614

In this case, you can pass ignore_index=True:

In [107]: pd.concat([df1, df2], ignore_index=True)
Out[107]: 
          a         b         c         d
0  1.246435  1.007189 -1.296221  0.274992
1  0.228913  1.352917  0.886429 -2.001637
2 -0.371843  1.669025 -0.438570 -0.539741
3 -1.021228  0.476985       NaN  3.248944
4  0.302614 -0.577087       NaN  0.124121



Table 8-3. concat function arguments

Argument Description

objs List or dict of pandas objects to be concatenated; this is the only
required argument

axis Axis to concatenate along; defaults to 0 (along rows)

join Either 'inner' or 'outer' ('outer' by default); whether to intersection
(inner) or union (outer) together indexes along the other axes

join_axes Specific indexes to use for the other n–1 axes instead of performing
union/intersection logic

keys Values to associate with objects being concatenated, forming a
hierarchical index along the concatenation axis; can either be a list or
array of arbitrary values, an array of tuples, or a list of arrays (if
multiple-level arrays passed in levels)

levels Specific indexes to use as hierarchical index level or levels if keys
passed

names Names for created hierarchical levels if keys and/or levels passed

verify_integrity Check new axis in concatenated object for duplicates and raise
exception if so; by default (False) allows duplicates

ignore_index Do not preserve indexes along concatenation axis, instead producing a
new range(total_length) index



Combining Data with Overlap
There is another data combination situation that can’t be expressed as either a
merge or concatenation operation. You may have two datasets whose indexes
overlap in full or part. As a motivating example, consider NumPy’s where
function, which performs the array-oriented equivalent of an if-else
expression:

In [108]: a = pd.Series([np.nan, 2.5, np.nan, 3.5, 4.5, np.nan],
   .....:               index=['f', 'e', 'd', 'c', 'b', 'a'])

In [109]: b = pd.Series(np.arange(len(a), dtype=np.float64),
   .....:               index=['f', 'e', 'd', 'c', 'b', 'a'])

In [110]: b[-1] = np.nan

In [111]: a
Out[111]: 
f    NaN
e    2.5
d    NaN
c    3.5
b    4.5
a    NaN
dtype: float64

In [112]: b
Out[112]: 
f    0.0
e    1.0
d    2.0
c    3.0
b    4.0
a    NaN
dtype: float64

In [113]: np.where(pd.isnull(a), b, a)
Out[113]: array([ 0. ,  2.5,  2. ,  3.5,  4.5,  nan])

Series has a combine_first method, which performs the equivalent of this
operation along with pandas’s usual data alignment logic:

In [114]: b[:-2].combine_first(a[2:])
Out[114]: 
a    NaN
b    4.5
c    3.0



d    2.0
e    1.0
f    0.0
dtype: float64

With DataFrames, combine_first does the same thing column by column, so
you can think of it as “patching” missing data in the calling object with data
from the object you pass:

In [115]: df1 = pd.DataFrame({'a': [1., np.nan, 5., np.nan],
   .....:                     'b': [np.nan, 2., np.nan, 6.],
   .....:                     'c': range(2, 18, 4)})

In [116]: df2 = pd.DataFrame({'a': [5., 4., np.nan, 3., 7.],
   .....:                     'b': [np.nan, 3., 4., 6., 8.]})

In [117]: df1
Out[117]: 
     a    b   c
0  1.0  NaN   2
1  NaN  2.0   6
2  5.0  NaN  10
3  NaN  6.0  14

In [118]: df2
Out[118]: 
     a    b
0  5.0  NaN
1  4.0  3.0
2  NaN  4.0
3  3.0  6.0
4  7.0  8.0

In [119]: df1.combine_first(df2)
Out[119]: 
     a    b     c
0  1.0  NaN   2.0
1  4.0  2.0   6.0
2  5.0  4.0  10.0
3  3.0  6.0  14.0
4  7.0  8.0   NaN



8.3 Reshaping and Pivoting
There are a number of basic operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.



Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a
DataFrame. There are two primary actions:

stack

This “rotates” or pivots from the columns in the data to the rows

unstack

This pivots from the rows into the columns
I’ll illustrate these operations through a series of examples. Consider a small
DataFrame with string arrays as row and column indexes:

In [120]: data = pd.DataFrame(np.arange(6).reshape((2, 3)),
   .....:                     index=pd.Index(['Ohio', 'Colorado'], 
name='state'),
   .....:                     columns=pd.Index(['one', 'two', 'three'],
   .....:                     name='number'))

In [121]: data
Out[121]: 
number    one  two  three
state                    
Ohio        0    1      2
Colorado    3    4      5

Using the stack method on this data pivots the columns into the rows,
producing a Series:

In [122]: result = data.stack()

In [123]: result
Out[123]: 
state     number
Ohio      one       0
          two       1
          three     2
Colorado  one       3
          two       4
          three     5
dtype: int64

From a hierarchically indexed Series, you can rearrange the data back into a



DataFrame with unstack:

In [124]: result.unstack()
Out[124]: 
number    one  two  three
state                    
Ohio        0    1      2
Colorado    3    4      5

By default the innermost level is unstacked (same with stack). You can
unstack a different level by passing a level number or name:

In [125]: result.unstack(0)
Out[125]: 
state   Ohio  Colorado
number                
one        0         3
two        1         4
three      2         5

In [126]: result.unstack('state')
Out[126]: 
state   Ohio  Colorado
number                
one        0         3
two        1         4
three      2         5

Unstacking might introduce missing data if all of the values in the level aren’t
found in each of the subgroups:

In [127]: s1 = pd.Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])

In [128]: s2 = pd.Series([4, 5, 6], index=['c', 'd', 'e'])

In [129]: data2 = pd.concat([s1, s2], keys=['one', 'two'])

In [130]: data2
Out[130]: 
one  a    0
     b    1
     c    2
     d    3
two  c    4
     d    5
     e    6
dtype: int64

In [131]: data2.unstack()
Out[131]: 



       a    b    c    d    e
one  0.0  1.0  2.0  3.0  NaN
two  NaN  NaN  4.0  5.0  6.0

Stacking filters out missing data by default, so the operation is more easily
invertible:

In [132]: data2.unstack()
Out[132]: 
       a    b    c    d    e
one  0.0  1.0  2.0  3.0  NaN
two  NaN  NaN  4.0  5.0  6.0

In [133]: data2.unstack().stack()
Out[133]: 
one  a    0.0
     b    1.0
     c    2.0
     d    3.0
two  c    4.0
     d    5.0
     e    6.0
dtype: float64

In [134]: data2.unstack().stack(dropna=False)
Out[134]: 
one  a    0.0
     b    1.0
     c    2.0
     d    3.0
     e    NaN
two  a    NaN
     b    NaN
     c    4.0
     d    5.0
     e    6.0
dtype: float64

When you unstack in a DataFrame, the level unstacked becomes the lowest
level in the result:

In [135]: df = pd.DataFrame({'left': result, 'right': result + 5},
   .....:                   columns=pd.Index(['left', 'right'], name='side'))

In [136]: df
Out[136]: 
side             left  right
state    number             
Ohio     one        0      5
         two        1      6
         three      2      7
Colorado one        3      8



         two        4      9
         three      5     10

In [137]: df.unstack('state')
Out[137]: 
side   left          right         
state  Ohio Colorado  Ohio Colorado
number                             
one       0        3     5        8
two       1        4     6        9
three     2        5     7       10

When calling stack, we can indicate the name of the axis to stack:

In [138]: df.unstack('state').stack('side')
Out[138]: 
state         Colorado  Ohio
number side                 
one    left          3     0
       right         8     5
two    left          4     1
       right         9     6
three  left          5     2
       right        10     7



Pivoting “Long” to “Wide” Format
A common way to store multiple time series in databases and CSV is in so-
called long or stacked format. Let’s load some example data and do a small
amount of time series wrangling and other data cleaning:

In [139]: data = pd.read_csv('examples/macrodata.csv')

In [140]: data.head()
Out[140]: 
     year  quarter   realgdp  realcons  realinv  realgovt  realdpi    cpi  \
0  1959.0      1.0  2710.349    1707.4  286.898   470.045   1886.9  28.98   
1  1959.0      2.0  2778.801    1733.7  310.859   481.301   1919.7  29.15   
2  1959.0      3.0  2775.488    1751.8  289.226   491.260   1916.4  29.35   
3  1959.0      4.0  2785.204    1753.7  299.356   484.052   1931.3  29.37   
4  1960.0      1.0  2847.699    1770.5  331.722   462.199   1955.5  29.54   
      m1  tbilrate  unemp      pop  infl  realint  
0  139.7      2.82    5.8  177.146  0.00     0.00  
1  141.7      3.08    5.1  177.830  2.34     0.74  
2  140.5      3.82    5.3  178.657  2.74     1.09  
3  140.0      4.33    5.6  179.386  0.27     4.06  
4  139.6      3.50    5.2  180.007  2.31     1.19  

In [141]: periods = pd.PeriodIndex(year=data.year, quarter=data.quarter,
   .....:                          name='date')

In [142]: columns = pd.Index(['realgdp', 'infl', 'unemp'], name='item')

In [143]: data = data.reindex(columns=columns)

In [144]: data.index = periods.to_timestamp('D', 'end')

In [145]: ldata = data.stack().reset_index().rename(columns={0: 'value'})

We will look at PeriodIndex a bit more closely in Chapter 11. In short, it
combines the year and quarter columns to create a kind of time interval
type.

Now, ldata looks like:

In [146]: ldata[:10]
Out[146]: 
        date     item     value
0 1959-03-31  realgdp  2710.349
1 1959-03-31     infl     0.000
2 1959-03-31    unemp     5.800
3 1959-06-30  realgdp  2778.801
4 1959-06-30     infl     2.340



5 1959-06-30    unemp     5.100
6 1959-09-30  realgdp  2775.488
7 1959-09-30     infl     2.740
8 1959-09-30    unemp     5.300
9 1959-12-31  realgdp  2785.204

This is the so-called long format for multiple time series, or other
observational data with two or more keys (here, our keys are date and item).
Each row in the table represents a single observation.

Data is frequently stored this way in relational databases like MySQL, as a
fixed schema (column names and data types) allows the number of distinct
values in the item column to change as data is added to the table. In the
previous example, date and item would usually be the primary keys (in
relational database parlance), offering both relational integrity and easier
joins. In some cases, the data may be more difficult to work with in this
format; you might prefer to have a DataFrame containing one column per
distinct item value indexed by timestamps in the date column. DataFrame’s
pivot method performs exactly this transformation:

In [147]: pivoted = ldata.pivot('date', 'item', 'value')

In [148]: pivoted
Out[148]: 
item        infl    realgdp  unemp
date                              
1959-03-31  0.00   2710.349    5.8
1959-06-30  2.34   2778.801    5.1
1959-09-30  2.74   2775.488    5.3
1959-12-31  0.27   2785.204    5.6
1960-03-31  2.31   2847.699    5.2
1960-06-30  0.14   2834.390    5.2
1960-09-30  2.70   2839.022    5.6
1960-12-31  1.21   2802.616    6.3
1961-03-31 -0.40   2819.264    6.8
1961-06-30  1.47   2872.005    7.0
...          ...        ...    ...
2007-06-30  2.75  13203.977    4.5
2007-09-30  3.45  13321.109    4.7
2007-12-31  6.38  13391.249    4.8
2008-03-31  2.82  13366.865    4.9
2008-06-30  8.53  13415.266    5.4
2008-09-30 -3.16  13324.600    6.0
2008-12-31 -8.79  13141.920    6.9
2009-03-31  0.94  12925.410    8.1
2009-06-30  3.37  12901.504    9.2
2009-09-30  3.56  12990.341    9.6



[203 rows x 3 columns]

The first two values passed are the columns to be used respectively as the
row and column index, then finally an optional value column to fill the
DataFrame. Suppose you had two value columns that you wanted to reshape
simultaneously:

In [149]: ldata['value2'] = np.random.randn(len(ldata))

In [150]: ldata[:10]
Out[150]: 
        date     item     value    value2
0 1959-03-31  realgdp  2710.349  0.523772
1 1959-03-31     infl     0.000  0.000940
2 1959-03-31    unemp     5.800  1.343810
3 1959-06-30  realgdp  2778.801 -0.713544
4 1959-06-30     infl     2.340 -0.831154
5 1959-06-30    unemp     5.100 -2.370232
6 1959-09-30  realgdp  2775.488 -1.860761
7 1959-09-30     infl     2.740 -0.860757
8 1959-09-30    unemp     5.300  0.560145
9 1959-12-31  realgdp  2785.204 -1.265934

By omitting the last argument, you obtain a DataFrame with hierarchical
columns:

In [151]: pivoted = ldata.pivot('date', 'item')

In [152]: pivoted[:5]
Out[152]: 
           value                    value2                    
item        infl   realgdp unemp      infl   realgdp     unemp
date                                                          
1959-03-31  0.00  2710.349   5.8  0.000940  0.523772  1.343810
1959-06-30  2.34  2778.801   5.1 -0.831154 -0.713544 -2.370232
1959-09-30  2.74  2775.488   5.3 -0.860757 -1.860761  0.560145
1959-12-31  0.27  2785.204   5.6  0.119827 -1.265934 -1.063512
1960-03-31  2.31  2847.699   5.2 -2.359419  0.332883 -0.199543

In [153]: pivoted['value'][:5]
Out[153]: 
item        infl   realgdp  unemp
date                             
1959-03-31  0.00  2710.349    5.8
1959-06-30  2.34  2778.801    5.1
1959-09-30  2.74  2775.488    5.3
1959-12-31  0.27  2785.204    5.6
1960-03-31  2.31  2847.699    5.2



Note that pivot is equivalent to creating a hierarchical index using
set_index followed by a call to unstack:

In [154]: unstacked = ldata.set_index(['date', 'item']).unstack('item')

In [155]: unstacked[:7]
Out[155]: 
           value                    value2                    
item        infl   realgdp unemp      infl   realgdp     unemp
date                                                          
1959-03-31  0.00  2710.349   5.8  0.000940  0.523772  1.343810
1959-06-30  2.34  2778.801   5.1 -0.831154 -0.713544 -2.370232
1959-09-30  2.74  2775.488   5.3 -0.860757 -1.860761  0.560145
1959-12-31  0.27  2785.204   5.6  0.119827 -1.265934 -1.063512
1960-03-31  2.31  2847.699   5.2 -2.359419  0.332883 -0.199543
1960-06-30  0.14  2834.390   5.2 -0.970736 -1.541996 -1.307030
1960-09-30  2.70  2839.022   5.6  0.377984  0.286350 -0.753887



Pivoting “Wide” to “Long” Format
An inverse operation to pivot for DataFrames is pandas.melt. Rather than
transforming one column into many in a new DataFrame, it merges multiple
columns into one, producing a DataFrame that is longer than the input. Let’s
look at an example:

In [157]: df = pd.DataFrame({'key': ['foo', 'bar', 'baz'],
   .....:                    'A': [1, 2, 3],
   .....:                    'B': [4, 5, 6],
   .....:                    'C': [7, 8, 9]})

In [158]: df
Out[158]: 
   A  B  C  key
0  1  4  7  foo
1  2  5  8  bar
2  3  6  9  baz

The 'key' column may be a group indicator, and the other columns are data
values. When using pandas.melt, we must indicate which columns (if any)
are group indicators. Let’s use 'key' as the only group indicator here:

In [159]: melted = pd.melt(df, ['key'])

In [160]: melted
Out[160]: 
   key variable  value
0  foo        A      1
1  bar        A      2
2  baz        A      3
3  foo        B      4
4  bar        B      5
5  baz        B      6
6  foo        C      7
7  bar        C      8
8  baz        C      9

Using pivot, we can reshape back to the original layout:

In [161]: reshaped = melted.pivot('key', 'variable', 'value')

In [162]: reshaped
Out[162]: 
variable  A  B  C



key              
bar       2  5  8
baz       3  6  9
foo       1  4  7

Since the result of pivot creates an index from the column used as the row
labels, we may want to use reset_index to move the data back into a
column:

In [163]: reshaped.reset_index()
Out[163]: 
variable  key  A  B  C
0         bar  2  5  8
1         baz  3  6  9
2         foo  1  4  7

You can also specify a subset of columns to use as value columns:

In [164]: pd.melt(df, id_vars=['key'], value_vars=['A', 'B'])
Out[164]: 
   key variable  value
0  foo        A      1
1  bar        A      2
2  baz        A      3
3  foo        B      4
4  bar        B      5
5  baz        B      6

pandas.melt can be used without any group identifiers, too:

In [165]: pd.melt(df, value_vars=['A', 'B', 'C'])
Out[165]: 
  variable  value
0        A      1
1        A      2
2        A      3
3        B      4
4        B      5
5        B      6
6        C      7
7        C      8
8        C      9

In [166]: pd.melt(df, value_vars=['key', 'A', 'B'])
Out[166]: 
  variable value
0      key   foo
1      key   bar
2      key   baz



3        A     1
4        A     2
5        A     3
6        B     4
7        B     5
8        B     6



8.4 Conclusion
Now that you have some pandas basics for data import, cleaning, and
reorganization under your belt, we are ready to move on to data visualization
with matplotlib. We will return to pandas later in the book when we discuss
more advanced analytics.



Chapter 9. Plotting and
Visualization

Making informative visualizations (sometimes called plots) is one of the most
important tasks in data analysis. It may be a part of the exploratory process
— for example, to help identify outliers or needed data transformations, or as
a way of generating ideas for models. For others, building an interactive
visualization for the web may be the end goal. Python has many add-on
libraries for making static or dynamic visualizations, but I’ll be mainly
focused on matplotlib and libraries that build on top of it.

matplotlib is a desktop plotting package designed for creating (mostly two-
dimensional) publication-quality plots. The project was started by John
Hunter in 2002 to enable a MATLAB-like plotting interface in Python. The
matplotlib and IPython communities have collaborated to simplify interactive
plotting from the IPython shell (and now, Jupyter notebook). matplotlib
supports various GUI backends on all operating systems and additionally can
export visualizations to all of the common vector and raster graphics formats
(PDF, SVG, JPG, PNG, BMP, GIF, etc.). With the exception of a few
diagrams, nearly all of the graphics in this book were produced using
matplotlib.

Over time, matplotlib has spawned a number of add-on toolkits for data
visualization that use matplotlib for their underlying plotting. One of these is
seaborn, which we explore later in this chapter.

The simplest way to follow the code examples in the chapter is to use
interactive plotting in the Jupyter notebook. To set this up, execute the
following statement in a Jupyter notebook:

%matplotlib notebook

http://matplotlib.sourceforge.net
http://seaborn.pydata.org


9.1 A Brief matplotlib API Primer
With matplotlib, we use the following import convention:

In [11]: import matplotlib.pyplot as plt

After running %matplotlib notebook in Jupyter (or simply %matplotlib in
IPython), we can try creating a simple plot. If everything is set up right, a line
plot like Figure 9-1 should appear:

In [12]: import numpy as np

In [13]: data = np.arange(10)

In [14]: data
Out[14]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [15]: plt.plot(data)

Figure 9-1. Simple line plot



While libraries like seaborn and pandas’s built-in plotting functions will deal
with many of the mundane details of making plots, should you wish to
customize them beyond the function options provided, you will need to learn
a bit about the matplotlib API.

NOTE
There is not enough room in the book to give a comprehensive treatment to the
breadth and depth of functionality in matplotlib. It should be enough to teach
you the ropes to get up and running. The matplotlib gallery and documentation
are the best resource for learning advanced features.



Figures and Subplots
Plots in matplotlib reside within a Figure object. You can create a new figure
with plt.figure:

In [16]: fig = plt.figure()

In IPython, an empty plot window will appear, but in Jupyter nothing will be
shown until we use a few more commands. plt.figure has a number of
options; notably, figsize will guarantee the figure has a certain size and
aspect ratio if saved to disk.

You can’t make a plot with a blank figure. You have to create one or more
subplots using add_subplot:

In [17]: ax1 = fig.add_subplot(2, 2, 1)

This means that the figure should be 2 × 2 (so up to four plots in total), and
we’re selecting the first of four subplots (numbered from 1). If you create the
next two subplots, you’ll end up with a visualization that looks like Figure 9-
2:

In [18]: ax2 = fig.add_subplot(2, 2, 2)

In [19]: ax3 = fig.add_subplot(2, 2, 3)



Figure 9-2. An empty matplotlib figure with three subplots

TIP
One nuance of using Jupyter notebooks is that plots are reset after each cell is
evaluated, so for more complex plots you must put all of the plotting commands
in a single notebook cell.

Here we run all of these commands in the same cell:

fig = plt.figure()
ax1 = fig.add_subplot(2, 2, 1)
ax2 = fig.add_subplot(2, 2, 2)
ax3 = fig.add_subplot(2, 2, 3)

When you issue a plotting command like plt.plot([1.5, 3.5, -2, 1.6]),
matplotlib draws on the last figure and subplot used (creating one if
necessary), thus hiding the figure and subplot creation. So if we add the



following command, you’ll get something like Figure 9-3:

In [20]: plt.plot(np.random.randn(50).cumsum(), 'k--')

Figure 9-3. Data visualization after single plot

The 'k--' is a style option instructing matplotlib to plot a black dashed line.
The objects returned by fig.add_subplot here are AxesSubplot objects, on
which you can directly plot on the other empty subplots by calling each one’s
instance method (see Figure 9-4):

In [21]: _ = ax1.hist(np.random.randn(100), bins=20, color='k', alpha=0.3)

In [22]: ax2.scatter(np.arange(30), np.arange(30) + 3 * np.random.randn(30))



Figure 9-4. Data visualization after additional plots

You can find a comprehensive catalog of plot types in the matplotlib
documentation.

Creating a figure with a grid of subplots is a very common task, so matplotlib
includes a convenience method, plt.subplots, that creates a new figure and
returns a NumPy array containing the created subplot objects:

In [24]: fig, axes = plt.subplots(2, 3)

In [25]: axes
Out[25]: 
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7fb626374048>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7fb62625db00>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7fb6262f6c88>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x7fb6261a36a0>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7fb626181860>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7fb6260fd4e0>]], 
dtype
=object)

This is very useful, as the axes array can be easily indexed like a two-

http://matplotlib.sourceforge.net


dimensional array; for example, axes[0, 1]. You can also indicate that
subplots should have the same x- or y-axis using sharex and sharey,
respectively. This is especially useful when you’re comparing data on the
same scale; otherwise, matplotlib autoscales plot limits independently. See
Table 9-1 for more on this method.

Table 9-1. pyplot.subplots options

Argument Description

nrows Number of rows of subplots

ncols Number of columns of subplots

sharex All subplots should use the same x-axis ticks (adjusting the xlim will affect all
subplots)

sharey All subplots should use the same y-axis ticks (adjusting the ylim will affect all
subplots)

subplot_kw Dict of keywords passed to add_subplot call used to create each subplot

**fig_kw Additional keywords to subplots are used when creating the figure, such as
plt.subplots(2, 2, figsize=(8, 6))

Adjusting the spacing around subplots
By default matplotlib leaves a certain amount of padding around the outside
of the subplots and spacing between subplots. This spacing is all specified
relative to the height and width of the plot, so that if you resize the plot either
programmatically or manually using the GUI window, the plot will
dynamically adjust itself. You can change the spacing using the
subplots_adjust method on Figure objects, also available as a top-level
function:

subplots_adjust(left=None, bottom=None, right=None, top=None,
                wspace=None, hspace=None)

wspace and hspace controls the percent of the figure width and figure height,
respectively, to use as spacing between subplots. Here is a small example
where I shrink the spacing all the way to zero (see Figure 9-5):



fig, axes = plt.subplots(2, 2, sharex=True, sharey=True)
for i in range(2):
    for j in range(2):
        axes[i, j].hist(np.random.randn(500), bins=50, color='k', alpha=0.5)
plt.subplots_adjust(wspace=0, hspace=0)

Figure 9-5. Data visualization with no inter-subplot spacing

You may notice that the axis labels overlap. matplotlib doesn’t check whether
the labels overlap, so in a case like this you would need to fix the labels
yourself by specifying explicit tick locations and tick labels (we’ll look at
how to do this in the following sections).



Colors, Markers, and Line Styles
Matplotlib’s main plot function accepts arrays of x and y coordinates and
optionally a string abbreviation indicating color and line style. For example,
to plot x versus y with green dashes, you would execute:

ax.plot(x, y, 'g--')

This way of specifying both color and line style in a string is provided as a
convenience; in practice if you were creating plots programmatically you
might prefer not to have to munge strings together to create plots with the
desired style. The same plot could also have been expressed more explicitly
as:

ax.plot(x, y, linestyle='--', color='g')

There are a number of color abbreviations provided for commonly used
colors, but you can use any color on the spectrum by specifying its hex code
(e.g., '#CECECE'). You can see the full set of line styles by looking at the
docstring for plot (use plot? in IPython or Jupyter).

Line plots can additionally have markers to highlight the actual data points.
Since matplotlib creates a continuous line plot, interpolating between points,
it can occasionally be unclear where the points lie. The marker can be part of
the style string, which must have color followed by marker type and line style
(see Figure 9-6):

In [30]: from numpy.random import randn

In [31]: plt.plot(randn(30).cumsum(), 'ko--')



Figure 9-6. Line plot with markers

This could also have been written more explicitly as:

plot(randn(30).cumsum(), color='k', linestyle='dashed', marker='o')

For line plots, you will notice that subsequent points are linearly interpolated
by default. This can be altered with the drawstyle option (Figure 9-7):

In [33]: data = np.random.randn(30).cumsum()

In [34]: plt.plot(data, 'k--', label='Default')
Out[34]: [<matplotlib.lines.Line2D at 0x7fb624d86160>]

In [35]: plt.plot(data, 'k-', drawstyle='steps-post', label='steps-post')
Out[35]: [<matplotlib.lines.Line2D at 0x7fb624d869e8>]

In [36]: plt.legend(loc='best')



Figure 9-7. Line plot with different drawstyle options

You may notice output like <matplotlib.lines.Line2D at ...> when you
run this. matplotlib returns objects that reference the plot subcomponent that
was just added. A lot of the time you can safely ignore this output. Here,
since we passed the label arguments to plot, we are able to create a plot
legend to identify each line using plt.legend.

NOTE
You must call plt.legend (or ax.legend, if you have a reference to the axes) to
create the legend, whether or not you passed the label options when plotting
the data.



Ticks, Labels, and Legends
For most kinds of plot decorations, there are two main ways to do things:
using the procedural pyplot interface (i.e., matplotlib.pyplot) and the
more object-oriented native matplotlib API.

The pyplot interface, designed for interactive use, consists of methods like
xlim, xticks, and xticklabels. These control the plot range, tick locations,
and tick labels, respectively. They can be used in two ways:

Called with no arguments returns the current parameter value (e.g.,
plt.xlim() returns the current x-axis plotting range)

Called with parameters sets the parameter value (e.g., plt.xlim([0,
10]), sets the x-axis range to 0 to 10)

All such methods act on the active or most recently created AxesSubplot.
Each of them corresponds to two methods on the subplot object itself; in the
case of xlim these are ax.get_xlim and ax.set_xlim. I prefer to use the
subplot instance methods myself in the interest of being explicit (and
especially when working with multiple subplots), but you can certainly use
whichever you find more convenient.

Setting the title, axis labels, ticks, and ticklabels
To illustrate customizing the axes, I’ll create a simple figure and plot of a
random walk (see Figure 9-8):

In [37]: fig = plt.figure()

In [38]: ax = fig.add_subplot(1, 1, 1)

In [39]: ax.plot(np.random.randn(1000).cumsum())



Figure 9-8. Simple plot for illustrating xticks (with label)

To change the x-axis ticks, it’s easiest to use set_xticks and
set_xticklabels. The former instructs matplotlib where to place the ticks
along the data range; by default these locations will also be the labels. But we
can set any other values as the labels using set_xticklabels:

In [40]: ticks = ax.set_xticks([0, 250, 500, 750, 1000])

In [41]: labels = ax.set_xticklabels(['one', 'two', 'three', 'four', 'five'],
   ....:                             rotation=30, fontsize='small')

The rotation option sets the x tick labels at a 30-degree rotation. Lastly,
set_xlabel gives a name to the x-axis and set_title the subplot title (see
Figure 9-9 for the resulting figure):

In [42]: ax.set_title('My first matplotlib plot')
Out[42]: <matplotlib.text.Text at 0x7fb624d055f8>

In [43]: ax.set_xlabel('Stages')



Figure 9-9. Simple plot for illustrating xticks

Modifying the y-axis consists of the same process, substituting y for x in the
above. The axes class has a set method that allows batch setting of plot
properties. From the prior example, we could also have written:

props = {
    'title': 'My first matplotlib plot',
    'xlabel': 'Stages'
}
ax.set(**props)

Adding legends
Legends are another critical element for identifying plot elements. There are a
couple of ways to add one. The easiest is to pass the label argument when
adding each piece of the plot:

In [44]: from numpy.random import randn



In [45]: fig = plt.figure(); ax = fig.add_subplot(1, 1, 1)

In [46]: ax.plot(randn(1000).cumsum(), 'k', label='one')
Out[46]: [<matplotlib.lines.Line2D at 0x7fb624bdf860>]

In [47]: ax.plot(randn(1000).cumsum(), 'k--', label='two')
Out[47]: [<matplotlib.lines.Line2D at 0x7fb624be90f0>]

In [48]: ax.plot(randn(1000).cumsum(), 'k.', label='three')
Out[48]: [<matplotlib.lines.Line2D at 0x7fb624be9160>]

Once you’ve done this, you can either call ax.legend() or plt.legend() to
automatically create a legend. The resulting plot is in Figure 9-10:

In [49]: ax.legend(loc='best')

Figure 9-10. Simple plot with three lines and legend

The legend method has several other choices for the location loc argument.
See the docstring (with ax.legend?) for more information.

The loc tells matplotlib where to place the plot. If you aren’t picky, 'best' is
a good option, as it will choose a location that is most out of the way. To



exclude one or more elements from the legend, pass no label or
label='_nolegend_'.



Annotations and Drawing on a Subplot
In addition to the standard plot types, you may wish to draw your own plot
annotations, which could consist of text, arrows, or other shapes. You can
add annotations and text using the text, arrow, and annotate functions. text
draws text at given coordinates (x, y) on the plot with optional custom
styling:

ax.text(x, y, 'Hello world!',
        family='monospace', fontsize=10)

Annotations can draw both text and arrows arranged appropriately. As an
example, let’s plot the closing S&P 500 index price since 2007 (obtained
from Yahoo! Finance) and annotate it with some of the important dates from
the 2008–2009 financial crisis. You can most easily reproduce this code
example in a single cell in a Jupyter notebook. See Figure 9-11 for the result:

from datetime import datetime

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)

data = pd.read_csv('examples/spx.csv', index_col=0, parse_dates=True)
spx = data['SPX']

spx.plot(ax=ax, style='k-')

crisis_data = [
    (datetime(2007, 10, 11), 'Peak of bull market'),
    (datetime(2008, 3, 12), 'Bear Stearns Fails'),
    (datetime(2008, 9, 15), 'Lehman Bankruptcy')
]

for date, label in crisis_data:
    ax.annotate(label, xy=(date, spx.asof(date) + 75),
                xytext=(date, spx.asof(date) + 225),
                arrowprops=dict(facecolor='black', headwidth=4, width=2,
                                headlength=4),
                horizontalalignment='left', verticalalignment='top')

# Zoom in on 2007-2010
ax.set_xlim(['1/1/2007', '1/1/2011'])
ax.set_ylim([600, 1800])

ax.set_title('Important dates in the 2008-2009 financial crisis')



Figure 9-11. Important dates in the 2008–2009 financial crisis

There are a couple of important points to highlight in this plot: the
ax.annotate method can draw labels at the indicated x and y coordinates.
We use the set_xlim and set_ylim methods to manually set the start and end
boundaries for the plot rather than using matplotlib’s default. Lastly,
ax.set_title adds a main title to the plot.

See the online matplotlib gallery for many more annotation examples to learn
from.

Drawing shapes requires some more care. matplotlib has objects that
represent many common shapes, referred to as patches. Some of these, like
Rectangle and Circle, are found in matplotlib.pyplot, but the full set is
located in matplotlib.patches.

To add a shape to a plot, you create the patch object shp and add it to a
subplot by calling ax.add_patch(shp) (see Figure 9-12):

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)



rect = plt.Rectangle((0.2, 0.75), 0.4, 0.15, color='k', alpha=0.3)
circ = plt.Circle((0.7, 0.2), 0.15, color='b', alpha=0.3)
pgon = plt.Polygon([[0.15, 0.15], [0.35, 0.4], [0.2, 0.6]],
                   color='g', alpha=0.5)

ax.add_patch(rect)
ax.add_patch(circ)
ax.add_patch(pgon)

Figure 9-12. Data visualization composed from three different patches

If you look at the implementation of many familiar plot types, you will see
that they are assembled from patches.



Saving Plots to File
You can save the active figure to file using plt.savefig. This method is
equivalent to the figure object’s savefig instance method. For example, to
save an SVG version of a figure, you need only type:

plt.savefig('figpath.svg')

The file type is inferred from the file extension. So if you used .pdf instead,
you would get a PDF. There are a couple of important options that I use
frequently for publishing graphics: dpi, which controls the dots-per-inch
resolution, and bbox_inches, which can trim the whitespace around the
actual figure. To get the same plot as a PNG with minimal whitespace around
the plot and at 400 DPI, you would do:

plt.savefig('figpath.png', dpi=400, bbox_inches='tight')

savefig doesn’t have to write to disk; it can also write to any file-like object,
such as a BytesIO:

from io import BytesIO
buffer = BytesIO()
plt.savefig(buffer)
plot_data = buffer.getvalue()

See Table 9-2 for a list of some other options for savefig.

Table 9-2. Figure.savefig options

Argument Description

fname String containing a filepath or a Python file-like object. The figure format is
inferred from the file extension (e.g., .pdf for PDF or .png for PNG)

dpi The figure resolution in dots per inch; defaults to 100 out of the box but can
be configured

facecolor,
edgecolor

The color of the figure background outside of the subplots; 'w' (white), by
default



format The explicit file format to use ('png', 'pdf', 'svg', 'ps', 'eps', ...)

bbox_inches The portion of the figure to save; if 'tight' is passed, will attempt to trim the
empty space around the figure



matplotlib Configuration
matplotlib comes configured with color schemes and defaults that are geared
primarily toward preparing figures for publication. Fortunately, nearly all of
the default behavior can be customized via an extensive set of global
parameters governing figure size, subplot spacing, colors, font sizes, grid
styles, and so on. One way to modify the configuration programmatically
from Python is to use the rc method; for example, to set the global default
figure size to be 10 × 10, you could enter:

plt.rc('figure', figsize=(10, 10))

The first argument to rc is the component you wish to customize, such as
'figure', 'axes', 'xtick', 'ytick', 'grid', 'legend', or many others.
After that can follow a sequence of keyword arguments indicating the new
parameters. An easy way to write down the options in your program is as a
dict:

font_options = {'family' : 'monospace',
                'weight' : 'bold',
                'size'   : 'small'}
plt.rc('font', **font_options)

For more extensive customization and to see a list of all the options,
matplotlib comes with a configuration file matplotlibrc in the matplotlib/mpl-
data directory. If you customize this file and place it in your home directory
titled .matplotlibrc, it will be loaded each time you use matplotlib.

As we’ll see in the next section, the seaborn package has several built-in plot
themes or styles that use matplotlib’s configuration system internally.



9.2 Plotting with pandas and seaborn
matplotlib can be a fairly low-level tool. You assemble a plot from its base
components: the data display (i.e., the type of plot: line, bar, box, scatter,
contour, etc.), legend, title, tick labels, and other annotations.

In pandas we may have multiple columns of data, along with row and column
labels. pandas itself has built-in methods that simplify creating visualizations
from DataFrame and Series objects. Another library is seaborn, a statistical
graphics library created by Michael Waskom. Seaborn simplifies creating
many common visualization types.

TIP
Importing seaborn modifies the default matplotlib color schemes and plot styles
to improve readability and aesthetics. Even if you do not use the seaborn API,
you may prefer to import seaborn as a simple way to improve the visual
aesthetics of general matplotlib plots.

https://seaborn.pydata.org/


Line Plots
Series and DataFrame each have a plot attribute for making some basic plot
types. By default, plot() makes line plots (see Figure 9-13):

In [60]: s = pd.Series(np.random.randn(10).cumsum(), index=np.arange(0, 100, 
10))

In [61]: s.plot()

Figure 9-13. Simple Series plot

The Series object’s index is passed to matplotlib for plotting on the x-axis,
though you can disable this by passing use_index=False. The x-axis ticks
and limits can be adjusted with the xticks and xlim options, and y-axis
respectively with yticks and ylim. See Table 9-3 for a full listing of plot
options. I’ll comment on a few more of them throughout this section and
leave the rest to you to explore.



Most of pandas’s plotting methods accept an optional ax parameter, which
can be a matplotlib subplot object. This gives you more flexible placement of
subplots in a grid layout.

DataFrame’s plot method plots each of its columns as a different line on the
same subplot, creating a legend automatically (see Figure 9-14):

In [62]: df = pd.DataFrame(np.random.randn(10, 4).cumsum(0),
   ....:                   columns=['A', 'B', 'C', 'D'],
   ....:                   index=np.arange(0, 100, 10))

In [63]: df.plot()

Figure 9-14. Simple DataFrame plot

The plot attribute contains a “family” of methods for different plot types.
For example, df.plot() is equivalent to df.plot.line(). We’ll explore
some of these methods next.



NOTE
Additional keyword arguments to plot are passed through to the respective
matplotlib plotting function, so you can further customize these plots by
learning more about the matplotlib API.

Table 9-3. Series.plot method arguments

Argument Description

label Label for plot legend

ax matplotlib subplot object to plot on; if nothing passed, uses active matplotlib
subplot

style Style string, like 'ko--', to be passed to matplotlib

alpha The plot fill opacity (from 0 to 1)

kind Can be 'area', 'bar', 'barh', 'density', 'hist', 'kde', 'line', 'pie'

logy Use logarithmic scaling on the y-axis

use_index Use the object index for tick labels

rot Rotation of tick labels (0 through 360)

xticks Values to use for x-axis ticks

yticks Values to use for y-axis ticks

xlim x-axis limits (e.g., [0, 10])

ylim y-axis limits

grid Display axis grid (on by default)

DataFrame has a number of options allowing some flexibility with how the
columns are handled; for example, whether to plot them all on the same
subplot or to create separate subplots. See Table 9-4 for more on these.

Table 9-4. DataFrame-specific plot arguments

Argument Description

subplots Plot each DataFrame column in a separate subplot



sharex If subplots=True, share the same x-axis, linking ticks and limits

sharey If subplots=True, share the same y-axis

figsize Size of figure to create as tuple

title Plot title as string

legend Add a subplot legend (True by default)

sort_columns Plot columns in alphabetical order; by default uses existing column order

NOTE
For time series plotting, see Chapter 11.



Bar Plots
The plot.bar() and plot.barh() make vertical and horizontal bar plots,
respectively. In this case, the Series or DataFrame index will be used as the x
(bar) or y (barh) ticks (see Figure 9-15):

In [64]: fig, axes = plt.subplots(2, 1)

In [65]: data = pd.Series(np.random.rand(16), index=list('abcdefghijklmnop'))

In [66]: data.plot.bar(ax=axes[0], color='k', alpha=0.7)
Out[66]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb62493d470>

In [67]: data.plot.barh(ax=axes[1], color='k', alpha=0.7)

Figure 9-15. Horizonal and vertical bar plot

The options color='k' and alpha=0.7 set the color of the plots to black and
use partial transparency on the filling.

With a DataFrame, bar plots group the values in each row together in a group



in bars, side by side, for each value. See Figure 9-16:

In [69]: df = pd.DataFrame(np.random.rand(6, 4),
   ....:                   index=['one', 'two', 'three', 'four', 'five', 
'six'],
   ....:                   columns=pd.Index(['A', 'B', 'C', 'D'], 
name='Genus'))

In [70]: df
Out[70]: 
Genus         A         B         C         D
one    0.370670  0.602792  0.229159  0.486744
two    0.420082  0.571653  0.049024  0.880592
three  0.814568  0.277160  0.880316  0.431326
four   0.374020  0.899420  0.460304  0.100843
five   0.433270  0.125107  0.494675  0.961825
six    0.601648  0.478576  0.205690  0.560547

In [71]: df.plot.bar()

Figure 9-16. DataFrame bar plot

Note that the name “Genus” on the DataFrame’s columns is used to title the
legend.



We create stacked bar plots from a DataFrame by passing stacked=True,
resulting in the value in each row being stacked together (see Figure 9-17):

In [73]: df.plot.barh(stacked=True, alpha=0.5)

Figure 9-17. DataFrame stacked bar plot

NOTE
A useful recipe for bar plots is to visualize a Series’s value frequency using
value_counts: s.value_counts().plot.bar().

Returning to the tipping dataset used earlier in the book, suppose we wanted
to make a stacked bar plot showing the percentage of data points for each
party size on each day. I load the data using read_csv and make a cross-
tabulation by day and party size:



In [75]: tips = pd.read_csv('examples/tips.csv')

In [76]: party_counts = pd.crosstab(tips['day'], tips['size'])

In [77]: party_counts
Out[77]: 
size  1   2   3   4  5  6
day                      
Fri   1  16   1   1  0  0
Sat   2  53  18  13  1  0
Sun   0  39  15  18  3  1
Thur  1  48   4   5  1  3

# Not many 1- and 6-person parties
In [78]: party_counts = party_counts.loc[:, 2:5]

Then, normalize so that each row sums to 1 and make the plot (see Figure 9-
18):

# Normalize to sum to 1
In [79]: party_pcts = party_counts.div(party_counts.sum(1), axis=0)

In [80]: party_pcts
Out[80]: 
size         2         3         4         5
day                                         
Fri   0.888889  0.055556  0.055556  0.000000
Sat   0.623529  0.211765  0.152941  0.011765
Sun   0.520000  0.200000  0.240000  0.040000
Thur  0.827586  0.068966  0.086207  0.017241

In [81]: party_pcts.plot.bar()



Figure 9-18. Fraction of parties by size on each day

So you can see that party sizes appear to increase on the weekend in this
dataset.

With data that requires aggregation or summarization before making a plot,
using the seaborn package can make things much simpler. Let’s look now at
the tipping percentage by day with seaborn (see Figure 9-19 for the resulting
plot):

In [83]: import seaborn as sns

In [84]: tips['tip_pct'] = tips['tip'] / (tips['total_bill'] - tips['tip'])

In [85]: tips.head()
Out[85]: 
   total_bill   tip smoker  day    time  size   tip_pct
0       16.99  1.01     No  Sun  Dinner     2  0.063204
1       10.34  1.66     No  Sun  Dinner     3  0.191244
2       21.01  3.50     No  Sun  Dinner     3  0.199886
3       23.68  3.31     No  Sun  Dinner     2  0.162494
4       24.59  3.61     No  Sun  Dinner     4  0.172069



In [86]: sns.barplot(x='tip_pct', y='day', data=tips, orient='h')

Figure 9-19. Tipping percentage by day with error bars

Plotting functions in seaborn take a data argument, which can be a pandas
DataFrame. The other arguments refer to column names. Because there are
multiple observations for each value in the day, the bars are the average value
of tip_pct. The black lines drawn on the bars represent the 95% confidence
interval (this can be configured through optional arguments).

seaborn.barplot has a hue option that enables us to split by an additional
categorical value (Figure 9-20):

In [88]: sns.barplot(x='tip_pct', y='day', hue='time', data=tips, orient='h')



Figure 9-20. Tipping percentage by day and time

Notice that seaborn has automatically changed the aesthetics of plots: the
default color palette, plot background, and grid line colors. You can switch
between different plot appearances using seaborn.set:

In [90]: sns.set(style="whitegrid")



Histograms and Density Plots
A histogram is a kind of bar plot that gives a discretized display of value
frequency. The data points are split into discrete, evenly spaced bins, and the
number of data points in each bin is plotted. Using the tipping data from
before, we can make a histogram of tip percentages of the total bill using the
plot.hist method on the Series (see Figure 9-21):

In [92]: tips['tip_pct'].plot.hist(bins=50)

Figure 9-21. Histogram of tip percentages

A related plot type is a density plot, which is formed by computing an
estimate of a continuous probability distribution that might have generated
the observed data. The usual procedure is to approximate this distribution as a
mixture of “kernels” — that is, simpler distributions like the normal
distribution. Thus, density plots are also known as kernel density estimate
(KDE) plots. Using plot.kde makes a density plot using the conventional



mixture-of-normals estimate (see Figure 9-22):

In [94]: tips['tip_pct'].plot.density()

Figure 9-22. Density plot of tip percentages

Seaborn makes histograms and density plots even easier through its distplot
method, which can plot both a histogram and a continuous density estimate
simultaneously. As an example, consider a bimodal distribution consisting of
draws from two different standard normal distributions (see Figure 9-23):

In [96]: comp1 = np.random.normal(0, 1, size=200)

In [97]: comp2 = np.random.normal(10, 2, size=200)

In [98]: values = pd.Series(np.concatenate([comp1, comp2]))

In [99]: sns.distplot(values, bins=100, color='k')



Figure 9-23. Normalized histogram of normal mixture with density estimate



Scatter or Point Plots
Point plots or scatter plots can be a useful way of examining the relationship
between two one-dimensional data series. For example, here we load the
macrodata dataset from the statsmodels project, select a few variables, then
compute log differences:

In [100]: macro = pd.read_csv('examples/macrodata.csv')

In [101]: data = macro[['cpi', 'm1', 'tbilrate', 'unemp']]

In [102]: trans_data = np.log(data).diff().dropna()

In [103]: trans_data[-5:]
Out[103]: 
          cpi        m1  tbilrate     unemp
198 -0.007904  0.045361 -0.396881  0.105361
199 -0.021979  0.066753 -2.277267  0.139762
200  0.002340  0.010286  0.606136  0.160343
201  0.008419  0.037461 -0.200671  0.127339
202  0.008894  0.012202 -0.405465  0.042560

We can then use seaborn’s regplot method, which makes a scatter plot and
fits a linear regression line (see Figure 9-24):

In [105]: sns.regplot('m1', 'unemp', data=trans_data)
Out[105]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb613720be0>

In [106]: plt.title('Changes in log %s versus log %s' % ('m1', 'unemp'))



Figure 9-24. A seaborn regression/scatter plot

In exploratory data analysis it’s helpful to be able to look at all the scatter
plots among a group of variables; this is known as a pairs plot or scatter plot
matrix. Making such a plot from scratch is a bit of work, so seaborn has a
convenient pairplot function, which supports placing histograms or density
estimates of each variable along the diagonal (see Figure 9-25 for the
resulting plot):

In [107]: sns.pairplot(trans_data, diag_kind='kde', plot_kws={'alpha': 0.2})



Figure 9-25. Pair plot matrix of statsmodels macro data

You may notice the plot_kws argument. This enables us to pass down
configuration options to the individual plotting calls on the off-diagonal
elements. Check out the seaborn.pairplot docstring for more granular
configuration options.



Facet Grids and Categorical Data
What about datasets where we have additional grouping dimensions? One
way to visualize data with many categorical variables is to use a facet grid.
Seaborn has a useful built-in function factorplot that simplifies making
many kinds of faceted plots (see Figure 9-26 for the resulting plot):

In [108]: sns.factorplot(x='day', y='tip_pct', hue='time', col='smoker',
   .....:                kind='bar', data=tips[tips.tip_pct < 1])

Figure 9-26. Tipping percentage by day/time/smoker

Instead of grouping by 'time' by different bar colors within a facet, we can
also expand the facet grid by adding one row per time value (Figure 9-27):

In [109]: sns.factorplot(x='day', y='tip_pct', row='time',
   .....:                col='smoker',
   .....:                kind='bar', data=tips[tips.tip_pct < 1])



Figure 9-27. tip_pct by day; facet by time/smoker

factorplot supports other plot types that may be useful depending on what
you are trying to display. For example, box plots (which show the median,
quartiles, and outliers) can be an effective visualization type (Figure 9-28):

In [110]: sns.factorplot(x='tip_pct', y='day', kind='box',
   .....:                data=tips[tips.tip_pct < 0.5])



Figure 9-28. Box plot of tip_pct by day

You can create your own facet grid plots using the more general
seaborn.FacetGrid class. See the seaborn documentation for more.

https://seaborn.pydata.org/


9.3 Other Python Visualization Tools
As is common with open source, there are a plethora of options for creating
graphics in Python (too many to list). Since 2010, much development effort
has been focused on creating interactive graphics for publication on the web.
With tools like Bokeh and Plotly, it’s now possible to specify dynamic,
interactive graphics in Python that are destined for a web browser.

For creating static graphics for print or web, I recommend defaulting to
matplotlib and add-on libraries like pandas and seaborn for your needs. For
other data visualization requirements, it may be useful to learn one of the
other available tools out there. I encourage you to explore the ecosystem as it
continues to involve and innovate into the future.

http://bokeh.pydata.org/
https://github.com/plotly/plotly.py


9.4 Conclusion
The goal of this chapter was to get your feet wet with some basic data
visualization using pandas, matplotlib, and seaborn. If visually
communicating the results of data analysis is important in your work, I
encourage you to seek out resources to learn more about effective data
visualization. It is an active field of research and you can practice with many
excellent learning resources available online and in print form.

In the next chapter, we turn our attention to data aggregation and group
operations with pandas.



Chapter 10. Data Aggregation and
Group Operations

Categorizing a dataset and applying a function to each group, whether an
aggregation or transformation, is often a critical component of a data analysis
workflow. After loading, merging, and preparing a dataset, you may need to
compute group statistics or possibly pivot tables for reporting or visualization
purposes. pandas provides a flexible groupby interface, enabling you to slice,
dice, and summarize datasets in a natural way.

One reason for the popularity of relational databases and SQL (which stands
for “structured query language”) is the ease with which data can be joined,
filtered, transformed, and aggregated. However, query languages like SQL
are somewhat constrained in the kinds of group operations that can be
performed. As you will see, with the expressiveness of Python and pandas,
we can perform quite complex group operations by utilizing any function that
accepts a pandas object or NumPy array. In this chapter, you will learn how
to:

Split a pandas object into pieces using one or more keys (in the form of
functions, arrays, or DataFrame column names)

Calculate group summary statistics, like count, mean, or standard
deviation, or a user-defined function

Apply within-group transformations or other manipulations, like
normalization, linear regression, rank, or subset selection

Compute pivot tables and cross-tabulations

Perform quantile analysis and other statistical group analyses

NOTE



Aggregation of time series data, a special use case of groupby, is referred to as
resampling in this book and will receive separate treatment in Chapter 11.



10.1 GroupBy Mechanics
Hadley Wickham, an author of many popular packages for the R
programming language, coined the term split-apply-combine for describing
group operations. In the first stage of the process, data contained in a pandas
object, whether a Series, DataFrame, or otherwise, is split into groups based
on one or more keys that you provide. The splitting is performed on a
particular axis of an object. For example, a DataFrame can be grouped on its
rows (axis=0) or its columns (axis=1). Once this is done, a function is
applied to each group, producing a new value. Finally, the results of all those
function applications are combined into a result object. The form of the
resulting object will usually depend on what’s being done to the data. See
Figure 10-1 for a mockup of a simple group aggregation.



Figure 10-1. Illustration of a group aggregation

Each grouping key can take many forms, and the keys do not have to be all of
the same type:

A list or array of values that is the same length as the axis being grouped

A value indicating a column name in a DataFrame

A dict or Series giving a correspondence between the values on the axis
being grouped and the group names

A function to be invoked on the axis index or the individual labels in the
index



Note that the latter three methods are shortcuts for producing an array of
values to be used to split up the object. Don’t worry if this all seems abstract.
Throughout this chapter, I will give many examples of all these methods. To
get started, here is a small tabular dataset as a DataFrame:

In [10]: df = pd.DataFrame({'key1' : ['a', 'a', 'b', 'b', 'a'],
   ....:                    'key2' : ['one', 'two', 'one', 'two', 'one'],
   ....:                    'data1' : np.random.randn(5),
   ....:                    'data2' : np.random.randn(5)})

In [11]: df
Out[11]: 
      data1     data2 key1 key2
0 -0.204708  1.393406    a  one
1  0.478943  0.092908    a  two
2 -0.519439  0.281746    b  one
3 -0.555730  0.769023    b  two
4  1.965781  1.246435    a  one

Suppose you wanted to compute the mean of the data1 column using the
labels from key1. There are a number of ways to do this. One is to access
data1 and call groupby with the column (a Series) at key1:

In [12]: grouped = df['data1'].groupby(df['key1'])

In [13]: grouped
Out[13]: <pandas.core.groupby.SeriesGroupBy object at 0x7faa31537390>

This grouped variable is now a GroupBy object. It has not actually computed
anything yet except for some intermediate data about the group key
df['key1']. The idea is that this object has all of the information needed to
then apply some operation to each of the groups. For example, to compute
group means we can call the GroupBy’s mean method:

In [14]: grouped.mean()
Out[14]: 
key1
a    0.746672
b   -0.537585
Name: data1, dtype: float64

Later, I’ll explain more about what happens when you call .mean(). The



important thing here is that the data (a Series) has been aggregated according
to the group key, producing a new Series that is now indexed by the unique
values in the key1 column. The result index has the name 'key1' because the
DataFrame column df['key1'] did.

If instead we had passed multiple arrays as a list, we’d get something
different:

In [15]: means = df['data1'].groupby([df['key1'], df['key2']]).mean()

In [16]: means
Out[16]: 
key1  key2
a     one     0.880536
      two     0.478943
b     one    -0.519439
      two    -0.555730
Name: data1, dtype: float64

Here we grouped the data using two keys, and the resulting Series now has a
hierarchical index consisting of the unique pairs of keys observed:

In [17]: means.unstack()
Out[17]: 
key2       one       two
key1                    
a     0.880536  0.478943
b    -0.519439 -0.555730

In this example, the group keys are all Series, though they could be any
arrays of the right length:

In [18]: states = np.array(['Ohio', 'California', 'California', 'Ohio', 
'Ohio'])

In [19]: years = np.array([2005, 2005, 2006, 2005, 2006])

In [20]: df['data1'].groupby([states, years]).mean()
Out[20]: 
California  2005    0.478943
            2006   -0.519439
Ohio        2005   -0.380219
            2006    1.965781
Name: data1, dtype: float64

Frequently the grouping information is found in the same DataFrame as the



data you want to work on. In that case, you can pass column names (whether
those are strings, numbers, or other Python objects) as the group keys:

In [21]: df.groupby('key1').mean()
Out[21]: 
         data1     data2
key1                    
a     0.746672  0.910916
b    -0.537585  0.525384

In [22]: df.groupby(['key1', 'key2']).mean()
Out[22]: 
              data1     data2
key1 key2                    
a    one   0.880536  1.319920
     two   0.478943  0.092908
b    one  -0.519439  0.281746
     two  -0.555730  0.769023

You may have noticed in the first case df.groupby('key1').mean() that
there is no key2 column in the result. Because df['key2'] is not numeric
data, it is said to be a nuisance column, which is therefore excluded from the
result. By default, all of the numeric columns are aggregated, though it is
possible to filter down to a subset, as you’ll see soon.

Regardless of the objective in using groupby, a generally useful GroupBy
method is size, which returns a Series containing group sizes:

In [23]: df.groupby(['key1', 'key2']).size()
Out[23]: 
key1  key2
a     one     2
      two     1
b     one     1
      two     1
dtype: int64

Take note that any missing values in a group key will be excluded from the
result.



Iterating Over Groups
The GroupBy object supports iteration, generating a sequence of 2-tuples
containing the group name along with the chunk of data. Consider the
following:

In [24]: for name, group in df.groupby('key1'):
   ....:     print(name)
   ....:     print(group)
   ....:
a
      data1     data2 key1 key2
0 -0.204708  1.393406    a  one
1  0.478943  0.092908    a  two
4  1.965781  1.246435    a  one
b
      data1     data2 key1 key2
2 -0.519439  0.281746    b  one
3 -0.555730  0.769023    b  two

In the case of multiple keys, the first element in the tuple will be a tuple of
key values:

In [25]: for (k1, k2), group in df.groupby(['key1', 'key2']):
   ....:     print((k1, k2))
   ....:     print(group)
   ....:
('a', 'one')
      data1     data2 key1 key2
0 -0.204708  1.393406    a  one
4  1.965781  1.246435    a  one
('a', 'two')
      data1     data2 key1 key2
1  0.478943  0.092908    a  two
('b', 'one')
      data1     data2 key1 key2
2 -0.519439  0.281746    b  one
('b', 'two')
     data1     data2 key1 key2
3 -0.55573  0.769023    b  two

Of course, you can choose to do whatever you want with the pieces of data. A
recipe you may find useful is computing a dict of the data pieces as a one-
liner:

In [26]: pieces = dict(list(df.groupby('key1')))



In [27]: pieces['b']
Out[27]: 
      data1     data2 key1 key2
2 -0.519439  0.281746    b  one
3 -0.555730  0.769023    b  two

By default groupby groups on axis=0, but you can group on any of the other
axes. For example, we could group the columns of our example df here by
dtype like so:

In [28]: df.dtypes
Out[28]: 
data1    float64
data2    float64
key1      object
key2      object
dtype: object

In [29]: grouped = df.groupby(df.dtypes, axis=1)

We can print out the groups like so:

In [30]: for dtype, group in grouped:
   ....:     print(dtype)
   ....:     print(group)
   ....:
float64
      data1     data2
0 -0.204708  1.393406
1  0.478943  0.092908
2 -0.519439  0.281746
3 -0.555730  0.769023
4  1.965781  1.246435
object
  key1 key2
0    a  one
1    a  two
2    b  one
3    b  two
4    a  one



Selecting a Column or Subset of Columns
Indexing a GroupBy object created from a DataFrame with a column name or
array of column names has the effect of column subsetting for aggregation.
This means that:

df.groupby('key1')['data1']
df.groupby('key1')[['data2']]

are syntactic sugar for:

df['data1'].groupby(df['key1'])
df[['data2']].groupby(df['key1'])

Especially for large datasets, it may be desirable to aggregate only a few
columns. For example, in the preceding dataset, to compute means for just
the data2 column and get the result as a DataFrame, we could write:

In [31]: df.groupby(['key1', 'key2'])[['data2']].mean()
Out[31]: 
              data2
key1 key2          
a    one   1.319920
     two   0.092908
b    one   0.281746
     two   0.769023

The object returned by this indexing operation is a grouped DataFrame if a
list or array is passed or a grouped Series if only a single column name is
passed as a scalar:

In [32]: s_grouped = df.groupby(['key1', 'key2'])['data2']

In [33]: s_grouped
Out[33]: <pandas.core.groupby.SeriesGroupBy object at 0x7faa30c78da0>

In [34]: s_grouped.mean()
Out[34]: 
key1  key2
a     one     1.319920
      two     0.092908
b     one     0.281746
      two     0.769023



Name: data2, dtype: float64



Grouping with Dicts and Series
Grouping information may exist in a form other than an array. Let’s consider
another example DataFrame:

In [35]: people = pd.DataFrame(np.random.randn(5, 5),
   ....:                       columns=['a', 'b', 'c', 'd', 'e'],
   ....:                       index=['Joe', 'Steve', 'Wes', 'Jim', 
'Travis'])

In [36]: people.iloc[2:3, [1, 2]] = np.nan # Add a few NA values

In [37]: people
Out[37]: 
               a         b         c         d         e
Joe     1.007189 -1.296221  0.274992  0.228913  1.352917
Steve   0.886429 -2.001637 -0.371843  1.669025 -0.438570
Wes    -0.539741       NaN       NaN -1.021228 -0.577087
Jim     0.124121  0.302614  0.523772  0.000940  1.343810
Travis -0.713544 -0.831154 -2.370232 -1.860761 -0.860757

Now, suppose I have a group correspondence for the columns and want to
sum together the columns by group:

In [38]: mapping = {'a': 'red', 'b': 'red', 'c': 'blue',
   ....:            'd': 'blue', 'e': 'red', 'f' : 'orange'}

Now, you could construct an array from this dict to pass to groupby, but
instead we can just pass the dict (I included the key 'f' to highlight that
unused grouping keys are OK):

In [39]: by_column = people.groupby(mapping, axis=1)

In [40]: by_column.sum()
Out[40]: 
            blue       red
Joe     0.503905  1.063885
Steve   1.297183 -1.553778
Wes    -1.021228 -1.116829
Jim     0.524712  1.770545
Travis -4.230992 -2.405455

The same functionality holds for Series, which can be viewed as a fixed-size
mapping:



In [41]: map_series = pd.Series(mapping)

In [42]: map_series
Out[42]: 
a       red
b       red
c      blue
d      blue
e       red
f    orange
dtype: object

In [43]: people.groupby(map_series, axis=1).count()
Out[43]: 
        blue  red
Joe        2    3
Steve      2    3
Wes        1    2
Jim        2    3
Travis     2    3



Grouping with Functions
Using Python functions is a more generic way of defining a group mapping
compared with a dict or Series. Any function passed as a group key will be
called once per index value, with the return values being used as the group
names. More concretely, consider the example DataFrame from the previous
section, which has people’s first names as index values. Suppose you wanted
to group by the length of the names; while you could compute an array of
string lengths, it’s simpler to just pass the len function:

In [44]: people.groupby(len).sum()
Out[44]: 
          a         b         c         d         e
3  0.591569 -0.993608  0.798764 -0.791374  2.119639
5  0.886429 -2.001637 -0.371843  1.669025 -0.438570
6 -0.713544 -0.831154 -2.370232 -1.860761 -0.860757

Mixing functions with arrays, dicts, or Series is not a problem as everything
gets converted to arrays internally:

In [45]: key_list = ['one', 'one', 'one', 'two', 'two']

In [46]: people.groupby([len, key_list]).min()
Out[46]: 
              a         b         c         d         e
3 one -0.539741 -1.296221  0.274992 -1.021228 -0.577087
  two  0.124121  0.302614  0.523772  0.000940  1.343810
5 one  0.886429 -2.001637 -0.371843  1.669025 -0.438570
6 two -0.713544 -0.831154 -2.370232 -1.860761 -0.860757



Grouping by Index Levels
A final convenience for hierarchically indexed datasets is the ability to
aggregate using one of the levels of an axis index. Let’s look at an example:

In [47]: columns = pd.MultiIndex.from_arrays([['US', 'US', 'US', 'JP', 'JP'],
   ....:                                     [1, 3, 5, 1, 3]],
   ....:                                     names=['cty', 'tenor'])

In [48]: hier_df = pd.DataFrame(np.random.randn(4, 5), columns=columns)

In [49]: hier_df
Out[49]: 
cty          US                            JP          
tenor         1         3         5         1         3
0      0.560145 -1.265934  0.119827 -1.063512  0.332883
1     -2.359419 -0.199543 -1.541996 -0.970736 -1.307030
2      0.286350  0.377984 -0.753887  0.331286  1.349742
3      0.069877  0.246674 -0.011862  1.004812  1.327195

To group by level, pass the level number or name using the level keyword:

In [50]: hier_df.groupby(level='cty', axis=1).count()
Out[50]: 
cty  JP  US
0     2   3
1     2   3
2     2   3
3     2   3



10.2 Data Aggregation
Aggregations refer to any data transformation that produces scalar values
from arrays. The preceding examples have used several of them, including
mean, count, min, and sum. You may wonder what is going on when you
invoke mean() on a GroupBy object. Many common aggregations, such as
those found in Table 10-1, have optimized implementations. However, you
are not limited to only this set of methods.

Table 10-1. Optimized groupby methods

Function name Description

count Number of non-NA values in the group

sum Sum of non-NA values

mean Mean of non-NA values

median Arithmetic median of non-NA values

std, var Unbiased (n – 1 denominator) standard deviation and variance

min, max Minimum and maximum of non-NA values

prod Product of non-NA values

first, last First and last non-NA values

You can use aggregations of your own devising and additionally call any
method that is also defined on the grouped object. For example, you might
recall that quantile computes sample quantiles of a Series or a DataFrame’s
columns.

While quantile is not explicitly implemented for GroupBy, it is a Series
method and thus available for use. Internally, GroupBy efficiently slices up
the Series, calls piece.quantile(0.9) for each piece, and then assembles
those results together into the result object:

In [51]: df
Out[51]: 



      data1     data2 key1 key2
0 -0.204708  1.393406    a  one
1  0.478943  0.092908    a  two
2 -0.519439  0.281746    b  one
3 -0.555730  0.769023    b  two
4  1.965781  1.246435    a  one

In [52]: grouped = df.groupby('key1')

In [53]: grouped['data1'].quantile(0.9)
Out[53]: 
key1
a    1.668413
b   -0.523068
Name: data1, dtype: float64

To use your own aggregation functions, pass any function that aggregates an
array to the aggregate or agg method:

In [54]: def peak_to_peak(arr):
   ....:     return arr.max() - arr.min()

In [55]: grouped.agg(peak_to_peak)
Out[55]: 
         data1     data2
key1                    
a     2.170488  1.300498
b     0.036292  0.487276

You may notice that some methods like describe also work, even though
they are not aggregations, strictly speaking:

In [56]: grouped.describe()
Out[56]: 
     data1                                                              \
     count      mean       std       min       25%       50%       75%   
key1                                                                     
a      3.0  0.746672  1.109736 -0.204708  0.137118  0.478943  1.222362   
b      2.0 -0.537585  0.025662 -0.555730 -0.546657 -0.537585 -0.528512   
               data2                                                    \
           max count      mean       std       min       25%       50%   
key1                                                                     
a     1.965781   3.0  0.910916  0.712217  0.092908  0.669671  1.246435   
b    -0.519439   2.0  0.525384  0.344556  0.281746  0.403565  0.525384   
                          
           75%       max  
key1                      
a     1.319920  1.393406  
b     0.647203  0.769023  



I will explain in more detail what has happened here in Section 10.3, “Apply:
General split-apply-combine,”.

NOTE
Custom aggregation functions are generally much slower than the optimized
functions found in Table 10-1. This is because there is some extra overhead
(function calls, data rearrangement) in constructing the intermediate group data
chunks.



Column-Wise and Multiple Function Application
Let’s return to the tipping dataset from earlier examples. After loading it with
read_csv, we add a tipping percentage column tip_pct:

In [57]: tips = pd.read_csv('examples/tips.csv')

# Add tip percentage of total bill
In [58]: tips['tip_pct'] = tips['tip'] / tips['total_bill']

In [59]: tips[:6]
Out[59]: 
   total_bill   tip smoker  day    time  size   tip_pct
0       16.99  1.01     No  Sun  Dinner     2  0.059447
1       10.34  1.66     No  Sun  Dinner     3  0.160542
2       21.01  3.50     No  Sun  Dinner     3  0.166587
3       23.68  3.31     No  Sun  Dinner     2  0.139780
4       24.59  3.61     No  Sun  Dinner     4  0.146808
5       25.29  4.71     No  Sun  Dinner     4  0.186240

As you’ve already seen, aggregating a Series or all of the columns of a
DataFrame is a matter of using aggregate with the desired function or calling
a method like mean or std. However, you may want to aggregate using a
different function depending on the column, or multiple functions at once.
Fortunately, this is possible to do, which I’ll illustrate through a number of
examples. First, I’ll group the tips by day and smoker:

In [60]: grouped = tips.groupby(['day', 'smoker'])

Note that for descriptive statistics like those in Table 10-1, you can pass the
name of the function as a string:

In [61]: grouped_pct = grouped['tip_pct']

In [62]: grouped_pct.agg('mean')
Out[62]: 
day   smoker
Fri   No        0.151650
      Yes       0.174783
Sat   No        0.158048
      Yes       0.147906
Sun   No        0.160113
      Yes       0.187250
Thur  No        0.160298



      Yes       0.163863
Name: tip_pct, dtype: float64

If you pass a list of functions or function names instead, you get back a
DataFrame with column names taken from the functions:

In [63]: grouped_pct.agg(['mean', 'std', peak_to_peak])
Out[63]: 
                 mean       std  peak_to_peak
day  smoker                                  
Fri  No      0.151650  0.028123      0.067349
     Yes     0.174783  0.051293      0.159925
Sat  No      0.158048  0.039767      0.235193
     Yes     0.147906  0.061375      0.290095
Sun  No      0.160113  0.042347      0.193226
     Yes     0.187250  0.154134      0.644685
Thur No      0.160298  0.038774      0.193350
     Yes     0.163863  0.039389      0.151240

Here we passed a list of aggregation functions to agg to evaluate indepedently
on the data groups.

You don’t need to accept the names that GroupBy gives to the columns;
notably, lambda functions have the name '<lambda>', which makes them
hard to identify (you can see for yourself by looking at a function’s __name__
attribute). Thus, if you pass a list of (name, function) tuples, the first
element of each tuple will be used as the DataFrame column names (you can
think of a list of 2-tuples as an ordered mapping):

In [64]: grouped_pct.agg([('foo', 'mean'), ('bar', np.std)])
Out[64]: 
                  foo       bar
day  smoker                    
Fri  No      0.151650  0.028123
     Yes     0.174783  0.051293
Sat  No      0.158048  0.039767
     Yes     0.147906  0.061375
Sun  No      0.160113  0.042347
     Yes     0.187250  0.154134
Thur No      0.160298  0.038774
     Yes     0.163863  0.039389

With a DataFrame you have more options, as you can specify a list of
functions to apply to all of the columns or different functions per column. To
start, suppose we wanted to compute the same three statistics for the tip_pct



and total_bill columns:

In [65]: functions = ['count', 'mean', 'max']

In [66]: result = grouped['tip_pct', 'total_bill'].agg(functions)

In [67]: result
Out[67]: 
            tip_pct                     total_bill                  
              count      mean       max      count       mean    max
day  smoker                                                         
Fri  No           4  0.151650  0.187735          4  18.420000  22.75
     Yes         15  0.174783  0.263480         15  16.813333  40.17
Sat  No          45  0.158048  0.291990         45  19.661778  48.33
     Yes         42  0.147906  0.325733         42  21.276667  50.81
Sun  No          57  0.160113  0.252672         57  20.506667  48.17
     Yes         19  0.187250  0.710345         19  24.120000  45.35
Thur No          45  0.160298  0.266312         45  17.113111  41.19
     Yes         17  0.163863  0.241255         17  19.190588  43.11

As you can see, the resulting DataFrame has hierarchical columns, the same
as you would get aggregating each column separately and using concat to
glue the results together using the column names as the keys argument:

In [68]: result['tip_pct']
Out[68]: 
             count      mean       max
day  smoker                           
Fri  No          4  0.151650  0.187735
     Yes        15  0.174783  0.263480
Sat  No         45  0.158048  0.291990
     Yes        42  0.147906  0.325733
Sun  No         57  0.160113  0.252672
     Yes        19  0.187250  0.710345
Thur No         45  0.160298  0.266312
     Yes        17  0.163863  0.241255

As before, a list of tuples with custom names can be passed:

In [69]: ftuples = [('Durchschnitt', 'mean'), ('Abweichung', np.var)]

In [70]: grouped['tip_pct', 'total_bill'].agg(ftuples)
Out[70]: 
                 tip_pct              total_bill            
            Durchschnitt Abweichung Durchschnitt  Abweichung
day  smoker                                                 
Fri  No         0.151650   0.000791    18.420000   25.596333
     Yes        0.174783   0.002631    16.813333   82.562438
Sat  No         0.158048   0.001581    19.661778   79.908965
     Yes        0.147906   0.003767    21.276667  101.387535



Sun  No         0.160113   0.001793    20.506667   66.099980
     Yes        0.187250   0.023757    24.120000  109.046044
Thur No         0.160298   0.001503    17.113111   59.625081
     Yes        0.163863   0.001551    19.190588   69.808518

Now, suppose you wanted to apply potentially different functions to one or
more of the columns. To do this, pass a dict to agg that contains a mapping of
column names to any of the function specifications listed so far:

In [71]: grouped.agg({'tip' : np.max, 'size' : 'sum'})
Out[71]: 
               tip  size
day  smoker             
Fri  No       3.50     9
     Yes      4.73    31
Sat  No       9.00   115
     Yes     10.00   104
Sun  No       6.00   167
     Yes      6.50    49
Thur No       6.70   112
     Yes      5.00    40

In [72]: grouped.agg({'tip_pct' : ['min', 'max', 'mean', 'std'],
   ....:              'size' : 'sum'})
Out[72]: 
              tip_pct                               size
                  min       max      mean       std  sum
day  smoker                                             
Fri  No      0.120385  0.187735  0.151650  0.028123    9
     Yes     0.103555  0.263480  0.174783  0.051293   31
Sat  No      0.056797  0.291990  0.158048  0.039767  115
     Yes     0.035638  0.325733  0.147906  0.061375  104
Sun  No      0.059447  0.252672  0.160113  0.042347  167
     Yes     0.065660  0.710345  0.187250  0.154134   49
Thur No      0.072961  0.266312  0.160298  0.038774  112
     Yes     0.090014  0.241255  0.163863  0.039389   40

A DataFrame will have hierarchical columns only if multiple functions are
applied to at least one column.



Returning Aggregated Data Without Row Indexes
In all of the examples up until now, the aggregated data comes back with an
index, potentially hierarchical, composed from the unique group key
combinations. Since this isn’t always desirable, you can disable this behavior
in most cases by passing as_index=False to groupby:

In [73]: tips.groupby(['day', 'smoker'], as_index=False).mean()
Out[73]: 
    day smoker  total_bill       tip      size   tip_pct
0   Fri     No   18.420000  2.812500  2.250000  0.151650
1   Fri    Yes   16.813333  2.714000  2.066667  0.174783
2   Sat     No   19.661778  3.102889  2.555556  0.158048
3   Sat    Yes   21.276667  2.875476  2.476190  0.147906
4   Sun     No   20.506667  3.167895  2.929825  0.160113
5   Sun    Yes   24.120000  3.516842  2.578947  0.187250
6  Thur     No   17.113111  2.673778  2.488889  0.160298
7  Thur    Yes   19.190588  3.030000  2.352941  0.163863

Of course, it’s always possible to obtain the result in this format by calling
reset_index on the result. Using the as_index=False method avoids some
unnecessary computations.



10.3 Apply: General split-apply-combine
The most general-purpose GroupBy method is apply, which is the subject of
the rest of this section. As illustrated in Figure 10-2, apply splits the object
being manipulated into pieces, invokes the passed function on each piece, and
then attempts to concatenate the pieces together.



Figure 10-2. Illustration of a group aggregation

Returning to the tipping dataset from before, suppose you wanted to select
the top five tip_pct values by group. First, write a function that selects the
rows with the largest values in a particular column:

In [74]: def top(df, n=5, column='tip_pct'):
   ....:     return df.sort_values(by=column)[-n:]

In [75]: top(tips, n=6)
Out[75]: 
     total_bill   tip smoker  day    time  size   tip_pct
109       14.31  4.00    Yes  Sat  Dinner     2  0.279525
183       23.17  6.50    Yes  Sun  Dinner     4  0.280535
232       11.61  3.39     No  Sat  Dinner     2  0.291990
67         3.07  1.00    Yes  Sat  Dinner     1  0.325733



178        9.60  4.00    Yes  Sun  Dinner     2  0.416667
172        7.25  5.15    Yes  Sun  Dinner     2  0.710345

Now, if we group by smoker, say, and call apply with this function, we get
the following:

In [76]: tips.groupby('smoker').apply(top)
Out[76]: 
            total_bill   tip smoker   day    time  size   tip_pct
smoker                                                           
No     88        24.71  5.85     No  Thur   Lunch     2  0.236746
       185       20.69  5.00     No   Sun  Dinner     5  0.241663
       51        10.29  2.60     No   Sun  Dinner     2  0.252672
       149        7.51  2.00     No  Thur   Lunch     2  0.266312
       232       11.61  3.39     No   Sat  Dinner     2  0.291990
Yes    109       14.31  4.00    Yes   Sat  Dinner     2  0.279525
       183       23.17  6.50    Yes   Sun  Dinner     4  0.280535
       67         3.07  1.00    Yes   Sat  Dinner     1  0.325733
       178        9.60  4.00    Yes   Sun  Dinner     2  0.416667
       172        7.25  5.15    Yes   Sun  Dinner     2  0.710345

What has happened here? The top function is called on each row group from
the DataFrame, and then the results are glued together using pandas.concat,
labeling the pieces with the group names. The result therefore has a
hierarchical index whose inner level contains index values from the original
DataFrame.

If you pass a function to apply that takes other arguments or keywords, you
can pass these after the function:

In [77]: tips.groupby(['smoker', 'day']).apply(top, n=1, column='total_bill')
Out[77]: 
                 total_bill    tip smoker   day    time  size   tip_pct
smoker day                                                             
No     Fri  94        22.75   3.25     No   Fri  Dinner     2  0.142857
       Sat  212       48.33   9.00     No   Sat  Dinner     4  0.186220
       Sun  156       48.17   5.00     No   Sun  Dinner     6  0.103799
       Thur 142       41.19   5.00     No  Thur   Lunch     5  0.121389
Yes    Fri  95        40.17   4.73    Yes   Fri  Dinner     4  0.117750
       Sat  170       50.81  10.00    Yes   Sat  Dinner     3  0.196812
       Sun  182       45.35   3.50    Yes   Sun  Dinner     3  0.077178
       Thur 197       43.11   5.00    Yes  Thur   Lunch     4  0.115982

NOTE
Beyond these basic usage mechanics, getting the most out of apply may require



some creativity. What occurs inside the function passed is up to you; it only
needs to return a pandas object or a scalar value. The rest of this chapter will
mainly consist of examples showing you how to solve various problems using
groupby.

You may recall that I earlier called describe on a GroupBy object:

In [78]: result = tips.groupby('smoker')['tip_pct'].describe()

In [79]: result
Out[79]: 
        count      mean       std       min       25%       50%       75%  \
smoker                                                                      
No      151.0  0.159328  0.039910  0.056797  0.136906  0.155625  0.185014   
Yes      93.0  0.163196  0.085119  0.035638  0.106771  0.153846  0.195059   
             max  
smoker            
No      0.291990  
Yes     0.710345  

In [80]: result.unstack('smoker')
Out[80]: 
       smoker
count  No        151.000000
       Yes        93.000000
mean   No          0.159328
       Yes         0.163196
std    No          0.039910
       Yes         0.085119
min    No          0.056797
       Yes         0.035638
25%    No          0.136906
       Yes         0.106771
50%    No          0.155625
       Yes         0.153846
75%    No          0.185014
       Yes         0.195059
max    No          0.291990
       Yes         0.710345
dtype: float64

Inside GroupBy, when you invoke a method like describe, it is actually just
a shortcut for:

f = lambda x: x.describe()
grouped.apply(f)



Suppressing the Group Keys
In the preceding examples, you see that the resulting object has a hierarchical
index formed from the group keys along with the indexes of each piece of the
original object. You can disable this by passing group_keys=False to
groupby:

In [81]: tips.groupby('smoker', group_keys=False).apply(top)
Out[81]: 
     total_bill   tip smoker   day    time  size   tip_pct
88        24.71  5.85     No  Thur   Lunch     2  0.236746
185       20.69  5.00     No   Sun  Dinner     5  0.241663
51        10.29  2.60     No   Sun  Dinner     2  0.252672
149        7.51  2.00     No  Thur   Lunch     2  0.266312
232       11.61  3.39     No   Sat  Dinner     2  0.291990
109       14.31  4.00    Yes   Sat  Dinner     2  0.279525
183       23.17  6.50    Yes   Sun  Dinner     4  0.280535
67         3.07  1.00    Yes   Sat  Dinner     1  0.325733
178        9.60  4.00    Yes   Sun  Dinner     2  0.416667
172        7.25  5.15    Yes   Sun  Dinner     2  0.710345



Quantile and Bucket Analysis
As you may recall from Chapter 8, pandas has some tools, in particular cut
and qcut, for slicing data up into buckets with bins of your choosing or by
sample quantiles. Combining these functions with groupby makes it
convenient to perform bucket or quantile analysis on a dataset. Consider a
simple random dataset and an equal-length bucket categorization using cut:

In [82]: frame = pd.DataFrame({'data1': np.random.randn(1000),
   ....:                       'data2': np.random.randn(1000)})

In [83]: quartiles = pd.cut(frame.data1, 4)

In [84]: quartiles[:10]
Out[84]: 
0     (-1.23, 0.489]
1    (-2.956, -1.23]
2     (-1.23, 0.489]
3     (0.489, 2.208]
4     (-1.23, 0.489]
5     (0.489, 2.208]
6     (-1.23, 0.489]
7     (-1.23, 0.489]
8     (0.489, 2.208]
9     (0.489, 2.208]
Name: data1, dtype: category
Categories (4, interval[float64]): [(-2.956, -1.23] < (-1.23, 0.489] < 
(0.489, 2.
208] < (2.208, 3.928]]

The Categorical object returned by cut can be passed directly to groupby.
So we could compute a set of statistics for the data2 column like so:

In [85]: def get_stats(group):
   ....:     return {'min': group.min(), 'max': group.max(),
   ....:             'count': group.count(), 'mean': group.mean()}

In [86]: grouped = frame.data2.groupby(quartiles)

In [87]: grouped.apply(get_stats).unstack()
Out[87]: 
                 count       max      mean       min
data1                                               
(-2.956, -1.23]   95.0  1.670835 -0.039521 -3.399312
(-1.23, 0.489]   598.0  3.260383 -0.002051 -2.989741
(0.489, 2.208]   297.0  2.954439  0.081822 -3.745356
(2.208, 3.928]    10.0  1.765640  0.024750 -1.929776



These were equal-length buckets; to compute equal-size buckets based on
sample quantiles, use qcut. I’ll pass labels=False to just get quantile
numbers:

# Return quantile numbers
In [88]: grouping = pd.qcut(frame.data1, 10, labels=False)

In [89]: grouped = frame.data2.groupby(grouping)

In [90]: grouped.apply(get_stats).unstack()
Out[90]: 
       count       max      mean       min
data1                                     
0      100.0  1.670835 -0.049902 -3.399312
1      100.0  2.628441  0.030989 -1.950098
2      100.0  2.527939 -0.067179 -2.925113
3      100.0  3.260383  0.065713 -2.315555
4      100.0  2.074345 -0.111653 -2.047939
5      100.0  2.184810  0.052130 -2.989741
6      100.0  2.458842 -0.021489 -2.223506
7      100.0  2.954439 -0.026459 -3.056990
8      100.0  2.735527  0.103406 -3.745356
9      100.0  2.377020  0.220122 -2.064111

We will take a closer look at pandas’s Categorical type in Chapter 12.



Example: Filling Missing Values with Group-Specific
Values
When cleaning up missing data, in some cases you will replace data
observations using dropna, but in others you may want to impute (fill in) the
null (NA) values using a fixed value or some value derived from the data.
fillna is the right tool to use; for example, here I fill in NA values with the
mean:

In [91]: s = pd.Series(np.random.randn(6))

In [92]: s[::2] = np.nan

In [93]: s
Out[93]: 
0         NaN
1   -0.125921
2         NaN
3   -0.884475
4         NaN
5    0.227290
dtype: float64

In [94]: s.fillna(s.mean())
Out[94]: 
0   -0.261035
1   -0.125921
2   -0.261035
3   -0.884475
4   -0.261035
5    0.227290
dtype: float64

Suppose you need the fill value to vary by group. One way to do this is to
group the data and use apply with a function that calls fillna on each data
chunk. Here is some sample data on US states divided into eastern and
western regions:

In [95]: states = ['Ohio', 'New York', 'Vermont', 'Florida',
   ....:           'Oregon', 'Nevada', 'California', 'Idaho']

In [96]: group_key = ['East'] * 4 + ['West'] * 4

In [97]: data = pd.Series(np.random.randn(8), index=states)



In [98]: data
Out[98]: 
Ohio          0.922264
New York     -2.153545
Vermont      -0.365757
Florida      -0.375842
Oregon        0.329939
Nevada        0.981994
California    1.105913
Idaho        -1.613716
dtype: float64

Note that the syntax ['East'] * 4 produces a list containing four copies of
the elements in ['East']. Adding lists together concatenates them.

Let’s set some values in the data to be missing:

In [99]: data[['Vermont', 'Nevada', 'Idaho']] = np.nan

In [100]: data
Out[100]: 
Ohio          0.922264
New York     -2.153545
Vermont            NaN
Florida      -0.375842
Oregon        0.329939
Nevada             NaN
California    1.105913
Idaho              NaN
dtype: float64

In [101]: data.groupby(group_key).mean()
Out[101]: 
East   -0.535707
West    0.717926
dtype: float64

We can fill the NA values using the group means like so:

In [102]: fill_mean = lambda g: g.fillna(g.mean())

In [103]: data.groupby(group_key).apply(fill_mean)
Out[103]: 
Ohio          0.922264
New York     -2.153545
Vermont      -0.535707
Florida      -0.375842
Oregon        0.329939
Nevada        0.717926
California    1.105913
Idaho         0.717926
dtype: float64



In another case, you might have predefined fill values in your code that vary
by group. Since the groups have a name attribute set internally, we can use
that:

In [104]: fill_values = {'East': 0.5, 'West': -1}

In [105]: fill_func = lambda g: g.fillna(fill_values[g.name])

In [106]: data.groupby(group_key).apply(fill_func)
Out[106]: 
Ohio          0.922264
New York     -2.153545
Vermont       0.500000
Florida      -0.375842
Oregon        0.329939
Nevada       -1.000000
California    1.105913
Idaho        -1.000000
dtype: float64



Example: Random Sampling and Permutation
Suppose you wanted to draw a random sample (with or without replacement)
from a large dataset for Monte Carlo simulation purposes or some other
application. There are a number of ways to perform the “draws”; here we use
the sample method for Series.

To demonstrate, here’s a way to construct a deck of English-style playing
cards:

# Hearts, Spades, Clubs, Diamonds
suits = ['H', 'S', 'C', 'D']
card_val = (list(range(1, 11)) + [10] * 3) * 4
base_names = ['A'] + list(range(2, 11)) + ['J', 'K', 'Q']
cards = []
for suit in ['H', 'S', 'C', 'D']:
    cards.extend(str(num) + suit for num in base_names)

deck = pd.Series(card_val, index=cards)

So now we have a Series of length 52 whose index contains card names and
values are the ones used in Blackjack and other games (to keep things simple,
I just let the ace 'A' be 1):

In [108]: deck[:13]
Out[108]: 
AH      1
2H      2
3H      3
4H      4
5H      5
6H      6
7H      7
8H      8
9H      9
10H    10
JH     10
KH     10
QH     10
dtype: int64

Now, based on what I said before, drawing a hand of five cards from the deck
could be written as:



In [109]: def draw(deck, n=5):
   .....:     return deck.sample(n)

In [110]: draw(deck)
Out[110]: 
AD     1
8C     8
5H     5
KC    10
2C     2
dtype: int64

Suppose you wanted two random cards from each suit. Because the suit is the
last character of each card name, we can group based on this and use apply:

In [111]: get_suit = lambda card: card[-1] # last letter is suit

In [112]: deck.groupby(get_suit).apply(draw, n=2)
Out[112]: 
C  2C     2
   3C     3
D  KD    10
   8D     8
H  KH    10
   3H     3
S  2S     2
   4S     4
dtype: int64

Alternatively, we could write:

In [113]: deck.groupby(get_suit, group_keys=False).apply(draw, n=2)
Out[113]: 
KC    10
JC    10
AD     1
5D     5
5H     5
6H     6
7S     7
KS    10
dtype: int64



Example: Group Weighted Average and Correlation
Under the split-apply-combine paradigm of groupby, operations between
columns in a DataFrame or two Series, such as a group weighted average, are
possible. As an example, take this dataset containing group keys, values, and
some weights:

In [114]: df = pd.DataFrame({'category': ['a', 'a', 'a', 'a',
   .....:                                 'b', 'b', 'b', 'b'],
   .....:                    'data': np.random.randn(8),
   .....:                    'weights': np.random.rand(8)})

In [115]: df
Out[115]: 
  category      data   weights
0        a  1.561587  0.957515
1        a  1.219984  0.347267
2        a -0.482239  0.581362
3        a  0.315667  0.217091
4        b -0.047852  0.894406
5        b -0.454145  0.918564
6        b -0.556774  0.277825
7        b  0.253321  0.955905

The group weighted average by category would then be:

In [116]: grouped = df.groupby('category')

In [117]: get_wavg = lambda g: np.average(g['data'], weights=g['weights'])

In [118]: grouped.apply(get_wavg)
Out[118]: 
category
a    0.811643
b   -0.122262
dtype: float64

As another example, consider a financial dataset originally obtained from
Yahoo! Finance containing end-of-day prices for a few stocks and the S&P
500 index (the SPX symbol):

In [119]: close_px = pd.read_csv('examples/stock_px_2.csv', parse_dates=True,
   .....:                        index_col=0)

In [120]: close_px.info()



<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2214 entries, 2003-01-02 to 2011-10-14
Data columns (total 4 columns):
AAPL    2214 non-null float64
MSFT    2214 non-null float64
XOM     2214 non-null float64
SPX     2214 non-null float64
dtypes: float64(4)
memory usage: 86.5 KB

In [121]: close_px[-4:]
Out[121]: 
              AAPL   MSFT    XOM      SPX
2011-10-11  400.29  27.00  76.27  1195.54
2011-10-12  402.19  26.96  77.16  1207.25
2011-10-13  408.43  27.18  76.37  1203.66
2011-10-14  422.00  27.27  78.11  1224.58

One task of interest might be to compute a DataFrame consisting of the
yearly correlations of daily returns (computed from percent changes) with
SPX. As one way to do this, we first create a function that computes the
pairwise correlation of each column with the 'SPX' column:

In [122]: spx_corr = lambda x: x.corrwith(x['SPX'])

Next, we compute percent change on close_px using pct_change:

In [123]: rets = close_px.pct_change().dropna()

Lastly, we group these percent changes by year, which can be extracted from
each row label with a one-line function that returns the year attribute of each
datetime label:

In [124]: get_year = lambda x: x.year

In [125]: by_year = rets.groupby(get_year)

In [126]: by_year.apply(spx_corr)
Out[126]: 
          AAPL      MSFT       XOM  SPX
2003  0.541124  0.745174  0.661265  1.0
2004  0.374283  0.588531  0.557742  1.0
2005  0.467540  0.562374  0.631010  1.0
2006  0.428267  0.406126  0.518514  1.0
2007  0.508118  0.658770  0.786264  1.0
2008  0.681434  0.804626  0.828303  1.0
2009  0.707103  0.654902  0.797921  1.0



2010  0.710105  0.730118  0.839057  1.0
2011  0.691931  0.800996  0.859975  1.0

You could also compute inter-column correlations. Here we compute the
annual correlation between Apple and Microsoft:

In [127]: by_year.apply(lambda g: g['AAPL'].corr(g['MSFT']))
Out[127]: 
2003    0.480868
2004    0.259024
2005    0.300093
2006    0.161735
2007    0.417738
2008    0.611901
2009    0.432738
2010    0.571946
2011    0.581987
dtype: float64



Example: Group-Wise Linear Regression
In the same theme as the previous example, you can use groupby to perform
more complex group-wise statistical analysis, as long as the function returns
a pandas object or scalar value. For example, I can define the following
regress function (using the statsmodels econometrics library), which
executes an ordinary least squares (OLS) regression on each chunk of data:

import statsmodels.api as sm
def regress(data, yvar, xvars):
    Y = data[yvar]
    X = data[xvars]
    X['intercept'] = 1.
    result = sm.OLS(Y, X).fit()
    return result.params

Now, to run a yearly linear regression of AAPL on SPX returns, execute:

In [129]: by_year.apply(regress, 'AAPL', ['SPX'])
Out[129]: 
           SPX  intercept
2003  1.195406   0.000710
2004  1.363463   0.004201
2005  1.766415   0.003246
2006  1.645496   0.000080
2007  1.198761   0.003438
2008  0.968016  -0.001110
2009  0.879103   0.002954
2010  1.052608   0.001261
2011  0.806605   0.001514



10.4 Pivot Tables and Cross-Tabulation
A pivot table is a data summarization tool frequently found in spreadsheet
programs and other data analysis software. It aggregates a table of data by
one or more keys, arranging the data in a rectangle with some of the group
keys along the rows and some along the columns. Pivot tables in Python with
pandas are made possible through the groupby facility described in this
chapter combined with reshape operations utilizing hierarchical indexing.
DataFrame has a pivot_table method, and there is also a top-level
pandas.pivot_table function. In addition to providing a convenience
interface to groupby, pivot_table can add partial totals, also known as
margins.

Returning to the tipping dataset, suppose you wanted to compute a table of
group means (the default pivot_table aggregation type) arranged by day and
smoker on the rows:

In [130]: tips.pivot_table(index=['day', 'smoker'])
Out[130]: 
                 size       tip   tip_pct  total_bill
day  smoker                                          
Fri  No      2.250000  2.812500  0.151650   18.420000
     Yes     2.066667  2.714000  0.174783   16.813333
Sat  No      2.555556  3.102889  0.158048   19.661778
     Yes     2.476190  2.875476  0.147906   21.276667
Sun  No      2.929825  3.167895  0.160113   20.506667
     Yes     2.578947  3.516842  0.187250   24.120000
Thur No      2.488889  2.673778  0.160298   17.113111
     Yes     2.352941  3.030000  0.163863   19.190588

This could have been produced with groupby directly. Now, suppose we
want to aggregate only tip_pct and size, and additionally group by time.
I’ll put smoker in the table columns and day in the rows:

In [131]: tips.pivot_table(['tip_pct', 'size'], index=['time', 'day'],
   .....:                  columns='smoker')
Out[131]: 
                 size             tip_pct          
smoker             No       Yes        No       Yes
time   day                                         



Dinner Fri   2.000000  2.222222  0.139622  0.165347
       Sat   2.555556  2.476190  0.158048  0.147906
       Sun   2.929825  2.578947  0.160113  0.187250
       Thur  2.000000       NaN  0.159744       NaN
Lunch  Fri   3.000000  1.833333  0.187735  0.188937
       Thur  2.500000  2.352941  0.160311  0.163863

We could augment this table to include partial totals by passing
margins=True. This has the effect of adding All row and column labels, with
corresponding values being the group statistics for all the data within a single
tier:

In [132]: tips.pivot_table(['tip_pct', 'size'], index=['time', 'day'],
   .....:                  columns='smoker', margins=True)
Out[132]: 
                 size                       tip_pct                    
smoker             No       Yes       All        No       Yes       All
time   day                                                             
Dinner Fri   2.000000  2.222222  2.166667  0.139622  0.165347  0.158916
       Sat   2.555556  2.476190  2.517241  0.158048  0.147906  0.153152
       Sun   2.929825  2.578947  2.842105  0.160113  0.187250  0.166897
       Thur  2.000000       NaN  2.000000  0.159744       NaN  0.159744
Lunch  Fri   3.000000  1.833333  2.000000  0.187735  0.188937  0.188765
       Thur  2.500000  2.352941  2.459016  0.160311  0.163863  0.161301
All          2.668874  2.408602  2.569672  0.159328  0.163196  0.160803

Here, the All values are means without taking into account smoker versus
non-smoker (the All columns) or any of the two levels of grouping on the
rows (the All row).

To use a different aggregation function, pass it to aggfunc. For example,
'count' or len will give you a cross-tabulation (count or frequency) of group
sizes:

In [133]: tips.pivot_table('tip_pct', index=['time', 'smoker'], 
columns='day',
   .....:                  aggfunc=len, margins=True)
Out[133]: 
day             Fri   Sat   Sun  Thur    All
time   smoker                               
Dinner No       3.0  45.0  57.0   1.0  106.0
       Yes      9.0  42.0  19.0   NaN   70.0
Lunch  No       1.0   NaN   NaN  44.0   45.0
       Yes      6.0   NaN   NaN  17.0   23.0
All            19.0  87.0  76.0  62.0  244.0



If some combinations are empty (or otherwise NA), you may wish to pass a
fill_value:

In [134]: tips.pivot_table('tip_pct', index=['time', 'size', 'smoker'],
   .....:                  columns='day', aggfunc='mean', fill_value=0)
Out[134]: 
day                      Fri       Sat       Sun      Thur
time   size smoker                                        
Dinner 1    No      0.000000  0.137931  0.000000  0.000000
            Yes     0.000000  0.325733  0.000000  0.000000
       2    No      0.139622  0.162705  0.168859  0.159744
            Yes     0.171297  0.148668  0.207893  0.000000
       3    No      0.000000  0.154661  0.152663  0.000000
            Yes     0.000000  0.144995  0.152660  0.000000
       4    No      0.000000  0.150096  0.148143  0.000000
            Yes     0.117750  0.124515  0.193370  0.000000
       5    No      0.000000  0.000000  0.206928  0.000000
            Yes     0.000000  0.106572  0.065660  0.000000
...                      ...       ...       ...       ...
Lunch  1    No      0.000000  0.000000  0.000000  0.181728
            Yes     0.223776  0.000000  0.000000  0.000000
       2    No      0.000000  0.000000  0.000000  0.166005
            Yes     0.181969  0.000000  0.000000  0.158843
       3    No      0.187735  0.000000  0.000000  0.084246
            Yes     0.000000  0.000000  0.000000  0.204952
       4    No      0.000000  0.000000  0.000000  0.138919
            Yes     0.000000  0.000000  0.000000  0.155410
       5    No      0.000000  0.000000  0.000000  0.121389
       6    No      0.000000  0.000000  0.000000  0.173706
[21 rows x 4 columns]

See Table 10-2 for a summary of pivot_table methods.

Table 10-2. pivot_table options

Function
name

Description

values Column name or names to aggregate; by default aggregates all numeric
columns

index Column names or other group keys to group on the rows of the resulting
pivot table

columns Column names or other group keys to group on the columns of the resulting
pivot table

aggfunc Aggregation function or list of functions ('mean' by default); can be any
function valid in a groupby context

fill_value Replace missing values in result table



dropna If True, do not include columns whose entries are all NA

margins Add row/column subtotals and grand total (False by default)



Cross-Tabulations: Crosstab
A cross-tabulation (or crosstab for short) is a special case of a pivot table that
computes group frequencies. Here is an example:

In [138]: data
Out[138]: 
   Sample Nationality    Handedness
0       1         USA  Right-handed
1       2       Japan   Left-handed
2       3         USA  Right-handed
3       4       Japan  Right-handed
4       5       Japan   Left-handed
5       6       Japan  Right-handed
6       7         USA  Right-handed
7       8         USA   Left-handed
8       9       Japan  Right-handed
9      10         USA  Right-handed

As part of some survey analysis, we might want to summarize this data by
nationality and handedness. You could use pivot_table to do this, but the
pandas.crosstab function can be more convenient:

In [139]: pd.crosstab(data.Nationality, data.Handedness, margins=True)
Out[139]: 
Handedness   Left-handed  Right-handed  All
Nationality                                
Japan                  2             3    5
USA                    1             4    5
All                    3             7   10

The first two arguments to crosstab can each either be an array or Series or a
list of arrays. As in the tips data:

In [140]: pd.crosstab([tips.time, tips.day], tips.smoker, margins=True)
Out[140]: 
smoker        No  Yes  All
time   day                
Dinner Fri     3    9   12
       Sat    45   42   87
       Sun    57   19   76
       Thur    1    0    1
Lunch  Fri     1    6    7
       Thur   44   17   61
All          151   93  244



10.5 Conclusion
Mastering pandas’s data grouping tools can help both with data cleaning as
well as modeling or statistical analysis work. In Chapter 14 we will look at
several more example use cases for groupby on real data.

In the next chapter, we turn our attention to time series data.



Chapter 11. Time Series

Time series data is an important form of structured data in many different
fields, such as finance, economics, ecology, neuroscience, and physics.
Anything that is observed or measured at many points in time forms a time
series. Many time series are fixed frequency, which is to say that data points
occur at regular intervals according to some rule, such as every 15 seconds,
every 5 minutes, or once per month. Time series can also be irregular
without a fixed unit of time or offset between units. How you mark and refer
to time series data depends on the application, and you may have one of the
following:

Timestamps, specific instants in time

Fixed periods, such as the month January 2007 or the full year 2010

Intervals of time, indicated by a start and end timestamp. Periods can be
thought of as special cases of intervals

Experiment or elapsed time; each timestamp is a measure of time
relative to a particular start time (e.g., the diameter of a cookie baking
each second since being placed in the oven)

In this chapter, I am mainly concerned with time series in the first three
categories, though many of the techniques can be applied to experimental
time series where the index may be an integer or floating-point number
indicating elapsed time from the start of the experiment. The simplest and
most widely used kind of time series are those indexed by timestamp.

TIP
pandas also supports indexes based on timedeltas, which can be a useful way of
representing experiment or elapsed time. We do not explore timedelta indexes
in this book, but you can learn more in the pandas documentation.

http://pandas.pydata.org


pandas provides many built-in time series tools and data algorithms. You can
efficiently work with very large time series and easily slice and dice,
aggregate, and resample irregular- and fixed-frequency time series. Some of
these tools are especially useful for financial and economics applications, but
you could certainly use them to analyze server log data, too.



11.1 Date and Time Data Types and Tools
The Python standard library includes data types for date and time data, as
well as calendar-related functionality. The datetime, time, and calendar
modules are the main places to start. The datetime.datetime type, or simply
datetime, is widely used:

In [10]: from datetime import datetime

In [11]: now = datetime.now()

In [12]: now
Out[12]: datetime.datetime(2017, 9, 25, 14, 5, 52, 72973)

In [13]: now.year, now.month, now.day
Out[13]: (2017, 9, 25)

datetime stores both the date and time down to the microsecond. timedelta
represents the temporal difference between two datetime objects:

In [14]: delta = datetime(2011, 1, 7) - datetime(2008, 6, 24, 8, 15)

In [15]: delta
Out[15]: datetime.timedelta(926, 56700)

In [16]: delta.days
Out[16]: 926

In [17]: delta.seconds
Out[17]: 56700

You can add (or subtract) a timedelta or multiple thereof to a datetime
object to yield a new shifted object:

In [18]: from datetime import timedelta

In [19]: start = datetime(2011, 1, 7)

In [20]: start + timedelta(12)
Out[20]: datetime.datetime(2011, 1, 19, 0, 0)

In [21]: start - 2 * timedelta(12)
Out[21]: datetime.datetime(2010, 12, 14, 0, 0)



Table 11-1 summarizes the data types in the datetime module. While this
chapter is mainly concerned with the data types in pandas and higher-level
time series manipulation, you may encounter the datetime-based types in
many other places in Python in the wild.

Table 11-1. Types in datetime module

Type Description

date Store calendar date (year, month, day) using the Gregorian calendar

time Store time of day as hours, minutes, seconds, and microseconds

datetime Stores both date and time

timedelta Represents the difference between two datetime values (as days, seconds, and
microseconds)

tzinfo Base type for storing time zone information



Converting Between String and Datetime
You can format datetime objects and pandas Timestamp objects, which I’ll
introduce later, as strings using str or the strftime method, passing a format
specification:

In [22]: stamp = datetime(2011, 1, 3)

In [23]: str(stamp)
Out[23]: '2011-01-03 00:00:00'

In [24]: stamp.strftime('%Y-%m-%d')
Out[24]: '2011-01-03'

See Table 11-2 for a complete list of the format codes (reproduced from
Chapter 2).

Table 11-2. Datetime format specification (ISO C89 compatible)

Type Description

%Y Four-digit year

%y Two-digit year

%m Two-digit month [01, 12]

%d Two-digit day [01, 31]

%H Hour (24-hour clock) [00, 23]

%I Hour (12-hour clock) [01, 12]

%M Two-digit minute [00, 59]

%S Second [00, 61] (seconds 60, 61 account for leap seconds)

%w Weekday as integer [0 (Sunday), 6]

%U Week number of the year [00, 53]; Sunday is considered the first day of the week,
and days before the first Sunday of the year are “week 0”

%W Week number of the year [00, 53]; Monday is considered the first day of the week,
and days before the first Monday of the year are “week 0”

%z UTC time zone offset as +HHMM or -HHMM; empty if time zone naive

%F Shortcut for %Y-%m-%d (e.g., 2012-4-18)



%D Shortcut for %m/%d/%y (e.g., 04/18/12)

You can use these same format codes to convert strings to dates using
datetime.strptime:

In [25]: value = '2011-01-03'

In [26]: datetime.strptime(value, '%Y-%m-%d')
Out[26]: datetime.datetime(2011, 1, 3, 0, 0)

In [27]: datestrs = ['7/6/2011', '8/6/2011']

In [28]: [datetime.strptime(x, '%m/%d/%Y') for x in datestrs]
Out[28]: 
[datetime.datetime(2011, 7, 6, 0, 0),
 datetime.datetime(2011, 8, 6, 0, 0)]

datetime.strptime is a good way to parse a date with a known format.
However, it can be a bit annoying to have to write a format spec each time,
especially for common date formats. In this case, you can use the
parser.parse method in the third-party dateutil package (this is installed
automatically when you install pandas):

In [29]: from dateutil.parser import parse

In [30]: parse('2011-01-03')
Out[30]: datetime.datetime(2011, 1, 3, 0, 0)

dateutil is capable of parsing most human-intelligible date representations:

In [31]: parse('Jan 31, 1997 10:45 PM')
Out[31]: datetime.datetime(1997, 1, 31, 22, 45)

In international locales, day appearing before month is very common, so you
can pass dayfirst=True to indicate this:

In [32]: parse('6/12/2011', dayfirst=True)
Out[32]: datetime.datetime(2011, 12, 6, 0, 0)

pandas is generally oriented toward working with arrays of dates, whether
used as an axis index or a column in a DataFrame. The to_datetime method



parses many different kinds of date representations. Standard date formats
like ISO 8601 can be parsed very quickly:

In [33]: datestrs = ['2011-07-06 12:00:00', '2011-08-06 00:00:00']

In [34]: pd.to_datetime(datestrs)
Out[34]: DatetimeIndex(['2011-07-06 12:00:00', '2011-08-06 00:00:00'], 
dtype='dat
etime64[ns]', freq=None)

It also handles values that should be considered missing (None, empty string,
etc.):

In [35]: idx = pd.to_datetime(datestrs + [None])

In [36]: idx
Out[36]: DatetimeIndex(['2011-07-06 12:00:00', '2011-08-06 00:00:00', 'NaT'], 
dty
pe='datetime64[ns]', freq=None)

In [37]: idx[2]
Out[37]: NaT

In [38]: pd.isnull(idx)
Out[38]: array([False, False,  True], dtype=bool)

NaT (Not a Time) is pandas’s null value for timestamp data.

CAUTION
dateutil.parser is a useful but imperfect tool. Notably, it will recognize some
strings as dates that you might prefer that it didn’t — for example, '42' will be
parsed as the year 2042 with today’s calendar date.

datetime objects also have a number of locale-specific formatting options for
systems in other countries or languages. For example, the abbreviated month
names will be different on German or French systems compared with English
systems. See Table 11-3 for a listing.

Table 11-3. Locale-specific date formatting



Type Description

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Full date and time (e.g., ‘Tue 01 May 2012 04:20:57 PM’)

%p Locale equivalent of AM or PM

%x Locale-appropriate formatted date (e.g., in the United States, May 1, 2012 yields
’05/01/2012’)

%X Locale-appropriate time (e.g., ’04:24:12 PM’)



11.2 Time Series Basics
A basic kind of time series object in pandas is a Series indexed by
timestamps, which is often represented external to pandas as Python strings
or datetime objects:

In [39]: from datetime import datetime

In [40]: dates = [datetime(2011, 1, 2), datetime(2011, 1, 5),
   ....:          datetime(2011, 1, 7), datetime(2011, 1, 8),
   ....:          datetime(2011, 1, 10), datetime(2011, 1, 12)]

In [41]: ts = pd.Series(np.random.randn(6), index=dates)

In [42]: ts
Out[42]: 
2011-01-02   -0.204708
2011-01-05    0.478943
2011-01-07   -0.519439
2011-01-08   -0.555730
2011-01-10    1.965781
2011-01-12    1.393406
dtype: float64

Under the hood, these datetime objects have been put in a DatetimeIndex:

In [43]: ts.index
Out[43]: 
DatetimeIndex(['2011-01-02', '2011-01-05', '2011-01-07', '2011-01-08',
               '2011-01-10', '2011-01-12'],
              dtype='datetime64[ns]', freq=None)

Like other Series, arithmetic operations between differently indexed time
series automatically align on the dates:

In [44]: ts + ts[::2]
Out[44]: 
2011-01-02   -0.409415
2011-01-05         NaN
2011-01-07   -1.038877
2011-01-08         NaN
2011-01-10    3.931561
2011-01-12         NaN
dtype: float64



Recall that ts[::2] selects every second element in ts.

pandas stores timestamps using NumPy’s datetime64 data type at the
nanosecond resolution:

In [45]: ts.index.dtype
Out[45]: dtype('<M8[ns]')

Scalar values from a DatetimeIndex are pandas Timestamp objects:

In [46]: stamp = ts.index[0]

In [47]: stamp
Out[47]: Timestamp('2011-01-02 00:00:00')

A Timestamp can be substituted anywhere you would use a datetime object.
Additionally, it can store frequency information (if any) and understands how
to do time zone conversions and other kinds of manipulations. More on both
of these things later.



Indexing, Selection, Subsetting
Time series behaves like any other pandas.Series when you are indexing
and selecting data based on label:

In [48]: stamp = ts.index[2]

In [49]: ts[stamp]
Out[49]: -0.51943871505673811

As a convenience, you can also pass a string that is interpretable as a date:

In [50]: ts['1/10/2011']
Out[50]: 1.9657805725027142

In [51]: ts['20110110']
Out[51]: 1.9657805725027142

For longer time series, a year or only a year and month can be passed to
easily select slices of data:

In [52]: longer_ts = pd.Series(np.random.randn(1000),
   ....:                       index=pd.date_range('1/1/2000', periods=1000))

In [53]: longer_ts
Out[53]: 
2000-01-01    0.092908
2000-01-02    0.281746
2000-01-03    0.769023
2000-01-04    1.246435
2000-01-05    1.007189
2000-01-06   -1.296221
2000-01-07    0.274992
2000-01-08    0.228913
2000-01-09    1.352917
2000-01-10    0.886429
                ...   
2002-09-17   -0.139298
2002-09-18   -1.159926
2002-09-19    0.618965
2002-09-20    1.373890
2002-09-21   -0.983505
2002-09-22    0.930944
2002-09-23   -0.811676
2002-09-24   -1.830156
2002-09-25   -0.138730
2002-09-26    0.334088
Freq: D, Length: 1000, dtype: float64



In [54]: longer_ts['2001']
Out[54]: 
2001-01-01    1.599534
2001-01-02    0.474071
2001-01-03    0.151326
2001-01-04   -0.542173
2001-01-05   -0.475496
2001-01-06    0.106403
2001-01-07   -1.308228
2001-01-08    2.173185
2001-01-09    0.564561
2001-01-10   -0.190481
                ...   
2001-12-22    0.000369
2001-12-23    0.900885
2001-12-24   -0.454869
2001-12-25   -0.864547
2001-12-26    1.129120
2001-12-27    0.057874
2001-12-28   -0.433739
2001-12-29    0.092698
2001-12-30   -1.397820
2001-12-31    1.457823
Freq: D, Length: 365, dtype: float64

Here, the string '2001' is interpreted as a year and selects that time period.
This also works if you specify the month:

In [55]: longer_ts['2001-05']
Out[55]: 
2001-05-01   -0.622547
2001-05-02    0.936289
2001-05-03    0.750018
2001-05-04   -0.056715
2001-05-05    2.300675
2001-05-06    0.569497
2001-05-07    1.489410
2001-05-08    1.264250
2001-05-09   -0.761837
2001-05-10   -0.331617
                ...   
2001-05-22    0.503699
2001-05-23   -1.387874
2001-05-24    0.204851
2001-05-25    0.603705
2001-05-26    0.545680
2001-05-27    0.235477
2001-05-28    0.111835
2001-05-29   -1.251504
2001-05-30   -2.949343
2001-05-31    0.634634
Freq: D, Length: 31, dtype: float64



Slicing with datetime objects works as well:

In [56]: ts[datetime(2011, 1, 7):]
Out[56]: 
2011-01-07   -0.519439
2011-01-08   -0.555730
2011-01-10    1.965781
2011-01-12    1.393406
dtype: float64

Because most time series data is ordered chronologically, you can slice with
timestamps not contained in a time series to perform a range query:

In [57]: ts
Out[57]: 
2011-01-02   -0.204708
2011-01-05    0.478943
2011-01-07   -0.519439
2011-01-08   -0.555730
2011-01-10    1.965781
2011-01-12    1.393406
dtype: float64

In [58]: ts['1/6/2011':'1/11/2011']
Out[58]: 
2011-01-07   -0.519439
2011-01-08   -0.555730
2011-01-10    1.965781
dtype: float64

As before, you can pass either a string date, datetime, or timestamp.
Remember that slicing in this manner produces views on the source time
series like slicing NumPy arrays. This means that no data is copied and
modifications on the slice will be reflected in the original data.

There is an equivalent instance method, truncate, that slices a Series
between two dates:

In [59]: ts.truncate(after='1/9/2011')
Out[59]: 
2011-01-02   -0.204708
2011-01-05    0.478943
2011-01-07   -0.519439
2011-01-08   -0.555730
dtype: float64



All of this holds true for DataFrame as well, indexing on its rows:

In [60]: dates = pd.date_range('1/1/2000', periods=100, freq='W-WED')

In [61]: long_df = pd.DataFrame(np.random.randn(100, 4),
   ....:                        index=dates,
   ....:                        columns=['Colorado', 'Texas',
   ....:                                 'New York', 'Ohio'])

In [62]: long_df.loc['5-2001']
Out[62]: 
            Colorado     Texas  New York      Ohio
2001-05-02 -0.006045  0.490094 -0.277186 -0.707213
2001-05-09 -0.560107  2.735527  0.927335  1.513906
2001-05-16  0.538600  1.273768  0.667876 -0.969206
2001-05-23  1.676091 -0.817649  0.050188  1.951312
2001-05-30  3.260383  0.963301  1.201206 -1.852001



Time Series with Duplicate Indices
In some applications, there may be multiple data observations falling on a
particular timestamp. Here is an example:

In [63]: dates = pd.DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000',
   ....:                           '1/2/2000', '1/3/2000'])

In [64]: dup_ts = pd.Series(np.arange(5), index=dates)

In [65]: dup_ts
Out[65]: 
2000-01-01    0
2000-01-02    1
2000-01-02    2
2000-01-02    3
2000-01-03    4
dtype: int64

We can tell that the index is not unique by checking its is_unique property:

In [66]: dup_ts.index.is_unique
Out[66]: False

Indexing into this time series will now either produce scalar values or slices
depending on whether a timestamp is duplicated:

In [67]: dup_ts['1/3/2000']  # not duplicated
Out[67]: 4

In [68]: dup_ts['1/2/2000']  # duplicated
Out[68]: 
2000-01-02    1
2000-01-02    2
2000-01-02    3
dtype: int64

Suppose you wanted to aggregate the data having non-unique timestamps.
One way to do this is to use groupby and pass level=0:

In [69]: grouped = dup_ts.groupby(level=0)

In [70]: grouped.mean()
Out[70]: 
2000-01-01    0



2000-01-02    2
2000-01-03    4
dtype: int64

In [71]: grouped.count()
Out[71]: 
2000-01-01    1
2000-01-02    3
2000-01-03    1
dtype: int64



11.3 Date Ranges, Frequencies, and Shifting
Generic time series in pandas are assumed to be irregular; that is, they have
no fixed frequency. For many applications this is sufficient. However, it’s
often desirable to work relative to a fixed frequency, such as daily, monthly,
or every 15 minutes, even if that means introducing missing values into a
time series. Fortunately pandas has a full suite of standard time series
frequencies and tools for resampling, inferring frequencies, and generating
fixed-frequency date ranges. For example, you can convert the sample time
series to be fixed daily frequency by calling resample:

In [72]: ts
Out[72]: 
2011-01-02   -0.204708
2011-01-05    0.478943
2011-01-07   -0.519439
2011-01-08   -0.555730
2011-01-10    1.965781
2011-01-12    1.393406
dtype: float64

In [73]: resampler = ts.resample('D')

The string 'D' is interpreted as daily frequency.

Conversion between frequencies or resampling is a big enough topic to have
its own section later ( Section 11.6, “Resampling and Frequency
Conversion,”). Here I’ll show you how to use the base frequencies and
multiples thereof.



Generating Date Ranges
While I used it previously without explanation, pandas.date_range is
responsible for generating a DatetimeIndex with an indicated length
according to a particular frequency:

In [74]: index = pd.date_range('2012-04-01', '2012-06-01')

In [75]: index
Out[75]: 
DatetimeIndex(['2012-04-01', '2012-04-02', '2012-04-03', '2012-04-04',
               '2012-04-05', '2012-04-06', '2012-04-07', '2012-04-08',
               '2012-04-09', '2012-04-10', '2012-04-11', '2012-04-12',
               '2012-04-13', '2012-04-14', '2012-04-15', '2012-04-16',
               '2012-04-17', '2012-04-18', '2012-04-19', '2012-04-20',
               '2012-04-21', '2012-04-22', '2012-04-23', '2012-04-24',
               '2012-04-25', '2012-04-26', '2012-04-27', '2012-04-28',
               '2012-04-29', '2012-04-30', '2012-05-01', '2012-05-02',
               '2012-05-03', '2012-05-04', '2012-05-05', '2012-05-06',
               '2012-05-07', '2012-05-08', '2012-05-09', '2012-05-10',
               '2012-05-11', '2012-05-12', '2012-05-13', '2012-05-14',
               '2012-05-15', '2012-05-16', '2012-05-17', '2012-05-18',
               '2012-05-19', '2012-05-20', '2012-05-21', '2012-05-22',
               '2012-05-23', '2012-05-24', '2012-05-25', '2012-05-26',
               '2012-05-27', '2012-05-28', '2012-05-29', '2012-05-30',
               '2012-05-31', '2012-06-01'],
              dtype='datetime64[ns]', freq='D')

By default, date_range generates daily timestamps. If you pass only a start
or end date, you must pass a number of periods to generate:

In [76]: pd.date_range(start='2012-04-01', periods=20)
Out[76]: 
DatetimeIndex(['2012-04-01', '2012-04-02', '2012-04-03', '2012-04-04',
               '2012-04-05', '2012-04-06', '2012-04-07', '2012-04-08',
               '2012-04-09', '2012-04-10', '2012-04-11', '2012-04-12',
               '2012-04-13', '2012-04-14', '2012-04-15', '2012-04-16',
               '2012-04-17', '2012-04-18', '2012-04-19', '2012-04-20'],
              dtype='datetime64[ns]', freq='D')

In [77]: pd.date_range(end='2012-06-01', periods=20)
Out[77]: 
DatetimeIndex(['2012-05-13', '2012-05-14', '2012-05-15', '2012-05-16',
               '2012-05-17', '2012-05-18', '2012-05-19', '2012-05-20',
               '2012-05-21', '2012-05-22', '2012-05-23', '2012-05-24',
               '2012-05-25', '2012-05-26', '2012-05-27', '2012-05-28',
               '2012-05-29', '2012-05-30', '2012-05-31', '2012-06-01'],
              dtype='datetime64[ns]', freq='D')



The start and end dates define strict boundaries for the generated date index.
For example, if you wanted a date index containing the last business day of
each month, you would pass the 'BM' frequency (business end of month; see
more complete listing of frequencies in Table 11-4) and only dates falling on
or inside the date interval will be included:

In [78]: pd.date_range('2000-01-01', '2000-12-01', freq='BM')
Out[78]: 
DatetimeIndex(['2000-01-31', '2000-02-29', '2000-03-31', '2000-04-28',
               '2000-05-31', '2000-06-30', '2000-07-31', '2000-08-31',
               '2000-09-29', '2000-10-31', '2000-11-30'],
              dtype='datetime64[ns]', freq='BM')

Table 11-4. Base time series frequencies (not comprehensive)

Alias Offset type Description

D Day Calendar daily

B BusinessDay Business daily

H Hour Hourly

T or min Minute Minutely

S Second Secondly

L or ms Milli Millisecond (1/1,000 of 1 second)

U Micro Microsecond (1/1,000,000 of 1 second)

M MonthEnd Last calendar day of month

BM BusinessMonthEnd Last business day (weekday) of month

MS MonthBegin First calendar day of month

BMS BusinessMonthBegin First weekday of month

W-MON,
W-TUE,
...

Week Weekly on given day of week (MON, TUE, WED, THU,
FRI, SAT, or SUN)

WOM-
1MON,
WOM-
2MON,
...

WeekOfMonth Generate weekly dates in the first, second, third, or
fourth week of the month (e.g., WOM-3FRI for the third
Friday of each month)

Q-JAN,
Q-FEB,
...

QuarterEnd Quarterly dates anchored on last calendar day of each
month, for year ending in indicated month (JAN, FEB,
MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV,



or DEC)

BQ-JAN,
BQ-FEB,
...

BusinessQuarterEnd Quarterly dates anchored on last weekday day of each
month, for year ending in indicated month

QS-JAN,
QS-FEB,
...

QuarterBegin Quarterly dates anchored on first calendar day of each
month, for year ending in indicated month

BQS-JAN,
BQS-FEB,
...

BusinessQuarterBegin Quarterly dates anchored on first weekday day of each
month, for year ending in indicated month

A-JAN,
A-FEB,
...

YearEnd Annual dates anchored on last calendar day of given
month (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, or DEC)

BA-JAN,
BA-FEB,
...

BusinessYearEnd Annual dates anchored on last weekday of given month

AS-JAN,
AS-FEB,
...

YearBegin Annual dates anchored on first day of given month

BAS-JAN,
BAS-FEB,
...

BusinessYearBegin Annual dates anchored on first weekday of given month

date_range by default preserves the time (if any) of the start or end
timestamp:

In [79]: pd.date_range('2012-05-02 12:56:31', periods=5)
Out[79]: 
DatetimeIndex(['2012-05-02 12:56:31', '2012-05-03 12:56:31',
               '2012-05-04 12:56:31', '2012-05-05 12:56:31',
               '2012-05-06 12:56:31'],
              dtype='datetime64[ns]', freq='D')

Sometimes you will have start or end dates with time information but want to
generate a set of timestamps normalized to midnight as a convention. To do
this, there is a normalize option:

In [80]: pd.date_range('2012-05-02 12:56:31', periods=5, normalize=True)
Out[80]: 
DatetimeIndex(['2012-05-02', '2012-05-03', '2012-05-04', '2012-05-05',
               '2012-05-06'],
              dtype='datetime64[ns]', freq='D')



Frequencies and Date Offsets
Frequencies in pandas are composed of a base frequency and a multiplier.
Base frequencies are typically referred to by a string alias, like 'M' for
monthly or 'H' for hourly. For each base frequency, there is an object defined
generally referred to as a date offset. For example, hourly frequency can be
represented with the Hour class:

In [81]: from pandas.tseries.offsets import Hour, Minute

In [82]: hour = Hour()

In [83]: hour
Out[83]: <Hour>

You can define a multiple of an offset by passing an integer:

In [84]: four_hours = Hour(4)

In [85]: four_hours
Out[85]: <4 * Hours>

In most applications, you would never need to explicitly create one of these
objects, instead using a string alias like 'H' or '4H'. Putting an integer before
the base frequency creates a multiple:

In [86]: pd.date_range('2000-01-01', '2000-01-03 23:59', freq='4h')
Out[86]: 
DatetimeIndex(['2000-01-01 00:00:00', '2000-01-01 04:00:00',
               '2000-01-01 08:00:00', '2000-01-01 12:00:00',
               '2000-01-01 16:00:00', '2000-01-01 20:00:00',
               '2000-01-02 00:00:00', '2000-01-02 04:00:00',
               '2000-01-02 08:00:00', '2000-01-02 12:00:00',
               '2000-01-02 16:00:00', '2000-01-02 20:00:00',
               '2000-01-03 00:00:00', '2000-01-03 04:00:00',
               '2000-01-03 08:00:00', '2000-01-03 12:00:00',
               '2000-01-03 16:00:00', '2000-01-03 20:00:00'],
              dtype='datetime64[ns]', freq='4H')

Many offsets can be combined together by addition:

In [87]: Hour(2) + Minute(30)



Out[87]: <150 * Minutes>

Similarly, you can pass frequency strings, like '1h30min', that will
effectively be parsed to the same expression:

In [88]: pd.date_range('2000-01-01', periods=10, freq='1h30min')
Out[88]: 
DatetimeIndex(['2000-01-01 00:00:00', '2000-01-01 01:30:00',
               '2000-01-01 03:00:00', '2000-01-01 04:30:00',
               '2000-01-01 06:00:00', '2000-01-01 07:30:00',
               '2000-01-01 09:00:00', '2000-01-01 10:30:00',
               '2000-01-01 12:00:00', '2000-01-01 13:30:00'],
              dtype='datetime64[ns]', freq='90T')

Some frequencies describe points in time that are not evenly spaced. For
example, 'M' (calendar month end) and 'BM' (last business/weekday of
month) depend on the number of days in a month and, in the latter case,
whether the month ends on a weekend or not. We refer to these as anchored
offsets.

Refer back to Table 11-4 for a listing of frequency codes and date offset
classes available in pandas.

NOTE
Users can define their own custom frequency classes to provide date logic not
available in pandas, though the full details of that are outside the scope of this
book.

Week of month dates
One useful frequency class is “week of month,” starting with WOM. This
enables you to get dates like the third Friday of each month:

In [89]: rng = pd.date_range('2012-01-01', '2012-09-01', freq='WOM-3FRI')

In [90]: list(rng)
Out[90]: 
[Timestamp('2012-01-20 00:00:00', freq='WOM-3FRI'),
 Timestamp('2012-02-17 00:00:00', freq='WOM-3FRI'),
 Timestamp('2012-03-16 00:00:00', freq='WOM-3FRI'),



 Timestamp('2012-04-20 00:00:00', freq='WOM-3FRI'),
 Timestamp('2012-05-18 00:00:00', freq='WOM-3FRI'),
 Timestamp('2012-06-15 00:00:00', freq='WOM-3FRI'),
 Timestamp('2012-07-20 00:00:00', freq='WOM-3FRI'),
 Timestamp('2012-08-17 00:00:00', freq='WOM-3FRI')]



Shifting (Leading and Lagging) Data
“Shifting” refers to moving data backward and forward through time. Both
Series and DataFrame have a shift method for doing naive shifts forward or
backward, leaving the index unmodified:

In [91]: ts = pd.Series(np.random.randn(4),
   ....:                index=pd.date_range('1/1/2000', periods=4, freq='M'))

In [92]: ts
Out[92]: 
2000-01-31   -0.066748
2000-02-29    0.838639
2000-03-31   -0.117388
2000-04-30   -0.517795
Freq: M, dtype: float64

In [93]: ts.shift(2)
Out[93]: 
2000-01-31         NaN
2000-02-29         NaN
2000-03-31   -0.066748
2000-04-30    0.838639
Freq: M, dtype: float64

In [94]: ts.shift(-2)
Out[94]: 
2000-01-31   -0.117388
2000-02-29   -0.517795
2000-03-31         NaN
2000-04-30         NaN
Freq: M, dtype: float64

When we shift like this, missing data is introduced either at the start or the
end of the time series.

A common use of shift is computing percent changes in a time series or
multiple time series as DataFrame columns. This is expressed as:

ts / ts.shift(1) - 1

Because naive shifts leave the index unmodified, some data is discarded.
Thus if the frequency is known, it can be passed to shift to advance the
timestamps instead of simply the data:



In [95]: ts.shift(2, freq='M')
Out[95]: 
2000-03-31   -0.066748
2000-04-30    0.838639
2000-05-31   -0.117388
2000-06-30   -0.517795
Freq: M, dtype: float64

Other frequencies can be passed, too, giving you some flexibility in how to
lead and lag the data:

In [96]: ts.shift(3, freq='D')
Out[96]: 
2000-02-03   -0.066748
2000-03-03    0.838639
2000-04-03   -0.117388
2000-05-03   -0.517795
dtype: float64

In [97]: ts.shift(1, freq='90T')
Out[97]: 
2000-01-31 01:30:00   -0.066748
2000-02-29 01:30:00    0.838639
2000-03-31 01:30:00   -0.117388
2000-04-30 01:30:00   -0.517795
Freq: M, dtype: float64

The T here stands for minutes.

Shifting dates with offsets
The pandas date offsets can also be used with datetime or Timestamp
objects:

In [98]: from pandas.tseries.offsets import Day, MonthEnd

In [99]: now = datetime(2011, 11, 17)

In [100]: now + 3 * Day()
Out[100]: Timestamp('2011-11-20 00:00:00')

If you add an anchored offset like MonthEnd, the first increment will “roll
forward” a date to the next date according to the frequency rule:

In [101]: now + MonthEnd()
Out[101]: Timestamp('2011-11-30 00:00:00')



In [102]: now + MonthEnd(2)
Out[102]: Timestamp('2011-12-31 00:00:00')

Anchored offsets can explicitly “roll” dates forward or backward by simply
using their rollforward and rollback methods, respectively:

In [103]: offset = MonthEnd()

In [104]: offset.rollforward(now)
Out[104]: Timestamp('2011-11-30 00:00:00')

In [105]: offset.rollback(now)
Out[105]: Timestamp('2011-10-31 00:00:00')

A creative use of date offsets is to use these methods with groupby:

In [106]: ts = pd.Series(np.random.randn(20),
   .....:                index=pd.date_range('1/15/2000', periods=20, 
freq='4d'))

In [107]: ts
Out[107]: 
2000-01-15   -0.116696
2000-01-19    2.389645
2000-01-23   -0.932454
2000-01-27   -0.229331
2000-01-31   -1.140330
2000-02-04    0.439920
2000-02-08   -0.823758
2000-02-12   -0.520930
2000-02-16    0.350282
2000-02-20    0.204395
2000-02-24    0.133445
2000-02-28    0.327905
2000-03-03    0.072153
2000-03-07    0.131678
2000-03-11   -1.297459
2000-03-15    0.997747
2000-03-19    0.870955
2000-03-23   -0.991253
2000-03-27    0.151699
2000-03-31    1.266151
Freq: 4D, dtype: float64

In [108]: ts.groupby(offset.rollforward).mean()
Out[108]: 
2000-01-31   -0.005833
2000-02-29    0.015894
2000-03-31    0.150209
dtype: float64



Of course, an easier and faster way to do this is using resample (we’ll discuss
this in much more depth in Section 11.6, “Resampling and Frequency
Conversion,”):

In [109]: ts.resample('M').mean()
Out[109]: 
2000-01-31   -0.005833
2000-02-29    0.015894
2000-03-31    0.150209
Freq: M, dtype: float64



11.4 Time Zone Handling
Working with time zones is generally considered one of the most unpleasant
parts of time series manipulation. As a result, many time series users choose
to work with time series in coordinated universal time or UTC, which is the
successor to Greenwich Mean Time and is the current international standard.
Time zones are expressed as offsets from UTC; for example, New York is
four hours behind UTC during daylight saving time and five hours behind the
rest of the year.

In Python, time zone information comes from the third-party pytz library
(installable with pip or conda), which exposes the Olson database, a
compilation of world time zone information. This is especially important for
historical data because the daylight saving time (DST) transition dates (and
even UTC offsets) have been changed numerous times depending on the
whims of local governments. In the United States, the DST transition times
have been changed many times since 1900!

For detailed information about the pytz library, you’ll need to look at that
library’s documentation. As far as this book is concerned, pandas wraps
pytz’s functionality so you can ignore its API outside of the time zone
names. Time zone names can be found interactively and in the docs:

In [110]: import pytz

In [111]: pytz.common_timezones[-5:]
Out[111]: ['US/Eastern', 'US/Hawaii', 'US/Mountain', 'US/Pacific', 'UTC']

To get a time zone object from pytz, use pytz.timezone:

In [112]: tz = pytz.timezone('America/New_York')

In [113]: tz
Out[113]: <DstTzInfo 'America/New_York' LMT-1 day, 19:04:00 STD>

Methods in pandas will accept either time zone names or these objects.



Time Zone Localization and Conversion
By default, time series in pandas are time zone naive. For example, consider
the following time series:

In [114]: rng = pd.date_range('3/9/2012 9:30', periods=6, freq='D')

In [115]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [116]: ts
Out[116]: 
2012-03-09 09:30:00   -0.202469
2012-03-10 09:30:00    0.050718
2012-03-11 09:30:00    0.639869
2012-03-12 09:30:00    0.597594
2012-03-13 09:30:00   -0.797246
2012-03-14 09:30:00    0.472879
Freq: D, dtype: float64

The index’s tz field is None:

In [117]: print(ts.index.tz)
None

Date ranges can be generated with a time zone set:

In [118]: pd.date_range('3/9/2012 9:30', periods=10, freq='D', tz='UTC')
Out[118]: 
DatetimeIndex(['2012-03-09 09:30:00+00:00', '2012-03-10 09:30:00+00:00',
               '2012-03-11 09:30:00+00:00', '2012-03-12 09:30:00+00:00',
               '2012-03-13 09:30:00+00:00', '2012-03-14 09:30:00+00:00',
               '2012-03-15 09:30:00+00:00', '2012-03-16 09:30:00+00:00',
               '2012-03-17 09:30:00+00:00', '2012-03-18 09:30:00+00:00'],
              dtype='datetime64[ns, UTC]', freq='D')

Conversion from naive to localized is handled by the tz_localize method:

In [119]: ts
Out[119]: 
2012-03-09 09:30:00   -0.202469
2012-03-10 09:30:00    0.050718
2012-03-11 09:30:00    0.639869
2012-03-12 09:30:00    0.597594
2012-03-13 09:30:00   -0.797246
2012-03-14 09:30:00    0.472879
Freq: D, dtype: float64



In [120]: ts_utc = ts.tz_localize('UTC')

In [121]: ts_utc
Out[121]: 
2012-03-09 09:30:00+00:00   -0.202469
2012-03-10 09:30:00+00:00    0.050718
2012-03-11 09:30:00+00:00    0.639869
2012-03-12 09:30:00+00:00    0.597594
2012-03-13 09:30:00+00:00   -0.797246
2012-03-14 09:30:00+00:00    0.472879
Freq: D, dtype: float64

In [122]: ts_utc.index
Out[122]: 
DatetimeIndex(['2012-03-09 09:30:00+00:00', '2012-03-10 09:30:00+00:00',
               '2012-03-11 09:30:00+00:00', '2012-03-12 09:30:00+00:00',
               '2012-03-13 09:30:00+00:00', '2012-03-14 09:30:00+00:00'],
              dtype='datetime64[ns, UTC]', freq='D')

Once a time series has been localized to a particular time zone, it can be
converted to another time zone with tz_convert:

In [123]: ts_utc.tz_convert('America/New_York')
Out[123]: 
2012-03-09 04:30:00-05:00   -0.202469
2012-03-10 04:30:00-05:00    0.050718
2012-03-11 05:30:00-04:00    0.639869
2012-03-12 05:30:00-04:00    0.597594
2012-03-13 05:30:00-04:00   -0.797246
2012-03-14 05:30:00-04:00    0.472879
Freq: D, dtype: float64

In the case of the preceding time series, which straddles a DST transition in
the America/New_York time zone, we could localize to EST and convert to,
say, UTC or Berlin time:

In [124]: ts_eastern = ts.tz_localize('America/New_York')

In [125]: ts_eastern.tz_convert('UTC')
Out[125]: 
2012-03-09 14:30:00+00:00   -0.202469
2012-03-10 14:30:00+00:00    0.050718
2012-03-11 13:30:00+00:00    0.639869
2012-03-12 13:30:00+00:00    0.597594
2012-03-13 13:30:00+00:00   -0.797246
2012-03-14 13:30:00+00:00    0.472879
Freq: D, dtype: float64

In [126]: ts_eastern.tz_convert('Europe/Berlin')
Out[126]: 



2012-03-09 15:30:00+01:00   -0.202469
2012-03-10 15:30:00+01:00    0.050718
2012-03-11 14:30:00+01:00    0.639869
2012-03-12 14:30:00+01:00    0.597594
2012-03-13 14:30:00+01:00   -0.797246
2012-03-14 14:30:00+01:00    0.472879
Freq: D, dtype: float64

tz_localize and tz_convert are also instance methods on DatetimeIndex:

In [127]: ts.index.tz_localize('Asia/Shanghai')
Out[127]: 
DatetimeIndex(['2012-03-09 09:30:00+08:00', '2012-03-10 09:30:00+08:00',
               '2012-03-11 09:30:00+08:00', '2012-03-12 09:30:00+08:00',
               '2012-03-13 09:30:00+08:00', '2012-03-14 09:30:00+08:00'],
              dtype='datetime64[ns, Asia/Shanghai]', freq='D')

CAUTION
Localizing naive timestamps also checks for ambiguous or non-existent times
around daylight saving time transitions.



Operations with Time Zone−Aware Timestamp Objects
Similar to time series and date ranges, individual Timestamp objects similarly
can be localized from naive to time zone–aware and converted from one time
zone to another:

In [128]: stamp = pd.Timestamp('2011-03-12 04:00')

In [129]: stamp_utc = stamp.tz_localize('utc')

In [130]: stamp_utc.tz_convert('America/New_York')
Out[130]: Timestamp('2011-03-11 23:00:00-0500', tz='America/New_York')

You can also pass a time zone when creating the Timestamp:

In [131]: stamp_moscow = pd.Timestamp('2011-03-12 04:00', tz='Europe/Moscow')

In [132]: stamp_moscow
Out[132]: Timestamp('2011-03-12 04:00:00+0300', tz='Europe/Moscow')

Time zone–aware Timestamp objects internally store a UTC timestamp value
as nanoseconds since the Unix epoch (January 1, 1970); this UTC value is
invariant between time zone conversions:

In [133]: stamp_utc.value
Out[133]: 1299902400000000000

In [134]: stamp_utc.tz_convert('America/New_York').value
Out[134]: 1299902400000000000

When performing time arithmetic using pandas’s DateOffset objects, pandas
respects daylight saving time transitions where possible. Here we construct
timestamps that occur right before DST transitions (forward and backward).
First, 30 minutes before transitioning to DST:

In [135]: from pandas.tseries.offsets import Hour

In [136]: stamp = pd.Timestamp('2012-03-12 01:30', tz='US/Eastern')

In [137]: stamp
Out[137]: Timestamp('2012-03-12 01:30:00-0400', tz='US/Eastern')



In [138]: stamp + Hour()
Out[138]: Timestamp('2012-03-12 02:30:00-0400', tz='US/Eastern')

Then, 90 minutes before transitioning out of DST:

In [139]: stamp = pd.Timestamp('2012-11-04 00:30', tz='US/Eastern')

In [140]: stamp
Out[140]: Timestamp('2012-11-04 00:30:00-0400', tz='US/Eastern')

In [141]: stamp + 2 * Hour()
Out[141]: Timestamp('2012-11-04 01:30:00-0500', tz='US/Eastern')



Operations Between Different Time Zones
If two time series with different time zones are combined, the result will be
UTC. Since the timestamps are stored under the hood in UTC, this is a
straightforward operation and requires no conversion to happen:

In [142]: rng = pd.date_range('3/7/2012 9:30', periods=10, freq='B')

In [143]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [144]: ts
Out[144]: 
2012-03-07 09:30:00    0.522356
2012-03-08 09:30:00   -0.546348
2012-03-09 09:30:00   -0.733537
2012-03-12 09:30:00    1.302736
2012-03-13 09:30:00    0.022199
2012-03-14 09:30:00    0.364287
2012-03-15 09:30:00   -0.922839
2012-03-16 09:30:00    0.312656
2012-03-19 09:30:00   -1.128497
2012-03-20 09:30:00   -0.333488
Freq: B, dtype: float64

In [145]: ts1 = ts[:7].tz_localize('Europe/London')

In [146]: ts2 = ts1[2:].tz_convert('Europe/Moscow')

In [147]: result = ts1 + ts2

In [148]: result.index
Out[148]: 
DatetimeIndex(['2012-03-07 09:30:00+00:00', '2012-03-08 09:30:00+00:00',
               '2012-03-09 09:30:00+00:00', '2012-03-12 09:30:00+00:00',
               '2012-03-13 09:30:00+00:00', '2012-03-14 09:30:00+00:00',
               '2012-03-15 09:30:00+00:00'],
              dtype='datetime64[ns, UTC]', freq='B')



11.5 Periods and Period Arithmetic
Periods represent timespans, like days, months, quarters, or years. The
Period class represents this data type, requiring a string or integer and a
frequency from Table 11-4:

In [149]: p = pd.Period(2007, freq='A-DEC')

In [150]: p
Out[150]: Period('2007', 'A-DEC')

In this case, the Period object represents the full timespan from January 1,
2007, to December 31, 2007, inclusive. Conveniently, adding and subtracting
integers from periods has the effect of shifting by their frequency:

In [151]: p + 5
Out[151]: Period('2012', 'A-DEC')

In [152]: p - 2
Out[152]: Period('2005', 'A-DEC')

If two periods have the same frequency, their difference is the number of
units between them:

In [153]: pd.Period('2014', freq='A-DEC') - p
Out[153]: 7

Regular ranges of periods can be constructed with the period_range
function:

In [154]: rng = pd.period_range('2000-01-01', '2000-06-30', freq='M')

In [155]: rng
Out[155]: PeriodIndex(['2000-01', '2000-02', '2000-03', '2000-04', '2000-05', 
'20
00-06'], dtype='period[M]', freq='M')

The PeriodIndex class stores a sequence of periods and can serve as an axis
index in any pandas data structure:



In [156]: pd.Series(np.random.randn(6), index=rng)
Out[156]: 
2000-01   -0.514551
2000-02   -0.559782
2000-03   -0.783408
2000-04   -1.797685
2000-05   -0.172670
2000-06    0.680215
Freq: M, dtype: float64

If you have an array of strings, you can also use the PeriodIndex class:

In [157]: values = ['2001Q3', '2002Q2', '2003Q1']

In [158]: index = pd.PeriodIndex(values, freq='Q-DEC')

In [159]: index
Out[159]: PeriodIndex(['2001Q3', '2002Q2', '2003Q1'], dtype='period[Q-DEC]', 
freq
='Q-DEC')



Period Frequency Conversion
Periods and PeriodIndex objects can be converted to another frequency with
their asfreq method. As an example, suppose we had an annual period and
wanted to convert it into a monthly period either at the start or end of the
year. This is fairly straightforward:

In [160]: p = pd.Period('2007', freq='A-DEC')

In [161]: p
Out[161]: Period('2007', 'A-DEC')

In [162]: p.asfreq('M', how='start')
Out[162]: Period('2007-01', 'M')

In [163]: p.asfreq('M', how='end')
Out[163]: Period('2007-12', 'M')

You can think of Period('2007', 'A-DEC') as being a sort of cursor
pointing to a span of time, subdivided by monthly periods. See Figure 11-1
for an illustration of this. For a fiscal year ending on a month other than
December, the corresponding monthly subperiods are different:

In [164]: p = pd.Period('2007', freq='A-JUN')

In [165]: p
Out[165]: Period('2007', 'A-JUN')

In [166]: p.asfreq('M', 'start')
Out[166]: Period('2006-07', 'M')

In [167]: p.asfreq('M', 'end')
Out[167]: Period('2007-06', 'M')



Figure 11-1. Period frequency conversion illustration

When you are converting from high to low frequency, pandas determines the
superperiod depending on where the subperiod “belongs.” For example, in A-
JUN frequency, the month Aug-2007 is actually part of the 2008 period:

In [168]: p = pd.Period('Aug-2007', 'M')

In [169]: p.asfreq('A-JUN')
Out[169]: Period('2008', 'A-JUN')

Whole PeriodIndex objects or time series can be similarly converted with
the same semantics:

In [170]: rng = pd.period_range('2006', '2009', freq='A-DEC')

In [171]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [172]: ts
Out[172]: 
2006    1.607578
2007    0.200381
2008   -0.834068
2009   -0.302988
Freq: A-DEC, dtype: float64

In [173]: ts.asfreq('M', how='start')
Out[173]: 
2006-01    1.607578
2007-01    0.200381
2008-01   -0.834068
2009-01   -0.302988
Freq: M, dtype: float64



Here, the annual periods are replaced with monthly periods corresponding to
the first month falling within each annual period. If we instead wanted the
last business day of each year, we can use the 'B' frequency and indicate that
we want the end of the period:

In [174]: ts.asfreq('B', how='end')
Out[174]: 
2006-12-29    1.607578
2007-12-31    0.200381
2008-12-31   -0.834068
2009-12-31   -0.302988
Freq: B, dtype: float64



Quarterly Period Frequencies
Quarterly data is standard in accounting, finance, and other fields. Much
quarterly data is reported relative to a fiscal year end, typically the last
calendar or business day of one of the 12 months of the year. Thus, the period
2012Q4 has a different meaning depending on fiscal year end. pandas supports
all 12 possible quarterly frequencies as Q-JAN through Q-DEC:

In [175]: p = pd.Period('2012Q4', freq='Q-JAN')

In [176]: p
Out[176]: Period('2012Q4', 'Q-JAN')

In the case of fiscal year ending in January, 2012Q4 runs from November
through January, which you can check by converting to daily frequency. See
Figure 11-2 for an illustration.

Figure 11-2. Different quarterly frequency conventions

In [177]: p.asfreq('D', 'start')
Out[177]: Period('2011-11-01', 'D')

In [178]: p.asfreq('D', 'end')
Out[178]: Period('2012-01-31', 'D')

Thus, it’s possible to do easy period arithmetic; for example, to get the
timestamp at 4 PM on the second-to-last business day of the quarter, you
could do:



In [179]: p4pm = (p.asfreq('B', 'e') - 1).asfreq('T', 's') + 16 * 60

In [180]: p4pm
Out[180]: Period('2012-01-30 16:00', 'T')

In [181]: p4pm.to_timestamp()
Out[181]: Timestamp('2012-01-30 16:00:00')

You can generate quarterly ranges using period_range. Arithmetic is
identical, too:

In [182]: rng = pd.period_range('2011Q3', '2012Q4', freq='Q-JAN')

In [183]: ts = pd.Series(np.arange(len(rng)), index=rng)

In [184]: ts
Out[184]: 
2011Q3    0
2011Q4    1
2012Q1    2
2012Q2    3
2012Q3    4
2012Q4    5
Freq: Q-JAN, dtype: int64

In [185]: new_rng = (rng.asfreq('B', 'e') - 1).asfreq('T', 's') + 16 * 60

In [186]: ts.index = new_rng.to_timestamp()

In [187]: ts
Out[187]: 
2010-10-28 16:00:00    0
2011-01-28 16:00:00    1
2011-04-28 16:00:00    2
2011-07-28 16:00:00    3
2011-10-28 16:00:00    4
2012-01-30 16:00:00    5
dtype: int64



Converting Timestamps to Periods (and Back)
Series and DataFrame objects indexed by timestamps can be converted to
periods with the to_period method:

In [188]: rng = pd.date_range('2000-01-01', periods=3, freq='M')

In [189]: ts = pd.Series(np.random.randn(3), index=rng)

In [190]: ts
Out[190]: 
2000-01-31    1.663261
2000-02-29   -0.996206
2000-03-31    1.521760
Freq: M, dtype: float64

In [191]: pts = ts.to_period()

In [192]: pts
Out[192]: 
2000-01    1.663261
2000-02   -0.996206
2000-03    1.521760
Freq: M, dtype: float64

Since periods refer to non-overlapping timespans, a timestamp can only
belong to a single period for a given frequency. While the frequency of the
new PeriodIndex is inferred from the timestamps by default, you can specify
any frequency you want. There is also no problem with having duplicate
periods in the result:

In [193]: rng = pd.date_range('1/29/2000', periods=6, freq='D')

In [194]: ts2 = pd.Series(np.random.randn(6), index=rng)

In [195]: ts2
Out[195]: 
2000-01-29    0.244175
2000-01-30    0.423331
2000-01-31   -0.654040
2000-02-01    2.089154
2000-02-02   -0.060220
2000-02-03   -0.167933
Freq: D, dtype: float64

In [196]: ts2.to_period('M')
Out[196]: 



2000-01    0.244175
2000-01    0.423331
2000-01   -0.654040
2000-02    2.089154
2000-02   -0.060220
2000-02   -0.167933
Freq: M, dtype: float64

To convert back to timestamps, use to_timestamp:

In [197]: pts = ts2.to_period()

In [198]: pts
Out[198]: 
2000-01-29    0.244175
2000-01-30    0.423331
2000-01-31   -0.654040
2000-02-01    2.089154
2000-02-02   -0.060220
2000-02-03   -0.167933
Freq: D, dtype: float64

In [199]: pts.to_timestamp(how='end')
Out[199]: 
2000-01-29    0.244175
2000-01-30    0.423331
2000-01-31   -0.654040
2000-02-01    2.089154
2000-02-02   -0.060220
2000-02-03   -0.167933
Freq: D, dtype: float64



Creating a PeriodIndex from Arrays
Fixed frequency datasets are sometimes stored with timespan information
spread across multiple columns. For example, in this macroeconomic dataset,
the year and quarter are in different columns:

In [200]: data = pd.read_csv('examples/macrodata.csv')

In [201]: data.head(5)
Out[201]: 
     year  quarter   realgdp  realcons  realinv  realgovt  realdpi    cpi  \
0  1959.0      1.0  2710.349    1707.4  286.898   470.045   1886.9  28.98   
1  1959.0      2.0  2778.801    1733.7  310.859   481.301   1919.7  29.15   
2  1959.0      3.0  2775.488    1751.8  289.226   491.260   1916.4  29.35   
3  1959.0      4.0  2785.204    1753.7  299.356   484.052   1931.3  29.37   
4  1960.0      1.0  2847.699    1770.5  331.722   462.199   1955.5  29.54   
      m1  tbilrate  unemp      pop  infl  realint  
0  139.7      2.82    5.8  177.146  0.00     0.00  
1  141.7      3.08    5.1  177.830  2.34     0.74  
2  140.5      3.82    5.3  178.657  2.74     1.09  
3  140.0      4.33    5.6  179.386  0.27     4.06  
4  139.6      3.50    5.2  180.007  2.31     1.19  

In [202]: data.year
Out[202]: 
0      1959.0
1      1959.0
2      1959.0
3      1959.0
4      1960.0
5      1960.0
6      1960.0
7      1960.0
8      1961.0
9      1961.0
        ...  
193    2007.0
194    2007.0
195    2007.0
196    2008.0
197    2008.0
198    2008.0
199    2008.0
200    2009.0
201    2009.0
202    2009.0
Name: year, Length: 203, dtype: float64

In [203]: data.quarter
Out[203]: 
0      1.0
1      2.0



2      3.0
3      4.0
4      1.0
5      2.0
6      3.0
7      4.0
8      1.0
9      2.0
      ... 
193    2.0
194    3.0
195    4.0
196    1.0
197    2.0
198    3.0
199    4.0
200    1.0
201    2.0
202    3.0
Name: quarter, Length: 203, dtype: float64

By passing these arrays to PeriodIndex with a frequency, you can combine
them to form an index for the DataFrame:

In [204]: index = pd.PeriodIndex(year=data.year, quarter=data.quarter,
   .....:                        freq='Q-DEC')

In [205]: index
Out[205]: 
PeriodIndex(['1959Q1', '1959Q2', '1959Q3', '1959Q4', '1960Q1', '1960Q2',
             '1960Q3', '1960Q4', '1961Q1', '1961Q2',
             ...
             '2007Q2', '2007Q3', '2007Q4', '2008Q1', '2008Q2', '2008Q3',
             '2008Q4', '2009Q1', '2009Q2', '2009Q3'],
            dtype='period[Q-DEC]', length=203, freq='Q-DEC')

In [206]: data.index = index

In [207]: data.infl
Out[207]: 
1959Q1    0.00
1959Q2    2.34
1959Q3    2.74
1959Q4    0.27
1960Q1    2.31
1960Q2    0.14
1960Q3    2.70
1960Q4    1.21
1961Q1   -0.40
1961Q2    1.47
          ... 
2007Q2    2.75
2007Q3    3.45
2007Q4    6.38



2008Q1    2.82
2008Q2    8.53
2008Q3   -3.16
2008Q4   -8.79
2009Q1    0.94
2009Q2    3.37
2009Q3    3.56
Freq: Q-DEC, Name: infl, Length: 203, dtype: float64



11.6 Resampling and Frequency Conversion
Resampling refers to the process of converting a time series from one
frequency to another. Aggregating higher frequency data to lower frequency
is called downsampling, while converting lower frequency to higher
frequency is called upsampling. Not all resampling falls into either of these
categories; for example, converting W-WED (weekly on Wednesday) to W-FRI
is neither upsampling nor downsampling.

pandas objects are equipped with a resample method, which is the workhorse
function for all frequency conversion. resample has a similar API to
groupby; you call resample to group the data, then call an aggregation
function:

In [208]: rng = pd.date_range('2000-01-01', periods=100, freq='D')

In [209]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [210]: ts
Out[210]: 
2000-01-01    0.631634
2000-01-02   -1.594313
2000-01-03   -1.519937
2000-01-04    1.108752
2000-01-05    1.255853
2000-01-06   -0.024330
2000-01-07   -2.047939
2000-01-08   -0.272657
2000-01-09   -1.692615
2000-01-10    1.423830
                ...   
2000-03-31   -0.007852
2000-04-01   -1.638806
2000-04-02    1.401227
2000-04-03    1.758539
2000-04-04    0.628932
2000-04-05   -0.423776
2000-04-06    0.789740
2000-04-07    0.937568
2000-04-08   -2.253294
2000-04-09   -1.772919
Freq: D, Length: 100, dtype: float64

In [211]: ts.resample('M').mean()
Out[211]: 
2000-01-31   -0.165893



2000-02-29    0.078606
2000-03-31    0.223811
2000-04-30   -0.063643
Freq: M, dtype: float64

In [212]: ts.resample('M', kind='period').mean()
Out[212]: 
2000-01   -0.165893
2000-02    0.078606
2000-03    0.223811
2000-04   -0.063643
Freq: M, dtype: float64

resample is a flexible and high-performance method that can be used to
process very large time series. The examples in the following sections
illustrate its semantics and use. Table 11-5 summarizes some of its options.

Table 11-5. Resample method arguments

Argument Description

freq String or DateOffset indicating desired resampled frequency (e.g., ‘M',
’5min', or Second(15))

axis Axis to resample on; default axis=0

fill_method How to interpolate when upsampling, as in 'ffill' or 'bfill'; by default
does no interpolation

closed In downsampling, which end of each interval is closed (inclusive), 'right' or
'left'

label In downsampling, how to label the aggregated result, with the 'right' or
'left' bin edge (e.g., the 9:30 to 9:35 five-minute interval could be labeled
9:30 or 9:35)

loffset Time adjustment to the bin labels, such as '-1s' / Second(-1) to shift the
aggregate labels one second earlier

limit When forward or backward filling, the maximum number of periods to fill

kind Aggregate to periods ('period') or timestamps ('timestamp'); defaults to the
type of index the time series has

convention When resampling periods, the convention ('start' or 'end') for converting
the low-frequency period to high frequency; defaults to 'end'



Downsampling
Aggregating data to a regular, lower frequency is a pretty normal time series
task. The data you’re aggregating doesn’t need to be fixed frequently; the
desired frequency defines bin edges that are used to slice the time series into
pieces to aggregate. For example, to convert to monthly, 'M' or 'BM', you
need to chop up the data into one-month intervals. Each interval is said to be
half-open; a data point can only belong to one interval, and the union of the
intervals must make up the whole time frame. There are a couple things to
think about when using resample to downsample data:

Which side of each interval is closed

How to label each aggregated bin, either with the start of the interval or
the end

To illustrate, let’s look at some one-minute data:

In [213]: rng = pd.date_range('2000-01-01', periods=12, freq='T')

In [214]: ts = pd.Series(np.arange(12), index=rng)

In [215]: ts
Out[215]: 
2000-01-01 00:00:00     0
2000-01-01 00:01:00     1
2000-01-01 00:02:00     2
2000-01-01 00:03:00     3
2000-01-01 00:04:00     4
2000-01-01 00:05:00     5
2000-01-01 00:06:00     6
2000-01-01 00:07:00     7
2000-01-01 00:08:00     8
2000-01-01 00:09:00     9
2000-01-01 00:10:00    10
2000-01-01 00:11:00    11
Freq: T, dtype: int64

Suppose you wanted to aggregate this data into five-minute chunks or bars
by taking the sum of each group:

In [216]: ts.resample('5min', closed='right').sum()
Out[216]: 



1999-12-31 23:55:00     0
2000-01-01 00:00:00    15
2000-01-01 00:05:00    40
2000-01-01 00:10:00    11
Freq: 5T, dtype: int64

The frequency you pass defines bin edges in five-minute increments. By
default, the left bin edge is inclusive, so the 00:00 value is included in the
00:00 to 00:05 interval.1 Passing closed='right' changes the interval to be
closed on the right:

In [217]: ts.resample('5min', closed='right').sum()
Out[217]: 
1999-12-31 23:55:00     0
2000-01-01 00:00:00    15
2000-01-01 00:05:00    40
2000-01-01 00:10:00    11
Freq: 5T, dtype: int64

The resulting time series is labeled by the timestamps from the left side of
each bin. By passing label='right' you can label them with the right bin
edge:

In [218]: ts.resample('5min', closed='right', label='right').sum()
Out[218]: 
2000-01-01 00:00:00     0
2000-01-01 00:05:00    15
2000-01-01 00:10:00    40
2000-01-01 00:15:00    11
Freq: 5T, dtype: int64

See Figure 11-3 for an illustration of minute frequency data being resampled
to five-minute frequency.



Figure 11-3. Five-minute resampling illustration of closed, label conventions

Lastly, you might want to shift the result index by some amount, say
subtracting one second from the right edge to make it more clear which
interval the timestamp refers to. To do this, pass a string or date offset to
loffset:

In [219]: ts.resample('5min', closed='right',
   .....:             label='right', loffset='-1s').sum()
Out[219]: 
1999-12-31 23:59:59     0
2000-01-01 00:04:59    15
2000-01-01 00:09:59    40
2000-01-01 00:14:59    11
Freq: 5T, dtype: int64

You also could have accomplished the effect of loffset by calling the shift
method on the result without the loffset.

Open-High-Low-Close (OHLC) resampling
In finance, a popular way to aggregate a time series is to compute four values
for each bucket: the first (open), last (close), maximum (high), and minimal
(low) values. By using the ohlc aggregate function you will obtain a
DataFrame having columns containing these four aggregates, which are
efficiently computed in a single sweep of the data:

In [220]: ts.resample('5min').ohlc()



Out[220]: 
                     open  high  low  close
2000-01-01 00:00:00     0     4    0      4
2000-01-01 00:05:00     5     9    5      9
2000-01-01 00:10:00    10    11   10     11



Upsampling and Interpolation
When converting from a low frequency to a higher frequency, no aggregation
is needed. Let’s consider a DataFrame with some weekly data:

In [221]: frame = pd.DataFrame(np.random.randn(2, 4),
   .....:                      index=pd.date_range('1/1/2000', periods=2,
   .....:                                          freq='W-WED'),
   .....:                      columns=['Colorado', 'Texas', 'New York', 
'Ohio'])

In [222]: frame
Out[222]: 
            Colorado     Texas  New York      Ohio
2000-01-05 -0.896431  0.677263  0.036503  0.087102
2000-01-12 -0.046662  0.927238  0.482284 -0.867130

When you are using an aggregation function with this data, there is only one
value per group, and missing values result in the gaps. We use the asfreq
method to convert to the higher frequency without any aggregation:

In [223]: df_daily = frame.resample('D').asfreq()

In [224]: df_daily
Out[224]: 
            Colorado     Texas  New York      Ohio
2000-01-05 -0.896431  0.677263  0.036503  0.087102
2000-01-06       NaN       NaN       NaN       NaN
2000-01-07       NaN       NaN       NaN       NaN
2000-01-08       NaN       NaN       NaN       NaN
2000-01-09       NaN       NaN       NaN       NaN
2000-01-10       NaN       NaN       NaN       NaN
2000-01-11       NaN       NaN       NaN       NaN
2000-01-12 -0.046662  0.927238  0.482284 -0.867130

Suppose you wanted to fill forward each weekly value on the non-
Wednesdays. The same filling or interpolation methods available in the
fillna and reindex methods are available for resampling:

In [225]: frame.resample('D').ffill()
Out[225]: 
            Colorado     Texas  New York      Ohio
2000-01-05 -0.896431  0.677263  0.036503  0.087102
2000-01-06 -0.896431  0.677263  0.036503  0.087102
2000-01-07 -0.896431  0.677263  0.036503  0.087102



2000-01-08 -0.896431  0.677263  0.036503  0.087102
2000-01-09 -0.896431  0.677263  0.036503  0.087102
2000-01-10 -0.896431  0.677263  0.036503  0.087102
2000-01-11 -0.896431  0.677263  0.036503  0.087102
2000-01-12 -0.046662  0.927238  0.482284 -0.867130

You can similarly choose to only fill a certain number of periods forward to
limit how far to continue using an observed value:

In [226]: frame.resample('D').ffill(limit=2)
Out[226]: 
            Colorado     Texas  New York      Ohio
2000-01-05 -0.896431  0.677263  0.036503  0.087102
2000-01-06 -0.896431  0.677263  0.036503  0.087102
2000-01-07 -0.896431  0.677263  0.036503  0.087102
2000-01-08       NaN       NaN       NaN       NaN
2000-01-09       NaN       NaN       NaN       NaN
2000-01-10       NaN       NaN       NaN       NaN
2000-01-11       NaN       NaN       NaN       NaN
2000-01-12 -0.046662  0.927238  0.482284 -0.867130

Notably, the new date index need not overlap with the old one at all:

In [227]: frame.resample('W-THU').ffill()
Out[227]: 
            Colorado     Texas  New York      Ohio
2000-01-06 -0.896431  0.677263  0.036503  0.087102
2000-01-13 -0.046662  0.927238  0.482284 -0.867130



Resampling with Periods
Resampling data indexed by periods is similar to timestamps:

In [228]: frame = pd.DataFrame(np.random.randn(24, 4),
   .....:                      index=pd.period_range('1-2000', '12-2001',
   .....:                                            freq='M'),
   .....:                      columns=['Colorado', 'Texas', 'New York', 
'Ohio'])

In [229]: frame[:5]
Out[229]: 
         Colorado     Texas  New York      Ohio
2000-01  0.493841 -0.155434  1.397286  1.507055
2000-02 -1.179442  0.443171  1.395676 -0.529658
2000-03  0.787358  0.248845  0.743239  1.267746
2000-04  1.302395 -0.272154 -0.051532 -0.467740
2000-05 -1.040816  0.426419  0.312945 -1.115689

In [230]: annual_frame = frame.resample('A-DEC').mean()

In [231]: annual_frame
Out[231]: 
      Colorado     Texas  New York      Ohio
2000  0.556703  0.016631  0.111873 -0.027445
2001  0.046303  0.163344  0.251503 -0.157276

Upsampling is more nuanced, as you must make a decision about which end
of the timespan in the new frequency to place the values before resampling,
just like the asfreq method. The convention argument defaults to 'start'
but can also be 'end':

# Q-DEC: Quarterly, year ending in December
In [232]: annual_frame.resample('Q-DEC').ffill()
Out[232]: 
        Colorado     Texas  New York      Ohio
2000Q1  0.556703  0.016631  0.111873 -0.027445
2000Q2  0.556703  0.016631  0.111873 -0.027445
2000Q3  0.556703  0.016631  0.111873 -0.027445
2000Q4  0.556703  0.016631  0.111873 -0.027445
2001Q1  0.046303  0.163344  0.251503 -0.157276
2001Q2  0.046303  0.163344  0.251503 -0.157276
2001Q3  0.046303  0.163344  0.251503 -0.157276
2001Q4  0.046303  0.163344  0.251503 -0.157276

In [233]: annual_frame.resample('Q-DEC', convention='end').ffill()
Out[233]: 
        Colorado     Texas  New York      Ohio
2000Q4  0.556703  0.016631  0.111873 -0.027445



2001Q1  0.556703  0.016631  0.111873 -0.027445
2001Q2  0.556703  0.016631  0.111873 -0.027445
2001Q3  0.556703  0.016631  0.111873 -0.027445
2001Q4  0.046303  0.163344  0.251503 -0.157276

Since periods refer to timespans, the rules about upsampling and
downsampling are more rigid:

In downsampling, the target frequency must be a subperiod of the
source frequency.

In upsampling, the target frequency must be a superperiod of the source
frequency.

If these rules are not satisfied, an exception will be raised. This mainly affects
the quarterly, annual, and weekly frequencies; for example, the timespans
defined by Q-MAR only line up with A-MAR, A-JUN, A-SEP, and A-DEC:

In [234]: annual_frame.resample('Q-MAR').ffill()
Out[234]: 
        Colorado     Texas  New York      Ohio
2000Q4  0.556703  0.016631  0.111873 -0.027445
2001Q1  0.556703  0.016631  0.111873 -0.027445
2001Q2  0.556703  0.016631  0.111873 -0.027445
2001Q3  0.556703  0.016631  0.111873 -0.027445
2001Q4  0.046303  0.163344  0.251503 -0.157276
2002Q1  0.046303  0.163344  0.251503 -0.157276
2002Q2  0.046303  0.163344  0.251503 -0.157276
2002Q3  0.046303  0.163344  0.251503 -0.157276



11.7 Moving Window Functions
An important class of array transformations used for time series operations
are statistics and other functions evaluated over a sliding window or with
exponentially decaying weights. This can be useful for smoothing noisy or
gappy data. I call these moving window functions, even though it includes
functions without a fixed-length window like exponentially weighted moving
average. Like other statistical functions, these also automatically exclude
missing data.

Before digging in, we can load up some time series data and resample it to
business day frequency:

In [235]: close_px_all = pd.read_csv('examples/stock_px_2.csv',
   .....:                            parse_dates=True, index_col=0)

In [236]: close_px = close_px_all[['AAPL', 'MSFT', 'XOM']]

In [237]: close_px = close_px.resample('B').ffill()

I now introduce the rolling operator, which behaves similarly to resample
and groupby. It can be called on a Series or DataFrame along with a window
(expressed as a number of periods; see Figure 11-4 for the plot created):

In [238]: close_px.AAPL.plot()
Out[238]: <matplotlib.axes._subplots.AxesSubplot at 0x7f2f2570cf98>

In [239]: close_px.AAPL.rolling(250).mean().plot()



Figure 11-4. Apple Price with 250-day MA

The expression rolling(250) is similar in behavior to groupby, but instead
of grouping it creates an object that enables grouping over a 250-day sliding
window. So here we have the 250-day moving window average of Apple’s
stock price.

By default rolling functions require all of the values in the window to be non-
NA. This behavior can be changed to account for missing data and, in
particular, the fact that you will have fewer than window periods of data at the
beginning of the time series (see Figure 11-5):

In [241]: appl_std250 = close_px.AAPL.rolling(250, min_periods=10).std()

In [242]: appl_std250[5:12]
Out[242]: 
2003-01-09         NaN
2003-01-10         NaN
2003-01-13         NaN
2003-01-14         NaN
2003-01-15    0.077496
2003-01-16    0.074760
2003-01-17    0.112368



Freq: B, Name: AAPL, dtype: float64

In [243]: appl_std250.plot()

Figure 11-5. Apple 250-day daily return standard deviation

In order to compute an expanding window mean, use the expanding operator
instead of rolling. The expanding mean starts the time window from the
beginning of the time series and increases the size of the window until it
encompasses the whole series. An expanding window mean on the
apple_std250 time series looks like this:

In [244]: expanding_mean = appl_std250.expanding().mean()

Calling a moving window function on a DataFrame applies the
transformation to each column (see Figure 11-6):

In [246]: close_px.rolling(60).mean().plot(logy=True)



Figure 11-6. Stocks prices 60-day MA (log Y-axis)

The rolling function also accepts a string indicating a fixed-size time offset
rather than a set number of periods. Using this notation can be useful for
irregular time series. These are the same strings that you can pass to
resample. For example, we could compute a 20-day rolling mean like so:

In [247]: close_px.rolling('20D').mean()
Out[247]: 
                  AAPL       MSFT        XOM
2003-01-02    7.400000  21.110000  29.220000
2003-01-03    7.425000  21.125000  29.230000
2003-01-06    7.433333  21.256667  29.473333
2003-01-07    7.432500  21.425000  29.342500
2003-01-08    7.402000  21.402000  29.240000
2003-01-09    7.391667  21.490000  29.273333
2003-01-10    7.387143  21.558571  29.238571
2003-01-13    7.378750  21.633750  29.197500
2003-01-14    7.370000  21.717778  29.194444
2003-01-15    7.355000  21.757000  29.152000
...                ...        ...        ...
2011-10-03  398.002143  25.890714  72.413571
2011-10-04  396.802143  25.807857  72.427143
2011-10-05  395.751429  25.729286  72.422857
2011-10-06  394.099286  25.673571  72.375714



2011-10-07  392.479333  25.712000  72.454667
2011-10-10  389.351429  25.602143  72.527857
2011-10-11  388.505000  25.674286  72.835000
2011-10-12  388.531429  25.810000  73.400714
2011-10-13  388.826429  25.961429  73.905000
2011-10-14  391.038000  26.048667  74.185333
[2292 rows x 3 columns]



Exponentially Weighted Functions
An alternative to using a static window size with equally weighted
observations is to specify a constant decay factor to give more weight to
more recent observations. There are a couple of ways to specify the decay
factor. A popular one is using a span, which makes the result comparable to a
simple moving window function with window size equal to the span.

Since an exponentially weighted statistic places more weight on more recent
observations, it “adapts” faster to changes compared with the equal-weighted
version.

pandas has the ewm operator to go along with rolling and expanding. Here’s
an example comparing a 60-day moving average of Apple’s stock price with
an EW moving average with span=60 (see Figure 11-7):

In [249]: aapl_px = close_px.AAPL['2006':'2007']

In [250]: ma60 = aapl_px.rolling(30, min_periods=20).mean()

In [251]: ewma60 = aapl_px.ewm(span=30).mean()

In [252]: ma60.plot(style='k--', label='Simple MA')
Out[252]: <matplotlib.axes._subplots.AxesSubplot at 0x7f2f252161d0>

In [253]: ewma60.plot(style='k-', label='EW MA')
Out[253]: <matplotlib.axes._subplots.AxesSubplot at 0x7f2f252161d0>

In [254]: plt.legend()



Figure 11-7. Simple moving average versus exponentially weighted



Binary Moving Window Functions
Some statistical operators, like correlation and covariance, need to operate on
two time series. As an example, financial analysts are often interested in a
stock’s correlation to a benchmark index like the S&P 500. To have a look at
this, we first compute the percent change for all of our time series of interest:

In [256]: spx_px = close_px_all['SPX']

In [257]: spx_rets = spx_px.pct_change()

In [258]: returns = close_px.pct_change()

The corr aggregation function after we call rolling can then compute the
rolling correlation with spx_rets (see Figure 11-8 for the resulting plot):

In [259]: corr = returns.AAPL.rolling(125, min_periods=100).corr(spx_rets)

In [260]: corr.plot()



Figure 11-8. Six-month AAPL return correlation to S&P 500

Suppose you wanted to compute the correlation of the S&P 500 index with
many stocks at once. Writing a loop and creating a new DataFrame would be
easy but might get repetitive, so if you pass a Series and a DataFrame, a
function like rolling_corr will compute the correlation of the Series
(spx_rets, in this case) with each column in the DataFrame (see Figure 11-9
for the plot of the result):

In [262]: corr = returns.rolling(125, min_periods=100).corr(spx_rets)

In [263]: corr.plot()

Figure 11-9. Six-month return correlations to S&P 500



User-Defined Moving Window Functions
The apply method on rolling and related methods provides a means to
apply an array function of your own devising over a moving window. The
only requirement is that the function produce a single value (a reduction)
from each piece of the array. For example, while we can compute sample
quantiles using rolling(...).quantile(q), we might be interested in the
percentile rank of a particular value over the sample. The
scipy.stats.percentileofscore function does just this (see Figure 11-10
for the resulting plot):

In [265]: from scipy.stats import percentileofscore

In [266]: score_at_2percent = lambda x: percentileofscore(x, 0.02)

In [267]: result = returns.AAPL.rolling(250).apply(score_at_2percent)

In [268]: result.plot()

Figure 11-10. Percentile rank of 2% AAPL return over one-year window



If you don’t have SciPy installed already, you can install it with conda or pip.



11.8 Conclusion
Time series data calls for different types of analysis and data transformation
tools than the other types of data we have explored in previous chapters.

In the following chapters, we will move on to some advanced pandas
methods and show how to start using modeling libraries like statsmodels and
scikit-learn.

The choice of the default values for closed and label might seem a bit odd to some
users. In practice the choice is somewhat arbitrary; for some target frequencies,
closed='left' is preferable, while for others closed='right' makes more sense. The
important thing is that you keep in mind exactly how you are segmenting the data.
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Chapter 12. Advanced pandas

The preceding chapters have focused on introducing different types of data
wrangling workflows and features of NumPy, pandas, and other libraries.
Over time, pandas has developed a depth of features for power users. This
chapter digs into a few more advanced feature areas to help you deepen your
expertise as a pandas user.



12.1 Categorical Data
This section introduces the pandas Categorical type. I will show how you
can achieve better performance and memory use in some pandas operations
by using it. I also introduce some tools for using categorical data in statistics
and machine learning applications.



Background and Motivation
Frequently, a column in a table may contain repeated instances of a smaller
set of distinct values. We have already seen functions like unique and
value_counts, which enable us to extract the distinct values from an array
and compute their frequencies, respectively:

In [10]: import numpy as np; import pandas as pd

In [11]: values = pd.Series(['apple', 'orange', 'apple',
   ....:                     'apple'] * 2)

In [12]: values
Out[12]: 
0     apple
1    orange
2     apple
3     apple
4     apple
5    orange
6     apple
7     apple
dtype: object

In [13]: pd.unique(values)
Out[13]: array(['apple', 'orange'], dtype=object)

In [14]: pd.value_counts(values)
Out[14]: 
apple     6
orange    2
dtype: int64

Many data systems (for data warehousing, statistical computing, or other
uses) have developed specialized approaches for representing data with
repeated values for more efficient storage and computation. In data
warehousing, a best practice is to use so-called dimension tables containing
the distinct values and storing the primary observations as integer keys
referencing the dimension table:

In [15]: values = pd.Series([0, 1, 0, 0] * 2)

In [16]: dim = pd.Series(['apple', 'orange'])

In [17]: values



Out[17]: 
0    0
1    1
2    0
3    0
4    0
5    1
6    0
7    0
dtype: int64

In [18]: dim
Out[18]: 
0     apple
1    orange
dtype: object

We can use the take method to restore the original Series of strings:

In [19]: dim.take(values)
Out[19]: 
0     apple
1    orange
0     apple
0     apple
0     apple
1    orange
0     apple
0     apple
dtype: object

This representation as integers is called the categorical or dictionary-encoded
representation. The array of distinct values can be called the categories,
dictionary, or levels of the data. In this book we will use the terms
categorical and categories. The integer values that reference the categories
are called the category codes or simply codes.

The categorical representation can yield significant performance
improvements when you are doing analytics. You can also perform
transformations on the categories while leaving the codes unmodified. Some
example transformations that can be made at relatively low cost are:

Renaming categories

Appending a new category without changing the order or position of the
existing categories



Categorical Type in pandas
pandas has a special Categorical type for holding data that uses the integer-
based categorical representation or encoding. Let’s consider the example
Series from before:

In [20]: fruits = ['apple', 'orange', 'apple', 'apple'] * 2

In [21]: N = len(fruits)

In [22]: df = pd.DataFrame({'fruit': fruits,
   ....:                    'basket_id': np.arange(N),
   ....:                    'count': np.random.randint(3, 15, size=N),
   ....:                    'weight': np.random.uniform(0, 4, size=N)},
   ....:                   columns=['basket_id', 'fruit', 'count', 'weight'])

In [23]: df
Out[23]: 
   basket_id   fruit  count    weight
0          0   apple      5  3.858058
1          1  orange      8  2.612708
2          2   apple      4  2.995627
3          3   apple      7  2.614279
4          4   apple     12  2.990859
5          5  orange      8  3.845227
6          6   apple      5  0.033553
7          7   apple      4  0.425778

Here, df['fruit'] is an array of Python string objects. We can convert it to
categorical by calling:

In [24]: fruit_cat = df['fruit'].astype('category')

In [25]: fruit_cat
Out[25]: 
0     apple
1    orange
2     apple
3     apple
4     apple
5    orange
6     apple
7     apple
Name: fruit, dtype: category
Categories (2, object): [apple, orange]

The values for fruit_cat are not a NumPy array, but an instance of



pandas.Categorical:

In [26]: c = fruit_cat.values

In [27]: type(c)
Out[27]: pandas.core.categorical.Categorical

The Categorical object has categories and codes attributes:

In [28]: c.categories
Out[28]: Index(['apple', 'orange'], dtype='object')

In [29]: c.codes
Out[29]: array([0, 1, 0, 0, 0, 1, 0, 0], dtype=int8)

You can convert a DataFrame column to categorical by assigning the
converted result:

In [30]: df['fruit'] = df['fruit'].astype('category')

In [31]: df.fruit
Out[31]: 
0     apple
1    orange
2     apple
3     apple
4     apple
5    orange
6     apple
7     apple
Name: fruit, dtype: category
Categories (2, object): [apple, orange]

You can also create pandas.Categorical directly from other types of Python
sequences:

In [32]: my_categories = pd.Categorical(['foo', 'bar', 'baz', 'foo', 'bar'])

In [33]: my_categories
Out[33]: 
[foo, bar, baz, foo, bar]
Categories (3, object): [bar, baz, foo]

If you have obtained categorical encoded data from another source, you can
use the alternative from_codes constructor:



In [34]: categories = ['foo', 'bar', 'baz']

In [35]: codes = [0, 1, 2, 0, 0, 1]

In [36]: my_cats_2 = pd.Categorical.from_codes(codes, categories)

In [37]: my_cats_2
Out[37]: 
[foo, bar, baz, foo, foo, bar]
Categories (3, object): [foo, bar, baz]

Unless explicitly specified, categorical conversions assume no specific
ordering of the categories. So the categories array may be in a different
order depending on the ordering of the input data. When using from_codes or
any of the other constructors, you can indicate that the categories have a
meaningful ordering:

In [38]: ordered_cat = pd.Categorical.from_codes(codes, categories,
   ....:                                         ordered=True)

In [39]: ordered_cat
Out[39]: 
[foo, bar, baz, foo, foo, bar]
Categories (3, object): [foo < bar < baz]

The output [foo < bar < baz] indicates that 'foo' precedes 'bar' in the
ordering, and so on. An unordered categorical instance can be made ordered
with as_ordered:

In [40]: my_cats_2.as_ordered()
Out[40]: 
[foo, bar, baz, foo, foo, bar]
Categories (3, object): [foo < bar < baz]

As a last note, categorical data need not be strings, even though I have only
showed string examples. A categorical array can consist of any immutable
value types.



Computations with Categoricals
Using Categorical in pandas compared with the non-encoded version (like
an array of strings) generally behaves the same way. Some parts of pandas,
like the groupby function, perform better when working with categoricals.
There are also some functions that can utilize the ordered flag.

Let’s consider some random numeric data, and use the pandas.qcut binning
function. This return pandas.Categorical; we used pandas.cut earlier in
the book but glossed over the details of how categoricals work:

In [41]: np.random.seed(12345)

In [42]: draws = np.random.randn(1000)

In [43]: draws[:5]
Out[43]: array([-0.2047,  0.4789, -0.5194, -0.5557,  1.9658])

Let’s compute a quartile binning of this data and extract some statistics:

In [44]: bins = pd.qcut(draws, 4)

In [45]: bins
Out[45]: 
[(-0.684, -0.0101], (-0.0101, 0.63], (-0.684, -0.0101], (-0.684, -0.0101], 
(0.63,
 3.928], ..., (-0.0101, 0.63], (-0.684, -0.0101], (-2.95, -0.684], (-0.0101, 
0.63
], (0.63, 3.928]]
Length: 1000
Categories (4, interval[float64]): [(-2.95, -0.684] < (-0.684, -0.0101] < 
(-0.010
1, 0.63] <
                                    (0.63, 3.928]]

While useful, the exact sample quartiles may be less useful for producing a
report than quartile names. We can achieve this with the labels argument to
qcut:

In [46]: bins = pd.qcut(draws, 4, labels=['Q1', 'Q2', 'Q3', 'Q4'])

In [47]: bins
Out[47]: 



[Q2, Q3, Q2, Q2, Q4, ..., Q3, Q2, Q1, Q3, Q4]
Length: 1000
Categories (4, object): [Q1 < Q2 < Q3 < Q4]

In [48]: bins.codes[:10]
Out[48]: array([1, 2, 1, 1, 3, 3, 2, 2, 3, 3], dtype=int8)

The labeled bins categorical does not contain information about the bin
edges in the data, so we can use groupby to extract some summary statistics:

In [49]: bins = pd.Series(bins, name='quartile')

In [50]: results = (pd.Series(draws)
   ....:            .groupby(bins)
   ....:            .agg(['count', 'min', 'max'])
   ....:            .reset_index())

In [51]: results
Out[51]: 
  quartile  count       min       max
0       Q1    250 -2.949343 -0.685484
1       Q2    250 -0.683066 -0.010115
2       Q3    250 -0.010032  0.628894
3       Q4    250  0.634238  3.927528

The 'quartile' column in the result retains the original categorical
information, including ordering, from bins:

In [52]: results['quartile']
Out[52]: 
0    Q1
1    Q2
2    Q3
3    Q4
Name: quartile, dtype: category
Categories (4, object): [Q1 < Q2 < Q3 < Q4]

Better performance with categoricals
If you do a lot of analytics on a particular dataset, converting to categorical
can yield substantial overall performance gains. A categorical version of a
DataFrame column will often use significantly less memory, too. Let’s
consider some Series with 10 million elements and a small number of distinct
categories:

In [53]: N = 10000000



In [54]: draws = pd.Series(np.random.randn(N))

In [55]: labels = pd.Series(['foo', 'bar', 'baz', 'qux'] * (N // 4))

Now we convert labels to categorical:

In [56]: categories = labels.astype('category')

Now we note that labels uses significantly more memory than categories:

In [57]: labels.memory_usage()
Out[57]: 80000080

In [58]: categories.memory_usage()
Out[58]: 10000272

The conversion to category is not free, of course, but it is a one-time cost:

In [59]: %time _ = labels.astype('category')
CPU times: user 490 ms, sys: 240 ms, total: 730 ms
Wall time: 726 ms

GroupBy operations can be significantly faster with categoricals because the
underlying algorithms use the integer-based codes array instead of an array of
strings.



Categorical Methods
Series containing categorical data have several special methods similar to the
Series.str specialized string methods. This also provides convenient access
to the categories and codes. Consider the Series:

In [60]: s = pd.Series(['a', 'b', 'c', 'd'] * 2)

In [61]: cat_s = s.astype('category')

In [62]: cat_s
Out[62]: 
0    a
1    b
2    c
3    d
4    a
5    b
6    c
7    d
dtype: category
Categories (4, object): [a, b, c, d]

The special attribute cat provides access to categorical methods:

In [63]: cat_s.cat.codes
Out[63]: 
0    0
1    1
2    2
3    3
4    0
5    1
6    2
7    3
dtype: int8

In [64]: cat_s.cat.categories
Out[64]: Index(['a', 'b', 'c', 'd'], dtype='object')

Suppose that we know the actual set of categories for this data extends
beyond the four values observed in the data. We can use the set_categories
method to change them:

In [65]: actual_categories = ['a', 'b', 'c', 'd', 'e']



In [66]: cat_s2 = cat_s.cat.set_categories(actual_categories)

In [67]: cat_s2
Out[67]: 
0    a
1    b
2    c
3    d
4    a
5    b
6    c
7    d
dtype: category
Categories (5, object): [a, b, c, d, e]

While it appears that the data is unchanged, the new categories will be
reflected in operations that use them. For example, value_counts respects
the categories, if present:

In [68]: cat_s.value_counts()
Out[68]: 
d    2
c    2
b    2
a    2
dtype: int64

In [69]: cat_s2.value_counts()
Out[69]: 
d    2
c    2
b    2
a    2
e    0
dtype: int64

In large datasets, categoricals are often used as a convenient tool for memory
savings and better performance. After you filter a large DataFrame or Series,
many of the categories may not appear in the data. To help with this, we can
use the remove_unused_categories method to trim unobserved categories:

In [70]: cat_s3 = cat_s[cat_s.isin(['a', 'b'])]

In [71]: cat_s3
Out[71]: 
0    a
1    b
4    a
5    b



dtype: category
Categories (4, object): [a, b, c, d]

In [72]: cat_s3.cat.remove_unused_categories()
Out[72]: 
0    a
1    b
4    a
5    b
dtype: category
Categories (2, object): [a, b]

See Table 12-1 for a listing of available categorical methods.

Table 12-1. Categorical methods for Series in pandas

Method Description

add_categories Append new (unused) categories at end of existing categories

as_ordered Make categories ordered

as_unordered Make categories unordered

remove_categories Remove categories, setting any removed values to null

remove_unused_categories Remove any category values which do not appear in the data

rename_categories Replace categories with indicated set of new category names;
cannot change the number of categories

reorder_categories Behaves like rename_categories, but can also change the result
to have ordered categories

set_categories Replace the categories with the indicated set of new categories;
can add or remove categories

Creating dummy variables for modeling
When you’re using statistics or machine learning tools, you’ll often transform
categorical data into dummy variables, also known as one-hot encoding. This
involves creating a DataFrame with a column for each distinct category; these
columns contain 1s for occurrences of a given category and 0 otherwise.

Consider the previous example:

In [73]: cat_s = pd.Series(['a', 'b', 'c', 'd'] * 2, dtype='category')



As mentioned previously in Chapter 7, the pandas.get_dummies function
converts this one-dimensional categorical data into a DataFrame containing
the dummy variable:

In [74]: pd.get_dummies(cat_s)
Out[74]: 
   a  b  c  d
0  1  0  0  0
1  0  1  0  0
2  0  0  1  0
3  0  0  0  1
4  1  0  0  0
5  0  1  0  0
6  0  0  1  0
7  0  0  0  1



12.2 Advanced GroupBy Use
While we’ve already discussed using the groupby method for Series and
DataFrame in depth in Chapter 10, there are some additional techniques that
you may find of use.



Group Transforms and “Unwrapped” GroupBys
In Chapter 10 we looked at the apply method in grouped operations for
performing transformations. There is another built-in method called
transform, which is similar to apply but imposes more constraints on the
kind of function you can use:

It can produce a scalar value to be broadcast to the shape of the group

It can produce an object of the same shape as the input group

It must not mutate its input

Let’s consider a simple example for illustration:

In [75]: df = pd.DataFrame({'key': ['a', 'b', 'c'] * 4,
   ....:                    'value': np.arange(12.)})

In [76]: df
Out[76]: 
   key  value
0    a    0.0
1    b    1.0
2    c    2.0
3    a    3.0
4    b    4.0
5    c    5.0
6    a    6.0
7    b    7.0
8    c    8.0
9    a    9.0
10   b   10.0
11   c   11.0

Here are the group means by key:

In [77]: g = df.groupby('key').value

In [78]: g.mean()
Out[78]: 
key
a    4.5
b    5.5
c    6.5
Name: value, dtype: float64



Suppose instead we wanted to produce a Series of the same shape as
df['value'] but with values replaced by the average grouped by 'key'. We
can pass the function lambda x: x.mean() to transform:

In [79]: g.transform(lambda x: x.mean())
Out[79]: 
0     4.5
1     5.5
2     6.5
3     4.5
4     5.5
5     6.5
6     4.5
7     5.5
8     6.5
9     4.5
10    5.5
11    6.5
Name: value, dtype: float64

For built-in aggregation functions, we can pass a string alias as with the
GroupBy agg method:

In [80]: g.transform('mean')
Out[80]: 
0     4.5
1     5.5
2     6.5
3     4.5
4     5.5
5     6.5
6     4.5
7     5.5
8     6.5
9     4.5
10    5.5
11    6.5
Name: value, dtype: float64

Like apply, transform works with functions that return Series, but the result
must be the same size as the input. For example, we can multiply each group
by 2 using a lambda function:

In [81]: g.transform(lambda x: x * 2)
Out[81]: 
0      0.0
1      2.0
2      4.0



3      6.0
4      8.0
5     10.0
6     12.0
7     14.0
8     16.0
9     18.0
10    20.0
11    22.0
Name: value, dtype: float64

As a more complicated example, we can compute the ranks in descending
order for each group:

In [82]: g.transform(lambda x: x.rank(ascending=False))
Out[82]: 
0     4.0
1     4.0
2     4.0
3     3.0
4     3.0
5     3.0
6     2.0
7     2.0
8     2.0
9     1.0
10    1.0
11    1.0
Name: value, dtype: float64

Consider a group transformation function composed from simple
aggregations:

def normalize(x):
    return (x - x.mean()) / x.std()

We can obtain equivalent results in this case either using transform or
apply:

In [84]: g.transform(normalize)
Out[84]: 
0    -1.161895
1    -1.161895
2    -1.161895
3    -0.387298
4    -0.387298
5    -0.387298
6     0.387298
7     0.387298



8     0.387298
9     1.161895
10    1.161895
11    1.161895
Name: value, dtype: float64

In [85]: g.apply(normalize)
Out[85]: 
0    -1.161895
1    -1.161895
2    -1.161895
3    -0.387298
4    -0.387298
5    -0.387298
6     0.387298
7     0.387298
8     0.387298
9     1.161895
10    1.161895
11    1.161895
Name: value, dtype: float64

Built-in aggregate functions like 'mean' or 'sum' are often much faster than
a general apply function. These also have a “fast past” when used with
transform. This allows us to perform a so-called unwrapped group
operation:

In [86]: g.transform('mean')
Out[86]: 
0     4.5
1     5.5
2     6.5
3     4.5
4     5.5
5     6.5
6     4.5
7     5.5
8     6.5
9     4.5
10    5.5
11    6.5
Name: value, dtype: float64

In [87]: normalized = (df['value'] - g.transform('mean')) / 
g.transform('std')

In [88]: normalized
Out[88]: 
0    -1.161895
1    -1.161895
2    -1.161895
3    -0.387298
4    -0.387298



5    -0.387298
6     0.387298
7     0.387298
8     0.387298
9     1.161895
10    1.161895
11    1.161895
Name: value, dtype: float64

While an unwrapped group operation may involve multiple group
aggregations, the overall benefit of vectorized operations often outweighs
this.



Grouped Time Resampling
For time series data, the resample method is semantically a group operation
based on a time intervalization. Here’s a small example table:

In [89]: N = 15

In [90]: times = pd.date_range('2017-05-20 00:00', freq='1min', periods=N)

In [91]: df = pd.DataFrame({'time': times,
   ....:                    'value': np.arange(N)})

In [92]: df
Out[92]: 
                  time  value
0  2017-05-20 00:00:00      0
1  2017-05-20 00:01:00      1
2  2017-05-20 00:02:00      2
3  2017-05-20 00:03:00      3
4  2017-05-20 00:04:00      4
5  2017-05-20 00:05:00      5
6  2017-05-20 00:06:00      6
7  2017-05-20 00:07:00      7
8  2017-05-20 00:08:00      8
9  2017-05-20 00:09:00      9
10 2017-05-20 00:10:00     10
11 2017-05-20 00:11:00     11
12 2017-05-20 00:12:00     12
13 2017-05-20 00:13:00     13
14 2017-05-20 00:14:00     14

Here, we can index by 'time' and then resample:

In [93]: df.set_index('time').resample('5min').count()
Out[93]: 
                     value
time                      
2017-05-20 00:00:00      5
2017-05-20 00:05:00      5
2017-05-20 00:10:00      5

Suppose that a DataFrame contains multiple time series, marked by an
additional group key column:

In [94]: df2 = pd.DataFrame({'time': times.repeat(3),
   ....:                     'key': np.tile(['a', 'b', 'c'], N),
   ....:                     'value': np.arange(N * 3.)})



In [95]: df2[:7]
Out[95]: 
  key                time  value
0   a 2017-05-20 00:00:00    0.0
1   b 2017-05-20 00:00:00    1.0
2   c 2017-05-20 00:00:00    2.0
3   a 2017-05-20 00:01:00    3.0
4   b 2017-05-20 00:01:00    4.0
5   c 2017-05-20 00:01:00    5.0
6   a 2017-05-20 00:02:00    6.0

To do the same resampling for each value of 'key', we introduce the
pandas.TimeGrouper object:

In [96]: time_key = pd.TimeGrouper('5min')

We can then set the time index, group by 'key' and time_key, and aggregate:

In [97]: resampled = (df2.set_index('time')
   ....:              .groupby(['key', time_key])
   ....:              .sum())

In [98]: resampled
Out[98]: 
                         value
key time                      
a   2017-05-20 00:00:00   30.0
    2017-05-20 00:05:00  105.0
    2017-05-20 00:10:00  180.0
b   2017-05-20 00:00:00   35.0
    2017-05-20 00:05:00  110.0
    2017-05-20 00:10:00  185.0
c   2017-05-20 00:00:00   40.0
    2017-05-20 00:05:00  115.0
    2017-05-20 00:10:00  190.0

In [99]: resampled.reset_index()
Out[99]: 
  key                time  value
0   a 2017-05-20 00:00:00   30.0
1   a 2017-05-20 00:05:00  105.0
2   a 2017-05-20 00:10:00  180.0
3   b 2017-05-20 00:00:00   35.0
4   b 2017-05-20 00:05:00  110.0
5   b 2017-05-20 00:10:00  185.0
6   c 2017-05-20 00:00:00   40.0
7   c 2017-05-20 00:05:00  115.0
8   c 2017-05-20 00:10:00  190.0



One constraint with using TimeGrouper is that the time must be the index of
the Series or DataFrame.



12.3 Techniques for Method Chaining
When applying a sequence of transformations to a dataset, you may find
yourself creating numerous temporary variables that are never used in your
analysis. Consider this example, for instance:

df = load_data()
df2 = df[df['col2'] < 0]
df2['col1_demeaned'] = df2['col1'] - df2['col1'].mean()
result = df2.groupby('key').col1_demeaned.std()

While we’re not using any real data here, this example highlights some new
methods. First, the DataFrame.assign method is a functional alternative to
column assignments of the form df[k] = v. Rather than modifying the object
in-place, it returns a new DataFrame with the indicated modifications. So
these statements are equivalent:

# Usual non-functional way
df2 = df.copy()
df2['k'] = v

# Functional assign way
df2 = df.assign(k=v)

Assigning in-place may execute faster than using assign, but assign enables
easier method chaining:

result = (df2.assign(col1_demeaned=df2.col1 - df2.col2.mean())
          .groupby('key')
          .col1_demeaned.std())

I used the outer parentheses to make it more convenient to add line breaks.

One thing to keep in mind when doing method chaining is that you may need
to refer to temporary objects. In the preceding example, we cannot refer to
the result of load_data until it has been assigned to the temporary variable
df. To help with this, assign and many other pandas functions accept
function-like arguments, also known as callables.



To show callables in action, consider a fragment of the example from before:

df = load_data()
df2 = df[df['col2'] < 0]

This can be rewritten as:

df = (load_data()
      [lambda x: x['col2'] < 0])

Here, the result of load_data is not assigned to a variable, so the function
passed into [] is then bound to the object at that stage of the method chain.

We can continue, then, and write the entire sequence as a single chained
expression:

result = (load_data()
          [lambda x: x.col2 < 0]
          .assign(col1_demeaned=lambda x: x.col1 - x.col1.mean())
          .groupby('key')
          .col1_demeaned.std())

Whether you prefer to write code in this style is a matter of taste, and splitting
up the expression into multiple steps may make your code more readable.



The pipe Method
You can accomplish a lot with built-in pandas functions and the approaches
to method chaining with callables that we just looked at. However,
sometimes you need to use your own functions or functions from third-party
libraries. This is where the pipe method comes in.

Consider a sequence of function calls:

a = f(df, arg1=v1)
b = g(a, v2, arg3=v3)
c = h(b, arg4=v4)

When using functions that accept and return Series or DataFrame objects,
you can rewrite this using calls to pipe:

result = (df.pipe(f, arg1=v1)
          .pipe(g, v2, arg3=v3)
          .pipe(h, arg4=v4))

The statement f(df) and df.pipe(f) are equivalent, but pipe makes chained
invocation easier.

A potentially useful pattern for pipe is to generalize sequences of operations
into reusable functions. As an example, let’s consider substracting group
means from a column:

g = df.groupby(['key1', 'key2'])
df['col1'] = df['col1'] - g.transform('mean')

Suppose that you wanted to be able to demean more than one column and
easily change the group keys. Additionally, you might want to perform this
transformation in a method chain. Here is an example implementation:

def group_demean(df, by, cols):
    result = df.copy()
    g = df.groupby(by)
    for c in cols:
        result[c] = df[c] - g[c].transform('mean')
    return result



Then it is possible to write:

result = (df[df.col1 < 0]
          .pipe(group_demean, ['key1', 'key2'], ['col1']))



12.4 Conclusion
pandas, like many open source software projects, is still changing and
acquiring new and improved functionality. As elsewhere in this book, the
focus here has been on the most stable functionality that is less likely to
change over the next several years.

To deepen your expertise as a pandas user, I encourage you to explore the
documentation and read the release notes as the development team makes
new open source releases. We also invite you to join in on pandas
development: fixing bugs, building new features, and improving the
documentation.

http://pandas.pydata.org


Chapter 13. Introduction to
Modeling Libraries in Python

In this book, I have focused on providing a programming foundation for
doing data analysis in Python. Since data analysts and scientists often report
spending a disproportionate amount of time with data wrangling and
preparation, the book’s structure reflects the importance of mastering these
techniques.

Which library you use for developing models will depend on the application.
Many statistical problems can be solved by simpler techniques like ordinary
least squares regression, while other problems may call for more advanced
machine learning methods. Fortunately, Python has become one of the
languages of choice for implementing analytical methods, so there are many
tools you can explore after completing this book.

In this chapter, I will review some features of pandas that may be helpful
when you’re crossing back and forth between data wrangling with pandas and
model fitting and scoring. I will then give short introductions to two popular
modeling toolkits, statsmodels and scikit-learn. Since each of these projects is
large enough to warrant its own dedicated book, I make no effort to be
comprehensive and instead direct you to both projects’ online documentation
along with some other Python-based books on data science, statistics, and
machine learning.

http://statsmodels.org
http://scikit-learn.org


13.1 Interfacing Between pandas and Model Code
A common workflow for model development is to use pandas for data
loading and cleaning before switching over to a modeling library to build the
model itself. An important part of the model development process is called
feature engineering in machine learning. This can describe any data
transformation or analytics that extract information from a raw dataset that
may be useful in a modeling context. The data aggregation and GroupBy
tools we have explored in this book are used often in a feature engineering
context.

While details of “good” feature engineering are out of scope for this book, I
will show some methods to make switching between data manipulation with
pandas and modeling as painless as possible.

The point of contact between pandas and other analysis libraries is usually
NumPy arrays. To turn a DataFrame into a NumPy array, use the .values
property:

In [10]: import pandas as pd

In [11]: import numpy as np

In [12]: data = pd.DataFrame({
   ....:     'x0': [1, 2, 3, 4, 5],
   ....:     'x1': [0.01, -0.01, 0.25, -4.1, 0.],
   ....:     'y': [-1.5, 0., 3.6, 1.3, -2.]})

In [13]: data
Out[13]: 
   x0    x1    y
0   1  0.01 -1.5
1   2 -0.01  0.0
2   3  0.25  3.6
3   4 -4.10  1.3
4   5  0.00 -2.0

In [14]: data.columns
Out[14]: Index(['x0', 'x1', 'y'], dtype='object')

In [15]: data.values
Out[15]: 
array([[ 1.  ,  0.01, -1.5 ],
       [ 2.  , -0.01,  0.  ],
       [ 3.  ,  0.25,  3.6 ],



       [ 4.  , -4.1 ,  1.3 ],
       [ 5.  ,  0.  , -2.  ]])

To convert back to a DataFrame, as you may recall from earlier chapters, you
can pass a two-dimensional ndarray with optional column names:

In [16]: df2 = pd.DataFrame(data.values, columns=['one', 'two', 'three'])

In [17]: df2
Out[17]: 
   one   two  three
0  1.0  0.01   -1.5
1  2.0 -0.01    0.0
2  3.0  0.25    3.6
3  4.0 -4.10    1.3
4  5.0  0.00   -2.0

NOTE
The .values attribute is intended to be used when your data is homogeneous —
for example, all numeric types. If you have heterogeneous data, the result will
be an ndarray of Python objects:

In [18]: df3 = data.copy()

In [19]: df3['strings'] = ['a', 'b', 'c', 'd', 'e']

In [20]: df3
Out[20]: 
   x0    x1    y strings
0   1  0.01 -1.5       a
1   2 -0.01  0.0       b
2   3  0.25  3.6       c
3   4 -4.10  1.3       d
4   5  0.00 -2.0       e

In [21]: df3.values
Out[21]: 
array([[1, 0.01, -1.5, 'a'],
       [2, -0.01, 0.0, 'b'],
       [3, 0.25, 3.6, 'c'],
       [4, -4.1, 1.3, 'd'],
       [5, 0.0, -2.0, 'e']], dtype=object)

For some models, you may only wish to use a subset of the columns. I
recommend using loc indexing with values:



In [22]: model_cols = ['x0', 'x1']

In [23]: data.loc[:, model_cols].values
Out[23]: 
array([[ 1.  ,  0.01],
       [ 2.  , -0.01],
       [ 3.  ,  0.25],
       [ 4.  , -4.1 ],
       [ 5.  ,  0.  ]])

Some libraries have native support for pandas and do some of this work for
you automatically: converting to NumPy from DataFrame and attaching
model parameter names to the columns of output tables or Series. In other
cases, you will have to perform this “metadata management” manually.

In Chapter 12 we looked at pandas’s Categorical type and the
pandas.get_dummies function. Suppose we had a non-numeric column in our
example dataset:

In [24]: data['category'] = pd.Categorical(['a', 'b', 'a', 'a', 'b'],
   ....:                                   categories=['a', 'b'])

In [25]: data
Out[25]: 
   x0    x1    y category
0   1  0.01 -1.5        a
1   2 -0.01  0.0        b
2   3  0.25  3.6        a
3   4 -4.10  1.3        a
4   5  0.00 -2.0        b

If we wanted to replace the 'category' column with dummy variables, we
create dummy variables, drop the 'category' column, and then join the
result:

In [26]: dummies = pd.get_dummies(data.category, prefix='category')

In [27]: data_with_dummies = data.drop('category', axis=1).join(dummies)

In [28]: data_with_dummies
Out[28]: 
   x0    x1    y  category_a  category_b
0   1  0.01 -1.5           1           0
1   2 -0.01  0.0           0           1
2   3  0.25  3.6           1           0
3   4 -4.10  1.3           1           0
4   5  0.00 -2.0           0           1



There are some nuances to fitting certain statistical models with dummy
variables. It may be simpler and less error-prone to use Patsy (the subject of
the next section) when you have more than simple numeric columns.



13.2 Creating Model Descriptions with Patsy
Patsy is a Python library for describing statistical models (especially linear
models) with a small string-based “formula syntax,” which is inspired by (but
not exactly the same as) the formula syntax used by the R and S statistical
programming languages.

Patsy is well supported for specifying linear models in statsmodels, so I will
focus on some of the main features to help you get up and running. Patsy’s
formulas are a special string syntax that looks like:

y ~ x0 + x1

The syntax a + b does not mean to add a to b, but rather that these are terms
in the design matrix created for the model. The patsy.dmatrices function
takes a formula string along with a dataset (which can be a DataFrame or a
dict of arrays) and produces design matrices for a linear model:

In [29]: data = pd.DataFrame({
   ....:     'x0': [1, 2, 3, 4, 5],
   ....:     'x1': [0.01, -0.01, 0.25, -4.1, 0.],
   ....:     'y': [-1.5, 0., 3.6, 1.3, -2.]})

In [30]: data
Out[30]: 
   x0    x1    y
0   1  0.01 -1.5
1   2 -0.01  0.0
2   3  0.25  3.6
3   4 -4.10  1.3
4   5  0.00 -2.0

In [31]: import patsy

In [32]: y, X = patsy.dmatrices('y ~ x0 + x1', data)

Now we have:

In [33]: y
Out[33]: 
DesignMatrix with shape (5, 1)
     y
  -1.5

https://patsy.readthedocs.io/


   0.0
   3.6
   1.3
  -2.0
  Terms:
    'y' (column 0)

In [34]: X
Out[34]: 
DesignMatrix with shape (5, 3)
  Intercept  x0     x1
          1   1   0.01
          1   2  -0.01
          1   3   0.25
          1   4  -4.10
          1   5   0.00
  Terms:
    'Intercept' (column 0)
    'x0' (column 1)
    'x1' (column 2)

These Patsy DesignMatrix instances are NumPy ndarrays with additional
metadata:

In [35]: np.asarray(y)
Out[35]: 
array([[-1.5],
       [ 0. ],
       [ 3.6],
       [ 1.3],
       [-2. ]])

In [36]: np.asarray(X)
Out[36]: 
array([[ 1.  ,  1.  ,  0.01],
       [ 1.  ,  2.  , -0.01],
       [ 1.  ,  3.  ,  0.25],
       [ 1.  ,  4.  , -4.1 ],
       [ 1.  ,  5.  ,  0.  ]])

You might wonder where the Intercept term came from. This is a
convention for linear models like ordinary least squares (OLS) regression.
You can suppress the intercept by adding the term + 0 to the model:

In [37]: patsy.dmatrices('y ~ x0 + x1 + 0', data)[1]
Out[37]: 
DesignMatrix with shape (5, 2)
  x0     x1
   1   0.01
   2  -0.01
   3   0.25



   4  -4.10
   5   0.00
  Terms:
    'x0' (column 0)
    'x1' (column 1)

The Patsy objects can be passed directly into algorithms like
numpy.linalg.lstsq, which performs an ordinary least squares regression:

In [38]: coef, resid, _, _ = np.linalg.lstsq(X, y)

The model metadata is retained in the design_info attribute, so you can
reattach the model column names to the fitted coefficients to obtain a Series,
for example:

In [39]: coef
Out[39]: 
array([[ 0.3129],
       [-0.0791],
       [-0.2655]])

In [40]: coef = pd.Series(coef.squeeze(), index=X.design_info.column_names)

In [41]: coef
Out[41]: 
Intercept    0.312910
x0          -0.079106
x1          -0.265464
dtype: float64



Data Transformations in Patsy Formulas
You can mix Python code into your Patsy formulas; when evaluating the
formula the library will try to find the functions you use in the enclosing
scope:

In [42]: y, X = patsy.dmatrices('y ~ x0 + np.log(np.abs(x1) + 1)', data)

In [43]: X
Out[43]: 
DesignMatrix with shape (5, 3)
  Intercept  x0  np.log(np.abs(x1) + 1)
          1   1                 0.00995
          1   2                 0.00995
          1   3                 0.22314
          1   4                 1.62924
          1   5                 0.00000
  Terms:
    'Intercept' (column 0)
    'x0' (column 1)
    'np.log(np.abs(x1) + 1)' (column 2)

Some commonly used variable transformations include standardizing (to
mean 0 and variance 1) and centering (subtracting the mean). Patsy has built-
in functions for this purpose:

In [44]: y, X = patsy.dmatrices('y ~ standardize(x0) + center(x1)', data)

In [45]: X
Out[45]: 
DesignMatrix with shape (5, 3)
  Intercept  standardize(x0)  center(x1)
          1         -1.41421        0.78
          1         -0.70711        0.76
          1          0.00000        1.02
          1          0.70711       -3.33
          1          1.41421        0.77
  Terms:
    'Intercept' (column 0)
    'standardize(x0)' (column 1)
    'center(x1)' (column 2)

As part of a modeling process, you may fit a model on one dataset, then
evaluate the model based on another. This might be a hold-out portion or new
data that is observed later. When applying transformations like center and



standardize, you should be careful when using the model to form predications
based on new data. These are called stateful transformations, because you
must use statistics like the mean or standard deviation of the original dataset
when transforming a new dataset.

The patsy.build_design_matrices function can apply transformations to
new out-of-sample data using the saved information from the original in-
sample dataset:

In [46]: new_data = pd.DataFrame({
   ....:     'x0': [6, 7, 8, 9],
   ....:     'x1': [3.1, -0.5, 0, 2.3],
   ....:     'y': [1, 2, 3, 4]})

In [47]: new_X = patsy.build_design_matrices([X.design_info], new_data)

In [48]: new_X
Out[48]: 
[DesignMatrix with shape (4, 3)
   Intercept  standardize(x0)  center(x1)
           1          2.12132        3.87
           1          2.82843        0.27
           1          3.53553        0.77
           1          4.24264        3.07
   Terms:
     'Intercept' (column 0)
     'standardize(x0)' (column 1)
     'center(x1)' (column 2)]

Because the plus symbol (+) in the context of Patsy formulas does not mean
addition, when you want to add columns from a dataset by name, you must
wrap them in the special I function:

In [49]: y, X = patsy.dmatrices('y ~ I(x0 + x1)', data)

In [50]: X
Out[50]: 
DesignMatrix with shape (5, 2)
  Intercept  I(x0 + x1)
          1        1.01
          1        1.99
          1        3.25
          1       -0.10
          1        5.00
  Terms:
    'Intercept' (column 0)
    'I(x0 + x1)' (column 1)



Patsy has several other built-in transforms in the patsy.builtins module.
See the online documentation for more.

Categorical data has a special class of transformations, which I explain next.



Categorical Data and Patsy
Non-numeric data can be transformed for a model design matrix in many
different ways. A complete treatment of this topic is outside the scope of this
book and would be best studied along with a course in statistics.

When you use non-numeric terms in a Patsy formula, they are converted to
dummy variables by default. If there is an intercept, one of the levels will be
left out to avoid collinearity:

In [51]: data = pd.DataFrame({
   ....:     'key1': ['a', 'a', 'b', 'b', 'a', 'b', 'a', 'b'],
   ....:     'key2': [0, 1, 0, 1, 0, 1, 0, 0],
   ....:     'v1': [1, 2, 3, 4, 5, 6, 7, 8],
   ....:     'v2': [-1, 0, 2.5, -0.5, 4.0, -1.2, 0.2, -1.7]
   ....: })

In [52]: y, X = patsy.dmatrices('v2 ~ key1', data)

In [53]: X
Out[53]: 
DesignMatrix with shape (8, 2)
  Intercept  key1[T.b]
          1          0
          1          0
          1          1
          1          1
          1          0
          1          1
          1          0
          1          1
  Terms:
    'Intercept' (column 0)
    'key1' (column 1)

If you omit the intercept from the model, then columns for each category
value will be included in the model design matrix:

In [54]: y, X = patsy.dmatrices('v2 ~ key1 + 0', data)

In [55]: X
Out[55]: 
DesignMatrix with shape (8, 2)
  key1[a]  key1[b]
        1        0
        1        0
        0        1
        0        1



        1        0
        0        1
        1        0
        0        1
  Terms:
    'key1' (columns 0:2)

Numeric columns can be interpreted as categorical with the C function:

In [56]: y, X = patsy.dmatrices('v2 ~ C(key2)', data)

In [57]: X
Out[57]: 
DesignMatrix with shape (8, 2)
  Intercept  C(key2)[T.1]
          1             0
          1             1
          1             0
          1             1
          1             0
          1             1
          1             0
          1             0
  Terms:
    'Intercept' (column 0)
    'C(key2)' (column 1)

When you’re using multiple categorical terms in a model, things can be more
complicated, as you can include interaction terms of the form key1:key2,
which can be used, for example, in analysis of variance (ANOVA) models:

In [58]: data['key2'] = data['key2'].map({0: 'zero', 1: 'one'})

In [59]: data
Out[59]: 
  key1  key2  v1   v2
0    a  zero   1 -1.0
1    a   one   2  0.0
2    b  zero   3  2.5
3    b   one   4 -0.5
4    a  zero   5  4.0
5    b   one   6 -1.2
6    a  zero   7  0.2
7    b  zero   8 -1.7

In [60]: y, X = patsy.dmatrices('v2 ~ key1 + key2', data)

In [61]: X
Out[61]: 
DesignMatrix with shape (8, 3)
  Intercept  key1[T.b]  key2[T.zero]



          1          0             1
          1          0             0
          1          1             1
          1          1             0
          1          0             1
          1          1             0
          1          0             1
          1          1             1
  Terms:
    'Intercept' (column 0)
    'key1' (column 1)
    'key2' (column 2)

In [62]: y, X = patsy.dmatrices('v2 ~ key1 + key2 + key1:key2', data)

In [63]: X
Out[63]: 
DesignMatrix with shape (8, 4)
  Intercept  key1[T.b]  key2[T.zero]  key1[T.b]:key2[T.zero]
          1          0             1                       0
          1          0             0                       0
          1          1             1                       1
          1          1             0                       0
          1          0             1                       0
          1          1             0                       0
          1          0             1                       0
          1          1             1                       1
  Terms:
    'Intercept' (column 0)
    'key1' (column 1)
    'key2' (column 2)
    'key1:key2' (column 3)

Patsy provides for other ways to transform categorical data, including
transformations for terms with a particular ordering. See the online
documentation for more.



13.3 Introduction to statsmodels
statsmodels is a Python library for fitting many kinds of statistical models,
performing statistical tests, and data exploration and visualization.
Statsmodels contains more “classical” frequentist statistical methods, while
Bayesian methods and machine learning models are found in other libraries.

Some kinds of models found in statsmodels include:
Linear models, generalized linear models, and robust linear models

Linear mixed effects models

Analysis of variance (ANOVA) methods

Time series processes and state space models

Generalized method of moments

In the next few pages, we will use a few basic tools in statsmodels and
explore how to use the modeling interfaces with Patsy formulas and pandas
DataFrame objects.

http://www.statsmodels.org


Estimating Linear Models
There are several kinds of linear regression models in statsmodels, from the
more basic (e.g., ordinary least squares) to more complex (e.g., iteratively
reweighted least squares).

Linear models in statsmodels have two different main interfaces: array-based
and formula-based. These are accessed through these API module imports:

import statsmodels.api as sm
import statsmodels.formula.api as smf

To show how to use these, we generate a linear model from some random
data:

def dnorm(mean, variance, size=1):
    if isinstance(size, int):
        size = size,
    return mean + np.sqrt(variance) * np.random.randn(*size)

# For reproducibility
np.random.seed(12345)

N = 100
X = np.c_[dnorm(0, 0.4, size=N),
          dnorm(0, 0.6, size=N),
          dnorm(0, 0.2, size=N)]
eps = dnorm(0, 0.1, size=N)
beta = [0.1, 0.3, 0.5]

y = np.dot(X, beta) + eps

Here, I wrote down the “true” model with known parameters beta. In this
case, dnorm is a helper function for generating normally distributed data with
a particular mean and variance. So now we have:

In [66]: X[:5]
Out[66]: 
array([[-0.1295, -1.2128,  0.5042],
       [ 0.3029, -0.4357, -0.2542],
       [-0.3285, -0.0253,  0.1384],
       [-0.3515, -0.7196, -0.2582],
       [ 1.2433, -0.3738, -0.5226]])

In [67]: y[:5]



Out[67]: array([ 0.4279, -0.6735, -0.0909, -0.4895, -0.1289])

A linear model is generally fitted with an intercept term as we saw before
with Patsy. The sm.add_constant function can add an intercept column to an
existing matrix:

In [68]: X_model = sm.add_constant(X)

In [69]: X_model[:5]
Out[69]: 
array([[ 1.    , -0.1295, -1.2128,  0.5042],
       [ 1.    ,  0.3029, -0.4357, -0.2542],
       [ 1.    , -0.3285, -0.0253,  0.1384],
       [ 1.    , -0.3515, -0.7196, -0.2582],
       [ 1.    ,  1.2433, -0.3738, -0.5226]])

The sm.OLS class can fit an ordinary least squares linear regression:

In [70]: model = sm.OLS(y, X)

The model’s fit method returns a regression results object containing
estimated model parameters and other diagnostics:

In [71]: results = model.fit()

In [72]: results.params
Out[72]: array([ 0.1783,  0.223 ,  0.501 ])

The summary method on results can print a model detailing diagnostic
output of the model:

In [73]: print(results.summary())
OLS Regression Results                            
==============================================================================

Dep. Variable:                      y   R-squared:                       
0.430
Model:                            OLS   Adj. R-squared:                  
0.413
Method:                 Least Squares   F-statistic:                     
24.42
Date:                Mon, 25 Sep 2017   Prob (F-statistic):           7.44e-
12
Time:                        14:06:15   Log-Likelihood:                
-34.305
No. Observations:                 100   AIC:                             



74.61
Df Residuals:                      97   BIC:                             
82.42
Df Model:                           3                                          
Covariance Type:            nonrobust                                          
==============================================================================

                 coef    std err          t      P>|t|      [0.025      
0.975]
-----------------------------------------------------------------------------
-
x1             0.1783      0.053      3.364      0.001       0.073       
0.283
x2             0.2230      0.046      4.818      0.000       0.131       
0.315
x3             0.5010      0.080      6.237      0.000       0.342       
0.660
==============================================================================

Omnibus:                        4.662   Durbin-Watson:                   
2.201
Prob(Omnibus):                  0.097   Jarque-Bera (JB):                
4.098
Skew:                           0.481   Prob(JB):                        
0.129
Kurtosis:                       3.243   Cond. No.                         
1.74
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is 
correctly 
specified.

The parameter names here have been given the generic names x1, x2, and so
on. Suppose instead that all of the model parameters are in a DataFrame:

In [74]: data = pd.DataFrame(X, columns=['col0', 'col1', 'col2'])

In [75]: data['y'] = y

In [76]: data[:5]
Out[76]: 
       col0      col1      col2         y
0 -0.129468 -1.212753  0.504225  0.427863
1  0.302910 -0.435742 -0.254180 -0.673480
2 -0.328522 -0.025302  0.138351 -0.090878
3 -0.351475 -0.719605 -0.258215 -0.489494
4  1.243269 -0.373799 -0.522629 -0.128941

Now we can use the statsmodels formula API and Patsy formula strings:



In [77]: results = smf.ols('y ~ col0 + col1 + col2', data=data).fit()

In [78]: results.params
Out[78]: 
Intercept    0.033559
col0         0.176149
col1         0.224826
col2         0.514808
dtype: float64

In [79]: results.tvalues
Out[79]: 
Intercept    0.952188
col0         3.319754
col1         4.850730
col2         6.303971
dtype: float64

Observe how statsmodels has returned results as Series with the DataFrame
column names attached. We also do not need to use add_constant when
using formulas and pandas objects.

Given new out-of-sample data, you can compute predicted values given the
estimated model parameters:

In [80]: results.predict(data[:5])
Out[80]: 
0   -0.002327
1   -0.141904
2    0.041226
3   -0.323070
4   -0.100535
dtype: float64

There are many additional tools for analysis, diagnostics, and visualization of
linear model results in statsmodels that you can explore. There are also other
kinds of linear models beyond ordinary least squares.



Estimating Time Series Processes
Another class of models in statsmodels are for time series analysis. Among
these are autoregressive processes, Kalman filtering and other state space
models, and multivariate autoregressive models.

Let’s simulate some time series data with an autoregressive structure and
noise:

init_x = 4

import random
values = [init_x, init_x]
N = 1000

b0 = 0.8
b1 = -0.4
noise = dnorm(0, 0.1, N)
for i in range(N):
    new_x = values[-1] * b0 + values[-2] * b1 + noise[i]
    values.append(new_x)

This data has an AR(2) structure (two lags) with parameters 0.8 and –0.4.
When you fit an AR model, you may not know the number of lagged terms to
include, so you can fit the model with some larger number of lags:

In [82]: MAXLAGS = 5

In [83]: model = sm.tsa.AR(values)

In [84]: results = model.fit(MAXLAGS)

The estimated parameters in the results have the intercept first and the
estimates for the first two lags next:

In [85]: results.params
Out[85]: array([-0.0062,  0.7845, -0.4085, -0.0136,  0.015 ,  0.0143])

Deeper details of these models and how to interpret their results is beyond
what I can cover in this book, but there’s plenty more to discover in the
statsmodels documentation.



13.4 Introduction to scikit-learn
scikit-learn is one of the most widely used and trusted general-purpose
Python machine learning toolkits. It contains a broad selection of standard
supervised and unsupervised machine learning methods with tools for model
selection and evaluation, data transformation, data loading, and model
persistence. These models can be used for classification, clustering,
prediction, and other common tasks.

There are excellent online and printed resources for learning about machine
learning and how to apply libraries like scikit-learn and TensorFlow to solve
real-world problems. In this section, I will give a brief flavor of the scikit-
learn API style.

At the time of this writing, scikit-learn does not have deep pandas integration,
though there are some add-on third-party packages that are still in
development. pandas can be very useful for massaging datasets prior to
model fitting, though.

As an example, I use a now-classic dataset from a Kaggle competition about
passenger survival rates on the Titanic, which sank in 1912. We load the test
and training dataset using pandas:

In [86]: train = pd.read_csv('datasets/titanic/train.csv')

In [87]: test = pd.read_csv('datasets/titanic/test.csv')

In [88]: train[:4]
Out[88]: 
   PassengerId  Survived  Pclass  \
0            1         0       3   
1            2         1       1   
2            3         1       3   
3            4         1       1   
                                                Name     Sex   Age  SibSp  \
0                            Braund, Mr. Owen Harris    male  22.0      1   
1  Cumings, Mrs. John Bradley (Florence Briggs Th...  female  38.0      1   
2                             Heikkinen, Miss. Laina  female  26.0      0   
3       Futrelle, Mrs. Jacques Heath (Lily May Peel)  female  35.0      1   
   Parch            Ticket     Fare Cabin Embarked  
0      0         A/5 21171   7.2500   NaN        S  
1      0          PC 17599  71.2833   C85        C  
2      0  STON/O2. 3101282   7.9250   NaN        S  

http://scikit-learn.org
https://www.kaggle.com/c/titanic


3      0            113803  53.1000  C123        S  

Libraries like statsmodels and scikit-learn generally cannot be fed missing
data, so we look at the columns to see if there are any that contain missing
data:

In [89]: train.isnull().sum()
Out[89]: 
PassengerId      0
Survived         0
Pclass           0
Name             0
Sex              0
Age            177
SibSp            0
Parch            0
Ticket           0
Fare             0
Cabin          687
Embarked         2
dtype: int64

In [90]: test.isnull().sum()
Out[90]: 
PassengerId      0
Pclass           0
Name             0
Sex              0
Age             86
SibSp            0
Parch            0
Ticket           0
Fare             1
Cabin          327
Embarked         0
dtype: int64

In statistics and machine learning examples like this one, a typical task is to
predict whether a passenger would survive based on features in the data. A
model is fitted on a training dataset and then evaluated on an out-of-sample
testing dataset.

I would like to use Age as a predictor, but it has missing data. There are a
number of ways to do missing data imputation, but I will do a simple one
and use the median of the training dataset to fill the nulls in both tables:

In [91]: impute_value = train['Age'].median()



In [92]: train['Age'] = train['Age'].fillna(impute_value)

In [93]: test['Age'] = test['Age'].fillna(impute_value)

Now we need to specify our models. I add a column IsFemale as an encoded
version of the 'Sex' column:

In [94]: train['IsFemale'] = (train['Sex'] == 'female').astype(int)

In [95]: test['IsFemale'] = (test['Sex'] == 'female').astype(int)

Then we decide on some model variables and create NumPy arrays:

In [96]: predictors = ['Pclass', 'IsFemale', 'Age']

In [97]: X_train = train[predictors].values

In [98]: X_test = test[predictors].values

In [99]: y_train = train['Survived'].values

In [100]: X_train[:5]
Out[100]: 
array([[  3.,   0.,  22.],
       [  1.,   1.,  38.],
       [  3.,   1.,  26.],
       [  1.,   1.,  35.],
       [  3.,   0.,  35.]])

In [101]: y_train[:5]
Out[101]: array([0, 1, 1, 1, 0])

I make no claims that this is a good model nor that these features are
engineered properly. We use the LogisticRegression model from scikit-
learn and create a model instance:

In [102]: from sklearn.linear_model import LogisticRegression

In [103]: model = LogisticRegression()

Similar to statsmodels, we can fit this model to the training data using the
model’s fit method:

In [104]: model.fit(X_train, y_train)
Out[104]: 
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,



          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False)

Now, we can form predictions for the test dataset using model.predict:

In [105]: y_predict = model.predict(X_test)

In [106]: y_predict[:10]
Out[106]: array([0, 0, 0, 0, 1, 0, 1, 0, 1, 0])

If you had the true values for the test dataset, you could compute an accuracy
percentage or some other error metric:

(y_true == y_predict).mean()

In practice, there are often many additional layers of complexity in model
training. Many models have parameters that can be tuned, and there are
techniques such as cross-validation that can be used for parameter tuning to
avoid overfitting to the training data. This can often yield better predictive
performance or robustness on new data.

Cross-validation works by splitting the training data to simulate out-of-
sample prediction. Based on a model accuracy score like mean squared error,
one can perform a grid search on model parameters. Some models, like
logistic regression, have estimator classes with built-in cross-validation. For
example, the LogisticRegressionCV class can be used with a parameter
indicating how fine-grained of a grid search to do on the model regularization
parameter C:

In [107]: from sklearn.linear_model import LogisticRegressionCV

In [108]: model_cv = LogisticRegressionCV(10)

In [109]: model_cv.fit(X_train, y_train)
Out[109]: 
LogisticRegressionCV(Cs=10, class_weight=None, cv=None, dual=False,
           fit_intercept=True, intercept_scaling=1.0, max_iter=100,
           multi_class='ovr', n_jobs=1, penalty='l2', random_state=None,
           refit=True, scoring=None, solver='lbfgs', tol=0.0001, verbose=0)



To do cross-validation by hand, you can use the cross_val_score helper
function, which handles the data splitting process. For example, to cross-
validate our model with four non-overlapping splits of the training data, we
can do:

In [110]: from sklearn.model_selection import cross_val_score

In [111]: model = LogisticRegression(C=10)

In [112]: scores = cross_val_score(model, X_train, y_train, cv=4)

In [113]: scores
Out[113]: array([ 0.7723,  0.8027,  0.7703,  0.7883])

The default scoring metric is model-dependent, but it is possible to choose an
explicit scoring function. Cross-validated models take longer to train, but can
often yield better model performance.



13.5 Continuing Your Education
While I have only skimmed the surface of some Python modeling libraries,
there are more and more frameworks for various kinds of statistics and
machine learning either implemented in Python or with a Python user
interface.

This book is focused especially on data wrangling, but there are many others
dedicated to modeling and data science tools. Some excellent ones are:

Introduction to Machine Learning with Python by Andreas Mueller and
Sarah Guido (O’Reilly)

Python Data Science Handbook by Jake VanderPlas (O’Reilly)

Data Science from Scratch: First Principles with Python by Joel Grus
(O’Reilly)

Python Machine Learning by Sebastian Raschka (Packt Publishing)

Hands-On Machine Learning with Scikit-Learn and TensorFlow by
Aurélien Géron (O’Reilly)

While books can be valuable resources for learning, they can sometimes
grow out of date when the underlying open source software changes. It’s a
good idea to be familiar with the documentation for the various statistics or
machine learning frameworks to stay up to date on the latest features and
API.



Chapter 14. Data Analysis
Examples

Now that we’ve reached the end of this book’s main chapters, we’re going to
take a look at a number of real-world datasets. For each dataset, we’ll use the
techniques presented in this book to extract meaning from the raw data. The
demonstrated techniques can be applied to all manner of other datasets,
including your own. This chapter contains a collection of miscellaneous
example datasets that you can use for practice with the tools in this book.

The example datasets are found in the book’s accompanying GitHub
repository.

http://github.com/wesm/pydata-book


14.1 1.USA.gov Data from Bitly
In 2011, URL shortening service Bitly partnered with the US government
website USA.gov to provide a feed of anonymous data gathered from users
who shorten links ending with .gov or .mil. In 2011, a live feed as well as
hourly snapshots were available as downloadable text files. This service is
shut down at the time of this writing (2017), but we preserved one of the data
files for the book’s examples.

In the case of the hourly snapshots, each line in each file contains a common
form of web data known as JSON, which stands for JavaScript Object
Notation. For example, if we read just the first line of a file we may see
something like this:

In [5]: path = 'datasets/bitly_usagov/example.txt'

In [6]: open(path).readline()
Out[6]: '{ "a": "Mozilla\\/5.0 (Windows NT 6.1; WOW64) AppleWebKit\\/535.11
(KHTML, like Gecko) Chrome\\/17.0.963.78 Safari\\/535.11", "c": "US", "nk": 
1,
"tz": "America\\/New_York", "gr": "MA", "g": "A6qOVH", "h": "wfLQtf", "l":
"orofrog", "al": "en-US,en;q=0.8", "hh": "1.usa.gov", "r":
"http:\\/\\/www.facebook.com\\/l\\/7AQEFzjSi\\/1.usa.gov\\/wfLQtf", "u":
"http:\\/\\/www.ncbi.nlm.nih.gov\\/pubmed\\/22415991", "t": 1331923247, "hc":
1331822918, "cy": "Danvers", "ll": [ 42.576698, -70.954903 ] }\n'

Python has both built-in and third-party libraries for converting a JSON string
into a Python dictionary object. Here we’ll use the json module and its loads
function invoked on each line in the sample file we downloaded:

import json
path = 'datasets/bitly_usagov/example.txt'
records = [json.loads(line) for line in open(path)]

The resulting object records is now a list of Python dicts:

In [18]: records[0]
Out[18]:
{'a': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like 
Gecko)
Chrome/17.0.963.78 Safari/535.11',

https://bitly.com/
https://www.usa.gov/


 'al': 'en-US,en;q=0.8',
 'c': 'US',
 'cy': 'Danvers',
 'g': 'A6qOVH',
 'gr': 'MA',
 'h': 'wfLQtf',
 'hc': 1331822918,
 'hh': '1.usa.gov',
 'l': 'orofrog',
 'll': [42.576698, -70.954903],
 'nk': 1,
 'r': 'http://www.facebook.com/l/7AQEFzjSi/1.usa.gov/wfLQtf',
 't': 1331923247,
 'tz': 'America/New_York',
 'u': 'http://www.ncbi.nlm.nih.gov/pubmed/22415991'}



Counting Time Zones in Pure Python
Suppose we were interested in finding the most often-occurring time zones in
the dataset (the tz field). There are many ways we could do this. First, let’s
extract a list of time zones again using a list comprehension:

In [12]: time_zones = [rec['tz'] for rec in records]
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
<ipython-input-12-db4fbd348da9> in <module>()
----> 1 time_zones = [rec['tz'] for rec in records]
<ipython-input-12-db4fbd348da9> in <listcomp>(.0)
----> 1 time_zones = [rec['tz'] for rec in records]
KeyError: 'tz'

Oops! Turns out that not all of the records have a time zone field. This is easy
to handle, as we can add the check if 'tz' in rec at the end of the list
comprehension:

In [13]: time_zones = [rec['tz'] for rec in records if 'tz' in rec]

In [14]: time_zones[:10]
Out[14]: 
['America/New_York',
 'America/Denver',
 'America/New_York',
 'America/Sao_Paulo',
 'America/New_York',
 'America/New_York',
 'Europe/Warsaw',
 '',
 '',
 '']

Just looking at the first 10 time zones, we see that some of them are unknown
(empty string). You can filter these out also, but I’ll leave them in for now.
Now, to produce counts by time zone I’ll show two approaches: the harder
way (using just the Python standard library) and the easier way (using
pandas). One way to do the counting is to use a dict to store counts while we
iterate through the time zones:

def get_counts(sequence):
    counts = {}



    for x in sequence:
        if x in counts:
            counts[x] += 1
        else:
            counts[x] = 1
    return counts

Using more advanced tools in the Python standard library, you can write the
same thing more briefly:

from collections import defaultdict

def get_counts2(sequence):
    counts = defaultdict(int) # values will initialize to 0
    for x in sequence:
        counts[x] += 1
    return counts

I put this logic in a function just to make it more reusable. To use it on the
time zones, just pass the time_zones list:

In [17]: counts = get_counts(time_zones)

In [18]: counts['America/New_York']
Out[18]: 1251

In [19]: len(time_zones)
Out[19]: 3440

If we wanted the top 10 time zones and their counts, we can do a bit of
dictionary acrobatics:

def top_counts(count_dict, n=10):
    value_key_pairs = [(count, tz) for tz, count in count_dict.items()]
    value_key_pairs.sort()
    return value_key_pairs[-n:]

We have then:

In [21]: top_counts(counts)
Out[21]: 
[(33, 'America/Sao_Paulo'),
 (35, 'Europe/Madrid'),
 (36, 'Pacific/Honolulu'),
 (37, 'Asia/Tokyo'),
 (74, 'Europe/London'),
 (191, 'America/Denver'),



 (382, 'America/Los_Angeles'),
 (400, 'America/Chicago'),
 (521, ''),
 (1251, 'America/New_York')]

If you search the Python standard library, you may find the
collections.Counter class, which makes this task a lot easier:

In [22]: from collections import Counter

In [23]: counts = Counter(time_zones)

In [24]: counts.most_common(10)
Out[24]: 
[('America/New_York', 1251),
 ('', 521),
 ('America/Chicago', 400),
 ('America/Los_Angeles', 382),
 ('America/Denver', 191),
 ('Europe/London', 74),
 ('Asia/Tokyo', 37),
 ('Pacific/Honolulu', 36),
 ('Europe/Madrid', 35),
 ('America/Sao_Paulo', 33)]



Counting Time Zones with pandas
Creating a DataFrame from the original set of records is as easy as passing
the list of records to pandas.DataFrame:

In [25]: import pandas as pd

In [26]: frame = pd.DataFrame(records)

In [27]: frame.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3560 entries, 0 to 3559
Data columns (total 18 columns):
_heartbeat_    120 non-null float64
a              3440 non-null object
al             3094 non-null object
c              2919 non-null object
cy             2919 non-null object
g              3440 non-null object
gr             2919 non-null object
h              3440 non-null object
hc             3440 non-null float64
hh             3440 non-null object
kw             93 non-null object
l              3440 non-null object
ll             2919 non-null object
nk             3440 non-null float64
r              3440 non-null object
t              3440 non-null float64
tz             3440 non-null object
u              3440 non-null object
dtypes: float64(4), object(14)
memory usage: 500.7+ KB

In [28]: frame['tz'][:10]
Out[28]: 
0     America/New_York
1       America/Denver
2     America/New_York
3    America/Sao_Paulo
4     America/New_York
5     America/New_York
6        Europe/Warsaw
7                     
8                     
9                     
Name: tz, dtype: object

The output shown for the frame is the summary view, shown for large
DataFrame objects. We can then use the value_counts method for Series:



In [29]: tz_counts = frame['tz'].value_counts()

In [30]: tz_counts[:10]
Out[30]: 
America/New_York       1251
                        521
America/Chicago         400
America/Los_Angeles     382
America/Denver          191
Europe/London            74
Asia/Tokyo               37
Pacific/Honolulu         36
Europe/Madrid            35
America/Sao_Paulo        33
Name: tz, dtype: int64

We can visualize this data using matplotlib. You can do a bit of munging to
fill in a substitute value for unknown and missing time zone data in the
records. We replace the missing values with the fillna method and use
boolean array indexing for the empty strings:

In [31]: clean_tz = frame['tz'].fillna('Missing')

In [32]: clean_tz[clean_tz == ''] = 'Unknown'

In [33]: tz_counts = clean_tz.value_counts()

In [34]: tz_counts[:10]
Out[34]: 
America/New_York       1251
Unknown                 521
America/Chicago         400
America/Los_Angeles     382
America/Denver          191
Missing                 120
Europe/London            74
Asia/Tokyo               37
Pacific/Honolulu         36
Europe/Madrid            35
Name: tz, dtype: int64

At this point, we can use the seaborn package to make a horizontal bar plot
(see Figure 14-1 for the resulting visualization):

In [36]: import seaborn as sns

In [37]: subset = tz_counts[:10]

In [38]: sns.barplot(y=subset.index, x=subset.values)

http://seaborn.pydata.org/


Figure 14-1. Top time zones in the 1.usa.gov sample data

The a field contains information about the browser, device, or application
used to perform the URL shortening:

In [39]: frame['a'][1]
Out[39]: 'GoogleMaps/RochesterNY'

In [40]: frame['a'][50]
Out[40]: 'Mozilla/5.0 (Windows NT 5.1; rv:10.0.2) Gecko/20100101 
Firefox/10.0.2'

In [41]: frame['a'][51][:50]  # long line
Out[41]: 'Mozilla/5.0 (Linux; U; Android 2.2.2; en-us; LG-P9'

Parsing all of the interesting information in these “agent” strings may seem
like a daunting task. One possible strategy is to split off the first token in the
string (corresponding roughly to the browser capability) and make another
summary of the user behavior:

In [42]: results = pd.Series([x.split()[0] for x in frame.a.dropna()])

In [43]: results[:5]
Out[43]: 
0               Mozilla/5.0
1    GoogleMaps/RochesterNY
2               Mozilla/4.0
3               Mozilla/5.0
4               Mozilla/5.0
dtype: object

In [44]: results.value_counts()[:8]
Out[44]: 



Mozilla/5.0                 2594
Mozilla/4.0                  601
GoogleMaps/RochesterNY       121
Opera/9.80                    34
TEST_INTERNET_AGENT           24
GoogleProducer                21
Mozilla/6.0                    5
BlackBerry8520/5.0.0.681       4
dtype: int64

Now, suppose you wanted to decompose the top time zones into Windows
and non-Windows users. As a simplification, let’s say that a user is on
Windows if the string 'Windows' is in the agent string. Since some of the
agents are missing, we’ll exclude these from the data:

In [45]: cframe = frame[frame.a.notnull()]

We want to then compute a value for whether each row is Windows or not:

In [47]: cframe['os'] = np.where(cframe['a'].str.contains('Windows'),
   ....:                         'Windows', 'Not Windows')

In [48]: cframe['os'][:5]
Out[48]: 
0        Windows
1    Not Windows
2        Windows
3    Not Windows
4        Windows
Name: os, dtype: object

Then, you can group the data by its time zone column and this new list of
operating systems:

In [49]: by_tz_os = cframe.groupby(['tz', 'os'])

The group counts, analogous to the value_counts function, can be computed
with size. This result is then reshaped into a table with unstack:

In [50]: agg_counts = by_tz_os.size().unstack().fillna(0)

In [51]: agg_counts[:10]
Out[51]: 
os                              Not Windows  Windows
tz                                                  



                                      245.0    276.0
Africa/Cairo                            0.0      3.0
Africa/Casablanca                       0.0      1.0
Africa/Ceuta                            0.0      2.0
Africa/Johannesburg                     0.0      1.0
Africa/Lusaka                           0.0      1.0
America/Anchorage                       4.0      1.0
America/Argentina/Buenos_Aires          1.0      0.0
America/Argentina/Cordoba               0.0      1.0
America/Argentina/Mendoza               0.0      1.0

Finally, let’s select the top overall time zones. To do so, I construct an
indirect index array from the row counts in agg_counts:

# Use to sort in ascending order
In [52]: indexer = agg_counts.sum(1).argsort()

In [53]: indexer[:10]
Out[53]: 
tz
                                  24
Africa/Cairo                      20
Africa/Casablanca                 21
Africa/Ceuta                      92
Africa/Johannesburg               87
Africa/Lusaka                     53
America/Anchorage                 54
America/Argentina/Buenos_Aires    57
America/Argentina/Cordoba         26
America/Argentina/Mendoza         55
dtype: int64

I use take to select the rows in that order, then slice off the last 10 rows
(largest values):

In [54]: count_subset = agg_counts.take(indexer[-10:])

In [55]: count_subset
Out[55]: 
os                   Not Windows  Windows
tz                                       
America/Sao_Paulo           13.0     20.0
Europe/Madrid               16.0     19.0
Pacific/Honolulu             0.0     36.0
Asia/Tokyo                   2.0     35.0
Europe/London               43.0     31.0
America/Denver             132.0     59.0
America/Los_Angeles        130.0    252.0
America/Chicago            115.0    285.0
                           245.0    276.0
America/New_York           339.0    912.0



pandas has a convenience method called nlargest that does the same thing:

In [56]: agg_counts.sum(1).nlargest(10)
Out[56]: 
tz
America/New_York       1251.0
                        521.0
America/Chicago         400.0
America/Los_Angeles     382.0
America/Denver          191.0
Europe/London            74.0
Asia/Tokyo               37.0
Pacific/Honolulu         36.0
Europe/Madrid            35.0
America/Sao_Paulo        33.0
dtype: float64

Then, as shown in the preceding code block, this can be plotted in a bar plot;
I’ll make it a stacked bar plot by passing an additional argument to seaborn’s
barplot function (see Figure 14-2):

# Rearrange the data for plotting
In [58]: count_subset = count_subset.stack()

In [59]: count_subset.name = 'total'

In [60]: count_subset = count_subset.reset_index()

In [61]: count_subset[:10]
Out[61]: 
                  tz           os  total
0  America/Sao_Paulo  Not Windows   13.0
1  America/Sao_Paulo      Windows   20.0
2      Europe/Madrid  Not Windows   16.0
3      Europe/Madrid      Windows   19.0
4   Pacific/Honolulu  Not Windows    0.0
5   Pacific/Honolulu      Windows   36.0
6         Asia/Tokyo  Not Windows    2.0
7         Asia/Tokyo      Windows   35.0
8      Europe/London  Not Windows   43.0
9      Europe/London      Windows   31.0

In [62]: sns.barplot(x='total', y='tz', hue='os',  data=count_subset)



Figure 14-2. Top time zones by Windows and non-Windows users

The plot doesn’t make it easy to see the relative percentage of Windows users
in the smaller groups, so let’s normalize the group percentages to sum to 1:

def norm_total(group):
    group['normed_total'] = group.total / group.total.sum()
    return group

results = count_subset.groupby('tz').apply(norm_total)

Then plot this in Figure 14-3:

In [65]: sns.barplot(x='normed_total', y='tz', hue='os',  data=results)



Figure 14-3. Percentage Windows and non-Windows users in top-occurring time zones

We could have computed the normalized sum more efficiently by using the
transform method with groupby:

In [66]: g = count_subset.groupby('tz')

In [67]: results2 = count_subset.total / g.total.transform('sum')



14.2 MovieLens 1M Dataset
GroupLens Research provides a number of collections of movie ratings data
collected from users of MovieLens in the late 1990s and early 2000s. The
data provide movie ratings, movie metadata (genres and year), and
demographic data about the users (age, zip code, gender identification, and
occupation). Such data is often of interest in the development of
recommendation systems based on machine learning algorithms. While we
do not explore machine learning techniques in detail in this book, I will show
you how to slice and dice datasets like these into the exact form you need.

The MovieLens 1M dataset contains 1 million ratings collected from 6,000
users on 4,000 movies. It’s spread across three tables: ratings, user
information, and movie information. After extracting the data from the ZIP
file, we can load each table into a pandas DataFrame object using
pandas.read_table:

import pandas as pd

# Make display smaller
pd.options.display.max_rows = 10

unames = ['user_id', 'gender', 'age', 'occupation', 'zip']
users = pd.read_table('datasets/movielens/users.dat', sep='::',
                      header=None, names=unames)

rnames = ['user_id', 'movie_id', 'rating', 'timestamp']
ratings = pd.read_table('datasets/movielens/ratings.dat', sep='::',
                        header=None, names=rnames)

mnames = ['movie_id', 'title', 'genres']
movies = pd.read_table('datasets/movielens/movies.dat', sep='::',
                       header=None, names=mnames)

You can verify that everything succeeded by looking at the first few rows of
each DataFrame with Python’s slice syntax:

In [69]: users[:5]
Out[69]: 
   user_id gender  age  occupation    zip
0        1      F    1          10  48067
1        2      M   56          16  70072

http://www.grouplens.org/node/73


2        3      M   25          15  55117
3        4      M   45           7  02460
4        5      M   25          20  55455

In [70]: ratings[:5]
Out[70]: 
   user_id  movie_id  rating  timestamp
0        1      1193       5  978300760
1        1       661       3  978302109
2        1       914       3  978301968
3        1      3408       4  978300275
4        1      2355       5  978824291

In [71]: movies[:5]
Out[71]: 
   movie_id                               title                        genres
0         1                    Toy Story (1995)   Animation|Children's|Comedy
1         2                      Jumanji (1995)  Adventure|Children's|Fantasy
2         3             Grumpier Old Men (1995)                Comedy|Romance
3         4            Waiting to Exhale (1995)                  Comedy|Drama
4         5  Father of the Bride Part II (1995)                        Comedy

In [72]: ratings
Out[72]: 
         user_id  movie_id  rating  timestamp
0              1      1193       5  978300760
1              1       661       3  978302109
2              1       914       3  978301968
3              1      3408       4  978300275
4              1      2355       5  978824291
...          ...       ...     ...        ...
1000204     6040      1091       1  956716541
1000205     6040      1094       5  956704887
1000206     6040       562       5  956704746
1000207     6040      1096       4  956715648
1000208     6040      1097       4  956715569
[1000209 rows x 4 columns]

Note that ages and occupations are coded as integers indicating groups
described in the dataset’s README file. Analyzing the data spread across
three tables is not a simple task; for example, suppose you wanted to compute
mean ratings for a particular movie by sex and age. As you will see, this is
much easier to do with all of the data merged together into a single table.
Using pandas’s merge function, we first merge ratings with users and then
merge that result with the movies data. pandas infers which columns to use as
the merge (or join) keys based on overlapping names:

In [73]: data = pd.merge(pd.merge(ratings, users), movies)

In [74]: data



Out[74]: 
         user_id  movie_id  rating  timestamp gender  age  occupation    zip  
\
0              1      1193       5  978300760      F    1          10  48067    
1              2      1193       5  978298413      M   56          16  70072    
2             12      1193       4  978220179      M   25          12  32793    
3             15      1193       4  978199279      M   25           7  22903    
4             17      1193       5  978158471      M   50           1  95350    
...          ...       ...     ...        ...    ...  ...         ...    ...    
1000204     5949      2198       5  958846401      M   18          17  47901    
1000205     5675      2703       3  976029116      M   35          14  30030    
1000206     5780      2845       1  958153068      M   18          17  92886    
1000207     5851      3607       5  957756608      F   18          20  55410    
1000208     5938      2909       4  957273353      M   25           1  35401    
                                               title                genres  
0             One Flew Over the Cuckoo's Nest (1975)                 Drama  
1             One Flew Over the Cuckoo's Nest (1975)                 Drama  
2             One Flew Over the Cuckoo's Nest (1975)                 Drama  
3             One Flew Over the Cuckoo's Nest (1975)                 Drama  
4             One Flew Over the Cuckoo's Nest (1975)                 Drama  
...                                              ...                   ...  
1000204                           Modulations (1998)           Documentary  
1000205                        Broken Vessels (1998)                 Drama  
1000206                            White Boys (1999)                 Drama  
1000207                     One Little Indian (1973)  Comedy|Drama|Western  
1000208  Five Wives, Three Secretaries and Me (1998)           Documentary  
[1000209 rows x 10 columns]

In [75]: data.iloc[0]
Out[75]: 
user_id                                            1
movie_id                                        1193
rating                                             5
timestamp                                  978300760
gender                                             F
age                                                1
occupation                                        10
zip                                            48067
title         One Flew Over the Cuckoo's Nest (1975)
genres                                         Drama
Name: 0, dtype: object

To get mean movie ratings for each film grouped by gender, we can use the
pivot_table method:

In [76]: mean_ratings = data.pivot_table('rating', index='title',
   ....:                                 columns='gender', aggfunc='mean')

In [77]: mean_ratings[:5]
Out[77]: 
gender                                F         M
title                                            
$1,000,000 Duck (1971)         3.375000  2.761905
'Night Mother (1986)           3.388889  3.352941



'Til There Was You (1997)      2.675676  2.733333
'burbs, The (1989)             2.793478  2.962085
...And Justice for All (1979)  3.828571  3.689024

This produced another DataFrame containing mean ratings with movie titles
as row labels (the “index”) and gender as column labels. I first filter down to
movies that received at least 250 ratings (a completely arbitrary number); to
do this, I then group the data by title and use size() to get a Series of group
sizes for each title:

In [78]: ratings_by_title = data.groupby('title').size()

In [79]: ratings_by_title[:10]
Out[79]: 
title
$1,000,000 Duck (1971)                37
'Night Mother (1986)                  70
'Til There Was You (1997)             52
'burbs, The (1989)                   303
...And Justice for All (1979)        199
1-900 (1994)                           2
10 Things I Hate About You (1999)    700
101 Dalmatians (1961)                565
101 Dalmatians (1996)                364
12 Angry Men (1957)                  616
dtype: int64

In [80]: active_titles = ratings_by_title.index[ratings_by_title >= 250]

In [81]: active_titles
Out[81]: 
Index([''burbs, The (1989)', '10 Things I Hate About You (1999)',
       '101 Dalmatians (1961)', '101 Dalmatians (1996)', '12 Angry Men 
(1957)',
       '13th Warrior, The (1999)', '2 Days in the Valley (1996)',
       '20,000 Leagues Under the Sea (1954)', '2001: A Space Odyssey (1968)',
       '2010 (1984)',
       ...
       'X-Men (2000)', 'Year of Living Dangerously (1982)',
       'Yellow Submarine (1968)', 'You've Got Mail (1998)',
       'Young Frankenstein (1974)', 'Young Guns (1988)',
       'Young Guns II (1990)', 'Young Sherlock Holmes (1985)',
       'Zero Effect (1998)', 'eXistenZ (1999)'],
      dtype='object', name='title', length=1216)

The index of titles receiving at least 250 ratings can then be used to select
rows from mean_ratings:

# Select rows on the index



In [82]: mean_ratings = mean_ratings.loc[active_titles]

In [83]: mean_ratings
Out[83]: 
gender                                    F         M
title                                                
'burbs, The (1989)                 2.793478  2.962085
10 Things I Hate About You (1999)  3.646552  3.311966
101 Dalmatians (1961)              3.791444  3.500000
101 Dalmatians (1996)              3.240000  2.911215
12 Angry Men (1957)                4.184397  4.328421
...                                     ...       ...
Young Guns (1988)                  3.371795  3.425620
Young Guns II (1990)               2.934783  2.904025
Young Sherlock Holmes (1985)       3.514706  3.363344
Zero Effect (1998)                 3.864407  3.723140
eXistenZ (1999)                    3.098592  3.289086
[1216 rows x 2 columns]

To see the top films among female viewers, we can sort by the F column in
descending order:

In [85]: top_female_ratings = mean_ratings.sort_values(by='F', 
ascending=False)

In [86]: top_female_ratings[:10]
Out[86]: 
gender                                                     F         M
title                                                                 
Close Shave, A (1995)                               4.644444  4.473795
Wrong Trousers, The (1993)                          4.588235  4.478261
Sunset Blvd. (a.k.a. Sunset Boulevard) (1950)       4.572650  4.464589
Wallace & Gromit: The Best of Aardman Animation...  4.563107  4.385075
Schindler's List (1993)                             4.562602  4.491415
Shawshank Redemption, The (1994)                    4.539075  4.560625
Grand Day Out, A (1992)                             4.537879  4.293255
To Kill a Mockingbird (1962)                        4.536667  4.372611
Creature Comforts (1990)                            4.513889  4.272277
Usual Suspects, The (1995)                          4.513317  4.518248



Measuring Rating Disagreement
Suppose you wanted to find the movies that are most divisive between male
and female viewers. One way is to add a column to mean_ratings containing
the difference in means, then sort by that:

In [87]: mean_ratings['diff'] = mean_ratings['M'] - mean_ratings['F']

Sorting by 'diff' yields the movies with the greatest rating difference so that
we can see which ones were preferred by women:

In [88]: sorted_by_diff = mean_ratings.sort_values(by='diff')

In [89]: sorted_by_diff[:10]
Out[89]: 
gender                                        F         M      diff
title                                                              
Dirty Dancing (1987)                   3.790378  2.959596 -0.830782
Jumpin' Jack Flash (1986)              3.254717  2.578358 -0.676359
Grease (1978)                          3.975265  3.367041 -0.608224
Little Women (1994)                    3.870588  3.321739 -0.548849
Steel Magnolias (1989)                 3.901734  3.365957 -0.535777
Anastasia (1997)                       3.800000  3.281609 -0.518391
Rocky Horror Picture Show, The (1975)  3.673016  3.160131 -0.512885
Color Purple, The (1985)               4.158192  3.659341 -0.498851
Age of Innocence, The (1993)           3.827068  3.339506 -0.487561
Free Willy (1993)                      2.921348  2.438776 -0.482573

Reversing the order of the rows and again slicing off the top 10 rows, we get
the movies preferred by men that women didn’t rate as highly:

# Reverse order of rows, take first 10 rows
In [90]: sorted_by_diff[::-1][:10]
Out[90]: 
gender                                         F         M      diff
title                                                               
Good, The Bad and The Ugly, The (1966)  3.494949  4.221300  0.726351
Kentucky Fried Movie, The (1977)        2.878788  3.555147  0.676359
Dumb & Dumber (1994)                    2.697987  3.336595  0.638608
Longest Day, The (1962)                 3.411765  4.031447  0.619682
Cable Guy, The (1996)                   2.250000  2.863787  0.613787
Evil Dead II (Dead By Dawn) (1987)      3.297297  3.909283  0.611985
Hidden, The (1987)                      3.137931  3.745098  0.607167
Rocky III (1982)                        2.361702  2.943503  0.581801
Caddyshack (1980)                       3.396135  3.969737  0.573602
For a Few Dollars More (1965)           3.409091  3.953795  0.544704



Suppose instead you wanted the movies that elicited the most disagreement
among viewers, independent of gender identification. Disagreement can be
measured by the variance or standard deviation of the ratings:

# Standard deviation of rating grouped by title
In [91]: rating_std_by_title = data.groupby('title')['rating'].std()

# Filter down to active_titles
In [92]: rating_std_by_title = rating_std_by_title.loc[active_titles]

# Order Series by value in descending order
In [93]: rating_std_by_title.sort_values(ascending=False)[:10]
Out[93]: 
title
Dumb & Dumber (1994)                     1.321333
Blair Witch Project, The (1999)          1.316368
Natural Born Killers (1994)              1.307198
Tank Girl (1995)                         1.277695
Rocky Horror Picture Show, The (1975)    1.260177
Eyes Wide Shut (1999)                    1.259624
Evita (1996)                             1.253631
Billy Madison (1995)                     1.249970
Fear and Loathing in Las Vegas (1998)    1.246408
Bicentennial Man (1999)                  1.245533
Name: rating, dtype: float64

You may have noticed that movie genres are given as a pipe-separated (|)
string. If you wanted to do some analysis by genre, more work would be
required to transform the genre information into a more usable form.



14.3 US Baby Names 1880–2010
The United States Social Security Administration (SSA) has made available
data on the frequency of baby names from 1880 through the present. Hadley
Wickham, an author of several popular R packages, has often made use of
this dataset in illustrating data manipulation in R.

We need to do some data wrangling to load this dataset, but once we do that
we will have a DataFrame that looks like this:

In [4]: names.head(10)
Out[4]:
        name sex  births  year
0       Mary   F    7065  1880
1       Anna   F    2604  1880
2       Emma   F    2003  1880
3  Elizabeth   F    1939  1880
4     Minnie   F    1746  1880
5   Margaret   F    1578  1880
6        Ida   F    1472  1880
7      Alice   F    1414  1880
8     Bertha   F    1320  1880
9      Sarah   F    1288  1880

There are many things you might want to do with the dataset:
Visualize the proportion of babies given a particular name (your own, or
another name) over time

Determine the relative rank of a name

Determine the most popular names in each year or the names whose
popularity has advanced or declined the most

Analyze trends in names: vowels, consonants, length, overall diversity,
changes in spelling, first and last letters

Analyze external sources of trends: biblical names, celebrities,
demographic changes

With the tools in this book, many of these kinds of analyses are within reach,



so I will walk you through some of them.

As of this writing, the US Social Security Administration makes available
data files, one per year, containing the total number of births for each
sex/name combination. The raw archive of these files can be obtained from
http://www.ssa.gov/oact/babynames/limits.html.
In the event that this page has been moved by the time you’re reading this, it
can most likely be located again by an internet search. After downloading the
“National data” file names.zip and unzipping it, you will have a directory
containing a series of files like yob1880.txt. I use the Unix head command to
look at the first 10 lines of one of the files (on Windows, you can use the
more command or open it in a text editor):

In [94]: !head -n 10 datasets/babynames/yob1880.txt
Mary,F,7065
Anna,F,2604
Emma,F,2003
Elizabeth,F,1939
Minnie,F,1746
Margaret,F,1578
Ida,F,1472
Alice,F,1414
Bertha,F,1320
Sarah,F,1288

As this is already in a nicely comma-separated form, it can be loaded into a
DataFrame with pandas.read_csv:

In [95]: import pandas as pd

In [96]: names1880 = pd.read_csv('datasets/babynames/yob1880.txt',
   ....:                         names=['name', 'sex', 'births'])

In [97]: names1880
Out[97]: 
           name sex  births
0          Mary   F    7065
1          Anna   F    2604
2          Emma   F    2003
3     Elizabeth   F    1939
4        Minnie   F    1746
...         ...  ..     ...
1995     Woodie   M       5
1996     Worthy   M       5
1997     Wright   M       5
1998       York   M       5

http://www.ssa.gov/oact/babynames/limits.html


1999  Zachariah   M       5
[2000 rows x 3 columns]

These files only contain names with at least five occurrences in each year, so
for simplicity’s sake we can use the sum of the births column by sex as the
total number of births in that year:

In [98]: names1880.groupby('sex').births.sum()
Out[98]: 
sex
F     90993
M    110493
Name: births, dtype: int64

Since the dataset is split into files by year, one of the first things to do is to
assemble all of the data into a single DataFrame and further to add a year
field. You can do this using pandas.concat:

years = range(1880, 2011)

pieces = []
columns = ['name', 'sex', 'births']

for year in years:
    path = 'datasets/babynames/yob%d.txt' % year
    frame = pd.read_csv(path, names=columns)

    frame['year'] = year
    pieces.append(frame)

# Concatenate everything into a single DataFrame
names = pd.concat(pieces, ignore_index=True)

There are a couple things to note here. First, remember that concat glues the
DataFrame objects together row-wise by default. Secondly, you have to pass
ignore_index=True because we’re not interested in preserving the original
row numbers returned from read_csv. So we now have a very large
DataFrame containing all of the names data:

In [100]: names
Out[100]: 
              name sex  births  year
0             Mary   F    7065  1880
1             Anna   F    2604  1880
2             Emma   F    2003  1880



3        Elizabeth   F    1939  1880
4           Minnie   F    1746  1880
...            ...  ..     ...   ...
1690779    Zymaire   M       5  2010
1690780     Zyonne   M       5  2010
1690781  Zyquarius   M       5  2010
1690782      Zyran   M       5  2010
1690783      Zzyzx   M       5  2010
[1690784 rows x 4 columns]

With this data in hand, we can already start aggregating the data at the year
and sex level using groupby or pivot_table (see Figure 14-4):

In [101]: total_births = names.pivot_table('births', index='year',
   .....:                                  columns='sex', aggfunc=sum)

In [102]: total_births.tail()
Out[102]: 
sex         F        M
year                  
2006  1896468  2050234
2007  1916888  2069242
2008  1883645  2032310
2009  1827643  1973359
2010  1759010  1898382

In [103]: total_births.plot(title='Total births by sex and year')



Figure 14-4. Total births by sex and year

Next, let’s insert a column prop with the fraction of babies given each name
relative to the total number of births. A prop value of 0.02 would indicate
that 2 out of every 100 babies were given a particular name. Thus, we group
the data by year and sex, then add the new column to each group:

def add_prop(group):
    group['prop'] = group.births / group.births.sum()
    return group
names = names.groupby(['year', 'sex']).apply(add_prop)

The resulting complete dataset now has the following columns:

In [105]: names
Out[105]: 
              name sex  births  year      prop
0             Mary   F    7065  1880  0.077643
1             Anna   F    2604  1880  0.028618



2             Emma   F    2003  1880  0.022013
3        Elizabeth   F    1939  1880  0.021309
4           Minnie   F    1746  1880  0.019188
...            ...  ..     ...   ...       ...
1690779    Zymaire   M       5  2010  0.000003
1690780     Zyonne   M       5  2010  0.000003
1690781  Zyquarius   M       5  2010  0.000003
1690782      Zyran   M       5  2010  0.000003
1690783      Zzyzx   M       5  2010  0.000003
[1690784 rows x 5 columns]

When performing a group operation like this, it’s often valuable to do a
sanity check, like verifying that the prop column sums to 1 within all the
groups:

In [106]: names.groupby(['year', 'sex']).prop.sum()
Out[106]: 
year  sex
1880  F      1.0
      M      1.0
1881  F      1.0
      M      1.0
1882  F      1.0
            ... 
2008  M      1.0
2009  F      1.0
      M      1.0
2010  F      1.0
      M      1.0
Name: prop, Length: 262, dtype: float64

Now that this is done, I’m going to extract a subset of the data to facilitate
further analysis: the top 1,000 names for each sex/year combination. This is
yet another group operation:

def get_top1000(group):
    return group.sort_values(by='births', ascending=False)[:1000]
grouped = names.groupby(['year', 'sex'])
top1000 = grouped.apply(get_top1000)
# Drop the group index, not needed
top1000.reset_index(inplace=True, drop=True)

If you prefer a do-it-yourself approach, try this instead:

pieces = []
for year, group in names.groupby(['year', 'sex']):
    pieces.append(group.sort_values(by='births', ascending=False)[:1000])
top1000 = pd.concat(pieces, ignore_index=True)



The resulting dataset is now quite a bit smaller:

In [108]: top1000
Out[108]: 
             name sex  births  year      prop
0            Mary   F    7065  1880  0.077643
1            Anna   F    2604  1880  0.028618
2            Emma   F    2003  1880  0.022013
3       Elizabeth   F    1939  1880  0.021309
4          Minnie   F    1746  1880  0.019188
...           ...  ..     ...   ...       ...
261872     Camilo   M     194  2010  0.000102
261873     Destin   M     194  2010  0.000102
261874     Jaquan   M     194  2010  0.000102
261875     Jaydan   M     194  2010  0.000102
261876     Maxton   M     193  2010  0.000102
[261877 rows x 5 columns]

We’ll use this Top 1,000 dataset in the following investigations into the data.



Analyzing Naming Trends
With the full dataset and Top 1,000 dataset in hand, we can start analyzing
various naming trends of interest. Splitting the Top 1,000 names into the boy
and girl portions is easy to do first:

In [109]: boys = top1000[top1000.sex == 'M']

In [110]: girls = top1000[top1000.sex == 'F']

Simple time series, like the number of Johns or Marys for each year, can be
plotted but require a bit of munging to be more useful. Let’s form a pivot
table of the total number of births by year and name:

In [111]: total_births = top1000.pivot_table('births', index='year',
   .....:                                    columns='name',
   .....:                                    aggfunc=sum)

Now, this can be plotted for a handful of names with DataFrame’s plot
method (Figure 14-5 shows the result):

In [112]: total_births.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 131 entries, 1880 to 2010
Columns: 6868 entries, Aaden to Zuri
dtypes: float64(6868)
memory usage: 6.9 MB

In [113]: subset = total_births[['John', 'Harry', 'Mary', 'Marilyn']]

In [114]: subset.plot(subplots=True, figsize=(12, 10), grid=False,
   .....:             title="Number of births per year")



Figure 14-5. A few boy and girl names over time

On looking at this, you might conclude that these names have grown out of
favor with the American population. But the story is actually more
complicated than that, as will be explored in the next section.

Measuring the increase in naming diversity
One explanation for the decrease in plots is that fewer parents are choosing
common names for their children. This hypothesis can be explored and
confirmed in the data. One measure is the proportion of births represented by
the top 1,000 most popular names, which I aggregate and plot by year and
sex (Figure 14-6 shows the resulting plot):



In [116]: table = top1000.pivot_table('prop', index='year',
   .....:                             columns='sex', aggfunc=sum)

In [117]: table.plot(title='Sum of table1000.prop by year and sex',
   .....:            yticks=np.linspace(0, 1.2, 13), xticks=range(1880, 2020, 
10)
)

Figure 14-6. Proportion of births represented in top 1000 names by sex

You can see that, indeed, there appears to be increasing name diversity
(decreasing total proportion in the top 1,000). Another interesting metric is
the number of distinct names, taken in order of popularity from highest to
lowest, in the top 50% of births. This number is a bit more tricky to compute.
Let’s consider just the boy names from 2010:

In [118]: df = boys[boys.year == 2010]

In [119]: df



Out[119]: 
           name sex  births  year      prop
260877    Jacob   M   21875  2010  0.011523
260878    Ethan   M   17866  2010  0.009411
260879  Michael   M   17133  2010  0.009025
260880   Jayden   M   17030  2010  0.008971
260881  William   M   16870  2010  0.008887
...         ...  ..     ...   ...       ...
261872   Camilo   M     194  2010  0.000102
261873   Destin   M     194  2010  0.000102
261874   Jaquan   M     194  2010  0.000102
261875   Jaydan   M     194  2010  0.000102
261876   Maxton   M     193  2010  0.000102
[1000 rows x 5 columns]

After sorting prop in descending order, we want to know how many of the
most popular names it takes to reach 50%. You could write a for loop to do
this, but a vectorized NumPy way is a bit more clever. Taking the cumulative
sum, cumsum, of prop and then calling the method searchsorted returns the
position in the cumulative sum at which 0.5 would need to be inserted to
keep it in sorted order:

In [120]: prop_cumsum = df.sort_values(by='prop', 
ascending=False).prop.cumsum()

In [121]: prop_cumsum[:10]
Out[121]: 
260877    0.011523
260878    0.020934
260879    0.029959
260880    0.038930
260881    0.047817
260882    0.056579
260883    0.065155
260884    0.073414
260885    0.081528
260886    0.089621
Name: prop, dtype: float64

In [122]: prop_cumsum.values.searchsorted(0.5)
Out[122]: 116

Since arrays are zero-indexed, adding 1 to this result gives you a result of
117. By contrast, in 1900 this number was much smaller:

In [123]: df = boys[boys.year == 1900]

In [124]: in1900 = df.sort_values(by='prop', ascending=False).prop.cumsum()



In [125]: in1900.values.searchsorted(0.5) + 1
Out[125]: 25

You can now apply this operation to each year/sex combination, groupby
those fields, and apply a function returning the count for each group:

def get_quantile_count(group, q=0.5):
    group = group.sort_values(by='prop', ascending=False)
    return group.prop.cumsum().values.searchsorted(q) + 1

diversity = top1000.groupby(['year', 'sex']).apply(get_quantile_count)
diversity = diversity.unstack('sex')

This resulting DataFrame diversity now has two time series, one for each
sex, indexed by year. This can be inspected in IPython and plotted as before
(see Figure 14-7):

In [128]: diversity.head()
Out[128]: 
sex    F   M
year        
1880  38  14
1881  38  14
1882  38  15
1883  39  15
1884  39  16

In [129]: diversity.plot(title="Number of popular names in top 50%")



Figure 14-7. Plot of diversity metric by year

As you can see, girl names have always been more diverse than boy names,
and they have only become more so over time. Further analysis of what
exactly is driving the diversity, like the increase of alternative spellings, is
left to the reader.

The “last letter” revolution
In 2007, baby name researcher Laura Wattenberg pointed out on her website
that the distribution of boy names by final letter has changed significantly
over the last 100 years. To see this, we first aggregate all of the births in the
full dataset by year, sex, and final letter:

# extract last letter from name column
get_last_letter = lambda x: x[-1]
last_letters = names.name.map(get_last_letter)

http://www.babynamewizard.com


last_letters.name = 'last_letter'

table = names.pivot_table('births', index=last_letters,
                          columns=['sex', 'year'], aggfunc=sum)

Then we select out three representative years spanning the history and print
the first few rows:

In [131]: subtable = table.reindex(columns=[1910, 1960, 2010], level='year')

In [132]: subtable.head()
Out[132]: 
sex                 F                            M                    
year             1910      1960      2010     1910      1960      2010
last_letter                                                           
a            108376.0  691247.0  670605.0    977.0    5204.0   28438.0
b                 NaN     694.0     450.0    411.0    3912.0   38859.0
c                 5.0      49.0     946.0    482.0   15476.0   23125.0
d              6750.0    3729.0    2607.0  22111.0  262112.0   44398.0
e            133569.0  435013.0  313833.0  28655.0  178823.0  129012.0

Next, normalize the table by total births to compute a new table containing
proportion of total births for each sex ending in each letter:

In [133]: subtable.sum()
Out[133]: 
sex  year
F    1910     396416.0
     1960    2022062.0
     2010    1759010.0
M    1910     194198.0
     1960    2132588.0
     2010    1898382.0
dtype: float64

In [134]: letter_prop = subtable / subtable.sum()

In [135]: letter_prop
Out[135]: 
sex                 F                             M                    
year             1910      1960      2010      1910      1960      2010
last_letter                                                            
a            0.273390  0.341853  0.381240  0.005031  0.002440  0.014980
b                 NaN  0.000343  0.000256  0.002116  0.001834  0.020470
c            0.000013  0.000024  0.000538  0.002482  0.007257  0.012181
d            0.017028  0.001844  0.001482  0.113858  0.122908  0.023387
e            0.336941  0.215133  0.178415  0.147556  0.083853  0.067959
...               ...       ...       ...       ...       ...       ...
v                 NaN  0.000060  0.000117  0.000113  0.000037  0.001434
w            0.000020  0.000031  0.001182  0.006329  0.007711  0.016148
x            0.000015  0.000037  0.000727  0.003965  0.001851  0.008614
y            0.110972  0.152569  0.116828  0.077349  0.160987  0.058168



z            0.002439  0.000659  0.000704  0.000170  0.000184  0.001831
[26 rows x 6 columns]

With the letter proportions now in hand, we can make bar plots for each sex
broken down by year (see Figure 14-8):

import matplotlib.pyplot as plt

fig, axes = plt.subplots(2, 1, figsize=(10, 8))
letter_prop['M'].plot(kind='bar', rot=0, ax=axes[0], title='Male')
letter_prop['F'].plot(kind='bar', rot=0, ax=axes[1], title='Female',
                      legend=False)



Figure 14-8. Proportion of boy and girl names ending in each letter

As you can see, boy names ending in n have experienced significant growth
since the 1960s. Going back to the full table created before, I again normalize
by year and sex and select a subset of letters for the boy names, finally
transposing to make each column a time series:

In [138]: letter_prop = table / table.sum()

In [139]: dny_ts = letter_prop.loc[['d', 'n', 'y'], 'M'].T

In [140]: dny_ts.head()
Out[140]: 
last_letter         d         n         y
year                                     
1880         0.083055  0.153213  0.075760
1881         0.083247  0.153214  0.077451



1882         0.085340  0.149560  0.077537
1883         0.084066  0.151646  0.079144
1884         0.086120  0.149915  0.080405

With this DataFrame of time series in hand, I can make a plot of the trends
over time again with its plot method (see Figure 14-9):

In [143]: dny_ts.plot()

Figure 14-9. Proportion of boys born with names ending in d/n/y over time

Boy names that became girl names (and vice versa)
Another fun trend is looking at boy names that were more popular with one
sex earlier in the sample but have “changed sexes” in the present. One
example is the name Lesley or Leslie. Going back to the top1000 DataFrame,
I compute a list of names occurring in the dataset starting with “lesl”:



In [144]: all_names = pd.Series(top1000.name.unique())

In [145]: lesley_like = all_names[all_names.str.lower().str.contains('lesl')]

In [146]: lesley_like
Out[146]: 
632     Leslie
2294    Lesley
4262    Leslee
4728     Lesli
6103     Lesly
dtype: object

From there, we can filter down to just those names and sum births grouped by
name to see the relative frequencies:

In [147]: filtered = top1000[top1000.name.isin(lesley_like)]

In [148]: filtered.groupby('name').births.sum()
Out[148]: 
name
Leslee      1082
Lesley     35022
Lesli        929
Leslie    370429
Lesly      10067
Name: births, dtype: int64

Next, let’s aggregate by sex and year and normalize within year:

In [149]: table = filtered.pivot_table('births', index='year',
   .....:                              columns='sex', aggfunc='sum')

In [150]: table = table.div(table.sum(1), axis=0)

In [151]: table.tail()
Out[151]: 
sex     F   M
year         
2006  1.0 NaN
2007  1.0 NaN
2008  1.0 NaN
2009  1.0 NaN
2010  1.0 NaN

Lastly, it’s now possible to make a plot of the breakdown by sex over time
(Figure 14-10):

In [153]: table.plot(style={'M': 'k-', 'F': 'k--'})



Figure 14-10. Proportion of male/female Lesley-like names over time



14.4 USDA Food Database
The US Department of Agriculture makes available a database of food
nutrient information. Programmer Ashley Williams made available a version
of this database in JSON format. The records look like this:

{
  "id": 21441,
  "description": "KENTUCKY FRIED CHICKEN, Fried Chicken, EXTRA CRISPY,
Wing, meat and skin with breading",
  "tags": ["KFC"],
  "manufacturer": "Kentucky Fried Chicken",
  "group": "Fast Foods",
  "portions": [
    {
      "amount": 1,
      "unit": "wing, with skin",
      "grams": 68.0
    },

    ...
  ],
  "nutrients": [
    {
      "value": 20.8,
      "units": "g",
      "description": "Protein",
      "group": "Composition"
    },

    ...
  ]
}

Each food has a number of identifying attributes along with two lists of
nutrients and portion sizes. Data in this form is not particularly amenable to
analysis, so we need to do some work to wrangle the data into a better form.

After downloading and extracting the data from the link, you can load it into
Python with any JSON library of your choosing. I’ll use the built-in Python
json module:

In [154]: import json

In [155]: db = json.load(open('datasets/usda_food/database.json'))



In [156]: len(db)
Out[156]: 6636

Each entry in db is a dict containing all the data for a single food. The
'nutrients' field is a list of dicts, one for each nutrient:

In [157]: db[0].keys()
Out[157]: dict_keys(['id', 'description', 'tags', 'manufacturer', 'group', 
'porti
ons', 'nutrients'])

In [158]: db[0]['nutrients'][0]
Out[158]: 
{'description': 'Protein',
 'group': 'Composition',
 'units': 'g',
 'value': 25.18}

In [159]: nutrients = pd.DataFrame(db[0]['nutrients'])

In [160]: nutrients[:7]
Out[160]: 
                   description        group units    value
0                      Protein  Composition     g    25.18
1            Total lipid (fat)  Composition     g    29.20
2  Carbohydrate, by difference  Composition     g     3.06
3                          Ash        Other     g     3.28
4                       Energy       Energy  kcal   376.00
5                        Water  Composition     g    39.28
6                       Energy       Energy    kJ  1573.00

When converting a list of dicts to a DataFrame, we can specify a list of fields
to extract. We’ll take the food names, group, ID, and manufacturer:

In [161]: info_keys = ['description', 'group', 'id', 'manufacturer']

In [162]: info = pd.DataFrame(db, columns=info_keys)

In [163]: info[:5]
Out[163]: 
                          description                   group    id  \
0                     Cheese, caraway  Dairy and Egg Products  1008   
1                     Cheese, cheddar  Dairy and Egg Products  1009   
2                        Cheese, edam  Dairy and Egg Products  1018   
3                        Cheese, feta  Dairy and Egg Products  1019   
4  Cheese, mozzarella, part skim milk  Dairy and Egg Products  1028   
  manufacturer  
0               
1               
2               
3               



4               

In [164]: info.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6636 entries, 0 to 6635
Data columns (total 4 columns):
description     6636 non-null object
group           6636 non-null object
id              6636 non-null int64
manufacturer    5195 non-null object
dtypes: int64(1), object(3)
memory usage: 207.5+ KB

You can see the distribution of food groups with value_counts:

In [165]: pd.value_counts(info.group)[:10]
Out[165]: 
Vegetables and Vegetable Products    812
Beef Products                        618
Baked Products                       496
Breakfast Cereals                    403
Fast Foods                           365
Legumes and Legume Products          365
Lamb, Veal, and Game Products        345
Sweets                               341
Pork Products                        328
Fruits and Fruit Juices              328
Name: group, dtype: int64

Now, to do some analysis on all of the nutrient data, it’s easiest to assemble
the nutrients for each food into a single large table. To do so, we need to take
several steps. First, I’ll convert each list of food nutrients to a DataFrame, add
a column for the food id, and append the DataFrame to a list. Then, these can
be concatenated together with concat:

If all goes well, nutrients should look like this:

In [167]: nutrients
Out[167]: 
                               description        group units    value     id
0                                  Protein  Composition     g   25.180   1008
1                        Total lipid (fat)  Composition     g   29.200   1008
2              Carbohydrate, by difference  Composition     g    3.060   1008
3                                      Ash        Other     g    3.280   1008
4                                   Energy       Energy  kcal  376.000   1008
...                                    ...          ...   ...      ...    ...
389350                 Vitamin B-12, added     Vitamins   mcg    0.000  43546
389351                         Cholesterol        Other    mg    0.000  43546
389352        Fatty acids, total saturated        Other     g    0.072  43546



389353  Fatty acids, total monounsaturated        Other     g    0.028  43546
389354  Fatty acids, total polyunsaturated        Other     g    0.041  43546
[389355 rows x 5 columns]

I noticed that there are duplicates in this DataFrame, so it makes things easier
to drop them:

In [168]: nutrients.duplicated().sum()  # number of duplicates
Out[168]: 14179

In [169]: nutrients = nutrients.drop_duplicates()

Since 'group' and 'description' are in both DataFrame objects, we can
rename for clarity:

In [170]: col_mapping = {'description' : 'food',
   .....:                'group'       : 'fgroup'}

In [171]: info = info.rename(columns=col_mapping, copy=False)

In [172]: info.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6636 entries, 0 to 6635
Data columns (total 4 columns):
food            6636 non-null object
fgroup          6636 non-null object
id              6636 non-null int64
manufacturer    5195 non-null object
dtypes: int64(1), object(3)
memory usage: 207.5+ KB

In [173]: col_mapping = {'description' : 'nutrient',
   .....:                'group' : 'nutgroup'}

In [174]: nutrients = nutrients.rename(columns=col_mapping, copy=False)

In [175]: nutrients
Out[175]: 
                                  nutrient     nutgroup units    value     id
0                                  Protein  Composition     g   25.180   1008
1                        Total lipid (fat)  Composition     g   29.200   1008
2              Carbohydrate, by difference  Composition     g    3.060   1008
3                                      Ash        Other     g    3.280   1008
4                                   Energy       Energy  kcal  376.000   1008
...                                    ...          ...   ...      ...    ...
389350                 Vitamin B-12, added     Vitamins   mcg    0.000  43546
389351                         Cholesterol        Other    mg    0.000  43546
389352        Fatty acids, total saturated        Other     g    0.072  43546
389353  Fatty acids, total monounsaturated        Other     g    0.028  43546
389354  Fatty acids, total polyunsaturated        Other     g    0.041  43546
[375176 rows x 5 columns]



With all of this done, we’re ready to merge info with nutrients:

In [176]: ndata = pd.merge(nutrients, info, on='id', how='outer')

In [177]: ndata.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 375176 entries, 0 to 375175
Data columns (total 8 columns):
nutrient        375176 non-null object
nutgroup        375176 non-null object
units           375176 non-null object
value           375176 non-null float64
id              375176 non-null int64
food            375176 non-null object
fgroup          375176 non-null object
manufacturer    293054 non-null object
dtypes: float64(1), int64(1), object(6)
memory usage: 25.8+ MB

In [178]: ndata.iloc[30000]
Out[178]: 
nutrient                                       Glycine
nutgroup                                   Amino Acids
units                                                g
value                                             0.04
id                                                6158
food            Soup, tomato bisque, canned, condensed
fgroup                      Soups, Sauces, and Gravies
manufacturer                                          
Name: 30000, dtype: object

We could now make a plot of median values by food group and nutrient type
(see Figure 14-11):

In [180]: result = ndata.groupby(['nutrient', 'fgroup'])
['value'].quantile(0.5)

In [181]: result['Zinc, Zn'].sort_values().plot(kind='barh')



Figure 14-11. Median zinc values by nutrient group

With a little cleverness, you can find which food is most dense in each
nutrient:

by_nutrient = ndata.groupby(['nutgroup', 'nutrient'])

get_maximum = lambda x: x.loc[x.value.idxmax()]
get_minimum = lambda x: x.loc[x.value.idxmin()]

max_foods = by_nutrient.apply(get_maximum)[['value', 'food']]

# make the food a little smaller
max_foods.food = max_foods.food.str[:50]

The resulting DataFrame is a bit too large to display in the book; here is only
the 'Amino Acids' nutrient group:

In [183]: max_foods.loc['Amino Acids']['food']
Out[183]: 
nutrient
Alanine                          Gelatins, dry powder, unsweetened
Arginine                              Seeds, sesame flour, low-fat
Aspartic acid                                  Soy protein isolate
Cystine               Seeds, cottonseed flour, low fat (glandless)
Glutamic acid                                  Soy protein isolate
                                       ...                        
Serine           Soy protein isolate, PROTEIN TECHNOLOGIES INTE...



Threonine        Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Tryptophan        Sea lion, Steller, meat with fat (Alaska Native)
Tyrosine         Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Valine           Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Name: food, Length: 19, dtype: object



14.5 2012 Federal Election Commission Database
The US Federal Election Commission publishes data on contributions to
political campaigns. This includes contributor names, occupation and
employer, address, and contribution amount. An interesting dataset is from
the 2012 US presidential election. A version of the dataset I downloaded in
June 2012 is a 150 megabyte CSV file P00000001-ALL.csv (see the book’s
data repository), which can be loaded with pandas.read_csv:

In [184]: fec = pd.read_csv('datasets/fec/P00000001-ALL.csv')

In [185]: fec.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1001731 entries, 0 to 1001730
Data columns (total 16 columns):
cmte_id              1001731 non-null object
cand_id              1001731 non-null object
cand_nm              1001731 non-null object
contbr_nm            1001731 non-null object
contbr_city          1001712 non-null object
contbr_st            1001727 non-null object
contbr_zip           1001620 non-null object
contbr_employer      988002 non-null object
contbr_occupation    993301 non-null object
contb_receipt_amt    1001731 non-null float64
contb_receipt_dt     1001731 non-null object
receipt_desc         14166 non-null object
memo_cd              92482 non-null object
memo_text            97770 non-null object
form_tp              1001731 non-null object
file_num             1001731 non-null int64
dtypes: float64(1), int64(1), object(14)
memory usage: 122.3+ MB

A sample record in the DataFrame looks like this:

In [186]: fec.iloc[123456]
Out[186]: 
cmte_id             C00431445
cand_id             P80003338
cand_nm         Obama, Barack
contbr_nm         ELLMAN, IRA
contbr_city             TEMPE
                    ...      
receipt_desc              NaN
memo_cd                   NaN
memo_text                 NaN



form_tp                 SA17A
file_num               772372
Name: 123456, Length: 16, dtype: object

You may think of some ways to start slicing and dicing this data to extract
informative statistics about donors and patterns in the campaign
contributions. I’ll show you a number of different analyses that apply
techniques in this book.

You can see that there are no political party affiliations in the data, so this
would be useful to add. You can get a list of all the unique political
candidates using unique:

In [187]: unique_cands = fec.cand_nm.unique()

In [188]: unique_cands
Out[188]: 
array(['Bachmann, Michelle', 'Romney, Mitt', 'Obama, Barack',
       "Roemer, Charles E. 'Buddy' III", 'Pawlenty, Timothy',
       'Johnson, Gary Earl', 'Paul, Ron', 'Santorum, Rick', 'Cain, Herman',
       'Gingrich, Newt', 'McCotter, Thaddeus G', 'Huntsman, Jon',
       'Perry, Rick'], dtype=object)

In [189]: unique_cands[2]
Out[189]: 'Obama, Barack'

One way to indicate party affiliation is using a dict:1

parties = {'Bachmann, Michelle': 'Republican',
           'Cain, Herman': 'Republican',
           'Gingrich, Newt': 'Republican',
           'Huntsman, Jon': 'Republican',
           'Johnson, Gary Earl': 'Republican',
           'McCotter, Thaddeus G': 'Republican',
           'Obama, Barack': 'Democrat',
           'Paul, Ron': 'Republican',
           'Pawlenty, Timothy': 'Republican',
           'Perry, Rick': 'Republican',
           "Roemer, Charles E. 'Buddy' III": 'Republican',
           'Romney, Mitt': 'Republican',
           'Santorum, Rick': 'Republican'}

Now, using this mapping and the map method on Series objects, you can
compute an array of political parties from the candidate names:

In [191]: fec.cand_nm[123456:123461]



Out[191]: 
123456    Obama, Barack
123457    Obama, Barack
123458    Obama, Barack
123459    Obama, Barack
123460    Obama, Barack
Name: cand_nm, dtype: object

In [192]: fec.cand_nm[123456:123461].map(parties)
Out[192]: 
123456    Democrat
123457    Democrat
123458    Democrat
123459    Democrat
123460    Democrat
Name: cand_nm, dtype: object

# Add it as a column
In [193]: fec['party'] = fec.cand_nm.map(parties)

In [194]: fec['party'].value_counts()
Out[194]: 
Democrat      593746
Republican    407985
Name: party, dtype: int64

A couple of data preparation points. First, this data includes both
contributions and refunds (negative contribution amount):

In [195]: (fec.contb_receipt_amt > 0).value_counts()
Out[195]: 
True     991475
False     10256
Name: contb_receipt_amt, dtype: int64

To simplify the analysis, I’ll restrict the dataset to positive contributions:

In [196]: fec = fec[fec.contb_receipt_amt > 0]

Since Barack Obama and Mitt Romney were the main two candidates, I’ll
also prepare a subset that just has contributions to their campaigns:

In [197]: fec_mrbo = fec[fec.cand_nm.isin(['Obama, Barack', 'Romney, Mitt'])]



Donation Statistics by Occupation and Employer
Donations by occupation is another oft-studied statistic. For example, lawyers
(attorneys) tend to donate more money to Democrats, while business
executives tend to donate more to Republicans. You have no reason to
believe me; you can see for yourself in the data. First, the total number of
donations by occupation is easy:

In [198]: fec.contbr_occupation.value_counts()[:10]
Out[198]: 
RETIRED                                   233990
INFORMATION REQUESTED                      35107
ATTORNEY                                   34286
HOMEMAKER                                  29931
PHYSICIAN                                  23432
INFORMATION REQUESTED PER BEST EFFORTS     21138
ENGINEER                                   14334
TEACHER                                    13990
CONSULTANT                                 13273
PROFESSOR                                  12555
Name: contbr_occupation, dtype: int64

You will notice by looking at the occupations that many refer to the same
basic job type, or there are several variants of the same thing. The following
code snippet illustrates a technique for cleaning up a few of them by mapping
from one occupation to another; note the “trick” of using dict.get to allow
occupations with no mapping to “pass through”:

occ_mapping = {
   'INFORMATION REQUESTED PER BEST EFFORTS' : 'NOT PROVIDED',
   'INFORMATION REQUESTED' : 'NOT PROVIDED',
   'INFORMATION REQUESTED (BEST EFFORTS)' : 'NOT PROVIDED',
   'C.E.O.': 'CEO'
}

# If no mapping provided, return x
f = lambda x: occ_mapping.get(x, x)
fec.contbr_occupation = fec.contbr_occupation.map(f)

I’ll also do the same thing for employers:

emp_mapping = {
   'INFORMATION REQUESTED PER BEST EFFORTS' : 'NOT PROVIDED',
   'INFORMATION REQUESTED' : 'NOT PROVIDED',



   'SELF' : 'SELF-EMPLOYED',
   'SELF EMPLOYED' : 'SELF-EMPLOYED',
}

# If no mapping provided, return x
f = lambda x: emp_mapping.get(x, x)
fec.contbr_employer = fec.contbr_employer.map(f)

Now, you can use pivot_table to aggregate the data by party and
occupation, then filter down to the subset that donated at least $2 million
overall:

In [201]: by_occupation = fec.pivot_table('contb_receipt_amt',
   .....:                                 index='contbr_occupation',
   .....:                                 columns='party', aggfunc='sum')

In [202]: over_2mm = by_occupation[by_occupation.sum(1) > 2000000]

In [203]: over_2mm
Out[203]: 
party                 Democrat    Republican
contbr_occupation                           
ATTORNEY           11141982.97  7.477194e+06
CEO                 2074974.79  4.211041e+06
CONSULTANT          2459912.71  2.544725e+06
ENGINEER             951525.55  1.818374e+06
EXECUTIVE           1355161.05  4.138850e+06
...                        ...           ...
PRESIDENT           1878509.95  4.720924e+06
PROFESSOR           2165071.08  2.967027e+05
REAL ESTATE          528902.09  1.625902e+06
RETIRED            25305116.38  2.356124e+07
SELF-EMPLOYED        672393.40  1.640253e+06
[17 rows x 2 columns]

It can be easier to look at this data graphically as a bar plot ('barh' means
horizontal bar plot; see Figure 14-12):

In [205]: over_2mm.plot(kind='barh')



Figure 14-12. Total donations by party for top occupations

You might be interested in the top donor occupations or top companies that
donated to Obama and Romney. To do this, you can group by candidate name
and use a variant of the top method from earlier in the chapter:

def get_top_amounts(group, key, n=5):
    totals = group.groupby(key)['contb_receipt_amt'].sum()
    return totals.nlargest(n)

Then aggregate by occupation and employer:

In [207]: grouped = fec_mrbo.groupby('cand_nm')

In [208]: grouped.apply(get_top_amounts, 'contbr_occupation', n=7)
Out[208]: 
cand_nm        contbr_occupation    
Obama, Barack  RETIRED                  25305116.38
               ATTORNEY                 11141982.97
               INFORMATION REQUESTED     4866973.96
               HOMEMAKER                 4248875.80
               PHYSICIAN                 3735124.94
                                           ...     
Romney, Mitt   HOMEMAKER                 8147446.22



               ATTORNEY                  5364718.82
               PRESIDENT                 2491244.89
               EXECUTIVE                 2300947.03
               C.E.O.                    1968386.11
Name: contb_receipt_amt, Length: 14, dtype: float64

In [209]: grouped.apply(get_top_amounts, 'contbr_employer', n=10)
Out[209]: 
cand_nm        contbr_employer      
Obama, Barack  RETIRED                  22694358.85
               SELF-EMPLOYED            17080985.96
               NOT EMPLOYED              8586308.70
               INFORMATION REQUESTED     5053480.37
               HOMEMAKER                 2605408.54
                                           ...     
Romney, Mitt   CREDIT SUISSE              281150.00
               MORGAN STANLEY             267266.00
               GOLDMAN SACH & CO.         238250.00
               BARCLAYS CAPITAL           162750.00
               H.I.G. CAPITAL             139500.00
Name: contb_receipt_amt, Length: 20, dtype: float64



Bucketing Donation Amounts
A useful way to analyze this data is to use the cut function to discretize the
contributor amounts into buckets by contribution size:

In [210]: bins = np.array([0, 1, 10, 100, 1000, 10000,
   .....:                  100000, 1000000, 10000000])

In [211]: labels = pd.cut(fec_mrbo.contb_receipt_amt, bins)

In [212]: labels
Out[212]: 
411         (10, 100]
412       (100, 1000]
413       (100, 1000]
414         (10, 100]
415         (10, 100]
             ...     
701381      (10, 100]
701382    (100, 1000]
701383        (1, 10]
701384      (10, 100]
701385    (100, 1000]
Name: contb_receipt_amt, Length: 694282, dtype: category
Categories (8, interval[int64]): [(0, 1] < (1, 10] < (10, 100] < (100, 1000] 
< (1
000, 10000] <
                                  (10000, 100000] < (100000, 1000000] < 
(1000000,
 10000000]]

We can then group the data for Obama and Romney by name and bin label to
get a histogram by donation size:

In [213]: grouped = fec_mrbo.groupby(['cand_nm', labels])

In [214]: grouped.size().unstack(0)
Out[214]: 
cand_nm              Obama, Barack  Romney, Mitt
contb_receipt_amt                               
(0, 1]                       493.0          77.0
(1, 10]                    40070.0        3681.0
(10, 100]                 372280.0       31853.0
(100, 1000]               153991.0       43357.0
(1000, 10000]              22284.0       26186.0
(10000, 100000]                2.0           1.0
(100000, 1000000]              3.0           NaN
(1000000, 10000000]            4.0           NaN



This data shows that Obama received a significantly larger number of small
donations than Romney. You can also sum the contribution amounts and
normalize within buckets to visualize percentage of total donations of each
size by candidate (Figure 14-13 shows the resulting plot):

In [216]: bucket_sums = grouped.contb_receipt_amt.sum().unstack(0)

In [217]: normed_sums = bucket_sums.div(bucket_sums.sum(axis=1), axis=0)

In [218]: normed_sums
Out[218]: 
cand_nm              Obama, Barack  Romney, Mitt
contb_receipt_amt                               
(0, 1]                    0.805182      0.194818
(1, 10]                   0.918767      0.081233
(10, 100]                 0.910769      0.089231
(100, 1000]               0.710176      0.289824
(1000, 10000]             0.447326      0.552674
(10000, 100000]           0.823120      0.176880
(100000, 1000000]         1.000000           NaN
(1000000, 10000000]       1.000000           NaN

In [219]: normed_sums[:-2].plot(kind='barh')

Figure 14-13. Percentage of total donations received by candidates for each donation size



I excluded the two largest bins as these are not donations by individuals.

This analysis can be refined and improved in many ways. For example, you
could aggregate donations by donor name and zip code to adjust for donors
who gave many small amounts versus one or more large donations. I
encourage you to download and explore the dataset yourself.



Donation Statistics by State
Aggregating the data by candidate and state is a routine affair:

In [220]: grouped = fec_mrbo.groupby(['cand_nm', 'contbr_st'])

In [221]: totals = grouped.contb_receipt_amt.sum().unstack(0).fillna(0)

In [222]: totals = totals[totals.sum(1) > 100000]

In [223]: totals[:10]
Out[223]: 
cand_nm    Obama, Barack  Romney, Mitt
contbr_st                             
AK             281840.15      86204.24
AL             543123.48     527303.51
AR             359247.28     105556.00
AZ            1506476.98    1888436.23
CA           23824984.24   11237636.60
CO            2132429.49    1506714.12
CT            2068291.26    3499475.45
DC            4373538.80    1025137.50
DE             336669.14      82712.00
FL            7318178.58    8338458.81

If you divide each row by the total contribution amount, you get the relative
percentage of total donations by state for each candidate:

In [224]: percent = totals.div(totals.sum(1), axis=0)

In [225]: percent[:10]
Out[225]: 
cand_nm    Obama, Barack  Romney, Mitt
contbr_st                             
AK              0.765778      0.234222
AL              0.507390      0.492610
AR              0.772902      0.227098
AZ              0.443745      0.556255
CA              0.679498      0.320502
CO              0.585970      0.414030
CT              0.371476      0.628524
DC              0.810113      0.189887
DE              0.802776      0.197224
FL              0.467417      0.532583



14.6 Conclusion
We’ve reached the end of the book’s main chapters. I have included some
additional content you may find useful in the appendixes.

In the five years since the first edition of this book was published, Python has
become a popular and widespread language for data analysis. The
programming skills you have developed here will stay relevant for a long
time into the future. I hope the programming tools and libraries we’ve
explored serve you well in your work.

This makes the simplifying assumption that Gary Johnson is a Republican even though
he later became the Libertarian party candidate.

1



Appendix A. Advanced NumPy

In this appendix, I will go deeper into the NumPy library for array
computing. This will include more internal detail about the ndarray type and
more advanced array manipulations and algorithms.

This appendix contains miscellaneous topics and does not necessarily need to
be read linearly.



A.1 ndarray Object Internals
The NumPy ndarray provides a means to interpret a block of homogeneous
data (either contiguous or strided) as a multidimensional array object. The
data type, or dtype, determines how the data is interpreted as being floating
point, integer, boolean, or any of the other types we’ve been looking at.

Part of what makes ndarray flexible is that every array object is a strided
view on a block of data. You might wonder, for example, how the array view
arr[::2, ::-1] does not copy any data. The reason is that the ndarray is
more than just a chunk of memory and a dtype; it also has “striding”
information that enables the array to move through memory with varying step
sizes. More precisely, the ndarray internally consists of the following:

A pointer to data — that is, a block of data in RAM or in a memory-
mapped file

The data type or dtype, describing fixed-size value cells in the array

A tuple indicating the array’s shape

A tuple of strides, integers indicating the number of bytes to “step” in
order to advance one element along a dimension

See Figure A-1 for a simple mockup of the ndarray innards.

For example, a 10 × 5 array would have shape (10, 5):

In [10]: np.ones((10, 5)).shape
Out[10]: (10, 5)

A typical (C order) 3 × 4 × 5 array of float64 (8-byte) values has strides
(160, 40, 8) (knowing about the strides can be useful because, in general,
the larger the strides on a particular axis, the more costly it is to perform
computation along that axis):

In [11]: np.ones((3, 4, 5), dtype=np.float64).strides



Out[11]: (160, 40, 8)

While it is rare that a typical NumPy user would be interested in the array
strides, they are the critical ingredient in constructing “zero-copy” array
views. Strides can even be negative, which enables an array to move
“backward” through memory (this would be the case, for example, in a slice
like obj[::-1] or obj[:, ::-1]).

Figure A-1. The NumPy ndarray object



NumPy dtype Hierarchy
You may occasionally have code that needs to check whether an array
contains integers, floating-point numbers, strings, or Python objects. Because
there are multiple types of floating-point numbers (float16 through
float128), checking that the dtype is among a list of types would be very
verbose. Fortunately, the dtypes have superclasses such as np.integer and
np.floating, which can be used in conjunction with the np.issubdtype
function:

In [12]: ints = np.ones(10, dtype=np.uint16)

In [13]: floats = np.ones(10, dtype=np.float32)

In [14]: np.issubdtype(ints.dtype, np.integer)
Out[14]: True

In [15]: np.issubdtype(floats.dtype, np.floating)
Out[15]: True

You can see all of the parent classes of a specific dtype by calling the type’s
mro method:

In [16]: np.float64.mro()
Out[16]: 
[numpy.float64,
 numpy.floating,
 numpy.inexact,
 numpy.number,
 numpy.generic,
 float,
 object]

Therefore, we also have:

In [17]: np.issubdtype(ints.dtype, np.number)
Out[17]: True

Most NumPy users will never have to know about this, but it occasionally
comes in handy. See Figure A-2 for a graph of the dtype hierarchy and
parent–subclass relationships.1



Figure A-2. The NumPy dtype class hierarchy



A.2 Advanced Array Manipulation
There are many ways to work with arrays beyond fancy indexing, slicing, and
boolean subsetting. While much of the heavy lifting for data analysis
applications is handled by higher-level functions in pandas, you may at some
point need to write a data algorithm that is not found in one of the existing
libraries.



Reshaping Arrays
In many cases, you can convert an array from one shape to another without
copying any data. To do this, pass a tuple indicating the new shape to the
reshape array instance method. For example, suppose we had a one-
dimensional array of values that we wished to rearrange into a matrix (the
result is shown in Figure A-3):

In [18]: arr = np.arange(8)

In [19]: arr
Out[19]: array([0, 1, 2, 3, 4, 5, 6, 7])

In [20]: arr.reshape((4, 2))
Out[20]: 
array([[0, 1],
       [2, 3],
       [4, 5],
       [6, 7]])



Figure A-3. Reshaping in C (row major) or Fortran (column major) order

A multidimensional array can also be reshaped:

In [21]: arr.reshape((4, 2)).reshape((2, 4))
Out[21]: 
array([[0, 1, 2, 3],
       [4, 5, 6, 7]])

One of the passed shape dimensions can be –1, in which case the value used
for that dimension will be inferred from the data:

In [22]: arr = np.arange(15)

In [23]: arr.reshape((5, -1))
Out[23]: 
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 9, 10, 11],
       [12, 13, 14]])

Since an array’s shape attribute is a tuple, it can be passed to reshape, too:

In [24]: other_arr = np.ones((3, 5))

In [25]: other_arr.shape
Out[25]: (3, 5)

In [26]: arr.reshape(other_arr.shape)
Out[26]: 
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])

The opposite operation of reshape from one-dimensional to a higher
dimension is typically known as flattening or raveling:

In [27]: arr = np.arange(15).reshape((5, 3))

In [28]: arr
Out[28]: 
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 9, 10, 11],



       [12, 13, 14]])

In [29]: arr.ravel()
Out[29]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])

ravel does not produce a copy of the underlying values if the values in the
result were contiguous in the original array. The flatten method behaves
like ravel except it always returns a copy of the data:

In [30]: arr.flatten()
Out[30]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])

The data can be reshaped or raveled in different orders. This is a slightly
nuanced topic for new NumPy users and is therefore the next subtopic.



C Versus Fortran Order
NumPy gives you control and flexibility over the layout of your data in
memory. By default, NumPy arrays are created in row major order. Spatially
this means that if you have a two-dimensional array of data, the items in each
row of the array are stored in adjacent memory locations. The alternative to
row major ordering is column major order, which means that values within
each column of data are stored in adjacent memory locations.

For historical reasons, row and column major order are also know as C and
Fortran order, respectively. In the FORTRAN 77 language, matrices are all
column major.

Functions like reshape and ravel accept an order argument indicating the
order to use the data in the array. This is usually set to 'C' or 'F' in most
cases (there are also less commonly used options 'A' and 'K'; see the
NumPy documentation, and refer back to Figure A-3 for an illustration of
these options):

In [31]: arr = np.arange(12).reshape((3, 4))

In [32]: arr
Out[32]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

In [33]: arr.ravel()
Out[33]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])

In [34]: arr.ravel('F')
Out[34]: array([ 0,  4,  8,  1,  5,  9,  2,  6, 10,  3,  7, 11])

Reshaping arrays with more than two dimensions can be a bit mind-bending
(see Figure A-3). The key difference between C and Fortran order is the way
in which the dimensions are walked:

C/row major order
Traverse higher dimensions first (e.g., axis 1 before advancing on axis
0).



Fortran/column major order
Traverse higher dimensions last (e.g., axis 0 before advancing on axis
1).



Concatenating and Splitting Arrays
numpy.concatenate takes a sequence (tuple, list, etc.) of arrays and joins
them together in order along the input axis:

In [35]: arr1 = np.array([[1, 2, 3], [4, 5, 6]])

In [36]: arr2 = np.array([[7, 8, 9], [10, 11, 12]])

In [37]: np.concatenate([arr1, arr2], axis=0)
Out[37]: 
array([[ 1,  2,  3],
       [ 4,  5,  6],
       [ 7,  8,  9],
       [10, 11, 12]])

In [38]: np.concatenate([arr1, arr2], axis=1)
Out[38]: 
array([[ 1,  2,  3,  7,  8,  9],
       [ 4,  5,  6, 10, 11, 12]])

There are some convenience functions, like vstack and hstack, for common
kinds of concatenation. The preceding operations could have been expressed
as:

In [39]: np.vstack((arr1, arr2))
Out[39]: 
array([[ 1,  2,  3],
       [ 4,  5,  6],
       [ 7,  8,  9],
       [10, 11, 12]])

In [40]: np.hstack((arr1, arr2))
Out[40]: 
array([[ 1,  2,  3,  7,  8,  9],
       [ 4,  5,  6, 10, 11, 12]])

split, on the other hand, slices apart an array into multiple arrays along an
axis:

In [41]: arr = np.random.randn(5, 2)

In [42]: arr
Out[42]: 
array([[-0.2047,  0.4789],
       [-0.5194, -0.5557],



       [ 1.9658,  1.3934],
       [ 0.0929,  0.2817],
       [ 0.769 ,  1.2464]])

In [43]: first, second, third = np.split(arr, [1, 3])

In [44]: first
Out[44]: array([[-0.2047,  0.4789]])

In [45]: second
Out[45]: 
array([[-0.5194, -0.5557],
       [ 1.9658,  1.3934]])

In [46]: third
Out[46]: 
array([[ 0.0929,  0.2817],
       [ 0.769 ,  1.2464]])

The value [1, 3] passed to np.split indicate the indices at which to split
the array into pieces.

See Table A-1 for a list of all relevant concatenation and splitting functions,
some of which are provided only as a convenience of the very general-
purpose concatenate.

Table A-1. Array concatenation functions

Function Description

concatenate Most general function, concatenates collection of arrays along one axis

vstack, row_stack Stack arrays row-wise (along axis 0)

hstack Stack arrays column-wise (along axis 1)

column_stack Like hstack, but converts 1D arrays to 2D column vectors first

dstack Stack arrays “depth”-wise (along axis 2)

split Split array at passed locations along a particular axis

hsplit/vsplit Convenience functions for splitting on axis 0 and 1, respectively

Stacking helpers: r_ and c_
There are two special objects in the NumPy namespace, r_ and c_, that make
stacking arrays more concise:



In [47]: arr = np.arange(6)

In [48]: arr1 = arr.reshape((3, 2))

In [49]: arr2 = np.random.randn(3, 2)

In [50]: np.r_[arr1, arr2]
Out[50]: 
array([[ 0.    ,  1.    ],
       [ 2.    ,  3.    ],
       [ 4.    ,  5.    ],
       [ 1.0072, -1.2962],
       [ 0.275 ,  0.2289],
       [ 1.3529,  0.8864]])

In [51]: np.c_[np.r_[arr1, arr2], arr]
Out[51]: 
array([[ 0.    ,  1.    ,  0.    ],
       [ 2.    ,  3.    ,  1.    ],
       [ 4.    ,  5.    ,  2.    ],
       [ 1.0072, -1.2962,  3.    ],
       [ 0.275 ,  0.2289,  4.    ],
       [ 1.3529,  0.8864,  5.    ]])

These additionally can translate slices to arrays:

In [52]: np.c_[1:6, -10:-5]
Out[52]: 
array([[  1, -10],
       [  2,  -9],
       [  3,  -8],
       [  4,  -7],
       [  5,  -6]])

See the docstring for more on what you can do with c_ and r_.



Repeating Elements: tile and repeat
Two useful tools for repeating or replicating arrays to produce larger arrays
are the repeat and tile functions. repeat replicates each element in an array
some number of times, producing a larger array:

In [53]: arr = np.arange(3)

In [54]: arr
Out[54]: array([0, 1, 2])

In [55]: arr.repeat(3)
Out[55]: array([0, 0, 0, 1, 1, 1, 2, 2, 2])

NOTE
The need to replicate or repeat arrays can be less common with NumPy than it
is with other array programming frameworks like MATLAB. One reason for
this is that broadcasting often fills this need better, which is the subject of the
next section.

By default, if you pass an integer, each element will be repeated that number
of times. If you pass an array of integers, each element can be repeated a
different number of times:

In [56]: arr.repeat([2, 3, 4])
Out[56]: array([0, 0, 1, 1, 1, 2, 2, 2, 2])

Multidimensional arrays can have their elements repeated along a particular
axis.

In [57]: arr = np.random.randn(2, 2)

In [58]: arr
Out[58]: 
array([[-2.0016, -0.3718],
       [ 1.669 , -0.4386]])

In [59]: arr.repeat(2, axis=0)
Out[59]: 



array([[-2.0016, -0.3718],
       [-2.0016, -0.3718],
       [ 1.669 , -0.4386],
       [ 1.669 , -0.4386]])

Note that if no axis is passed, the array will be flattened first, which is likely
not what you want. Similarly, you can pass an array of integers when
repeating a multidimensional array to repeat a given slice a different number
of times:

In [60]: arr.repeat([2, 3], axis=0)
Out[60]: 
array([[-2.0016, -0.3718],
       [-2.0016, -0.3718],
       [ 1.669 , -0.4386],
       [ 1.669 , -0.4386],
       [ 1.669 , -0.4386]])

In [61]: arr.repeat([2, 3], axis=1)
Out[61]: 
array([[-2.0016, -2.0016, -0.3718, -0.3718, -0.3718],
       [ 1.669 ,  1.669 , -0.4386, -0.4386, -0.4386]])

tile, on the other hand, is a shortcut for stacking copies of an array along an
axis. Visually you can think of it as being akin to “laying down tiles”:

In [62]: arr
Out[62]: 
array([[-2.0016, -0.3718],
       [ 1.669 , -0.4386]])

In [63]: np.tile(arr, 2)
Out[63]: 
array([[-2.0016, -0.3718, -2.0016, -0.3718],
       [ 1.669 , -0.4386,  1.669 , -0.4386]])

The second argument is the number of tiles; with a scalar, the tiling is made
row by row, rather than column by column. The second argument to tile can
be a tuple indicating the layout of the “tiling”:

In [64]: arr
Out[64]: 
array([[-2.0016, -0.3718],
       [ 1.669 , -0.4386]])

In [65]: np.tile(arr, (2, 1))
Out[65]: 



array([[-2.0016, -0.3718],
       [ 1.669 , -0.4386],
       [-2.0016, -0.3718],
       [ 1.669 , -0.4386]])

In [66]: np.tile(arr, (3, 2))
Out[66]: 
array([[-2.0016, -0.3718, -2.0016, -0.3718],
       [ 1.669 , -0.4386,  1.669 , -0.4386],
       [-2.0016, -0.3718, -2.0016, -0.3718],
       [ 1.669 , -0.4386,  1.669 , -0.4386],
       [-2.0016, -0.3718, -2.0016, -0.3718],
       [ 1.669 , -0.4386,  1.669 , -0.4386]])



Fancy Indexing Equivalents: take and put
As you may recall from Chapter 4, one way to get and set subsets of arrays is
by fancy indexing using integer arrays:

In [67]: arr = np.arange(10) * 100

In [68]: inds = [7, 1, 2, 6]

In [69]: arr[inds]
Out[69]: array([700, 100, 200, 600])

There are alternative ndarray methods that are useful in the special case of
only making a selection on a single axis:

In [70]: arr.take(inds)
Out[70]: array([700, 100, 200, 600])

In [71]: arr.put(inds, 42)

In [72]: arr
Out[72]: array([  0,  42,  42, 300, 400, 500,  42,  42, 800, 900])

In [73]: arr.put(inds, [40, 41, 42, 43])

In [74]: arr
Out[74]: array([  0,  41,  42, 300, 400, 500,  43,  40, 800, 900])

To use take along other axes, you can pass the axis keyword:

In [75]: inds = [2, 0, 2, 1]

In [76]: arr = np.random.randn(2, 4)

In [77]: arr
Out[77]: 
array([[-0.5397,  0.477 ,  3.2489, -1.0212],
       [-0.5771,  0.1241,  0.3026,  0.5238]])

In [78]: arr.take(inds, axis=1)
Out[78]: 
array([[ 3.2489, -0.5397,  3.2489,  0.477 ],
       [ 0.3026, -0.5771,  0.3026,  0.1241]])

put does not accept an axis argument but rather indexes into the flattened



(one-dimensional, C order) version of the array. Thus, when you need to set
elements using an index array on other axes, it is often easiest to use fancy
indexing.



A.3 Broadcasting
Broadcasting describes how arithmetic works between arrays of different
shapes. It can be a powerful feature, but one that can cause confusion, even
for experienced users. The simplest example of broadcasting occurs when
combining a scalar value with an array:

In [79]: arr = np.arange(5)

In [80]: arr
Out[80]: array([0, 1, 2, 3, 4])

In [81]: arr * 4
Out[81]: array([ 0,  4,  8, 12, 16])

Here we say that the scalar value 4 has been broadcast to all of the other
elements in the multiplication operation.

For example, we can demean each column of an array by subtracting the
column means. In this case, it is very simple:

In [82]: arr = np.random.randn(4, 3)

In [83]: arr.mean(0)
Out[83]: array([-0.3928, -0.3824, -0.8768])

In [84]: demeaned = arr - arr.mean(0)

In [85]: demeaned
Out[85]: 
array([[ 0.3937,  1.7263,  0.1633],
       [-0.4384, -1.9878, -0.9839],
       [-0.468 ,  0.9426, -0.3891],
       [ 0.5126, -0.6811,  1.2097]])

In [86]: demeaned.mean(0)
Out[86]: array([-0.,  0., -0.])

See Figure A-4 for an illustration of this operation. Demeaning the rows as a
broadcast operation requires a bit more care. Fortunately, broadcasting
potentially lower dimensional values across any dimension of an array (like
subtracting the row means from each column of a two-dimensional array) is
possible as long as you follow the rules.



This brings us to:

THE BROADCASTING RULE

Two arrays are compatible for broadcasting if for each trailing dimension (i.e., starting
from the end) the axis lengths match or if either of the lengths is 1. Broadcasting is
then performed over the missing or length 1 dimensions.

Figure A-4. Broadcasting over axis 0 with a 1D array

Even as an experienced NumPy user, I often find myself having to pause and
draw a diagram as I think about the broadcasting rule. Consider the last
example and suppose we wished instead to subtract the mean value from each
row. Since arr.mean(0) has length 3, it is compatible for broadcasting across
axis 0 because the trailing dimension in arr is 3 and therefore matches.
According to the rules, to subtract over axis 1 (i.e., subtract the row mean
from each row), the smaller array must have shape (4, 1):

In [87]: arr
Out[87]: 
array([[ 0.0009,  1.3438, -0.7135],
       [-0.8312, -2.3702, -1.8608],
       [-0.8608,  0.5601, -1.2659],
       [ 0.1198, -1.0635,  0.3329]])

In [88]: row_means = arr.mean(1)

In [89]: row_means.shape



Out[89]: (4,)

In [90]: row_means.reshape((4, 1))
Out[90]: 
array([[ 0.2104],
       [-1.6874],
       [-0.5222],
       [-0.2036]])

In [91]: demeaned = arr - row_means.reshape((4, 1))

In [92]: demeaned.mean(1)
Out[92]: array([ 0., -0.,  0.,  0.])

See Figure A-5 for an illustration of this operation.

Figure A-5. Broadcasting over axis 1 of a 2D array

See Figure A-6 for another illustration, this time adding a two-dimensional
array to a three-dimensional one across axis 0.



Figure A-6. Broadcasting over axis 0 of a 3D array



Broadcasting Over Other Axes
Broadcasting with higher dimensional arrays can seem even more mind-
bending, but it is really a matter of following the rules. If you don’t, you’ll
get an error like this:

In [93]: arr - arr.mean(1)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-93-7b87b85a20b2> in <module>()
----> 1 arr - arr.mean(1)
ValueError: operands could not be broadcast together with shapes (4,3) (4,) 

It’s quite common to want to perform an arithmetic operation with a lower
dimensional array across axes other than axis 0. According to the
broadcasting rule, the “broadcast dimensions” must be 1 in the smaller array.
In the example of row demeaning shown here, this meant reshaping the row
means to be shape (4, 1) instead of (4,):

In [94]: arr - arr.mean(1).reshape((4, 1))
Out[94]: 
array([[-0.2095,  1.1334, -0.9239],
       [ 0.8562, -0.6828, -0.1734],
       [-0.3386,  1.0823, -0.7438],
       [ 0.3234, -0.8599,  0.5365]])

In the three-dimensional case, broadcasting over any of the three dimensions
is only a matter of reshaping the data to be shape-compatible. Figure A-7
nicely visualizes the shapes required to broadcast over each axis of a three-
dimensional array.

A common problem, therefore, is needing to add a new axis with length 1
specifically for broadcasting purposes. Using reshape is one option, but
inserting an axis requires constructing a tuple indicating the new shape. This
can often be a tedious exercise. Thus, NumPy arrays offer a special syntax for
inserting new axes by indexing. We use the special np.newaxis attribute
along with “full” slices to insert the new axis:

In [95]: arr = np.zeros((4, 4))



In [96]: arr_3d = arr[:, np.newaxis, :]

In [97]: arr_3d.shape
Out[97]: (4, 1, 4)

In [98]: arr_1d = np.random.normal(size=3)

In [99]: arr_1d[:, np.newaxis]
Out[99]: 
array([[-2.3594],
       [-0.1995],
       [-1.542 ]])

In [100]: arr_1d[np.newaxis, :]
Out[100]: array([[-2.3594, -0.1995, -1.542 ]])

Figure A-7. Compatible 2D array shapes for broadcasting over a 3D array

Thus, if we had a three-dimensional array and wanted to demean axis 2, say,
we would need to write:

In [101]: arr = np.random.randn(3, 4, 5)



In [102]: depth_means = arr.mean(2)

In [103]: depth_means
Out[103]: 
array([[-0.4735,  0.3971, -0.0228,  0.2001],
       [-0.3521, -0.281 , -0.071 , -0.1586],
       [ 0.6245,  0.6047,  0.4396, -0.2846]])

In [104]: depth_means.shape
Out[104]: (3, 4)

In [105]: demeaned = arr - depth_means[:, :, np.newaxis]

In [106]: demeaned.mean(2)
Out[106]: 
array([[ 0.,  0., -0., -0.],
       [ 0.,  0., -0.,  0.],
       [ 0.,  0., -0., -0.]])

You might be wondering if there’s a way to generalize demeaning over an
axis without sacrificing performance. There is, but it requires some indexing
gymnastics:

def demean_axis(arr, axis=0):
    means = arr.mean(axis)

    # This generalizes things like [:, :, np.newaxis] to N dimensions
    indexer = [slice(None)] * arr.ndim
    indexer[axis] = np.newaxis
    return arr - means[indexer]



Setting Array Values by Broadcasting
The same broadcasting rule governing arithmetic operations also applies to
setting values via array indexing. In a simple case, we can do things like:

In [107]: arr = np.zeros((4, 3))

In [108]: arr[:] = 5

In [109]: arr
Out[109]: 
array([[ 5.,  5.,  5.],
       [ 5.,  5.,  5.],
       [ 5.,  5.,  5.],
       [ 5.,  5.,  5.]])

However, if we had a one-dimensional array of values we wanted to set into
the columns of the array, we can do that as long as the shape is compatible:

In [110]: col = np.array([1.28, -0.42, 0.44, 1.6])

In [111]: arr[:] = col[:, np.newaxis]

In [112]: arr
Out[112]: 
array([[ 1.28,  1.28,  1.28],
       [-0.42, -0.42, -0.42],
       [ 0.44,  0.44,  0.44],
       [ 1.6 ,  1.6 ,  1.6 ]])

In [113]: arr[:2] = [[-1.37], [0.509]]

In [114]: arr
Out[114]: 
array([[-1.37 , -1.37 , -1.37 ],
       [ 0.509,  0.509,  0.509],
       [ 0.44 ,  0.44 ,  0.44 ],
       [ 1.6  ,  1.6  ,  1.6  ]])



A.4 Advanced ufunc Usage
While many NumPy users will only make use of the fast element-wise
operations provided by the universal functions, there are a number of
additional features that occasionally can help you write more concise code
without loops.



ufunc Instance Methods
Each of NumPy’s binary ufuncs has special methods for performing certain
kinds of special vectorized operations. These are summarized in Table A-2,
but I’ll give a few concrete examples to illustrate how they work.

reduce takes a single array and aggregates its values, optionally along an
axis, by performing a sequence of binary operations. For example, an
alternative way to sum elements in an array is to use np.add.reduce:

In [115]: arr = np.arange(10)

In [116]: np.add.reduce(arr)
Out[116]: 45

In [117]: arr.sum()
Out[117]: 45

The starting value (0 for add) depends on the ufunc. If an axis is passed, the
reduction is performed along that axis. This allows you to answer certain
kinds of questions in a concise way. As a less trivial example, we can use
np.logical_and to check whether the values in each row of an array are
sorted:

In [118]: np.random.seed(12346)  # for reproducibility

In [119]: arr = np.random.randn(5, 5)

In [120]: arr[::2].sort(1) # sort a few rows

In [121]: arr[:, :-1] < arr[:, 1:]
Out[121]: 
array([[ True,  True,  True,  True],
       [False,  True, False, False],
       [ True,  True,  True,  True],
       [ True, False,  True,  True],
       [ True,  True,  True,  True]], dtype=bool)

In [122]: np.logical_and.reduce(arr[:, :-1] < arr[:, 1:], axis=1)
Out[122]: array([ True, False,  True, False,  True], dtype=bool)

Note that logical_and.reduce is equivalent to the all method.



accumulate is related to reduce like cumsum is related to sum. It produces an
array of the same size with the intermediate “accumulated” values:

In [123]: arr = np.arange(15).reshape((3, 5))

In [124]: np.add.accumulate(arr, axis=1)
Out[124]: 
array([[ 0,  1,  3,  6, 10],
       [ 5, 11, 18, 26, 35],
       [10, 21, 33, 46, 60]])

outer performs a pairwise cross-product between two arrays:

In [125]: arr = np.arange(3).repeat([1, 2, 2])

In [126]: arr
Out[126]: array([0, 1, 1, 2, 2])

In [127]: np.multiply.outer(arr, np.arange(5))
Out[127]: 
array([[0, 0, 0, 0, 0],
       [0, 1, 2, 3, 4],
       [0, 1, 2, 3, 4],
       [0, 2, 4, 6, 8],
       [0, 2, 4, 6, 8]])

The output of outer will have a dimension that is the sum of the dimensions
of the inputs:

In [128]: x, y = np.random.randn(3, 4), np.random.randn(5)

In [129]: result = np.subtract.outer(x, y)

In [130]: result.shape
Out[130]: (3, 4, 5)

The last method, reduceat, performs a “local reduce,” in essence an array
groupby operation in which slices of the array are aggregated together. It
accepts a sequence of “bin edges” that indicate how to split and aggregate the
values:

In [131]: arr = np.arange(10)

In [132]: np.add.reduceat(arr, [0, 5, 8])
Out[132]: array([10, 18, 17])



The results are the reductions (here, sums) performed over arr[0:5],
arr[5:8], and arr[8:]. As with the other methods, you can pass an axis
argument:

In [133]: arr = np.multiply.outer(np.arange(4), np.arange(5))

In [134]: arr
Out[134]: 
array([[ 0,  0,  0,  0,  0],
       [ 0,  1,  2,  3,  4],
       [ 0,  2,  4,  6,  8],
       [ 0,  3,  6,  9, 12]])

In [135]: np.add.reduceat(arr, [0, 2, 4], axis=1)
Out[135]: 
array([[ 0,  0,  0],
       [ 1,  5,  4],
       [ 2, 10,  8],
       [ 3, 15, 12]])

See Table A-2 for a partial listing of ufunc methods.

Table A-2. ufunc methods

Method Description

reduce(x) Aggregate values by successive applications of the operation

accumulate(x) Aggregate values, preserving all partial aggregates

reduceat(x,
bins)

“Local” reduce or “group by”; reduce contiguous slices of data to produce
aggregated array

outer(x, y) Apply operation to all pairs of elements in x and y; the resulting array has
shape x.shape + y.shape



Writing New ufuncs in Python
There are a number of facilities for creating your own NumPy ufuncs. The
most general is to use the NumPy C API, but that is beyond the scope of this
book. In this section, we will look at pure Python ufuncs.

numpy.frompyfunc accepts a Python function along with a specification for
the number of inputs and outputs. For example, a simple function that adds
element-wise would be specified as:

In [136]: def add_elements(x, y):
   .....:     return x + y

In [137]: add_them = np.frompyfunc(add_elements, 2, 1)

In [138]: add_them(np.arange(8), np.arange(8))
Out[138]: array([0, 2, 4, 6, 8, 10, 12, 14], dtype=object)

Functions created using frompyfunc always return arrays of Python objects,
which can be inconvenient. Fortunately, there is an alternative (but slightly
less featureful) function, numpy.vectorize, that allows you to specify the
output type:

In [139]: add_them = np.vectorize(add_elements, otypes=[np.float64])

In [140]: add_them(np.arange(8), np.arange(8))
Out[140]: array([  0.,   2.,   4.,   6.,   8.,  10.,  12.,  14.])

These functions provide a way to create ufunc-like functions, but they are
very slow because they require a Python function call to compute each
element, which is a lot slower than NumPy’s C-based ufunc loops:

In [141]: arr = np.random.randn(10000)

In [142]: %timeit add_them(arr, arr)
4.12 ms +- 182 us per loop (mean +- std. dev. of 7 runs, 100 loops each)

In [143]: %timeit np.add(arr, arr)
6.89 us +- 504 ns per loop (mean +- std. dev. of 7 runs, 100000 loops each)

Later in this chapter we’ll show how to create fast ufuncs in Python using the



Numba project.

http://numba.pydata.org/


A.5 Structured and Record Arrays
You may have noticed up until now that ndarray is a homogeneous data
container; that is, it represents a block of memory in which each element
takes up the same number of bytes, determined by the dtype. On the surface,
this would appear to not allow you to represent heterogeneous or tabular-like
data. A structured array is an ndarray in which each element can be thought
of as representing a struct in C (hence the “structured” name) or a row in a
SQL table with multiple named fields:

In [144]: dtype = [('x', np.float64), ('y', np.int32)]

In [145]: sarr = np.array([(1.5, 6), (np.pi, -2)], dtype=dtype)

In [146]: sarr
Out[146]: 
array([( 1.5   ,  6), ( 3.1416, -2)],
      dtype=[('x', '<f8'), ('y', '<i4')])

There are several ways to specify a structured dtype (see the online NumPy
documentation). One typical way is as a list of tuples with (field_name,
field_data_type). Now, the elements of the array are tuple-like objects
whose elements can be accessed like a dictionary:

In [147]: sarr[0]
Out[147]: ( 1.5, 6)

In [148]: sarr[0]['y']
Out[148]: 6

The field names are stored in the dtype.names attribute. When you access a
field on the structured array, a strided view on the data is returned, thus
copying nothing:

In [149]: sarr['x']
Out[149]: array([ 1.5   ,  3.1416])



Nested dtypes and Multidimensional Fields
When specifying a structured dtype, you can additionally pass a shape (as an
int or tuple):

In [150]: dtype = [('x', np.int64, 3), ('y', np.int32)]

In [151]: arr = np.zeros(4, dtype=dtype)

In [152]: arr
Out[152]: 
array([([0, 0, 0], 0), ([0, 0, 0], 0), ([0, 0, 0], 0), ([0, 0, 0], 0)],
      dtype=[('x', '<i8', (3,)), ('y', '<i4')])

In this case, the x field now refers to an array of length 3 for each record:

In [153]: arr[0]['x']
Out[153]: array([0, 0, 0])

Conveniently, accessing arr['x'] then returns a two-dimensional array
instead of a one-dimensional array as in prior examples:

In [154]: arr['x']
Out[154]: 
array([[0, 0, 0],
       [0, 0, 0],
       [0, 0, 0],
       [0, 0, 0]])

This enables you to express more complicated, nested structures as a single
block of memory in an array. You can also nest dtypes to make more
complex structures. Here is an example:

In [155]: dtype = [('x', [('a', 'f8'), ('b', 'f4')]), ('y', np.int32)]

In [156]: data = np.array([((1, 2), 5), ((3, 4), 6)], dtype=dtype)

In [157]: data['x']
Out[157]: 
array([( 1.,  2.), ( 3.,  4.)],
      dtype=[('a', '<f8'), ('b', '<f4')])

In [158]: data['y']
Out[158]: array([5, 6], dtype=int32)



In [159]: data['x']['a']
Out[159]: array([ 1.,  3.])

pandas DataFrame does not support this feature directly, though it is similar
to hierarchical indexing.



Why Use Structured Arrays?
Compared with, say, a pandas DataFrame, NumPy structured arrays are a
comparatively low-level tool. They provide a means to interpreting a block of
memory as a tabular structure with arbitrarily complex nested columns. Since
each element in the array is represented in memory as a fixed number of
bytes, structured arrays provide a very fast and efficient way of writing data
to and from disk (including memory maps), transporting it over the network,
and other such uses.

As another common use for structured arrays, writing data files as fixed-
length record byte streams is a common way to serialize data in C and C++
code, which is commonly found in legacy systems in industry. As long as the
format of the file is known (the size of each record and the order, byte size,
and data type of each element), the data can be read into memory with
np.fromfile. Specialized uses like this are beyond the scope of this book,
but it’s worth knowing that such things are possible.



A.6 More About Sorting
Like Python’s built-in list, the ndarray sort instance method is an in-place
sort, meaning that the array contents are rearranged without producing a new
array:

In [160]: arr = np.random.randn(6)

In [161]: arr.sort()

In [162]: arr
Out[162]: array([-1.082 ,  0.3759,  0.8014,  1.1397,  1.2888,  1.8413])

When sorting arrays in-place, remember that if the array is a view on a
different ndarray, the original array will be modified:

In [163]: arr = np.random.randn(3, 5)

In [164]: arr
Out[164]: 
array([[-0.3318, -1.4711,  0.8705, -0.0847, -1.1329],
       [-1.0111, -0.3436,  2.1714,  0.1234, -0.0189],
       [ 0.1773,  0.7424,  0.8548,  1.038 , -0.329 ]])

In [165]: arr[:, 0].sort()  # Sort first column values in-place

In [166]: arr
Out[166]: 
array([[-1.0111, -1.4711,  0.8705, -0.0847, -1.1329],
       [-0.3318, -0.3436,  2.1714,  0.1234, -0.0189],
       [ 0.1773,  0.7424,  0.8548,  1.038 , -0.329 ]])

On the other hand, numpy.sort creates a new, sorted copy of an array.
Otherwise, it accepts the same arguments (such as kind) as ndarray.sort:

In [167]: arr = np.random.randn(5)

In [168]: arr
Out[168]: array([-1.1181, -0.2415, -2.0051,  0.7379, -1.0614])

In [169]: np.sort(arr)
Out[169]: array([-2.0051, -1.1181, -1.0614, -0.2415,  0.7379])

In [170]: arr
Out[170]: array([-1.1181, -0.2415, -2.0051,  0.7379, -1.0614])



All of these sort methods take an axis argument for sorting the sections of
data along the passed axis independently:

In [171]: arr = np.random.randn(3, 5)

In [172]: arr
Out[172]: 
array([[ 0.5955, -0.2682,  1.3389, -0.1872,  0.9111],
       [-0.3215,  1.0054, -0.5168,  1.1925, -0.1989],
       [ 0.3969, -1.7638,  0.6071, -0.2222, -0.2171]])

In [173]: arr.sort(axis=1)

In [174]: arr
Out[174]: 
array([[-0.2682, -0.1872,  0.5955,  0.9111,  1.3389],
       [-0.5168, -0.3215, -0.1989,  1.0054,  1.1925],
       [-1.7638, -0.2222, -0.2171,  0.3969,  0.6071]])

You may notice that none of the sort methods have an option to sort in
descending order. This is a problem in practice because array slicing
produces views, thus not producing a copy or requiring any computational
work. Many Python users are familiar with the “trick” that for a list values,
values[::-1] returns a list in reverse order. The same is true for ndarrays:

In [175]: arr[:, ::-1]
Out[175]: 
array([[ 1.3389,  0.9111,  0.5955, -0.1872, -0.2682],
       [ 1.1925,  1.0054, -0.1989, -0.3215, -0.5168],
       [ 0.6071,  0.3969, -0.2171, -0.2222, -1.7638]])



Indirect Sorts: argsort and lexsort
In data analysis you may need to reorder datasets by one or more keys. For
example, a table of data about some students might need to be sorted by last
name, then by first name. This is an example of an indirect sort, and if you’ve
read the pandas-related chapters you have already seen many higher-level
examples. Given a key or keys (an array of values or multiple arrays of
values), you wish to obtain an array of integer indices (I refer to them
colloquially as indexers) that tells you how to reorder the data to be in sorted
order. Two methods for this are argsort and numpy.lexsort. As an example:

In [176]: values = np.array([5, 0, 1, 3, 2])

In [177]: indexer = values.argsort()

In [178]: indexer
Out[178]: array([1, 2, 4, 3, 0])

In [179]: values[indexer]
Out[179]: array([0, 1, 2, 3, 5])

As a more complicated example, this code reorders a two-dimensional array
by its first row:

In [180]: arr = np.random.randn(3, 5)

In [181]: arr[0] = values

In [182]: arr
Out[182]: 
array([[ 5.    ,  0.    ,  1.    ,  3.    ,  2.    ],
       [-0.3636, -0.1378,  2.1777, -0.4728,  0.8356],
       [-0.2089,  0.2316,  0.728 , -1.3918,  1.9956]])

In [183]: arr[:, arr[0].argsort()]
Out[183]: 
array([[ 0.    ,  1.    ,  2.    ,  3.    ,  5.    ],
       [-0.1378,  2.1777,  0.8356, -0.4728, -0.3636],
       [ 0.2316,  0.728 ,  1.9956, -1.3918, -0.2089]])

lexsort is similar to argsort, but it performs an indirect lexicographical sort
on multiple key arrays. Suppose we wanted to sort some data identified by
first and last names:



In [184]: first_name = np.array(['Bob', 'Jane', 'Steve', 'Bill', 'Barbara'])

In [185]: last_name = np.array(['Jones', 'Arnold', 'Arnold', 'Jones', 
'Walters'])

In [186]: sorter = np.lexsort((first_name, last_name))

In [187]: sorter
Out[187]: array([1, 2, 3, 0, 4])

In [188]: zip(last_name[sorter], first_name[sorter])
Out[188]: <zip at 0x7fa203eda1c8>

lexsort can be a bit confusing the first time you use it because the order in
which the keys are used to order the data starts with the last array passed.
Here, last_name was used before first_name.

NOTE
pandas methods like Series’s and DataFrame’s sort_values method are
implemented with variants of these functions (which also must take into
account missing values).



Alternative Sort Algorithms
A stable sorting algorithm preserves the relative position of equal elements.
This can be especially important in indirect sorts where the relative ordering
is meaningful:

In [189]: values = np.array(['2:first', '2:second', '1:first', '1:second',
   .....:                    '1:third'])

In [190]: key = np.array([2, 2, 1, 1, 1])

In [191]: indexer = key.argsort(kind='mergesort')

In [192]: indexer
Out[192]: array([2, 3, 4, 0, 1])

In [193]: values.take(indexer)
Out[193]: 
array(['1:first', '1:second', '1:third', '2:first', '2:second'],
      dtype='<U8')

The only stable sort available is mergesort, which has guaranteed O(n log n)
performance (for complexity buffs), but its performance is on average worse
than the default quicksort method. See Table A-3 for a summary of available
methods and their relative performance (and performance guarantees). This is
not something that most users will ever have to think about, but it’s useful to
know that it’s there.

Table A-3. Array sorting methods

Kind Speed Stable Work space Worst case

'quicksort' 1 No 0 O(n^2)

'mergesort' 2 Yes n / 2 O(n log n)

'heapsort' 3 No 0 O(n log n)



Partially Sorting Arrays
One of the goals of sorting can be to determine the largest or smallest
elements in an array. NumPy has optimized methods, numpy.partition and
np.argpartition, for partitioning an array around the k-th smallest element:

In [194]: np.random.seed(12345)

In [195]: arr = np.random.randn(20)

In [196]: arr
Out[196]: 
array([-0.2047,  0.4789, -0.5194, -0.5557,  1.9658,  1.3934,  0.0929,
        0.2817,  0.769 ,  1.2464,  1.0072, -1.2962,  0.275 ,  0.2289,
        1.3529,  0.8864, -2.0016, -0.3718,  1.669 , -0.4386])

In [197]: np.partition(arr, 3)
Out[197]: 
array([-2.0016, -1.2962, -0.5557, -0.5194, -0.3718, -0.4386, -0.2047,
        0.2817,  0.769 ,  0.4789,  1.0072,  0.0929,  0.275 ,  0.2289,
        1.3529,  0.8864,  1.3934,  1.9658,  1.669 ,  1.2464])

After you call partition(arr, 3), the first three elements in the result are
the smallest three values in no particular order. numpy.argpartition, similar
to numpy.argsort, returns the indices that rearrange the data into the
equivalent order:

In [198]: indices = np.argpartition(arr, 3)

In [199]: indices
Out[199]: 
array([16, 11,  3,  2, 17, 19,  0,  7,  8,  1, 10,  6, 12, 13, 14, 15,  5,
        4, 18,  9])

In [200]: arr.take(indices)
Out[200]: 
array([-2.0016, -1.2962, -0.5557, -0.5194, -0.3718, -0.4386, -0.2047,
        0.2817,  0.769 ,  0.4789,  1.0072,  0.0929,  0.275 ,  0.2289,
        1.3529,  0.8864,  1.3934,  1.9658,  1.669 ,  1.2464])



numpy.searchsorted: Finding Elements in a Sorted
Array
searchsorted is an array method that performs a binary search on a sorted
array, returning the location in the array where the value would need to be
inserted to maintain sortedness:

In [201]: arr = np.array([0, 1, 7, 12, 15])

In [202]: arr.searchsorted(9)
Out[202]: 3

You can also pass an array of values to get an array of indices back:

In [203]: arr.searchsorted([0, 8, 11, 16])
Out[203]: array([0, 3, 3, 5])

You might have noticed that searchsorted returned 0 for the 0 element. This
is because the default behavior is to return the index at the left side of a group
of equal values:

In [204]: arr = np.array([0, 0, 0, 1, 1, 1, 1])

In [205]: arr.searchsorted([0, 1])
Out[205]: array([0, 3])

In [206]: arr.searchsorted([0, 1], side='right')
Out[206]: array([3, 7])

As another application of searchsorted, suppose we had an array of values
between 0 and 10,000, and a separate array of “bucket edges” that we wanted
to use to bin the data:

In [207]: data = np.floor(np.random.uniform(0, 10000, size=50))

In [208]: bins = np.array([0, 100, 1000, 5000, 10000])

In [209]: data
Out[209]: 
array([ 9940.,  6768.,  7908.,  1709.,   268.,  8003.,  9037.,   246.,
        4917.,  5262.,  5963.,   519.,  8950.,  7282.,  8183.,  5002.,
        8101.,   959.,  2189.,  2587.,  4681.,  4593.,  7095.,  1780.,



        5314.,  1677.,  7688.,  9281.,  6094.,  1501.,  4896.,  3773.,
        8486.,  9110.,  3838.,  3154.,  5683.,  1878.,  1258.,  6875.,
        7996.,  5735.,  9732.,  6340.,  8884.,  4954.,  3516.,  7142.,
        5039.,  2256.])

To then get a labeling of which interval each data point belongs to (where 1
would mean the bucket [0, 100)), we can simply use searchsorted:

In [210]: labels = bins.searchsorted(data)

In [211]: labels
Out[211]: 
array([4, 4, 4, 3, 2, 4, 4, 2, 3, 4, 4, 2, 4, 4, 4, 4, 4, 2, 3, 3, 3, 3, 4,
       3, 4, 3, 4, 4, 4, 3, 3, 3, 4, 4, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4, 3,
       3, 4, 4, 3])

This, combined with pandas’s groupby, can be used to bin data:

In [212]: pd.Series(data).groupby(labels).mean()
Out[212]: 
2     498.000000
3    3064.277778
4    7389.035714
dtype: float64



A.7 Writing Fast NumPy Functions with Numba
Numba is an open source project that creates fast functions for NumPy-like
data using CPUs, GPUs, or other hardware. It uses the LLVM Project to
translate Python code into compiled machine code.

To introduce Numba, let’s consider a pure Python function that computes the
expression (x - y).mean() using a for loop:

import numpy as np

def mean_distance(x, y):
    nx = len(x)
    result = 0.0
    count = 0
    for i in range(nx):
        result += x[i] - y[i]
        count += 1
    return result / count

This function is very slow:

In [209]: x = np.random.randn(10000000)

In [210]: y = np.random.randn(10000000)

In [211]: %timeit mean_distance(x, y)
1 loop, best of 3: 2 s per loop

In [212]: %timeit (x - y).mean()
100 loops, best of 3: 14.7 ms per loop

The NumPy version is over 100 times faster. We can turn this function into a
compiled Numba function using the numba.jit function:

In [213]: import numba as nb

In [214]: numba_mean_distance = nb.jit(mean_distance)

We could also have written this as a decorator:

@nb.jit
def mean_distance(x, y):

http://numba.pydata.org/
http://llvm.org/


    nx = len(x)
    result = 0.0
    count = 0
    for i in range(nx):
        result += x[i] - y[i]
        count += 1
    return result / count

The resulting function is actually faster than the vectorized NumPy version:

In [215]: %timeit numba_mean_distance(x, y)
100 loops, best of 3: 10.3 ms per loop

Numba cannot compile arbitrary Python code, but it supports a significant
subset of pure Python that is most useful for writing numerical algorithms.

Numba is a deep library, supporting different kinds of hardware, modes of
compilation, and user extensions. It is also able to compile a substantial
subset of the NumPy Python API without explicit for loops. Numba is able
to recognize constructs that can be compiled to machine code, while
substituting calls to the CPython API for functions that it does not know how
to compile. Numba’s jit function has an option, nopython=True, which
restricts allowed code to Python code that can be compiled to LLVM without
any Python C API calls. jit(nopython=True) has a shorter alias numba.njit.

In the previous example, we could have written:

from numba import float64, njit

@njit(float64(float64[:], float64[:]))
def mean_distance(x, y):
    return (x - y).mean()

I encourage you to learn more by reading the online documentation for
Numba. The next section shows an example of creating custom NumPy ufunc
objects.

http://numba.pydata.org/


Creating Custom numpy.ufunc Objects with Numba
The numba.vectorize function creates compiled NumPy ufuncs, which
behave like built-in ufuncs. Let’s consider a Python implementation of
numpy.add:

from numba import vectorize

@vectorize
def nb_add(x, y):
    return x + y

Now we have:

In [13]: x = np.arange(10)

In [14]: nb_add(x, x)
Out[14]: array([  0.,   2.,   4.,   6.,   8.,  10.,  12.,  14.,  16.,  18.])

In [15]: nb_add.accumulate(x, 0)
Out[15]: array([  0.,   1.,   3.,   6.,  10.,  15.,  21.,  28.,  36.,  45.])



A.8 Advanced Array Input and Output
In Chapter 4, we became acquainted with np.save and np.load for storing
arrays in binary format on disk. There are a number of additional options to
consider for more sophisticated use. In particular, memory maps have the
additional benefit of enabling you to work with datasets that do not fit into
RAM.



Memory-Mapped Files
A memory-mapped file is a method for interacting with binary data on disk as
though it is stored in an in-memory array. NumPy implements a memmap
object that is ndarray-like, enabling small segments of a large file to be read
and written without reading the whole array into memory. Additionally, a
memmap has the same methods as an in-memory array and thus can be
substituted into many algorithms where an ndarray would be expected.

To create a new memory map, use the function np.memmap and pass a file
path, dtype, shape, and file mode:

In [214]: mmap = np.memmap('mymmap', dtype='float64', mode='w+',
   .....:                  shape=(10000, 10000))

In [215]: mmap
Out[215]: 
memmap([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
        [ 0.,  0.,  0., ...,  0.,  0.,  0.],
        [ 0.,  0.,  0., ...,  0.,  0.,  0.],
        ..., 
        [ 0.,  0.,  0., ...,  0.,  0.,  0.],
        [ 0.,  0.,  0., ...,  0.,  0.,  0.],
        [ 0.,  0.,  0., ...,  0.,  0.,  0.]])

Slicing a memmap returns views on the data on disk:

In [216]: section = mmap[:5]

If you assign data to these, it will be buffered in memory (like a Python file
object), but you can write it to disk by calling flush:

In [217]: section[:] = np.random.randn(5, 10000)

In [218]: mmap.flush()

In [219]: mmap
Out[219]: 
memmap([[ 0.7584, -0.6605,  0.8626, ...,  0.6046, -0.6212,  2.0542],
        [-1.2113, -1.0375,  0.7093, ..., -1.4117, -0.1719, -0.8957],
        [-0.1419, -0.3375,  0.4329, ...,  1.2914, -0.752 , -0.44  ],
        ..., 
        [ 0.    ,  0.    ,  0.    , ...,  0.    ,  0.    ,  0.    ],



        [ 0.    ,  0.    ,  0.    , ...,  0.    ,  0.    ,  0.    ],
        [ 0.    ,  0.    ,  0.    , ...,  0.    ,  0.    ,  0.    ]])

In [220]: del mmap

Whenever a memory map falls out of scope and is garbage-collected, any
changes will be flushed to disk also. When opening an existing memory map,
you still have to specify the dtype and shape, as the file is only a block of
binary data with no metadata on disk:

In [221]: mmap = np.memmap('mymmap', dtype='float64', shape=(10000, 10000))

In [222]: mmap
Out[222]: 
memmap([[ 0.7584, -0.6605,  0.8626, ...,  0.6046, -0.6212,  2.0542],
        [-1.2113, -1.0375,  0.7093, ..., -1.4117, -0.1719, -0.8957],
        [-0.1419, -0.3375,  0.4329, ...,  1.2914, -0.752 , -0.44  ],
        ..., 
        [ 0.    ,  0.    ,  0.    , ...,  0.    ,  0.    ,  0.    ],
        [ 0.    ,  0.    ,  0.    , ...,  0.    ,  0.    ,  0.    ],
        [ 0.    ,  0.    ,  0.    , ...,  0.    ,  0.    ,  0.    ]])

Memory maps also work with structured or nested dtypes as described in a
previous section.



HDF5 and Other Array Storage Options
PyTables and h5py are two Python projects providing NumPy-friendly
interfaces for storing array data in the efficient and compressible HDF5
format (HDF stands for hierarchical data format). You can safely store
hundreds of gigabytes or even terabytes of data in HDF5 format. To learn
more about using HDF5 with Python, I recommend reading the pandas online
documentation.

http://pandas.pydata.org


A.9 Performance Tips
Getting good performance out of code utilizing NumPy is often
straightforward, as array operations typically replace otherwise comparatively
extremely slow pure Python loops. The following list briefly summarizes
some things to keep in mind:

Convert Python loops and conditional logic to array operations and
boolean array operations

Use broadcasting whenever possible

Use arrays views (slicing) to avoid copying data

Utilize ufuncs and ufunc methods

If you can’t get the performance you require after exhausting the capabilities
provided by NumPy alone, consider writing code in C, Fortran, or Cython. I
use Cython frequently in my own work as an easy way to get C-like
performance with minimal development.

http://cython.org


The Importance of Contiguous Memory
While the full extent of this topic is a bit outside the scope of this book, in
some applications the memory layout of an array can significantly affect the
speed of computations. This is based partly on performance differences
having to do with the cache hierarchy of the CPU; operations accessing
contiguous blocks of memory (e.g., summing the rows of a C order array)
will generally be the fastest because the memory subsystem will buffer the
appropriate blocks of memory into the ultrafast L1 or L2 CPU cache. Also,
certain code paths inside NumPy’s C codebase have been optimized for the
contiguous case in which generic strided memory access can be avoided.

To say that an array’s memory layout is contiguous means that the elements
are stored in memory in the order that they appear in the array with respect to
Fortran (column major) or C (row major) ordering. By default, NumPy arrays
are created as C-contiguous or just simply contiguous. A column major array,
such as the transpose of a C-contiguous array, is thus said to be Fortran-
contiguous. These properties can be explicitly checked via the flags attribute
on the ndarray:

In [225]: arr_c = np.ones((1000, 1000), order='C')

In [226]: arr_f = np.ones((1000, 1000), order='F')

In [227]: arr_c.flags
Out[227]: 
  C_CONTIGUOUS : True
  F_CONTIGUOUS : False
  OWNDATA : True
  WRITEABLE : True
  ALIGNED : True
  UPDATEIFCOPY : False

In [228]: arr_f.flags
Out[228]: 
  C_CONTIGUOUS : False
  F_CONTIGUOUS : True
  OWNDATA : True
  WRITEABLE : True
  ALIGNED : True
  UPDATEIFCOPY : False

In [229]: arr_f.flags.f_contiguous



Out[229]: True

In this example, summing the rows of these arrays should, in theory, be faster
for arr_c than arr_f since the rows are contiguous in memory. Here I check
for sure using %timeit in IPython:

In [230]: %timeit arr_c.sum(1)
784 us +- 10.4 us per loop (mean +- std. dev. of 7 runs, 1000 loops each)

In [231]: %timeit arr_f.sum(1)
934 us +- 29 us per loop (mean +- std. dev. of 7 runs, 1000 loops each)

When you’re looking to squeeze more performance out of NumPy, this is
often a place to invest some effort. If you have an array that does not have the
desired memory order, you can use copy and pass either 'C' or 'F':

In [232]: arr_f.copy('C').flags
Out[232]: 
  C_CONTIGUOUS : True
  F_CONTIGUOUS : False
  OWNDATA : True
  WRITEABLE : True
  ALIGNED : True
  UPDATEIFCOPY : False

When constructing a view on an array, keep in mind that the result is not
guaranteed to be contiguous:

In [233]: arr_c[:50].flags.contiguous
Out[233]: True

In [234]: arr_c[:, :50].flags
Out[234]: 
  C_CONTIGUOUS : False
  F_CONTIGUOUS : False
  OWNDATA : False
  WRITEABLE : True
  ALIGNED : True
  UPDATEIFCOPY : False

Some of the dtypes have trailing underscores in their names. These are there to avoid
variable name conflicts between the NumPy-specific types and the Python built-in
ones.
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Appendix B. More on the IPython
System

In Chapter 2 we looked at the basics of using the IPython shell and Jupyter
notebook. In this chapter, we explore some deeper functionality in the
IPython system that can either be used from the console or within Jupyter.



B.1 Using the Command History
IPython maintains a small on-disk database containing the text of each
command that you execute. This serves various purposes:

Searching, completing, and executing previously executed commands
with minimal typing

Persisting the command history between sessions

Logging the input/output history to a file

These features are more useful in the shell than in the notebook, since the
notebook by design keeps a log of the input and output in each code cell.



Searching and Reusing the Command History
The IPython shell lets you search and execute previous code or other
commands. This is useful, as you may often find yourself repeating the same
commands, such as a %run command or some other code snippet. Suppose
you had run:

In[7]: %run first/second/third/data_script.py

and then explored the results of the script (assuming it ran successfully) only
to find that you made an incorrect calculation. After figuring out the problem
and modifying data_script.py, you can start typing a few letters of the %run
command and then press either the Ctrl-P key combination or the up arrow
key. This will search the command history for the first prior command
matching the letters you typed. Pressing either Ctrl-P or the up arrow key
multiple times will continue to search through the history. If you pass over
the command you wish to execute, fear not. You can move forward through
the command history by pressing either Ctrl-N or the down arrow key. After
doing this a few times, you may start pressing these keys without thinking!

Using Ctrl-R gives you the same partial incremental searching capability
provided by the readline used in Unix-style shells, such as the bash shell.
On Windows, readline functionality is emulated by IPython. To use this,
press Ctrl-R and then type a few characters contained in the input line you
want to search for:

In [1]: a_command = foo(x, y, z)

(reverse-i-search)`com': a_command = foo(x, y, z)

Pressing Ctrl-R will cycle through the history for each line matching the
characters you’ve typed.



Input and Output Variables
Forgetting to assign the result of a function call to a variable can be very
annoying. An IPython session stores references to both the input commands
and output Python objects in special variables. The previous two outputs are
stored in the _ (one underscore) and __ (two underscores) variables,
respectively:

In [24]: 2 ** 27
Out[24]: 134217728

In [25]: _
Out[25]: 134217728

Input variables are stored in variables named like _iX, where X is the input
line number. For each input variable there is a corresponding output variable
_X. So after input line 27, say, there will be two new variables _27 (for the
output) and _i27 for the input:

In [26]: foo = 'bar'

In [27]: foo
Out[27]: 'bar'

In [28]: _i27
Out[28]: u'foo'

In [29]: _27
Out[29]: 'bar'

Since the input variables are strings they can be executed again with the
Python exec keyword:

In [30]: exec(_i27)

Here _i27 refers to the code input in In [27].

Several magic functions allow you to work with the input and output history.
%hist is capable of printing all or part of the input history, with or without



line numbers. %reset is for clearing the interactive namespace and optionally
the input and output caches. The %xdel magic function is intended for
removing all references to a particular object from the IPython machinery.
See the documentation for both of these magics for more details.

WARNING
When working with very large datasets, keep in mind that IPython’s input and
output history causes any object referenced there to not be garbage-collected
(freeing up the memory), even if you delete the variables from the interactive
namespace using the del keyword. In such cases, careful usage of %xdel and
%reset can help you avoid running into memory problems.



B.2 Interacting with the Operating System
Another feature of IPython is that it allows you to seamlessly access the
filesystem and operating system shell. This means, among other things, that
you can perform most standard command-line actions as you would in the
Windows or Unix (Linux, macOS) shell without having to exit IPython. This
includes shell commands, changing directories, and storing the results of a
command in a Python object (list or string). There are also simple command
aliasing and directory bookmarking features.

See Table B-1 for a summary of magic functions and syntax for calling shell
commands. I’ll briefly visit these features in the next few sections.

Table B-1. IPython system-related commands

Command Description

!cmd Execute cmd in the system shell

output = !cmd args Run cmd and store the stdout in output

%alias alias_name cmd Define an alias for a system (shell) command

%bookmark Utilize IPython’s directory bookmarking system

%cd directory Change system working directory to passed directory

%pwd Return the current system working directory

%pushd directory Place current directory on stack and change to target directory

%popd Change to directory popped off the top of the stack

%dirs Return a list containing the current directory stack

%dhist Print the history of visited directories

%env Return the system environment variables as a dict

%matplotlib Configure matplotlib integration options



Shell Commands and Aliases
Starting a line in IPython with an exclamation point !, or bang, tells IPython
to execute everything after the bang in the system shell. This means that you
can delete files (using rm or del, depending on your OS), change directories,
or execute any other process.

You can store the console output of a shell command in a variable by
assigning the expression escaped with ! to a variable. For example, on my
Linux-based machine connected to the internet via ethernet, I can get my IP
address as a Python variable:

In [1]: ip_info = !ifconfig wlan0 | grep "inet "

In [2]: ip_info[0].strip()
Out[2]: 'inet addr:10.0.0.11  Bcast:10.0.0.255  Mask:255.255.255.0'

The returned Python object ip_info is actually a custom list type containing
various versions of the console output.

IPython can also substitute in Python values defined in the current
environment when using !. To do this, preface the variable name by the
dollar sign $:

In [3]: foo = 'test*'

In [4]: !ls $foo
test4.py  test.py  test.xml

The %alias magic function can define custom shortcuts for shell commands.
As a simple example:

In [1]: %alias ll ls -l

In [2]: ll /usr
total 332
drwxr-xr-x   2 root root  69632 2012-01-29 20:36 bin/
drwxr-xr-x   2 root root   4096 2010-08-23 12:05 games/
drwxr-xr-x 123 root root  20480 2011-12-26 18:08 include/
drwxr-xr-x 265 root root 126976 2012-01-29 20:36 lib/
drwxr-xr-x  44 root root  69632 2011-12-26 18:08 lib32/



lrwxrwxrwx   1 root root      3 2010-08-23 16:02 lib64 -> lib/
drwxr-xr-x  15 root root   4096 2011-10-13 19:03 local/
drwxr-xr-x   2 root root  12288 2012-01-12 09:32 sbin/
drwxr-xr-x 387 root root  12288 2011-11-04 22:53 share/
drwxrwsr-x  24 root src    4096 2011-07-17 18:38 src/

You can execute multiple commands just as on the command line by
separating them with semicolons:

In [558]: %alias test_alias (cd examples; ls; cd ..)

In [559]: test_alias
macrodata.csv  spx.csv tips.csv

You’ll notice that IPython “forgets” any aliases you define interactively as
soon as the session is closed. To create permanent aliases, you will need to
use the configuration system.



Directory Bookmark System
IPython has a simple directory bookmarking system to enable you to save
aliases for common directories so that you can jump around very easily. For
example, suppose you wanted to create a bookmark that points to the
supplementary materials for this book:

In [6]: %bookmark py4da /home/wesm/code/pydata-book

Once you’ve done this, when we use the %cd magic, we can use any
bookmarks we’ve defined:

In [7]: cd py4da
(bookmark:py4da) -> /home/wesm/code/pydata-book
/home/wesm/code/pydata-book

If a bookmark name conflicts with a directory name in your current working
directory, you can use the -b flag to override and use the bookmark location.
Using the -l option with %bookmark lists all of your bookmarks:

In [8]: %bookmark -l
Current bookmarks:
py4da -> /home/wesm/code/pydata-book-source

Bookmarks, unlike aliases, are automatically persisted between IPython
sessions.



B.3 Software Development Tools
In addition to being a comfortable environment for interactive computing and
data exploration, IPython can also be a useful companion for general Python
software development. In data analysis applications, it’s important first to
have correct code. Fortunately, IPython has closely integrated and enhanced
the built-in Python pdb debugger. Secondly you want your code to be fast.
For this IPython has easy-to-use code timing and profiling tools. I will give
an overview of these tools in detail here.



Interactive Debugger
IPython’s debugger enhances pdb with tab completion, syntax highlighting,
and context for each line in exception tracebacks. One of the best times to
debug code is right after an error has occurred. The %debug command, when
entered immediately after an exception, invokes the “post-mortem” debugger
and drops you into the stack frame where the exception was raised:

In [2]: run examples/ipython_bug.py
---------------------------------------------------------------------------
AssertionError                            Traceback (most recent call last)
/home/wesm/code/pydata-book/examples/ipython_bug.py in <module>()
     13     throws_an_exception()
     14
---> 15 calling_things()

/home/wesm/code/pydata-book/examples/ipython_bug.py in calling_things()
     11 def calling_things():
     12     works_fine()
---> 13     throws_an_exception()
     14
     15 calling_things()

/home/wesm/code/pydata-book/examples/ipython_bug.py in throws_an_exception()
      7     a = 5
      8     b = 6
----> 9     assert(a + b == 10)
     10
     11 def calling_things():

AssertionError:

In [3]: %debug
> /home/wesm/code/pydata-book/examples/ipython_bug.py(9)throws_an_exception()
      8     b = 6
----> 9     assert(a + b == 10)
     10

ipdb>

Once inside the debugger, you can execute arbitrary Python code and explore
all of the objects and data (which have been “kept alive” by the interpreter)
inside each stack frame. By default you start in the lowest level, where the
error occurred. By pressing u (up) and d (down), you can switch between the
levels of the stack trace:



ipdb> u
> /home/wesm/code/pydata-book/examples/ipython_bug.py(13)calling_things()
     12     works_fine()
---> 13     throws_an_exception()
     14

Executing the %pdb command makes it so that IPython automatically invokes
the debugger after any exception, a mode that many users will find especially
useful.

It’s also easy to use the debugger to help develop code, especially when you
wish to set breakpoints or step through the execution of a function or script to
examine the state at each stage. There are several ways to accomplish this.
The first is by using %run with the -d flag, which invokes the debugger
before executing any code in the passed script. You must immediately press s
(step) to enter the script:

In [5]: run -d examples/ipython_bug.py
Breakpoint 1 at /home/wesm/code/pydata-book/examples/ipython_bug.py:1
NOTE: Enter 'c' at the ipdb>  prompt to start your script.
> <string>(1)<module>()

ipdb> s
--Call--
> /home/wesm/code/pydata-book/examples/ipython_bug.py(1)<module>()
1---> 1 def works_fine():
      2     a = 5
      3     b = 6

After this point, it’s up to you how you want to work your way through the
file. For example, in the preceding exception, we could set a breakpoint right
before calling the works_fine method and run the script until we reach the
breakpoint by pressing c (continue):

ipdb> b 12
ipdb> c
> /home/wesm/code/pydata-book/examples/ipython_bug.py(12)calling_things()
     11 def calling_things():
2--> 12     works_fine()
     13     throws_an_exception()

At this point, you can step into works_fine() or execute works_fine() by
pressing n (next) to advance to the next line:



ipdb> n
> /home/wesm/code/pydata-book/examples/ipython_bug.py(13)calling_things()
2    12     works_fine()
---> 13     throws_an_exception()
     14

Then, we could step into throws_an_exception and advance to the line
where the error occurs and look at the variables in the scope. Note that
debugger commands take precedence over variable names; in such cases,
preface the variables with ! to examine their contents:

ipdb> s
--Call--
> /home/wesm/code/pydata-book/examples/ipython_bug.py(6)throws_an_exception()
      5
----> 6 def throws_an_exception():
      7     a = 5

ipdb> n
> /home/wesm/code/pydata-book/examples/ipython_bug.py(7)throws_an_exception()
      6 def throws_an_exception():
----> 7     a = 5
      8     b = 6

ipdb> n
> /home/wesm/code/pydata-book/examples/ipython_bug.py(8)throws_an_exception()
      7     a = 5
----> 8     b = 6
      9     assert(a + b == 10)

ipdb> n
> /home/wesm/code/pydata-book/examples/ipython_bug.py(9)throws_an_exception()
      8     b = 6
----> 9     assert(a + b == 10)
     10

ipdb> !a
5
ipdb> !b
6

Developing proficiency with the interactive debugger is largely a matter of
practice and experience. See Table B-2 for a full catalog of the debugger
commands. If you are accustomed to using an IDE, you might find the
terminal-driven debugger to be a bit unforgiving at first, but that will improve
in time. Some of the Python IDEs have excellent GUI debuggers, so most
users can find something that works for them.



Table B-2. (I)Python debugger commands

Command Action

h(elp) Display command list

help command Show documentation for command

c(ontinue) Resume program execution

q(uit) Exit debugger without executing any more code

b(reak) number Set breakpoint at number in current file

b path/to/file.py:number Set breakpoint at line number in specified file

s(tep) Step into function call

n(ext) Execute current line and advance to next line at current level

u(p)/d(own) Move up/down in function call stack

a(rgs) Show arguments for current function

debug statement Invoke statement statement in new (recursive) debugger

l(ist) statement Show current position and context at current level of stack

w(here) Print full stack trace with context at current position

Other ways to make use of the debugger
There are a couple of other useful ways to invoke the debugger. The first is
by using a special set_trace function (named after pdb.set_trace), which
is basically a “poor man’s breakpoint.” Here are two small recipes you might
want to put somewhere for your general use (potentially adding them to your
IPython profile as I do):

from IPython.core.debugger import Pdb

def set_trace():
    Pdb(color_scheme='Linux').set_trace(sys._getframe().f_back)

def debug(f, *args, **kwargs):
    pdb = Pdb(color_scheme='Linux')
    return pdb.runcall(f, *args, **kwargs)

The first function, set_trace, is very simple. You can use a set_trace in
any part of your code that you want to temporarily stop in order to more



closely examine it (e.g., right before an exception occurs):

In [7]: run examples/ipython_bug.py
> /home/wesm/code/pydata-book/examples/ipython_bug.py(16)calling_things()
     15     set_trace()
---> 16     throws_an_exception()
     17

Pressing c (continue) will cause the code to resume normally with no harm
done.

The debug function we just looked at enables you to invoke the interactive
debugger easily on an arbitrary function call. Suppose we had written a
function like the following and we wished to step through its logic:

def f(x, y, z=1):
    tmp = x + y
    return tmp / z

Ordinarily using f would look like f(1, 2, z=3). To instead step into f, pass
f as the first argument to debug followed by the positional and keyword
arguments to be passed to f:

In [6]: debug(f, 1, 2, z=3)
> <ipython-input>(2)f()
      1 def f(x, y, z):
----> 2     tmp = x + y
      3     return tmp / z

ipdb>

I find that these two simple recipes save me a lot of time on a day-to-day
basis.

Lastly, the debugger can be used in conjunction with %run. By running a
script with %run -d, you will be dropped directly into the debugger, ready to
set any breakpoints and start the script:

In [1]: %run -d examples/ipython_bug.py
Breakpoint 1 at /home/wesm/code/pydata-book/examples/ipython_bug.py:1
NOTE: Enter 'c' at the ipdb>  prompt to start your script.
> <string>(1)<module>()



ipdb>

Adding -b with a line number starts the debugger with a breakpoint set
already:

In [2]: %run -d -b2 examples/ipython_bug.py
Breakpoint 1 at /home/wesm/code/pydata-book/examples/ipython_bug.py:2
NOTE: Enter 'c' at the ipdb>  prompt to start your script.
> <string>(1)<module>()

ipdb> c
> /home/wesm/code/pydata-book/examples/ipython_bug.py(2)works_fine()
      1 def works_fine():
1---> 2     a = 5
      3     b = 6

ipdb>



Timing Code: %time and %timeit
For larger-scale or longer-running data analysis applications, you may wish
to measure the execution time of various components or of individual
statements or function calls. You may want a report of which functions are
taking up the most time in a complex process. Fortunately, IPython enables
you to get this information very easily while you are developing and testing
your code.

Timing code by hand using the built-in time module and its functions
time.clock and time.time is often tedious and repetitive, as you must write
the same uninteresting boilerplate code:

import time
start = time.time()
for i in range(iterations):
    # some code to run here
elapsed_per = (time.time() - start) / iterations

Since this is such a common operation, IPython has two magic functions,
%time and %timeit, to automate this process for you.

%time runs a statement once, reporting the total execution time. Suppose we
had a large list of strings and we wanted to compare different methods of
selecting all strings starting with a particular prefix. Here is a simple list of
600,000 strings and two identical methods of selecting only the ones that start
with 'foo':

# a very large list of strings
strings = ['foo', 'foobar', 'baz', 'qux',
           'python', 'Guido Van Rossum'] * 100000

method1 = [x for x in strings if x.startswith('foo')]

method2 = [x for x in strings if x[:3] == 'foo']

It looks like they should be about the same performance-wise, right? We can
check for sure using %time:



In [561]: %time method1 = [x for x in strings if x.startswith('foo')]
CPU times: user 0.19 s, sys: 0.00 s, total: 0.19 s
Wall time: 0.19 s

In [562]: %time method2 = [x for x in strings if x[:3] == 'foo']
CPU times: user 0.09 s, sys: 0.00 s, total: 0.09 s
Wall time: 0.09 s

The Wall time (short for “wall-clock time”) is the main number of interest.
So, it looks like the first method takes more than twice as long, but it’s not a
very precise measurement. If you try %time-ing those statements multiple
times yourself, you’ll find that the results are somewhat variable. To get a
more precise measurement, use the %timeit magic function. Given an
arbitrary statement, it has a heuristic to run a statement multiple times to
produce a more accurate average runtime:

In [563]: %timeit [x for x in strings if x.startswith('foo')]
10 loops, best of 3: 159 ms per loop

In [564]: %timeit [x for x in strings if x[:3] == 'foo']
10 loops, best of 3: 59.3 ms per loop

This seemingly innocuous example illustrates that it is worth understanding
the performance characteristics of the Python standard library, NumPy,
pandas, and other libraries used in this book. In larger-scale data analysis
applications, those milliseconds will start to add up!

%timeit is especially useful for analyzing statements and functions with very
short execution times, even at the level of microseconds (millionths of a
second) or nanoseconds (billionths of a second). These may seem like
insignificant amounts of time, but of course a 20 microsecond function
invoked 1 million times takes 15 seconds longer than a 5 microsecond
function. In the preceding example, we could very directly compare the two
string operations to understand their performance characteristics:

In [565]: x = 'foobar'

In [566]: y = 'foo'

In [567]: %timeit x.startswith(y)
1000000 loops, best of 3: 267 ns per loop



In [568]: %timeit x[:3] == y
10000000 loops, best of 3: 147 ns per loop



Basic Profiling: %prun and %run -p
Profiling code is closely related to timing code, except it is concerned with
determining where time is spent. The main Python profiling tool is the
cProfile module, which is not specific to IPython at all. cProfile executes
a program or any arbitrary block of code while keeping track of how much
time is spent in each function.

A common way to use cProfile is on the command line, running an entire
program and outputting the aggregated time per function. Suppose we had a
simple script that does some linear algebra in a loop (computing the
maximum absolute eigenvalues of a series of 100 × 100 matrices):

import numpy as np
from numpy.linalg import eigvals

def run_experiment(niter=100):
    K = 100
    results = []
    for _ in xrange(niter):
        mat = np.random.randn(K, K)
        max_eigenvalue = np.abs(eigvals(mat)).max()
        results.append(max_eigenvalue)
    return results
some_results = run_experiment()
print 'Largest one we saw: %s' % np.max(some_results)

You can run this script through cProfile using the following in the
command line:

python -m cProfile cprof_example.py

If you try that, you’ll find that the output is sorted by function name. This
makes it a bit hard to get an idea of where the most time is spent, so it’s very
common to specify a sort order using the -s flag:

$ python -m cProfile -s cumulative cprof_example.py
Largest one we saw: 11.923204422
    15116 function calls (14927 primitive calls) in 0.720 seconds

Ordered by: cumulative time



ncalls  tottime  percall  cumtime  percall filename:lineno(function)
     1    0.001    0.001    0.721    0.721 cprof_example.py:1(<module>)
   100    0.003    0.000    0.586    0.006 linalg.py:702(eigvals)
   200    0.572    0.003    0.572    0.003 {numpy.linalg.lapack_lite.dgeev}
     1    0.002    0.002    0.075    0.075 __init__.py:106(<module>)
   100    0.059    0.001    0.059    0.001 {method 'randn')
     1    0.000    0.000    0.044    0.044 add_newdocs.py:9(<module>)
     2    0.001    0.001    0.037    0.019 __init__.py:1(<module>)
     2    0.003    0.002    0.030    0.015 __init__.py:2(<module>)
     1    0.000    0.000    0.030    0.030 type_check.py:3(<module>)
     1    0.001    0.001    0.021    0.021 __init__.py:15(<module>)
     1    0.013    0.013    0.013    0.013 numeric.py:1(<module>)
     1    0.000    0.000    0.009    0.009 __init__.py:6(<module>)
     1    0.001    0.001    0.008    0.008 __init__.py:45(<module>)
   262    0.005    0.000    0.007    0.000 function_base.py:3178(add_newdoc)
   100    0.003    0.000    0.005    0.000 linalg.py:162(_assertFinite)
   ...

Only the first 15 rows of the output are shown. It’s easiest to read by
scanning down the cumtime column to see how much total time was spent
inside each function. Note that if a function calls some other function, the
clock does not stop running. cProfile records the start and end time of each
function call and uses that to produce the timing.

In addition to the command-line usage, cProfile can also be used
programmatically to profile arbitrary blocks of code without having to run a
new process. IPython has a convenient interface to this capability using the
%prun command and the -p option to %run. %prun takes the same “command-
line options” as cProfile but will profile an arbitrary Python statement
instead of a whole .py file:

In [4]: %prun -l 7 -s cumulative run_experiment()
         4203 function calls in 0.643 seconds

Ordered by: cumulative time
List reduced from 32 to 7 due to restriction <7>

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
     1    0.000    0.000    0.643    0.643 <string>:1(<module>)
     1    0.001    0.001    0.643    0.643 cprof_example.py:4(run_experiment)
   100    0.003    0.000    0.583    0.006 linalg.py:702(eigvals)
   200    0.569    0.003    0.569    0.003 {numpy.linalg.lapack_lite.dgeev}
   100    0.058    0.001    0.058    0.001 {method 'randn'}
   100    0.003    0.000    0.005    0.000 linalg.py:162(_assertFinite)
   200    0.002    0.000    0.002    0.000 {method 'all' of 'numpy.ndarray'}



Similarly, calling %run -p -s cumulative cprof_example.py has the same
effect as the command-line approach, except you never have to leave
IPython.

In the Jupyter notebook, you can use the %%prun magic (two % signs) to
profile an entire code block. This pops up a separate window with the profile
output. This can be useful in getting possibly quick answers to questions like,
“Why did that code block take so long to run?”

There are other tools available that help make profiles easier to understand
when you are using IPython or Jupyter. One of these is SnakeViz, which
produces an interactive visualization of the profile results using d3.js.

https://github.com/jiffyclub/snakeviz/


Profiling a Function Line by Line
In some cases the information you obtain from %prun (or another cProfile-
based profile method) may not tell the whole story about a function’s
execution time, or it may be so complex that the results, aggregated by
function name, are hard to interpret. For this case, there is a small library
called line_profiler (obtainable via PyPI or one of the package
management tools). It contains an IPython extension enabling a new magic
function %lprun that computes a line-by-line-profiling of one or more
functions. You can enable this extension by modifying your IPython
configuration (see the IPython documentation or the section on configuration
later in this chapter) to include the following line:

# A list of dotted module names of IPython extensions to load.
c.TerminalIPythonApp.extensions = ['line_profiler']

You can also run the command:

%load_ext line_profiler

line_profiler can be used programmatically (see the full documentation),
but it is perhaps most powerful when used interactively in IPython. Suppose
you had a module prof_mod with the following code doing some NumPy
array operations:

from numpy.random import randn

def add_and_sum(x, y):
    added = x + y
    summed = added.sum(axis=1)
    return summed

def call_function():
    x = randn(1000, 1000)
    y = randn(1000, 1000)
    return add_and_sum(x, y)

If we wanted to understand the performance of the add_and_sum function,



%prun gives us the following:

In [569]: %run prof_mod

In [570]: x = randn(3000, 3000)

In [571]: y = randn(3000, 3000)

In [572]: %prun add_and_sum(x, y)
         4 function calls in 0.049 seconds
   Ordered by: internal time
   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.036    0.036    0.046    0.046 prof_mod.py:3(add_and_sum)
        1    0.009    0.009    0.009    0.009 {method 'sum' of 
'numpy.ndarray'}
        1    0.003    0.003    0.049    0.049 <string>:1(<module>)

This is not especially enlightening. With the line_profiler IPython
extension activated, a new command %lprun is available. The only difference
in usage is that we must instruct %lprun which function or functions we wish
to profile. The general syntax is:

%lprun -f func1 -f func2 statement_to_profile

In this case, we want to profile add_and_sum, so we run:

In [573]: %lprun -f add_and_sum add_and_sum(x, y)
Timer unit: 1e-06 s
File: prof_mod.py
Function: add_and_sum at line 3
Total time: 0.045936 s
Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     3                                           def add_and_sum(x, y):
     4         1        36510  36510.0     79.5      added = x + y
     5         1         9425   9425.0     20.5      summed = 
added.sum(axis=1)
     6         1            1      1.0      0.0      return summed

This can be much easier to interpret. In this case we profiled the same
function we used in the statement. Looking at the preceding module code, we
could call call_function and profile that as well as add_and_sum, thus
getting a full picture of the performance of the code:

In [574]: %lprun -f add_and_sum -f call_function call_function()



Timer unit: 1e-06 s
File: prof_mod.py
Function: add_and_sum at line 3
Total time: 0.005526 s
Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     3                                           def add_and_sum(x, y):
     4         1         4375   4375.0     79.2      added = x + y
     5         1         1149   1149.0     20.8      summed = 
added.sum(axis=1)
     6         1            2      2.0      0.0      return summed
File: prof_mod.py
Function: call_function at line 8
Total time: 0.121016 s
Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     8                                           def call_function():
     9         1        57169  57169.0     47.2      x = randn(1000, 1000)
    10         1        58304  58304.0     48.2      y = randn(1000, 1000)
    11         1         5543   5543.0      4.6      return add_and_sum(x, y)

As a general rule of thumb, I tend to prefer %prun (cProfile) for “macro”
profiling and %lprun (line_profiler) for “micro” profiling. It’s worthwhile
to have a good understanding of both tools.

NOTE
The reason that you must explicitly specify the names of the functions you want
to profile with %lprun is that the overhead of “tracing” the execution time of
each line is substantial. Tracing functions that are not of interest has the
potential to significantly alter the profile results.



B.4 Tips for Productive Code Development Using
IPython
Writing code in a way that makes it easy to develop, debug, and ultimately
use interactively may be a paradigm shift for many users. There are
procedural details like code reloading that may require some adjustment as
well as coding style concerns.

Therefore, implementing most of the strategies described in this section is
more of an art than a science and will require some experimentation on your
part to determine a way to write your Python code that is effective for you.
Ultimately you want to structure your code in a way that makes it easy to use
iteratively and to be able to explore the results of running a program or
function as effortlessly as possible. I have found software designed with
IPython in mind to be easier to work with than code intended only to be run
as as standalone command-line application. This becomes especially
important when something goes wrong and you have to diagnose an error in
code that you or someone else might have written months or years
beforehand.



Reloading Module Dependencies
In Python, when you type import some_lib, the code in some_lib is
executed and all the variables, functions, and imports defined within are
stored in the newly created some_lib module namespace. The next time you
type import some_lib, you will get a reference to the existing module
namespace. The potential difficulty in interactive IPython code development
comes when you, say, %run a script that depends on some other module
where you may have made changes. Suppose I had the following code in
test_script.py:

import some_lib

x = 5
y = [1, 2, 3, 4]
result = some_lib.get_answer(x, y)

If you were to execute %run test_script.py then modify some_lib.py, the
next time you execute %run test_script.py you will still get the old version
of some_lib.py because of Python’s “load-once” module system. This
behavior differs from some other data analysis environments, like MATLAB,
which automatically propagate code changes.1 To cope with this, you have a
couple of options. The first way is to use the reload function in the
importlib module in the standard library:

import some_lib
import importlib

importlib.reload(some_lib)

This guarantees that you will get a fresh copy of some_lib.py every time you
run test_script.py. Obviously, if the dependencies go deeper, it might be a bit
tricky to be inserting usages of reload all over the place. For this problem,
IPython has a special dreload function (not a magic function) for “deep”
(recursive) reloading of modules. If I were to run some_lib.py then type
dreload(some_lib), it will attempt to reload some_lib as well as all of its



dependencies. This will not work in all cases, unfortunately, but when it does
it beats having to restart IPython.



Code Design Tips
There’s no simple recipe for this, but here are some high-level principles I
have found effective in my own work.

Keep relevant objects and data alive
It’s not unusual to see a program written for the command line with a
structure somewhat like the following trivial example:

from my_functions import g

def f(x, y):
    return g(x + y)

def main():
    x = 6
    y = 7.5
    result = x + y

if __name__ == '__main__':
    main()

Do you see what might go wrong if we were to run this program in IPython?
After it’s done, none of the results or objects defined in the main function will
be accessible in the IPython shell. A better way is to have whatever code is in
main execute directly in the module’s global namespace (or in the if
__name__ == '__main__': block, if you want the module to also be
importable). That way, when you %run the code, you’ll be able to look at all
of the variables defined in main. This is equivalent to defining top-level
variables in cells in the Jupyter notebook.

Flat is better than nested
Deeply nested code makes me think about the many layers of an onion. When
testing or debugging a function, how many layers of the onion must you peel
back in order to reach the code of interest? The idea that “flat is better than
nested” is a part of the Zen of Python, and it applies generally to developing
code for interactive use as well. Making functions and classes as decoupled



and modular as possible makes them easier to test (if you are writing unit
tests), debug, and use interactively.

Overcome a fear of longer files
If you come from a Java (or another such language) background, you may
have been told to keep files short. In many languages, this is sound advice;
long length is usually a bad “code smell,” indicating refactoring or
reorganization may be necessary. However, while developing code using
IPython, working with 10 small but interconnected files (under, say, 100 lines
each) is likely to cause you more headaches in general than two or three
longer files. Fewer files means fewer modules to reload and less jumping
between files while editing, too. I have found maintaining larger modules,
each with high internal cohesion, to be much more useful and Pythonic. After
iterating toward a solution, it sometimes will make sense to refactor larger
files into smaller ones.

Obviously, I don’t support taking this argument to the extreme, which would
to be to put all of your code in a single monstrous file. Finding a sensible and
intuitive module and package structure for a large codebase often takes a bit
of work, but it is especially important to get right in teams. Each module
should be internally cohesive, and it should be as obvious as possible where
to find functions and classes responsible for each area of functionality.



B.5 Advanced IPython Features
Making full use of the IPython system may lead you to write your code in a
slightly different way, or to dig into the configuration.



Making Your Own Classes IPython-Friendly
IPython makes every effort to display a console-friendly string representation
of any object that you inspect. For many objects, like dicts, lists, and tuples,
the built-in pprint module is used to do the nice formatting. In user-defined
classes, however, you have to generate the desired string output yourself.
Suppose we had the following simple class:

class Message:
    def __init__(self, msg):
        self.msg = msg

If you wrote this, you would be disappointed to discover that the default
output for your class isn’t very nice:

In [576]: x = Message('I have a secret')

In [577]: x
Out[577]: <__main__.Message instance at 0x60ebbd8>

IPython takes the string returned by the __repr__ magic method (by doing
output = repr(obj)) and prints that to the console. Thus, we can add a
simple __repr__ method to the preceding class to get a more helpful output:

class Message:
    def __init__(self, msg):
        self.msg = msg

    def __repr__(self):
        return 'Message: %s' % self.msg

In [579]: x = Message('I have a secret')

In [580]: x
Out[580]: Message: I have a secret



Profiles and Configuration
Most aspects of the appearance (colors, prompt, spacing between lines, etc.)
and behavior of the IPython and Jupyter environments are configurable
through an extensive configuration system. Here are some things you can do
via configuration:

Change the color scheme

Change how the input and output prompts look, or remove the blank line
after Out and before the next In prompt

Execute an arbitrary list of Python statements (e.g., imports that you use
all the time or anything else you want to happen each time you launch
IPython)

Enable always-on IPython extensions, like the %lprun magic in
line_profiler

Enabling Jupyter extensions

Define your own magics or system aliases

Configurations for the IPython shell are specified in special
ipython_config.py files, which are usually found in the .ipython/ directory in
your user home directory. Configuration is performed based on a particular
profile. When you start IPython normally, you load up, by default, the default
profile, stored in the profile_default directory. Thus, on my Linux OS the full
path to my default IPython configuration file is:

/home/wesm/.ipython/profile_default/ipython_config.py

To initialize this file on your system, run in the terminal:

ipython profile create

I’ll spare you the gory details of what’s in this file. Fortunately it has



comments describing what each configuration option is for, so I will leave it
to the reader to tinker and customize. One additional useful feature is that it’s
possible to have multiple profiles. Suppose you wanted to have an alternative
IPython configuration tailored for a particular application or project. Creating
a new profile is as simple as typing something like the following:

ipython profile create secret_project

Once you’ve done this, edit the config files in the newly created
profile_secret_project directory and then launch IPython like so:

$ ipython --profile=secret_project
Python 3.5.1 | packaged by conda-forge | (default, May 20 2016, 05:22:56)
Type "copyright", "credits" or "license" for more information.

IPython 5.1.0 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.

IPython profile: secret_project

As always, the online IPython documentation is an excellent resource for
more on profiles and configuration.

Configuration for Jupyter works a little differently because you can use its
notebooks with languages other than Python. To create an analogous Jupyter
config file, run:

jupyter notebook --generate-config

This writes a default config file to the .jupyter/jupyter_notebook_config.py
directory in your home directory. After editing this to suit your needs, you
may rename it to a different file, like:

$ mv ~/.jupyter/jupyter_notebook_config.py ~/.jupyter/my_custom_config.py

When launching Jupyter, you can then add the --config argument:

jupyter notebook --config=~/.jupyter/my_custom_config.py



B.6 Conclusion
As you work through the code examples in this book and grow your skills as
a Python programmer, I encourage you to keep learning about the IPython
and Jupyter ecosystems. Since these projects have been designed to assist
user productivity, you may discover tools that enable you to do your work
more easily than using the Python language and its computational libraries by
themselves.

You can also find a wealth of interesting Jupyter notebooks on the nbviewer
website.

Since a module or package may be imported in many different places in a particular
program, Python caches a module’s code the first time it is imported rather than
executing the code in the module every time. Otherwise, modularity and good code
organization could potentially cause inefficiency in an application.

1

https://nbviewer.jupyter.org/


Index

Symbols

! (exclamation point), Shell Commands and Aliases

!= operator, Binary operators and comparisons, Boolean Indexing,
Universal Functions: Fast Element-Wise Array Functions

# (hash mark), Comments

% (percent sign), About Magic Commands, Basic Profiling: %prun and
%run -p

%matplotlib magic function, A Brief matplotlib API Primer

& operator, Binary operators and comparisons, set, set, Boolean
Indexing

&= operator, set

() (parentheses), Function and object method calls, Tuple

* (asterisk), Introspection

* operator, Binary operators and comparisons

** operator, Binary operators and comparisons

+ operator, Binary operators and comparisons, Tuple, Concatenating
and combining lists

- operator, Binary operators and comparisons, set



-= operator, set

. (period), Tab Completion

/ operator, Binary operators and comparisons

// operator, Binary operators and comparisons, Numeric types

: (colon), Indentation, not braces

; (semicolon), Indentation, not braces

< operator, Binary operators and comparisons, Universal Functions:
Fast Element-Wise Array Functions

<= operator, Binary operators and comparisons, Universal Functions:
Fast Element-Wise Array Functions

== operator, Binary operators and comparisons, Universal Functions:
Fast Element-Wise Array Functions

> operator, Binary operators and comparisons, Universal Functions:
Fast Element-Wise Array Functions

>= operator, Binary operators and comparisons, Universal Functions:
Fast Element-Wise Array Functions

>>> prompt, The Python Interpreter

? (question mark), Introspection-Introspection

@ symbol, Linear Algebra

[] (square brackets), Tuple, List



\ (backslash), Strings, Regular Expressions

^ operator, Binary operators and comparisons, set

^= operator, set

_ (underscore), Tab Completion, Unpacking tuples, NumPy dtype
Hierarchy, Input and Output Variables

{} (curly braces), dict, set

| operator, Binary operators and comparisons, set-set, Boolean Indexing

|= operator, set

~ operator, Boolean Indexing

A

%a datetime format, Converting Between String and Datetime

%A datetime format, Converting Between String and Datetime

a(rgs) debugger command, Interactive Debugger

abs function, Universal Functions: Fast Element-Wise Array Functions,
Example: Random Walks

accumulate method, ufunc Instance Methods

accumulations, Summarizing and Computing Descriptive Statistics

add binary function, Universal Functions: Fast Element-Wise Array
Functions

add method, set, Arithmetic methods with fill values



add_categories method, Categorical Methods

add_constant function, Estimating Linear Models

add_patch method, Annotations and Drawing on a Subplot

add_subplot method, Figures and Subplots

aggfunc method, Pivot Tables and Cross-Tabulation

aggregate (agg) method, Data Aggregation, Group Transforms and
“Unwrapped” GroupBys

aggregations (reductions), Mathematical and Statistical Methods

%alias magic function, Interacting with the Operating System-Shell
Commands and Aliases

all method, Methods for Boolean Arrays, ufunc Instance Methods

and keyword, Tab Completion, Booleans, Boolean Indexing

annotate function, Annotations and Drawing on a Subplot

annotating in matplotlib, Annotations and Drawing on a Subplot-
Annotations and Drawing on a Subplot

anonymous (lambda) functions, Anonymous (Lambda) Functions

any built-in function, Tab Completion

any method, Methods for Boolean Arrays, Simulating Many Random
Walks at Once, Detecting and Filtering Outliers

Apache Parquet format, Using HDF5 Format



APIs, pandas interacting with, Interacting with Web APIs

append method, Adding and removing elements, Index Objects

append mode for files, Files and the Operating System

apply method, Function Application and Mapping, Unique Values, Value
Counts, and Membership, Apply: General split-apply-combine-Example:
Group-Wise Linear Regression, Group Transforms and “Unwrapped”
GroupBys-Group Transforms and “Unwrapped” GroupBys

applymap method, Function Application and Mapping

arange function, Import Conventions, Creating ndarrays

arccos function, Universal Functions: Fast Element-Wise Array
Functions

arccosh function, Universal Functions: Fast Element-Wise Array
Functions

arcsin function, Universal Functions: Fast Element-Wise Array
Functions

arcsinh function, Universal Functions: Fast Element-Wise Array
Functions

arctan function, Universal Functions: Fast Element-Wise Array
Functions

arctanh function, Universal Functions: Fast Element-Wise Array
Functions

argmax method, Mathematical and Statistical Methods, Example:



Random Walks, Summarizing and Computing Descriptive Statistics

argmin method, Mathematical and Statistical Methods, Summarizing
and Computing Descriptive Statistics

argpartition method, Partially Sorting Arrays

argsort method, Indirect Sorts: argsort and lexsort, Partially Sorting
Arrays

arithmetic operations

between DataFrame and Series, Operations between DataFrame and
Series

between objects with different indexes, Arithmetic and Data
Alignment

on date and time periods, Periods and Period Arithmetic-Creating a
PeriodIndex from Arrays

with fill values, Arithmetic methods with fill values

with NumPy arrays, Arithmetic with NumPy Arrays

array function, Creating ndarrays, Creating ndarrays

arrays (see ndarray object)

arrow function, Annotations and Drawing on a Subplot

as keyword, Imports

asarray function, Creating ndarrays



asfreq method, Period Frequency Conversion, Upsampling and
Interpolation

assign method, Techniques for Method Chaining

associative arrays (see dicts)

asterisk (*), Introspection

astype method, Data Types for ndarrays

as_ordered methdo, Categorical Methods

as_ordered method, Categorical Type in pandas

as_unordered method, Categorical Methods

attributes

for data types, Structured and Record Arrays

for ndarrays, Creating ndarrays, Reshaping Arrays, Broadcasting
Over Other Axes, The Importance of Contiguous Memory

hidden, Tab Completion

in DataFrame data structure, DataFrame

in Python, Attributes and methods, Correlation and Covariance

in Series data structure, Series

automagic feature, About Magic Commands

%automagic magic function, About Magic Commands



average method, Sorting and Ranking

axes

broadcasting over, Broadcasting Over Other Axes

concatenating along, Combining and Merging Datasets, Concatenating
Along an Axis-Concatenating Along an Axis

renaming indexes for, Renaming Axis Indexes

selecting indexes with duplicate labels, Axis Indexes with Duplicate
Labels

swapping in arrays, Transposing Arrays and Swapping Axes

AxesSubplot object, Figures and Subplots, Ticks, Labels, and Legends

axis method, Summarizing and Computing Descriptive Statistics

B

%b datetime format, Converting Between String and Datetime

%B datetime format, Converting Between String and Datetime

b(reak) debugger command, Interactive Debugger

backslash (\), Strings, Regular Expressions

bang (!), Shell Commands and Aliases

bar method, Bar Plots

bar plots, Bar Plots-Bar Plots



barh method, Bar Plots

barplot function, Bar Plots

base frequency, Frequencies and Date Offsets

bcolz binary format, Binary Data Formats

beta function, Pseudorandom Number Generation

binary data formats

about, Binary Data Formats

binary mode for files, Files and the Operating System-Bytes and
Unicode with Files

HDF5 format, Using HDF5 Format-Using HDF5 Format

Microsoft Excel files, Reading Microsoft Excel Files-Reading
Microsoft Excel Files

binary moving window functions, Binary Moving Window Functions

binary operators and comparisons in Python, Binary operators and
comparisons, set

binary searches of lists, Binary search and maintaining a sorted list

binary universal functions, Universal Functions: Fast Element-Wise
Array Functions, Universal Functions: Fast Element-Wise Array
Functions

binding, defined, Variables and argument passing, Concatenating Along
an Axis



binning continuous data, Discretization and Binning

binomial function, Pseudorandom Number Generation

bisect module, Binary search and maintaining a sorted list

Bitly dataset example, 1.USA.gov Data from Bitly-Counting Time Zones
with pandas

Blosc compression library, Binary Data Formats

Bokeh tool, Other Python Visualization Tools

%bookmark magic function, Interacting with the Operating System,
Directory Bookmark System

bookmarking directories in IPython, Directory Bookmark System

bool data type, Scalar Types, Booleans, Data Types for ndarrays

bool function, Type casting

boolean arrays, Methods for Boolean Arrays

boolean indexing, Boolean Indexing-Boolean Indexing

braces {}, dict, set

break keyword, for loops

broadcasting, ndarrays and, Arithmetic with NumPy Arrays, Repeating
Elements: tile and repeat, Broadcasting-Setting Array Values by
Broadcasting

bucket analysis, Quantile and Bucket Analysis



build_design_matrices function, Data Transformations in Patsy
Formulas

builtins module, Data Transformations in Patsy Formulas

bytes data type, Scalar Types, Bytes and Unicode

C

%C datetime format, Converting Between String and Datetime

C order (row major order), C Versus Fortran Order, The Importance of
Contiguous Memory

c(ontinue) debugger command, Interactive Debugger

calendar module, Date and Time Data Types and Tools

Cartesian product, itertools module, Database-Style DataFrame Joins

casefold method, String Object Methods

cat method, Vectorized String Functions in pandas

categorical data

basic overview, Categorical Data-Creating dummy variables for
modeling

facet grids and, Facet Grids and Categorical Data

Patsy library and, Categorical Data and Patsy-Categorical Data and
Patsy

Categorical object, Discretization and Binning, Quantile and Bucket
Analysis, Categorical Data-Creating dummy variables for modeling



%cd magic function, Interacting with the Operating System, Directory
Bookmark System

ceil function, Universal Functions: Fast Element-Wise Array Functions

center method, Vectorized String Functions in pandas

chaining methods, Techniques for Method Chaining-The pipe Method

chisquare function, Pseudorandom Number Generation

clear method, set

clipboard, executing code from, Executing Code from the Clipboard

close method, Files and the Operating System, Files and the Operating
System

closed attribute, Files and the Operating System

!cmd command, Interacting with the Operating System

collections module, Default values

colon (:), Indentation, not braces

color selection in matplotlib, Colors, Markers, and Line Styles

column major order (Fortran order), C Versus Fortran Order, The
Importance of Contiguous Memory

columns method, Pivot Tables and Cross-Tabulation

column_stack function, Concatenating and Splitting Arrays



combinations function, itertools module

combine_first method, Combining and Merging Datasets, Combining
Data with Overlap

combining data (see merging data)

command history

input and output variables, Input and Output Variables

reusing, Searching and Reusing the Command History

searching, Searching and Reusing the Command History

using in IPython, Using the Command History-Input and Output
Variables

commands

debugger, Interactive Debugger

magic functions, About Magic Commands-About Magic Commands

updating packages, Installing or Updating Python Packages

comments in Python, Comments

compile method, Regular Expressions

complex128 data type, Data Types for ndarrays

complex256 data type, Data Types for ndarrays

complex64 data type, Data Types for ndarrays



concat function, Combining and Merging Datasets, Merging on Index,
Concatenating Along an Axis-Concatenating Along an Axis, Column-
Wise and Multiple Function Application

concatenate function, Concatenating Along an Axis, Concatenating and
Splitting Arrays

concatenating

along an axis, Combining and Merging Datasets, Concatenating Along
an Axis-Concatenating Along an Axis

lists, Concatenating and combining lists

strings, Strings

conda update command, Installing or Updating Python Packages

conditional logic as array operations, Expressing Conditional Logic as
Array Operations

configuration for IPython, Profiles and Configuration-Profiles and
Configuration

configuring matplotlib, matplotlib Configuration

contains method, Vectorized String Functions in pandas

contiguous memory, The Importance of Contiguous Memory-The
Importance of Contiguous Memory

continue keyword, for loops

continuing education, Continuing Your Education



control flow in Python, Control Flow-Ternary expressions

coordinated universal time (UTC), Time Zone Handling

copy method, Basic Indexing and Slicing, DataFrame

copysign function, Universal Functions: Fast Element-Wise Array
Functions

corr aggregation function, Binary Moving Window Functions

corr method, Correlation and Covariance

correlation, Correlation and Covariance-Correlation and Covariance,
Example: Group Weighted Average and Correlation

corrwith method, Correlation and Covariance

cos function, Universal Functions: Fast Element-Wise Array Functions

cosh function, Universal Functions: Fast Element-Wise Array Functions

count method, Strings, Tuple methods, Summarizing and Computing
Descriptive Statistics, String Object Methods-String Object Methods,
Vectorized String Functions in pandas, Data Aggregation

cov method, Correlation and Covariance

covariance, Correlation and Covariance-Correlation and Covariance

%cpaste magic function, Executing Code from the Clipboard, About
Magic Commands

cProfile module, Basic Profiling: %prun and %run -p-Basic Profiling:



%prun and %run -p

cross-tabulation, Cross-Tabulations: Crosstab

crosstab function, Cross-Tabulations: Crosstab

cross_val_score function, Introduction to scikit-learn

CSV files, Reading and Writing Data in Text Format, Writing Data to
Text Format-Working with Delimited Formats

csv module, Working with Delimited Formats

Ctrl-A keyboard shortcut, Terminal Keyboard Shortcuts

Ctrl-B keyboard shortcut, Terminal Keyboard Shortcuts

Ctrl-C keyboard shortcut, Interrupting running code, Terminal
Keyboard Shortcuts

Ctrl-D keyboard shortcut, The Python Interpreter

Ctrl-E keyboard shortcut, Terminal Keyboard Shortcuts

Ctrl-F keyboard shortcut, Terminal Keyboard Shortcuts

Ctrl-K keyboard shortcut, Terminal Keyboard Shortcuts

Ctrl-L keyboard shortcut, Terminal Keyboard Shortcuts

Ctrl-N keyboard shortcut, Terminal Keyboard Shortcuts, Searching and
Reusing the Command History

Ctrl-P keyboard shortcut, Terminal Keyboard Shortcuts, Searching and
Reusing the Command History



Ctrl-R keyboard shortcut, Terminal Keyboard Shortcuts, Searching and
Reusing the Command History

Ctrl-Shift-V keyboard shortcut, Terminal Keyboard Shortcuts

Ctrl-U keyboard shortcut, Terminal Keyboard Shortcuts

cummax method, Summarizing and Computing Descriptive Statistics

cummin method, Summarizing and Computing Descriptive Statistics

cumprod method, Mathematical and Statistical Methods, Summarizing
and Computing Descriptive Statistics

cumsum method, Mathematical and Statistical Methods, Summarizing
and Computing Descriptive Statistics, ufunc Instance Methods

curly braces {}, dict, set

currying, Currying: Partial Argument Application

cut function, Discretization and Binning, Quantile and Bucket Analysis

c_ object, Stacking helpers: r_ and c_

D

%d datetime format, Dates and times, Converting Between String and
Datetime

%D datetime format, Dates and times, Converting Between String and
Datetime

d(own) debugger command, Interactive Debugger



data aggregation

about, Data Aggregation

column-wise, Column-Wise and Multiple Function Application-
Column-Wise and Multiple Function Application

multiple function application, Column-Wise and Multiple Function
Application-Column-Wise and Multiple Function Application

returning data without row indexes, Returning Aggregated Data
Without Row Indexes

data alignment, pandas library and, Arithmetic and Data Alignment-
Operations between DataFrame and Series

data analysis with Python

about, Why Python for Data Analysis?, Python Language Basics,
IPython, and Jupyter Notebooks-Python Language Basics, IPython,
and Jupyter Notebooks

glue code, Python as Glue

MovieLens 1M dataset example, MovieLens 1M Dataset-Measuring
Rating Disagreement

restrictions to consider, Why Not Python?

US baby names dataset example, US Baby Names 1880–2010-Boy
names that became girl names (and vice versa)

US Federal Election Commission database example, 2012 Federal
Election Commission Database-Donation Statistics by State



USA.gov data from Bitly example, 1.USA.gov Data from Bitly-
Counting Time Zones with pandas

USDA food database example, USDA Food Database-USDA Food
Database

“two-language” problem, Solving the “Two-Language” Problem

data cleaning and preparation (see data wrangling)

data loading (see reading data)

data manipulation (see data wrangling)

data munging (see data wrangling)

data selection

for axis indexes with duplicate labels, Axis Indexes with Duplicate
Labels

in pandas library, Indexing, Selection, and Filtering-Selection with loc
and iloc

time series data, Indexing, Selection, Subsetting

data structures

about, Data Structures and Sequences

dict comprehensions, List, Set, and Dict Comprehensions

dicts, dict-Valid dict key types

for pandas library, Introduction to pandas Data Structures-Index
Objects



list comprehensions, List, Set, and Dict Comprehensions-Nested list
comprehensions

lists, List-Slicing

set comprehensions, List, Set, and Dict Comprehensions

sets, set-set

tuples, Tuple-Tuple methods

data transformation (see transforming data)

data types

attributes for, Structured and Record Arrays

defined, Data Types for ndarrays, ndarray Object Internals

for date and time data, Date and Time Data Types and Tools

for ndarrays, Data Types for ndarrays-Data Types for ndarrays

in Python, Scalar Types-Dates and times

nested, Nested dtypes and Multidimensional Fields

NumPy hierarchy, NumPy dtype Hierarchy

parent classes of, NumPy dtype Hierarchy

data wrangling

combining and merging datasets, Combining and Merging Datasets-
Combining Data with Overlap



defined, Jargon

handling missing data, Handling Missing Data-Filling In Missing Data

hierarchical indexing, Hierarchical Indexing-Indexing with a
DataFrame’s columns, Reshaping with Hierarchical Indexing

pivoting data, Pivoting “Long” to “Wide” Format-Pivoting “Wide” to
“Long” Format

reshaping data, Reshaping with Hierarchical Indexing

string manipulation, String Manipulation-Vectorized String Functions
in pandas

transforming data, Data Transformation-Computing
Indicator/Dummy Variables

working with delimited formats, Working with Delimited Formats-
Working with Delimited Formats

databases

DataFrame joins, Database-Style DataFrame Joins-Database-Style
DataFrame Joins

pandas interacting with, Interacting with Databases

storing data in, Pivoting “Long” to “Wide” Format

DataFrame data structure

about, pandas, DataFrame-DataFrame, Nested dtypes and
Multidimensional Fields



database-stye joins, Database-Style DataFrame Joins-Database-Style
DataFrame Joins

indexing with columns, Indexing with a DataFrame’s columns

JSON data and, JSON Data

operations between Series and, Operations between DataFrame and
Series

optional function arguments, Reading and Writing Data in Text
Format

plot method arguments, Line Plots

possible data inputs to, DataFrame

ranking data in, Sorting and Ranking

sorting considerations, Sorting and Ranking, Indirect Sorts: argsort
and lexsort

summary statistics methods for, Correlation and Covariance

DataOffset object, Operations with Time Zone−Aware Timestamp
Objects

datasets

combining and merging, Combining and Merging Datasets-Combining
Data with Overlap

MovieLens 1M example, MovieLens 1M Dataset-Measuring Rating
Disagreement



US baby names example, US Baby Names 1880–2010-Boy names that
became girl names (and vice versa)

US Federal Election Commission database example, 2012 Federal
Election Commission Database-Donation Statistics by State

USA.gov data from Bitly example, 1.USA.gov Data from Bitly-
Counting Time Zones with pandas

USDA food database example, USDA Food Database-USDA Food
Database

date data type, Dates and times, Date and Time Data Types and Tools

date offsets, Frequencies and Date Offsets, Shifting dates with offsets-
Shifting dates with offsets

date ranges, generating, Generating Date Ranges-Generating Date
Ranges

dates and times

about, Dates and times

converting between strings and datetime, Converting Between String
and Datetime-Converting Between String and Datetime

data types and tools, Date and Time Data Types and Tools

formatting specifications, Converting Between String and Datetime,
Converting Between String and Datetime

generating date ranges, Generating Date Ranges-Generating Date
Ranges



period arithmetic and, Periods and Period Arithmetic-Creating a
PeriodIndex from Arrays

datetime data type

about, Dates and times, Date and Time Data Types and Tools-Date
and Time Data Types and Tools

converting between strings and, Converting Between String and
Datetime-Converting Between String and Datetime

format specification for, Converting Between String and Datetime

datetime module, Dates and times, Date and Time Data Types and Tools

datetime64 data type, Time Series Basics

DatetimeIndex class, Time Series Basics, Generating Date Ranges, Time
Zone Localization and Conversion

dateutil package, Converting Between String and Datetime

date_range function, Generating Date Ranges-Generating Date Ranges

daylight saving time (DST), Time Zone Handling

debug function, Other ways to make use of the debugger

%debug magic function, Exceptions in IPython, Interactive Debugger

debugger, IPython, Interactive Debugger-Other ways to make use of the
debugger

decode method, Bytes and Unicode



def keyword, Functions, Anonymous (Lambda) Functions

default values for dicts, Default values

defaultdict class, Default values

del keyword, dict, DataFrame

del method, DataFrame

delete method, Index Objects

delimited formats, working with, Working with Delimited Formats-
Working with Delimited Formats

dense method, Sorting and Ranking

density plots, Histograms and Density Plots-Histograms and Density
Plots

deque (double-ended queue), Adding and removing elements

describe method, Summarizing and Computing Descriptive Statistics,
Data Aggregation

design matrix, Creating Model Descriptions with Patsy

det function, Linear Algebra

development tools for IPython (see software development tools for
IPython)

%dhist magic function, Interacting with the Operating System

diag function, Linear Algebra



Dialect class, Working with Delimited Formats

dict comprehensions, List, Set, and Dict Comprehensions

dict function, Creating dicts from sequences

dictionary-encoded representation, Background and Motivation

dicts (data structures)

about, dict

creating from sequences, Creating dicts from sequences

DataFrame data structure as, DataFrame

default values, Default values

grouping with, Grouping with Dicts and Series

Series data structure as, Series

valid key types, Valid dict key types

diff method, Summarizing and Computing Descriptive Statistics

difference method, set, Index Objects

difference_update method, set

dimension tables, Background and Motivation

directories, bookmarking in IPython, Directory Bookmark System

%dirs magic function, Interacting with the Operating System



discretization, Discretization and Binning

distplot method, Histograms and Density Plots

div method, Arithmetic methods with fill values

divide function, Universal Functions: Fast Element-Wise Array
Functions

divmod function, Universal Functions: Fast Element-Wise Array
Functions

dmatrices function, Creating Model Descriptions with Patsy

dnorm function, Estimating Linear Models

dot function, Transposing Arrays and Swapping Axes, Linear Algebra-
Linear Algebra

downsampling, Resampling and Frequency Conversion, Downsampling-
Open-High-Low-Close (OHLC) resampling

dreload function, Reloading Module Dependencies

drop method, Index Objects, Dropping Entries from an Axis

dropna method, Handling Missing Data-Filtering Out Missing Data,
Example: Filling Missing Values with Group-Specific Values, Pivot
Tables and Cross-Tabulation

drop_duplicates method, Removing Duplicates

DST (daylight saving time), Time Zone Handling



dstack function, Concatenating and Splitting Arrays

dtype (see data types)

dtype attribute, The NumPy ndarray: A Multidimensional Array Object,
Data Types for ndarrays

duck typing, Duck typing

dummy variables, Computing Indicator/Dummy Variables-Computing
Indicator/Dummy Variables, Creating dummy variables for modeling,
Interfacing Between pandas and Model Code, Categorical Data and
Patsy

dumps function, JSON Data

duplicate data

axis indexes with duplicate labels, Axis Indexes with Duplicate Labels

removing, Removing Duplicates

time series with duplicate indexes, Time Series with Duplicate Indices

duplicated method, Removing Duplicates

dynamic references in Python, Dynamic references, strong types

E

edit-compile-run workflow, IPython and Jupyter

education, continuing, Continuing Your Education

eig function, Linear Algebra



elif statement, if, elif, and else

else statement, if, elif, and else

empty function, Creating ndarrays-Creating ndarrays

empty namespace, The %run Command

empty_like function, Creating ndarrays

encode method, Bytes and Unicode

end-of-line (EOL) markers, Files and the Operating System

endswith method, String Object Methods, Vectorized String Functions in
pandas

enumerate function, enumerate

%env magic function, Interacting with the Operating System

EOL (end-of-line) markers, Files and the Operating System

equal function, Universal Functions: Fast Element-Wise Array
Functions

error handling in Python, Errors and Exception Handling-Exceptions in
IPython

escape characters, Strings

ewm function, Exponentially Weighted Functions

Excel files (Microsoft), Reading Microsoft Excel Files-Reading Microsoft
Excel Files



ExcelFile class, Reading Microsoft Excel Files

exception handling in Python, Errors and Exception Handling-
Exceptions in IPython

exclamation point (!), Shell Commands and Aliases

execute-explore workflow, IPython and Jupyter

exit command, The Python Interpreter

exp function, Universal Functions: Fast Element-Wise Array Functions

expanding function, Moving Window Functions

exponentially-weighted functions, Exponentially Weighted Functions

extend method, Concatenating and combining lists

extract method, Vectorized String Functions in pandas

eye function, Creating ndarrays

F

%F datetime format, Dates and times, Converting Between String and
Datetime

fabs function, Universal Functions: Fast Element-Wise Array Functions

facet grids, Facet Grids and Categorical Data

FacetGrid class, Facet Grids and Categorical Data

factorplot built-in function, Facet Grids and Categorical Data



fancy indexing, Fancy Indexing, Fancy Indexing Equivalents: take and
put

FDIC bank failures list, XML and HTML: Web Scraping

Feather binary file format, Reading and Writing Data in Text Format,
Binary Data Formats

feature engineering, Interfacing Between pandas and Model Code

Federal Election Commission database example, 2012 Federal Election
Commission Database-Donation Statistics by State

Figure object, Figures and Subplots

file management

binary data formats, Binary Data Formats-Reading Microsoft Excel
Files

commonly used file methods, Files and the Operating System

design tips, Overcome a fear of longer files

file input and output with arrays, File Input and Output with Arrays

JSON data, JSON Data-JSON Data

memory-mapped files, Memory-Mapped Files

opening files, Files and the Operating System

Python file modes, Files and the Operating System

reading and writing data in text format, Reading and Writing Data in



Text Format-Writing Data to Text Format

saving plots to files, Saving Plots to File

Web scraping, XML and HTML: Web Scraping-Parsing XML with
lxml.objectify

working with delimited formats, Working with Delimited Formats-
Working with Delimited Formats

filling in data

arithmetic methods with fill values, Arithmetic methods with fill
values

filling in missing data, Filling In Missing Data-Filling In Missing Data,
Replacing Values

with group-specific values, Example: Filling Missing Values with
Group-Specific Values

fillna method, Handling Missing Data, Filling In Missing Data-Filling In
Missing Data, Replacing Values, Example: Filling Missing Values with
Group-Specific Values, Upsampling and Interpolation

fill_value method, Pivot Tables and Cross-Tabulation

filtering

in pandas library, Indexing, Selection, and Filtering-Selection with loc
and iloc

missing data, Filtering Out Missing Data

outliers, Detecting and Filtering Outliers



find method, String Object Methods-String Object Methods

findall method, Regular Expressions, Regular Expressions, Vectorized
String Functions in pandas

finditer method, Regular Expressions

first method, Sorting and Ranking, Data Aggregation

fit method, Estimating Linear Models, Introduction to scikit-learn

fixed frequency, Time Series

flags attribute, The Importance of Contiguous Memory

flatten method, Reshaping Arrays

float data type, Scalar Types, Type casting

float function, Type casting

float128 data type, Data Types for ndarrays

float16 data type, Data Types for ndarrays

float32 data type, Data Types for ndarrays

float64 data type, Data Types for ndarrays

floor function, Universal Functions: Fast Element-Wise Array Functions

floordiv method, Arithmetic methods with fill values

floor_divide function, Universal Functions: Fast Element-Wise Array
Functions



flow control in Python, Control Flow-Ternary expressions

flush method, Files and the Operating System, Memory-Mapped Files

fmax function, Universal Functions: Fast Element-Wise Array Functions

fmin function, Universal Functions: Fast Element-Wise Array Functions

for loops, for loops, Nested list comprehensions

format method, Strings

formatting

dates and times, Converting Between String and Datetime, Converting
Between String and Datetime

strings, Strings

Fortran order (column major order), C Versus Fortran Order, The
Importance of Contiguous Memory

frequencies

base, Frequencies and Date Offsets

basic for time series, Generating Date Ranges

converting between, Date Ranges, Frequencies, and Shifting,
Resampling and Frequency Conversion-Resampling with Periods

date offsets and, Frequencies and Date Offsets

fixed, Time Series

period conversion, Period Frequency Conversion



quarterly period frequencies, Quarterly Period Frequencies

fromfile function, Why Use Structured Arrays?

frompyfunc function, Writing New ufuncs in Python

from_codes method, Categorical Type in pandas

full function, Creating ndarrays

full_like function, Creating ndarrays

functions, Functions

(see also universal functions)

about, Functions

accessing variables, Namespaces, Scope, and Local Functions

anonymous, Anonymous (Lambda) Functions

as objects, Functions Are Objects-Functions Are Objects

currying, Currying: Partial Argument Application

errors and exception handling, Errors and Exception Handling

exponentially-weighted, Exponentially Weighted Functions

generators and, Generators-Exceptions in IPython

grouping with, Grouping with Functions

in Python, Function and object method calls



lambda, Anonymous (Lambda) Functions

magic, About Magic Commands-About Magic Commands

namespaces and, Namespaces, Scope, and Local Functions

object introspection, Introspection

partial argument application, Currying: Partial Argument
Application

profiling line by line, Profiling a Function Line by Line-Profiling a
Function Line by Line

returning multiple values, Returning Multiple Values

sequence, Built-in Sequence Functions-reversed

transforming data using, Transforming Data Using a Function or
Mapping

type inference in, Reading and Writing Data in Text Format

writing fast NumPy functions with Numba, Writing Fast NumPy
Functions with Numba-Creating Custom numpy.ufunc Objects with
Numba

functools module, Currying: Partial Argument Application

G

gamma function, Pseudorandom Number Generation

generators

about, Generators



generator expressions for, Generator expresssions

itertools module and, itertools module

get method, Default values, Vectorized String Functions in pandas

GET request (HTTP), Interacting with Web APIs

getattr function, Attributes and methods

getroot method, Parsing XML with lxml.objectify

get_chunk method, Reading Text Files in Pieces

get_dummies function, Computing Indicator/Dummy Variables,
Creating dummy variables for modeling, Interfacing Between pandas
and Model Code

get_indexer method, Unique Values, Value Counts, and Membership

get_value method, Selection with loc and iloc

GIL (global interpreter lock), Why Not Python?

global keyword, Namespaces, Scope, and Local Functions

glue for code, Python as, Python as Glue

greater function, Universal Functions: Fast Element-Wise Array
Functions

greater_equal function, Universal Functions: Fast Element-Wise Array
Functions

Greenwich Mean Time, Time Zone Handling



group keys, suppressing, Suppressing the Group Keys

group operations

about, Data Aggregation and Group Operations, Advanced GroupBy
Use

cross-tabulation, Cross-Tabulations: Crosstab

data aggregation, Data Aggregation-Returning Aggregated Data
Without Row Indexes

GroupBy mechanics, GroupBy Mechanics-Grouping by Index Levels

pivot tables, Data Aggregation and Group Operations, Pivot Tables
and Cross-Tabulation-Cross-Tabulations: Crosstab

split-apply-combine, GroupBy Mechanics, Apply: General split-apply-
combine-Example: Group-Wise Linear Regression

unwrapped, Group Transforms and “Unwrapped” GroupBys

group weighted average, Example: Group Weighted Average and
Correlation

groupby function, itertools module

groupby method, Computations with Categoricals, numpy.searchsorted:
Finding Elements in a Sorted Array

GroupBy object

about, GroupBy Mechanics-GroupBy Mechanics

grouping by index level, Grouping by Index Levels



grouping with dicts, Grouping with Dicts and Series

grouping with functions, Grouping with Functions

grouping with Series, Grouping with Dicts and Series

iterating over groups, Iterating Over Groups

optimized methods, Data Aggregation

selecting columns, Selecting a Column or Subset of Columns

selecting subset of columns, Selecting a Column or Subset of Columns

groups method, Regular Expressions

H

%H datetime format, Dates and times, Converting Between String and
Datetime

h(elp) debugger command, Interactive Debugger

hasattr function, Attributes and methods

hash function, Valid dict key types

hash maps (see dicts)

hash mark (#), Comments

hashability, Valid dict key types

HDF5 (hierarchical data format 5), Using HDF5 Format-Using HDF5
Format, HDF5 and Other Array Storage Options



HDFStore class, Using HDF5 Format

head method, DataFrame

heapsort method, Alternative Sort Algorithms

hierarchical data format (HDF5), HDF5 and Other Array Storage
Options

hierarchical indexing

about, Hierarchical Indexing-Hierarchical Indexing

in pandas, Reading and Writing Data in Text Format

reordering and sorting levels, Reordering and Sorting Levels

reshaping data with, Reshaping with Hierarchical Indexing

summary statistics by level, Summary Statistics by Level

with DataFrame columns, Indexing with a DataFrame’s columns

%hist magic function, About Magic Commands

hist method, Histograms and Density Plots

histograms, Histograms and Density Plots-Histograms and Density Plots

hsplit function, Concatenating and Splitting Arrays

hstack function, Concatenating and Splitting Arrays

HTML files, XML and HTML: Web Scraping-Parsing XML with
lxml.objectify



HTTP requests, Interacting with Web APIs

Hugunin, Jim, NumPy Basics: Arrays and Vectorized Computation

Hunter, John D., matplotlib, Plotting and Visualization

I

%I datetime format, Dates and times, Converting Between String and
Datetime

identity function, Creating ndarrays

IDEs (Integrated Development Environments), Integrated Development
Environments (IDEs) and Text Editors

idxmax method, Summarizing and Computing Descriptive Statistics

idxmin method, Summarizing and Computing Descriptive Statistics

if statement, if, elif, and else

iloc operator, Selection with loc and iloc, Permutation and Random
Sampling

immutable objects, Mutable and immutable objects, Categorical Type in
pandas

import conventions

for matplotlib, A Brief matplotlib API Primer

for modules, Import Conventions, Imports

for Python, Import Conventions, Imports, The NumPy ndarray: A
Multidimensional Array Object



importlib module, Reloading Module Dependencies

imshow function, Array-Oriented Programming with Arrays

in keyword, Adding and removing elements, String Object Methods

in-place sorts, Sorting, More About Sorting

in1d method, Unique and Other Set Logic, Unique and Other Set Logic

indentation in Python, Indentation, not braces

index method, String Object Methods-String Object Methods, Pivot
Tables and Cross-Tabulation

Index objects, Index Objects-Index Objects

indexes and indexing

axis indexes with duplicate labels, Axis Indexes with Duplicate Labels

boolean indexing, Boolean Indexing-Boolean Indexing

fancy indexing, Fancy Indexing, Fancy Indexing Equivalents: take and
put

for ndarrays, Basic Indexing and Slicing-Indexing with slices

for pandas library, Indexing, Selection, and Filtering-Selection with
loc and iloc, Axis Indexes with Duplicate Labels

grouping by index level, Grouping by Index Levels

hierarchical indexing, Reading and Writing Data in Text Format,
Hierarchical Indexing-Indexing with a DataFrame’s columns,



Reshaping with Hierarchical Indexing

Index objects, Index Objects-Index Objects

integer indexing, Integer Indexes

merging on index, Merging on Index-Merging on Index

renaming axis indexes, Renaming Axis Indexes

time series data, Indexing, Selection, Subsetting

time series with duplicate indexes, Time Series with Duplicate Indices

timedeltas and, Time Series

indexing operator, Slicing

indicator variables, Computing Indicator/Dummy Variables-Computing
Indicator/Dummy Variables

indirect sorts, Indirect Sorts: argsort and lexsort

inner join type, Database-Style DataFrame Joins

input variables, Input and Output Variables

insert method, Adding and removing elements, Index Objects

insort function, Binary search and maintaining a sorted list

int data type, Scalar Types, Type casting

int function, Type casting



int16 data type, Data Types for ndarrays

int32 data type, Data Types for ndarrays

int64 data type, Data Types for ndarrays

int8 data type, Data Types for ndarrays

integer arrays, indexing, Fancy Indexing, Fancy Indexing Equivalents:
take and put

integer indexing, Integer Indexes

Integrated Development Environments (IDEs), Integrated Development
Environments (IDEs) and Text Editors

interactive debugger, Interactive Debugger-Other ways to make use of
the debugger

interpreted languages, Why Python for Data Analysis?, The Python
Interpreter

interrupting running code, Interrupting running code

intersect1d method, Unique and Other Set Logic

intersection method, set-set, Index Objects

intersection_update method, set

intervals of time, Time Series

inv function, Linear Algebra

.ipynb file extension, Running the Jupyter Notebook



IPython

%run command and, The Python Interpreter

%run command in, The %run Command-Interrupting running code

about, IPython and Jupyter

advanced features, Advanced IPython Features-Profiles and
Configuration

bookmarking directories, Directory Bookmark System

code development tips, Tips for Productive Code Development Using
IPython-Overcome a fear of longer files

command history in, Using the Command History-Input and Output
Variables

exception handling in, Exceptions in IPython

executing code from clipboard, Executing Code from the Clipboard

figures and subplots, Figures and Subplots

interacting with operating system, Interacting with the Operating
System-Directory Bookmark System

keyboard shortcuts for, Terminal Keyboard Shortcuts

magic commands in, About Magic Commands-About Magic
Commands

matplotlib integration, Matplotlib Integration



object introspection, Introspection-Introspection

running Jupyter notebook, Running the Jupyter Notebook-Running
the Jupyter Notebook

running shell, Running the IPython Shell-Running the IPython Shell

shell commands in, Shell Commands and Aliases

software development tools, Software Development Tools-Profiling a
Function Line by Line

tab completion in, Tab Completion-Tab Completion

ipython command, Running the IPython Shell-Running the IPython
Shell

is keyword, Binary operators and comparisons

is not keyword, Binary operators and comparisons

isalnum method, Vectorized String Functions in pandas

isalpha method, Vectorized String Functions in pandas

isdecimal method, Vectorized String Functions in pandas

isdigit method, Vectorized String Functions in pandas

isdisjoint method, set

isfinite function, Universal Functions: Fast Element-Wise Array
Functions

isin method, Index Objects, Unique Values, Value Counts, and



Membership

isinf function, Universal Functions: Fast Element-Wise Array Functions

isinstance function, Dynamic references, strong types

islower method, Vectorized String Functions in pandas

isnan function, Universal Functions: Fast Element-Wise Array Functions

isnull method, Series, Handling Missing Data

isnumeric method, Vectorized String Functions in pandas

issubdtype function, NumPy dtype Hierarchy

issubset method, set

issuperset method, set

isupper method, Vectorized String Functions in pandas

is_monotonic property, Index Objects

is_unique property, Index Objects, Axis Indexes with Duplicate Labels,
Time Series with Duplicate Indices

iter function, Duck typing

__iter__ magic method, Duck typing

iterator protocol, Duck typing, Generators-itertools module

itertools module, itertools module



J

jit function, Writing Fast NumPy Functions with Numba

join method, String Object Methods-String Object Methods, Vectorized
String Functions in pandas, Merging on Index

join operations, Database-Style DataFrame Joins-Database-Style
DataFrame Joins

JSON (JavaScript Object Notation), JSON Data-JSON Data, 1.USA.gov
Data from Bitly

json method, Interacting with Web APIs

Jupyter notebook

%load magic function, The %run Command

about, IPython and Jupyter

plotting nuances, Figures and Subplots

running, Running the Jupyter Notebook-Running the Jupyter
Notebook

jupyter notebook command, Running the Jupyter Notebook

K

KDE (kernel density estimate) plots, Histograms and Density Plots

kernels, defined, IPython and Jupyter, Running the Jupyter Notebook

key-value pairs, dict

keyboard shortcuts for IPython, Terminal Keyboard Shortcuts



KeyboardInterrupt exception, Interrupting running code

KeyError exception, set

keys method, dict

keyword arguments, Function and object method calls, Functions

kurt method, Summarizing and Computing Descriptive Statistics

L

l(ist) debugger command, Interactive Debugger

labels

axis indexes with duplicate labels, Axis Indexes with Duplicate Labels

selecting in matplotlib, Ticks, Labels, and Legends-Setting the title,
axis labels, ticks, and ticklabels

lagging data, Shifting (Leading and Lagging) Data

lambda (anonymous) functions, Anonymous (Lambda) Functions

language semantics for Python

about, Language Semantics

attributes, Attributes and methods

binary operators and comparisons, Binary operators and
comparisons, set

comments, Comments

duck typing, Duck typing



function and object method calls, Function and object method calls

import conventions, Imports

indentation not braces, Indentation, not braces

methods, Attributes and methods

mutable and immutable objects, Mutable and immutable objects

object model, Everything is an object

references, Variables and argument passing-Dynamic references,
strong types

strongly typed language, Dynamic references, strong types

variables and argument passing, Variables and argument passing

last method, Data Aggregation

leading data, Shifting (Leading and Lagging) Data

left join type, Database-Style DataFrame Joins

legend method, Adding legends

legend selection in matplotlib, Colors, Markers, and Line Styles-Adding
legends

len function, Grouping with Functions

len method, Vectorized String Functions in pandas

less function, Universal Functions: Fast Element-Wise Array Functions



less_equal function, Universal Functions: Fast Element-Wise Array
Functions

level keyword, Grouping by Index Levels

level method, Summarizing and Computing Descriptive Statistics

levels

grouping by index levels, Grouping by Index Levels

sorting, Reordering and Sorting Levels

summary statistics by, Summary Statistics by Level

lexsort method, Indirect Sorts: argsort and lexsort

libraries (see specific libraries)

line plots, Line Plots-Line Plots

line style selection in matplotlib, Colors, Markers, and Line Styles

linear algebra, Linear Algebra-Linear Algebra

linear regression, Example: Group-Wise Linear Regression, Estimating
Linear Models-Estimating Linear Models

Linux, setting up Python on, GNU/Linux

list comprehensions, List, Set, and Dict Comprehensions-Nested list
comprehensions

list function, Binary operators and comparisons, List



lists (data structures)

about, List

adding and removing elements, Adding and removing elements

combining, Concatenating and combining lists

concatenating, Concatenating and combining lists

maintaining sorted lists, Binary search and maintaining a sorted list

slicing, Slicing

sorting, Sorting

lists (data structures)binary searches, Binary search and maintaining a
sorted list

ljust method, String Object Methods

load function, File Input and Output with Arrays, Advanced Array
Input and Output

%load magic function, The %run Command

loads function, JSON Data

loc operator, DataFrame, Selection with loc and iloc, Adding legends,
Interfacing Between pandas and Model Code

local namespace, Namespaces, Scope, and Local Functions, Getting
Started with pandas

localizing data to time zones, Time Zone Localization and Conversion



log function, Universal Functions: Fast Element-Wise Array Functions

log10 function, Universal Functions: Fast Element-Wise Array Functions

log1p function, Universal Functions: Fast Element-Wise Array
Functions

log2 function, Universal Functions: Fast Element-Wise Array Functions

logical_and function, Universal Functions: Fast Element-Wise Array
Functions, ufunc Instance Methods

logical_not function, Universal Functions: Fast Element-Wise Array
Functions

logical_or function, Universal Functions: Fast Element-Wise Array
Functions

logical_xor function, Universal Functions: Fast Element-Wise Array
Functions

LogisticRegression class, Introduction to scikit-learn

LogisticRegressionCV class, Introduction to scikit-learn

long format, Pivoting “Long” to “Wide” Format

lower method, Transforming Data Using a Function or Mapping, String
Object Methods, Vectorized String Functions in pandas

%lprun magic function, Profiling a Function Line by Line

lstrip method, String Object Methods, Vectorized String Functions in
pandas



lstsq function, Linear Algebra

lxml library, XML and HTML: Web Scraping-Parsing XML with
lxml.objectify

M

%m datetime format, Dates and times, Converting Between String and
Datetime

%M datetime format, Dates and times, Converting Between String and
Datetime

mad method, Summarizing and Computing Descriptive Statistics

magic functions, About Magic Commands-About Magic Commands

(see also specific magic functions)

%debug magic function, About Magic Commands

%magic magic function, About Magic Commands

many-to-many merge, Database-Style DataFrame Joins

many-to-one join, Database-Style DataFrame Joins

map built-in function, List, Set, and Dict Comprehensions, Functions
Are Objects

map method, Function Application and Mapping, Transforming Data
Using a Function or Mapping, Renaming Axis Indexes

mapping

transforming data using, Transforming Data Using a Function or



Mapping

universal functions, Function Application and Mapping-Sorting and
Ranking

margins method, Pivot Tables and Cross-Tabulation

margins, defined, Pivot Tables and Cross-Tabulation

marker selection in matplotlib, Colors, Markers, and Line Styles

match method, Unique Values, Value Counts, and Membership, Regular
Expressions, Regular Expressions, Vectorized String Functions in
pandas

Math Kernel Library (MKL), Linear Algebra

matplotlib library

about, matplotlib, Plotting and Visualization

annotations in, Annotations and Drawing on a Subplot-Annotations
and Drawing on a Subplot

color selection in, Colors, Markers, and Line Styles

configuring, matplotlib Configuration

creating image plots, Array-Oriented Programming with Arrays

figures in, Figures and Subplots-Adjusting the spacing around
subplots

import convention, A Brief matplotlib API Primer



integration with IPython, Matplotlib Integration

label selection in, Ticks, Labels, and Legends-Setting the title, axis
labels, ticks, and ticklabels

legend selection in, Colors, Markers, and Line Styles-Adding legends

line style selection in, Colors, Markers, and Line Styles

marker selection in, Colors, Markers, and Line Styles

saving plots to files, Saving Plots to File

subplots in, Figures and Subplots-Adjusting the spacing around
subplots, Annotations and Drawing on a Subplot-Annotations and
Drawing on a Subplot

tick mark selection in, Ticks, Labels, and Legends-Setting the title,
axis labels, ticks, and ticklabels

%matplotlib magic function, Matplotlib Integration, Interacting with the
Operating System

matrix operations in NumPy, Transposing Arrays and Swapping Axes,
Linear Algebra

max method, Mathematical and Statistical Methods, Sorting and
Ranking, Summarizing and Computing Descriptive Statistics, Data
Aggregation

maximum function, Universal Functions: Fast Element-Wise Array
Functions

mean method, Mathematical and Statistical Methods, Summarizing and



Computing Descriptive Statistics, GroupBy Mechanics, Data
Aggregation

median method, Summarizing and Computing Descriptive Statistics,
Data Aggregation

melt method, Pivoting “Wide” to “Long” Format

memmap object, Memory-Mapped Files

memory management

C versus Fortran order, C Versus Fortran Order

continguous memory, The Importance of Contiguous Memory-The
Importance of Contiguous Memory

NumPy-based algorithms and, NumPy Basics: Arrays and Vectorized
Computation

memory-mapped files, Memory-Mapped Files

merge function, Database-Style DataFrame Joins-Database-Style
DataFrame Joins

mergesort method, Alternative Sort Algorithms

merging data

combining data with overlap, Combining Data with Overlap

concatenating along an axis, Concatenating Along an Axis-
Concatenating Along an Axis

database-stye DataFrame joins, Database-Style DataFrame Joins-



Database-Style DataFrame Joins

merging on index, Merging on Index-Merging on Index

meshgrid function, Array-Oriented Programming with Arrays

methods

categorical, Categorical Methods-Categorical Methods

chaining, Techniques for Method Chaining-The pipe Method

defined, Function and object method calls

for boolean arrays, Methods for Boolean Arrays

for strings, String Object Methods-String Object Methods

for summary statistics, Unique Values, Value Counts, and
Membership-Unique Values, Value Counts, and Membership

for tuples, Tuple methods

hidden, Tab Completion

in Python, Function and object method calls, Attributes and methods

object introspection, Introspection

optimized for GroupBy, Data Aggregation

statistical, Mathematical and Statistical Methods-Mathematical and
Statistical Methods

ufunc instance methods, ufunc Instance Methods-ufunc Instance



Methods

vectorized string methods in pandas, Vectorized String Functions in
pandas-Vectorized String Functions in pandas

Microsoft Excel files, Reading Microsoft Excel Files-Reading Microsoft
Excel Files

min method, Mathematical and Statistical Methods, Sorting and
Ranking, Summarizing and Computing Descriptive Statistics, Data
Aggregation

minimum function, Universal Functions: Fast Element-Wise Array
Functions

missing data

about, Handling Missing Data

filling in, Filling In Missing Data-Filling In Missing Data, Replacing
Values

filling with group-specific values, Example: Filling Missing Values
with Group-Specific Values

filtering out, Filtering Out Missing Data

marked by sentinel values, Reading and Writing Data in Text Format,
Handling Missing Data

sorting considerations, Sorting and Ranking

mixture-of-normals estimate, Histograms and Density Plots

MKL (Math Kernel Library), Linear Algebra



mod function, Universal Functions: Fast Element-Wise Array Functions

modf function, Universal Functions: Fast Element-Wise Array
Functions-Universal Functions: Fast Element-Wise Array Functions

modules

import conventions for, Import Conventions, Imports

reloading dependencies, Reloading Module Dependencies

MovieLens 1M dataset example, MovieLens 1M Dataset-Measuring
Rating Disagreement

moving window functions

about, Moving Window Functions-Moving Window Functions

binary, Binary Moving Window Functions

exponentially-weighted functions, Exponentially Weighted Functions

user-defined, User-Defined Moving Window Functions

mro method, NumPy dtype Hierarchy

MSFT attribute, Correlation and Covariance

mul method, Arithmetic methods with fill values

multiply function, Universal Functions: Fast Element-Wise Array
Functions

munging (see data wrangling)



mutable objects, Mutable and immutable objects

N

n(ext) debugger command, Interactive Debugger

NA data type, Handling Missing Data

name attribute, Series, DataFrame

names attribute, Boolean Indexing, Structured and Record Arrays

namespaces

empty, The %run Command

functions and, Namespaces, Scope, and Local Functions

in Python, Dynamic references, strong types

NumPy, The NumPy ndarray: A Multidimensional Array Object

NaN (Not a Number), Universal Functions: Fast Element-Wise Array
Functions, Series, Handling Missing Data

NaT (Not a Time), Converting Between String and Datetime

ndarray object

about, NumPy Basics: Arrays and Vectorized Computation, The
NumPy ndarray: A Multidimensional Array Object-The NumPy
ndarray: A Multidimensional Array Object

advanced input and output, Advanced Array Input and Output-HDF5
and Other Array Storage Options



arithmetic with, Arithmetic with NumPy Arrays

array-oriented programming, Array-Oriented Programming with
Arrays-Unique and Other Set Logic

as structured arrays, Structured and Record Arrays-Why Use
Structured Arrays?

attributes for, Creating ndarrays, Reshaping Arrays, Broadcasting
Over Other Axes, The Importance of Contiguous Memory

boolean indexing, Boolean Indexing-Boolean Indexing

broadcasting and, Arithmetic with NumPy Arrays, Repeating
Elements: tile and repeat, Broadcasting-Setting Array Values by
Broadcasting

C versus Fortan order, C Versus Fortran Order

C versus Fortran order, The Importance of Contiguous Memory

concatenating arrays, Concatenating and Splitting Arrays

creating, Creating ndarrays-Creating ndarrays

creating PeriodIndex from arrays, Creating a PeriodIndex from
Arrays

data types for, Data Types for ndarrays-Data Types for ndarrays

fancy indexing, Fancy Indexing, Fancy Indexing Equivalents: take and
put

file input and output, File Input and Output with Arrays



finding elements in sorted arrays, numpy.searchsorted: Finding
Elements in a Sorted Array

indexes for, Basic Indexing and Slicing-Indexing with slices

internals overview, ndarray Object Internals-NumPy dtype Hierarchy

linear algebra and, Linear Algebra-Linear Algebra

partially sorting arrays, Partially Sorting Arrays

pseudorandom number generation, Pseudorandom Number
Generation-Pseudorandom Number Generation

random walks example, Example: Random Walks-Simulating Many
Random Walks at Once

repeating elements in, Repeating Elements: tile and repeat

reshaping arrays, Transposing Arrays and Swapping Axes, Reshaping
Arrays

slicing arrays, Basic Indexing and Slicing-Indexing with slices

sorting considerations, Sorting, More About Sorting

splitting arrays, Concatenating and Splitting Arrays

storage options, HDF5 and Other Array Storage Options

swapping axes in, Transposing Arrays and Swapping Axes

transposing arrays, Transposing Arrays and Swapping Axes

ndim attribute, Creating ndarrays



nested code, Flat is better than nested

nested data types, Nested dtypes and Multidimensional Fields

nested list comprehensions, Nested list comprehensions-Nested list
comprehensions

nested tuples, Unpacking tuples

New York MTA (Metropolitan Transportation Authority), Parsing XML
with lxml.objectify

newaxis attribute, Broadcasting Over Other Axes

“no-op” statement, pass

None data type, Scalar Types, None, Handling Missing Data

normal function, Pseudorandom Number Generation

not keyword, Adding and removing elements

notfull method, Handling Missing Data

notnull method, Series

not_equal function, Universal Functions: Fast Element-Wise Array
Functions

.npy file extension, File Input and Output with Arrays

.npz file extension, File Input and Output with Arrays

null value, Scalar Types, None, JSON Data



Numba

creating custom ufunc objects with, Creating Custom numpy.ufunc
Objects with Numba

writing fast NumPy functions with, Writing Fast NumPy Functions
with Numba-Creating Custom numpy.ufunc Objects with Numba

numeric data types, Numeric types

NumPy library

about, NumPy, NumPy Basics: Arrays and Vectorized Computation-
NumPy Basics: Arrays and Vectorized Computation

advanced array input and output, Advanced Array Input and Output-
HDF5 and Other Array Storage Options

advanced array manipulation, Advanced Array Manipulation-Fancy
Indexing Equivalents: take and put

advanced ufunc usage, Advanced ufunc Usage-Writing New ufuncs in
Python

array-oriented programming, Array-Oriented Programming with
Arrays-Unique and Other Set Logic

arrays and broadcasting, Broadcasting-Setting Array Values by
Broadcasting

file input and output with arrays, File Input and Output with Arrays

linear algebra and, Linear Algebra-Linear Algebra

ndarray object internals, ndarray Object Internals-NumPy dtype



Hierarchy

ndarray object overview, The NumPy ndarray: A Multidimensional
Array Object-Transposing Arrays and Swapping Axes

performance tips, Performance Tips-The Importance of Contiguous
Memory

pseudorandom number generation, Pseudorandom Number
Generation-Pseudorandom Number Generation

random walks example, Example: Random Walks-Simulating Many
Random Walks at Once

sorting considerations, Sorting, More About Sorting-
numpy.searchsorted: Finding Elements in a Sorted Array

structured and record arrays, Structured and Record Arrays-Why
Use Structured Arrays?

ufunc overview, Universal Functions: Fast Element-Wise Array
Functions-Universal Functions: Fast Element-Wise Array Functions

writing fast functions with Numba, Writing Fast NumPy Functions
with Numba-Creating Custom numpy.ufunc Objects with Numba

O

object data type, Data Types for ndarrays

object introspection, Introspection-Introspection

object model, Everything is an object

objectify function, Parsing XML with lxml.objectify-Parsing XML with



lxml.objectify

objects (see Python objects)

OHLC (Open-High-Low-Close) resampling, Open-High-Low-Close
(OHLC) resampling

ohlc aggregate function, Open-High-Low-Close (OHLC) resampling

Oliphant, Travis, NumPy Basics: Arrays and Vectorized Computation

OLS (ordinary least squares) regression, Example: Group-Wise Linear
Regression, Creating Model Descriptions with Patsy

OLS class, Estimating Linear Models

Olson database, Time Zone Handling

ones function, Creating ndarrays-Creating ndarrays

ones_like function, Creating ndarrays

open built-in function, Files and the Operating System, Bytes and
Unicode with Files

openpyxl package, Reading Microsoft Excel Files

operating system, IPython interacting with, Interacting with the
Operating System-Directory Bookmark System

or keyword, Booleans, Boolean Indexing

OS X, setting up Python on, Apple (OS X, macOS)

outer method, ufunc Instance Methods



outliers, detecting and filtering, Detecting and Filtering Outliers

output join type, Database-Style DataFrame Joins

output variables, Input and Output Variables

P

%p datetime format, Converting Between String and Datetime

packages, installing or updating, Installing or Updating Python Packages

pad method, Vectorized String Functions in pandas

%page magic function, About Magic Commands

pairplot function, Scatter or Point Plots

pairs plot, Scatter or Point Plots

pandas library, pandas

(see also data wrangling)

about, pandas, Getting Started with pandas

arithmetic and data alignment, Arithmetic and Data Alignment-
Operations between DataFrame and Series

as time zone naive, Time Zone Localization and Conversion

binary data formats, Binary Data Formats-Reading Microsoft Excel
Files

categorical data and, Categorical Data-Creating dummy variables for
modeling



data structures for, Introduction to pandas Data Structures-Index
Objects

drop method, Dropping Entries from an Axis

filtering in, Indexing, Selection, and Filtering-Selection with loc and
iloc

function application and mapping, Function Application and Mapping

group operations and, Advanced GroupBy Use-Grouped Time
Resampling

indexes in, Indexing, Selection, and Filtering-Selection with loc and
iloc, Axis Indexes with Duplicate Labels

integer indexing, Integer Indexes

interacting with databases, Interacting with Databases

interacting with Web APIs, Interacting with Web APIs

interfacing with model code, Interfacing Between pandas and Model
Code

JSON data, JSON Data-JSON Data

method chaining, Techniques for Method Chaining-The pipe Method

nested data types and, Nested dtypes and Multidimensional Fields

plotting with, Plotting with pandas and seaborn-Facet Grids and
Categorical Data



ranking data in, Sorting and Ranking-Sorting and Ranking

reading and writing data in text format, Reading and Writing Data in
Text Format-Writing Data to Text Format

reductions in, Summarizing and Computing Descriptive Statistics-
Unique Values, Value Counts, and Membership

reindex method, Reindexing-Reindexing

selecting data in, Indexing, Selection, and Filtering-Selection with loc
and iloc

sorting considerations, Sorting and Ranking-Sorting and Ranking,
Indirect Sorts: argsort and lexsort, numpy.searchsorted: Finding
Elements in a Sorted Array

summary statistics in, Summarizing and Computing Descriptive
Statistics-Unique Values, Value Counts, and Membership

vectorized string methods in, Vectorized String Functions in pandas-
Vectorized String Functions in pandas

Web scraping, XML and HTML: Web Scraping-Parsing XML with
lxml.objectify

working with delimited formats, Working with Delimited Formats-
Working with Delimited Formats

pandas-datareader package, Correlation and Covariance

parentheses (), Function and object method calls, Tuple

parse method, Reading Microsoft Excel Files, Converting Between



String and Datetime

partial argument application, Currying: Partial Argument Application

partial function, Currying: Partial Argument Application

partition method, Partially Sorting Arrays

pass statement, pass

%paste magic function, Executing Code from the Clipboard, About
Magic Commands

patches, defined, Annotations and Drawing on a Subplot

Patsy library

about, Creating Model Descriptions with Patsy

categorical data and, Categorical Data and Patsy-Categorical Data
and Patsy

creating model descriptions with, Creating Model Descriptions with
Patsy-Creating Model Descriptions with Patsy

data transformations in Patsy formulas, Data Transformations in
Patsy Formulas

pct_change method, Summarizing and Computing Descriptive Statistics,
Example: Group Weighted Average and Correlation

%pdb magic function, About Magic Commands, Exceptions in IPython,
Interactive Debugger

percent sign (%), About Magic Commands, Basic Profiling: %prun and



%run -p

percentileofscore function, User-Defined Moving Window Functions

Pérez, Fernando, IPython and Jupyter

period (.), Tab Completion

Period class, Periods and Period Arithmetic

PeriodIndex class, Periods and Period Arithmetic, Creating a
PeriodIndex from Arrays

periods of dates and times

about, Periods and Period Arithmetic

converting frequencies, Period Frequency Conversion

converting timestamps to/from, Converting Timestamps to Periods
(and Back)

creating PeriodIndex from arrays, Creating a PeriodIndex from
Arrays

fixed periods, Time Series

quarterly period frequencies, Quarterly Period Frequencies

resampling with, Resampling with Periods

period_range function, Periods and Period Arithmetic, Quarterly Period
Frequencies

Perktold, Josef, statsmodels



permutation function, Pseudorandom Number Generation, Permutation
and Random Sampling

permutations function, itertools module

pickle module, Binary Data Formats

pinv function, Linear Algebra

pip tool, Installing or Updating Python Packages, XML and HTML:
Web Scraping

pipe method, The pipe Method

pivot method, Pivoting “Long” to “Wide” Format

pivot tables, Data Aggregation and Group Operations, Pivot Tables and
Cross-Tabulation-Cross-Tabulations: Crosstab

pivoting data, Pivoting “Long” to “Wide” Format-Pivoting “Wide” to
“Long” Format

pivot_table method, Pivot Tables and Cross-Tabulation

plot function, Colors, Markers, and Line Styles

plot method, Line Plots-Line Plots

Plotly tool, Other Python Visualization Tools

plotting

with matplotlib, A Brief matplotlib API Primer-matplotlib
Configuration



with pandas and seaborn, Plotting with pandas and seaborn-Facet
Grids and Categorical Data

point plots, Scatter or Point Plots

pop method, Adding and removing elements, dict-Default values, set

%popd magic function, Interacting with the Operating System

positional arguments, Function and object method calls, Functions

pound sign (#), Comments

pow method, Arithmetic methods with fill values

power function, Universal Functions: Fast Element-Wise Array
Functions

pprint module, Making Your Own Classes IPython-Friendly

predict method, Introduction to scikit-learn

preparation, data (see data wrangling)

private attributes, Tab Completion

private methods, Tab Completion

prod method, Summarizing and Computing Descriptive Statistics, Data
Aggregation

product function, itertools module

profiles for IPython, Profiles and Configuration-Profiles and
Configuration



profiling code in IPython, Basic Profiling: %prun and %run -p-Basic
Profiling: %prun and %run -p

profiling functions line by line, Profiling a Function Line by Line-
Profiling a Function Line by Line

%prun magic function, About Magic Commands, Basic Profiling:
%prun and %run -p-Profiling a Function Line by Line

pseudocode, Jargon, Language Semantics

pseudorandom number generation, Pseudorandom Number Generation-
Pseudorandom Number Generation

%pushd magic function, Interacting with the Operating System

put method, Fancy Indexing Equivalents: take and put

%pwd magic function, Interacting with the Operating System

.py file extension, The Python Interpreter, Imports

pyplot module, Ticks, Labels, and Legends

Python

community and conferences, Community and Conferences

control flow, Control Flow-Ternary expressions

data analysis with, Why Python for Data Analysis?-Why Not Python?,
Python Language Basics, IPython, and Jupyter Notebooks-Python
Language Basics, IPython, and Jupyter Notebooks

essential libraries, Essential Python Libraries-statsmodels



historical background, Python 2 and Python 3

import conventions, Import Conventions, Imports, The NumPy
ndarray: A Multidimensional Array Object

installation and setup, Installation and Setup-Integrated Development
Environments (IDEs) and Text Editors

interpreter for, The Python Interpreter

language semantics, Language Semantics-Mutable and immutable
objects

scalar types, Scalar Types-Dates and times

python command, The Python Interpreter

Python objects

attributes and methods, Attributes and methods

converting to strings, Strings

defined, Everything is an object

formatting, Running the IPython Shell

functions as, Functions Are Objects-Functions Are Objects

key-value pairs, dict

pytz library, Time Zone Handling

Q

q(uit) debugger command, Interactive Debugger



qcut function, Discretization and Binning, Quantile and Bucket Analysis,
Computations with Categoricals

qr function, Linear Algebra

quantile analysis, Quantile and Bucket Analysis

quantile method, Summarizing and Computing Descriptive Statistics,
Data Aggregation

quarterly period frequencies, Quarterly Period Frequencies

question mark (?), Introspection-Introspection

%quickref magic function, About Magic Commands

quicksort method, Alternative Sort Algorithms

quotation marks in strings, Strings

R

r character prefacing quotes, Strings

R language, pandas, statsmodels, Handling Missing Data

radd method, Arithmetic methods with fill values

rand function, Pseudorandom Number Generation

randint function, Pseudorandom Number Generation

randn function, Boolean Indexing, Pseudorandom Number Generation

random module, Pseudorandom Number Generation-Simulating Many
Random Walks at Once



random number generation, Pseudorandom Number Generation-
Pseudorandom Number Generation

random sampling and permutation, Example: Random Sampling and
Permutation

random walks example, Example: Random Walks-Simulating Many
Random Walks at Once

RandomState class, Pseudorandom Number Generation

range function, range, Creating ndarrays

rank method, Sorting and Ranking

ranking data in pandas library, Sorting and Ranking-Sorting and
Ranking

ravel method, Reshaping Arrays

rc method, matplotlib Configuration

rdiv method, Arithmetic methods with fill values

re module, Functions Are Objects, Regular Expressions

read method, Files and the Operating System-Files and the Operating
System

read-and-write mode for files, Files and the Operating System

read-only mode for files, Files and the Operating System

reading data



in Microsoft Excel files, Reading Microsoft Excel Files-Reading
Microsoft Excel Files

in text format, Reading and Writing Data in Text Format-Reading
Text Files in Pieces

readline functionality, Searching and Reusing the Command History

readlines method, Files and the Operating System

read_clipboard function, Reading and Writing Data in Text Format

read_csv function, Files and the Operating System, Reading and Writing
Data in Text Format, Reading and Writing Data in Text Format, Bar
Plots, Column-Wise and Multiple Function Application

read_excel function, Reading and Writing Data in Text Format, Reading
Microsoft Excel Files

read_feather function, Reading and Writing Data in Text Format

read_fwf function, Reading and Writing Data in Text Format

read_hdf function, Reading and Writing Data in Text Format, Using
HDF5 Format

read_html function, Reading and Writing Data in Text Format, XML
and HTML: Web Scraping-Parsing XML with lxml.objectify

read_json function, Reading and Writing Data in Text Format, JSON
Data

read_msgpack function, Reading and Writing Data in Text Format



read_pickle function, Reading and Writing Data in Text Format, Binary
Data Formats

read_sas function, Reading and Writing Data in Text Format

read_sql function, Reading and Writing Data in Text Format,
Interacting with Databases

read_stata function, Reading and Writing Data in Text Format

read_table function, Reading and Writing Data in Text Format, Reading
and Writing Data in Text Format, Working with Delimited Formats

reduce method, ufunc Instance Methods

reduceat method, ufunc Instance Methods

reductions (aggregations), Mathematical and Statistical Methods

references in Python, Variables and argument passing-Dynamic
references, strong types

regplot method, Scatter or Point Plots

regress function, Example: Group-Wise Linear Regression

regular expressions

passes as delimiters, Reading and Writing Data in Text Format

string manipulation and, Regular Expressions-Regular Expressions

reindex method, Reindexing-Reindexing, Selection with loc and iloc, Axis
Indexes with Duplicate Labels, Upsampling and Interpolation



reload function, Reloading Module Dependencies

remove method, Adding and removing elements, set

remove_categories method, Categorical Methods

remove_unused_categories method, Categorical Methods

rename method, Renaming Axis Indexes

rename_categories method, Categorical Methods

reorder_categories method, Categorical Methods

repeat function, Repeating Elements: tile and repeat

repeat method, Vectorized String Functions in pandas

replace method, Replacing Values, String Object Methods-String Object
Methods, Vectorized String Functions in pandas

requests package, Interacting with Web APIs

resample method, Date Ranges, Frequencies, and Shifting, Resampling
and Frequency Conversion-Open-High-Low-Close (OHLC) resampling,
Grouped Time Resampling

resampling

defined, Resampling and Frequency Conversion

downsampling and, Resampling and Frequency Conversion-Open-
High-Low-Close (OHLC) resampling

OHLC, Open-High-Low-Close (OHLC) resampling



upsampling and, Resampling and Frequency Conversion, Upsampling
and Interpolation

with periods, Resampling with Periods

%reset magic function, About Magic Commands, Input and Output
Variables

reset_index method, Pivoting “Wide” to “Long” Format, Returning
Aggregated Data Without Row Indexes

reshape method, Fancy Indexing, Reshaping Arrays

*rest syntax, Unpacking tuples

return statement, Functions

reusing command history, Searching and Reusing the Command History

reversed function, reversed

rfind method, String Object Methods

rfloordiv method, Arithmetic methods with fill values

right join type, Database-Style DataFrame Joins

rint function, Universal Functions: Fast Element-Wise Array Functions

rjust method, String Object Methods

rmul method, Arithmetic methods with fill values

rollback method, Shifting dates with offsets



rollforward method, Shifting dates with offsets

rolling function, Moving Window Functions, Moving Window Functions

rolling_corr function, Binary Moving Window Functions

row major order (C order), C Versus Fortran Order, The Importance of
Contiguous Memory

row_stack function, Concatenating and Splitting Arrays

rpow method, Arithmetic methods with fill values

rstrip method, String Object Methods, Vectorized String Functions in
pandas

rsub method, Arithmetic methods with fill values

%run magic function

about, About Magic Commands

exceptions and, Exceptions in IPython

interactive debugger and, Interactive Debugger, Other ways to make
use of the debugger

IPython and, The Python Interpreter, The %run Command-
Interrupting running code

reusing command history with, Searching and Reusing the Command
History

r_ object, Stacking helpers: r_ and c_



S

%S datetime format, Dates and times, Converting Between String and
Datetime

s(tep) debugger command, Interactive Debugger

sample method, Permutation and Random Sampling, Example: Random
Sampling and Permutation

save function, File Input and Output with Arrays, Advanced Array
Input and Output

savefig method, Saving Plots to File

savez function, File Input and Output with Arrays

savez_compressed function, File Input and Output with Arrays

scalar types in Python, Scalar Types-Dates and times, Arithmetic with
NumPy Arrays

scatter plot matrix, Scatter or Point Plots

scatter plots, Scatter or Point Plots

scikit-learn library, scikit-learn, Introduction to scikit-learn-
Introduction to scikit-learn

SciPy library, SciPy

scope of functions, Namespaces, Scope, and Local Functions

scripting languages, Why Python for Data Analysis?



Seabold, Skipper, statsmodels

seaborn library, Plotting with pandas and seaborn

search method, Regular Expressions, Regular Expressions

searching

binary searches of lists, Binary search and maintaining a sorted list

command history, Searching and Reusing the Command History

searchsorted method, numpy.searchsorted: Finding Elements in a Sorted
Array

seed function, Pseudorandom Number Generation

seek method, Files and the Operating System, Files and the Operating
System-Bytes and Unicode with Files

semantics, language (see language semantics for Python)

semicolon (;), Indentation, not braces

sentinel value, Reading and Writing Data in Text Format, Handling
Missing Data

sequence functions, Built-in Sequence Functions-reversed

serialization (see storing data)

Series data structure

about, pandas, Series-Series

duplicate indexes example, Axis Indexes with Duplicate Labels



grouping with, Grouping with Dicts and Series

JSON data and, JSON Data

operations between DataFrame and, Operations between DataFrame
and Series

plot method arguments, Line Plots

ranking data in, Sorting and Ranking

sorting considerations, Sorting and Ranking, Indirect Sorts: argsort
and lexsort

summary statistics methods for, Correlation and Covariance

set comprehensions, List, Set, and Dict Comprehensions

set function, set, Bar Plots

set literals, set

set operations, set-set, Unique and Other Set Logic

setattr function, Attributes and methods

setdefault method, Default values

setdiff1d method, Unique and Other Set Logic

sets (data structures), set-set

setxor1d method, Unique and Other Set Logic

set_categories method, Categorical Methods



set_index method, Pivoting “Long” to “Wide” Format

set_title method, Setting the title, axis labels, ticks, and ticklabels,
Annotations and Drawing on a Subplot

set_trace function, Other ways to make use of the debugger

set_value method, Selection with loc and iloc

set_xlabel method, Setting the title, axis labels, ticks, and ticklabels

set_xlim method, Annotations and Drawing on a Subplot

set_xticklabels method, Setting the title, axis labels, ticks, and ticklabels

set_xticks method, Setting the title, axis labels, ticks, and ticklabels

set_ylim method, Annotations and Drawing on a Subplot

shape attribute, The NumPy ndarray: A Multidimensional Array
Object-Creating ndarrays, Reshaping Arrays

shell commands in IPython, Shell Commands and Aliases

shift method, Shifting (Leading and Lagging) Data, Downsampling

shifting time series data, Shifting (Leading and Lagging) Data-Shifting
dates with offsets

shuffle function, Pseudorandom Number Generation

side effects, Mutable and immutable objects

sign function, Universal Functions: Fast Element-Wise Array Functions,
Detecting and Filtering Outliers



sin function, Universal Functions: Fast Element-Wise Array Functions

sinh function, Universal Functions: Fast Element-Wise Array Functions

size method, GroupBy Mechanics

skew method, Summarizing and Computing Descriptive Statistics

skipna method, Summarizing and Computing Descriptive Statistics

slice method, Vectorized String Functions in pandas

slice notation, Slicing

slicing

lists, Slicing

ndarrays, Basic Indexing and Slicing-Indexing with slices

strings, Strings

Smith, Nathaniel, statsmodels

Social Security Administration (SSA), US Baby Names 1880–2010

software development tools for IPython

about, Software Development Tools

basic profiling, Basic Profiling: %prun and %run -p-Basic Profiling:
%prun and %run -p

interactive debugger, Interactive Debugger-Other ways to make use of
the debugger



profiling functions line by line, Profiling a Function Line by Line-
Profiling a Function Line by Line

timing code, Timing Code: %time and %timeit-Timing Code: %time
and %timeit

solve function, Linear Algebra

sort method, Sorting, sorted, Anonymous (Lambda) Functions, Sorting

sorted function, Sorting, sorted

sorting considerations

finding elements in sorted arrays, numpy.searchsorted: Finding
Elements in a Sorted Array

hierarchical indexing, Reordering and Sorting Levels

in-place sorts, Sorting, More About Sorting

indirect sorts, Indirect Sorts: argsort and lexsort

missing data, Sorting and Ranking

NumPy library, Sorting, More About Sorting-numpy.searchsorted:
Finding Elements in a Sorted Array

pandas library, Sorting and Ranking-Sorting and Ranking, Indirect
Sorts: argsort and lexsort, numpy.searchsorted: Finding Elements in a
Sorted Array

partially sorting arrays, Partially Sorting Arrays

stable sorting, Alternative Sort Algorithms



sort_index method, Sorting and Ranking

sort_values method, Sorting and Ranking, Indirect Sorts: argsort and
lexsort

spaces, structuring code with, Indentation, not braces

split concatenation function, Concatenating and Splitting Arrays

split function, Concatenating and Splitting Arrays

split method, Working with Delimited Formats, String Object Methods,
String Object Methods-Regular Expressions, Regular Expressions,
Vectorized String Functions in pandas

split-apply-combine

about, GroupBy Mechanics

applying, Apply: General split-apply-combine-Example: Group-Wise
Linear Regression

filling missing values with group-specific values, Example: Filling
Missing Values with Group-Specific Values

group weighted average and correlation, Example: Group Weighted
Average and Correlation

group-wise linear regression, Example: Group-Wise Linear
Regression

quantile and bucket analysis, Quantile and Bucket Analysis

random sampling and permutation, Example: Random Sampling and
Permutation



suppressing group keys, Suppressing the Group Keys

SQL (structured query language), Data Aggregation and Group
Operations

SQLAlchemy project, Interacting with Databases

sqlite3 module, Interacting with Databases

sqrt function, Universal Functions: Fast Element-Wise Array Functions

square brackets [], Tuple, List

square function, Universal Functions: Fast Element-Wise Array
Functions

SSA (Social Security Administration), US Baby Names 1880–2010

stable sorting, Alternative Sort Algorithms

stack method, Reshaping with Hierarchical Indexing

stacked format, Pivoting “Long” to “Wide” Format

stacking operation, Combining and Merging Datasets, Concatenating
Along an Axis

start index, Slicing

startswith method, String Object Methods, Vectorized String Functions
in pandas

Stata file format, Reading and Writing Data in Text Format



statistical methods, Mathematical and Statistical Methods-Mathematical
and Statistical Methods

statsmodels library

about, statsmodels, Introduction to statsmodels

estimating linear models, Estimating Linear Models-Estimating
Linear Models

estimating time series processes, Estimating Time Series Processes

OLS regression and, Example: Group-Wise Linear Regression

std method, Mathematical and Statistical Methods, Summarizing and
Computing Descriptive Statistics, Data Aggregation

step index, Slicing

stop index, Slicing

storing data

in binary format, Binary Data Formats-Reading Microsoft Excel Files

in databases, Pivoting “Long” to “Wide” Format

ndarray object, HDF5 and Other Array Storage Options

str data type, Scalar Types, Type casting

str function, Strings, Type casting, Converting Between String and
Datetime

strftime method, Dates and times, Converting Between String and
Datetime



strides/strided view, ndarray Object Internals

strings

concatenating, Strings

converting between datetime and, Converting Between String and
Datetime-Converting Between String and Datetime

converting Python objects to, Strings

data types for, Strings-Strings

formatting, Strings

manipulating, String Manipulation-Vectorized String Functions in
pandas

methods for, String Object Methods-String Object Methods

regular expressions and, Regular Expressions-Regular Expressions

slicing, Strings

vectorized methods in pandas, Vectorized String Functions in pandas-
Vectorized String Functions in pandas

string_ data type, Data Types for ndarrays

strip method, String Object Methods, String Object Methods, Vectorized
String Functions in pandas

strongly typed language, Dynamic references, strong types



strptime function, Dates and times, Converting Between String and
Datetime

structured arrays, Structured and Record Arrays-Why Use Structured
Arrays?

structured data, What Kinds of Data?

sub method, Arithmetic methods with fill values, Regular Expressions,
Regular Expressions

subn method, Regular Expressions

subplots

about, Figures and Subplots-Adjusting the spacing around subplots

drawing on, Annotations and Drawing on a Subplot-Annotations and
Drawing on a Subplot

subplots method, Figures and Subplots

subplots_adjust method, Adjusting the spacing around subplots

subsetting time series data, Indexing, Selection, Subsetting

subtract function, Universal Functions: Fast Element-Wise Array
Functions

sum method, Mathematical and Statistical Methods, Summarizing and
Computing Descriptive Statistics, Summarizing and Computing
Descriptive Statistics, Data Aggregation, ufunc Instance Methods

summary method, Estimating Linear Models



summary statistics

about, Summarizing and Computing Descriptive Statistics-
Summarizing and Computing Descriptive Statistics

by level, Summary Statistics by Level

correlation and covariance, Correlation and Covariance-Correlation
and Covariance

methods for, Unique Values, Value Counts, and Membership-Unique
Values, Value Counts, and Membership

svd function, Linear Algebra

swapaxes method, Transposing Arrays and Swapping Axes

swapping axes in arrays, Transposing Arrays and Swapping Axes

symmetric_difference method, set

symmetric_difference_update method, set

syntactic sugar, Jargon

sys module, Files and the Operating System, Writing Data to Text
Format

T

T attribute, Transposing Arrays and Swapping Axes

tab completion in IPython, Tab Completion-Tab Completion

tabs, structuring code with, Indentation, not braces



take method, Permutation and Random Sampling, Background and
Motivation, Fancy Indexing Equivalents: take and put

tan function, Universal Functions: Fast Element-Wise Array Functions

tanh function, Universal Functions: Fast Element-Wise Array Functions

Taylor, Jonathan, statsmodels

tell method, Files and the Operating System, Files and the Operating
System

ternary expressions, Ternary expressions

text editors, Integrated Development Environments (IDEs) and Text
Editors

text files

reading, Reading and Writing Data in Text Format-Reading Text
Files in Pieces

text mode for files, Files and the Operating System-Bytes and Unicode
with Files

writing to, Reading and Writing Data in Text Format-Writing Data to
Text Format

text function, Annotations and Drawing on a Subplot

TextParser class, Reading Text Files in Pieces

tick mark selection in matplotlib, Ticks, Labels, and Legends-Setting the
title, axis labels, ticks, and ticklabels



tile function, Repeating Elements: tile and repeat

time data type, Dates and times, Date and Time Data Types and Tools

%time magic function, About Magic Commands, Timing Code: %time
and %timeit

time module, Date and Time Data Types and Tools

time series data

about, Time Series

basics overview, Time Series Basics-Time Series Basics

date offsets and, Frequencies and Date Offsets, Shifting dates with
offsets-Shifting dates with offsets

estimating time series processes, Estimating Time Series Processes

frequences and, Generating Date Ranges

frequencies and, Frequencies and Date Offsets, Resampling and
Frequency Conversion-Resampling with Periods

indexing and, Indexing, Selection, Subsetting

moving window functions, Moving Window Functions-User-Defined
Moving Window Functions

periods in, Periods and Period Arithmetic-Creating a PeriodIndex
from Arrays

resampling, Resampling and Frequency Conversion-Resampling with
Periods



selecting, Indexing, Selection, Subsetting

shifting, Shifting (Leading and Lagging) Data-Shifting dates with
offsets

subsetting, Indexing, Selection, Subsetting

time zone handling, Time Zone Handling-Operations Between
Different Time Zones

with duplicate indexes, Time Series with Duplicate Indices

time zones

about, Time Zone Handling

converting data to, Time Zone Localization and Conversion

localizing data to, Time Zone Localization and Conversion

operations between different, Operations Between Different Time
Zones

operations with timestamp objects, Operations with Time Zone
−Aware Timestamp Objects

USA.gov dataset example, Counting Time Zones in Pure Python-
Counting Time Zones with pandas

time, programmer versus CPU, Why Not Python?

timedelta data type, Time Series-Date and Time Data Types and Tools

TimeGrouper object, Grouped Time Resampling



%timeit magic function, About Magic Commands, The Importance of
Contiguous Memory, Timing Code: %time and %timeit

Timestamp object, Time Series Basics, Shifting dates with offsets,
Operations with Time Zone−Aware Timestamp Objects

timestamps

converting periods to/from, Converting Timestamps to Periods (and
Back)

defined, Time Series

operations with time-zone–aware objects, Operations with Time Zone
−Aware Timestamp Objects

timezone method, Time Zone Handling

timing code, Timing Code: %time and %timeit-Timing Code: %time
and %timeit

top function, Apply: General split-apply-combine

to_csv method, Writing Data to Text Format

to_datetime method, Converting Between String and Datetime

to_excel method, Reading Microsoft Excel Files

to_json method, JSON Data

to_period method, Converting Timestamps to Periods (and Back)

to_pickle method, Binary Data Formats



to_timestamp method, Converting Timestamps to Periods (and Back)

trace function, Linear Algebra

transform method, Group Transforms and “Unwrapped” GroupBys-
Group Transforms and “Unwrapped” GroupBys

transforming data

about, Data Transformation

computing indicator/dummy variables, Computing Indicator/Dummy
Variables-Computing Indicator/Dummy Variables

detecting and filtering outliers, Detecting and Filtering Outliers

discretization and binning, Discretization and Binning

in Patsy formulas, Data Transformations in Patsy Formulas

permutation and random sampling, Permutation and Random
Sampling

removing duplicates, Removing Duplicates

renaming axis indexes, Renaming Axis Indexes

replacing values, Replacing Values

using functions or mapping, Transforming Data Using a Function or
Mapping

transpose method, Transposing Arrays and Swapping Axes

transposing arrays, Transposing Arrays and Swapping Axes



truncate method, Indexing, Selection, Subsetting

try/except blocks, Errors and Exception Handling-Errors and Exception
Handling

tuples (data structures)

about, Tuple

methods for, Tuple methods

nested, Unpacking tuples

unpacking, Unpacking tuples

“two-language” problem, Solving the “Two-Language” Problem

type casting, Type casting

type inference in functions, Reading and Writing Data in Text Format

TypeError exception, Errors and Exception Handling

tzinfo data type, Date and Time Data Types and Tools

tz_convert method, Time Zone Localization and Conversion

U

%U datetime format, Dates and times, Converting Between String and
Datetime

u(p) debugger command, Interactive Debugger

ufuncs (see universal functions)



uint16 data type, Data Types for ndarrays

uint32 data type, Data Types for ndarrays

uint64 data type, Data Types for ndarrays

uint8 data type, Data Types for ndarrays

unary universal functions, Universal Functions: Fast Element-Wise
Array Functions, Universal Functions: Fast Element-Wise Array
Functions

underscore (_), Tab Completion, Unpacking tuples, NumPy dtype
Hierarchy

undescore (_), Input and Output Variables

Unicode standard, Strings, Bytes and Unicode, Bytes and Unicode with
Files

unicode_ data type, Data Types for ndarrays

uniform function, Pseudorandom Number Generation

union method, set-set, Index Objects

union1d method, Unique and Other Set Logic

unique method, Unique and Other Set Logic-Unique and Other Set
Logic, Index Objects, Unique Values, Value Counts, and Membership,
Unique Values, Value Counts, and Membership, Background and
Motivation

universal functions



applying and mapping, Function Application and Mapping

comprehensive overview, Universal Functions: Fast Element-Wise
Array Functions-Universal Functions: Fast Element-Wise Array
Functions

creating custom objects with Numba, Creating Custom numpy.ufunc
Objects with Numba

instance methods, ufunc Instance Methods-ufunc Instance Methods

writing in Python, Writing New ufuncs in Python

unpacking tuples, Unpacking tuples

unstack method, Reshaping with Hierarchical Indexing

unwrapped group operation, Group Transforms and “Unwrapped”
GroupBys

update method, dict, set

updating packages, Installing or Updating Python Packages

upper method, String Object Methods, Vectorized String Functions in
pandas

upsampling, Resampling and Frequency Conversion, Upsampling and
Interpolation

US baby names dataset example, US Baby Names 1880–2010-Boy names
that became girl names (and vice versa)

US Federal Election Commission database example, 2012 Federal



Election Commission Database-Donation Statistics by State

USA.gov dataset example, 1.USA.gov Data from Bitly-Counting Time
Zones with pandas

USDA food database example, USDA Food Database-USDA Food
Database

UTC (coordinated universal time), Time Zone Handling

UTF-8 encoding, Bytes and Unicode with Files

V

ValueError exception, Errors and Exception Handling, Data Types for
ndarrays

values attribute, DataFrame

values method, dict, Pivot Tables and Cross-Tabulation

values property, Interfacing Between pandas and Model Code

value_count method, Discretization and Binning

value_counts method, Unique Values, Value Counts, and Membership,
Bar Plots, Background and Motivation

var method, Mathematical and Statistical Methods, Summarizing and
Computing Descriptive Statistics, Data Aggregation

variables

dummy, Computing Indicator/Dummy Variables-Computing
Indicator/Dummy Variables, Creating dummy variables for modeling,



Interfacing Between pandas and Model Code, Categorical Data and
Patsy

function scope and, Namespaces, Scope, and Local Functions

in Python, Variables and argument passing-Dynamic references,
strong types

indicator, Computing Indicator/Dummy Variables-Computing
Indicator/Dummy Variables

input, Input and Output Variables

output, Input and Output Variables

shell commands and, Shell Commands and Aliases

vectorization, Arithmetic with NumPy Arrays

vectorize function, Writing New ufuncs in Python, Creating Custom
numpy.ufunc Objects with Numba

vectorized string methods in pandas, Vectorized String Functions in
pandas-Vectorized String Functions in pandas

visualization tools, Other Python Visualization Tools

vsplit function, Concatenating and Splitting Arrays

vstack function, Concatenating and Splitting Arrays

W

%w datetime format, Dates and times, Converting Between String and
Datetime



%W datetime format, Dates and times, Converting Between String and
Datetime

w(here) debugger command, Interactive Debugger

Waskom, Michael, Plotting with pandas and seaborn

Wattenberg, Laura, The “last letter” revolution

Web APIs, pandas interacting with, Interacting with Web APIs

Web scraping, XML and HTML: Web Scraping-Parsing XML with
lxml.objectify

where function, Expressing Conditional Logic as Array Operations,
Combining Data with Overlap

while loops, while loops

whitespace

regular expression describing, Regular Expressions

structuring code with, Indentation, not braces

trimming around figures, Saving Plots to File

%who magic function, About Magic Commands

%whos magic function, About Magic Commands

%who_ls magic function, About Magic Commands

Wickham, Hadley, Binary Data Formats, GroupBy Mechanics, US Baby
Names 1880–2010



wildcard expressions, Introspection

Williams, Ashley, USDA Food Database

Windows, setting up Python on, Windows

with statement, Files and the Operating System

wrangling (see data wrangling)

write method, Files and the Operating System

write-only mode for files, Files and the Operating System

writelines method, Files and the Operating System-Files and the
Operating System

writing data in text format, Reading and Writing Data in Text Format-
Writing Data to Text Format

X

%x datetime format, Converting Between String and Datetime

%X datetime format, Converting Between String and Datetime

%xdel magic function, About Magic Commands, Input and Output
Variables

xlim method, Ticks, Labels, and Legends

xlrd package, Reading Microsoft Excel Files

XLS files, Reading Microsoft Excel Files

XLSX files, Reading Microsoft Excel Files



XML files, XML and HTML: Web Scraping-Parsing XML with
lxml.objectify

%xmode magic function, Exceptions in IPython

Y

%Y datetime format, Dates and times, Converting Between String and
Datetime

%y datetime format, Dates and times, Converting Between String and
Datetime

yield keyword, Generators

Z

%z datetime format, Dates and times, Converting Between String and
Datetime

"zero-copy" array views, ndarray Object Internals

zeros function, Creating ndarrays-Creating ndarrays

zeros_like function, Creating ndarrays

zip function, zip



About the Author
Wes McKinney is a New York-based software developer and entrepreneur.
After finishing his undergraduate degree in mathematics at MIT in 2007, he
went on to do quantitative finance work at AQR Capital Management in
Greenwich, CT. Frustrated by cumbersome data analysis tools, he learned
Python and started building what would later become the pandas project.
He’s now an active member of the Python data community and is an advocate
for the use of Python in data analysis, finance, and statistical computing
applications.

Wes was later the cofounder and CEO of DataPad, whose technology assets
and team were acquired by Cloudera in 2014. He has since become involved
in big data technology, joining the Project Management Committees for the
Apache Arrow and Apache Parquet projects in the Apache Software
Foundation. In 2016, he joined Two Sigma Investments in New York City,
where he continues working to make data analysis faster and easier through
open source software.



Colophon
The animal on the cover of Python for Data Analysis is a golden-tailed, or
pen-tailed, tree shrew (Ptilocercus lowii). The golden-tailed tree shrew is the
only one of its species in the genus Ptilocercus and family Ptilocercidae; all
the other tree shrews are of the family Tupaiidae. Tree shrews are identified
by their long tails and soft red-brown fur. As nicknamed, the golden-tailed
tree shrew has a tail that resembles the feather on a quill pen. Tree shrews are
omnivores, feeding primarily on insects, fruit, seeds, and small vertebrates.

Found predominantly in Indonesia, Malaysia, and Thailand, these wild
mammals are known for their chronic consumption of alcohol. Malaysian tree
shrews were found to spend several hours consuming the naturally fermented
nectar of the bertam palm, equalling about 10 to 12 glasses of wine with
3.8% alcohol content. Despite this, no golden-tailed tree shrew has ever been
intoxicated, thanks largely to their impressive ability to break down ethanol,
which includes metabolizing the alcohol in a way not used by humans. Also
more impressive than any of their mammal counterparts, including humans?
Brain-to-body mass ratio.

Despite these mammals’ name, the golden-tailed shrew is not a true shrew,
instead more closely related to primates. Because of their close relation, tree
shrews have become an alternative to primates in medical experimentation
for myopia, psychosocial stress, and hepatitis.

The cover image is from Cassell’s Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.



Preface
New for the Second Edition

Conventions Used in This Book

Using Code Examples

O’Reilly Safari

How to Contact Us

Acknowledgments
In Memoriam: John D. Hunter (1968–2012)

Acknowledgments for the Second Edition (2017)

Acknowledgments for the First Edition (2012)

Preliminaries
1.1 What Is This Book About?

What Kinds of Data?

1.2 Why Python for Data Analysis?
Python as Glue

Solving the “Two-Language” Problem

Why Not Python?

1.3 Essential Python Libraries
NumPy

pandas

matplotlib

IPython and Jupyter



SciPy

scikit-learn

statsmodels

1.4 Installation and Setup
Windows

Apple (OS X, macOS)

GNU/Linux

Installing or Updating Python Packages

Python 2 and Python 3

Integrated Development Environments (IDEs) and Text
Editors

1.5 Community and Conferences

1.6 Navigating This Book
Code Examples

Data for Examples

Import Conventions

Jargon

Python Language Basics, IPython, and Jupyter Notebooks
2.1 The Python Interpreter

2.2 IPython Basics
Running the IPython Shell

Running the Jupyter Notebook



Tab Completion

Introspection

The %run Command

Executing Code from the Clipboard

Terminal Keyboard Shortcuts

About Magic Commands

Matplotlib Integration

2.3 Python Language Basics
Language Semantics

Scalar Types

Control Flow

Built-in Data Structures, Functions, and Files
3.1 Data Structures and Sequences

Tuple

List

Built-in Sequence Functions

dict

set

List, Set, and Dict Comprehensions

3.2 Functions
Namespaces, Scope, and Local Functions



Returning Multiple Values

Functions Are Objects

Anonymous (Lambda) Functions

Currying: Partial Argument Application

Generators

Errors and Exception Handling

3.3 Files and the Operating System
Bytes and Unicode with Files

3.4 Conclusion

NumPy Basics: Arrays and Vectorized Computation
4.1 The NumPy ndarray: A Multidimensional Array Object

Creating ndarrays

Data Types for ndarrays

Arithmetic with NumPy Arrays

Basic Indexing and Slicing

Boolean Indexing

Fancy Indexing

Transposing Arrays and Swapping Axes

4.2 Universal Functions: Fast Element-Wise Array Functions

4.3 Array-Oriented Programming with Arrays
Expressing Conditional Logic as Array Operations



Mathematical and Statistical Methods

Methods for Boolean Arrays

Sorting

Unique and Other Set Logic

4.4 File Input and Output with Arrays

4.5 Linear Algebra

4.6 Pseudorandom Number Generation

4.7 Example: Random Walks
Simulating Many Random Walks at Once

4.8 Conclusion

Getting Started with pandas
5.1 Introduction to pandas Data Structures

Series

DataFrame

Index Objects

5.2 Essential Functionality
Reindexing

Dropping Entries from an Axis

Indexing, Selection, and Filtering

Integer Indexes

Arithmetic and Data Alignment



Function Application and Mapping

Sorting and Ranking

Axis Indexes with Duplicate Labels

5.3 Summarizing and Computing Descriptive Statistics
Correlation and Covariance

Unique Values, Value Counts, and Membership

5.4 Conclusion

Data Loading, Storage, and File Formats
6.1 Reading and Writing Data in Text Format

Reading Text Files in Pieces

Writing Data to Text Format

Working with Delimited Formats

JSON Data

XML and HTML: Web Scraping

6.2 Binary Data Formats
Using HDF5 Format

Reading Microsoft Excel Files

6.3 Interacting with Web APIs

6.4 Interacting with Databases

6.5 Conclusion

Data Cleaning and Preparation



7.1 Handling Missing Data
Filtering Out Missing Data

Filling In Missing Data

7.2 Data Transformation
Removing Duplicates

Transforming Data Using a Function or Mapping

Replacing Values

Renaming Axis Indexes

Discretization and Binning

Detecting and Filtering Outliers

Permutation and Random Sampling

Computing Indicator/Dummy Variables

7.3 String Manipulation
String Object Methods

Regular Expressions

Vectorized String Functions in pandas

7.4 Conclusion

Data Wrangling: Join, Combine, and Reshape
8.1 Hierarchical Indexing

Reordering and Sorting Levels

Summary Statistics by Level



Indexing with a DataFrame’s columns

8.2 Combining and Merging Datasets
Database-Style DataFrame Joins

Merging on Index

Concatenating Along an Axis

Combining Data with Overlap

8.3 Reshaping and Pivoting
Reshaping with Hierarchical Indexing

Pivoting “Long” to “Wide” Format

Pivoting “Wide” to “Long” Format

8.4 Conclusion

Plotting and Visualization
9.1 A Brief matplotlib API Primer

Figures and Subplots

Colors, Markers, and Line Styles

Ticks, Labels, and Legends

Annotations and Drawing on a Subplot

Saving Plots to File

matplotlib Configuration

9.2 Plotting with pandas and seaborn
Line Plots



Bar Plots

Histograms and Density Plots

Scatter or Point Plots

Facet Grids and Categorical Data

9.3 Other Python Visualization Tools

9.4 Conclusion

Data Aggregation and Group Operations
10.1 GroupBy Mechanics

Iterating Over Groups

Selecting a Column or Subset of Columns

Grouping with Dicts and Series

Grouping with Functions

Grouping by Index Levels

10.2 Data Aggregation
Column-Wise and Multiple Function Application

Returning Aggregated Data Without Row Indexes

10.3 Apply: General split-apply-combine
Suppressing the Group Keys

Quantile and Bucket Analysis

Example: Filling Missing Values with Group-Specific
Values

Example: Random Sampling and Permutation



Example: Group Weighted Average and Correlation

Example: Group-Wise Linear Regression

10.4 Pivot Tables and Cross-Tabulation
Cross-Tabulations: Crosstab

10.5 Conclusion

Time Series
11.1 Date and Time Data Types and Tools

Converting Between String and Datetime

11.2 Time Series Basics
Indexing, Selection, Subsetting

Time Series with Duplicate Indices

11.3 Date Ranges, Frequencies, and Shifting
Generating Date Ranges

Frequencies and Date Offsets

Shifting (Leading and Lagging) Data

11.4 Time Zone Handling
Time Zone Localization and Conversion

Operations with Time Zone−Aware Timestamp Objects

Operations Between Different Time Zones

11.5 Periods and Period Arithmetic
Period Frequency Conversion

Quarterly Period Frequencies



Converting Timestamps to Periods (and Back)

Creating a PeriodIndex from Arrays

11.6 Resampling and Frequency Conversion
Downsampling

Upsampling and Interpolation

Resampling with Periods

11.7 Moving Window Functions
Exponentially Weighted Functions

Binary Moving Window Functions

User-Defined Moving Window Functions

11.8 Conclusion

Advanced pandas
12.1 Categorical Data

Background and Motivation

Categorical Type in pandas

Computations with Categoricals

Categorical Methods

12.2 Advanced GroupBy Use
Group Transforms and “Unwrapped” GroupBys

Grouped Time Resampling

12.3 Techniques for Method Chaining
The pipe Method



12.4 Conclusion

Introduction to Modeling Libraries in Python
13.1 Interfacing Between pandas and Model Code

13.2 Creating Model Descriptions with Patsy
Data Transformations in Patsy Formulas

Categorical Data and Patsy

13.3 Introduction to statsmodels
Estimating Linear Models

Estimating Time Series Processes

13.4 Introduction to scikit-learn

13.5 Continuing Your Education

Data Analysis Examples
14.1 1.USA.gov Data from Bitly

Counting Time Zones in Pure Python

Counting Time Zones with pandas

14.2 MovieLens 1M Dataset
Measuring Rating Disagreement

14.3 US Baby Names 1880–2010
Analyzing Naming Trends

14.4 USDA Food Database

14.5 2012 Federal Election Commission Database
Donation Statistics by Occupation and Employer



Bucketing Donation Amounts

Donation Statistics by State

14.6 Conclusion

Advanced NumPy
A.1 ndarray Object Internals

NumPy dtype Hierarchy

A.2 Advanced Array Manipulation
Reshaping Arrays

C Versus Fortran Order

Concatenating and Splitting Arrays

Repeating Elements: tile and repeat

Fancy Indexing Equivalents: take and put

A.3 Broadcasting
Broadcasting Over Other Axes

Setting Array Values by Broadcasting

A.4 Advanced ufunc Usage
ufunc Instance Methods

Writing New ufuncs in Python

A.5 Structured and Record Arrays
Nested dtypes and Multidimensional Fields

Why Use Structured Arrays?

A.6 More About Sorting



Indirect Sorts: argsort and lexsort

Alternative Sort Algorithms

Partially Sorting Arrays

numpy.searchsorted: Finding Elements in a Sorted Array

A.7 Writing Fast NumPy Functions with Numba
Creating Custom numpy.ufunc Objects with Numba

A.8 Advanced Array Input and Output
Memory-Mapped Files

HDF5 and Other Array Storage Options

A.9 Performance Tips
The Importance of Contiguous Memory

More on the IPython System
B.1 Using the Command History

Searching and Reusing the Command History

Input and Output Variables

B.2 Interacting with the Operating System
Shell Commands and Aliases

Directory Bookmark System

B.3 Software Development Tools
Interactive Debugger

Timing Code: %time and %timeit

Basic Profiling: %prun and %run -p



Profiling a Function Line by Line

B.4 Tips for Productive Code Development Using IPython
Reloading Module Dependencies

Code Design Tips

B.5 Advanced IPython Features
Making Your Own Classes IPython-Friendly

Profiles and Configuration

B.6 Conclusion

Index


	Preface
	1. New for the Second Edition
	2. Conventions Used in This Book
	3. Using Code Examples
	4. O’Reilly Safari
	5. How to Contact Us
	6. Acknowledgments
	In Memoriam: John D. Hunter (1968–2012)
	Acknowledgments for the Second Edition (2017)
	Acknowledgments for the First Edition (2012)


	1. Preliminaries
	1.1. What Is This Book About?
	What Kinds of Data?

	1.2. Why Python for Data Analysis?
	Python as Glue
	Solving the “Two-Language” Problem
	Why Not Python?

	1.3. Essential Python Libraries
	NumPy
	pandas
	matplotlib
	IPython and Jupyter
	SciPy
	scikit-learn
	statsmodels

	1.4. Installation and Setup
	Windows
	Apple (OS X, macOS)
	GNU/Linux
	Installing or Updating Python Packages
	Python 2 and Python 3
	Integrated Development Environments (IDEs) and Text Editors

	1.5. Community and Conferences
	1.6. Navigating This Book
	Code Examples
	Data for Examples
	Import Conventions
	Jargon


	2. Python Language Basics, IPython, and Jupyter Notebooks
	2.1. The Python Interpreter
	2.2. IPython Basics
	Running the IPython Shell
	Running the Jupyter Notebook
	Tab Completion
	Introspection
	The %run Command
	Interrupting running code

	Executing Code from the Clipboard
	Terminal Keyboard Shortcuts
	About Magic Commands
	Matplotlib Integration

	2.3. Python Language Basics
	Language Semantics
	Indentation, not braces
	Everything is an object
	Comments
	Function and object method calls
	Variables and argument passing
	Dynamic references, strong types
	Attributes and methods
	Duck typing
	Imports
	Binary operators and comparisons
	Mutable and immutable objects

	Scalar Types
	Numeric types
	Strings
	Bytes and Unicode
	Booleans
	Type casting
	None
	Dates and times

	Control Flow
	if, elif, and else
	for loops
	while loops
	pass
	range
	Ternary expressions



	3. Built-in Data Structures, Functions, and Files
	3.1. Data Structures and Sequences
	Tuple
	Unpacking tuples
	Tuple methods

	List
	Adding and removing elements
	Concatenating and combining lists
	Sorting
	Binary search and maintaining a sorted list
	Slicing

	Built-in Sequence Functions
	enumerate
	sorted
	zip
	reversed

	dict
	Creating dicts from sequences
	Default values
	Valid dict key types

	set
	List, Set, and Dict Comprehensions
	Nested list comprehensions


	3.2. Functions
	Namespaces, Scope, and Local Functions
	Returning Multiple Values
	Functions Are Objects
	Anonymous (Lambda) Functions
	Currying: Partial Argument Application
	Generators
	Generator expresssions
	itertools module

	Errors and Exception Handling
	Exceptions in IPython


	3.3. Files and the Operating System
	Bytes and Unicode with Files

	3.4. Conclusion

	4. NumPy Basics: Arrays and Vectorized Computation
	4.1. The NumPy ndarray: A Multidimensional Array Object
	Creating ndarrays
	Data Types for ndarrays
	Arithmetic with NumPy Arrays
	Basic Indexing and Slicing
	Indexing with slices

	Boolean Indexing
	Fancy Indexing
	Transposing Arrays and Swapping Axes

	4.2. Universal Functions: Fast Element-Wise Array Functions
	4.3. Array-Oriented Programming with Arrays
	Expressing Conditional Logic as Array Operations
	Mathematical and Statistical Methods
	Methods for Boolean Arrays
	Sorting
	Unique and Other Set Logic

	4.4. File Input and Output with Arrays
	4.5. Linear Algebra
	4.6. Pseudorandom Number Generation
	4.7. Example: Random Walks
	Simulating Many Random Walks at Once

	4.8. Conclusion

	5. Getting Started with pandas
	5.1. Introduction to pandas Data Structures
	Series
	DataFrame
	Index Objects

	5.2. Essential Functionality
	Reindexing
	Dropping Entries from an Axis
	Indexing, Selection, and Filtering
	Selection with loc and iloc

	Integer Indexes
	Arithmetic and Data Alignment
	Arithmetic methods with fill values
	Operations between DataFrame and Series

	Function Application and Mapping
	Sorting and Ranking
	Axis Indexes with Duplicate Labels

	5.3. Summarizing and Computing Descriptive Statistics
	Correlation and Covariance
	Unique Values, Value Counts, and Membership

	5.4. Conclusion

	6. Data Loading, Storage, and File Formats
	6.1. Reading and Writing Data in Text Format
	Reading Text Files in Pieces
	Writing Data to Text Format
	Working with Delimited Formats
	JSON Data
	XML and HTML: Web Scraping
	Parsing XML with lxml.objectify


	6.2. Binary Data Formats
	Using HDF5 Format
	Reading Microsoft Excel Files

	6.3. Interacting with Web APIs
	6.4. Interacting with Databases
	6.5. Conclusion

	7. Data Cleaning and Preparation
	7.1. Handling Missing Data
	Filtering Out Missing Data
	Filling In Missing Data

	7.2. Data Transformation
	Removing Duplicates
	Transforming Data Using a Function or Mapping
	Replacing Values
	Renaming Axis Indexes
	Discretization and Binning
	Detecting and Filtering Outliers
	Permutation and Random Sampling
	Computing Indicator/Dummy Variables

	7.3. String Manipulation
	String Object Methods
	Regular Expressions
	Vectorized String Functions in pandas

	7.4. Conclusion

	8. Data Wrangling: Join, Combine, and Reshape
	8.1. Hierarchical Indexing
	Reordering and Sorting Levels
	Summary Statistics by Level
	Indexing with a DataFrame’s columns

	8.2. Combining and Merging Datasets
	Database-Style DataFrame Joins
	Merging on Index
	Concatenating Along an Axis
	Combining Data with Overlap

	8.3. Reshaping and Pivoting
	Reshaping with Hierarchical Indexing
	Pivoting “Long” to “Wide” Format
	Pivoting “Wide” to “Long” Format

	8.4. Conclusion

	9. Plotting and Visualization
	9.1. A Brief matplotlib API Primer
	Figures and Subplots
	Adjusting the spacing around subplots

	Colors, Markers, and Line Styles
	Ticks, Labels, and Legends
	Setting the title, axis labels, ticks, and ticklabels
	Adding legends

	Annotations and Drawing on a Subplot
	Saving Plots to File
	matplotlib Configuration

	9.2. Plotting with pandas and seaborn
	Line Plots
	Bar Plots
	Histograms and Density Plots
	Scatter or Point Plots
	Facet Grids and Categorical Data

	9.3. Other Python Visualization Tools
	9.4. Conclusion

	10. Data Aggregation and Group Operations
	10.1. GroupBy Mechanics
	Iterating Over Groups
	Selecting a Column or Subset of Columns
	Grouping with Dicts and Series
	Grouping with Functions
	Grouping by Index Levels

	10.2. Data Aggregation
	Column-Wise and Multiple Function Application
	Returning Aggregated Data Without Row Indexes

	10.3. Apply: General split-apply-combine
	Suppressing the Group Keys
	Quantile and Bucket Analysis
	Example: Filling Missing Values with Group-Specific Values
	Example: Random Sampling and Permutation
	Example: Group Weighted Average and Correlation
	Example: Group-Wise Linear Regression

	10.4. Pivot Tables and Cross-Tabulation
	Cross-Tabulations: Crosstab

	10.5. Conclusion

	11. Time Series
	11.1. Date and Time Data Types and Tools
	Converting Between String and Datetime

	11.2. Time Series Basics
	Indexing, Selection, Subsetting
	Time Series with Duplicate Indices

	11.3. Date Ranges, Frequencies, and Shifting
	Generating Date Ranges
	Frequencies and Date Offsets
	Week of month dates

	Shifting (Leading and Lagging) Data
	Shifting dates with offsets


	11.4. Time Zone Handling
	Time Zone Localization and Conversion
	Operations with Time Zone−Aware Timestamp Objects
	Operations Between Different Time Zones

	11.5. Periods and Period Arithmetic
	Period Frequency Conversion
	Quarterly Period Frequencies
	Converting Timestamps to Periods (and Back)
	Creating a PeriodIndex from Arrays

	11.6. Resampling and Frequency Conversion
	Downsampling
	Open-High-Low-Close (OHLC) resampling

	Upsampling and Interpolation
	Resampling with Periods

	11.7. Moving Window Functions
	Exponentially Weighted Functions
	Binary Moving Window Functions
	User-Defined Moving Window Functions

	11.8. Conclusion

	12. Advanced pandas
	12.1. Categorical Data
	Background and Motivation
	Categorical Type in pandas
	Computations with Categoricals
	Better performance with categoricals

	Categorical Methods
	Creating dummy variables for modeling


	12.2. Advanced GroupBy Use
	Group Transforms and “Unwrapped” GroupBys
	Grouped Time Resampling

	12.3. Techniques for Method Chaining
	The pipe Method

	12.4. Conclusion

	13. Introduction to Modeling Libraries in Python
	13.1. Interfacing Between pandas and Model Code
	13.2. Creating Model Descriptions with Patsy
	Data Transformations in Patsy Formulas
	Categorical Data and Patsy

	13.3. Introduction to statsmodels
	Estimating Linear Models
	Estimating Time Series Processes

	13.4. Introduction to scikit-learn
	13.5. Continuing Your Education

	14. Data Analysis Examples
	14.1. 1.USA.gov Data from Bitly
	Counting Time Zones in Pure Python
	Counting Time Zones with pandas

	14.2. MovieLens 1M Dataset
	Measuring Rating Disagreement

	14.3. US Baby Names 1880–2010
	Analyzing Naming Trends
	Measuring the increase in naming diversity
	The “last letter” revolution
	Boy names that became girl names (and vice versa)


	14.4. USDA Food Database
	14.5. 2012 Federal Election Commission Database
	Donation Statistics by Occupation and Employer
	Bucketing Donation Amounts
	Donation Statistics by State

	14.6. Conclusion

	A. Advanced NumPy
	A.1. ndarray Object Internals
	NumPy dtype Hierarchy

	A.2. Advanced Array Manipulation
	Reshaping Arrays
	C Versus Fortran Order
	Concatenating and Splitting Arrays
	Stacking helpers: r_ and c_

	Repeating Elements: tile and repeat
	Fancy Indexing Equivalents: take and put

	A.3. Broadcasting
	Broadcasting Over Other Axes
	Setting Array Values by Broadcasting

	A.4. Advanced ufunc Usage
	ufunc Instance Methods
	Writing New ufuncs in Python

	A.5. Structured and Record Arrays
	Nested dtypes and Multidimensional Fields
	Why Use Structured Arrays?

	A.6. More About Sorting
	Indirect Sorts: argsort and lexsort
	Alternative Sort Algorithms
	Partially Sorting Arrays
	numpy.searchsorted: Finding Elements in a Sorted Array

	A.7. Writing Fast NumPy Functions with Numba
	Creating Custom numpy.ufunc Objects with Numba

	A.8. Advanced Array Input and Output
	Memory-Mapped Files
	HDF5 and Other Array Storage Options

	A.9. Performance Tips
	The Importance of Contiguous Memory


	B. More on the IPython System
	B.1. Using the Command History
	Searching and Reusing the Command History
	Input and Output Variables

	B.2. Interacting with the Operating System
	Shell Commands and Aliases
	Directory Bookmark System

	B.3. Software Development Tools
	Interactive Debugger
	Other ways to make use of the debugger

	Timing Code: %time and %timeit
	Basic Profiling: %prun and %run -p
	Profiling a Function Line by Line

	B.4. Tips for Productive Code Development Using IPython
	Reloading Module Dependencies
	Code Design Tips
	Keep relevant objects and data alive
	Flat is better than nested
	Overcome a fear of longer files


	B.5. Advanced IPython Features
	Making Your Own Classes IPython-Friendly
	Profiles and Configuration

	B.6. Conclusion

	Index

