

Maintainable JavaScript

Nicholas C. Zakas

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Maintainable JavaScript
by Nicholas C. Zakas

Copyright © 2012 Nicholas Zakas. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Holly Bauer
Copyeditor: Nancy Kotary
Proofreader: Linley Dolby

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

May 2012: First Edition.

Revision History for the First Edition:
2012-05-09 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449327682 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Maintainable JavaScript, the image of a Greek tortoise, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-32768-2

[LSI]

1336581452

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449327682

Table of Contents

Introduction . ix

Preface . xiii

Part I. Style Guidelines

1. Basic Formatting . 5
Indentation Levels 5
Statement Termination 7
Line Length 8
Line Breaking 9
Blank Lines 10
Naming 11

Variables and Functions 11
Constants 13
Constructors 13

Literal Values 14
Strings 14
Numbers 15
Null 16
Undefined 17
Object Literals 18
Array Literals 19

2. Comments . 21
Single-Line Comments 21
Multiline Comments 23
Using Comments 24

Difficult-to-Understand Code 25
Potential Author Errors 25

iii

Browser-Specific Hacks 26
Documentation Comments 27

3. Statements and Expressions . 29
Brace Alignment 30
Block Statement Spacing 31
The switch Statement 31

Indentation 32
Falling Through 33
default 34

The with Statement 35
The for Loop 35
The for-in Loop 37

4. Variables, Functions, and Operators . 39
Variable Declarations 39
Function Declarations 41
Function Call Spacing 42
Immediate Function Invocation 43

Strict Mode 44
Equality 45
eval() 47
Primitive Wrapper Types 48

Part II. Programming Practices

5. Loose Coupling of UI Layers . 53
What Is Loose Coupling? 54
Keep JavaScript Out of CSS 55
Keep CSS Out of JavaScript 56
Keep JavaScript Out of HTML 57
Keep HTML Out of JavaScript 59

Alternative #1: Load from the Server 60
Alternative #2: Simple Client-Side Templates 61
Alternative #3: Complex Client-Side Templates 63

6. Avoid Globals . 67
The Problems with Globals 67

Naming Collisions 68
Code Fragility 68
Difficulty Testing 69

Accidental Globals 69

iv | Table of Contents

Avoiding Accidental Globals 70
The One-Global Approach 71

Namespaces 72
Modules 74

The Zero-Global Approach 76

7. Event Handling . 79
Classic Usage 79
Rule #1: Separate Application Logic 80
Rule #2: Don’t Pass the Event Object Around 81

8. Avoid Null Comparisons . 83
Detecting Primitive Values 83
Detecting Reference Values 85

Detecting Functions 87
Detecting Arrays 88

Detecting Properties 89

9. Separate Configuration Data from Code . 91
What Is Configuration Data? 91
Externalizing Configuration Data 92
Storing Configuration Data 93

10. Throw Your Own Errors . 95
The Nature of Errors 95
Throwing Errors in JavaScript 96
Advantages of Throwing Errors 97
When to Throw Errors 97
The try-catch Statement 99

Throw or try-catch? 100
Error Types 100

11. Don’t Modify Objects You Don’t Own . 103
What Do You Own? 103
The Rules 104

Don’t Override Methods 104
Don’t Add New Methods 105
Don’t Remove Methods 107

Better Approaches 108
Object-Based Inheritance 108
Type-Based Inheritance 109
The Facade Pattern 110

A Note on Polyfills 111

Table of Contents | v

Preventing Modification 112

12. Browser Detection . 115
User-Agent Detection 115
Feature Detection 117
Avoid Feature Inference 119
Avoid Browser Inference 120
What Should You Use? 122

Part III. Automation

13. File and Directory Structure . 127
Best Practices 127
Basic Layout 128

14. Ant . 133
Installation 133
The Build File 133
Running the Build 134
Target Dependencies 135
Properties 136
Buildr 137

15. Validation . 139
Finding Files 139
The Task 140
Improving the Target 141
Other Improvements 142
Buildr Task 143

16. Concatenation and Baking . 145
The Task 145
Line Endings 146
Headers and Footers 147
Baking Files 148

17. Minification and Compression . 151
Minification 151

Minifying with YUI Compressor 152
Minifying with Closure Compiler 154
Minifying with UglifyJS 156

Compression 157

vi | Table of Contents

Runtime Compression 157
Build-Time Compression 158

18. Documentation . 161
JSDoc Toolkit 161
YUI Doc 163

19. Automated Testing . 167
YUI Test Selenium Driver 167

Setting Up a Selenium Server 168
Setting Up YUI Test Selenium Driver 168
Using the YUI Test Selenium Driver 168
The Ant Target 170

Yeti 171
PhantomJS 172

Installation and Usage 172
The Ant Target 173

JsTestDriver 173
Installation and Usage 174
The Ant Target 174

20. Putting It Together . 177
Missing Pieces 177
Planning the Build 178

The Development Build 179
The Integration Build 180
The Release Build 180

Using a CI System 181
Jenkins 181
Other CI Systems 184

A. JavaScript Style Guide . 185

B. JavaScript Tools . 205

Index . 209

Table of Contents | vii

Introduction

The professionalization of web development has been a difficult journey because of our
disparate beginnings. Even those who end up at large companies such as Yahoo! in-
evitably began on their own, hacking around. Perhaps you were even “the web guy” at
a small company and could do pretty much whatever you wanted. When the large
companies started tapping this previously undiscovered resource, it brought a lot of
hackers into a corporate environment, where they were met with constraints. No longer
a lone soldier in a small battle, all of these self-taught, self-directed individuals had to
figure out how to work within a team environment.

I learned JavaScript the way many did in the late 1990s: I taught myself. Because Java-
Script was so new, educational resources were scarce. I, like many other developers,
learned by exploring the intricacies of Internet Explorer and Netscape Navigator on
my own. I experimented, theorized, and experimented again until I discovered how
things worked. Luckily for me, this curiosity and diligence turned into my first job.

For the first five years of my professional career, I was “the JavaScript guy.” No one in
either of my first two companies could match my depth of knowledge in JavaScript and
web development in general. All problems, from very simple to very difficult, ended up
on my desk to solve by myself. It was both empowering as a fresh-from-college kid and
terrifying because I had no one to bounce ideas off of or anyone to ask for help if I got
stuck. I did the best that I could, knowing that I was the only one who could do it.

During those five years, I honed my craft. I came up with ways of doing things that
made sense to me and my workflow. I didn’t have to worry about what anyone else
thought of my code, because no one had enough knowledge to code review or fix what
I had written. I was a hacker in its purest sense: I wrote code the way I wanted and
wouldn’t hear of changing it.

In year six of my professional career, I switched jobs and ended up on a team where
everyone was expected to contribute code in all aspects of the project. No longer able
to focus on JavaScript and web development, I found myself writing server-side code
and SQL queries most of the time. Meanwhile, traditionally backend-focused devel-
opers were being forced to write web code. This experience really opened my eyes: the

ix

way I used to write code wasn’t the way the rest of the team wrote code, and that was
a problem.

I quickly realized that to be more effective on the team, I had to start writing code the
way the rest of the team wrote code. Server-side code and SQL were a bit alien to me,
so I adopted the patterns of those around me who knew what they were doing. At the
same time, I started talking to the other engineers about adopting coding patterns for
HTML, CSS, and JavaScript. I even added JavaScript linting into the build process to
enforce our standards—the first test of web code ever at the company. And soon, the
team was working as a well-oiled machine.

When I arrived at Yahoo! in 2006, I came with a specific idea of how things should
work when I got there. What I found was a completely different animal altogether. The
My Yahoo! team, the first team I worked on, was much larger than any I had worked
on before. There were already pseudoguidelines in place, and I had a lot to learn. New
technologies, new processes, and new tools were presented to me on a daily basis. I
was overwhelmed and resigned myself to spending some time learning about this new
environment and soaking up as much knowledge as I could from my colleagues.

After a few months, I started to find problems. The processes I had finally become
accustomed to weren’t working all the time. There were a lot of people doing things in
different ways, and that caused bugs. My manager, noticing this trend, pulled me aside
one day and said he’d like me to take lead on cleaning up our development. His words,
still inspiring to me, were, “When you write code, things just work—they rarely have
bugs. I want everyone to write code like you do.” And with that, I set out to add some
structure to the My Yahoo! frontend development team.

The success I had working on the My Yahoo! team ultimately led to my being chosen
as the frontend tech lead for the Yahoo! home page redesign of 2008. This assignment
really put my organizational and code quality skills to the test, as we had more than 20
frontend engineers working with the same code. After a few months of learning and
adjusting, the team reached such a high level of productivity and quality that many
were amazed. Not only did all code look remarkably similar regardless of who wrote
it, but most developers were capable of quickly switching to someone else’s work to
fix bugs or implement new features. What we accomplished as an engineering team
over the course of a couple years is still one of the highlights of my career.

It was during my time at Yahoo!, working on large teams, that I accumulated the tips
and techniques discussed in this book. The topics highlight how I transformed myself
from a hacker, always doing things his own way, to a software engineer, a team player
who gave up some of himself so that the team could function at a higher level. And
that’s really what this book is about: how to write JavaScript as part of a team.

The hard truth that developers often don’t understand is that we spend most of our
time maintaining code. It’s rare that you get to open up a text editor and start writing
code from scratch. Most of the time, you’re building on code that’s already there.
Writing code in a maintainable away allows you, and others who will work on your

x | Introduction

code after you, to easily pick up where the code leaves off. As I used to always tell my
colleagues at Yahoo!: “When you come to work, you’re not writing code for you, you’re
writing code for those who come after you.”

This book is a collection and discussion of code conventions for JavaScript. One of the
most popular code convention documents, Code Conventions for the Java Program-
ming Language, lists the following reasons that code conventions are important:

• Eighty percent of the lifetime cost of a piece of software goes to maintenance.

• Hardly any software is maintained for its whole life by the original author.

• Code conventions improve the readability of the software, allowing engineers to
understand new code more quickly and thoroughly.

• If you ship your source code as a product, you need to make sure that it is as well
packaged and clean as any other product you create.

This reasoning still rings true today. The conventions discussed in this book are all
aimed at helping you and your team write JavaScript in the most effective way possible.

Because you’re reading this book, you probably are open to the suggestions contained
herein. Keep in mind that these techniques are really aimed at a multideveloper envi-
ronment in which there are many engineers all working on the same code. Being a part
of a team means making decisions that are best not for you, but for the team as a whole.
And that sometimes means sacrificing your preferences, your ideas, and your ego. What
you receive in return is a high-functioning team capable of doing great things, and I
hope this book will help you along that road.

Introduction | xi

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does

xiii

require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: Maintainable JavaScript by Nicholas Zakas
(O’Reilly). Copyright 2012 Nicholas Zakas, 978-1-449-32768-2.

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreil.ly/maintainable_js

xiv | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/maintainable_js

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xv

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART I

Style Guidelines

“Programs are meant to be read by humans and only incidentally for computers to exe-
cute.” —Donald Knuth

When a team is brought together for the first time, everyone brings with them their
own ideas about how code should be written. After all, each team member comes from
a different background. Some may come from one-man shops where they could do
whatever they wanted; others may have been on different teams that had particular
ways of doing things that they liked (or hated). Everyone has an opinion about how
code should be written, and it usually falls in line with how that individual would
personally write it. Establishing style guidelines should always come as early in the
process as possible.

The terms “style guidelines” and “code conventions” are often used in-
terchangeably. Style guidelines are a type of code convention aimed at
the layout of code within a file. Code conventions can also include pro-
gramming practices, file and directory layout, and commenting. This
book is actually a collection and discussion of code conventions for
JavaScript.

Why Style Guidelines?
Figuring out style guidelines is a process that typically takes longer than it should.
Everyone has an opinion and, when you’re going to be spending eight hours a day
writing code, all programmers want to do so in a way that is comfortable to them. It
takes some compromise within the team and a strong leader to move the conversation
forward. Once established, style guidelines allow the team to work at a much higher
level, because all code looks the same.

Having all code look the same is incredibly important on a team, because it allows:

• Any developer to work on any file regardless of who wrote it. There’s no need to
spend time reformatting or deciphering the logic of the file, because it looks the

same as everything else. If you’ve ever opened a file and immediately fixed all the
indentation before starting your work, you can understand the time savings con-
sistency provides when working on a large project.

• Errors become more obvious. If all code looks the same, and you come across some
code that doesn’t, you’ve likely found a problem.

It’s no wonder that large companies around the world have published style guidelines
either internally or publicly.

Style guidelines are a personal thing and must be developed within a team to be effec-
tive. This section of the book lists recommended focus areas for the development of
your JavaScript code conventions. In some cases, it’s impossible to tell you that one
guideline is better than another, because some are just a matter of preference. Rather
than trying to force my preferences upon you, this chapter highlights important aspects
that should be covered in your style guidelines. My personal code style guidelines for
JavaScript are included in Appendix A.

Useful Tools
Developing coding guidelines is difficult enough—enforcing them is a whole other
story. Establishing agreement among your team and performing code reviews will get
you part of the way there, but everyone slips up once in a while. Tools help to keep
everyone on track. There are two extremely useful tools for style guidelines: JSLint and
JSHint.

JSLint was written by Douglas Crockford as a general code-quality tool for JavaScript.
It began as a simple utility for finding common problematic JavaScript patterns. Over
the years, it has evolved into a tool that not only finds potential errors but also warns
about stylistic issues in your code.

Crockford wrote his ideas about JavaScript style in three different pieces:

• “The Elements of JavaScript Style, Part 1” covers basic patterns and syntax.

• “The Elements of JavaScript Style, Part 2” covers common JavaScript idioms.

• “Code Conventions for the JavaScript Programming Language” is a more exhaus-
tive resource that highlights pieces from the first two, with the addition of smaller
style guidelines.

JSLint now incorporates many of Crockford’s style preferences directly, frequently
without the ability to turn them off. So JSLint is a good tool—provided that you agree
with Crockford’s style guidelines.

JSHint is a fork of JSLint that is maintained by Anton Kovalyov. The goal of JSHint is
to provide a more customizable code quality and style guideline tool for JavaScript.
With the exception of syntax errors, it’s possible to turn off nearly all warnings in
JSHint, allowing you to fully customize the messages you receive about your code.

http://www.jslint.com
http://javascript.crockford.com/style1.html
http://javascript.crockford.com/style2.html
http://javascript.crockford.com/code.html
http://www.jshint.com

Kovalyov encourages participation and contribution to JSHint through the source code
repository at GitHub.

Integrating one of these tools into your build process is a good way to start enforcing
code conventions as well as catching potential errors in your JavaScript code.

https://github.com/jshint/jshint

CHAPTER 1

Basic Formatting

At the core of a style guide are basic formatting rules. These rules govern how the code
is written at a high level. Similar to the ruled paper used in schools to teach writing,
basic formatting rules guide developers toward writing code in a particular style. These
rules often contain information about syntax that you may not have considered, but
every piece is important in creating a coherent piece of code.

Indentation Levels
The first decision to be made about your JavaScript style guidelines (and indeed, about
those of most languages) is how to handle indentation. This is one of those topics on
which debates can last for hours; indentation is about as close to religion as software
engineers get. However, it is quite important to establish indentation guidelines up
front, lest developers fall into the classic problem of reindenting every file they open
before starting to work. Consider a file that looks like this (indentation has been in-
tentionally changed for demonstration purposes):

if (wl && wl.length) {
 for (i = 0, l = wl.length; i < l; ++i) {
 p = wl[i];
 type = Y.Lang.type(r[p]);
 if (s.hasOwnProperty(p)) { if (merge && type == 'object') {

 Y.mix(r[p], s[p]);
} else if (ov || !(p in r)) {
 r[p] = s[p];
 }
 }
 }
 }

Just looking at this code quickly is difficult. The indentation isn’t uniform, so it appears
that the else applies to the if statement on the first line. However, closer inspection
reveals that the else actually applies to the if statement on line 5. The most likely
culprit is a mixture of indentation styles from several different developers. This is

5

precisely why indentation guidelines exist. Properly indented, this code becomes much
easier to understand:

if (wl && wl.length) {
 for (i = 0, l = wl.length; i < l; ++i) {
 p = wl[i];
 type = Y.Lang.type(r[p]);
 if (s.hasOwnProperty(p)) {
 if (merge && type == 'object') {
 Y.mix(r[p], s[p]);
 } else if (ov || !(p in r)) {
 r[p] = s[p];
 }
 }
 }
}

Ensuring proper indentation is the first step—this particular piece of code has other
maintainability issues discussed later in this chapter.

As with most style guidelines, there is no universal agreement on how to accomplish
indentation in code. There are two schools of thought:

Use tabs for indentation
Each indentation level is represented by a single tab character. So indents of one
level are one tab character, second-level indentation is two tab characters, and so
on. There are two main advantages to this approach. First, there is a one-to-one
mapping between tab characters and indentation levels, making it logical. Second,
text editors can be configured to display tabs as different sizes, so developers who
like smaller indents can configure their editors that way, and those who like larger
indents can work their way, too. The main disadvantage of tabs for indentation is
that systems interpret them differently. You may find that opening the file in one
editor or system looks quite different than in another, which can be frustrating for
someone looking for consistency. These differences, some argue, result in each
developer looking at the same code differently, and that isn’t how a team should
operate.

Use spaces for indentation
Each indentation level is made up of multiple space characters. Within this realm
of thinking, there are three popular approaches: two spaces per indent, four spaces
per indent, and eight spaces per indent. These approaches all can be traced back
to style guidelines for various programming languages. In practice, many teams
opt to go with a four-space indent as a compromise between those who want two
spaces and those who want eight spaces. The main advantage of using spaces for
indentation is that the files are treated exactly the same in all editors and all systems.
Text editors can be configured to insert spaces when the Tab key is pressed. That
means all developers have the same view of the code. The main disadvantage of
using spaces for indentation is that it is easy for a single developer to create for-
matting issues by having a misconfigured text editor.

6 | Chapter 1: Basic Formatting

Though some may argue that one indentation approach or another is superior, it all
boils down to a matter of preference within the team. For reference, here are some
indentation guidelines from various style guides:

• The jQuery Core Style Guide specifies indents as tabs.

• Douglas Crockford’s Code Conventions for the JavaScript Programming Language
specifies indents as four spaces.

• The SproutCore Style Guide specifies indents as two spaces.

• The Google JavaScript Style Guide specifies indents as two spaces.

• The Dojo Style Guide specifies indents as tabs.

I recommend using four spaces per indentation level. Many text editors have this level
as a default if you decide to make the Tab key insert spaces instead. I’ve found that two
spaces don’t provide enough visual distinction for my eyes.

Even though the choice of tabs or spaces is a preference, it is very im-
portant not to mix them. Doing so leads to horrible file layout and re-
quires cleanup work, as in the very first example in this section.

Statement Termination
One of the interesting, and most confusing, aspects of JavaScript is that statements may
be terminated either with a newline or with a semicolon. This breaks from the tradition
of other C-like languages such as C++ and Java, which require semicolons. Both of the
following examples are therefore valid JavaScript.

// Valid
var name = "Nicholas";
function sayName() {
 alert(name);
}

// Valid but not recommended
var name = "Nicholas"
function sayName() {
 alert(name)
}

The omission of semicolons works in JavaScript due to a mechanism known as auto-
matic semicolon insertion (ASI). ASI looks for places in the code where a semicolon is
appropriate and inserts one if not found. In many cases, ASI guesses correctly and there
isn’t a problem. However, the rules of ASI are complex and difficult to remember, which
is why I recommend using semicolons. Consider the following:

Statement Termination | 7

// Original Code
function getData() {
 return
 {
 title: "Maintainable JavaScript",
 author: "Nicholas C. Zakas"
 }
}

// The way the parser sees it
function getData() {
 return;
 {
 title: "Maintainable JavaScript",
 author: "Nicholas C. Zakas"
 };
}

In this example, the function getData() is intended to return an object containing some
data. However, the newline after return causes a semicolon to be inserted, which causes
the function to return undefined. The function can be fixed by moving the opening
brace on to the same line as return.

// Works correctly, even without semicolons
function getData() {
 return {
 title: "Maintainable JavaScript",
 author: "Nicholas C. Zakas"
 }
}

There are scenarios where ASI may be applied, and I’ve found limiting ASI to help
reduce errors. The errors are typically caused by misunderstanding how ASI works and
assuming that a semicolon will be inserted when it will not. I have found that many
developers, especially inexperienced ones, have an easier time using semicolons than
omitting them.

Semicolon usage is recommended by Douglas Crockford’s Code Conventions for the
JavaScript Programming Language (hereafter referred to as “Crockford’s Code Con-
ventions”), the jQuery Core Style Guide, the Google JavaScript Style Guide, and the
Dojo Style Guide. Both JSLint and JSHint will warn by default when semicolons are
missing.

Line Length
Closely related to the topic of indentation is line length. Developers find it hard to work
on code in which the lines are long enough to require horizontal scrolling. Even with
today’s large monitors, keeping line length reasonable greatly improves developer pro-
ductivity. Code convention documents for many languages prescribe that lines of code
should be no longer than 80 characters. This length comes from a time when text editors

8 | Chapter 1: Basic Formatting

had a maximum of 80 columns in which to display text, so longer lines would either
wrap in unexpected ways or disappear off the side of the editor. Today’s text editors
are quite a bit more sophisticated than those of 20 years ago, yet 80-character lines are
still quite popular. Here are some common line length recommendations:

1. Code Conventions for the Java Programming Language specifies a line length of
80 characters for source code and 70 characters for documentation.

2. The Android Code Style Guidelines for Contributors specifies a line length of 100
characters.

3. The Unofficial Ruby Usage Guide specifies a line length of 80 characters.

4. The Python Style Guidelines specifies a line length of 79 characters.

Line length is less frequently found in JavaScript style guidelines, but Crockford’s Code
Conventions specifies a line length of 80 characters. I also prefer to keep line length at
80 characters.

Line Breaking
When a line reaches the maximum character length, it must be manually split into two
lines. Line breaking is typically done after an operator, and the next line is indented
two levels. For example (indents are four spaces):

// Good: Break after operator, following line indented two levels
callAFunction(document, element, window, "some string value", true, 123,
 navigator);

// Bad: Following line indented only one level
callAFunction(document, element, window, "some string value", true, 123,
 navigator);

// Bad: Break before operator
callAFunction(document, element, window, "some string value", true, 123
 , navigator);

In this example, the comma is an operator and so should come last on the preceding
line. This placement is important because of ASI mechanism, which may close a state-
ment at the end of a line in certain situations. By always ending with an operator, ASI
won’t come into play and introduce possible errors.

The same line-breaking pattern should be used for statements as well:

if (isLeapYear && isFebruary && day == 29 && itsYourBirthday &&
 noPlans) {

 waitAnotherFourYears();
}

Line Breaking | 9

Here, the control condition of the if statement is split onto a second line after the &&
operator. Note that the body of the if statement is still indented only one level, allowing
for easier reading.

There is one exception to this rule. When assigning a value to a variable, the wrapped
line should appear immediately under the first part of the assignment. For example:

var result = something + anotherThing + yetAnotherThing + somethingElse +
 anotherSomethingElse;

This code aligns the variable anotherSomethingElse with something on the first line,
ensuring readability and providing context for the wrapped line.

Blank Lines
An often overlooked aspect of code style is the use of blank lines. In general, code should
look like a series of paragraphs rather than one continuous blob of text. Blank lines
should be used to separate related lines of code from unrelated lines of code. The ex-
ample from the earlier section “Indentation Levels” on page 5 is perfect for adding some
extra blank lines to improve readability. Here’s the original:

if (wl && wl.length) {
 for (i = 0, l = wl.length; i < l; ++i) {
 p = wl[i];
 type = Y.Lang.type(r[p]);
 if (s.hasOwnProperty(p)) {
 if (merge && type == 'object') {
 Y.mix(r[p], s[p]);
 } else if (ov || !(p in r)) {
 r[p] = s[p];
 }
 }
 }
}

And here is the example rewritten with a few blank lines inserted:

if (wl && wl.length) {

 for (i = 0, l = wl.length; i < l; ++i) {
 p = wl[i];
 type = Y.Lang.type(r[p]);

 if (s.hasOwnProperty(p)) {

 if (merge && type == 'object') {
 Y.mix(r[p], s[p]);
 } else if (ov || !(p in r)) {
 r[p] = s[p];
 }
 }
 }
}

10 | Chapter 1: Basic Formatting

The guideline followed in this example is to add a blank line before each flow control
statement, such as if and for. Doing so allows you to more easily read the statements.
In general, it’s a good idea to also add blank lines:

• Between methods

• Between the local variables in a method and its first statement

• Before a multiline or single-line comment

• Between logical sections inside a method to improve readability

None of the major style guides provide specific advice about blank lines, though
Crockford’s Code Conventions does suggest using them judiciously.

Naming
“There are only two hard problems in Computer Science: cache invalidation and naming
things.” —Phil Karlton

Most of the code you write involves variables and functions, so determining naming
conventions for those variables and functions is quite important to a comprehensive
understanding of the code. JavaScript’s core, ECMAScript, is written using a conven-
tion called camel case. Camel-case names begin with a lowercase letter and each sub-
sequent word begins with an uppercase letter. For example:

var thisIsMyName;
var anotherVariable;
var aVeryLongVariableName;

Generally speaking, you should always use a naming convention that follows the core
language that you’re using, so camel case is the way most JavaScript developers name
their variables and functions. The Google JavaScript Style Guide, the SproutCore Style
Guide, and the Dojo Style Guide all specify use of camel case in most situations.

Even with the general naming convention of camel case in place, some more specific
styles of naming are typically specified.

Another notation called Hungarian notation was popular for JavaScript
around the year 2000. This notation involved prepending a variable type
identifier at the beginning of a name, such as sName for a string and
iCount for an integer. This style has now fallen out of favor and isn’t
recommended by any of the major style guides.

Variables and Functions
Variable names are always camel case and should begin with a noun. Beginning with
a noun helps to differentiate variables from functions, which should begin with a verb.
Here are some examples:

Naming | 11

// Good
var count = 10;
var myName = "Nicholas";
var found = true;

// Bad: Easily confused with functions
var getCount = 10;
var isFound = true;

// Good
function getName() {
 return myName;
}

// Bad: Easily confused with variable
function theName() {
 return myName;
}

The naming of variables is more art than science, but in general, you should try to make
the variable names as short as possible to get the point across. Try to make the variable
name indicate the data type of its value. For example, the names count, length, and
size suggest the data type is a number, and names such as name, title, and message
suggest the data type is a string. Single-character variable names such as i, j, and k are
typically reserved for use in loops. Using names that suggest the data type makes your
code easier to understand by others as well as yourself.

Meaningless names should be avoided. Names such as foo, bar, and temp, despite being
part of the developer’s toolbox, don’t give any meaning to variables. There’s no way
for another developer to understand what the variable is being used for without un-
derstanding all of the context.

For function and method names, the first word should always be a verb, and there are
some common conventions used for that verb:

Verb Meaning

can Function returns a boolean

has Function returns a boolean

is Function returns a boolean

get Function returns a nonboolean

set Function is used to save a value

Following these conventions as a starting point makes code much more readable. Here
are some examples:

if (isEnabled()) {
 setName("Nicholas");
}

12 | Chapter 1: Basic Formatting

if (getName() === "Nicholas") {
 doSomething();
}

Although none of the popular style guides go to this level of detail regarding function
names, these are pseudostandards among JavaScript developers and can be found in
many popular libraries.

jQuery quite obviously doesn’t follow this naming convention for func-
tions, partly due to how methods are used in jQuery, as many act as
both getters and setters. For example, $("body").attr("class") returns
the value of the class attribute, and $("body").attr("class",
"selected") sets the value of the class attribute. Despite this, I still rec-
ommend using verbs for function names.

Constants
JavaScript had no formal concept of constants prior to ECMAScript 6. However, that
didn’t stop developers from defining variables to be used as constants. To differentiate
normal variables (those meant to have changing values) and constants (variables that
are initialized to a value and never change), a common naming convention evolved.
The convention comes from C and uses all uppercase letters with underscores sepa-
rating words, as in:

var MAX_COUNT = 10;
var URL = "http://www.nczonline.net/";

Keep in mind that these are just variables using a different naming convention, so it’s
still possible to overwrite the values. Normal variables and constants are easily differ-
entiated by using this very different convention. Consider the following example:

if (count < MAX_COUNT) {
 doSomething();
}

In this code, it’s easy to tell that count is a variable that may change and MAX_COUNT is a
variable that is intended to never change. This convention adds another level of se-
mantics to the underlying code.

The Google JavaScript Style Guide, the SproutCore Style Guide, and the Dojo Style
Guide specify that constants should be formatted in this manner (the Dojo Style Guide
also allows constants to be specified as Pascal case; see the following section).

Constructors
JavaScript constructors are simply functions that are used to create objects via the
new operator. The language contains many built-in constructors, such as Object and
RegExp, and developers can add their own constructors to create new types. As with

Naming | 13

other naming conventions, constructors follow the native language, so constructors are
formatted using Pascal case.

Pascal case is the same as camel case except that the initial letter is uppercase. So instead
of anotherName, you would use AnotherName. Doing so helps to differentiate constructors
from both variables and nonconstructor functions. Constructor names also are typi-
cally nouns, as they are used to create instances of a type. Here are some examples:

// Good
function Person(name) {
 this.name = name;
}

Person.prototype.sayName = function() {
 alert(this.name);
};

var me = new Person("Nicholas");

Following this convention also makes it easier to spot errors later. You know that
functions whose names are nouns in Pascal case must be preceded by the new operator.
Consider the following:

var me = Person("Nicholas");
var you = getPerson("Michael");

Here, line 1 should jump out as a problem to you, but line 2 looks okay according to
the conventions already laid out in this chapter.

Crockford’s Code Conventions, the Google JavaScript Style Guide, and the Dojo Style
Guide all recommend this practice. JSLint will warn if a constructor is found without
an initial uppercase letter or if a constructor function is used without the new operator.
JSHint will warn if a constructor is found without an initial uppercase letter only if you
add the special newcap option.

Literal Values
JavaScript has several types of primitive literal values: strings, numbers, booleans,
null, and undefined. There are also object literals and array literals. Of these, only
booleans are self-explanatory in their use. All of the other types require a little bit of
thought as to how they should be used for optimum clarity.

Strings
Strings are unique in JavaScript, in that they can be indicated by either double quotes
or single quotes. For example:

// Valid JavaScript
var name = "Nicholas says, \"Hi.\"";

14 | Chapter 1: Basic Formatting

// Also valid JavaScript
var name = 'Nicholas says, "Hi"';

Unlike other languages such as Java and PHP, there is absolutely no functional differ-
ence between using double quotes and single quotes for strings. They behave exactly
the same, except that the string delimiter must be escaped. So in this example, in the
string using double quotes, we had to escape the double quote characters, and in the
string using single quotes, we did not. What matters is that you pick a single style and
stick with it throughout the code base.

Crockford’s Code Conventions and the jQuery Core Style Guide both specify the use
of double quotes for strings. The Google JavaScript Style Guide specifies the use of
single quotes for strings. I prefer using double quotes, because I tend to switch back
and forth between writing Java and JavaScript frequently. Because Java uses only dou-
ble quotes for strings, I find it easier to switch between contexts by maintaining that
convention in JavaScript. This sort of issue should always be a consideration when
developing conventions: do what makes it easiest for engineers to do their jobs.

Another aspect of strings is the hidden ability to create multiline strings. This feature
was never specified as part of the JavaScript language but still works in all engines:

// Bad
var longString = "Here's the story, of a man \
named Brady.";

Although this is technically invalid JavaScript syntax, it effectively creates a multiline
string in code. This technique is generally frowned upon because it relies on a language
quirk rather than a language feature, and it is explicitly forbidden in the Google Java-
Script Style Guide. Instead of using multiline strings, split the string into multiple strings
and concatenate them together:

// Good
var longString = "Here's the story, of a man " +
 "named Brady.";

Numbers
The number type is unique to JavaScript, because all types of numbers—integers and
floats—are stored in the same data type. There are also several literal formats for num-
bers to represent various numeric formats. Most formats are fine to use, but some are
quite problematic:

// Integer
var count = 10;

// Decimal
var price = 10.0;
var price = 10.00;

// Bad Decimal: Hanging decimal point
var price = 10.;

Literal Values | 15

// Bad Decimal: Leading decimal point
var price = .1;

// Bad: Octal (base 8) is deprecated
var num = 010;

// Hexadecimal (base 16)
var num = 0xA2;

// E-notation
var num = 1e23;

The first two problematic formats are the hanging decimal point, such as 10., and the
leading decimal point, such as .1. Each format has the same problem: it’s hard to know
if the omission of values before or after the decimal point are intentional. It could very
well be that the developer mistyped the value. It’s a good idea to always include digits
before and after the decimal point to avoid any confusion. These two formats are ex-
plicitly forbidden in the Dojo Style Guide. Both JSLint and JSHint warn when one of
these two patterns is found.

The last problematic numeric format is the octal format. JavaScript’s support of octal
numbers has long been a source of error and confusion. The literal number 010 doesn’t
represent 10; it represents 8 in octal. Most developers aren’t familiar with octal format,
and there’s rarely a reason to use it, so the best approach is to disallow octal literals in
code. Although not called out in any of the popular style guides, both JSLint and JSHint
will warn when they come across an octal literal.

Null
The special value null is often misunderstood and confused with undefined. This value
should be used in just a few cases:

• To initialize a variable that may later be assigned an object value

• To compare against an initialized variable that may or may not have an object value

• To pass into a function where an object is expected

• To return from a function where an object is expected

There are also some cases in which null should not be used:

• Do not use null to test whether an argument was supplied.

• Do not test an uninitialized variable for the value null.

Here are some examples:

// Good
var person = null;

// Good
function getPerson() {

16 | Chapter 1: Basic Formatting

 if (condition) {
 return new Person("Nicholas");
 } else {
 return null;
 }
}

// Good
var person = getPerson();
if (person !== null) {
 doSomething();
}

// Bad: Testing against uninitialized variable
var person;
if (person != null) {
 doSomething();
}

// Bad: Testing to see whether an argument was passed
function doSomething(arg1, arg2, arg3, arg4) {
 if (arg4 != null) {
 doSomethingElse();
 }
}

The best way to think about null is as a placeholder for an object. These rules are not
covered by any major style guide but are important for overall maintainability.

A longer discussion around the pitfalls of null is found in Chapter 8.

Undefined
The special value undefined is frequently confused with null. Part of the confusion is
that null == undefined is true. However, these two values have two very different uses.
Variables that are not initialized have an initial value of undefined, which essentially
means the variable is waiting to have a real value. For example:

// Bad
var person;
console.log(person === undefined); //true

Despite this working, I recommend avoiding the use of undefined in code. This value
is frequently confused with the typeof operator returning the string “undefined” for a
value. In fact, the behavior is quite confusing, because typeof will return the string
“undefined” both for variables whose value is undefined and for undeclared variables.
Example:

Literal Values | 17

// foo is not declared
var person;
console.log(typeof person); //"undefined"
console.log(typeof foo); //"undefined"

In this example, both person and foo cause typeof to return “undefined” even though
they behave very different in almost every other way (trying to use foo in a statement
will cause an error, but using person will not).

By avoiding the use of the special value undefined, you effectively keep the meaning of
typeof returning “undefined” to a single case: when a variable hasn’t been declared. If
you’re using a variable that may or may not be assigned an object value later on, initialize
it to null:

// Good
var person = null;
console.log(person === null); //true

Setting a variable to null initially indicates your intent for that variable; it should even-
tually contain an object. The typeof operator returns “object” for a null value, so it can
be differentiated from undefined.

Object Literals
Object literals are a popular way to create new objects with a specific set of properties,
as opposed to explicitly creating a new instance of Object and then adding properties.
For example, this pattern is rarely used:

// Bad
var book = new Object();
book.title = "Maintainable JavaScript";
book.author = "Nicholas C. Zakas";

Object literals allow you to specify all of the properties within two curly braces. Literals
effectively perform the same tasks as their nonliteral counterparts, just with more com-
pact syntax.

When defining object literals, it’s typical to include the opening brace on the first line,
then each property-value pair on its own line, indented one level, then the closing brace
on its own line. For example:

// Good
var book = {
 title: "Maintainable JavaScript",
 author: "Nicholas C. Zakas"
};

This is the format most commonly seen in open source JavaScript code. Though it’s
not commonly documented, the Google JavaScript Style Guide does recommend this
format. Crockford’s Code Conventions recommends using object literals over the
Object constructor but does not specify a particular format.

18 | Chapter 1: Basic Formatting

Array Literals
Array literals, as with object literals, are a more compact way of defining arrays in
JavaScript. Explicitly using the Array constructor, as in this example, is generally
frowned upon:

// Bad
var colors = new Array("red", "green", "blue");
var numbers = new Array(1, 2, 3, 4);

Instead of using the Array constructor, you can use two square brackets and include
the initial members of the array:

// Good
var colors = ["red", "green", "blue"];
var numbers = [1, 2, 3, 4];

This pattern is widely used and quite common in JavaScript. It is also recommended
by the Google JavaScript Style Guide and Crockford’s Code Conventions.

Literal Values | 19

CHAPTER 2

Comments

Comments are often the least popular part of coding. They’re dangerously close to
documentation, which is the last thing any developer wants to spend time doing. How-
ever, comments are incredibly important for the overall maintainability of the code.
Opening a file without any comments may seem like a fun adventure, but when there
are deadlines to meet, this task turns into torture. Appropriately written comments
help tell the story of code, allowing other developers to drop into a part of the story
without needing to hear the beginning. Style guidelines don’t always cover commenting
styles, but I consider them important enough to warrant their own section.

JavaScript supports two different types of comments: single-line and multiline.

Single-Line Comments
Single-line comments are created by using two slashes and end at the end of the line:

// Single-line comment

Many prefer to include a space after the two slashes to offset the comment text. There
are three ways in which a single-line comment is used:

• On its own line, explaining the line following the comment. The line should always
be preceded by an empty line. The comment should be at the same indentation
level as the following line.

• As a trailing comment at the end of a line of code. There should be at least one
indent level between the code and the comment. The comment should not go
beyond the maximum line length. If it does, then move the comment above the
line of code.

• To comment out large portions of code (many editors automatically comment out
multiple lines).

21

Single-line comments should not be used on consecutive lines unless you’re comment-
ing out large portions of code. Multiline comments should be used when long comment
text is required.

Here are some examples:

// Good
if (condition) {

 // if you made it here, then all security checks passed
 allowed();
}

// Bad: No empty line preceding comment
if (condition) {
 // if you made it here, then all security checks passed
 allowed();
}

// Bad: Wrong indentation
if (condition) {

// if you made it here, then all security checks passed
 allowed();
}

// Good
var result = something + somethingElse; // somethingElse will never be null

// Bad: Not enough space between code and comment
var result = something + somethingElse;// somethingElse will never be null

// Good
// if (condition) {
// doSomething();
// thenDoSomethingElse();
// }

// Bad: This should be a multiline comment
// This next piece of code is quite difficult, so let me explain.
// What you want to do is determine whether the condition is true
// and only then allow the user in. The condition is calculated
// from several different functions and may change during the
// lifetime of the session.
if (condition) {
 // if you made it here, then all security checks passed
 allowed();
}

22 | Chapter 2: Comments

Multiline Comments
Multiline comments are capable of spanning multiple lines. They begin with /* and
end with */. Multiline comments aren’t required to span multiple lines; that choice is
up to you. The following are all valid multiline comments:

/* My comment */

/* Another comment.
This one goes to two lines. */

/*
Yet another comment.
Also goes to a second line.
*/

Although all of these comments are technically valid, I prefer the Java-style multiline
comment pattern. The Java style is to have at least three lines: one for the /*, one or
more lines beginning with a * that is aligned with the * on the previous line, and the
last line for */. The resulting comment looks like this:

/*
 * Yet another comment.
 * Also goes to a second line.
 */

The result is a more legible comment that is visually aligned on the left to an asterisk.
IDEs such as NetBeans and Eclipse will automatically insert these leading asterisks for
you.

Multiline comments always come immediately before the code that they describe. As
with single-line comments, multiline comments should be preceded by an empty line
and should be at the same indentation level as the code being described. Here are some
examples:

// Good
if (condition) {

 /*
 * if you made it here,
 * then all security checks passed
 */
 allowed();
}

// Bad: No empty line preceding comment
if (condition) {
 /*
 * if you made it here,
 * then all security checks passed
 */
 allowed();
}

Multiline Comments | 23

// Bad: Missing a space after asterisk
if (condition) {

 /*
 *if you made it here,
 *then all security checks passed
 */
 allowed();
}

// Bad: Wrong indentation
if (condition) {

/*
 * if you made it here,
 * then all security checks passed
 */
 allowed();
}

// Bad: Don't use multiline comments for trailing comments
var result = something + somethingElse; /*somethingElse will never be null*/

Using Comments
When to comment is a topic that always fosters great debate among developers. The
general guidance is to comment when something is unclear and not to comment when
something is apparent from the code itself. For example, the comment in this example
doesn’t add any understanding to the code:

// Bad

// Initialize count
var count = 10;

It’s apparent from just the code that count is being initialized. The comment adds no
value whatsoever. If, on the other hand, the value 10 has some special meaning that
you couldn’t possibly know from looking at the code, then a comment would be very
useful:

// Good

// Changing this value will make it rain frogs
var count = 10;

As implausible as it may be to make it rain frogs by changing the value of count, this is
an example of a good comment, because it tells you something that you otherwise
would be unaware of. Imagine how confused you would be if you changed the value
and it started to rain frogs…all because a comment was missing.

So the general rule is to add comments where they clarify the code.

24 | Chapter 2: Comments

Difficult-to-Understand Code
Difficult-to-understand code should always be commented. Depending on what the
code is doing, you may use one multiline comment, several single comments, or some
combination thereof. They key is to bring some understanding of the code’s purpose
to someone else. For example, here’s some code from the YUI library’s Y.mix() method:

// Good

if (mode) {

 /*
 * In mode 2 (prototype to prototype and object to object), we recurse
 * once to do the proto to proto mix. The object to object mix will be
 * handled later on.
 */
 if (mode === 2) {
 Y.mix(receiver.prototype, supplier.prototype, overwrite,
 whitelist, 0, merge);
 }

 /*
 * Depending on which mode is specified, we may be copying from or to
 * the prototypes of the supplier and receiver.
 */
 from = mode === 1 || mode === 3 ? supplier.prototype : supplier;
 to = mode === 1 || mode === 4 ? receiver.prototype : receiver;

 /*
 * If either the supplier or receiver doesn't actually have a
 * prototype property, then we could end up with an undefined from
 * or to. If that happens, we abort and return the receiver.
 */
 if (!from || !to) {
 return receiver;
 }
} else {
 from = supplier;
 to = receiver;
}

The Y.mix() method uses constants to determine how to proceed. The mode argument
is equivalent to one of those constants, but it’s hard to understand what each constant
means just from the numeric value. The code is commented well, because it explains
what otherwise appear to be complex decisions.

Potential Author Errors
Another good time to comment code is when the code appears to have an error. Teams
often get bitten by well-meaning developers who find some code that looks problem-
atic, so they fix it. Except that the code wasn’t the source of a problem, so “fixing” it
actually creates a problem that needs to be tracked down. Whenever you’re writing

Using Comments | 25

code that could appear incorrect to another developer, make sure to include a comment.
Here’s another example from YUI:

while (element &&(element = element[axis])) { // NOTE: assignment
 if ((all || element[TAG_NAME]) &&
 (!fn || fn(element))) {
 return element;
 }
}

In this case, the developer used an assignment operator in the while loop control con-
dition. This isn’t standard practice and will typically be flagged by linting tools as a
problem. If you were unfamiliar with this code and came across this line without a
comment, it would be easy to assume that this was an error, and the author meant to
use the equality operator == instead of the assignment operator =. The trailing comment
on that line indicates the use of the assignment operator is intentional. Now any other
developer who comes along and reads the code won’t be likely to make a bad “fix.”

Browser-Specific Hacks
JavaScript developers are often forced to use code that is inefficient, inelegant, or
downright dirty to get older browsers to work correctly. This behavior is actually a
special type of potential author error: code that isn’t obviously doing something
browser-specific may appear to be an error. Here’s an example from the YUI library’s
Y.DOM.contains() method:

var ret = false;

if (!needle || !element || !needle[NODE_TYPE] || !element[NODE_TYPE]) {
 ret = false;
} else if (element[CONTAINS]) {
 // IE & SAF contains fail if needle not an ELEMENT_NODE
 if (Y.UA.opera || needle[NODE_TYPE] === 1) {
 ret = element[CONTAINS](needle);
 } else {
 ret = Y_DOM._bruteContains(element, needle);
 }
} else if (element[COMPARE_DOCUMENT_POSITION]) { // gecko
 if (element === needle || !!(element[COMPARE_DOCUMENT_POSITION](needle) & 16)) {
 ret = true;
 }
}

return ret;

Line 6 of this code has a very important comment. Even though Internet Explorer and
Safari both include the contains() method natively, the method will fail if needle is not
an element. So the method should be used only if the browser is Opera or needle is an
element (nodeType is 1). The note about the browsers, and also why the if statement is
needed, not only ensures that no one will change it unexpectedly in the future, but

26 | Chapter 2: Comments

allows the author to revisit this code later and realize that it may be time to verify
whether newer versions of Internet Explorer and Safari show the same issue.

Documentation Comments
Documentation comments aren’t technically part of JavaScript, but they are a very
common practice. Document comments may take many forms, but the most popular
is the form that matches JavaDoc documentation format: a multiline comment with an
extra asterisk at the beginning (/**) followed by a description, followed by one or more
attributes indicated by the @ sign. Here’s an example from YUI:

/**
Returns a new object containing all of the properties of all the supplied
objects. The properties from later objects will overwrite those in earlier
objects.

Passing in a single object will create a shallow copy of it. For a deep copy,
use `clone()`.

@method merge
@param {Object} objects* One or more objects to merge.
@return {Object} A new merged object.
**/
Y.merge = function () {
 var args = arguments,
 i = 0,
 len = args.length,
 result = {};

 for (; i < len; ++i) {
 Y.mix(result, args[i], true);
 }

 return result;
};

The YUI library uses its own tool called YUIDoc to generate documentation from these
comments. However, the format is almost exactly the same as the library-agnostic
JSDoc Toolkit, which is widely used on open source projects as well as within Google.
The key difference between YUIDoc and JSDoc Toolkit is that YUIDoc supports both
HTML and Markdown in documentation comments, whereas JSDoc Toolkit supports
only HTML.

It is highly recommended that you use a documentation generator with your JavaScript.
The format of the comments must match the tool that you use, but the JavaDoc-style
documentation comments are well supported across many documentation generators.
When using documentation comments, you should be sure to document the following:

Documentation Comments | 27

All methods
Be sure to include a description of the method, expected arguments, and possible
return values.

All constructors
Comments should include the purpose of the custom type and expected argu-
ments.

All objects with documented methods
If an object has one or more methods with documentation comments, then it also
must be documented for proper documentation generation.

Of course, the exact comment format and how comments should be used will ulti-
mately be determined by the documentation generator you choose.

28 | Chapter 2: Comments

CHAPTER 3

Statements and Expressions

Statements such as if and for can be used in two ways in JavaScript, with curly braces
for multiple contained lines or without curly braces for one contained line. For example:

// Bad, though technically valid JavaScript
if(condition)
 doSomething();

// Bad, though technically valid JavaScript
if(condition) doSomething();

// Good
if (condition) {
 doSomething();
}

// Bad, though technically valid JavaScript
if (condition) { doSomething(); }

The first two forms, which use an if statement without braces, are explicitly disallowed
in Crockford’s Code Conventions, the jQuery Core Style Guide, the SproutCore Style
Guide, and the Dojo Style Guide. The omission of braces also generates warnings by
default in both JSLint and JSHint.

An overwhelming majority of JavaScript developers are in agreement that block state-
ments should always use braces and always occupy multiple lines instead of one. This
is because of the confusion created when braces aren’t included. Consider the follow-
ing:

if (condition)
 doSomething();
 doSomethingElse();

It’s difficult to tell the author’s intent in this code. There’s clearly an error here, but it’s
impossible to know whether the error is an indentation error (the last line should not
be indented) or braces are missing because both line 2 and line 3 need to be executed
inside the if statement. Adding braces makes the error easier to find. Here are two
other examples with errors:

29

if (condition) {
 doSomething();
}
 doSomethingElse();

if (condition) {
 doSomething();
doSomethingElse();
}

In both of these examples, the code error is clear, as both obviously have indentation
errors. The braces allow you to very quickly determine the author’s intent and make
an appropriate change without fear of changing the code logic.

Braces should be used for all block statements, including:

• if

• for

• while

• do...while

• try...catch...finally

Brace Alignment
A second topic related to block statements is the alignment of braces. There are two
main styles of brace alignment. The first is to have the opening brace on the same line
as the beginning of the block statement, as in this example:

if (condition) {
 doSomething();
} else {
 doSomethingElse();
}

JavaScript inherited this style from Java, where it is documented in the Code Conven-
tions for the Java Programming Language. This style also now appears in Crockford’s
Code Conventions, the jQuery Core Style Guide, the SproutCore Style Guide, the
Google JavaScript Style Guide, and the Dojo Style Guide.

The second style of brace alignment places the opening brace on the line following the
beginning of the block statement, as in this example:

if (condition)
{
 doSomething();
}
else
{
 doSomethingElse();
}

30 | Chapter 3: Statements and Expressions

This style was made popular by C#, as Visual Studio enforces this alignment. There
are no major JavaScript guides that recommend this style, and the Google JavaScript
Style Guide explicitly forbids it due to fears of automatic semicolon insertion errors.
My recommendation is to use the previous brace alignment format.

Block Statement Spacing
Spacing around the first line of a block statement is also a matter of preference. There
are three primary styles for block statement spacing. The first is to have no spaces
separating the statement name, the opening parenthesis, and the opening brace:

if(condition){
 doSomething();
}

This style is preferred by some programmers because it is more compact, though some
complain that the compactness actually inhibits legibility. The Dojo Style Guide rec-
ommends this style.

The second style is to have a space separation before the opening parenthesis and after
the closing parenthesis, such as:

if (condition) {
 doSomething();
}

Some programmers prefer this style because it makes the statement type and condition
more legible. This is the style recommended by Crockford’s Code Conventions and the
Google JavaScript Style Guide.

The third style adds spaces after the opening parenthesis and before the closing paren-
thesis, as in the following:

if (condition) {
 doSomething();
}

This is the style prescribed in the jQuery Core Style Guide, because it makes all aspects
of the statement start quite clear and legible.

I prefer the second style as a nice compromise between the first and third styles.

The switch Statement
Developers tend to have a love-hate relationship with the switch statement. There are
varying ideas about how to use switch statements and how to format them. Some of
this variance comes from the switch statement’s lineage, originating in C and making
its way through Java into JavaScript without the exact same syntax.

The switch Statement | 31

Despite the similar syntax, JavaScript switch statements behave differently than in other
languages: any type of value may be used in a switch statement, and any expression
can be used as a valid case. Other languages require the use of primitive values and
constants, respectively.

Indentation
Indentation of the switch statement is a matter of debate among JavaScript developers.
Many use the Java style of formatting switch statements, which looks like this:

switch(condition) {
 case "first":
 // code
 break;

 case "second":
 // code
 break;

 case "third":
 // code
 break;

 default:
 // code
}

The unique parts of this format are:

• Each case statement is indented one level from the switch keyword.

• There is an extra line before and after each case statement from the second one on.

The format of switch statements is rarely included in style guides when this style is
used, primarily because it is the format that many editors use automatically.

Although this is the format that I prefer, both Crockford’s Code Conventions and the
Dojo Style Guide recommend a slightly different format:

switch(condition) {
case "first":
 // code
 break;
case "second":
 // code
 break;
case "third":
 // code
 break;
default:
 // code
}

32 | Chapter 3: Statements and Expressions

The major difference between this and the previous format is that the case keyword is
aligned to the same column as the switch keyword. Note also that there are no blank
lines in between any parts of the statement. JSLint expects this indentation format for
switch statements by default and will warn if a case is not aligned with switch. This
option may also be turned on and off via the “Tolerate messy white space” option.
JSLint does not warn if additional blank lines are included.

As with other aspects of coding style, this choice is completely a matter of preference.

Falling Through
Another popular source of debate is whether falling through from one case to another
is an acceptable practice. Accidentally omitting a break at the end of a case is a very
common source of bugs, so Douglas Crockford argues that every case should end with
break, return, or throw, without exception. JSLint warns when one case falls through
into another.

I agree with those who consider falling through to be an acceptable method of pro-
gramming, as long as it is clearly indicated, such as:

switch(condition) {

 // obvious fall through
 case "first":
 case "second":
 // code
 break;

 case "third":
 // code

 /*falls through*/
 default:
 // code
}

This switch statement has two obvious fall-throughs. The first case falls through into
the second, which is considered an acceptable practice (even by JSLint) because there
are no statements to run for just the first case and there are no extra lines separating
the two case statements.

The second instance is with case "third", which falls through into the default handler.
This fall-through is marked with a comment to indicate developer intent. In this code,
it’s obvious that the case is meant to fall through and isn’t a mistake. JSHint typically
warns when a case falls through unless you include this comment, in which case the
warning is turned off because you’ve signaled that this isn’t an error.

The switch Statement | 33

Crockford’s Code Conventions disallows fall-throughs in switch statements altogether.
The jQuery Core Style Guide mentions that fall-throughs are used in their code, and
the Dojo Style Guide gives an example with a fall-through comment. My recommen-
dation is to allow fall-throughs as long as a comment is used to indicate that the fall-
through is intentional.

default
Another point of contention with regard to switch is whether a default case is required.
Some believe that a default should always be included even if the default action is to
do nothing, as in:

switch(condition) {
 case "first":
 // code
 break;

 case "second":
 // code
 break;

 default:
 // do nothing
}

You’re likely to find open source JavaScript code following this pattern, including
default and just leaving a comment that nothing should happen there. Although no
style guides are explicit about this, both Douglas Crockford’s Code Conventions for
the JavaScript Programming Language and the Dojo Style Guide include default as
part of their standard switch statement format.

My preference is to omit default when there is no default action and annotate it using
a comment, as in this example:

switch(condition) {
 case "first":
 // code
 break;

 case "second":
 // code
 break;

 // no default
}

This way, the code author’s intent is clear that there should be no default action, and
you save some bytes by not including extra unnecessary syntax.

34 | Chapter 3: Statements and Expressions

The with Statement
The with statement changes how the containing context interprets variables. It allows
properties and methods from a particular object to be accessed as if they were local
variables and functions, omitting the object identifier altogether. The intent of with was
to lessen the amount of typing developers need to do when using multiple object mem-
bers in close proximity. For example:

var book = {
 title: "Maintainable JavaScript",
 author: "Nicholas C. Zakas"
};

var message = "The book is ";

with (book) {
 message += title;
 message += " by " + author;
}

In this code, the with statement is used to augment identifier resolution within the curly
braces by allowing the properties of book to be accessed as if they were variables. The
problem is that it’s hard to tell where title and author originated from. It’s not clear
that these are properties of book and that message is a local variable. This confusion
actually extends far beyond developers, with JavaScript engines and minifiers being
forced to skip optimization of this section for fear of guessing incorrectly.

The with statement is actually disallowed in strict mode, causing a syntax error and
indicating the ECMAScript committee’s belief that with should no longer be used.
Crockford’s Code Conventions and the Google JavaScript Style Guide disallow the use
of with. I strongly recommend avoiding the with statement, as it prevents you from
easily applying strict mode to your code (a practice I recommend).

The for Loop
There are two types of for loops: the traditional for loop that JavaScript inherited from
C and Java, as well as the for-in loop that iterates over properties for an object. These
two loops, though similar, have two very different uses. The traditional for loop is
typically used to iterate over members of an array, such as:

var values = [1, 2, 3, 4, 5, 6, 7],
 i, len;

for (i=0, len=values.length; i < len; i++) {
 process(values[i]);
}

There are two ways to modify how the loop proceeds (aside from using a return or
throw statement). The first is to use the break statement. Using break causes the loop

The for Loop | 35

to exit immediately and not continue running even if the loop hasn’t finished all iter-
ations. For example:

var values = [1, 2, 3, 4, 5, 6, 7],
 i, len;

for (i=0, len=values.length; i < len; i++) {
 if (i == 2) {
 break; // no more iterations
 }
 process(values[i]);
}

The body of this loop will execute two times and then exit before executing
process() the third time, even if the values array has more than three items.

The second way to modify how a loop proceeds is through the use of continue. The
continue statement exits the loop immediately; however, the loop will continue with
the next iteration. Here’s an example:

var values = [1, 2, 3, 4, 5, 6, 7],
 i, len;

for (i=0, len=values.length; i < len; i++) {
 if (i == 2) {
 continue; // skip just this iteration
 }
 process(values[i]);
}

The body of this loop executes two times, skips the third time, and picks up with the
fourth iteration. The loop will then continue until its last iteration unless otherwise
interfered with.

Crockford’s Code Conventions disallows the use of continue. His assertion is that code
using continue can better be written using conditions. For instance, the previous ex-
ample can be rewritten as:

var values = [1, 2, 3, 4, 5, 6, 7],
 i, len;

for (i=0, len=values.length; i < len; i++) {
 if (i != 2) {
 process(values[i]);
 }
}

Crockford argues that this pattern is easier for developers to understand and less error
prone. The Dojo Style Guide states explicitly that continue, along with break, may be
used. My recommendation is to avoid continue whenever possible, but there is no
reason to completely forbid it. The readability of the code should dictate its usage.

JSLint warns when continue is used. JSHint does not warn when continue is used.

36 | Chapter 3: Statements and Expressions

The for-in Loop
The for-in loop is used to iterate over properties of an object. Instead of defining a
control condition, the loop systematically goes through each named object property
and returns the property name inside of a variable, as in:

var prop;

for (prop in object) {
 console.log("Property name is " + prop);
 console.log("Property value is " + object[prop]);
}

A problem with for-in is that it returns not only instance properties of an object
but also all properties it inherits through the prototype. You may thus end up with
unanticipated results when iterating through properties on your own object. For this
reason, it’s best to filter the for-in loop to only instance properties by using
hasOwnProperty(). Here’s an example:

var prop;

for (prop in object) {
 if (object.hasOwnProperty(prop)) {
 console.log("Property name is " + prop);
 console.log("Property value is " + object[prop]);
 }
}

Crockford’s Code Conventions require the use of hasOwnProperty() for all for-in loops.
Both JSLint and JSHint warn when a for-in loop is missing a call to
hasOwnProperty() by default (both allow this option to be turned off). My recommen-
dation is to always use hasOwnProperty() for for-in loops unless you’re intentionally
looking up the prototype chain, in which case it should be indicated with a comment,
such as:

var prop;

for (prop in object) { // include prototype properties
 console.log("Property name is " + prop);
 console.log("Property value is " + object[prop]);
}

Another area of focus with for-in loops is their usage with objects. A common mistake
is to use for-in to iterate over members of an array, as in this example:

// Bad
var values = [1, 2, 3, 4, 5, 6, 7],
 i;

for (i in values) {
 process(items[i]);
}

The for-in Loop | 37

This practice is disallowed in Crockford’s Code Conventions as well as the Google
JavaScript Style Guide due to the potential errors it may cause. Remember, the for-
in is iterating over object keys on both the instance and the prototype, so it’s not limited
to the numerically indexed properties of the array. The for-in loop should never be
used in this way.

38 | Chapter 3: Statements and Expressions

CHAPTER 4

Variables, Functions, and Operators

The real guts of any JavaScript program are the functions you write to accomplish tasks.
Inside the functions, variables and operators are used to move bits around and make
things happen. That’s why, after getting the basic formatting of your JavaScript down,
it’s important to decide how to use functions, variables, and operators to reduce com-
plexity and improve readability.

Variable Declarations
Variable declarations are accomplished by using the var statement. JavaScript allows
the var statement to be used multiple times and nearly anywhere within a script. This
usage creates interesting cognitive issues for developers, because all var statements are
hoisted to the top of the containing function regardless of where they actually occur in
the code. For example:

function doSomething() {

 var result = 10 + value;
 var value = 10;
 return result;
}

In this code, it’s perfectly valid for the variable value to be used before it was declared,
though it will cause result to have the special value NaN. To understand why, you need
to be aware that this code is changed by the JavaScript engine to this:

function doSomething() {

 var result;
 var value;

 result = 10 + value;
 value = 10;

 return result;
}

39

The two var statements are hoisted to the top of the function; the initialization happens
afterward. The variable value has the special value undefined when it’s used on line 6,
so result becomes NaN (not a number). Only after that is value finally assigned the value
of 10.

One area where developers tend to miss variable declaration hoisting is with for state-
ments, in which variables are declared as part of the initialization:

function doSomethingWithItems(items) {

 for (var i=0, len=items.length; i < len; i++) {
 doSomething(items[i]);
 }
}

JavaScript up to ECMAScript 5 has no concept of block-level variable declarations, so
this code is actually equivalent to the following:

function doSomethingWithItems(items) {

 var i, len;

 for (i=0, len=items.length; i < len; i++) {
 doSomething(items[i]);
 }
}

Variable declaration hoisting means defining a variable anywhere in a function is the
same as declaring it at the top of the function. Therefore, a popular style is to have all
variables declared at the top of a function instead of scattered throughout. In short,
you end up writing code similar to the manner in which the JavaScript engine will
interpret it.

My recommendation is to have your local variables defined as the first statements in a
function. This approach is recommended in Crockford’s Code Conventions, the
SproutCore Style Guide, and the Dojo Style Guide:

function doSomethingWithItems(items) {

 var i, len;
 var value = 10;
 var result = value + 10;

 for (i=0, len=items.length; i < len; i++) {
 doSomething(items[i]);
 }
}

Crockford goes on to recommend the use of a single var statement at the top of
functions:

40 | Chapter 4: Variables, Functions, and Operators

function doSomethingWithItems(items) {

 var i, len,
 value = 10,
 result = value + 10;

 for (i=0, len=items.length; i < len; i++) {
 doSomething(items[i]);
 }
}

The Dojo Style Guide allows combining var statements only when the variables are
related to one another.

My personal preference is to combine all var statements with one initialized variable
per line. The equals signs should be aligned. For variables that aren’t initialized, they
should appear last, as in the following example:

function doSomethingWithItems(items) {

 var value = 10,
 result = value + 10,
 i,
 len;

 for (i=0, len=items.length; i < len; i++) {
 doSomething(items[i]);
 }
}

At a minimum, I recommend combining var statements, as doing so makes your code
smaller and therefore faster to download.

Function Declarations
Function declarations, just like variable declarations, are hoisted by JavaScript engines.
Therefore, it’s possible to use a function in code before it is declared:

// Bad
doSomething();

function doSomething() {
 alert("Hello world!");
}

This approach works because the JavaScript engine interprets the code as if it were the
following:

// Bad
function doSomething() {
 alert("Hello world!");
}

doSomething();

Function Declarations | 41

Due to this behavior, it’s recommended that JavaScript functions always be declared
before being used. This design appears in Crockford’s Code Conventions. Crockford
also recommends that local functions be placed immediately after variable declarations
within a containing function, as in:

function doSomethingWithItems(items) {

 var i, len,
 value = 10,
 result = value + 10;

 function doSomething(item) {
 // do something
 }

 for (i=0, len=items.length; i < len; i++) {
 doSomething(items[i]);
 }
}

Both JSLint and JSHint will warn when a function is used before it is declared.

Additionally, function declarations should never appear inside of block statements. For
example, this code won’t behave as expected:

// Bad
if (condition) {
 function doSomething() {
 alert("Hi!");
 }
} else {
 function doSomething() {
 alert("Yo!");
 }
}

Exactly how this will work from browser to browser will vary. Most browsers auto-
matically take the second declaration without evaluating condition; Firefox evaluates
condition and uses the appropriate function declaration. This is a gray area in the
ECMAScript specification and should thus be avoided. Function declarations should
be used only outside of conditional statements. This pattern is explicitly forbidden in
the Google JavaScript Style Guide.

Function Call Spacing
Almost universally, the recommended style for function calls is to have no space be-
tween the function name and the opening parenthesis, which is done to differentiate it
from a block statement. For example:

// Good
doSomething(item);

42 | Chapter 4: Variables, Functions, and Operators

// Bad: Looks like a block statement
doSomething (item);

// Block statement for comparison
while (item) {
 // do something
}

Crockford’s Code Conventions explicitly calls this out. The Dojo Style Guide, Sprout-
Core Style Guide, and Google JavaScript Style Guide implicitly recommend this style
through code examples.

The jQuery Core Style Guide further specifies that an extra space should be included
after the opening parenthesis and before the closing parenthesis, such as:

// jQuery-style
doSomething(item);

The intent here is to make the arguments easier to read. The jQuery Core Style
Guide also lists some exceptions to this style, specifically relating to functions that are
passed a single argument that is an object literal, array literal, function expression, or
string. So the following examples are all still considered valid:

// jQuery exceptions
doSomething(function() {});
doSomething({ item: item });
doSomething([item]);
doSomething("Hi!");

Generally speaking, styles with more than one exception are not good, because they
can be confusing to developers.

Immediate Function Invocation
JavaScript allows you to declare anonymous functions—functions without proper
names—and assign those functions to variables or properties. For example:

var doSomething = function() {
 // function body
};

Such anonymous functions can also be immediately invoked to return a value to the
variable by including parentheses at the very end:

// Bad
var value = function() {

 // function body

 return {
 message: "Hi"
 }
}();

Immediate Function Invocation | 43

In the previous example, value ends up being assigned an object, because the function
is immediately invoked. The problem with this pattern is that it looks very similar to
assigning an anonymous function to a variable. You don’t know that this isn’t the case
until you get to the very last line and see the parentheses. This sort of confusion hinders
the readability of your code.

To make it obvious that immediate function invocation is taking place, put parentheses
around the function, as in this example:

// Good
var value = (function() {

 // function body

 return {
 message: "Hi"
 }
}());

This code now has a signal on the first line, the open paren, that the function is imme-
diately invoked. Adding the parentheses doesn’t change the behavior of the code at all.
Crockford’s Code Conventions recommends this pattern, and JSLint will warn when
the parentheses are missing.

Strict Mode
ECMAScript 5 introduced strict mode, a way to alter how JavaScript is executed and
parsed in the hopes of reducing errors. To put a script into strict mode, use the following
pragma:

"use strict";

Although this looks like a string that isn’t assigned to a variable, ECMAScript 5 Java-
Script engines treat this as a command to switch into strict mode. This pragma is valid
both globally as well as locally, inside of a single function. However, it’s a common
recommendation (though undocumented in any popular style guide) to avoid placing
"use strict" in the global scope. The reason is that strict mode applies to all code in
a single file, so if you’re concatenating 11 files and one of them has global strict mode
enabled, all of the files are placed into strict mode. Because strict mode operates under
slightly different rules than nonstrict mode, there’s a high likelihood of errors within
the other files. For this reason, it’s best to avoid placing "use strict" in the global
scope. Here are some examples:

// Bad - global strict mode
"use strict";

function doSomething() {
 // code
}

44 | Chapter 4: Variables, Functions, and Operators

// Good
function doSomething() {
 "use strict";

 // code
}

If you want strict mode to apply to multiple functions without needing to write "use
strict" multiple times, use immediate function invocation:

// Good
(function() {
 "use strict";

 function doSomething() {
 // code
 }

 function doSomethingElse() {
 // code
 }

})();

In this example, doSomething() and doSomethingElse() both run in strict mode, because
they are contained in an immediately invoked function with "use strict" specified.

Both JSLint and JSHint warn when "use strict" is found outside of a function. Both
also expect all functions to have "use strict" specified by default; this can be turned
off in both tools. I recommend using strict mode wherever possible to limit common
mistakes.

Equality
Equality in JavaScript is tricky due to type coercion. Type coercion causes variables of
a specific type to be converted automatically into a different type for a particular op-
eration to succeed, which can lead to some unexpected results.

One of the main areas in which type coercion occurs is with the use of equality oper-
ators, == and !=. These two operators cause type coercion when the two values being
compared are not the same data type (when they are the same data type, no coercion
occurs). There are many instances in which code may not be doing what you expect.

If you compare a number to a string, the string is first converted to a number, and then
the comparison happens. Some examples:

// The number 5 and string 5
console.log(5 == "5"); // true

// The number 25 and hexadecimal string 25
console.log(25 == "0x19"); // true

Equality | 45

When performing type coercion, the string is converted to a number as if using the
Number() casting function. Because Number() understands hexadecimal format, it will
convert a string that looks like a hexadecimal number into the decimal equivalent before
the comparison occurs.

If a boolean value is compared to a number, then the boolean is converted to a number
before comparison. A false value becomes 0 and true becomes 1. For example:

// The number 1 and true
console.log(1 == true); // true

// The number 0 and false
console.log(0 == false); // true

// The number 2 and true
console.log(2 == true); // false

If one of the values is an object and the other is not, then the object’s valueOf() method
is called to get a primitive value to compare against. If valueOf() is not defined, then
toString() is called instead. After that point, the comparison continues following the
previously discussed rules about mixed type comparisons. For example:

var object = {
 toString: function() {
 return "0x19";
 }
};

console.log(object == 25); // true

The object is deemed to be equal to the number 25 because its toString() method
returned the hexadecimal string "0x19", which was then converted to a number before
being compared to 25.

The last instance of type coercion occurs between null and undefined. These two special
values are deemed to be equivalent simply by the letter of the ECMAScript standard:

console.log(null == undefined); // true

Because of type coercion, avoiding == and != at all is recommended; instead, use ===
and !==. These operators perform comparison without type coercion. So if two values
don’t have the same data type, they are automatically considered to be unequal, which
allows your comparison statements to always perform the comparison in a way that is
more consistent. Consider the differences between == and === in a few cases:

// The number 5 and string 5
console.log(5 == "5"); // true
console.log(5 === "5"); // false

// The number 25 and hexadecimal string 25
console.log(25 == "0x19"); // true
console.log(25 === "0x19"); // false

46 | Chapter 4: Variables, Functions, and Operators

// The number 1 and true
console.log(1 == true); // true
console.log(1 === true); // false

// The number 0 and false
console.log(0 == false); // true
console.log(0 === false); // false

// The number 2 and true
console.log(2 == true); // false
console.log(2 === true); // false

var object = {
 toString: function() {
 return "0x19";
 }
};

// An object and 25
console.log(object == 25); // true
console.log(object === 25); // false

// Null and undefined
console.log(null == undefined); // true
console.log(null === undefined);// false

Use of === and !== is recommended by Crockford’s Code Conventions, the jQuery Core
Style Guide, and the SproutCore Style Guide. Crockford’s guide recommends usage all
the time, but specifically for comparing against false values (those values that are co-
erced to false, such as 0, the empty string, null, and undefined). The jQuery Core Style
Guide allows the use of == for comparison against null when the intent is to test for
both null and undefined. I recommend using === and !== all the time without exception.

JSLint warns about all uses of == and != by default. JSHint warns about using ==
and != when comparing to a false value by default. You can enable warnings for all uses
of == and != by adding the eqeqeq option.

eval()
The eval() function takes a string of JavaScript code and executes it. This function
allows developers to download additional JavaScript code, or to generate JavaScript
code on the fly, and then execute it. For example:

eval("alert('Hi!')");

var count = 10;
var number = eval("5 + count");
console.log(count); // 15

eval() | 47

The eval() function isn’t the only way to execute a JavaScript string from within Java-
Script. The same can be done using the Function constructor as well as setTimeout()
and setInterval(). Here are some examples:

var myfunc = new Function("alert('Hi!')");

setTimeout("document.body.style.background='red'", 50);

setInterval("document.title = 'It is now '" + (new Date()), 1000);

All of these are considered bad practice by most of the JavaScript community. Although
eval() may be used from time to time in JavaScript libraries (mostly in relation to
JSON), the other three uses are rarely, if ever, used. A good general guideline is to never
use Function and to use eval() only if no other options are present. Both setTime
out() and setInterval() can be used but should use function instead of strings:

setTimeout(function() {
 document.body.style.background='red';
}, 50);

setInterval(function() {
 document.title = 'It is now ' + (new Date());
}, 1000);

Crockford’s Code Conventions forbids the use of eval() and Function, as well as set
Timeout() and setInterval() when used with strings. The jQuery Core Style Guide
forbids the use of eval() except for a JSON parsing fallback used in one place. The
Google JavaScript Style Guide allows the use of eval() only for converting Ajax re-
sponses into JavaScript values.

Both JSLint and JSHint warn about the use of eval(), Function, setTimeout(), and
setInterval() by default.

ECMAScript 5 strict mode puts severe restrictions on eval(), preventing
it from creating new variables or functions in the enclosing scope. This
restriction helps close some of the security holes innate in eval(). How-
ever, avoiding eval() is still recommended unless there is absolutely no
other way to accomplish the task.

Primitive Wrapper Types
A little-known and often misunderstood aspect of JavaScript is the language’s reliance
on primitive wrapper types. There are three primitive wrapper types: String, Boolean,
and Number. Each of these types exists as a constructor in the global scope and each
represents the object form of its respective primitive type. The main use of primitive
wrapper types is to make primitive values act like objects, for instance:

var name = "Nicholas";
console.log(name.toUpperCase());

48 | Chapter 4: Variables, Functions, and Operators

Even though name is a string, which is a primitive type and therefore not an object,
you’re still able to use methods such as toUpperCase() as if the string were an object.
This usage is made possible because the JavaScript engine creates a new instance of the
String type behind the scenes for just that statement. Afterward, it’s destroyed, and
another is created when it is needed. You can test out this behavior by trying to add a
property to a string:

var name = "Nicholas";
name.author = true;
console.log(name.author); // undefined

The author property has vanished after the second line. That’s because the temporary
String object representing the string was destroyed after line 2 executed, and a new
String object was created for line 3. It’s possible to create these objects yourself as well:

// Bad
var name = new String("Nicholas");
var author = new Boolean(true);
var count = new Number(10);

Although it’s possible to use these primitive wrapper types, I strongly recommend
avoiding them. Developers tend to get confused as to whether they’re dealing with an
object or a primitive, and bugs occur. There isn’t any reason to create these objects
yourself.

The Google JavaScript Style Guide forbids the use of primitive wrapper types. Both
JSLint and JSHint will warn if you try to use String, Number, or Boolean to create new
objects.

Primitive Wrapper Types | 49

PART II

Programming Practices

“There are two ways of constructing a software design: One way is to make it so simple
that there are obviously no deficiencies and the other way is to make it so complicated
that there are no obvious deficiencies.” —C.A.R. Hoare, The 1980 ACM Turing Award
Lecture

The first part of this book covered style guidelines for JavaScript. Style guidelines are
aimed at making code look the same regardless of who is working on it. What style
guidelines don’t cover is how to solve common problems. That’s where programming
practices come in.

Programming practices are another type of code convention. Whereas style guidelines
are concerned with the appearance of code, programming practices are concerned with
the outcome of the code. You can think of programming practices like recipes—they
help developers write their code in such a way that the end result is already known. If
you’ve ever used design patterns such as the observer pattern of the model-view-
controller (MVC), then you’re already familiar with programming practices. Design
patterns are programming practices that solve specific problems related to software
organization.

The programming practices in this section cover very small problems. These practices
may be considered design patterns by some, but most are simple tips for improving the
overall quality of your code.

Both JSLint and JSHint include some warnings for programming practices in addition
to stylistic issues. It is highly recommended that you use one of these tools in your
JavaScript development to ensure that small and hard-to-find issues are flagged.

CHAPTER 5

Loose Coupling of UI Layers

In web development, the user interface (UI) is defined by three separate layers working
together:

• HTML is used to define the data and semantics of the page.

• CSS is used to style the page, creating visual distinction.

• JavaScript is used to add behavior to the page, making it more interactive.

These UI layers are usually pictured as HTML being at the base, with CSS and JavaScript
layers on top, as displayed in Figure 5-1.

Figure 5-1. The layers of a web user interface

In reality, though, CSS and JavaScript are more like siblings rather than JavaScript
having a dependency on CSS. It’s possible to have a page with just HTML and CSS
without any JavaScript, and it’s possible to have a page with just HTML and JavaScript
without any CSS. I prefer to think of the relationship between these three layers as
displayed in Figure 5-2.

Thinking of CSS and JavaScript being of the same stature in an overall web user interface
allows for more possibilities and eliminates dependencies. For example, JavaScript
shouldn’t rely on CSS to function correctly—it should be able to function independ-
ently of the CSS, even if there is some interaction between the two.

53

Each layer of a web UI is a piece of a larger system that must be maintained. HTML,
CSS, and JavaScript are often written so tightly coupled that it’s impossible to make
small changes without changing one or two other layers. In a large-scale web applica-
tion, this type of design is a big problem, especially on teams in which the same people
aren’t responsible for the HTML, CSS, and JavaScript. In such situations, loose cou-
pling becomes very important.

What Is Loose Coupling?
Many design patterns are actually solutions to the problem of tight coupling. If two
components are tightly coupled, it means that one component has direct knowledge
of the other in such a way that a change to one of the components often necessitates a
change to the other component. For example, suppose you have a CSS class named
error that is used throughout a website, embedded in HTML. If one day you decide
that error isn’t the right name for the class and you want to change it to warning, you’ll
have to edit not just the CSS but also all of the HTML using that class. The HTML is
tightly coupled to the CSS. This is just a simple example. Imagine what a nightmare it
is when a system has dozens or hundreds of components.

Loose coupling is achieved when you’re able to make changes to a single component
without making changes to other components. Loose coupling is essential to the main-
tainability of large systems for which more than one person is responsible for the de-
velopment and maintenance of code. You absolutely want developers to be able to
make changes in one area of the code without breaking what other developers are doing
in a different area of code.

Loose coupling is achieved by limiting each component’s knowledge of the larger sys-
tem. In essence, every component needs to be as dumb as possible to ensure loose
coupling. The less a component knows, the better off the entire system tends to be.

One thing to keep in mind: there is no such thing as no coupling between components
that work together. In any system, there will necessarily be some knowledge shared
between components in order to do their job. That’s okay. The goal is to ensure that
changes in one component don’t require changes in multiple places on a regular basis.

A web UI that is loosely coupled is easier to debug. Issues with text or structure are
addressed by looking just at HTML. When stylistic issues arise, you know the problem

Figure 5-2. The updated layers of a web user interface

54 | Chapter 5: Loose Coupling of UI Layers

and the fix will be in the CSS. Finally, if there are behavioral issues, you can go straight
to the JavaScript to address the problem. This ability is a key part of a maintainable
web interface.

Keep JavaScript Out of CSS
There was a feature in Internet Explorer 8 and earlier that some loved and many hated:
CSS expressions. CSS expressions allow you to insert JavaScript directly into CSS, per-
forming calculations or other functionality directly inside CSS code. For example, the
following code sets the width of an element to match the width of the browser:

/* Bad */
.box {
 width: expression(document.body.offsetWidth + "px");
}

The CSS expression is enclosed in the special expression() function, which accepts any
JavaScript code. CSS expressions are reevaluated frequently by the browser and were
considered to be bad for performance, even making it into Steve Souders’s book High
Performance Web Sites as something to avoid (Rule 7: Avoid CSS Expressions).

Aside from the performance issues, having JavaScript embedded inside of CSS is a
maintenance nightmare, and one with which I have firsthand experience. In 2005, I
had a JavaScript bug assigned to me that had me baffled from the start. It occurred only
in Internet Explorer and happened only when the browser window was resized a few
times. At that point in time, the best JavaScript debugger for Internet Explorer was
Visual Studio, but it failed to locate the source of the problem. I spent an entire day
setting breakpoints and inserting alert() statements to try to figure out what was hap-
pening.

By the end of the day, I had resigned myself to my least favorite debugging method:
systematic removal of code. I removed JavaScript, file by file, and tried to reproduce
the issue. I quickly became frustrated and simply removed all JavaScript from the page.
The bug was still happening. I look at my computer screen in disbelief. A JavaScript
error without any JavaScript on the page—how is that even possible?

To this day, I’m still not sure what led me finally to look at the CSS. I wasn’t even sure
what I was looking for at that point. I just started at the top of the CSS and slowly
scrolled down to see if anything would jump out at me. Finally, I saw the CSS expression
that was the source of the problem. When I removed it, the JavaScript error went away.

This experience is what led me to the rules in this chapter. I spent an entire day looking
for a JavaScript bug in JavaScript when it was actually in CSS. The actual error wasn’t
even difficult to solve, but tracking down the error in a part of the system in which I
(reasonably) didn’t expect to find it was ridiculously time consuming.

Fortunately, Internet Explorer 9 removed support for CSS expressions, but older ver-
sions of Internet Explorer are still in use around the world. Even though it’s tempting

Keep JavaScript Out of CSS | 55

to use a CSS expression to make up for some of the missing functionality in these older
browsers, resist the urge and save yourself a lot of time and effort. Keep JavaScript out
of your CSS.

Keep CSS Out of JavaScript
Keeping this clean separation between CSS and JavaScript can be challenging at times.
These two languages work quite well together, so it is tempting to manipulate style
data within JavaScript. The most popular way to script style changes is through the use
of the style property on any DOM element. The style property is an object containing
properties that allow you to read and change CSS properties. For instance, you can
change the text color of an element to red like this:

// Bad
element.style.color = "red";

It’s actually quite common to see large blocks of code using style to change multiple
properties, such as:

// Bad
element.style.color = "red";
element.style.left = "10px";
element.style.top = "100px";
element.style.visibility = "visible";

This approach is problematic, because the style information is now located inside of
JavaScript instead of CSS. When there is a style problem, you should be able to go
straight to the CSS to find and resolve the issue. You wouldn’t stop to consider that the
style information is in JavaScript until you’d exhausted all other possibilities.

Another way developers use the style object is to set an entire CSS string via the
cssText property, as in the following example:

// Bad
element.style.cssText = "color: red; left: 10px; top: 100px; visibility: hidden";

Using the cssText property is just a shortcut to set multiple CSS properties at once.
This pattern has the same problem as setting individual properties: keeping style in-
formation inside of your JavaScript is a maintenance problem.

Keeping CSS out of JavaScript means that all style information still lives in CSS. When
JavaScript needs to change the style of an element, the best way to do so is by manip-
ulating CSS classes. For instance, to reveal a dialog box on the page, define a class in
your CSS such as this:

.reveal {
 color: red;
 left: 10px;
 top: 100px;
 visibility: visible;
}

56 | Chapter 5: Loose Coupling of UI Layers

Then, in JavaScript, add the class to the element in question:

// Good - Native
element.className += " reveal";

// Good - HTML5
element.classList.add("reveal");

// Good - YUI
Y.one(element).addClass("reveal");

// Good - jQuery
$(element).addClass("reveal");

// Good - Dojo
dojo.addClass(element, "reveal");

Think of CSS class names as the communication mechanism between CSS and Java-
Script. JavaScript is free to add and remove class names from elements throughout the
life cycle of the page. The styles applied by the classes are defined in the CSS code.
Those styles may change at any point in time in the CSS without necessitating a Java-
Script update. JavaScript should not be manipulating styles directly so that it stays
loosely coupled to the CSS.

There is one instance in which using the style property is acceptable:
when you need to position an element on the page relative to another
element or the size of the page itself. This type of calculation can’t be
done in CSS, so it is okay to use style.top, style.left, style.bottom,
and style.right to position an element correctly. The CSS class for the
element should have a logical default value that is then overridden in
script.

Keep JavaScript Out of HTML
One of the first things people do when they learn JavaScript is start embedding it within
HTML. There are any number of ways to do this. The first is to assign event handlers
by using the on attributes such as onclick:

<!-- Bad -->
<button onclick="doSomething()" id="action-btn">Click Me</button>

This is how most websites with JavaScript were coded around the year 2000. HTML
was littered with onclick and other event handlers as attributes of elements. Although
this code will work in most situations, it represents tight coupling of two UI layers
(HTML and JavaScript), so there are several problems with it.

First, the doSomething() function must be available when the button is clicked. Those
who developed websites around 2000 are quite familiar with this problem. The code
for doSomething() may be loaded from an external file or may occur later in the HTML

Keep JavaScript Out of HTML | 57

file. Either way, it’s possible for a user to click the button before the function is available
and cause a JavaScript error. The resulting error message may pop up to the user or
cause the button to appear to do nothing. Either case is undesirable.

The second problem is a maintenance issue. What happens if you want to change the
name of doSomething()? What happens if the button should now call a different function
when clicked? In both cases, you’re making changes to both the JavaScript and the
HTML; this is the very essence of tightly coupled code.

Most—if not all—of your JavaScript should be contained in external files and included
on the page via a <script> element. The on attributes should not be used for attaching
event handlers in HTML. Instead, use JavaScript methods for adding event handlers
once the external script has been loaded. For DOM Level 2–compliant browsers, you
can achieve the same behavior in the previous example by using this code:

function doSomething() {
 // code
}

var btn = document.getElementById("action-btn");
btn.addEventListener("click", doSomething, false);

The advantage of this approach is that the function doSomething() is defined in the same
file as the code that attatches the event handler. If the function name needs to change,
there is just one file that needs editing; if the button should do something else when
clicked, there is still just one place to go to make that change.

Internet Explorer 8 and earlier versions don’t support addEventListener(), so you may
need a function to normalize the difference:

function addListener(target, type, handler) {
 if (target.addEventListener) {
 target.addEventListener(type, handler, false);
 } else if (target.attachEvent) {
 target.attachEvent("on" + type, handler);
 } else {
 target["on" + type] = handler;
 }
}

This function is capable of adding an event handler for an element in any browser, even
falling back to the DOM Level 0 approach of assigning a handler to the on property of
an object (this step would be necessary only for very old browsers such as Netscape 4,
but it’s always good to cover your bases). This method is used as follows:

function doSomething() {
 // code
}

var btn = document.getElementById("action-btn");
addListener(btn, "click", doSomething);

58 | Chapter 5: Loose Coupling of UI Layers

If you’re using a JavaScript library, you should use the library’s methods for adding an
event handler to an element. Here are some common examples for popular libraries:

// YUI
Y.one("#action-btn").on("click", doSomething);

// jQuery
$("#action-btn").on("click", doSomething);

// Dojo
var btn = dojo.byId("action-btn");
dojo.connect(btn, "click", doSomething);

Another way of embedding JavaScript in HTML is to use the <script> element with
inline code:

<!-- Bad -->
<script>
 doSomething();
</script>

It’s best to keep all JavaScript in external files and to keep inline JavaScript code out of
your HTML. Part of the reason for this approach is to aid in debugging. When a Java-
Script error occurs, your first inclination is to start digging through your JavaScript files
to find the issue. If the JavaScript is located in the HTML, that’s a workflow interrup-
tion. You first have to determine whether the JavaScript is in the JavaScript files (which
it should be) or in the HTML. Only then can you start debugging.

This point might seem minor, especially given today’s excellent web development tools,
but it is actually an important piece of the maintenance puzzle. Predictability leads to
faster debugging and development, and knowing (not guessing) where to start with a
bug is what leads to faster resolutions and better overall code quality.

Keep HTML Out of JavaScript
Just as it’s best to keep JavaScript out of HTML, it’s also best to keep HTML out of
JavaScript. As mentioned previously, when there is a text or structural issue to debug,
you want to be able to go to the HTML to start debugging. Many times in my career
I’ve had trouble tracking down such an issue because I was looking at the HTML when
in fact the real issue was buried deep inside JavaScript.

HTML frequently ends up in JavaScript as a consequence of using the innerHTML prop-
erty, as in:

// Bad
var div = document.getElementById("my-div");
div.innerHTML = "<h3>Error</h3><p>Invalid e-mail address.</p>";

Embedding HTML strings inside your JavaScript is a bad practice for a number of
reasons. First, as mentioned previously, it complicates tracking down text and struc-
tural issues. The typical approach for debugging perceived markup issues is to first look

Keep HTML Out of JavaScript | 59

at the DOM tree in the browser’s inspector, then look at the HTML source of the page
to find differences. Tracking down these issues becomes more problematic when Java-
Script is doing more than simple DOM manipulation.

The second problem with this approach is maintainability. If you need to change text
or markup, you want to be able to go to one place: the place where you manage HTML.
This may be in PHP code, a JSP file, or even a template such as Mustache or Handlebars.
Regardless of the mechanism used, you want all of your markup to be in one location
so that it can be easily updated. Markup embedded within JavaScript isn’t as accessible
for changes, because it’s unexpected. Why would you think to go into your JavaScript
to make a markup change when most of the markup is located inside of a directory of
template files?

It’s far less error prone to edit markup than it is to edit JavaScript. By placing HTML
into JavaScript, you’ve complicated the problem. JavaScript strings require proper es-
caping of quote characters, meaning that the markup needs slightly different syntax
than it would in templates.

Because most web applications are quite dynamic in nature and JavaScript is often used
to change the UI during the life cycle of the page, it is definitely necessary to use Java-
Script to insert or otherwise manipulate markup on the page. There are several ways
to accomplish this in a loosely coupled manner.

Alternative #1: Load from the Server
The first is to keep the templates remote and use an XMLHttpRequest object to retrieve
additional markup. This approach is more convenient for single-page applications than
for multiple-page applications. For instance, clicking on a link that should bring up a
new dialog box might look like this:

function loadDialog(name, oncomplete) {

 var xhr = new XMLHttpRequest();
 xhr.open("get", "/js/dialog/" + name, true);

 xhr.onreadystatechange = function() {

 if (xhr.readyState == 4 && xhr.status == 200) {

 var div = document.getElementById("dlg-holder");
 div.innerHTML = xhr.responseText;
 oncomplete();

 } else {
 // handle error
 }
 };

 xhr.send(null);
}

60 | Chapter 5: Loose Coupling of UI Layers

So instead of embedding the HTML string in the JavaScript, JavaScript is used to request
the string from the server, which allows the markup to be rendered in whatever way is
most appropriate before being injected into the page. JavaScript libraries make this
process a bit easier by allowing you to load remote markup directly into a DOM ele-
ment. Both YUI and jQuery have simple APIs for accomplishing this:

// YUI
function loadDialog(name, oncomplete) {
 Y.one("#dlg-holder").load("/js/dialog/" + name, oncomplete);
}

// jQuery
function loadDialog(name, oncomplete) {
 $("#dlg-holder").load("/js/dialog/" + name, oncomplete);
}

Using remote calls to inject markup is also useful when you need to inject a large amount
of HTML into the page. For performance reasons, it’s typically not a good idea to keep
large amounts of unused markup in memory or in the DOM. For smaller markup
chunks, you may want to consider client-side templates.

Alternative #2: Simple Client-Side Templates
Client-side templates are markup pieces with slots that must be filled by JavaScript in
order to be complete. For example, a template to add an item to a list might look like
this:

%s

This template has %s placeholders for the area in which text should be inserted (this is
the same format as sprintf() from C). The intent is for JavaScript to replace these
placeholders with real data before injecting the result into the DOM. Here’s the func-
tion to use with it:

function sprintf(text) {
 var i=1, args=arguments;
 return text.replace(/%s/g, function() {
 return (i < args.length) ? args[i++] : "";
 });
}

// usage
var result = sprintf(templateText, "/item/4", "Fourth item");

Getting the template text into JavaScript is an important part of this process. Naturally,
you don’t want the template text embedded inside of your JavaScript any more than
you want markup embedded there. Templates are typically defined in the same area as
other markup and are made accessible to JavaScript by embedding them directly in the
HTML page, which is done in one of two ways. The first is to include the template as
an HTML comment. Comments are DOM nodes just like elements and text, so they
can be queried and their content extracted using JavaScript. For example:

Keep HTML Out of JavaScript | 61

<ul id="mylist"><!--<li id="item%s">%s-->
 First item
 Second item
 Third item

The comment is placed in the proper context for its usage, as the first child of the list
it will be used in. The following JavaScript retrieves the template text from the com-
ment:

var mylist = document.getElementById("mylist"),
 templateText = mylist.firstChild.nodeValue;

Once the template text is retrieved, it just needs to be formatted and inserted into the
DOM. All of this is accomplished with the following function:

function addItem(url, text) {
 var mylist = document.getElementById("mylist"),
 templateText = mylist.firstChild.nodeValue,
 result = sprintf(template, url, text);

 div.innerHTML = result;
 mylist.insertAdjacentHTML("beforeend", result);
}

// usage
addItem("/item/4", "Fourth item");

This method processes the template text with the given information and then injects
the resulting HTML using insertAdjacentHTML(). This step turns the HTML string into
a DOM node and appends it as a child to the .

The second way of embedding templates into an HTML page is by using a <script>
element with a custom type property. Browsers assume that code in <script> elements
are JavaScript by default, but you can tell the browser that it is not JavaScript be spec-
ifying a type that it won’t understand. For example:

<script type="text/x-my-template" id="list-item">
 %s
</script>

You can then retrieve the template text by using the text property of the <script>
element:

var script = document.getElementById("list-item"),
 templateText = script.text;

The addItem() function would then change to:

function addItem(url, text) {
 var mylist = document.getElementById("mylist"),
 script = document.getElementById("list-item"),
 templateText = script.text,
 result = sprintf(template, url, text),
 div = document.createElement("div");

62 | Chapter 5: Loose Coupling of UI Layers

 div.innerHTML = result.replace(/^\s*/, "");
 list.appendChild(div.firstChild);
}

// usage
addItem("/item/4", "Fourth item");

One of the changes in this version of the function is to strip any leading white space
that may be in the template. This extra white space occurs because the template is on
the line after the opening <script> tag. Injecting the template as-is would result in a
white space text node being created inside <div>, and that text node would end up
being added to the list instead of the .

Alternative #3: Complex Client-Side Templates
The templating format used in the previous section is quite simplistic and doesn’t do
any escaping. For more robust templating, you may want to consider a solution such
as Handlebars. Handlebars is a complete client-side templating system designed to
work with JavaScript in the browser.

Handlebars templates use double braces to indicate placeholders. Here’s a Handlebars
version of the template from the previous section:

{{text}}

The placeholders in Handlebars templates are named so that they correspond to named
values in JavaScript. Handlebars suggests embedding the template in an HTML page
using a <script> element with a type of text/x-handlebars-template:

<script type="text/x-handlebars-template" id="list-item">
 {{text}}
</script>

To use the template, you first must include the Handlebars JavaScript library on your
page, which creates a global variable called Handlebars that is used to compile the tem-
plate text into a function:

var script = document.getElementById("list-item"),
 templateText = script.text,
 template = Handlebars.compile(script.text);

The variable template now contains a function that, when executed, returns a formatted
string. All you need to do is pass in an object containing the properties name and url:

var result = template({
 text: "Fourth item",
 url: "/item/4"
});

As part of formatting the result, the arguments are automatically HTML-escaped, pre-
venting security issues and ensuring that simple text values don’t break your markup.
For example, the character “&” is automatically escaped to &.

Keep HTML Out of JavaScript | 63

http://handlebarsjs.com

Putting it all together into a single function:

function addItem(url, text) {
 var mylist = document.getElementById("mylist"),
 script = document.getElementById("list-item"),
 templateText = script.text,
 template = Handlebars.compile(script.text),
 div = document.createElement("div"),
 result;

 result = template({
 text: text,
 url: url
 });

 div.innerHTML = result;
 list.appendChild(div.firstChild);
}

// usage
addItem("/item/4", "Fourth item");

This simple example doesn’t truly show the flexibility of Handlebars. In addition to
simple placeholder replacement, Handlebars allows you to put simple logic and looping
into your templates.

Suppose you want to render an entire list rather than an item, but you want to do that
only if there are actually items to render. You can create a Handlebars template that
looks like this:

{{#if items}}

 {{#each items}}
 {{text}}
 {{/each}}

{{/if}

The {{#if}} block helper prevents the enclose markup from being rendered unless the
items array has at least one item. The {{#each}} block helper then iterates over each
item in the array. So you compile the template into a function and then pass in an object
with an items property, as in the following example:

64 | Chapter 5: Loose Coupling of UI Layers

// return an empty string
var result = template({
 items: []
});

// return HTML for a list with two items
var result = template({
 items: [
 {
 text: "First item",
 url: "/item/1"
 },
 {
 text: "Second item",
 url: "/item/2"
 }
]
});

Handlebars has other block helpers as well—all designed to bring powerful templating
to JavaScript.

Keep HTML Out of JavaScript | 65

CHAPTER 6

Avoid Globals

The JavaScript execution environment is unique in a lot of ways. One of those ways is
in the use of global variables and functions. The default JavaScript execution environ-
ment is, in fact, defined by the various globals available to you at the start of script
execution. All of these are said to be defined on the global object, a mysterious object
that represents the outermost context for a script.

In browsers, the window object is typically overloaded to also be the global object, so
any variable or function declared in the global scope becomes a property of the window
object. For example:

var color = "red"

function sayColor() {
 alert(color);
}

console.log(window.color); // "red"
console.log(typeof window.sayColor); // "function"

In this code, the global variable color and the global function sayColor() are defined.
Both are added to the window object as properties even though they weren’t explicitly
set to do so.

The Problems with Globals
Creating globals is considered a bad practice in general and is specifically problematic
in a team development environment. Globals create a number of nontrivial mainte-
nance issues for code going forward. The more globals, the greater the possibility that
errors will be introduced due to the increasing likelihood of a few common problems.

67

Naming Collisions
The potential for naming collisions increases as the number of global variables and
functions increase in a script, as do the chances that you’ll use an already declared
variable accidentally. The easiest code to maintain is code in which all of its variables
are defined locally.

For instance, consider the sayColor() function from the previous example. This func-
tion relies on the global variable color to function correctly. If sayColor() were defined
in a separate file than color, it would be hard to track down:

function sayColor() {
 alert(color); // Bad: where'd this come from?
}

Further, if color ends up being defined in more than one place, the result of say
Color() could be different depending on how this function is included with the other
code.

The global environment is where native JavaScript objects are defined, and by adding
your own names into that scope, you run the risk of picking a name that might be
provided natively by the browser later on. The name color, for example, is definitely
not a safe global variable name. It’s a plain noun without any qualifiers, so the chances
of collision with an upcoming native API, or another developer’s work, is quite high.

Code Fragility
A function that depends on globals is tightly coupled to the environment. If the envi-
ronment changes, the function is likely to break. In the previous example, the say
Color() method will throw an error if the global color variable no longer exists. That
means any change to the global environment is capable of causing errors throughout
the code. Also, globals can be changed at any point by any function, making the relia-
bility of their values highly suspect. The function from the previous example is much
more maintainable if color is passed in as an argument:

function sayColor(color) {
 alert(color);
}

This version of the function has no global dependencies and thus won’t be affected by
changes to the global environment. Because color is now a named argument, all that
matters is that a valid value is passed into the function. Other changes will not affect
this function’s ability to complete its task.

When defining functions, it’s best to have as much data as possible local to the function.
Anything that can be defined within the function should be written as such; any data
that comes from outside the function should be passed in as an argument. Doing so
isolates the function from the surrounding environment and allows you to make
changes to either without affecting the other.

68 | Chapter 6: Avoid Globals

Difficulty Testing
I tried to implement some unit testing on one of my first large-scale web applications.
I had joined the team after most of the core framework had been built and was trying
to get a better understanding of how everything worked in order to create some tests.
I was dismayed to discover that creating tests was going to be an extremely difficult
process because the entire framework relied on the presence of several global variables
to work properly.

Any function that relies on global variables to work requires you to recreate the entire
global environment to properly test that function. Effectively, this means that you’re
not just managing changes in one global environment, you’re managing them in two
global environments: production and testing. Add to that the cost of keeping those in
sync, and you’ve got the beginnings of a maintenance nightmare that isn’t easily un-
tangled.

Ensuring that your functions don’t rely on globals improves the testability of your code.
Of course, your function may rely on globals that are native to JavaScript, such as Date,
Array, and so on. These will always be part of the global environment due to the Java-
Script engine. Your functions can always assume that some globals will be present.
However, don’t allow your functions to become dependent on global variables that
you’ve introduced to ensure optimal testability.

Accidental Globals
One of the more insidious parts of JavaScript is its capacity for creating globals acci-
dentally. When you assign a value to variable that has not previously been defined in
a var statement, JavaScript automatically creates a global variable. For example:

function doSomething() {
 var count = 10;
 title = "Maintainable JavaScript"; // Bad: global

}

This code represents a very common coding error that accidentally introduces a global
variable. The author probably wanted to declare two variables using a single var state-
ment but accidentally included a semicolon after the first variable instead of a comma.
The result is the creation of title as a global variable.

The problem is compounded when you’re trying to create a local variable with the same
name as a global variable. For example, a global variable named count would be shad-
owed by the local variable count in the previous example. The function then has access
only to the local count unless explicitly accessing the global using window.count. This
arrangement is actually okay.

Omitting the var statement accidentally might mean that you’re changing the value of
an existing global variable without knowing it. Consider the following:

Accidental Globals | 69

function doSomething() {
 var count = 10;
 name = "Nicholas"; // Bad: global

}

In this example, the error is even more egregious because name is actually a property of
window by default. When the window.name property is most frequently used with frames
or iframes, and is how links are targeted to show up in certain frames or tabs when
clicked, changing name inadvertently could affect how links navigate in the site.

A good rule of thumb is to always use var to define variables, even if they are global.
This way is a lot less error prone than omitting the var in certain situations.

Avoiding Accidental Globals
JavaScript won’t warn when you’ve accidentally created a global variable by default.
That’s when tools like JSLint and JSHint come into play. Both tools will warn you if
you assign a value to a previously undeclared variable. For example:

foo = 10;

Both JSLint and JSHint will issue the warning “‘foo’ is not defined” to let you know
that the variable foo was never declared using a var statement.

JSLint and JSHint are also smart enough to notice that you’re accidentally changing
the value of certain globals. In the example that overwrites the value of name, JSLint and
JSHint warn that the variable in question is read-only. In fact, the variable isn’t read-
only; however, it should be treated as such, because changing a native global almost
always leads to errors. The same warning is issued if you try to assign other globals
such as window and document.

Strict mode, which changes some of the rules for parsing and executing JavaScript,
offers a solution to this problem. By adding "use strict" to the top of a function, you
instruct the JavaScript engine to apply more rigorous error handling and syntax check-
ing before executing the code. One of these changes is the ability to detect assignment
to undeclared variables. When this happens, the JavaScript engine throws an error. For
example:

"use strict";
foo = 10; // ReferenceError: foo is not defined

If you try to run this code in an environment supporting strict mode (Internet Explorer
10+, Firefox 4+, Safari 5.1+, Opera 12+, or Chrome), the second will throw a
ReferenceError with a message of “foo is not defined.”

Turning on strict mode changes a lot of JavaScript behavior, so use it carefully if you’re
working with older code. For newer code, it’s best to always use strict mode to avoid
accidental globals as well as other common programming errors that strict mode
catches.

70 | Chapter 6: Avoid Globals

The One-Global Approach
You may be thinking at this point, “How is it possible to write JavaScript without
introducing any globals?” Although it is technically possible through some clever pat-
terns, this approach is usually not feasible or maintainable in the long run. When Java-
Script is developed by a team, that typically means that multiple files are loaded in
various scenarios, and the only way to enable communication between this disparate
code is to have something that all of the code can rely on to be present. The best ap-
proach is to try to have as small a global footprint as possible by agreeing to create only
one global object.

The one-global approach is used by all popular JavaScript libraries:

• YUI defines a single YUI global object.

• jQuery actually defines two globals, $ and jQuery. The latter was added only for
compatibility when used on a page with other libraries also using $.

• Dojo defines a single dojo global object.

• The Closure library defines a single goog global object.

The idea behind the one-global approach is to create a single global with a unique name
(one that is unlikely to be used by native APIs) and then attach all of your functionality
onto that one global. So instead of creating multiple globals, each would-be global
simply becomes a property of your one global. For instance, suppose I wanted to have
an object representing each chapter in this book. The code might look like this:

function Book(title) {
 this.title = title;
 this.page = 1;
}

Book.prototype.turnPage = function(direction) {
 this.page += direction;
};

var Chapter1 = new Book("Introduction to Style Guidelines");
var Chapter2 = new Book("Basic Formatting");
var Chapter3 = new Book("Comments");

This code creates four globals, Book, Chapter1, Chapter2, and Chapter3. The one-global
approach would be to create a single global and attach each of these:

var MaintainableJS = {};

MaintainableJS.Book = function(title) {
 this.title = title;
 this.page = 1;
};

MaintainableJS.Book.prototype.turnPage = function(direction) {
 this.page += direction;
};

The One-Global Approach | 71

MaintainableJS.Chapter1 = new MaintainableJS.Book("Introduction to Style Guidelines");
MaintainableJS.Chapter2 = new MaintainableJS.Book("Basic Formatting");
MaintainableJS.Chapter3 = new MaintainableJS.Book("Comments");

This code has a single global, MaintainableJS, to which all of the other information is
attached. As long as everyone on the team is aware of the single global, it’s easy to
continue adding properties to it and avoid global pollution.

Namespaces
It is possible to start polluting your one global as well. Most projects that use the one-
global approach also have the concept of namespacing. A namespace is simply a logical
grouping of functionality under a single property on the global. For instance, YUI is set
up almost exclusively using namespaces. Everything under Y.DOM is a method related
to DOM manipulation, everything under Y.Event has to do with events, and so on.

Grouping functionality into namespaces brings some order to your one global object
and allows team members to understand where new functionality belongs as well as
where to look for existing functionality. When I worked at Yahoo!, there was an un-
spoken convention that each site would add its own namespace to a Y object for all of
its functionality, so My Yahoo! used Y.My, Mail used Y.Mail, and so on. That design
allowed teams to use one another’s code without fear of naming collisions.

You can easily create your own namespaces in JavaScript with objects, as in:

var ZakasBooks = {};

// namespace for this book
ZakasBooks.MaintainableJavaScript = {};

// namespace for another book
ZakasBooks.HighPerformanceJavaScript = {}

A common convention is for each file to declare its own namespace by creating a new
object on the global. In such circumstances, the previous example pattern works fine.

There are also times when each file is simply adding to a namespace; in that case, you
may want a little more assurance that the namespace already exists. That’s when a
global that handles namespaces nondestructively is useful. The basic pattern to ac-
complish this is:

var YourGlobal = {
 namespace: function(ns) {
 var parts = ns.split("."),
 object = this,
 i, len;

72 | Chapter 6: Avoid Globals

 for (i=0, len=parts.length; i < len; i++) {
 if (!object[parts[i]]) {
 object[parts[i]] = {};
 }
 object = object[parts[i]];
 }

 return object;
 }
};

The variable YourGlobal can actually have any name. The important part is the name
space() method, which nondestructively creates namespaces based on the string that
is passed in and returns a reference to the namespace object. Basic usage:

/*
 * Creates both YourGlobal.Books and YourGlobal.Books.MaintainableJavaScript.
 * Neither exists before hand, so each is created from scratch.
 */
YourGlobal.namespace("Books.MaintainableJavaScript");

// you can now start using the namespace
YourGlobal.Books.MaintainableJavaScript.author = "Nicholas C. Zakas";

/*
 * Leaves YourGlobal.Books alone and adds HighPerformanceJavaScript to it.
 * This leaves YourGlobal.Books.MaintainableJavaScript intact.
 */
YourGlobal.namespace("Books.HighPerformanceJavaScript");

// still a valid reference
console.log(YourGlobal.Books.MaintainableJavaScript.author);

// You can also start adding new properties right off the method call
YourGlobal.namespace("Books").ANewBook = {};

Using a namespace() method on your one global allows developers the freedom to as-
sume that the namespace exists. That way, each file can call namespace() first to declare
the namespace the developers are using, knowing that they won’t destroy the name-
space if it already exists. This approach also frees developers from the tedious task of
checking to see whether the namespace exists before using it.

As with other parts of your code, be sure to define some conventions
around namespaces. Should they begin with uppercase letters as in YUI?
Or be all lowercase as in Dojo? This is a question of preference, but
defining these choices up front allows the team to use the one-global
approach more effectively.

The One-Global Approach | 73

Modules
Another way developers augment the one-global approach is by using modules. A mod-
ule is a generic piece of functionality that creates no new globals or namespaces. Instead,
all of the code takes place within a single function that is responsible for executing a
task or publishing an interface. The module may optionally have a name and a list of
module dependencies.

Modules aren’t formally part of JavaScript. There is no module syntax (at least, not
until ECMAScript 6), but there are some common patterns for creating modules. The
two most prevalent types are YUI modules and Asynchronous Module Definition
(AMD) modules.

YUI modules

YUI modules are, as you might expect, how you create new modules to work with the
YUI JavaScript library. The concept of modules was formalized in YUI 3 and takes the
following form:

YUI.add("module-name", function(Y) {

 // module body

}, "version", { requires: ["dependency1", "dependency2"] });

YUI modules are added by calling YUI.add() with the module name, the function to
execute (called a factory function), and an optional list of dependencies. The module
body is where you place all code for this module. The Y argument is an instance of
YUI that has all of the required dependencies available. The YUI convention is to add
module functionality as namespaces inside of each module, such as:

YUI.add("my-books", function(Y) {

 // Add a namespace
 Y.namespace("Books.MaintainableJavaScript");

 Y.Books.MaintainableJavaScript.author = "Nicholas C. Zakas";

}, "1.0.0", { requires: ["dependency1", "dependency2"] });

Likewise, the dependencies are represented as namespaces on the Y object that is passed
in. So YUI actually combines the concepts of namespaces with modules to give you
flexibility in the overall approach.

Use your module via the YUI().use() method and pass in one or more module names
to load:

YUI().use("my-books", "another-module", function(Y) {

 console.log(Y.Books.MaintainableJavaScript.author);

});

74 | Chapter 6: Avoid Globals

This code starts by loading the modules named "my-books" and "another-module", en-
suring that the dependencies for each are fully loaded. Then the module body is exe-
cuted in the order in which the modules are specified. Last, the callback function passed
to YUI().use() is executed. The Y object that is passed in has all of the changes made
to it by the loaded modules, so your application code is ready to execute.

For more information on YUI modules, see the documentation at http:
//yuilibrary.com/yui/docs/yui/.

Asynchronous Module Definition (AMD) Modules

AMD modules have a lot in common with YUI modules. You specify a module name,
dependencies, and a factory function to execute once the dependencies are loaded.
These are all passed to a global define() function with the name first, then the depen-
dencies, and then the factory function. A major difference between AMD modules and
YUI modules is that each dependency is passed as a separate argument to the factory
function. For example:

define("module-name", ["dependency1", "dependency2"],
 function(dependency1, dependency2) {

 // module body

});

So each named dependency ends up creating an object and passing it to the factory
function. In this way, AMD seeks to avoid naming collisions that might occur with
namespaces across modules. Instead of creating a new namespace as in a YUI module,
AMD modules are expected to return their public interface from the factory function,
such as:

define("my-books", ["dependency1", "dependency2"],
 function(dependency1, dependency2) {

 var Books = {};
 Books.MaintainableJavaScript = {
 author: "Nicholas C. Zakas"
 };

 return Books;
});

AMD modules can also be anonymous and completely omit the module name. The
assumption is that the module loader can infer the module name through the JavaScript
filename. So if you have a file named my-books.js and your module will only ever be
loaded through a module loader, you can define your module as follows:

The One-Global Approach | 75

http://yuilibrary.com/yui/docs/yui/
http://yuilibrary.com/yui/docs/yui/

define(["dependency1", "dependency2"],
 function(dependency1, dependency2) {

 var Books = {};
 Books.MaintainableJavaScript = {
 author: "Nicholas C. Zakas"
 };

 return Books;
});

AMD modules have quite a few options for how to define modules. For more infor-
mation, see the AMD specification at https://github.com/amdjs/amdjs-api/wiki/AMD.

To make use of AMD modules, you need to use a compatible module loader. Dojo’s
standard module loader supports loading of AMD modules, so you can load a the
module "my-books" like this:

// load AMD module in Dojo
var books = dojo.require("my-books");

console.log(books.MaintainableJavaScript.author);

Dojo also exposes itself as an AMD module named "dojo", so it can be loaded into
other AMD modules.

Another module loader is RequireJS. RequireJS adds another global function called
require(), which is responsible for loading the specified dependencies and then exe-
cuting a callback function. For example:

// load AMD module with RequireJS
require(["my-book"], function(books) {

 console.log(books.MaintainableJavaScript.author);

});

The dependencies start to download immediately upon calling require(), and the call-
back executes as soon as all of those dependencies have loaded (similar to YUI().use()).

The RequireJS module loader has a lot of logic built in to make loading modules easy.
These include mapping of names to directories as well as internationalization options.
Both jQuery and Dojo are capable of using RequireJS to load AMD modules.

The Zero-Global Approach
It is possible to inject your JavaScript into a page without creating a single global vari-
able. This approach is quite limited, so it is useful only in some very specific situations.
The most common situation is with a completely standalone script that doesn’t have
to be accessed by any other scripts. This situation may occur because all of the necessary
scripts are combined into one file, or because the script is small and being inserted into

76 | Chapter 6: Avoid Globals

https://github.com/amdjs/amdjs-api/wiki/AMD
http://www.requirejs.org

a page that it shouldn’t interfere with. The most common use case is in creating a
bookmarklet.

Bookmarklets are unique in that they don’t know what’s going to be on the page and
don’t want the page to know that they are present. The end result is a need for a zero-
global embedding of the script, which is accomplished by using an immediate function
invocation and placing all of the script inside of the function. For example:

(function(win) {

 var doc = win.document;

 // declare other variables here

 // other code goes here

}(window));

This immediately invoked function passes in the window object so that the scripts
needn’t directly access any global variables. Inside the function, the doc variable holds
a reference to the document object. As long as the function doesn’t modify window or
doc directly and all variables are declared using the var keyword, this script will result
in no globals being injected into the page. You can further avoid creating globals by
putting the function into strict mode (for browsers that support it):

(function(win) {

 "use strict";

 var doc = win.document;

 // declare other variables here

 // other code goes here

}(window));

This function wrapper can now be used for scripts that don’t want to create any global
objects. As mentioned previously, this pattern is of limited use. Any script that needs
to be used by other scripts on the page cannot use the zero-global approach. A script
that must be extended or modified during runtime cannot use the zero-global approach,
either. However, if you have a small script that doesn’t need to interact with any other
scripts on the page, the zero-global approach is something to keep in mind.

The Zero-Global Approach | 77

CHAPTER 7

Event Handling

Event handling is an important part of any JavaScript application. All JavaScript is tied
to the UI through events, so most web developers spend much of their time coding and
modifying event handlers. Unfortunately, this is also an area of JavaScript programming
that hasn’t received much attention since the language was first introduced. Even as
developers started to embrace more traditional concepts of architecture in JavaScript,
event handling was one of those areas in which little has changed. Most event-handling
code is very tightly coupled to the event environment (what is available to the developer
at the time an event is fired) and therefore is not very maintainable.

Classic Usage
Most developers are familiar with the event object that is passed in to an event handler
when the event is fired. The event object contains all of the information related to the
event, including the event target as well as additional data based on the event type.
Mouse events expose additional location information on the event object, keyboard
events expose information about keys that have been pressed, and touch events expose
information about the location and duration of touches. All of this information is pro-
vided so that the UI can react appropriately.

In many cases, however, you end up using a very small subset of the information present
on event. Consider the following:

// Bad
function handleClick(event) {
 var popup = document.getElementById("popup");
 popup.style.left = event.clientX + "px";
 popup.style.top = event.clientY + "px";
 popup.className = "reveal";
}

// addListener() from Chapter 7
addListener(element, "click", handleClick);

79

This code uses just two properties from the event object: clientX and clientY. These
properties are used to position an element on the page before showing it to the user.
Even though this code seems relatively simple and unproblematic, it’s actually a bad
pattern to use in code because of the limitations it imposes.

Rule #1: Separate Application Logic
The previous example’s first problem is that the event handler contains application
logic. Application logic is functionality that is related to the application rather than
related to the user’s action. In the previous example, the application logic is displaying
a pop up in a particular location. Even though this action should happen when the user
clicks on a particular element, this may not always be the case.

It’s always best to split application logic from any event handler, because the same logic
may need to be triggered by different actions in the future. For example, you may decide
later that the pop up should be displayed when the user moves the cursor over the
element, or when a particular key is pressed on the keyboard. Then you may end up
accidentally duplicating the code into a second or third event handler attaching the
same event handler to handle multiple events.

Another downside to keeping application logic in the event handler is for testing. Tests
need to trigger functionality directly without going through the overhead of actually
having someone click an element to get a reaction. By having application logic inside
of event handlers, the only way to test is by causing the event to fire. That’s usually not
the best way to test, even though some testing frameworks are capable of simulating
events. It would be better to trigger the functionality with a simple function call.

You should always separate application logic from event-handling code. The first step
in refactoring the previous example is to move the pop up–handling code into its own
function, which will likely be on the one global object you’ve defined for your appli-
cation. The event handler should also be on the same global object, so you end up with
two methods:

// Better - separate application logic
var MyApplication = {

 handleClick: function(event) {
 this.showPopup(event);
 },

 showPopup: function(event) {
 var popup = document.getElementById("popup");
 popup.style.left = event.clientX + "px";
 popup.style.top = event.clientY + "px";
 popup.className = "reveal";
 }

};

80 | Chapter 7: Event Handling

addListener(element, "click", function(event) {
 MyApplication.handleClick(event);
});

The MyApplication.showPopup() method now contains all of the application logic pre-
viously contained in the event handler. The MyApplication.handleClick() method now
does nothing but call MyApplication.showPopup(). With the application logic separated
out, it’s easier to trigger the same functionality from multiple points within the appli-
cation without relying on specific events to fire. But this is just the first step in unraveling
this event-handling code.

Rule #2: Don’t Pass the Event Object Around
After splitting out application logic, the next problem with the previous example is that
the event object is passed around. It’s passed from the anonymous event handler to
MyApplication.handleClick(), then to MyApplication.showPopup(). As mentioned pre-
viously, the event object has potentially dozens of additional pieces of information
about the event, and this code only uses two of them.

Application logic should never rely on the event object to function properly for the
following reasons:

• The method interface makes it unclear what pieces of data are actually necessary.
Good APIs are transparent in their expectations and dependencies; passing the
event object as an argument doesn’t give you any idea what it’s doing with which
pieces of data.

• Because of that, you need to recreate an event object in order to test the method.
Therefore, you’ll need to know exactly what the method is using to write a proper
stub for testing.

These issues are both undesirable in a large-scale web application. Lack of clarity is
what leads to bugs.

The best approach is to let the event handler use the event object to handle the event
and then hand off any required data to the application logic. For example, the MyAppli
cation.showPopup() method requires only two pieces of data: an x-coordinate and a y-
coordinate. The method should then be rewritten to accept those as arguments:

// Good
var MyApplication = {

 handleClick: function(event) {
 this.showPopup(event.clientX, event.clientY);
 },

 showPopup: function(x, y) {
 var popup = document.getElementById("popup");
 popup.style.left = x + "px";
 popup.style.top = y + "px";

Rule #2: Don’t Pass the Event Object Around | 81

 popup.className = "reveal";
 }

};

addListener(element, "click", function(event) {
 MyApplication.handleClick(event); // this is okay
});

In this rewritten code, MyApplication.handleClick() now passes in the x-coordinate
and y-coordinate to MyApplication.showPopup() instead of passing the entire event ob-
ject. It’s very clear what MyApplication.showPopup() expects to be passed in, and it’s
quite easy to call that logic directly from a test or elsewhere in the code, such as:

// Great victory!
MyApplication.showPopup(10, 10);

When handling events, it is best to let the event handler be the only function that
touches the event object. The event handler should do everything necessary using the
event object before delegating to some application logic. Thus actions such as pre-
venting the default action or stopping event bubbling should be done strictly in the
event handler, as in:

// Good
var MyApplication = {

 handleClick: function(event) {

 // assume DOM Level 2 events support
 event.preventDefault();
 event.stopPropagation();

 // pass to application logic
 this.showPopup(event.clientX, event.clientY);
 },

 showPopup: function(x, y) {
 var popup = document.getElementById("popup");
 popup.style.left = x + "px";
 popup.style.top = y + "px";
 popup.className = "reveal";
 }

};

addListener(element, "click", function(event) {
 MyApplication.handleClick(event); // this is okay
});

In this code, MyApplication.handleClick() is the defined event handler, so it makes the
calls to event.preventDefault() and event.stopPropagation() before passing data to
the application logic, which is exactly how the relationship between event handlers and
the application should work. Because the application logic no longer depends on
event, it’s easy to use that same logic in multiple places as well as to write tests.

82 | Chapter 7: Event Handling

CHAPTER 8

Avoid Null Comparisons

A common yet still problematic pattern in JavaScript is testing a variable against null,
presumably to determine whether the variable has been filled in with an appropriate
value. For example:

var Controller = {
 process: function(items) {
 if (items !== null) { // Bad
 items.sort();
 items.forEach(function(item) {
 // do something
 });
 }
 }
};

Here, the process() method is clearly expecting that items will be an array, as indicated
by the use of sort() and forEach(). The intention of this code is clear: don’t continue
processing unless the items argument contains an array. The problem with this ap-
proach is that the comparison against null doesn’t actually prevent future errors. The
value of items could be 1, or a string, or some random object. All of these are technically
not equal to null and would therefore cause the process() method to fail once
sort() executes.

Comparing a variable against only null typically doesn’t give you enough information
about the value to determine whether it’s safe to proceed. Fortunately, JavaScript gives
you a number of ways to determine the true value of a variable.

Detecting Primitive Values
There are five primitive types in JavaScript: string, number, boolean, null, and unde
fined. If you are expecting a value to be a string, number, boolean, or undefined, then
the typeof operator is your best option. The typeof operator works on a variable and
returns a string indicating the type of value:

83

• For strings, typeof returns “string.”

• For numbers, typeof returns “number.”

• For booleans, typeof returns “boolean.”

• For undefined, typeof returns “undefined.”

Basic syntax for typeof is as follows:

typeof variable

You may also see typeof used in this manner:

typeof(variable)

Although this is valid JavaScript syntax, this pattern makes typeof appear to be a func-
tion instead of an operator. For this reason, the pattern without parentheses is recom-
mended.

Using typeof for detecting these four primitive value types is the safest way to code
defensively. Here are some examples:

// detect a string
if (typeof name === "string") {
 anotherName = name.substring(3);
}

// detect a number
if (typeof count === "number") {
 updateCount(count);
}

// detect a boolean
if (typeof found === "boolean" && found) {
 message("Found!");
}

// detect undefined
if (typeof MyApp === "undefined") {
 MyApp = {
 // code
 };
}

The typeof operator is also unique in that it can be used on an undeclared variable
without throwing an error. Both undeclared variables and variables whose value is
undefined return “undefined” when typeof is used.

The last primitive type, null, is the one that you normally shouldn’t be testing for. As
stated earlier, comparing simply against null generally doesn’t give you enough infor-
mation about whether the value is expected. There is one exception: if one of the ex-
pected values is actually null, then it is okay to test for null directly. The comparison
should be done using either === or !== against null. For example:

84 | Chapter 8: Avoid Null Comparisons

// If you must test for null, this is the way to do it
var element = document.getElementById("my-div");
if (element !== null) {
 element.className = "found";
}

It is entirely possible for document.getElementById() to return null if the given DOM
element isn’t found. The method will return either null or an element. Because null is
one of the expected outcomes, it’s okay to test for it using !==.

Running typeof null returns “object,” making this an inefficient way
to test for null values. If you must test for null, use the identically equal
operator (===) or the not identically equal (!==) operator.

Detecting Reference Values
Reference values are also known as objects. In JavaScript, any value that isn’t a primitive
is definitely a reference. There are several built-in reference types such as Object, Array,
Date, and Error, just to name a few. The typeof operator is of little use for reference
values, because it returns “object” for any type of object:

console.log(typeof {}); // "object"
console.log(typeof []); // "object"
console.log(typeof new Date()); // "object"
console.log(typeof new RegExp()); // "object"

Another downside to using typeof for objects is that typeof returns “object” for null
values as well:

console.log(typeof null); // "object"

This quirk, which has been recognized as a serious bug in the specification, prevents
accurate detection of null using typeof.

The instanceof operator is the best way to detect values of a particular reference type.
Basic syntax for instanceof is:

value instanceof constructor

Here are some examples:

// detect a Date
if (value instanceof Date) {
 console.log(value.getFullYear());
}

// detect a RegExp
if (value instanceof RegExp) {
 if (value.test(anotherValue)) {
 console.log("Matches");
 }
}

Detecting Reference Values | 85

// detect an Error
if (value instanceof Error) {
 throw value;
}

An interesting feature of instanceof is that it not only checks the constructor used to
create the object but also checks the prototype chain. The prototype chain contains
information about the inheritance pattern used to define the object. For instance, every
object inherits from Object by default, so every object returns true for value instanceof
Object. For example:

var now = new Date();

console.log(now instanceof Object); // true
console.log(now instanceof Date); // true

Due to this behavior, it’s typically not good enough to use value instanceof Object
when you’re expecting a particular type of object.

The instanceof operator also works with custom types that you’ve defined for yourself.
For instance:

function Person(name) {
 this.name = name;
}

var me = new Person("Nicholas");

console.log(me instanceof Object); // true
console.log(me instanceof Person); // true

This example creates a custom Person type. The me variable is an instance of Person, so
me instanceof Person is true. As mentioned previously, all objects are also considered
instances of Object, so me instanceof Object is also true.

The instanceof operator is the only good way to detect custom types in JavaScript. It’s
also good to use for almost all built-in JavaScript types. There is, however, one serious
limitation.

Suppose that an object from one browser frame (frame A) is passed into another (frame
B). Both frames have the constructor function Person defined. If the object from frame
A is an instance of Person in frame A, then the following rules apply:

// true
frameAPersonInstance instanceof frameAPerson

// false
frameAPersonInstance instanceof frameBPerson

Because each frame has its own copy of Person, it is considered an instance of only that
frame’s copy of Person, even though the two definitions may be identical.

86 | Chapter 8: Avoid Null Comparisons

This issue is a problem not just for custom types but also for two very important built-
in types: functions and arrays. For these two types, you don’t want to use instanceof
at all.

Detecting Functions
Functions are technically reference types in JavaScript and also technically have a Func
tion constructor of which each function is an instance. For example:

function myFunc() {}

// Bad
console.log(myFunc instanceof Function); // true

However, this approach doesn’t work across frames due to each frame having its own
Function constructor. Fortunately, the typeof operator also works with functions, re-
turning “function”:

function myFunc() {}

// Good
console.log(typeof myFunc === "function"); // true

Using typeof is the best way to detect functions, because it also works across frames.

There is one limitation to typeof’s function detection. In Internet Explorer 8 and earlier,
any functions that are part of the DOM (such as document.getElementById()) return
“object” instead of “function” when used with typeof. For instance:

// Internet Explorer 8 and earlier
console.log(typeof document.getElementById); // "object"
console.log(typeof document.createElement); // "object"
console.log(typeof document.getElementsByTagName); // "object"

This quirk arises due to how the browser implements the DOM. In short, these early
versions of Internet Explorer didn’t implement the DOM as native JavaScript functions,
which caused the native typeof operator to identify the functions as objects. Because
the DOM is so well defined, developers typically test for DOM functionality using the
in operator, understanding that the presence of the object member means that it’s a
function, as in:

// detect DOM method
if ("querySelectorAll" in document) {
 images = document.querySelectorAll("img");
}

This code checks to see whether querySelectorAll is defined in document, and if so, goes
on to use that function. Though not ideal, this is the safest way to check for the presence
of DOM methods if you need to support Internet Explorer 8 and earlier. In all other
cases, the typeof operator is the best way to detect functions in JavaScript.

Detecting Reference Values | 87

Detecting Arrays
Passing arrays back and forth between frames was one of the original cross-frame issues
in JavaScript. Developers quickly discovered that instanceof Array didn’t always pro-
duce appropriate results in these cases. As mentioned previously, each frame has its
own Array constructor, so an instance from one frame isn’t recognized in another.
Douglas Crockford first recommended performing some duck typing, testing for the
presence of the sort() method:

// Duck typing arrays
function isArray(value) {
 return typeof value.sort === "function";
}

This detection relies on the fact that arrays are the only object types with a sort()
method. Of course, this version of isArray() will also return true when any object with
a sort() method is passed in.

There was quite a lot of investigation into accurately detecting array types in JavaScript;
ultimately, Juriy Zaytsev (also known as Kangax) proposed an elegant solution to this
problem:

function isArray(value) {
 return Object.prototype.toString.call(value) === "[object Array]";
}

Kangax found that calling the native toString() method on a given value produced a
standard string in all browsers. For arrays, the string is “[object Array],” and this call
worked regardless of the frame from which the array originated. Kangax’s approach
quickly became popular and is now implemented in most JavaScript libraries.

This approach is generally useful for identifying native objects as op-
posed to developer-defined objects. For example, the native JSON object
returns “[object JSON]” using this technique.

Since that time, ECMAScript 5 has introduced Array.isArray() formally into Java-
Script. The sole purpose of this method is to accurately determine whether a value is
an array. As with Kangax’s function, Array.isArray() works with values that are passed
across frames, so many JavaScript libraries now implement methods similar to this:

function isArray(value) {
 if (typeof Array.isArray === "function") {
 return Array.isArray(value);
 } else {
 return Object.prototype.toString.call(value) === "[object Array]";
 }
}

The Array.isArray() method is implemented in Internet Explorer 9+, Firefox 4+, Safari
5+, Opera 10.5+, and Chrome.

88 | Chapter 8: Avoid Null Comparisons

Detecting Properties
Another time when when developers typically use null (and also undefined) is when
trying to determine whether a property is present in an object. For example:

// Bad: Checking falsyness
if (object[propertyName]) {
 // do something
}

// Bad: Compare against null
if (object[propertyName] != null) {
 // do something
}

// Bad: Compare against undefined
if (object[propertyName] != undefined) {
 // do something
}

Each of these examples is actually checking the value of the property with the given
name rather than the existence of the property with the given name, which can result
in errors when you’re dealing with falsy values such as 0, "" (empty string), false,
null, and undefined. After all, these are all valid values for properties. For example, if
the property is keeping track of a number, the value might very well be zero. In that
case, the first example will likely cause a bug. Likewise, if the property value could be
null or undefined, all three examples can cause bugs.

The best way to detect the presence of a property is to use the in operator. The in
operator simply checks for the presence of the named property without reading its
value, avoiding ambiguity with statements such as those earlier in this section. If the
property either exists on the instance or is inherited from the object’s prototype, the
in operator returns true. For example:

var object = {
 count: 0,
 related: null
};

// Good
if ("count" in object) {
 // this executes
}

// Bad: Checking falsy values
if (object["count"]) {
 // this doesn't execute
}

// Good
if ("related" in object) {
 // this executes
}

Detecting Properties | 89

// Bad: Checking against null
if (object["related"] != null) {
 // doesn't execute
}

If you only want to check for the existence of the property on the object instance, then
use the hasOwnProperty() method. All JavaScript objects that inherit from Object have
this method, which returns true when the property exists on the instance (if the prop-
erty only exists on the prototype, in which case it returns false). Keep in mind that
DOM objects in Internet Explorer 8 and earlier do not inherit from Object and therefore
do not have this property. That means you’ll need to check for the existence of hasOwn
Property() before using it on potential DOM objects (if you know the object isn’t from
the DOM, you can omit this step).

// Good for all non-DOM objects
if (object.hasOwnProperty("related")) {
 //this executes
}

// Good when you're not sure
if ("hasOwnProperty" in object && object.hasOwnProperty("related")) {
 //this executes
}

Because of Internet Explorer 8 and earlier, I tend to use the in operator whenever pos-
sible and only use hasOwnProperty() when I need to be sure of an instance property.

Whenever you want to check for the existence of the property, make sure to use the
in operator or hasOwnProperty(). Doing so can avoid a lot of bugs.

Of course, if you want to specifically check for the values of null or
undefined, use the guidelines in Chapter 1.

90 | Chapter 8: Avoid Null Comparisons

CHAPTER 9

Separate Configuration Data
from Code

Code does nothing more than define a set of instructions for a computer to execute.
Data is frequently passed around and modified by those instructions, ultimately pro-
ducing a result. The problem comes when the data must change. There’s a risk of
creating an error any time you edit source code, and editing code just to change some
data value introduces unnecessary risk for something that shouldn’t affect the sur-
rounding instructions. Well-designed applications keep vital data outside of the main
source code to ensure worry-free editing.

What Is Configuration Data?
Configuration data is any hardcoded value in an application. Consider the following
example:

// Configuration data embedded in code
function validate(value) {
 if (!value) {
 alert("Invalid value");
 location.href = "/errors/invalid.php";
 }
}

function toggleSelected(element) {
 if (hasClass(element, "selected")) {
 removeClass(element, "selected");
 } else {
 addClass(element, "selected");
 }
}

There are three pieces of configuration data in this code. The first is the string “Invalid
value,” which is displayed to the user. As a UI string, there’s a good chance that it will
change frequently. The second is the URL /errors/invalid.php. URLs tend to change as

91

development progresses, due to architectural decisions. The third is the CSS class name
“selected.” This class name is used three times, meaning that a class name change
requires changes in three different places, increasing the likelihood that one will be
missed.

These are all considered configuration data, because they are hardcoded values that
may change in the future. The following are all examples of configuration data:

• URLs

• Strings that are displayed in the UI

• Repeated unique values

• Settings (i.e., items per page)

• Any value that may change

The key point to remember about configuration data is that it changes, and you don’t
want to be modifying your JavaScript source code because someone changed his mind
about a message to display on the home page.

Externalizing Configuration Data
The first step in separating configuration data from code is to externalize the configu-
ration data, which means getting the data out of the middle of your JavaScript code.
Here’s the previous example with the configuration data externalized:

// Configuration data externalized
var config = {
 MSG_INVALID_VALUE: "Invalid value",
 URL_INVALID: "/errors/invalid.php",
 CSS_SELECTED: "selected"
};

function validate(value) {
 if (!value) {
 alert(config.MSG_INVALID_VALUE);
 location.href = config.URL_INVALID;
 }
}

function toggleSelected(element) {
 if (hasClass(element, config.CSS_SELECTED)) {
 removeClass(element, config.CSS_SELECTED);
 } else {
 addClass(element, config.CSS_SELECTED);
 }
}

This example stores all of the configuration data in the config object. Each property of
config holds a single piece of data, and each property name has a prefix indicating the
type of data (MSG for a UI message, URL for a URL, and CSS for a class name). The naming

92 | Chapter 9: Separate Configuration Data from Code

convention is, of course, a matter of preference. The important part of this code is that
all of the configuration data has been removed from the functions and replaced with
placeholders from the config object.

Externalizing the configuration data means that anyone can go in and make a change
without introducing an error in the application logic. It also means that the entire
config object can be moved into its own file, so edits are made far away from the code
that uses the data.

Storing Configuration Data
Configuration data is best stored in a separate file to create a clean separation between
it and application logic. A good starting point is to have a separate JavaScript file for
configuration data. Once the configuration data is in a separate file, it opens up more
possibilities for managing that data. A worthwhile option is moving your configuration
data into a non-JavaScript file.

Even though you’re writing a JavaScript application, JavaScript isn’t a great way to store
configuration data. That’s because the syntax is still that of a programming language,
so you need to be sure you haven't introduced syntax errors. If you end up concatenating
JavaScript files together, a syntax error in a single line breaks the overall application.
Configuration data truly belong in files that are hard to format incorrectly, and once
you have that file, it is trivial to convert the configuration data into a JavaScript format
automatically.

One of my favorite formats for configuration data is a Java properties file. Java prop-
erties files are simple name-value pairs in which each pair takes a single line (unless you
put in a multiple-line sequence) in the form name=value. It doesn’t matter if there are
spaces around the equals sign, so even that syntax isn’t hard to get right. Comments
are indicated by preceding the line with a # character. Here’s an example:

UI Strings
MSG_INVALID_VALUE = Invalid value

URLs
URL_INVALID = /errors/invalid.php

CSS Classes
CSS_SELECTED = selected

This properties file contains the same properties as the config object from the previous
example. Notice how much simpler the file layout is. There are no quoted strings, which
means that you don’t have to worry about proper escaping or forgetting to close a string.
There are also no semicolons or commas to worry about. You can simply put in your
data and not worry about JavaScript syntax at all.

The next step is to convert this file into something that’s usable by JavaScript. There
are generally three formats in which you want your configuration data. The first is

Storing Configuration Data | 93

JSON, which is useful when embedding your data into another file or setting up data
for retrieval from the server. For instance:

{"MSG_INVALID_VALUE":"Invalid value","URL_INVALID":"/errors/invalid.php",
"CSS_SELECTED":"selected"}

The second is JSONP (JSON with padding), which returns the JSON structure wrapped
in a function:

myfunc({"MSG_INVALID_VALUE":"Invalid value","URL_INVALID":"/errors/invalid.php",
 "CSS_SELECTED":"selected"});

Because JSONP is valid JavaScript, you can concatenate this code into other files to
give them access to the data.

The last option is plain JavaScript, in which you assign the JSON object to a variable
to use later, as in:

var config={"MSG_INVALID_VALUE":"Invalid value","URL_INVALID":"/errors/invalid.php",
 "CSS_SELECTED":"selected"};

As with JSONP, the plain JavaScript version can be combined with other JavaScript
files easily once produced.

For these common use cases, I have created a tool called Props2Js that reads Java prop-
erties files and outputs the data into one of these three formats. Props2Js is free and
open source, available at https://github.com/nzakas/props2js/. It works like this:

java -jar props2js-0.1.0.jar --to jsonp --name myfunc
 --output result.js source.properties

The --to option specifies the output format, either “js,” “json,” or “jsonp.” The --
name option specifies either the variable name (for “js”) or the function name (for
“jsonp”); this option is ignored for “json.” The --output option specifies the file to write
the data into. So this line takes the Java properties file named source.properties and
outputs JSONP with a callback function of myfunc to a file named result.js.

Using a tool like Props2Js allows you to keep configuration data in a simpler file format
and then easily convert your configuration data into a format that is usable by JavaScript
later.

94 | Chapter 9: Separate Configuration Data from Code

https://github.com/nzakas/props2js/

CHAPTER 10

Throw Your Own Errors

When I was younger, the most befuddling part of programming languages was the
ability to create errors. My first reaction to the throw operator in Java was, “Well, that’s
stupid; why would you ever want to cause an error?” Errors were my enemy—some-
thing I sought to avoid—so the ability to cause an error seemed like a useless and
dangerous aspect of the language. I thought it was dumb to include the same operator
in JavaScript, a language that people just didn’t understand in the first place. Now,
with a great deal of experience under my belt, I’m a big fan of throwing my own errors.

Throwing errors in JavaScript is an art. It takes time to feel out where the appropriate
parts of your code should throw errors. Once you figure this out, however, you’ll find
that your debugging time will decrease and your satisfaction with the code will increase.

The Nature of Errors
An error occurs in programming when something unexpected happens. Maybe the
incorrect value was passed into a function or a mathematical operation had an invalid
operand. Programming languages define a base set of rules that when deviated from,
result in errors so that the developer can fix the code. Debugging would be nearly
impossible if errors weren’t thrown and reported back to you. If everything failed si-
lently, it would take you a long time to notice that there was an issue in the first place,
let alone isolate and fix it. Errors are the friends of developers, not enemies.

The problem with errors is that they tend to pop up in unexpected places and at un-
expected times. To make matters worse, the default error messages are usually too terse
to really explain what went wrong. JavaScript error messages are notoriously uninfor-
mative and cryptic (especially in old versions of Internet Explorer), which only com-
pounds the problem. Imagine if an error popped up with a message that said, “This
function failed because this happened.” Instantly, your debugging task becomes easier.
This ease is the advantage of throwing your own errors.

It helps to think of errors as built-in failure cases. It’s always easier to plan for a failure
at a particular point in code than it is to anticipate failure everywhere. This is a very

95

common practice in product design, not just in code. Cars are built with crumple zones,
areas of the frame that are designed to collapse in a predictable way when impacted.
Knowing how the frame will react in a crash—specifically, which parts will fail—allows
the manufacturers to ensure passenger safety. Your code can be constructed in the same
way.

Throwing Errors in JavaScript
Throwing errors in your JavaScript is arguably more valuable than in any other language
due to the complexities involved in web debugging. You can throw an error by using
the throw operator and providing an object to throw. Any type of object can be thrown;
however, an Error object is the most typical to use:

throw new Error("Something bad happened.")

The built-in Error type is available in all JavaScript implementations, and the con-
structor takes a single argument, which is the error message. When you throw an error
in this way, and the error isn’t caught via a try-catch statement, the browser displays
the value of message in the browser’s typical way. Most browsers now have a console
to which error information is output whenever an error occurs. In other words, any
error you throw is treated the same way as an error that you didn’t throw.

Inexperienced developers sometimes throw errors by just providing a string, such as:

// Bad
throw "message";

Doing so will cause an error to be thrown, but not all browsers respond the way you’d
expect. Firefox, Opera, and Chrome each display an “uncaught exception” message
and then include the message string. Safari and Internet Explorer simply throw an
“uncaught exception” error and don’t provide the message string at all, which isn’t very
useful for debugging purposes.

Of course, you can throw any type of data that you’d like. There are no rules prohibiting
specific data types:

throw { name: "Nicholas" };
throw true;
throw 12345;
throw new Date();

The only thing to remember is that throwing any value will result in an error if it’s not
caught via a try-catch statement. Firefox, Opera, and Chrome all call String() on the
value that was thrown to display something logical as the error message; Safari and
Internet Explorer do not. The only surefire way to have all browsers display your custom
error message is to use an Error object.

96 | Chapter 10: Throw Your Own Errors

Advantages of Throwing Errors
Throwing your own error allows you to provide the exact text to be displayed by the
browser. Instead of just line and column numbers, you can include any information
that you’ll need to successfully debug the issue. I recommend that you always include
the function name in the error message as well as the reason why the function failed.
Consider the following function:

function getDivs(element) {
 return element.getElementsByTagName("div");
}

This function’s purpose is to retrieve all <div> elements that are a descendant of
element. It’s quite common for functions that interact with the DOM to be passed
null values where DOM elements should be. What happens if null is passed to this
function? You’ll get a cryptic error message such as “object expected.” Then you’ll need
to look at the execution stack to actually locate the source of the problem. Debugging
becomes much easier by throwing an error:

function getDivs(element) {

 if (element && element.getElementsByTagName) {
 return element.getElementsByTagName("div");
 } else {
 throw new Error("getDivs(): Argument must be a DOM element.");
 }
}

Now that getDivs() throws an error, any time element doesn’t meet the criteria for
continuing, an error is thrown that very clearly states the problem. If this error shows
up in the browser console, you know immediately where to start debugging and that
the most likely cause is a call to retrieve a DOM element is returning null at some point.

I like to think of throwing errors as leaving sticky notes for myself as to why something
failed.

When to Throw Errors
Understanding how to throw errors is just one part of the equation; understanding
when to throw errors is the other. Because JavaScript doesn’t have type or argument
checking, a lot of developers incorrectly assume that they should implement these types
of checking for every function. Doing so is impractical and can adversely affect the
script’s overall performance. Consider this function, which tries to implement overly
aggressive type checking:

When to Throw Errors | 97

// Bad: Too much error checking
function addClass(element, className) {
 if (!element || typeof element.className != "string") {
 throw new Error("addClass(): First argument must be a DOM element.");
 }

 if (typeof className != "string") {
 throw new Error("addClass(): Second argument must be a string.");
 }

 element.className += " " + className;
}

This function simply adds a CSS class to a given element; however, most of the function
is taken up doing error checking. Even though it may be tempting to check each argu-
ment in every function (mimicking statically typed languages), doing so is often overkill
in JavaScript. The key is to identify parts of the code that are likely to fail in a particular
way and throw errors only there. In short, throw errors only where errors will already
occur.

The most likely cause of an error in the previous example is a null reference being
passed in to the function. If the second argument is null, or a number, or a boolean,
no error will be thrown, because JavaScript will coerce the value into a string. That may
mean that the resulting display of the DOM element isn’t as expected, but it certainly
doesn’t rise to the level of serious error. So I would check only for the DOM element,
as in:

// Good
function addClass(element, className) {
 if (!element || typeof element.className != "string") {
 throw new Error("addClass(): First argument must be a DOM element.");
 }

 element.className += " " + className;
}

If a function is only ever going to be called by known entities, error checking is probably
unnecessary (this is the case with private functions); if you cannot identify all the places
where a function will be called ahead of time, then you’ll likely need some error check-
ing and will even more likely benefit from throwing your own errors. The best place
for throwing errors is in utility functions, such as the addClass() function, that are a
general part of the scripting environment and may be used in any number of places,
which is precisely the case with JavaScript libraries.

All JavaScript libraries should throw errors from their public interfaces for known error
conditions. Large libraries such as jQuery, YUI, and Dojo can’t possibly anticipate
when and where you’ll be calling their functions. It’s their job to tell you when you’re
doing stupid things, because you shouldn’t have to debug into library code to figure
out what went wrong. The call stack for an error should terminate in the library’s
interface and no deeper. There’s nothing worse than seeing an error that’s 12 functions

98 | Chapter 10: Throw Your Own Errors

deep into a library; library developers have a responsibility to prevent this from hap-
pening.

The same goes for private JavaScript libraries. Many web applications have their own
proprietary JavaScript libraries either built with or in lieu of the well-known public
options. The goal of libraries is to make developers’ lives easier, which is done by pro-
viding an abstraction away from the dirty implementation details. Throwing errors
helps to keep those dirty implementation details hidden safely away from developers.

Some good general rules of thumb for throwing errors:

• Once you’ve fixed a hard-to-debug error, try to add one or two custom errors that
can help you more easily the solve the problem, should it occur again.

• If you’re writing code and think, “I hope [something] doesn’t happen—that would
really mess up this code,” then throw an error when that something occurs.

• If you’re writing code that will be used by people you don’t know, think about how
they might incorrectly use the function and throw errors in those cases.

Remember that the goal isn’t to prevent errors—it’s to make errors easier to debug
when they occur.

The try-catch Statement
JavaScript provides a try-catch statement that is capable of intercepting thrown errors
before they are handled by the browser. The code that might cause an error comes in
the try block and code that handles the error goes into the catch block. For instance:

try {
 somethingThatMightCauseAnError();
} catch (ex) {
 handleError(ex);
}

When an error occurs in the try block, execution immediately stops and jumps to the
catch block, where the error object is provided. You can inspect this object to determine
the best course of action to recover from the error.

There is also a finally clause that can be added. The finally clause contains code that
will be executed regardless of whether an error occurs. For example:

try {
 somethingThatMightCauseAnError();
} catch (ex) {
 handleError(ex);
} finally {
 continueDoingOtherStuff();
}

The finally clause is a little bit tricky to work with in certain situations. For example,
if the try clause contains a return statement, it won’t actually return until finally has

The try-catch Statement | 99

been evaluated. Due to this trickiness, finally is used infrequently, but it is a powerful
tool for error handling if necessary.

Throw or try-catch?
Typically, developers have trouble discerning whether it’s appropriate to throw an error
or catch one using try-catch. Errors should be thrown only in the deepest part of the
application stack, which, as discussed previously, typically means JavaScript libraries.
Any code that handles application-specific logic should have error-handling capabilities
and should therefore be catching errors thrown from the lower-level components.

Application logic always knows why it was calling a particular function and is therefore
best suited for handling the error. Never have a try-catch statement with an empty
catch clause; you should always be handling errors in some way. For example, never
do this:

// Bad
try {
 somethingThatMightCauseAnError();
} catch (ex) {
 // noop
}

If you know an error might happen, then you should also know how to recover from
that error. Exactly how you recover from the error may be different in development
mode as opposed to what actually gets put into production, and that’s okay. The im-
portant thing is that you’re actually handling the error, not just ignoring it.

Error Types
ECMA-262 specifies seven error object types. These are used by the JavaScript engine
when various error conditions occur and can also be manually created:

Error
Base type for all errors. Never actually thrown by the engine.

EvalError
Thrown when an error occurs during execution of code via eval().

RangeError
Thrown when a number is outside the bounds of its range—for example, trying to
create an array with –20 items (new Array(-20)). These errors rarely occur during
normal execution.

ReferenceError
Thrown when an object is expected but not available—for instance, trying to call
a method on a null reference.

SyntaxError
Thrown when the code passed into eval() has a syntax error.

100 | Chapter 10: Throw Your Own Errors

TypeError
Thrown when a variable is of an unexpected type—for example, new 10 or "prop"
in true.

URIError
Thrown when an incorrectly formatted URI string is passed into encodeURI, enco
deURIComponent, decodeURI, or decodeURIComponent.

Understanding that there are different types of errors can make it easier to handle them.
All error types inherit from Error, so checking the type with instanceof Error doesn’t
give you any useful information. By checking for the more specific error types, you get
more robust error handling:

try {
 // something that causes an error
} catch (ex) {
 if (ex instanceof TypeError) {
 // handle the error
 } else if (ex instanceof ReferenceError) {
 // handle the error
 } else {
 // handle all others
 }
}

If you’re throwing your own errors, and you’re throwing a data type that isn’t an error,
you can more easily tell the difference between your own errors and the ones that the
browser throws. There are, however, several advantages to throwing actual Error ob-
jects instead of other object types.

First, as mentioned before, the error message will be displayed in the browser’s normal
error-handling mechanism. Second, the browser attatches extra information to Error
objects when they are thrown. These vary from browser to browser, but they provide
contextual information for the error such as line number and column number and, in
some browsers, stack and source information. Of course, you lose the ability to dis-
tinguish between your own errors and browser-thrown ones if you just use the Error
constructor.

The solution is to create your own error type that inherits from Error. Doing so allows
you to provide additional information as well as distinguish your errors from the errors
that the browser throws. You can create a custom error type using the following pattern:

function MyError(message) {
 this.message = message;
}

MyError.prototype = new Error();

There are two important parts of this code: the message property, which is necessary
for browsers to know the actual error string, and setting the prototype to an instance

Error Types | 101

of Error, which identifies the object as an error to the JavaScript engine. Now you can
throw an instance of MyError and have the browser respond as if it’s a native error:

throw new MyError("Hello world!");

The only caveat to this approach is that Internet Explorer 8 and earlier won’t display
the error message. Instead, you’ll see the generic “Exception thrown but not caught”
error message. The big advantage of this approach is that custom error objects allow
you to test specifically for your own errors:

try {
 // something that causes an error
} catch (ex) {
 if (ex instanceof MyError) {
 // handle my own errors
 } else {
 // handle all others
 }
}

If you’re always catching any errors you throw, then Internet Explorer’s slight stupidity
shouldn’t matter all that much. The benefits from such an approach are huge in a system
with proper error handling. This approach gives you much more flexibility and infor-
mation for determining the correct course of action for a given error.

102 | Chapter 10: Throw Your Own Errors

CHAPTER 11

Don’t Modify Objects You Don’t Own

One unique aspect of JavaScript is that nothing is sacred. By default, you can modify
any object you can get your hands on. It doesn’t matter if the object is developer-defined
or part of the default execution environment—it’s possible to change that object as
long as you have access to it. This isn’t a problem in a one-developer project, in which
exactly what is being modified is always known by the one person who’s in control of
all code. On a multiple-developer project, however, the indiscriminate modification of
objects is a big problem.

What Do You Own?
You own an object when your code creates the object. The code that creates the object
may not have necessarily been written by you, but as long as it’s the code you’re re-
sponsible for maintaining, then you own that object. For instance, the YUI team owns
the YUI object, and the Dojo team owns the dojo object. Even though the original person
who wrote the code defining the object may not work on it anymore, the respective
teams are still the owners of those objects.

When you use a JavaScript library in a project, you don’t automatically become the
owner of its objects. In a multiple-developer project, everyone is assuming that the
library objects work as they are documented. If you’re using YUI and make modifica-
tions to the YUI object, then you’re setting up a trap for your team. Someone is going
to fall in, and it’s going to cause a problem.

Remember, if your code didn’t create the object, then it’s not yours to modify, which
includes:

• Native objects (Object, Array, and so on)

• DOM objects (for example, document)

• Browser Object Model (BOM) objects (such as window)

• Library objects

103

All of these objects are part of your project’s execution environment. You can use these
pieces as they are already provided to you or create new functionality; you should not
modify what’s already there.

The Rules
Enterprise software needs a consistent and dependable execution environment to be
maintainable. In other languages, you consider existing objects as libraries for you to
use to complete your task. In JavaScript, you might see existing objects as a playground
in which you can do anything you want. You should treat the existing JavaScript objects
as you would a library of utilities:

• Don’t override methods.

• Don’t add new methods.

• Don’t remove existing methods.

When you’re the only one working on a project, it’s easy to get away with these types
of modification because you know them and expect them. When working with a team
on a large project, making changes like this causes mass confusion and a lot of lost time.

Don’t Override Methods
One of the worst practices in JavaScript is overriding a method on an object you don’t
own, which is precisely what caused us problems when I worked on the My Yahoo!
team. Unfortunately, JavaScript makes it incredibly easy to override an existing
method. Even the most venerable of methods, document.getElementById(), can be easily
overridden:

// Bad
document.getElementById = function() {
 return null; // talk about confusing
};

There is absolutely nothing preventing you from overwriting DOM methods as in this
example. What’s worse, any script on the page is capable of overwriting any other
script’s methods. So any script could override document.getElementById() to always
return null, which in turn would cause JavaScript libraries and other code that relies
upon this method to fail. You’ve also completely lost the original functionality and
can’t get it back.

You may also see a pattern like this:

// Bad
document._originalGetElementById = document.getElementById;
document.getElementById = function(id) {
 if (id == "window") {
 return window;
 } else {

104 | Chapter 11: Don’t Modify Objects You Don’t Own

 return document._originalGetElementById(id);
 }
};

In this example, a pointer to the original document.getElementById() is stored in docu
ment._originalGetElementById() so that it can be used later. Then, document.getEle
mentById() is overridden to contain a new method. That new method may call the
original in some cases, but in one case, it won’t. This override-plus-fallback pattern is
at least as bad as the original, and perhaps worse because sometimes docu
ment.getElementById() behaves as expected and sometimes it doesn’t.

I have firsthand experience dealing with the fallout after someone overrides an existing
object method. It occurred while I was working on the My Yahoo! team, because
someone had overridden the YUI 2 YAHOO.util.Event.stopEvent() method to do some-
thing else. It took days to track this problem down, because we all assumed that this
method was doing exactly what it always did, so we never traced into that method once
we hit it in a debugger. Once we discovered the overridden method, we also found
other bugs, because the same method was being used in other places with its original
intended usage—but of course it wasn’t behaving in that way. Unraveling this was an
incredible mess, one that cost a lot of time and money on a big project.

Don’t Add New Methods
It’s quite easy to add new methods to existing objects in JavaScript. You need only
assign a function onto an existing object to make it a method, which allows you to
modify all kinds of objects:

// Bad - adding method to DOM object
document.sayImAwesome = function() {
 alert("You're awesome.");
};

// Bad - adding method to native object
Array.prototype.reverseSort = function() {
 return this.sort().reverse();
};

// Bad - adding method to library object
YUI.doSomething = function() {
 // code
};

There is little stopping you from adding methods to any object you come across. The
big problem with adding methods to objects you don’t own is that you may end up
with a naming collision. Just because an object doesn’t have a method right now doesn’t
mean it won’t in the future. What’s worse is that if the future native method behaves
differently than your method, then you have a maintenance nightmare.

Take a lesson from the history of the Prototype JavaScript library. Prototype was famous
for modifying all kinds of JavaScript objects. It added methods to DOM and native

The Rules | 105

objects at will; in fact, most of the library was defined as extensions to existing objects
rather than by creating their own. The Prototype developers saw the library as a way
of filling in JavaScript’s gaps. Prior to version 1.6, Prototype implemented a method
called document.getElementsByClassName(). You may recognize this method, because
it was officially defined in HTML5 to standardize Prototype’s approach.

Prototype’s document.getElementsByClassName() method returned an array of elements
containing the specified CSS classes. Prototype also had added a method on arrays,
Array.prototype.each(), which iterated over the array and executed a function on each
item. This led to developers writing code such as:

document.getElementByClassName("selected").each(doSomething);

This code didn’t have a problem until HTML5 standardized the method and browsers
began implementing it natively. The Prototype team knew the native document.getEle
mentsByClassName() was coming, so they did some defensive coding similar to the fol-
lowing:

if (!document.getElementsByClassName) {

 document.getElementsByClassName = function(classes) {
 // non-native implementation
 };

}

So Prototype was defining document.getElementsByClassName() only if it didn’t already
exist. That would have been the end of the issue except for one important fact. The
HTML5 document.getElementsByClassName() didn’t return an array, so the each()
method didn’t exist. Native DOM methods use a specialized collection type called
NodeList, and document.getElementsByClassname() returned a NodeList to match the
other DOM methods.

Because NodeList doesn’t have an each() method, either natively or added by Prototype,
using each() caused a JavaScript error when executed in browsers that had a native
implementation of document.getElementsByClassName(). The end result was that users
of Prototype had to upgrade both the library code and their own code—quite the
maintenance nightmare.

Learn from Prototype’s mistake. You cannot accurately predict how JavaScript will
change in the future. As the standards have evolved, they have often taken cues from
JavaScript libraries such as Prototype to determine the next generation of functionality.
In fact, a native Array.prototype.forEach() method is defined in ECMAScript 5 that
works much like Prototype’s each() method. The problem is that you don’t know how
the official functionality will differ from the original, and even subtle differences can
cause big problems.

106 | Chapter 11: Don’t Modify Objects You Don’t Own

Most JavaScript libraries have a plugin architecture that allows you to
safely add new capabilities to the libraries. If you want to modify a li-
brary, creating a plug-in is the best and most maintainable way to do so.

Don’t Remove Methods
It’s just as easy to remove JavaScript methods as it is to add then. Of course, overriding
a method is one form of removing an existing method. The simplest way to eliminate
a method is to set its name equal to null:

// Bad - eliminating a DOM method
document.getElementById = null;

Setting a method to null ensures that it can’t be called, regardless of how it was defined.
If the method is defined on the object instance (as opposed to the object prototype),
then it can also be removed using the delete operator:

var person = {
 name: "Nicholas"
};

delete person.name;

console.log(person.name); // undefined

This example removes the name property from the person object. The delete operator
works only on instance properties and methods. If delete is used on a prototype prop-
erty or method, it has no effect. For example:

// No effect
delete document.getElementById;

console.log(document.getElementById("myelement")); // stil works

Because document.getElementById() is a prototype method, it cannot be removed using
delete. However, as seen in an earlier example, it can still be set to null to prevent
access.

It should go without saying that removing an already existing method is a bad practice.
Not only are developers relying on that method to be there, but code may already exist
using that method. Removing a method that is in use causes a runtime error. If your
team shouldn’t be using a particular method, mark it as deprecated, either through
documentation or through static code analysis. Removing a method should be the ab-
solute last approach.

The Rules | 107

Not removing methods is actually a good practice for objects that you
own, as well. It’s very hard to remove methods from libraries or native
objects, because there is third-party code relying on that functionality.
In many cases, both libraries and browsers have had to keep buggy or
incomplete methods for a long time, because removing them would
cause errors on countless websites.

Better Approaches
Modifying objects you don’t own is a solution to some problems. It usually doesn’t
happen organically; it happens because a developer has come across a problem that
object modification solves. However, there is almost always more than one solution to
any given problem. Most computer science knowledge has evolved out of solving prob-
lems in statically typed languages such as Java. There are may approaches, called design
patterns, to extending existing objects without directly modifying those objects.

The most popular form of object augmentation outside of JavaScript is inheritance. If
there’s a type of object that does most of what you want, then you can inherit from it
and add additional functionality. There are two basic forms of inheritance in JavaScript:
object-based and type-based.

There are still some significant inheritance limitations in JavaScript.
First, inheriting from DOM or BOM objects doesn’t work (yet). Second,
inheriting from Array doesn’t quite work due to the intricacies of how
numeric indices relate to the length property.

Object-Based Inheritance
In object-based inheritance, frequently called prototypal inheritance, one object
inherits from another without invoking a constructor function. The ECMAScript 5
Object.create() method is the easiest way for one object to inherit from another. For
instance:

var person = {
 name: "Nicholas",
 sayName: function() {
 alert(this.name);
 }
};

var myPerson = Object.create(person);

myPerson.sayName(); // pops up "Nicholas"

This example creates a new object myPerson that inherits from person. The inheritance
occurs as myPerson’s prototype is set to person. After that, myPerson is able to access the
same properties and methods on person until new properties or methods with the same

108 | Chapter 11: Don’t Modify Objects You Don’t Own

name are defined. For instance, defining myPerson.sayName() automatically cuts off
access to person.sayName():

myPerson.sayName = function() {
 alert("Anonymous");
};

myPerson.sayName(); // pops up "Anonymous"
person.sayName(); // pops up "Nicholas"

The Object.create() method allows you to specify a second argument, which is an
object containing additional properties and methods to add to the new object. For
example:

var myPerson = Object.create(person, {
 name: {
 value: "Greg"
 }
});

myPerson.sayName(); // pops up "Greg"
person.sayName(); // pops up "Nicholas"

In this example, myPerson is created with its own value for name, so calling sayName()
displays “Greg” instead of “Nicholas.”

Once a new object is created in this manner, you are completely free to modify the new
object in whatever manner you see fit. After all, you are the owner of the new object,
so you are free to add new methods, override existing methods, and even remove
methods (or rather just prevent access to them) on your new object.

Type-Based Inheritance
Type-based inheritance works in a similar manner to object-based inheritance, in that
it relies on the prototype to inherit from an existing object. However, type-based in-
heritance works with constructor functions instead of objects, which means you need
access to the constructor function of the object you want to inherit from. You saw an
example of type-based inheritance earlier in this book:

function MyError(message) {
 this.message = message;
}

MyError.prototype = new Error();

In this example, the MyError type inherits from Error, which is called the super type. It
does so by assigning a new instance of Error to MyError.prototype. After that, every
instance of MyError inherits its properties and methods from Error as well as now
working with instanceof:

Better Approaches | 109

var error = new MyError("Something bad happened.");

console.log(error instanceof Error); // true
console.log(error instanceof MyError); // true

Type-based inheritance is best used with developer-defined constructor functions
rather than those found natively in JavaScript. Also, type-based inheritance typically
requires two steps: prototypal inheritance and then constructor inheritance. Construc-
tor inheritance is when the super type constructor is called with a this-value of the
newly created object. For example:

function Person(name) {
 this.name;
}

function Author(name) {
 Person.call(this, name); // inherit constructor
}

Author.prototype = new Person();

In this code, the Author type inherits from Person. The property name is actually managed
by the Person type, so Person.call(this, name) allows the Person constructor to con-
tinue defining that property. The Person constructor runs on this, which is the new
Author object. So name ends up being defined on the new Author object.

As with object-based inheritance, type-based inheritance allows you flexibility in how
you create new objects. Defining a type allows you to have multiple instances of the
same object, all of which inherit from a common super type. Your new type should
define exactly the properties and methods you want to use, and those can be completely
different from the super type.

The Facade Pattern
The facade pattern is a popular design pattern that creates a new interface for an existing
object. A facade is a completely new object that works with an existing object behind
the scenes. Facades are also sometimes called wrappers, because they wrap an existing
object with a different interface. If inheritance won’t work for your use case, then cre-
ating a facade is the next logical step.

Both jQuery and YUI use facades for their DOM interfaces. As mentioned previously,
you can’t inherit from DOM objects, so the only option for safely adding new func-
tionality is to create an facade. Here’s an example DOM object wrapper:

function DOMWrapper(element) {
 this.element = element;
}

DOMWrapper.prototype.addClass = function(className) {
 element.className += " " + className;
};

110 | Chapter 11: Don’t Modify Objects You Don’t Own

DOMWrapper.prototype.remove = function() {
 this.element.parentNode.removeChild(this.element);
};

// Usage
var wrapper = new DOMWrapper(document.getElementById("my-div"));

// add a CSS class
wrapper.addClass("selected");

// remove the element
wrapper.remove();

The DOMWrapper type expects a DOM element to be passed into its constructor. That
element is stored so that it can be referenced later, and methods are defined that work
on that element. The addClass() method is an easy way to add CSS classes for elements
not yet implementing the HTML5 classList property. The remove() method encap-
sulates removing an element from the DOM, eliminating the need for the developer to
access the element’s parent node.

Facades are well suited to maintainable JavaScript, because you have complete control
over the interface. You can allow or disallow access to any of the underlying object’s
properties or methods, effectively filtering access to that object. You can also add new
methods that are simpler to use than the existing ones (as is the case in this example).
If the underlying object changes in any way, you’re able to make changes to the facade
that allow your application to continue working.

A facade that implements a specific interface to make one object look
like it’s another is called an adapter. The only difference between facades
and adapters is that the former creates a new interface and the latter
implements an existing interface.

A Note on Polyfills
JavaScript polyfills (also known as shims) became popular when ECMAScript 5 and
HTML5 features started being implemented in browsers. A polyfill implements func-
tionality that is already well-defined and implemented natively in newer browsers. For
example, ECMAScript 5 added the forEach() method for arrays. This method can be
implemented using ECMAScript 3, so older browsers can use forEach() as if it were a
newer browser. The key to polyfills is that they implement native functionality in a
completely compatible way. Because the functionality exists in some browsers, it’s
possible to test whether different cases are handled in a standards-compliant manner.

Polyfills often add new methods to objects they don’t own to achieve their end goal.
I’m not a fan of polyfills, but I do understand why people use them. Polyfills are
marginally safer than other types of object modification, because the native

A Note on Polyfills | 111

implementation already exists and can be worked with. Polyfills add new methods only
when the native one isn’t present and the nonnative version behaves the same as the
native one.

The advantage of polyfills is that you can easily remove them when you’re supporting
only browsers with the native functionality. If you choose to use a polyfill, do your due
diligence. Make sure the functionality matches the native version as closely as possible
and double-check that the library has unit tests to verify the functionality. The disad-
vantage of polyfills is that they may not accurately implement the missing functionality,
and then you end up with more problems rather than fewer.

For best maintainability, avoid polyfills and instead create a facade over existing native
functionality. This approach gives you the most flexibility, which is especially impor-
tant when native implementations have bugs. In that case, you never want to use the
native API directly, because you can’t insulate yourself from the implementation bugs.

Preventing Modification
ECMAScript 5 introduced several methods to prevent modification of objects. This
capability is important to understand, as it’s now possible to lock down objects to
ensure that no one, accidentally or otherwise, changes functionality that they shouldn’t.
This functionality is supported in Internet Explorer 9+, Firefox 4+, Safari 5.1+, Opera
12+, and Chrome. There are three levels of preventing modification:

Prevent extension
No new properties or methods can be added to the object, but existing ones can
be modified or deleted.

Seal
Same as prevent extension, plus prevents existing properties and methods from
being deleted.

Freeze
Same as seal, plus prevents existing properties methods from being modified (all
fields are read-only).

Each of these lock-down types has two methods: a method that performs the action
and a method that confirms the action was taken. For preventing extensions,
Object.preventExtension() and Object.isExtensible() are used:

var person = {
 name: "Nicholas"
};

// lock down the object
Object.preventExtension(person);

console.log(Object.isExtensible(person)); // false

112 | Chapter 11: Don’t Modify Objects You Don’t Own

person.age = 25; // fails silently unless in strict mode

In this example, person is locked down to the extension, so Object.isExtensible() is
false. Attempting to assign a new property or method will fail silently in nonstrict mode.
In strict mode, any attempt to add a new property or method to a nonextensible object
causes an error.

To seal an object, use Object.seal(). You can determine whether an object is sealed
using Object.isSealed():

// lock down the object
Object.seal(person);

console.log(Object.isExtensible(person)); // false
console.log(Object.isSealed(person)); // true

delete person.name; // fails silently unless in strict mode
person.age = 25; // fails silently unless in strict mode

When an object is sealed, its existing properties and methods cannot be removed, so
attempting to remove name will fail silently in nonstrict mode. In strict mode, attempting
to delete a property or method results in an error. Sealed objects are also nonextensible,
so Object.isExtensible() returns false.

To freeze an object, use Object.freeze(). You can determine whether an object is frozen
using Object.isFrozen():

// lock down the object
Object.freeze(person);

console.log(Object.isExtensible(person)); // false
console.log(Object.isSealed(person)); // true
console.log(Object.isFrozen(person)); // true

person.name = "Greg"; // fails silently unless in strict mode
person.age = 25; // fails silently unless in strict mode
delete person.name; // fails silently unless in strict mode

Frozen objects are considered both nonextensible and sealed,
so Object.isExtensible() returns false and Object.isSealed() returns true for all frozen
objects. The big difference between frozen objects and sealed objects is that you cannot
modify any existing properties or methods. Any attempt to do so fails silently in non-
strict mode and throws an error in strict mode.

Preventing modification using these ECMAScript 5 methods is an excellent way to
ensure that your objects aren’t modified without your knowledge. If you’re a library
author, you may want to lock down certain parts of the core library to make sure they’re
not accidentally changed or to enforce where extensions are allowed to live. If you’re
an application developer, lock down any parts of the application that shouldn’t change.
In both cases, using one of the lock-down methods should happen only after you’ve

Preventing Modification | 113

completely defined all object functionality. Once an object is locked down, it cannot
be restored.

If you decide to prevent modification of your objects, I strongly recommend using strict
mode. In nonstrict mode, attempts to modify unmodifiable objects always fail silently,
which could be very frustrating during debugging. By using strict mode, these same
attempts will throw an error and make it more obvious why the modification isn’t
working.

It’s likely that in the future, both native JavaScript and DOM objects
will have some built-in protection against modification using this
ECMAScript 5 functionality.

114 | Chapter 11: Don’t Modify Objects You Don’t Own

CHAPTER 12

Browser Detection

Browser detection is always a hot-button topic in web development. This battle pre-
dates JavaScript browser detection by a couple of years and begins with the introduction
of Netscape Navigator, the first truly popular and widely used web browser. Netscape
Navigator 2.0 was so far beyond any of the other available web browsers that websites
began looking for its specific user-agent string before returning any useful content. This
forced other browser vendors, notably Microsoft, to include things in their user-agent
string to get around this form of browser detection.

User-Agent Detection
The earliest form of browser detection was user-agent detection, a process by which the
server (and later the client) looked at the user-agent string and determined the browser.
During that time, servers would regularly block certain browsers from viewing anything
on the site based solely on the user-agent string. The browser that benefited the most
was Netscape Navigator. Netscape was certainly the most capable browser, so websites
targeted that browser as the only one that could properly display the site. Netscape’s
user-agent string looked like this:

Mozilla/2.0 (Win95; I)

When Internet Explorer was first released, it was essentially forced to duplicate a large
part of the Netscape user-agent string to ensure that servers would serve up the site to
this new browser. Because most user-agent detection was done by searching for “Mo-
zilla” and then taking the version number after the slash, the Internet Explorer user-
agent string was:

Mozilla/2.0 (compatible; MSIE 3.0; Windows 95)

Internet Explorer’s introduction now meant that everyone’s user-agent string detection
was now also identifying this new browser as Netscape. This started a trend of new
browsers partially copying the user-agent strings of existing browsers that continued
up through the release of Chrome, whose user-agent string contains parts of Safari’s

115

string, which in turn contained parts of Firefox’s string, which in turn contained parts
of Netscape’s string.

Fast forward to the year 2005, when JavaScript started to increase in popularity. The
browser’s user-agent string, the same one reported to the server, is accessible in Java-
Script through navigator.userAgent. User-agent string detection moved into web pages
with JavaScript performing the same type of user-agent string detection as the server,
such as:

// Bad
if (navigator.userAgent.indexOf("MSIE") > -1) {
 // it's Internet Explorer
} else {
 // it's not
}

As more websites took to user-agent detection in JavaScript, a new group of sites started
to fail in browsers. The same problem for bit servers nearly a decade earlier had ree-
merged in the form of JavaScript.

The big problem is that user-agent string parsing is difficult, due to the way browsers
have copied one another to try to ensure compatibility. With every new browser, user-
agent detection code needs to be updated, and the time between the browser is released
to the time the changed code is deployed could mean untold numbers of people getting
a bad user experience.

This isn’t to say that there isn’t any way to use the user-agent string effectively. There
are well-written libraries, both in JavaScript and for the server, that provide a reasonably
good detection mechanism. Unfortunately, these libraries also require constant updates
as browsers continue to evolve and new browsers are released. The overall approach
isn’t maintainable over the long term.

User-agent detection should always be the last approach to determining the correct
course of action in JavaScript. If you choose user-agent detection, then the safest way
to proceed is by detecting only older browsers. For instance, if you need to do something
special to make your code work in Internet Explorer 8 and earlier, then you should
detect Internet Explorer 8 and earlier rather than trying to detect Internet Explorer 9
and higher, such as:

if (isInternetExplorer8OrEarlier) {
 // handle IE8 and earlier
} else {
 // handle all other browsers
}

The advantage you have in this situation is that the Internet Explorer 8 and earlier user-
agent strings are well known and won’t be changing. Even if your code continues to
run through the release of Internet Explorer 25, the code will most likely continue to
work without further modifications. The opposite isn’t true—you’ll be stuck updating
code constantly if you try to detect Internet Explorer 9 and higher.

116 | Chapter 12: Browser Detection

Browsers don’t always report their original user-agent string. User-agent
switchers are readily available for nearly all web browsers. Developers
are frequently concerned about this and therefore won’t turn to user-
agent detection, even when it’s the only option, because “you can never
know for sure.” My advice is not to worry about user-agent spoofing. If
a user is savvy enough to switch her user-agent string, then she’s also
savvy enough to understand that doing so might cause websites to break
in unforeseen ways. If the browser identifies itself as Firefox and doesn’t
act like Firefox, that’s not your fault. There’s no point in trying to sec-
ond-guess the reported user-agent string.

Feature Detection
Looking to use a more sane approach to browser-based conditionals, developers turned
to a technique called feature detection. Feature detection works by testing for a specific
browser feature and using it only if present. So instead of doing something like this:

// Bad
if (navigator.userAgent.indexOf("MSIE 7") > -1) {
 // do something
}

you should do something like this:

// Good
if (document.getElementById) {
 // do something
}

There is a distinction between these two approaches. The first is testing for a specific
browser by name and version; the second is testing for a specific feature, namely docu
ment.getElementById. So user-agent sniffing results in knowing the exact browser and
version being used (or at least the one being reported by the browser) and feature
detection determines whether a given object or method is available. Note that these are
two completely different results.

Because feature detection doesn’t rely on knowledge of which browser is being used,
only on which features are available, it is trivial to ensure support in new browsers. For
instance, when the DOM was young, not all browsers supported document.getElement
ById(), so there was a lot of code that looked like this:

Feature Detection | 117

// Good
function getById (id) {

 var element = null;

 if (document.getElementById) { // DOM
 element = document.getElementById(id);
 } else if (document.all) { // IE
 element = document.all[id];
 } else if (document.layers) { // Netscape <= 4
 element = document.layers[id];
 }

 return element;
}

This is a good and appropriate use of feature detection, because the code tests for a
feature and then, if it’s there, uses it. The test for document.getElementById() comes
first because it is the standards-based solution. After that come the two browser-specific
solutions. If none of these features is available, then the method simply returns null.
The best part about this function is that when Internet Explorer 5 and Netscape 6 were
released with support for document.getElementById(), this code didn’t need to change.

The previous example illustrates several important parts of good feature detection:

1. Test for the standard solution

2. Test for browser-specific solutions

3. Provide a logical fallback if no solution is available

The same approach is used today with the cutting-edge features that browsers have
implemented experimentally while the specification is being finalized. For instance, the
requestAnimationFrame() method was being finalized toward the end of 2011, at which
time several browsers had already implemented their own version with a vendor prefix.
The proper feature detection for requestAnimationFrame() looks like this:

// Good
function setAnimation (callback) {

 if (window.requestAnimationFrame) { // standard
 return requestAnimationFrame(callback);
 } else if (window.mozRequestAnimationFrame) { // Firefox
 return mozRequestAnimationFrame(callback);
 } else if (window.webkitRequestAnimationFrame) { // WebKit
 return webkitRequestAnimationFrame(callback);
 } else if (window.oRequestAnimationFrame) { // Opera
 return oRequestAnimationFrame(callback);
 } else if (window.msRequestAnimationFrame) { // IE
 return msRequestAnimationFrame(callback);
 } else {
 return setTimeout(callback, 0);
 }

}

118 | Chapter 12: Browser Detection

This code starts by looking for the standard requestAnimationFrame() method, and only
if it’s not found does it continue to look for the browser-specific implementation. The
very last option, for browsers with no support, is to use setTimeout() instead. Once
again, this code won’t need to be updated even after the browsers have switched to
using a standards-based implementation.

Avoid Feature Inference
One inappropriate use of feature detection is called feature inference. Feature inference
attempts to use multiple features after validating the presence of only one. The presence
of one feature is inferred by the presence of another. The problem is, of course, that
inference is an assumption rather than a fact, and that can lead to maintenance issues.
For example, here’s some older code using feature inference:

// Bad - uses feature inference
function getById (id) {

 var element = null;

 if (document.getElementsByTagName) { // DOM
 element = document.getElementById(id);
 } else if (window.ActiveXObject) { // IE
 element = document.all[id];
 } else { // Netscape <= 4
 element = document.layers[id];
 }

 return element;
}

This function is feature inference at its worst. There are several inferences being made:

• If document.getElementsByTagName() is present, then document.getElementById() is
present. In essence, this assumption is inferring from the presence of one DOM
method that all DOM methods are available.

• If window.ActiveXObject is present, then document.all is present. This inference
basically says that window.ActiveXObject is present only for Internet Explorer,
and document.all is also present only in Internet Explorer, so if you know one is
there then the other must also be there. In fact, some versions of Opera supported
document.all.

• If neither of these inferences is true, then it must be Netscape Navigator 4 or earlier.
This isn’t strictly true.

You cannot infer the existence of one feature based on the existence of another feature.
The relationship between two features is tenuous at best and circumstantial at worst.
It’s like saying, “If it looks like a duck, then it must quack like a duck.”

Avoid Feature Inference | 119

Avoid Browser Inference
Somewhere along the lines, a lot of web developers grew confused about the distinction
between user-agent detection and feature detection. Code started being written similar
to this:

// Bad
if (document.all) { // IE
 id = document.uniqueID;
} else {
 id = Math.random();
}

The problem with this code is that a test for document.all is used as an implicit check
for Internet Explorer. Once it’s known that the browser is Internet Explorer, the as-
sumption is that it’s safe to use document.uniqueID, which is IE-specific. However, all
you tested was whether document.all is present, not whether the browser is Internet
Explorer. Just because document.all is present doesn’t mean that document.uniqueID is
also available. There’s a false implication that can cause the code to break.

As a clearer statement of this problem, developers started replacing code like this:

var isIE = navigator.userAgent.indexOf("MSIE") > -1;

With code like this:

// Bad
var isIE = !!document.all;

Making this change indicates a misunderstanding of “don’t use user-agent detection.”
Instead of looking for a particular browser, you’re looking for a feature and then trying
to infer that it’s a specific browser, which is just as bad. This is called browser infer-
ence and is a very bad practice.

Somewhere along the line, developers realized that document.all was not, in fact, the
best way to determine whether a browser was Internet Explorer. The previous code
was replaced with more specific code, such as this:

// Bad
var isIE = !!document.all && document.uniqueID;

This approach falls into the “too clever” category of programming. You’re trying too
hard to identify something by describing an increasing number of identifying aspects.
What’s worse is that there’s nothing preventing other browsers from implementing the
same capabilities, which will ultimately make this code return unreliable results.

Browser inference even made it into some JavaScript libraries. The following snippet
comes from MooTools 1.1.2:

// from MooTools 1.1.2
if (window.ActiveXObject)
 window.ie = window[window.XMLHttpRequest ? 'ie7' : 'ie6'] = true;
else if (document.childNodes && !document.all && !navigator.taintEnabled)

120 | Chapter 12: Browser Detection

 window.webkit = window[window.xpath ? 'webkit420' : 'webkit419'] = true;
else if (document.getBoxObjectFor != null || window.mozInnerScreenX != null)
 window.gecko = true;

This code tries to determine which browser is being used based on browser inference.
There are several problems with this code:

• Internet Explorer 8, which supports both window.ActiveXObject
and window.XMLHttpRequest, will be identified as Internet Explorer 7.

• Any browser that implements document.childNodes is likely to be reported as Web-
Kit if it’s not already identified as Internet Explorer.

• The number of WebKit versions being identified is far too small, and once again,
WebKit 422 and higher will be incorrectly reported as WebKit 422.

• There is no check for Opera, so either Opera will be incorrectly reported as one of
the other browsers, or it won’t be detected at all.

• This code will need to be updated whenever a new browser is released.

The number of issues with the browser inference code is quite daunting, especially the
last one. For every new browser release, MooTools would have had to update this code
and get it pushed out to all users quite quickly to avoid code breaking. That’s just not
maintainable in the long run.

To understand why browser inference doesn’t work, you need only look back to high
school math class, in which logic statements are typically taught. Logic statements are
made up of a hypothesis (p) and a conclusion (q) in the form “if p, then q.” You can
try altering the statement form to determine truths. There are three ways to alter the
statement:

• Converse: if q, then p

• Inverse: if not p, then not q

• Contrapositive: if not q, then not p

There are two important relationships among the various forms of the statement. If the
original statement is true, then the contrapositive is also true. For example, if the orig-
inal statement was “If it’s a car, then it has wheels” (which is true) then the contrapos-
itive, “if it doesn’t have wheels, then it’s not a car,” is also true.

The second relationship is between the converse and the inverse, so if one is true, then
the other must also be true. This makes sense logically, because the relationship be-
tween converse and inverse is the same as between original and contrapositive.

Perhaps more important than these two relationships are the relationships that don’t
exist. If the original statement is true, then there is no guarantee that the converse is
true. This is where feature-based browser detection falls apart. Consider this true state-
ment: “If it’s Internet Explorer, then document.all is implemented.” The contrapositive,
“If document.all is not implemented, then it’s not Internet Explorer,” is also true. The
converse, “If document.all is implemented, then it’s Internet Explorer,” is not strictly

Avoid Browser Inference | 121

true (some versions of Opera implemented it). Feature-based detection assumes that
the converse is always true when, in fact, there is no such relationship.

Adding more parts to the conclusion doesn’t help, either. Consider once again the
statement, “If it’s a car, then it has wheels.” The converse is obviously false: “If it has
wheels, then it’s a car.” You could try making it more precise: “If it’s a car, then it has
wheels and requires fuel.” Check the converse: “If it has wheels and requires fuel, then
it’s a car.” Also not true, because an airplane fits that description. So try again: “If it’s
a car, then it has wheels, requires fuel, and uses two axles.” Once again, the converse
isn’t going to be true.

The problem is fundamental to human language: it’s very hard to use a collection of
singular aspects to define the whole. We have the word “car” because it implies a lot
of aspects that you would otherwise have to list to identify that thing in which you drive
to work. Trying to identify a browser by naming more and more features is the exact
same problem. You’ll get close, but it will never be a reliable categorization.

MooTools backed themselves, and their users, into a corner by opting for feature-based
browser detection. Mozilla had warned since Firefox 3 that the getBoxObjectFor()
method was deprecated and would be removed in a future release. Because MooTools
relied on this method to determine whether a browser is Gecko-based, Mozilla’s re-
moval of the method in Firefox 3.6 meant that anyone running older versions of Moo-
Tools could have code that was now affected. This situation prompted MooTools to
issue a call to upgrade to the most recent version, in which the issue is “fixed.” The
explanation:

We have overhauled our browser detection to be based on the user agent string. This has
become the standard practice among JavaScript libraries because of potential issues, as
Firefox 3.6 demonstrates. As browsers grow closer together, looking at features to sep-
arate them will become more difficult and risky. From this point forward, browser
detection will only be used where it would be impossible not to, in order to give the
consistent experience across browsers that one would expect from a world-class Java-
Script framework.

What Should You Use?
Feature inference and browser inference are very bad practices that should be avoided
at all costs. Straight feature detection is a best practice, and in almost every case, is
exactly what you’ll need. Typically, you just need to know if a feature is implemented
before using it. Don’t try to infer relationships between features, because you’ll end up
with false positives or false negatives.

I won’t go so far as to say never use user-agent detection, because I do believe there are
valid use cases. I don’t believe, however, that there are a lot of valid use cases. If you’re
thinking about user-agent sniffing, keep this in mind: the only safe way to do so is to
target older versions of a specific browser. You should never target the most current
browser version or future versions.

122 | Chapter 12: Browser Detection

My recommendation is to use feature detection whenever possible. If it’s not possible,
then fall back to user-agent detection. Never, ever use browser inference, because you’ll
be stuck with code that isn’t maintainable and will constantly require updating as
browsers continue to evolve.

What Should You Use? | 123

PART III

Automation

“I . . . am rarely happier than when spending an entire day programming my computer
to perform automatically a task that would otherwise take me a good ten seconds to do
by hand.” —Douglas Adams, Last Chance to See

Prior to the year 2000, it was quite common for web developers to simply put their
JavaScript files onto a web server in the same form as they had in source control, com-
ments and all. If there were 10 files in source control, then there were also 10 files on
the server. This type of mirroring, in which what you had locally and what you had on
the server were identical, allowed for rapid changes. Additionally, this led to the “view
source” era, where many web developers learned from going to a site and then viewing
the source of the page along with its JavaScript.

Of course, during that time the amount of JavaScript found on websites was still quite
small compared to today’s standards. Whereas a hundred lines of JavaScript code writ-
ten by a single developer used to be the norm, today’s modern web applications often
have thousands of lines of JavaScript being modified by a dozen or more developers.
Needless to say, the old way of doing things just doesn’t work any longer.

All large-scale (and many small-scale) web applications rely on automation for pro-
cessing their JavaScript files. Automation is quite common with other parts of a web
application stack, but until 2005, hadn’t been popularly used for JavaScript. Adding
JavaScript into the overall web application automation system is an important step for
maintainability, allowing you to have the same type of safeguards as other parts of the
system.

Advantages and Disadvantages
The advantages of using an automated build system for your JavaScript are:

• The code you have in source control doesn’t have to mirror what is put out into
production, so you can set up source control any way you want without having to
worry about whether it’s optimized for use on the server.

• Static analysis can be performed automatically to find errors.

• JavaScript can processed in any number of ways before deployment, including
concatenation of files and minification.

• Testing is automated, so problems can easily be identified.

• Automatic deployment into production servers is easy.

• You can easily and quickly rerun common tasks.

Using such automation does come with some disadvantages as well:

• Developers might need to run a local build while making changes in a development
environment. Some developers have a lot of trouble adjusting to this step, having
grown used to making changes and just refreshing the browser.

• The code that is deployed to production doesn’t look like the code that is being
edited, making bugs in production harder to track down.

• Developers who are less technical may have trouble using the build system.

In my experience, the advantages of having automation in place far outweigh the dis-
advantages. Even those developers who hate the idea of needing to run a local build
after making changes tend to come around once the advantages of the system have been
realized.

CHAPTER 13

File and Directory Structure

The first step before setting up a build system is to determine how your files and di-
rectories are laid out. This structure is heavily affected by the type of project. If the
project is a standalone JavaScript library, you might want a different structure than you
would want for a project containing all of the files for a website.

Best Practices
Regardless of the project type, there are several best practices that apply to JavaScript
file and directory structure:

One object per file
Each JavaScript file should contain code for just one JavaScript object. This pattern
is common to other programming languages and generally makes maintenance
easier. Having multiple files with single objects reduces the risk of multiple people
working on the same file at the same time. Even though today’s source control
systems are incredibly good at merging changes from two different people, merge
conflicts do still occur. The fewer files you have, the greater the likelihood of merge
conflicts. Keeping one JavaScript object per file minimizes this risk.

Group related files in directories
If you have multiple objects that are related, put all of those files into a single
directory. You might, for instance, have multiple files with code to make a single
module. It makes sense to have a directory just for that module containing all of
the files. Grouping related files helps developers locate functionality easily.

Keep third-party code separate
Any code that isn’t being written or maintained by you, such as a JavaScript library,
should be kept in a separate part of source control. In fact, the ideal setup is not
to have the JavaScript library checked in at all but rather to load it directly from a
Content Delivery Network (CDN). In lieu of that, keeping the files in a separate
directory within source control is the best approach.

127

Determine build location
The location of the built JavaScript files should be a completely separate directory
that is not checked in to source control. The website should be configured to use
this build location instead of the source directory. It’s important to not check in
built files because these are artifacts of the build system, artifacts that may be re-
created multiple times by multiple people or systems before finally being deployed.
The deployment should kick off a build that creates the final artifacts to be de-
ployed.

Keep test code close
Your JavaScript testing code should also be checked in to source control and be in
a predictable location. This makes it easy for developers to notice when tests are
missing.

File and directory structure are a bit different if the JavaScript you’re working on is part
of a larger website or web application versus a standalone JavaScript project. The overall
directory structure is typically dictated by the server-side framework being used. Even
though the overall directory structure may vary from project to project, you will un-
doubtedly have a subdirectory devoted just to JavaScript. This subdirectory may be
called scripts or javascript, but there is almost always a single directory devoted to
JavaScript files. Within that directory, there are a few common layouts.

Basic Layout
One popular layout style is to have three primary directories in your JavaScript direc-
tory:

build
For the final built files. Ideally, shouldn’t be checked in.

src
For all of the source files. Contains subdirectories for grouping files.

test or tests
For all of the test files. Usually contains some subdirectory structure or file structure
that mirrors that of src.

CSS Lint, a project that I manage, uses a variation of this approach. See Figure 13-1.

For CSS Lint, the build directory is never checked in; however, the release directory
always contains the most recent stable release. The src directory has several subdirec-
tories, grouping related functionality together. The tests directory mirrors the directory
structure of src, so the tests for src/core/CSSLint.js are found in tests/core/CSSLint.js.

128 | Chapter 13: File and Directory Structure

https://github.com/stubbornella/csslint

jQuery uses a form of this layout as well. The only difference is that jQuery puts all of
its source files directly into the src directory rather than having subdirectories for each.
Subdirectories are reserved for extensions and resources for the core features. The
test directory then contains files with the same name as the source file it’s testing. So
src/ajax.js is tested by test/ajax.js (see Figure 13-2).

Dojo uses a form similar to jQuery. The big difference with Dojo is that there is no top-
level src directory. Instead, the top level contains source files as well as subdirectories
for extensions and resources for core features. There is a top-level tests directory that
mirrors the layout of the top-level directory itself, so date.js is tested by tests/date.js (see
Figure 13-3).

YUI 3 uses a modification of the original layout. Each subdirectory of src represents a
single YUI module, and each module has at least four subdirectories:

docs
For documentation

js
For JavaScript source files

meta
For module metadata

tests
For module tests

Tests in YUI may be HTML files or JavaScript files, so exactly what’s contained in
tests varies from module to module. Generally, there is at least one file named the same

Figure 13-1. CSS Lint directory structure

Basic Layout | 129

https://github.com/jquery/jquery
https://github.com/dojo/dojo
https://github.com/yui/yui3

as the source file, so js/arraysort.js is tested by tests/arraysort.html or tests/array-
sort.js. See Figure 13-4.

Figure 13-2. jQuery directory structure

130 | Chapter 13: File and Directory Structure

Figure 13-4. YUI 3 directory structure

Figure 13-3. Dojo directory structure

Basic Layout | 131

Exactly which style of layout you choose will be largely based on your development
and build process. It should be optimized to limit build time and make it easy for
developers to know where new files should go.

132 | Chapter 13: File and Directory Structure

CHAPTER 14

Ant

The choice of a build tool is usually based on the tools familiar to the developers who
will be using it. My personal favorite tool for JavaScript build systems is Ant. Ant was
originally created as a build tool for Java projects, but its easy XML syntax and built-
in tasks make it an excellent choice for JavaScript as well. In an informal survey I con-
ducted prior to writing this book, Ant was by far the most frequently cited build tool
used for JavaScript, despite the recent introduction of newer build tools. If you find
that Ant doesn’t quite work for you, several alternatives are listed in Appendix B.

This book focuses on JavaScript build systems using Ant, but all of the tools and tech-
niques discussed can be applied to other build systems as well.

Installation
Ant requires Java to run, so make sure that you have Java installed on your system. If
you’re using Mac OS X, then Ant is already installed by default; for Ubuntu, run sudo
apt-get install ant to install Ant. For other operating systems, following the instructions
at http://ant.apache.org/manual/install.html.

The Build File
The main build file for Ant is build.xml. When Ant runs on the command line, it looks
for this file in the current directory, so it’s best to place build.xml in the root directory
of your project. You needn’t keep all of the build-related information in this file, but
build.xml must be present for Ant to work.

As you might expect, build.xml is an XML file containing instructions on how to per-
form the build. There are three basic parts of an Ant build system:

133

http://ant.apache.org
http://ant.apache.org/manual/install.html

Task
A single step in the process such as running a program or copying a file

Target
A named grouping of tasks into sequential order

Project
A named container for all targets

Each part of the build system is represented by an XML element. Here’s a sample
build.xml file:

<project name="maintainablejs" default="hello">

 <target name="hello">
 <echo>Hello world!</echo>
 </target>

</project>

Every build.xml file begins with a <project> element representing the overall project.
The name attribute is required and uniquely identifies this project. The default attribute
specifies the default target to execute if no target is explicitly provided.

This file contains a single target, represented by the <target> element. The name at-
tribute is also required here. The <echo> element represents the echo task, which out-
puts the enclosed text to the console. You can have any number of tasks in a target and
any number of targets in a project.

It’s a standard practice to define targets as atomically as possible so they
can be combined in any number of ways. Think of targets like you would
functions, as a logical grouping of repeated tasks.

Running the Build
Once you have a build.xml file, open a command prompt in that directory and type:

ant

By default, Ant will read the build.xml file and default attribute of <project> to deter-
mine which target to execute. If you were to run ant with the build.xml file from the
previous example, it would execute the hello target. You can optionally specify which
target to run right on the command line:

ant hello

When the target name is specified on the command line, Ant no longer uses the default
target.

In both cases, you’ll see console output that looks like this:

134 | Chapter 14: Ant

Buildfile: /home/nicholas/tmp/build.xml

hello:
 [echo] Hello world!

BUILD SUCCESSFUL
Total time: 0 seconds

The output always shows you the build file being used as the first line. After that, you’ll
see the target being executed followed by a list of tasks being executed. The task name
is enclosed in square braces; any output is displayed to the right. You will also see a
message in capital letters indicating whether the build was successful, followed by the
amount of time the build took. These items are all helpful in determining the cause of
build errors.

Target Dependencies
Each target may optionally be specified with dependencies—other targets that must be
run and must succeed before the current target is executed. Dependencies are specified
using the depends attribute, which is a comma-separated ordered list of targets to exe-
cute first. Here’s an example:

<project name="maintainablejs" default="hello">

 <target name="hello">
 <echo>Hello world!</echo>
 </target>

 <target name="goodbye" depends="hello">
 <echo>Goodbye!</echo>
 </target>

</project>

In this build.xml file, the target goodbye has a dependency on the target hello. Thus,
running ant goodbye results in the following output:

Buildfile: /home/nicholas/tmp/build.xml

hello:
 [echo] Hello world!

goodbye:
 [echo] Goodbye!

BUILD SUCCESSFUL
Total time: 0 seconds

You can tell from the output that the hello target was executed before the goodbye
target, and that both succeeded.

Target Dependencies | 135

In most build files, there are a small number of targets that you’ll use frequently. The
majority of targets are single steps that are designed to be used by rollup targets that
execute multiple targets in a specific order.

Properties
Ant properties are similar to variables in JavaScript, as they are generic containers for
data that can be changed and manipulated throughout execution of the build script. A
property is defined using the <property> element:

<project name="maintainablejs">

 <property name="version" value="0.1.0" />

</project>

Each <property> element requires name and value attributes. You can later reference the
property by using ${version}, such as:

Version is ${version}

When this Ant script is executed, the output is:

Buildfile: /home/nicholas/tmp/build.xml

version:
 [echo] Version is 0.1.0

BUILD SUCCESSFUL
Total time: 0 seconds

The special ${} syntax is used any time you want to insert a property value into task.

Properties can also be defined in a Java properties files and loaded directly into Ant.
For instance, suppose you have a properties file named build.properties containing the
following:

version = 0.1.0
copyright = Copyright 2012 Nicholas C. Zakas. All rights reserved.

You can import these properties into the Ant script by using the <loadproperties>
element and specifying the filename with the srcfile attribute:

<project name="maintainablejs" default="version">

 <loadproperties srcfile="build.properties" />

 <target name="version">
 <echo>Version is ${version}</echo>
 </target>

</project>

136 | Chapter 14: Ant

Properties loaded using <loadproperties> are accessible in the same manner as those
defined explicitly within build.xml. For a large number of properties, or properties that
need to be shared among multiple Ant scripts, it’s best to have them in a separate Java
properties file.

At a minimum, it’s best to have several properties declared that can be used throughout
your project, such as:

src.dir
The root source code location

build.dir
Where the built files should end up

lib.dir
Location of dependencies

Throughout the rest of this book, you’ll see these properties used in Ant tasks. Be sure
to define them appropriately in your project.

Buildr
Buildr (https://github.com/nzakas/buildr) is a project that seeks to collect common
frontend-related Ant tasks with easier syntax. A wide range of tools is available for
working with JavaScript files, but they all work a bit differently. Buildr wraps all of
these different tools in tasks that can be used in your Ant scripts.

To use Buildr, you must first get a copy of the source. Once you have the directory
structure on your computer, you can import all of the tasks with this command:

<import file="/path/to/buildr/buildr.xml"/>

This command allows your build.xml file to make use of all the custom tasks defined
in Buildr. The following chapters show you both how to create Ant tasks from scratch
as well as how to use the Buildr tasks.

Buildr | 137

https://github.com/nzakas/buildr

CHAPTER 15

Validation

Because JavaScript isn’t compiled before being deployed, web developers don’t have
the extra compilation step to identify errors. JavaScript code validators partly fill this
void by performing static analysis on your JavaScript code. You were introduced to
JSLint and JSHint earlier in this book. In this chapter, you’ll learn how to incorporate
JSHint into your build system to automatically analyze and verify your JavaScript code.

JSHint is used in this chapter, because it comes with a prebuilt com-
mand-line file suitable for running with Rhino. JSLint, as of the time of
this writing, doesn’t have a prebuilt command-line file, though some
third parties have written utilities including command-line controls for
JSLint.

Finding Files
The first step in validating files is to locate the files. There are two different tasks for
this purpose: <fileset> and <filelist>. The <fileset> task is used when you want to
include a large number of files based on a pattern. Specify the dir attribute as the
directory to look in and then includes with a filename pattern, such as:

<fileset dir="./src" includes="**/*.js" />

This fileset includes all JavaScript files contained in the src directory. You can optionally
specify some file patterns to exclude as well:

<fileset dir="./src" includes="**/*.js" excludes="**/*-test.js />

This fileset includes all JavaScript files except the ones that end with -test.js. This is a
common practice for excluding unit test files that are contained in the same directories
as the source files.

The <filelist> task works similarly except that you must explicitly list the files to
include. This task is best used when you want to retrieve references to a specific set of

139

files. The <fileset> element also expects a dir for the directory. The files attribute
contains a comma-separated list of files. For example:

<filelist dir="./src" files="core/core.js" />

In practice, you’ll end up using <fileset> more frequently than <filelist>, as it’s far
more likely that you’ll be dealing with large groups of files rather than specific, named
files.

The Task
The <apply> task is used to execute command-line utilities on a collection of files from
within an Ant target. Because JSHint is written in JavaScript, you’ll need to use the
Rhino command-line JavaScript engine to execute it. Download the latest Rhino release
from http://www.mozilla.org/rhino and place the js.jar file in your dependencies folder
(lib.dir).

To run JSHint on the command line, type the following:

java -jar js.jar jshint.js [options] [list of files]

For example:

java -jar js.jar jshint.js curly=true,noempty-true core/core.js

The <apply> task allows you to recreate command-line entires using the <arg> element.
There are two ways to use <arg>: by specifying the path attribute for file or directory
references, or by specifying the line attribute for plain text. You can break down the
command-line format into the following pieces:

java
The program to execute, specified by the executable attribute of <apply>

-jar
An option for java, represented by the line attribute of <arg>

jshint.js
The main JSHint file, represented by the path attribute of <arg>

curly=true,noempty-true
The options, represented by the line attribute of <arg>

core/core.js
The file to validate, represented by the path attribute of <arg>

Given that, you can quickly create an Ant skeleton for this utility:

<target name="validate">
 <apply executable="java">
 <arg line="-jar"/>
 <arg path="js.jar"/>
 <arg path="jshint.js" />
 <arg
 line="curly=true,forin=true,latedef=true,noempty=true,undef=true,rhino=false"

140 | Chapter 15: Validation

http://www.mozilla.org/rhino

 />
 <arg path="core/core.js"/>
 </apply>
</target>

Although this approach works, you should really run JSHint on a collection of Java-
Script files rather than on a single one. The <apply> task makes this step easy by allowing
you to specify a <fileset> and then include it in a particular spot on the command line
by using the <srcfile> element. For example, the following target validates all Java-
Script files in the source directory:

<target name="validate">
 <apply executable="java">
 <fileset dir="${src.dir}" includes="**/*.js" />
 <arg line="-jar"/>
 <arg path="js.jar"/>
 <arg path="jshint.js" />
 <arg
 line="curly=true,forin=true,latedef=true,noempty=true,undef=true,rhino=false"
 />
 <srcfile/>
 </apply>
</target>

This Ant target now executes JSHint on every file specified by the <fileset> element.
You can run the target via:

ant validate

Improving the Target
Although the validate target works well, there are some improvements that can be
made. First, the current version runs JSHint once on each file. So if there are three
JavaScript files, it’s the equivalent of running this:

java -jar js.jar jshint.js curly=true,noempty-true first.js
java -jar js.jar jshint.js curly=true,noempty-true second.js
java -jar js.jar jshint.js curly=true,noempty-true third.js

There is some overhead when running java, specifically the creation and destruction
of the Java Virtual Machine (JVM). This task adds a significant amount of time to the
target.

The JSHint command-line script actually accepts multiple files, so it’s perfectly capable
of using one JVM to check every file. Fortunately, the <apply> task makes it easy to pass
in all of the filenames. You just need to set the parallel attribute to "true":

<target name="validate">
 <apply executable="java" parallel="true">
 <fileset dir="${src.dir}" includes="**/*.js" />
 <arg line="-jar"/>
 <arg path="js.jar"/>
 <arg path="jshint.js" />

Improving the Target | 141

 <arg
 line="curly=true,forin=true,latedef=true,noempty=true,undef=true,rhino=false"
 />
 <srcfile/>
 </apply>
</target>

By adding one attribute, the validate target now passes all of the files onto the com-
mand line at once (separated by spaces). Doing so allows JSHint to read and validate
all files with just one JVM and dramatically improves the target speed.

The last addition to the validate target is to have the build fail if validation fails. It’s
usually a good idea to add this step, because it ensures that developers are aware of the
problem. The current version of the validate target will output validation failures to
the command line, but any other task that follows will continue to execute, potentially
causing the failure messages to scroll off screen.

You can force <apply> to fail the build by setting the failonerror property to "true":

<target name="validate">
 <apply executable="java" failonerror="true" parallel="true">
 <fileset dir="${src.dir}" includes="**/*.js" />
 <arg line="-jar"/>
 <arg path="js.jar"/>
 <arg path="jshint.js" />
 <arg
 line="curly=true,forin=true,latedef=true,noempty=true,undef=true,rhino=false"
 />
 <srcfile/>
 </apply>
</target>

This version of the validate target will fail the build when an error occurs during exe-
cution of <apply>. An error is any nonzero exit code returned from the executable.
Because JSHint returns 1 when a validation error occurs, it will cause the build to fail.

Other Improvements
The last step in improving the validate task is to externalize three pieces of data:

• The location of js.jar

• The location of jshint.js

• The command-line options

As these may change in the future, it’s best to represent them as properties and include
them in your properties file or at the top of your build.xml file. Here’s an example
properties file:

src.dir = ./src
lib.dir = ./lib

rhino = ${lib.dir}/js.jar

142 | Chapter 15: Validation

jshint = ${lib.dir}/jshint.js

jshint.options = curly=true,forin=true,latedef=true,noempty=true,undef=true\
,rhino=false

You can then reference the properties from the validate target:

<target name="validate">
 <apply executable="java" failonerror="true" parallel="true">
 <fileset dir="${src.dir}" includes="**/*.js" />
 <arg line="-jar"/>
 <arg path="${rhino}"/>
 <arg path="${jshint}" />
 <arg line="${jshint.options}" />
 <srcfile/>
 </apply>
</target>

With this change, you’re easily able to update the location of files and JSHint options
without needing to go back into the target.

Buildr Task
Buildr has a <jshint> task that abstracts away a lot of the configuration necessary to
run JSHint. After importing the buildr.xml file as mentioned in the previous chapter,
use the <jshint> task by passing in any number of <fileset> elements:

<target name="validate">
 <jshint>
 <fileset dir="${src.dir}" includes="**/*.js" />
 </jshint>
</target>

You can also change the default options by using the options attribute:

<target name="validate">
 <jshint options="${jshint.options}">
 <fileset dir="${src.dir}" includes="**/*.js" />
 </jshint>
</target>

The end result is exactly the same as using the target from the previous section.

Buildr Task | 143

CHAPTER 16

Concatenation and Baking

If you’ve properly set up your JavaScript files to contain one object per file, then it’s
likely you have dozens of JavaScript files. Before deploying to production, it’s best to
concatenate the files so there are fewer HTTP requests on the page. Exactly how many
files and which files should be concatenated with which is a project-specific decision.
In any case, Ant provides an easy way to concatenate multiple files.

The Task
The <concat> task is one of the simplest in Ant. You simply specify a destfile attribute
containing the destination filename and then include as many <fileset> and <file
list> elements as you want. At it’s simplest, you can have a target such as:

<target name="concatenate">

 <concat destfile="${build.dir}/build.js">
 <fileset dir="${src.dir}" includes="**/*.js" />
 </concat>

</target>

This target concatenates all JavaScript files in the source directory into a single file called
build.js in the build directory. Keep in mind that the files are concatenated in the order
in which they appear on the filesystem (alphabetically). If you want a more specific
ordering, you’ll need to specify it explicitly, such as:

<target name="concatenate">

 <concat destfile="${build.dir}/build.js">
 <filelist dir="${src.dir}" files="first.js,second.js" />
 <fileset dir="${src.dir}" includes="**/*.js" excludes="first.js,second.js"/>
 </concat>

</target>

145

This version of the target ensures that first.js is the first file added to the final file and
second.js comes right after that. Remember, you can use any number of <fileset> and
<filelist> elements, so you can concatenate in any order you can imagine.

Even though it’s possible to create complex concatenation schemes us-
ing Ant, it’s best to limit the special cases. Keeping filenames out of your
build script is a good idea for maintainability. Try to use <fileset> el-
ements whenever possible.

Line Endings
Concatenating files together comes with a series of challenges. One of the trickiest
issues is dealing with the last line of a file. If a file doesn’t have a newline character on
its last line, then concatenating that file with another may result in broken syntax. By
setting fixlastline attribute to "yes", the <concat> task will automatically add a new-
line character to the last line if one doesn’t already exist:

<target name="concatenate">

 <concat destfile="${build.dir}/build.js" fixlastline="yes">
 <filelist dir="${src.dir}" files="first.js,second.js" />
 <fileset dir="${src.dir}" includes="**/*.js" excludes="first.js,second.js"/>
 </concat>

</target>

It’s a good idea to always set fixlastline to "yes" for JavaScript, as newlines are valid
end-of-statement tokens.

Fixing the last line is useful, but how do you know which end-of-line marker is used?
If your source files are being edited by people on different operating systems, you may
want to ensure consistency in the built files. The <concat> task has an optional eol
attribute that specifies which end-of-line markers to use. The default value is the default
for the system ("crlf" for Windows, "lf" for Unix, and "cr" for Mac OS X). You can
choose any one of these values, and all of the line endings in the concatenated file will
automatically be switched to that format:

<target name="concatenate">

 <concat destfile="${build.dir}/build.js" fixlastline="yes" eol="lf">
 <filelist dir="${src.dir}" files="first.js,second.js" />
 <fileset dir="${src.dir}" includes="**/*.js" excludes="first.js,second.js"/>
 </concat>

</target>

This target changes all end-of-line markers to Unix style, which is the recommended
format for JavaScript files, as it has the greatest cross-platform compatibility (and be-
cause most web servers run on a Unix variant).

146 | Chapter 16: Concatenation and Baking

Headers and Footers
The <concat> task also has the handy ability to prepend and append plain text to the
resulting file. This capability allows you to insert pieces of information into the file that
you might otherwise not have available. For instance, I tend to insert the build time
into files so I can more easily track down errors. To do so, I start by defining a
<tstamp> element at the top of the file:

<tstamp>
 <format property="build.time"
 pattern="MMMM d, yyyy hh:mm:ss"
 locale="en,US"/>
</tstamp>

This code creates a new timestamp when the build.xml file is executed by Ant. The
resulting date string is stored in a property named build.time. The pattern attribute is
a date-time formatting string. I can then use the <header> element to add this informa-
tion into the built file:

<target name="concatenate">

 <concat destfile="${build.dir}/build.js" fixlastline="yes" eol="lf">
 <header>/* Build Time: ${build.time} */</header>
 <filelist dir="${src.dir}" files="first.js,second.js" />
 <fileset dir="${src.dir}" includes="**/*.js" excludes="first.js,second.js"/>
 </concat>

</target>

This new version of the concatenate target inserts a comment at the top of the file
containing the build time. The resulting first line of the file has this format:

/* Build Time: May 25, 2012 03:20:45 */

There is also a <footer> element that can be used to add additional text at the bottom
of the file. For example, this version of concatenate puts the build time at the bottom:

<target name="concatenate">

 <concat destfile="${build.dir}/build.js" fixlastline="yes" eol="lf">
 <filelist dir="${src.dir}" files="first.js,second.js" />
 <fileset dir="${src.dir}" includes="**/*.js" excludes="first.js,second.js"/>
 <footer>/* Build Time: ${build.time} */</footer>
 </concat>

</target>

You can use both <header> and <footer> at the same time or just one at a time.

Headers and Footers | 147

Baking Files
Baking refers to the final touches you put into files before considering them ready for
deployment. A lot of times, this step involves either adding additional text into a file
or replacing existing text with something else. Inserting the build time, as in the pre-
vious example, is a type of baking. Other common tasks are automatically including
license information and inserting version information. Both can be done very easily
using Ant.

Many projects have a license file included somewhere in source control. The license
file is separate because it may change independently of the code. It’s useful to auto-
matically insert the license information at the top of files before pushing them to pro-
duction. You could potentially insert the license file using a <filelist> element, but
that would mean that the license file must be in a property comment format for Java-
Script. It’s much easier to let the license file be plain text and add the comments around
it. You can load text from any file using the <loadfile> task:

<loadfile property="license" srcfile="license.txt" />

This code loads text from license.txt and stores it in a property named license. Once
it’s in a property, you can use the <header> element to insert the text as a comment:

<target name="concatenate">

 <loadfile property="license" srcfile="license.txt" />

 <concat destfile="${build.dir}/build.js" fixlastline="yes" eol="lf">
 <header trimleading="yes">/*!
 ${license}
 */
 /* Build time: ${build.time} */
 </header>
 <filelist dir="${src.dir}" files="first.js,second.js" />
 <fileset dir="${src.dir}" includes="**/*.js" excludes="first.js,second.js"/>
 </concat>

</target>

The license is inserted with a multiline JavaScript comment that has an exclamation
point as the first character, which tells code minifiers (see Chapter 17) that the comment
is important and should not be removed. The <header> element also has trimleading
set to "yes". This attribute specifies that leading white space on each line inside of
<header> should be removed. That way, all text is aligned at the first column in the final
file.

The other part of baking, replacing some text within files, is accomplished quite easily
using the <replaceregexp> task. This task systematically goes through any number of
files and uses regular expressions to replace values. As an example, I tend to use the
token @VERSION@ in my source files to indicate where the version number should be
inserted. For instance, you might have this in a JavaScript file:

148 | Chapter 16: Concatenation and Baking

var MyProject = {
 version: "@VERSION@"
};

You can replace @VERSION@ with an actual version number using the following:

<replaceregexp match="@VERSION@" replace="${version}" flags="g" byline="true">
 <fileset dir="${build.dir}" includes="**/*"/>
</replaceregexp>

The <replaceregexp> task takes the regular expression from the match attribute and
replaces it with the text in the replace attribute. Regular expression flags such as g, i,
and m are specified using the flags attribute, and byline indicates whether the regular
expression should match just a single line. You then specify any number of files in which
this replacement should be made.

Because <replaceregexp> doesn’t create new files, be sure to run it on the built files, as
in the following example:

<target name="concatenate">

 <concat destfile="${build.dir}/build.js" fixlastline="yes" eol="lf">
 <filelist dir="${src.dir}" files="first.js,second.js" />
 <fileset dir="${src.dir}" includes="**/*.js" excludes="first.js,second.js"/>
 <footer>/* Build Time: ${build.time} */</footer>
 </concat>

 <replaceregexp match="@VERSION@" replace="${version}" flags="g" byline="true">
 <fileset dir="${build.dir}" includes="**/*"/>
 </replaceregexp>

</target>

This code replaces all instances of @VERSION@ in all built files with the version property.
Although the replacement takes place in the concatenate target here, you may also want
to have a separate target for baking, such as:

<target name="bake">

 <replaceregexp match="@VERSION@" replace="${version}" flags="g" byline="true">
 <fileset dir="${build.dir}" includes="**/*"/>
 </replaceregexp>

</target>

Separating out the baking step makes sense when it doesn’t involve the <concat> task
and may not always be done as part of the build process.

Baking Files | 149

CHAPTER 17

Minification and Compression

Once you have your built files validated, concatenated, and baked, it’s time to make
those files as small as possible. This step is accomplished with two processes: minifi-
cation and compression. Minification is the process of eliminating unnecessary white
space, removing comments, and performing some processing on the files to make them
as small as possible. Compression uses a specific compression method, such as gzip,
to shrink the file even further. The difference between a minified file and a compressed
file is that minified files are still just plain text and can be edited and loaded as usual
(albeit with a bit of trouble, because all formatting is removed), whereas compressed
files are unreadable and must be decompressed to be usable in a web page. Today’s
browsers automatically decompress any compressed files they receive with a Content-
Encoding: gzip header in the response.

Minification
Minifying a JavaScript file isn’t very complicated, but mistakes or invalid syntax can
result if you use an unsafe process. For this reason, it’s best to use a minifier that actually
parses the JavaScript before making changes. Parsers know what valid syntax is and
can more easily create valid syntax. The three most popular parsing minifiers are:

YUI Compressor
Often credited with popularizing parser-based minifiers instead of the regular ex-
pression-based minifiers. YUI Compressor was first written by Julien Lecomte (and
is now maintained by the YUI team); it removes comments and extra white space
and replaces local variable names with single- or double-character names to save
even more space. YUI Compressor considers syntax and runtime safety as its high-
est priority, so it turns off variable replacement in cases in which errors might occur
(such as using eval() or with). Download from http://yuilibrary.com/projects/yui
compressor/.

151

http://yuilibrary.com/projects/yuicompressor/
http://yuilibrary.com/projects/yuicompressor/

Closure Compiler
A parser-based minifier that tries to make your code as small as possible. The
Closure Compiler is written and maintained by Google engineers; it removes com-
ments and extra white space and performs variable replacement, but also inspects
your code for ways to optimize. For instance, it can detect that a function isn’t used
and simply remove it. It can also detect that a function is used only once and put
it inline. For this reason, Closure Compiler works best when used on all of your
JavaScript code at once. Download from http://code.google.com/closure/compiler/.

UglifyJS
Credited with being the first Node.js-based JavaScript minifier, UglifyJS is written
in JavaScript using a JavaScript-based parser. Written by Mihai Bazon, UglifyJS
removes comments and extra white space, replaces variable names, combines
var statements, and performs other optimizations along the way. Download from
https://github.com/mishoo/UglifyJS or install using npm.

Exactly which minifier to use is a matter of preference. Some prefer YUI Compressor
because of its focus on ensuring that the resulting code doesn’t contain errors and its
simple optimizations. Others prefer Closure Compiler because it tends to produce files
that are smaller than YUI Compressor. Still others prefer UglifyJS because it doesn’t
rely on Java and produces fewer syntax errors than Closure Compiler while also pro-
ducing the smallest possible result.

Minifying with YUI Compressor
YUI Compressor ships as an executable JAR file that should be placed in your project’s
dependencies folder (in this example, this folder is referred to as lib.dir). There are
several command-line options, but the most important to know are:

--disable-optimizations
Turns off micro optimizations such as changing obj["prop"] to obj.prop

--line-break <column>
Specifies to break lines at the given column rather than creating a single line of
output

--nomunge
Turns off local variable name replacement

--preserve-semi
Turns off removal of unnecessary semicolons

Once you decide which options to use, place them in a Java properties file, as in the
following example:

152 | Chapter 17: Minification and Compression

http://code.google.com/closure/compiler/
https://github.com/mishoo/UglifyJS

src.dir = ./src
lib.dir = ./lib

yuicompressor = ${lib.dir}/yuicompressor.jar

yuicompressor.options = --preserve-semi

Next, create a target for minification. As with validation, it’s helpful to look at the
command-line syntax first. To run YUI Compressor on the command line, type the
following:

java -jar yuicompressor.jar [options] [file] -o [outputfile]

For example:

java -jar yuicompressor.jar --preserve-semi core/core.js -o core/core-min.js

This command runs YUI Compressor on core/core.js and outputs the result to core/
core-min.js. Appending -min to the filename is a common practice when minifying files,
so the target does that as well. The <apply> task is once again the one to use, and here’s
the target:

<target name="minify">

 <apply executable="java" failonerror="true">

 <fileset dir="${build.dir}" includes="*.js"/>
 <mapper type="glob" from="*.js" to="${build.dir}/*-min.js"/>

 <arg line="-jar"/>
 <arg path="${yuicompressor}"/>
 <arg line="${yuicompressor.options}"/>
 <srcfile/>

 <arg line="-o"/>
 <targetfile/>
 </apply>

</target>

This target is very similar to the validate target from earlier in the book. It starts by
specifying the executable as java and then indicates that the command should be run
on all JavaScript files in the build directory. These files get ready one by one and are
put in the place of <srcfile/>. The next line uses the <mapper> task to translate file-
names. It takes any <srcfile/> and appends -min to the filename. So core.js becomes
core-min.js, and this value is used in place of the <targetfile/> element. The rest of the
<arg> elements are self-explanatory.

The minify task is designed to be used after you’ve built files into the build directory
but can easily be modified to run in any directory.

Minification | 153

YUI Compressor also contains a CSS minifier. If you pass a CSS file to
YUI Compressor, it automatically switches into CSS mode.

Buildr has a <yuicompressor> task that encapsulates all of this functionality. There are
attributes to enable each command-line option (the attribute name is the same as the
command-line option without the leading --) plus a required outputdir attribute that
indicates where the minified files should be placed. Here’s an example:

<target name="minify">
 <yuicompressor outputdir="${build.dir}" preserve-semi="true">
 <fileset dir="${build.dir}" includes="*.js" />
 </yuicompressor>
</target>

The <yuicompressor> task automatically adds the -min suffix to all files it creates. You
can include one or more elements to minify everything at once.

Minifying with Closure Compiler
The Closure Compiler is also an executable JAR file that needs to be placed in the
dependencies folder. The Closure Compiler has significantly more command-line op-
tions than the YUI Compressor, many of which are used only by those working directly
with the Closure JavaScript library. The most important
option is --compilation_level, which determines how much processing is done on the
JavaScript file. The options are:

WHITESPACE_ONLY
Removes only unnecessary white space and comments. Other optimizations are
turned off.

SIMPLE_OPTIMIZATIONS
The default setting for Closure Compiler. This setting removes unnecessary white
space and comments while also renaming local variables to shorter names. The
renaming happens even in the presence of eval() and with, so it may cause runtime
errors if either is present.

ADVANCED_OPTIMIZATIONS
Every optimization possible is done on the code. Use with caution, as this can
introduce runtime or syntax errors.

Once you decide which options to use, place them in a Java properties file, such as:

src.dir = ./src
lib.dir = ./lib

closure = ${lib.dir}/compiler.jar

closure.options = --compilation_level SIMPLE_OPTIMIZATIONS

154 | Chapter 17: Minification and Compression

To run Closure Compiler on the command line, type the following:

java -jar compiler.jar [options] --js [file] --js_output_file [outputfile]

For example:

java -jar compiler.jar --compilation_level SIMPLE_OPTIMIZATIONS --js core/core.js
 --js_output_file core/core-min.js

This command runs Closure Compiler on core/core.js and outputs the result to core/
core-min.js. The Ant target is basically the same as the one used with YUI Compressor:

<target name="minify">

 <apply executable="java" failonerror="true">

 <fileset dir="${build.dir}" includes="*.js"/>
 <mapper type="glob" from="*.js" to="${build.dir}/*-min.js"/>

 <arg line="-jar"/>
 <arg path="${closure}"/>
 <arg line="${closure.options}"/>

 <arg line="--js"/>
 <srcfile/>

 <arg line="--js_output_file"/>
 <targetfile/>
 </apply>

</target>

Aside from changing the JAR file path and command-line options, this target is virtually
identical to the minify target. The end result is the same: every JavaScript file in the
build directory is minified and output into a second file with the -min suffix.

Buildr has a <closure> task that encapsulates all of this functionality. You can set the
compilation level using the compilation-level attribute. As with the <yuicompressor>
task, the outputdir attribute is required and indicates where the minified files should
be placed. Here’s an example:

<target name="minify">
 <closure outputdir="${build.dir}" compilation-level="SIMPLE_OPTIMIZATIONS">
 <fileset dir="${build.dir}" includes="*.js" />
 </closure>
</target>

The <closure> task automatically adds the -min suffix to all files it creates. You can
include one or more elements to minify everything at once.

Minification | 155

Minifying with UglifyJS
UglifyJS is most commonly used on the command line through npm, the Node.js pack-
age manager. You must have both Node.js and npm installed first before you can install
UglifyJS, which is done with this command:

sudo npm install -g uglify-js

The UglifyJS command-line interface also has a large number of options. However, the
most commonly used are:

--beautify
Beautifies the code instead of minifying it

--no-mangle
Turns off function and variable name replacement

--no-mangle-functions
Turns off only function name replacement

--no-dead-code
Enables removal of unreachable code

The basic format of UglifyJS on the command line is:

uglifyjs [options] -o [outputfile] [file]

For example:

uglifyjs --no-mangle-functions -o core/core-min.js core/core.js

This command runs UglifyJS on core/core.js and outputs the result to core/core-min
.js. It’s important that the original file comes after all of the other options.

As with the other minifiers, it’s best to put your preferred options into a properties file,
as in:

src.dir = ./src
lib.dir = ./lib

uglifyjs = uglifyjs

uglifyjs.options = --no-mangle-functions

The Ant target for UglifyJS is a bit easier than the others, because it is a standalone
executable. Instead of setting the executable attribute of <apply> to Java, set it to
uglifyjs. Then pass the additional information as usual:

<target name="minify">

 <apply executable="uglifyjs" failonerror="true">

 <fileset dir="${build.dir}" includes="*.js"/>
 <mapper type="glob" from="*.js" to="${build.dir}/*-min.js"/>

 <arg line="${ugilfyjs.options}"/>

156 | Chapter 17: Minification and Compression

 <arg line="-o"/>
 <targetfile/>
 <srcfile/>
 </apply>

</target>

The minify target is the same basic format as the other targets in this chapter and
produces a similar result. All of the files in the build directory are minified and placed
into files with the -min suffix.

Buildr has an <uglifyjs> task that makes using UglifyJS easier. Each of the command-
line options is available as an attribute (without the leading --), and as with the other
minification tasks, the outputdir attribute is required. Here’s an example:

<target name="minify">
 <uglifyjs outputdir="${build.dir}" no-mangle-functions="true">
 <fileset dir="${build.dir}" includes="*.js" />
 </uglifyjs>
</target>

The <uglifyjs> task works in the same way as the others: -min is automatically added
to minified filenames, and you can specify as many <fileset> elements as you’d like.

Compression
Minification of JavaScript files is the first step before deployment. The second is to
compress the files to be as small as possible during transmission. The minifiers men-
tioned in this chapter don’t perform compression on JavaScript (even YUI Compressor
only performs minification). Compression usually happens later in the process, either
at runtime using HTTP compression on the web server or during build time.

Runtime Compression
Most web servers are capable of performing runtime compression of files. In practice,
such compression is typically done only for text-based files such as JavaScript, HTML,
and CSS. Modern browsers all support HTTP compression and will send an HTTP
header as part of a request indicating the types of compression supported. For example:

Accept-Encoding: gzip, deflate

When the server sees this HTTP header in a request, it knows the browser is capable
of decompressing files that are compressed using either gzip or deflate. When the server
sends the response, it sets a header indicating the type of compression used, such as:

Content-Encoding: gzip

This header tells the browser that the body of the response is gzipped and must be
uncompressed before use.

Compression | 157

Apache 2, one of the most popular web servers, has HTTP compression built in as
the mod_deflate module. This module is enabled by default and automatically com-
presses JavaScript, HTML, CSS, and XML files. If you’re using Apache 2, then you
don’t need to do any further configuration for compressing JavaScript files.

Nginx, another popular web server, also has HTTP compression built in using gzip.
Compression is also enabled by default for JavaScript, HTML, CSS, and XML files. If
you’re using Nginx, then no further configuration is needed to enable compression for
JavaScript.

Internet Explorer 6 and earlier had problems with HTTP compression
in certain situations. Apache 2 and Nginx allow you to turn off HTTP
compression for these browsers if necessary. Since Microsoft began
auto-upgrading everyone with Internet Explorer 6 to Internet Explorer
8 in 2012, this should no longer be much of a problem.

Build-Time Compression
You may choose to compress files during build time if you want to distribute the com-
pressed file yourself without any server intervention. jQuery builds a gzipped version
of the main JavaScript file and makes it available for download from http://jquery
.com. Gzipping is the easiest way to perform compression at build time due to Ant’s
<gzip> task.

The <gzip> task works only on a single file. You specify the src attribute as the filename
to compress and the destfile attribute as the output file. For example:

<gzip src="${build.dir}/build.js" destfile="${build.dir}/build.js.gz"/>

This task gzips the build.js file and outputs the result to build.js.gz. You can certainly
use <gzip> in this manner if you only ever have one file to gzip. For example:

<target name="compress">

 <gzip src="${build.dir}/build.js" destfile="${build.dir}/build.js.gz"/>

</target>

In this case, the filenames should be stored in properties so they can be easily changed
later.

A little bit of creativity is required to gzip multiple files without explicitly setting their
filenames. Ant doesn’t have a native way of looping over a list of files. However, it’s
possible to use JavaScript inside of Ant to provide this behavior.

The Ant <script> task allows you to write scripts in a number of languages, of which
JavaScript is just one. To specify JavaScript as the language you’re using, set the lan
guage attribute to "javascript". After that, enclose the contents of the <script> element
with CData delimiters such as this:

158 | Chapter 17: Minification and Compression

http://jquery.com
http://jquery.com

<script language="javascript"><![CDATA[

 // code here

]]></script>

Adding the CData delimiters ensures that you needn’t worry about escaping characters
within the script.

JavaScript inside of the <script> task executes in an environment similar to the default
environment in Rhino. You have access to Java objects and can import more by using
the importPackage() function. There is also a project object that refers to the overall
project represented in build.xml. You can read properties using project.getProp
erty() and create new tasks using project.createTask(). Putting these pieces together,
you can create a compress target that compresses all files in the build directory:

<target name="compress">

 <!-- store filenames in a property delimited by ; -->
 <pathconvert pathsep=";" property="compress.jsfiles">
 <fileset dir="${build.dir}" includes="*.js"/>
 </pathconvert>

 <script language="javascript"><![CDATA[

 importPackage(java.io);

 <!-- get the property and convert to an array-->
 var files = project.getProperty("compress.jsfiles").split(";"),
 gzip,
 i,
 len;

 for (i=0, len=files.length; i < len; i++) {

 // create new gzip task
 gzip = project.createTask("gzip");
 gzip.setSrc(new File(files[i]));
 gzip.setDestfile(new File(files[i].replace(".js", ".js.gz")));
 gzip.perform();
 }

]]> </script>
</target>

The first part of the compress target converts a <fileset> into a property. The property
compress.jsfiles is filled with a string in which the filenames are separated by semi-
colons. Inside the <script> task, the first line imports the java.io package so that the
File class is available. Next, the compress.jsfiles property is read and split with sem-
icolons so that files is an array of filenames.

After that, a for loop is used to iterate over the filenames. For each filename, a new
<gzip> task is created using project.createTask("gzip"). The gzip variable then

Compression | 159

contains a Java object representing the task. Each attribute has a method for setting its
value and a method for getting its value, so setSrc() is used to set the src attribute and
setDestfile() is used to set the destfile attribute. Both attributes represent files, so
it’s necessary to pass an instance of File instead of the filename. The output file is set
to have a .js.gz extension by using the JavaScript replace() method on the filename.
The last step is to call perform(), which actually executes the task.

This version of the compress target doesn’t rely on knowing the filename ahead of time
and is therefore better suited for general usage.

There is a Buildr <gzipall> task that allows you to compress multiple files:

<target name="compress">
 <gzipall>
 <fileset dir="${build.dir}" includes="*-min.js" />
 </gzipall>
</target>

Using <gzipall>, a gzipped file is created with a .gz appended to the filename.

If you intend to serve the compressed file yourself, you’ll still need to
configure the web server to send the Content-Encoding: gzip header so
that the browser can use the file correctly.

160 | Chapter 17: Minification and Compression

CHAPTER 18

Documentation

All engineers would rather be writing code than documentation, which is precisely why
tools that autogenerate documentation from code are so popular. The trend really be-
gan with Javadoc, the tool that automatically creates documentation for Java, and con-
tinued into other languages such as JavaScript.

There is a large (and growing) number of documentation generators that work with
JavaScript. Some are general-purpose documentation generators that work with any
language; others are JavaScript-specific. As with minifiers, the choice of documentation
generator is more of a preference than anything else. This chapter covers a few popular
choices; there are many more out there. See Appendix B for a full list of alternatives.

JSDoc Toolkit
JSDoc Toolkit is perhaps the most commonly used JavaScript documentation genera-
tor. An evolution of the original JSDoc released in 2011, JSDoc Toolkit is used by
Google and SproutCore and is often credited with starting the trend of writing Java-
Script-specific documentation generators. It uses the same basic syntax as Javadoc, with
special multiline comments indicating documentation information. For example:

/**
 * @namespace The main application object.
 */
var MyApplication = {

 /**
 * Adds two numbers together.
 * @param {int} num1 The first number.
 * @param {int} num2 The second number.
 * @returns {int} The sum of the two numbers.
 * @static
 */
 add: function (num1, num2) {
 return num1 + num2;
 }
}

161

http://code.google.com/p/jsdoc-toolkit/

Any object for which there is no constructor to call is considered a namespace in JSDoc.
So MyApplication is a namespace and is indicated as such by the @namespace tag followed
by the description. The method MyApplication.add() has two parameters, specified by
@param and followed by the expected data type, the parameter name, and the descrip-
tion. The method returns a result, so the @return tag indicates the expected data type
and describes the return value. The @static tag indicates that the method doesn’t re-
quire instantiation of an object to be used.

When JSDoc Toolkit processes JavaScript files, it looks both at the JavaScript code and
at the documentation comments to create HTML-based documentation. For full syntax
information, see http://code.google.com/p/jsdoc-toolkit/w/list.

JSDoc Toolkit is written almost entirely in JavaScript and uses a custom Rhino launcher
JAR file (jsrun.jar) to execute:

java -jar jsrun.jar app/run.js [file]+ -t=[templates] -d=[directory] [options]

The app/run.js file is the main executable for JSDoc toolkit. You can pass in as many
JavaScript files as you’d like to document. The -t flag specifies the templates to use (by
default, you can use the ones that come with JSDoc Toolkit) and -d specifies the output
directory. For example:

java -jar jsrun.jar app/run.js core/core.js -t=templates/jsdoc/ -d=./out

This command creates documentation for core/core.js using the templates in templates/
jsdoc/ and outputs the final HTML documentation to the out directory. Because you
need to use the JSDoc Toolkit directory several times (for jsrun.jar, app/run.js, and the
default templates), it’s best to keep this information in properties, as in the following:

src.dir = ./src
lib.dir = ./lib

jsdoc.dir = ${lib.dir}/jsdoc-toolkit
jsdoc = ${jsdoc.dir}/jsrun.jar
jsdoc.run = ${jsdoc.dir}/app/run.js
jsdoc.templates = ${jsdoc.dir}/templates
jsdoc.output = ./docs

The target for generating documentation is as follows:

<target name="document">
 <apply executable="java" failonerror="true" parallel="true">
 <fileset dir="${src.dir}" includes="**/*.js" />
 <arg line="-jar"/>
 <arg path="${jsdoc}"/>
 <arg path="${jsdoc.run}" />
 <arg line="-t=${jsdoc.templates}" />
 <arg line="-d=${jsdoc.output}" />
 <srcfile/>
 </apply>
</target>

162 | Chapter 18: Documentation

http://code.google.com/p/jsdoc-toolkit/w/list

Because the built files have all comments stripped, the document target generates doc-
umentation on the source files instead. Similar to the validate target, the <apply> task
has parallel set to "true" so that all of the files are passed on the command line at
once. The rest are just <arg> elements specifying the different options. By default, the
documentation is generated into a top-level docs directory, but you may want to change
that location based on your directory structure.

The Buildr task for JSDoc is <jsdoc> and has a required outputdir attribute. There is
also a templates attribute that is optional (if you don’t want to use the default). For
example:

<target name="document">
 <jsdoc outputdir="${jsdoc.output}">
 <fileset dir="${src.dir}" includes="**/*.js" />
 </jsdoc>
</target>

This target functions the same as the previous version but is a bit more obvious about
what it’s doing.

YUI Doc
The original version of YUI Doc was written in Python and was used by the YUI library
for several years. More recently, a new JavaScript version was created that understands
the same syntax. This is the tool that generates the documentation on http://yuilibrary
.com. The syntax is very similar to JSDoc, as it is based off of Javadoc-style comments.
The biggest difference is that YUI Doc requires you to name your properties and meth-
ods in the documentation comment, whereas JSDoc is able to infer the name from
looking at the JavaScript code. For example:

/**
 * The main application object.
 * @class MyApplication
 * @static
 */
var MyApplication = {

 /**
 * Adds two numbers together.
 * @param {int} num1 The first number.
 * @param {int} num2 The second number.
 * @returns {int} The sum of the two numbers.
 * @method add
 */
 add: function (num1, num2) {
 return num1 + num2;
 }
}

YUI Doc | 163

http://yuilibrary.com
http://yuilibrary.com

In YUI Doc terms, MyApplication is a class even though it has no constructor. The class
description is the first line, and @class MyApplication identifies the object as a class.
Because there is no constructor, the @static tag indicates that MyApplication is an object
and all of its methods are accessed statically. The MyApplication.add() method has
syntax that’s very similar to JSDoc, with the main difference being the @method tag
indicating the method name.

YUI Doc is written in JavaScript and runs on Node.js. It can be installed using npm via:

sudo npm install -g yuidoc

The command line for YUI Doc is simpler than that of JSDoc:

yuidoc [options] [directory]+ -o [directory]

For example:

yuidoc ./src -o ./docs

This command recursively goes through the src directory and parses all JavaScript files
it finds. The generated HTML documentation ends up in the docs directory. Even
though there are command-line options for YUI Doc, they aren’t necessary in order to
get up and running. The properties for YUI Doc are simple:

src.dir = ./src
lib.dir = ./lib

yuidoc = yuidoc
yuidoc.output = ./docs

You may be wondering what the value of having yuidoc = yuidoc is, as it’s redundant.
It’s always best to keep application paths as properties, because paths and filenames
have a tendency to change over time. Even though these are identical now, there’s no
telling if this will remain true in the future. When things change, you want to be able
to make a quick change to the properties file rather than going through the build.xml
to find where the executable is set.

Because YUI Doc expects one or more directories to be passed in instead of files, the
target becomes very simple when there’s just one source directory:

<target name="document">
 <exec executable="yuidoc" failonerror="true">
 <arg path="${src.dir}"/>
 <arg line="-o" />
 <arg path="${yuidoc.output}"/>
 </exec>
</target>

This target uses <exec> instead of <apply>, because there is only a single directory being
passed in. The <exec> task functions similarly to <apply>, except that it doesn’t require
a <srcfile> element. The <arg> elements construct the full command line.

164 | Chapter 18: Documentation

The Buildr <yuidoc> task encapsulates this functionality and has two required at-
tributes, inputdir and outputdir, to specify where the JavaScript files are and where
the documentation should be generated, respectively. For example:

<target name="document">
 <yuidoc inputdir="${src.dir}" outputdir="${yuidoc.output}"/>
</target>

The <yuidoc> task assumes that you have YUI Doc installed already.

YUI Doc | 165

CHAPTER 19

Automated Testing

Testing JavaScript has long been a pain point for developers. You want to test JavaScript
quickly and easily, but there are so many browsers to test. The first solution was manual
testing across all browsers, which meant creating an HTML file and manually loading
it in various browsers to ensure that it worked. Though functional, this approach was
too slow for practical use.

The next wave of JavaScript testing focused on command-line testing by stubbing out
the browser environment. Several attempts were made to get JavaScript testing on the
command line using Rhino and a fake browser environment. Some companies even
developed browser profiles that could be loaded in with the promise of cross-browser
testing. The unfortunate reality was that these stubbed browser environments didn’t
do the job. Trying to recreate a truly unique environment by hand led to inconsistencies:
your tests might pass in the “fake Firefox” but fail in the actual browser.

More recently, attempts have been made to use the actual browsers for testing. This
approach typically involves using an HTML file to launch tests and then having an
application load that file in the different browsers. Many of the tools mentioned in this
chapter are still under development, but they all give you a good starting point for
integrating browser-based JavaScript testing.

YUI Test Selenium Driver
YUI Test is the unit testing framework for the YUI Library. The most recent version of
YUI Test is more than a simple testing library. In addition to removing dependencies
on the core YUI library, YUI Test supports a suite of utilities to aid JavaScript testing.
One of these tools is called the YUI Test Selenium Driver and is designed to work with
Selenium to enable easy browser testing.

Selenium is a server that is capable of launching browsers and running commands inside
of them. Originally intended for use by QA engineers writing functional tests, Selenium
gained popularity for JavaScript testing due to the ease with which it interacts with
browsers.

167

http://yuilibrary.com/projects/yuitest
http://seleniumhq.com

Setting Up a Selenium Server
The YUI Test Selenium Driver works with a Selenium server to run JavaScript tests on
various browsers and return the results. The first step is to set up your Selenium server
(if you don’t already have one). Selenium is written in Java, so it can be run anywhere
Java is installed. Download the latest Selenium server from http://seleniumhq.org/down
load/.

To run your Selenium server, go to the directory containing the downloaded files and
run:

java -jar selenium-server-standalone-x.y.z.jar

The server takes a few moments to set up and then is ready to receive commands.

Setting Up YUI Test Selenium Driver
There are three steps to setting up the YUI Test Selenium Driver:

1. Download the latest version of YUI Test.

2. Place yuitest-selenium-driver.jar in your dependencies directory.

3. Copy selenium-java-client-driver.jar from the YUI Test lib directory into your Java
Runtime Environment (JRE)’s lib/ext directory.

With these steps completed, it’s now possible to run tests using the YUI Test Selenium
Driver.

Using the YUI Test Selenium Driver
The YUI Test Selenium Driver uses HTML files for testing. Even if your tests are in
standalone JavaScript files, you must include them in an HTML file that automatically
runs the tests upon page load. The following is an example test page:

<!DOCTYPE html>
<html>
<head>
 <title>YUI Test</title>

 <!-- include YUI Test library -->
 <script src="yuitest.js"></script>

 <!-- include your test files -->
 <script src="tests1.js"></script>
 <script src="tests2.js"></script>
</head>
<body>
 <script>
 YUITest.TestRunner.run();
 </script>
</body>
</html>

168 | Chapter 19: Automated Testing

http://seleniumhq.org/download/
http://seleniumhq.org/download/

Each of the JavaScript test files should add their tests to YUI Test via YUITest.TestRun
ner.add(). That way, the tests can simply be run automatically once they’re fully
loaded.

Assuming this HTML file lives on a server as http://www.example.com/tests.html, you
can then run the tests using the following command:

java -jar yuitest-selenium-driver.jar [options] [url]+

For example:

java -jar yuitest-selenium-driver.jar http://www.example.com/tests.html

This command runs the given file in Firefox (the default browser on Selenium) and
assumes the Selenium server is running on localhost:4444 (the default Selenium port).
You can change the location of Selenium by adding some options:

java -jar yuitest-selenium-driver.jar --host testing.example.com
 --port 9000 http://www.example.com/tests.html

This command runs the given file in Firefox on the Selenium server at testing.exam
ple.com:9000. You can also specify additional browsers using the Selenium IDs:

java -jar yuitest-selenium-driver.jar
 --browsers *firefox,*iexplore http://www.example.com/tests.html

This command runs the tests both in Firefox and in Internet
Explorer. The --browsers option passes through these options directly to Selenium and
must therefore specify valid Selenium browsers. An error occurs if a given browser isn’t
available on the specified Selenium server.

Although it’s possible to pass test URLs on the command line, most developers use the
test configuration XML file instead. The XML file has the following format:

<?xml version="1.0"?>
<yuitest>
 <tests base="http://www.example.com/tests/" timeout="10000">
 <url>test_core</url>
 <url timeout="30000">test_util</url>
 <url>test_ui</url>
 </tests>
</yuitest>

The <tests> element is used to specify a base path and default timeout value for each
test. Then, each <url> element specifies the relative path to a test page. Tell the YUI
Test Selenium Driver to use the XML file instead of the command line by specifying
the --tests option:

java -jar yuitest-selenium-driver.jar --tests tests.xml

The YUI Test Selenium Driver then goes through each of the tests, runs them on each
of the specified browsers, and returns all of the results.

YUI Test Selenium Driver | 169

There is an --erroronfail option that indicates the YUI Test Selenium Driver should
exit with a nonzero code when a test fails. It’s a good idea to specify this option so that
the build will stop when a test fails rather than continue.

The Ant Target
To create the Ant target, start by specifying the key pieces of data in a properties file:

src.dir = ./src
lib.dir = ./lib
tests.dir = ./tests

yuitestselenium = ${lib.dir}/yuitest-selenium-driver.jar

yuitestselenium.host = testing.example.com
yuitestselenium.port = 4444
yuitestselenium.tests = ${lib.dir}/tests.xml
yuitestselenium.browsers = *firefox

The Ant target uses the <exec> task to run the YUI Test Selenium Driver and pass in
the relevant information:

<target name="test">

 <exec executable="java" failonerror="true">
 <arg line="-jar"/>
 <arg path="${yuitestselenium}"/>
 <arg line="--host ${yuitestselenium.host}"/>
 <arg line="--port ${yuitestselenium.port}"/>
 <arg line="--browsers ${yuitestselenium.browsers}"/>
 <arg line="--tests ${yuitestselenium.tests}"/>
 <arg line="--erroronfail"/>
 </exec>

</target>

The test target will fail if the Selenium Server isn’t running, or if a test times out, or if
a specified browser doesn’t exist. It’s important to check all of these conditions before
running tests.

The Buildr <yuitest-selenium> task encapsulates all of this functionality. The -error
onfail flag is always passed in, and the other options are available as attributes:

<target name="test">

 <yuitest-selenium host="${yuitestselenium.host}"
 port="${yuitestselenium.port}" browsers="${yuitestselenium.browsers}"
 tests="${yuitestselenium.tests}"/>

</target>

The tests attribute is required for <yuitest-selenium>; all other attributes are optional.

170 | Chapter 19: Automated Testing

Yeti
Yeti is another tool designed to work with YUI Test. Unlike the YUI Test Selenium
Driver, Yeti is a completely standalone solution written in JavaScript that runs on
Node.js. Yeti requires you to have an HTML file that automatically executes your tests,
so you can use the same HTML files that are used with the YUI Test Selenium Driver.

You can install Yeti via npm with:

sudo npm install -g yeti

Running Yeti is simply a matter of passing in the HTML file on the command line:

yeti test.html

This command runs all of the tests on Firefox or Safari by default (depending on plat-
form) and outputs the result to the command line. If a Yeti server is running locally,
then this command also runs tests on all connected browsers and reports all results.

Due to the simplicity of Yeti, the Ant target requires very little configuration in a prop-
erties file:

src.dir = ./src
lib.dir = ./lib
tests.dir = ./tests

yeti = yeti

And the Ant target itself is very straightforward as well:

<target name="test">

 <apply executable="yeti" failonerror="true" parallel="true">
 <fileset dir="${tests.dir}" includes="**/*.html" />
 <srcfile/>
 </apply>

</target>

The test target uses the <apply> task to pass all HTML files found in the tests directory
to Yeti. The results are output on the screen, and the build will fail if there are errors.

The Buildr <yeti> task makes using Yeti even simpler:

<target name="test">

 <yeti>
 <fileset dir="${tests.dir}" includes="**/*.html" />
 </yeti>

</target>

Keep in mind that the <yeti> task requires you to have Yeti already installed on the
computer that is executing the build script.

Yeti | 171

http://yuilibrary.com/projects/yeti

PhantomJS
PhantomJS is a headless version of WebKit, the rendering engine that powers Safari
and Chrome. As such, it acts very similarly to these browsers (though not exactly the
same) and allows you to perform true browser testing without actually opening a
browser. PhantomJS comes with scripts to run tests in two different JavaScript testing
frameworks: Jasmine and QUnit.

PhantomJS isn’t just a browser—it’s also a scripting environment for that browser. The
scripts to run Jasmine and QUnit are part of a suite of scripts that ships with PhantomJS.
Both scripts require you to use the appropriate HTML page template for the framework
being used.

Installation and Usage
If you’re using Ubuntu, then you can install via apt-get using:

$ sudo add-apt-repository ppa:jerome-etienne/neoip
$ sudo apt-get update
$ sudo apt-get install phantomjs

If you’re using Homebrew on Mac OS X, you can also install PhantomJS via the fol-
lowing command:

brew install phantomjs

For other platforms, download the latest executable for your platform from http://code
.google.com/p/phantomjs/downloads/list. Place the entire PhantomJS directory in an
easily accessible location (your dependencies directory or someplace else). The scripts
to run Jasmine and QUnit tests are in the examples directory.

If you installed using Homebrew or apt-get, then you’ll need to down-
load the files to run Jasmine and QUnit tests from the PhantomJS repos-
itory, as these are not included by default.

PhantomJS runs Jasmine and QUnit tests on the command line in the following format:

phantomjs [driver] [HTML file]

For example, to run QUnit:

phantomjs examples/run-qunit.js tests.html

And to run Jasmine:

phantomjs examples/run-jasmine.js tests.html

The results are output onto the command line.

172 | Chapter 19: Automated Testing

http://www.phantomjs.org
http://pivotal.github.com/jasmine/
http://docs.jquery.com/QUnit
http://code.google.com/p/phantomjs/downloads/list
http://code.google.com/p/phantomjs/downloads/list

The Ant Target
As with Yeti, the Ant target for PhantomJS is quite simple. There are just a few prop-
erties to keep track of:

src.dir = ./src
lib.dir = ./lib
tests.dir = ./tests

phantomjs = phantomjs
phantomjs.driver = ${lib.dir}/phantomjs/examples/run-qunit.js
phantomjs.tests = tests.html

Because the PhantomJS test runners support passing in only one file at a time, the Ant
target uses <exec> instead of <apply>:

<target name="test">

 <exec executable="phantomjs" failonerror="true">
 <arg path="${phantomjs.driver}"/>
 <arg path="${tests.dir}/${phantomjs.tests}"/>
 </exec>

</target>

The test target just passes two paths to the executable and fails if there’s an error.

The Buildr <phantomjs> task allows you to perform the same operation with a slightly
different syntax:

<target name="test">

 <phantomjs driver="${phantomjs.driver}">
 <fileset dir="${tests.dir}" includes="*.html" />
 </phantomjs>

</target>

The driver attribute is required and specifies the PhantomJS driver to use for your tests.
The <phantomjs> task expects one or more <fileset> elements to be present specifying
the tests to run. Otherwise, it behaves the same as the previous test target.

JsTestDriver
JsTestDriver is a command-line utility written by engineers at Google. Similar to Sele-
nium and Yeti, JsTestDriver works with already installed browsers to run tests. JsTest-
Driver has its own JavaScript testing framework as well, so you must write tests using
that library by default. There is a QUnit adapter to allow QUnit-based tests to be ex-
ecuted with JsTestDriver, and it’s possible to write your own adapter if you so choose.

JsTestDriver | 173

http://code.google.com/p/js-test-driver/

Installation and Usage
JsTestDriver is written in Java, so you must first download the latest JAR file and put
it into your dependencies directory. JsTestDriver’s most common mode is to run on a
developer machine by manually connecting browsers to the JsTestDriver server.
Configuration information, including which files to execute as tests, are included in a
YAML file that looks like this:

server: http://localhost:4224

load:
 - tests/*.js

The first line indicates where the JsTestDriver server should be set up and the load
section indicates which JavaScript files to load for testing.

For a build system, JsTestDriver offers a command that automatically starts and stops
browsers all while collecting test results. The format is as follows:

java -jar JsTestDriver.jar --port [port] --browser [browsers] --config [file]
 --tests all --testOutput [directory]

For example:

java -jar JsTestDriver.jar --port 4224 --browser firefox,iexplore
 --config conf/conf.yml --tests all --testOutput ./results

This command runs all tests specified in conf/conf.yml on Firefox and Internet Explorer
and outputs the results in results. The --browsers option requires the path to the
browser executables, so this example assumes that both firefox and iexplore are ex-
ecutable without a full path.

The Ant Target
Creating a target for JsTestDriver requires keeping track of a few key pieces of infor-
mation:

src.dir = ./src
lib.dir = ./lib
tests.dir = ./tests

jstestdriver = ${lib.dir}/JsTestDriver.jar
jstestdriver.port = 4224
jstestdriver.browser = firefox,iexplore
jstestdriver.config = conf/conf.yml
jstestdriver.output = ./results

The Ant target looks very similar to the one for YUI Test Selenium Driver:

<target name="test">

 <exec executable="java" failonerror="true">
 <arg line="-jar"/>
 <arg path="${jstestdriver}"/>

174 | Chapter 19: Automated Testing

 <arg line="--port ${jstestdriver.port}"/>
 <arg line="--browser ${jstestdriver.browser}"/>
 <arg line="--conf"/>
 <arg path="${jstestdriver.config}"/>
 <arg line="--tests all"/>
 <arg line="--testOutput"/>
 <arg path="${jstestdriver.output}"/>
 </exec>

</target>

As currently configured, this Ant target will run all tests specified in the configuration
file on Firefox and Internet Explorer.

The Buildr <jstestdriver> task makes it simpler to use JsTestDriver. There are two
required attributes: outputdir for the location of the results and config for the location
of the configuration file. All other command-line options are present as attributes as
well. The following is equivalent to the last example target:

 <target name="test">

 <jstestdriver config="${jstestdriver.config}"
 outputdir="${jstestdriver.output}"
 tests="all" port="${jstestdriver.port}"
 browser="${jstestdriver.browser}"/>

 </target>

JsTestDriver | 175

CHAPTER 20

Putting It Together

The preceding chapters about the build system focused on creating small pieces of a
build system, creating a library of utilities that could easily be put together later. This
chapter focuses on assembling the system into an end-to-end solution for your Java-
Script. For your final system, you may have more complex functionality and may choose
to use a bundled set of tasks such as Buildr, but there are still some common pieces of
functionality that all build systems have.

Missing Pieces
Before putting together the build system, there are a couple of small steps that are
missing. The first is the creation of the build directory. As this directory is transient
(and won’t be checked in), the build system is responsible for its creation. The
<mkdir> Ant task handles this easily:

<target name="init">
 <mkdir dir="${build.dir}"/>
</target>

The init target just does one thing: create the build directory so all the built files have
a place to be put. It’s possible that other tasks, such as <concat>, may end up making
this directory if it doesn’t already exist. However, it’s best to explicitly state each step
of the build process to ensure that reordering of tasks or targets doesn’t cause errors.

The second missing piece is the cleanup of the build directory. In between builds, you
want to remove all files and start over from scratch. The fastest way to do that is simply
to delete the build directory using the <delete> task:

<target name="clean">
 <delete dir="${build.dir}"/>
</target>

The clean target removes the build directory so you’re certain to get the latest files.

177

Planning the Build
To put the build system pieces together in the correct order, it helps to think about
your development process and the different build types you’ll need. It’s very rare for a
project to have a single build type and much more common for there to be at least three:

Development
A development build is run by developers as they are working. This build should
be as fast as possible so as not to interrupt developer productivity. Generally
speaking, you want to prevent accidental errors and get the code into good testing
shape so that developers can load it into the browser for hands-on testing. This
build should take no more than 15 seconds, so you need to choose what you’re
doing carefully. If you’re working on a web application, you may want to have a
separate JavaScript development build that can be run independently of the overall
web application build. This is also typically the default build.

Integration
An automated build that is run on a regular schedule. These are sometimes run for
each commit, but on large projects, they tend to be run on intervals for a few
minutes. The integration build is responsible for finding problems in the entire
system. Because it’s automated, this build can take longer to complete but must
be as thorough as possible. In some cases, the integration build is the last line of
defense before pushing changes to production.

Release
An on-demand build that is run only prior to a production push. This build’s job
is mostly to get the code into its final form so that it can be deployed. In theory, if
the integration build did its job, then the release build shouldn’t have errors. In
practice, that’s not always the case. The release build may be responsible for a few
more tasks that could also cause errors before deployment.

Of course, your project have many more build types depending on your development
process.

Your build.xml should always start out looking like this:

<project name="yourapp" default="build.dev">

 <!-- import properties -->
 <loadproperties srcfile="yourapp.properties" />

 <!-- define or import utility targets here -->

 <!-- initialization and cleanup -->
 <target name="init">
 <mkdir dir="${build.dir}"/>
 </target>

178 | Chapter 20: Putting It Together

 <target name="clean">
 <delete dir="${build.dir}"/>
 </target>

 <!-- main builds -->
 <target name="build.dev">
 </target>

 <target name="build.int">
 </target>

 <target name="build.release">
 </target>

</project>

Make sure to begin by importing the properties file(s) to get all of the data needed for
the targets. Then, either include or import the utility targets such as those created in
the preceding build system chapters. Sometimes it helps to keep the utility targets in
one or more separate XML files, but ultimately it’s up to you. After that, the init and
clean targets round out the utility targets. The final section contains targets for each
build type.

The Development Build
The development build is important to get correct because it affects every developer’s
workflow. Generally speaking, the goal of the development build is to get the code into
the development environment as quickly as possible while still performing some sanity
checks. Most development builds do just two things: validate the code and then con-
catenate the files. Because developers need the full source code for debugging, there is
no point in minifying code at this point. Here’s how the build.dev target looks:

<project name="yourapp" default="build.dev">

 <!-- omitted for clarity -->

 <!-- main builds -->
 <target name="build.dev" depends="clean,init,validate,concatenate">
 </target>

</project>

All of the primary build targets should look this simple, as they are simply tying together
other targets in a particular order. The build.dev target specifies that it depends on the
clean, init, validate, and concatenate targets to work. So running ant build.dev runs
those four targets and does nothing else. As mentioned earlier, you should always en-
sure that you’re starting with freshly built files, so be sure to remove old files first.
Because the concatenate target also places the built files into the correct directory, the
build.dev target is complete and should result in all the code being ready for use.

Planning the Build | 179

It’s optional, but you might want to include testing in the development
build or to let developers run ant test separately on their own. Keep in
mind that testing takes more time due to the need to set up and tear
down browser instances.

The Integration Build
The integration build runs automatically as part of a continuous integration (CI) sys-
tem, so it has more steps to complete. Because this build is the main defense against
errors, it should include as much validation and testing as possible. At a minimum, it
should do everything the development build does plus unit testing. This is also a good
location to place documentation generation so that other developers can see what
changes have been made to the code. Here’s a sample:

<project name="yourapp" default="build.dev">

 <!-- omitted for clarity -->

 <!-- main builds -->
 <target name="build.int depends="build.dev,minify,test,document">
 </target>

</project>

The build.int target first runs build.dev to complete the validation and concatenation
of code. Next, the code is minified, then tested, and then documented. If this build
breaks, it should cause the CI system to report an issue appropriately. Some systems
sends out emails, others make visual changes to a stability dashboard. In any case,
breaking the integration build is a matter that needs to be addressed quickly so that
other developers aren’t blocked.

You may want to include documentation generation in its own auto-
mated build. The reason is that a failure to generate documentation
doesn’t necessarily mean that the code is broken. It might be that the
document generator is broken for some reason. Once again, this largely
depends on your development process and what you think is important
enough to stop and fix before continuing.

The Release Build
The release build is the finish line of the development process. It is this build that
ensures that code is fit for production. By the time code gets to the release build, it
should have been validated and tested, both automatically and manually, and should
therefore mostly be ready. In some cases, the only thing a release build needs to do is
bake the files, inserting copyrights, version numbers, or other associated metadata.
Here’s an example:

180 | Chapter 20: Putting It Together

<project name="yourapp" default="build.dev">

 <!-- omitted for clarity -->

 <!-- main builds -->
 <target name="build.release" depends="build.int,bake">
 </target>

</project>

The build.release target simply runs an integration build and then bakes the files. You
might also want the release build to handle deploying of files to a server. In the case of
JavaScript, this is typically done as part of a larger deployment build process for the
web application or project rather than as part of the release build. However, you can
certainly include a task to upload files to a server or perform other distribution tasks.

Another option for the release build is to simply take the output from
the integration build and bake it before deployment. Doing so can save
time and, assuming there were no errors in the integration build, ensure
that you’re deploying the exact same code that was tested. Once again,
this choice is very project-specific, so be sure to discuss it with your
team.

Using a CI System
Just using a build system is a good first step in creating a maintainable project. The
next step is to integrate your build system into a CI system. CI systems run builds
automatically based on certain actions or regular intervals. For instance, you might run
a build once an hour to get all of the latest checked-in files deployed to an integration
environment. If that fails, it may send emails to the developers asking them to fix any
issues. Having a CI system is an important part of any good software project. Fortu-
nately, there are some excellent free resources for CI.

Jenkins
Jenkins is one of the most widely used CI systems. It is a Java-based web application
that is designed for managing multiple builds. It integrates with several source control
repositories by default and can support almost any others through an extensive plugin
library. Jenkins works natively with Ant as well as shell scripts, meaning that you can
reuse any existing build scripts with Jenkins.

Setting up Jenkins is quite easy; just download the latest WAR file and start it:

java -jar jenkins.war

Jenkins starts up a web server accessible at http://localhost:8080/. Navigate to that lo-
cation in your web browser, and you’re ready to start creating build jobs.

Using a CI System | 181

http://jenkins-ci.org/

A job is a collection of build steps to execute. Click the “New Job” link to create your
first job. The next page asks you to select which type of job you’d like to create. If you’re
just using Ant for your build system, then select “Build a free-style software project.”
After creating the new job, you’re taken to a configuration page.

There are some basic options on the configuration page, but the really interesting parts
start lower on the page, with the section called “Build Triggers.” This is where you
decide how frequently the build should run. It can be triggered after another build
finishes, on a timed schedule, or based on check-ins to source control. For your primary
integration build, you’ll probably want to kick off the build based on check-ins, so the
last option works well. “Poll SCM” means that Jenkins will poll your source control
system (as specified in the previous section). The poll format is the same as setting up
a cron job on a Linux system, so @hourly works for checking source control each hour
(see Figure 20-1).

Figure 20-1. Jenkins build triggers

Next, you set up the job to execute one or more Ant targets. To do so, click the “Add
Build Step” button to display a drop-down menu of options. Select “Invoke Ant.” A
new build step appears in the page asking you to specify the Ant targets to execute (see
Figure 20-2).

If you’re using Jenkins with source control, it will automatically find the build.xml file
in your root directory, so you need specify only the Ant target name. If you’re setting
up the integration build, for example, then enter build.int into the textbox as in
Figure 20-3.

If you’re not using a build.xml file in the project root, or not using Jenkins with source
control, then click on the “Advanced” button and you can specify the path to your
build.xml file manually.

182 | Chapter 20: Putting It Together

After that, you can specify to send an email when the build fails. Jenkins allows you to
specify the email address that should always be used for this notification, as well as for
sending emails to the committers who broke the build (using source control to retrieve
the email address). It’s a good idea to always send an email when the build didn’t
succeed (see Figure 20-4).

Once you’re done setting up email notifications, click “Save” at the bottom of the page
to save the build job. Your build job will now execute once an hour; however, you can
manually run the build at any time by going to Jenkins and clicking the “Build Now”
link.

This is just a brief introduction to Jenkins and the power of continuous integration.
There are many, many more things you can do with Jenkins, such as tracking the results
of unit tests, publishing build logs, setting up dependent builds, and more. The Jenkins
website is a great resource for learning more about the various options available.

Figure 20-2. Adding an Ant build step

Figure 20-3. Specifying an Ant target

Using a CI System | 183

Other CI Systems
CI is a popular area for research, so new solutions are coming out all the time. Here are
some other free CI systems you may want to consider:

Continuum
An Apache project for CI designed to work with Ant and Maven. It is available at
http://continuum.apache.org.

BuildBot
A Python-based build system targeted at engineers. It is available at http://trac
.buildbot.net.

Cruise Control
Another Java-based build system that works as a web application. Ruby and .NET
ports also exist. It is available at http://cruisecontrol.sourceforge.net.

Gradle
Uses a Groovy-based language on top of Ant and Maven for CI. A little bit difficult
for nonprogrammers to work with. It is available at http://www.gradle.org.

Figure 20-4. Configuring email notifications

184 | Chapter 20: Putting It Together

http://continuum.apache.org
http://trac.buildbot.net
http://trac.buildbot.net
http://cruisecontrol.sourceforge.net
http://www.gradle.org

APPENDIX A

JavaScript Style Guide

Programming language style guides are important for the long-term maintainability of
software. This guide is based on the Code Conventions for the Java Programming Lan-
guage and Douglas Crockford’s Code Conventions for the JavaScript Programming
Language. Modifications have been made due to my personal experience and prefer-
ences.

Indentation
Each indentation level is made up of four spaces. Do not use tabs.

// Good
if (true) {
 doSomething();
}

Line Length
Each line should be no longer than 80 characters. If a line goes longer than 80 characters,
it should be wrapped after an operator (comma, plus, etc.). The following line should
be indented two levels (eight characters).

// Good
doSomething(argument1, argument2, argument3, argument4,
 argument5);

// Bad: Following line only indented four spaces
doSomething(argument1, argument2, argument3, argument4,
 argument5);

// Bad: Breaking before operator
doSomething(argument1, argument2, argument3, argument4
 , argument5);

185

http://%20java.sun.com/docs/codeconv/
http://%20java.sun.com/docs/codeconv/
http://javascript.crockford.com/code.html
http://javascript.crockford.com/code.html

Primitive Literals
Strings should always use double quotes (never single quotes) and should always appear
on a single line. Never use a slash to create a new line in a string.

// Good
var name = "Nicholas";

// Bad: Single quotes
var name = 'Nicholas';

// Bad: Wrapping to second line
var longString = "Here's the story, of a man \
named Brady.";

Numbers should be written as decimal integers, e-notation integers, hexadecimal in-
tegers, or floating-point decimals with at least one digit before and one digit after the
decimal point. Never use octal literals.

// Good
var count = 10;

// Good
var price = 10.0;
var price = 10.00;

// Good
var num = 0xA2;

// Good
var num = 1e23;

// Bad: Hanging decimal point
var price = 10.;

// Bad: Leading decimal point
var price = .1;

// Bad: Octal (base 8) is deprecated
var num = 010;

The special value null should be used only in the following situations:

• To initialize a variable that may later be assigned an object value

• To compare against an initialized variable that may or may not have an object value

• To pass into a function where an object is expected

• To return from a function where an object is expected

Examples:

// Good
var person = null;

// Good

186 | Appendix A: JavaScript Style Guide

function getPerson() {
 if (condition) {
 return new Person("Nicholas");
 } else {
 return null;
 }
}

// Good
var person = getPerson();
if (person !== null){
 doSomething();
}

// Bad: Testing against uninitialized variable
var person;
if (person != null){
 doSomething();
}

// Bad: Testing to see if an argument was passed
function doSomething(arg1, arg2, arg3, arg4){
 if (arg4 != null){
 doSomethingElse();
 }
}

Never use the special value undefined. To see if a variable has been defined, use the
typeof operator:

// Good
if (typeof variable == "undefined") {
 // do something
}

// Bad: Using undefined literal
if (variable == undefined) {
 // do something
}

Operator Spacing
Operators with two operands must be preceded and followed by a single space to make
the expression clear. Operators include assignments and logical operators.

// Good
var found = (values[i] === item);

// Good
if (found && (count > 10)) {
 doSomething();
}

// Good

Operator Spacing | 187

for (i = 0; i < count; i++) {
 process(i);
}

// Bad: Missing spaces
var found = (values[i]===item);

// Bad: Missing spaces
if (found&&(count>10)) {
 doSomething();
}

// Bad: Missing spaces
for (i=0; i<count; i++) {
 process(i);
}

Parentheses Spacing
When parentheses are used, there should be no white space immediately after the
opening paren or immediately before the closing paren.

// Good
var found = (values[i] === item);

// Good
if (found && (count > 10)) {
 doSomething();
}

// Good
for (i = 0; i < count; i++) {
 process(i);
}

// Bad: Extra space after opening paren
var found = (values[i] === item);

// Bad: Extra space before closing paren
if (found && (count > 10)) {
 doSomething();
}

// Bad: Extra space around argument
for (i = 0; i < count; i++) {
 process(i);
}

188 | Appendix A: JavaScript Style Guide

Object Literals
Object literals should have the following format:

• The opening brace should be on the same line as the containing statement.

• Each property-value pair should be indented one level with the first property ap-
pearing on the next line after the opening brace.

• Each property-value pair should have an unquoted property name, followed by a
colon (no space preceding it), followed by the value.

• If the value is a function, it should wrap under the property name and should have
a blank line both before and after the function.

• Additional empty lines may be inserted to group related properties or otherwise
improve readability.

• The closing brace should be on a separate line.

Examples:

// Good
var object = {

 key1: value1,
 key2: value2,

 func: function() {
 // do something
 },

 key3: value3
};

// Bad: Improper indentation
var object = {
 key1: value1,
 key2: value2
 };

// Bad: Missing blank lines around function
var object = {

 key1: value1,
 key2: value2,
 func: function() {
 // do something
 },
 key3: value3
};

When an object literal is passed to a function, the opening brace should be on the same
line as if the value is a variable. All other formatting rules listed earlier still apply.

Object Literals | 189

// Good
doSomething({
 key1: value1,
 key2: value2
});

// Bad: All on one line
doSomething({ key1: value1, key2: value2 });

Comments
Make frequent use of comments to aid others in understanding your code. Use com-
ments when:

• Code is difficult to understand.

• The code might be mistaken for an error.

• Browser-specific code is necessary but not obvious.

• Documentation generation is necessary for an object, method, or property (use
appropriate documentation comments).

Single-Line Comments
Single-line comments should be used to documentation one line of code or a group of
related lines of code. A single-line comment may be used in three ways:

• On a separate line, describing the code beneath it

• At the end of a line, describing the code before it

• On multiple lines, to comment out sections of code

When on a separate line, a single-line comment should be at the same indentation level
as the code it describes and be preceded by a single line. Never use multiple single-line
comments on consecutive lines; use a multiline comment instead.

// Good
if (condition){

 // if you made it here, then all security checks passed
 allowed();
}

// Bad: No empty line preceding comment
if (condition){
 // if you made it here, then all security checks passed
 allowed();
}

// Bad: Wrong indentation
if (condition){

190 | Appendix A: JavaScript Style Guide

// if you made it here, then all security checks passed
 allowed();
}

// Bad: This should be a multiline comment
// This next piece of code is quite difficult, so let me explain.
// What you want to do is determine if the condition is true
// and only then allow the user in. The condition is calculated
// from several different functions and may change during the
// lifetime of the session.
if (condition){
 // if you made it here, then all security checks passed
 allowed();
}

For single-line comments at the end of a line, ensure that there is at least one indentation
level between the end of the code and the beginning of the comment:

// Good
var result = something + somethingElse; // somethingElse will never be null

// Bad: Not enough space between code and comment
var result = something + somethingElse;// somethingElse will never be null

The only acceptable time to have multiple single-line comments on successive lines is
to comment out large sections of code. Multiline comments should not be used for this
purpose.

// Good
// if (condition){
// doSomething();
// thenDoSomethingElse();
// }

Multiline Comments
Multiline comments should be used to document code that requires more explanation.
Each multiline comment should have at least three lines:

1. The first line contains only the /* comment opening. No further text is allowed on
this line.

2. The next line or lines have a * aligned with the * in the first line. Text is allowed
on these lines.

3. The last line has the */ comment opening aligned with the preceding lines. No
other text is allowed on this line.

The first line of multiline comments should be indented to the same level as the code
it describes. Each subsequent line should have the same indentation plus one space (for
proper alignment of the * characters). Each multiline comment should be preceded by
one empty line.

Comments | 191

// Good
if (condition){

 /*
 * if you made it here,
 * then all security checks passed
 */
 allowed();
}

// Bad: No empty line preceding comment
if (condition){
 /*
 * if you made it here,
 * then all security checks passed
 */
 allowed();
}

// Bad: Missing a space after asterisk
if (condition){

 /*
 *if you made it here,
 *then all security checks passed
 */
 allowed();
}

// Bad: Wrong indentation
if (condition){

/*
 * if you made it here,
 * then all security checks passed
 */
 allowed();
}

// Bad: Don't use multi-line comments for trailing comments
var result = something + somethingElse; /*somethingElse will never be null*/

Comment Annotations
Comments may be used to annotate pieces of code with additional information. These
annotations take the form of a single word followed by a colon. The acceptable anno-
tations are:

TODO
Indicates that the code is not yet complete. Information about the next steps should
be included.

192 | Appendix A: JavaScript Style Guide

HACK
Indicates that the code is using a shortcut. Information about why the hack is being
used should be included. This may also indicate that it would be nice to come up
with a better way to solve the problem.

XXX
Indicates that the code is problematic and should be fixed as soon as possible.

FIXME
Indicates that the code is problematic and should be fixed soon. Less important
than XXX.

REVIEW
indicates that the code needs to be reviewed for potential changes.

These annotations may be used with either single-line or multiline comments and
should follow the same formatting rules as the general comment type.

Examples:

// Good
// TODO: I'd like to find a way to make this faster
doSomething();

// Good
/*
 * HACK: Have to do this for IE. I plan on revisiting in
 * the future when I have more time. This probably should
 * get replaced before v1.2.
 */
if (document.all) {
 doSomething();
}

// Good
// REVIEW: Is there a better way to do this?
if (document.all) {
 doSomething();
}

// Bad: Annotation spacing is incorrect
// TODO : I'd like to find a way to make this faster
doSomething();

// Bad: Comment should be at the same indentation as code
 // REVIEW: Is there a better way to do this?
if (document.all) {
 doSomething();
}

Comments | 193

Variable Declarations
All variables should be declared before they are used. Variable declarations should take
place at the beginning of a function using a single var statement with one variable per
line. All lines after the first should be indented one level so that the variable names line
up. Variables should be initialized when declared if applicable, and the equals operator
should be at a consistent indentation level. Initialized variables should come first fol-
lowed by uninitialized variables.

// Good
var count = 10,
 name = "Nicholas",
 found = false,
 empty;

// Bad: Improper initialization alignment
var count = 10,
 name = "Nicholas",
 found= false,
 empty;

// Bad: Incorrect indentation
var count = 10,
name = "Nicholas",
found = false,
empty;

// Bad: Multiple declarations on one line
var count = 10, name = "Nicholas",
 found = false, empty;

// Bad: Uninitialized variables first
var empty,
 count = 10,
 name = "Nicholas",
 found = false;

// Bad: Multiple var statements
var count = 10,
 name = "Nicholas";

var found = false,
 empty;

Always declare variables. Implied globals should not be used.

Function Declarations
Functions should be declared before they are used. When a function is not a method
(that is, not attached to an object), it should be defined using the function declaration
format (not function expression format or using the Function constructor). There

194 | Appendix A: JavaScript Style Guide

should be no space between the function name and the opening parenthesis. There
should be one space between the closing parenthesis and the right brace. The right
brace should be on the same line as the function keyword. There should be no space
after the opening parenthesis or before the closing parenthesis. Named arguments
should have a space after the comma but not before it. The function body should be
indented one level.

// Good
function doSomething(arg1, arg2) {
 return arg1 + arg2;
}

// Bad: Improper spacing of first line
function doSomething (arg1, arg2){
 return arg1 + arg2;
}

// Bad: Function expression
var doSomething = function(arg1, arg2) {
 return arg1 + arg2;
};

// Bad: Left brace on wrong line
function doSomething(arg1, arg2)
{
 return arg1 + arg2;
}

// Bad: Using Function constructor
var doSomething = new Function("arg1", "arg2", "return arg1 + arg2");

Functions declared inside of other functions should be declared immediately after the
var statement.

// Good
function outer() {

 var count = 10,
 name = "Nicholas",
 found = false,
 empty;

 function inner() {
 // code
 }

 // code that uses inner()
}

// Bad: Inner function declared before variables
function outer() {

 function inner() {
 // code

Function Declarations | 195

 }

 var count = 10,
 name = "Nicholas",
 found = false,
 empty;

 // code that uses inner()
}

Anonymous functions may be used for assignment of object methods or as arguments
to other functions. There should be no space between the function keyword and the
opening parenthesis.

// Good
object.method = function() {
 // code
};

// Bad: Incorrect spacing
object.method = function () {
 // code
};

Immediately invoked functions should surround the entire function call with paren-
theses.

// Good
var value = (function() {

 // function body

 return {
 message: "Hi"
 }
}());

// Bad: No parentheses around function call
var value = function() {

 // function body

 return {
 message: "Hi"
 }
}();

// Bad: Improper parentheses placement
var value = (function() {

 // function body

 return {
 message: "Hi"
 }
})();

196 | Appendix A: JavaScript Style Guide

Naming
Care should be taken to name variables and functions properly. Names should be limi-
ted to alphanumeric characters and, in some cases, the underscore character. Do not
use the dollar sign ($) or backslash (\) characters in any names.

Variable names should be formatted in camel case with the first letter lowercase and
the first letter of each subsequent word uppercase. The first word of a variable name
should be a noun (not a verb) to avoid confusion with functions. Do not use underscores
in variable names.

// Good
var accountNumber = "8401-1";

// Bad: Begins with uppercase letter
var AccountNumber = "8401-1";

// Bad: Begins with verb
var getAccountNumber = "8401-1";

// Bad: Uses underscore
var account_number = "8401-1";

Function names should also be formatted using camel case. The first word of a function
name should be a verb (not a noun) to avoid confusion with variables. Do not use
underscores in function names.

// Good
function doSomething() {
 // code
}

// Bad: Begins with uppercase letter
function DoSomething() {
 // code
}

// Bad: Begins with noun
function car() {
 // code
}

// Bad: Uses underscores
function do_something() {
 // code
}

Constructor functions—functions used with the new operator to create new objects—
should be formatted in camel case but must begin with an uppercase letter. Constructor
function names should begin with a nonverb, because new is the action of creating an
object instance.

Naming | 197

// Good
function MyObject() {
 // code
}

// Bad: Begins with lowercase letter
function myObject() {
 // code
}

// Bad: Uses underscores
function My_Object() {
 // code
}

// Bad: Begins with verb
function getMyObject() {
 // code
}

Variables that act as constants (values that won’t be changed) should be formatted
using all uppercase letters with words separated by a single underscore.

// Good
var TOTAL_COUNT = 10;

// Bad: Camel case
var totalCount = 10;

// Bad: Mixed case
var total_COUNT = 10;

Object properties follow the same naming conventions as variables. Object methods
follow the same naming conventions as functions. If a property or method is meant to
be private, then it should be prefixed with an underscore character.

// Good
var object = {
 _count: 10,

 _getCount: function () {
 return this._count;
 }
};

Strict Mode
Strict mode should be used only inside of functions, never globally.

// Bad: Global strict mode
"use strict";

function doSomething() {
 // code
}

198 | Appendix A: JavaScript Style Guide

// Good
function doSomething() {
 "use strict";

 // code
}

If you want strict mode to apply to multiple functions without needing to write "use
strict" multiple times, use immediate function invocation:

// Good
(function() {
 "use strict";

 function doSomething() {
 // code
 }

 function doSomethingElse() {
 // code
 }

}());

Assignments
When assigning a value to a variable, use parentheses around a right-side expression
that contains a comparison.

// Good
var flag = (i < count);

// Bad: Missing parentheses
var flag = i < count;

Equality Operators
Use === and !== instead of == and != to avoid type coercion errors.

// Good
var same = (a === b);

// Bad: Using ==
var same = (a == b);

Ternary Operator
The ternary operator should be used only for assigning values conditionally and never
as a shortcut for an if statement.

Ternary Operator | 199

// Good
var value = condition ? value1 : value2;

// Bad: no assignment, should be an if statement
condition ? doSomething() : doSomethingElse();

Statements

Simple Statements
Each line should contain at most one statement. All simple statements should end with
a semicolon (;).

// Good
count++;
a = b;

// Bad: Multiple statements on one line
count++; a = b;

return Statement
A return statement with a value should not use parentheses unless they make the return
value more obvious in some way. Example:

return;

return collection.size();

return (size > 0 ? size : defaultSize);

Compound Statements
Compound statements are lists of statements enclosed inside of braces.

• The enclosed statements should be indented one more level than the compound
statement.

• The opening brace should be at the end of the line that begins the compound
statement; the closing brace should begin a line and be indented to the beginning
of the compound statement.

• Braces are used around all statements, even single statements, when they are part
of a control structure, such as an if or for statement. This convention makes it
easier to add statements without accidentally introducing bugs by forgetting to add
braces.

• The statement beginning keyword, such as if, should be followed by one space,
and the opening brace should be preceded by a space.

200 | Appendix A: JavaScript Style Guide

if Statement
The if class of statements should have the following form:

if (condition) {
 statements
}

if (condition) {
 statements
} else {
 statements
}

if (condition) {
 statements
} else if (condition) {
 statements
} else {
 statements
}

It is never permissible to omit the braces in any part of an if statement.

// Good
if (condition) {
 doSomething();
}

// Bad: Improper spacing
if(condition){
 doSomething();
}

// Bad: Missing braces
if (condition)
 doSomething();

// Bad: All on one line
if (condition) { doSomething(); }

// Bad: All on one line without braces
if (condition) doSomething();

for Statement
The for class of statements should have the following form:

for (initialization; condition; update) {
 statements
}

for (variable in object) {
 statements
}

Statements | 201

Variables should not be declared in the initialization section of a for statement.

// Good
var i,
 len;

for (i=0, len=10; i < len; i++) {
 // code
}

// Bad: Variables declared during initialization
for (var i=0, len=10; i < len; i++) {
 // code
}

// Bad: Variables declared during initialization
for (var prop in object) {
 // code
}

When using a for-in statement, double-check if you need to use hasOwnProperty() to
filter out object members.

while Statement
The while class of statements should have the following form:

while (condition) {
 statements
}

do Statement
The do class of statements should have the following form:

do {
 statements
} while (condition);

Note the use of a semicolon as the final part of this statement. There should be a space
before and after the while keyword.

switch Statement
The switch class of statements should have the following form:

switch (expression) {
 case expression:
 statements

 default:
 statements
}

202 | Appendix A: JavaScript Style Guide

Each case is indented one level under the switch. Each case after the first, including
default, should be preceded by a single empty line.

Each group of statements (except the default) should end with break, return, throw, or
a comment indicating fall-through.

// Good
switch (value) {
 case 1:
 /* falls through */

 case 2:
 doSomething();
 break;

 case 3:
 return true;

 default:
 throw new Error("This shouldn't happen.);
}

If a switch doesn’t have a default case, then it should be indicated with a comment.

// Good
switch (value) {
 case 1:
 /*falls through*/

 case 2:
 doSomething();
 break;

 case 3:
 return true;

 // no default
}

try Statement
The try class of statements should have the following form:

try {
 statements
} catch (variable) {
 statements
}

try {
 statements
} catch (variable) {
 statements
} finally {

Statements | 203

 statements
}

White Space
Blank lines improve readability by setting off sections of code that are logically related.

Two blank lines should always be used in the following circumstances:

• Between sections of a source file

• Between class and interface definitions

One blank line should always be used in the following circumstances:

• Between methods

• Between the local variables in a method and its first statement

• Before a multiline or single-line comment

• Between logical sections inside a method to improve readability

Blank spaces should be used in the following circumstances:

• A keyword followed by a parenthesis should be separated by a space.

• A blank space should appear after commas in argument lists.

• All binary operators except dot (.) should be separated from their operands by
spaces. Blank spaces should never separate unary operators such as unary minus,
increment (++), and decrement (--) from their operands.

• The expressions in a for statement should be separated by blank spaces.

Things to Avoid
• Never use the primitive wrapper types, such as String, to create new objects.

• Never use eval().

• Never use the with statement. This statement isn’t available in strict mode and
likely won’t be available in future ECMAScript editions.

204 | Appendix A: JavaScript Style Guide

APPENDIX B

JavaScript Tools

Build Tools
Though many build tools are not JavaScript-specific, they can still be quite useful in
managing your large JavaScript projects:

Ant
My preferred build tool for JavaScript projects. A Java-based build system.

Buildy
A Node.js-based build system with built-in support for tasks related to JavaScript
and CSS.

Gmake
An older build tool that’s still popular among Unix devotees. Gmake is used by
jQuery.

Grunt
A Node.js-based build system with built-in support for JavaScript-related tasks like
minification and concatenation.

Jammit
A Ruby-based asset packager that handles minification, validation, and more.

Jasy
A Python-based build system.

Rake
A utility similar to Gmake written in Ruby. Projects that use Sass, a popular CSS
preprocessor, tend to use Rake.

Sprockets
A Rack-based build system.

205

http://ant.apache.org
https://github.com/mosen/buildy
http://www.gnu.org/s/make/
https://github.com/cowboy/grunt
http://documentcloud.github.com/jammit/
https://github.com/zynga/jasy
http://rake.rubyforge.org/
http://getsprockets.org

Documentation Generators
Documentation generators create documentation from comments placed in source
code:

Docco
A side-by-side documentation generator, showing documents alongside code.
Written in CoffeeScript.

Dojo Documentation Tools
The official documentation generator of Dojo. Written in PHP.

JoDoc
A JavaScript documentation generator that uses Markdown syntax. Written in
JavaScript.

JSDoc ToolKit
A Java-based documentation generator. One of the most frequently used docu-
mentation generators.

Natural Docs
A general-purpose documentation generator that works with multiple languages.
Written in Perl.

NDoc
A JavaScript port of PDoc.

PDoc
The official documentation generator of Prototype. Written in Ruby.

YUI Doc
The YUI documentation generator. Written in JavaScript.

Linting Tools
Linting tools help identify problematic styles and patterns in your code:

JSLint
Douglas Crockford’s code-quality tool.

JSHint
A fork of JSLint with more configurable options.

Minification Tools
Minification tools make JavaScript files smaller by removing unnecessary comments
and white space and perhaps performing other code optimization.

Closure Compiler
Google’s Java-based JavaScript minifier.

206 | Appendix B: JavaScript Tools

http://jashkenas.github.com/docco/
http://dojotoolkit.org/reference-guide/util/doctools.html
https://github.com/azakus/jodoc-js
http://code.google.com/p/jsdoc-toolkit/
http://www.naturaldocs.org
https://github.com/nodeca/ndoc
http://pdoc.org/
http://yuilibrary.com/projects/yuidoc
http://jslint.com
http://jshint.com
http://code.google.com/closure/compiler/

UglifyJS
A Node.js-based JavaScript minifier.

YUI Compressor
A Java-based JavaScript and CSS minifier.

Testing Tools
Testing tools allow you to write and execute tests that verify the behavior of your code:

Jasmine
A behavior-driven JavaScript testing framework.

JsTestDriver
The Google unit test framework, which includes automated browser testing.

PhantomJS
A headless WebKit browser designed for testing. Can be used with QUnit and
Jasmine by default and others through a driver system.

QUnit
The jQuery unit testing framework.

Selenium
A functional testing framework that can be used for browser testing.

Yeti
A test harness for JavaScript testing in browsers.

YUI Test
The YUI unit testing framework.

Testing Tools | 207

https://github.com/mishoo/UglifyJS
http://yuilibrary.com/projects/yuicompressor
http://pivotal.github.com/jasmine/
http://code.google.com/p/js-test-driver/
http://www.phantomjs.org
http://docs.jquery.com/QUnit
http://seleniumhq.com
http://yuilibrary.com/projects/yeti
http://yuilibrary.com/projects/yuitest

Index

Symbols
!= operator, 45
!== operator, 46, 84
== operator, 45
=== operator, 46, 84

A
Adams, Douglas, 125
addClass() function, 98
addEventListener() function, 58
addItem() function, 62
AMD (Asynchronous Module Definition)

modules, 75–76
Android Code Style Guidelines for

Contributors, 9
anonymous functions, 43
Ant build tool

about, 133
baking files, 148–149
build-time compression, 158
build.xml file, 133–134
Buildr project, 137
concatenation, 145
creating build directory, 177
installing, 133
properties, 136
running the build, 134
target dependencies, 135

Apache web server, 158
application logic, 80
<apply> task

about, 140
executable attribute, 156
failonerror property, 142

parallel attribute, 141, 163
YUI Compressor and, 153

array literals
about, 19
square brackets and, 19

Array object
forEach() method, 106, 111
isArray() method, 88
length property, 108

Array reference type, 85, 88
ASI (automatic semicolon insertion), 7, 9
Asynchronous Module Definition (AMD)

modules, 75–76
automated testing

about, 167
JsTestDriver utility, 173–175
PhantomJS engine, 172–173
Yeti tool, 171
YUI Test Selenium Server, 167–170

automatic semicolon insertion (ASI), 7, 9
automation

advantages and disadvantages, 125
Ant build tool, 133–137
assembling final system, 177–184
automated testing, 167–175
baking files, 148–149
code validation, 139–143
compression process, 157–160
concatenation, 145–147
documentation generators, 161–165
file and directory structure, 127–132
minification process, 151–157

B
baking files, 148–149

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

209

blank lines
about, 204
case statement, 32
formatting rules for, 10
multiline comments and, 23

block statements
brace alignment, 30
curly braces and, 29
spacing around, 31

BOM (Browser Object Model), 103
bookmarklets, 77
Booleans

as primitive types, 48, 83
typeof operator and, 84

braces (see curly braces)
break statement, 35
browser detection

about, 115
browser inference and, 120–122
feature detection, 117–119
feature inference and, 119
user-agent detection, 115–116

browser inference, 120–122
Browser Object Model (BOM), 103
browsers

addEventListener() function, 58
Array.isArray() method, 88
commenting browser-specific hacks, 26,

190
compression and, 158
CSS expressions, 55
detecting functions, 87
error handling, 96
Handlebars templating system, 63
message property, 101
polyfills and, 111
preventing object modification, 112
<script> elements and, 62
window object and, 67
YUI Test Selenium Server and, 169

build directory, 128, 177
build systems, 133

(see also Ant build tool)
build directory and, 177
build tools, 205
CI systems and, 181–184
planning builds, 178–181

build-time compression, 158–160
build.xml file

about, 133–134
Buildr tool and, 137
example, 178
Jenkins CI system and, 182
running, 134
target dependencies, 135

BuildBot CI system, 184
Buildr project

about, 137
<closure> task, 155
<gzipall> task, 160
<jsdoc> task, 163
<jshint> task, 143
<jstestdriver> task, 175
<phantomjs> task, 173
<uglifyjs> task, 157
<yeti> task, 171
<yuicompressor> task, 154
<yuidoc> task, 165
<yuitest-selenium> task, 170

C
camel case convention, 11
case statement

default, 34
falling through, 33
indentation, 32
lines around, 32

CDN (Content Delivery Network), 127
CI systems

about, 181
BuildBot, 184
Continuum, 184
Gradle, 184
Jenkins, 181–183

client-side templates, 61
Closure Compiler, 152, 154–155
Closure library, 71, 154
<closure task>, 155
Code Conventions for the Java Programming

Language
about, xi
brace alignment, 30
line length, 9, 185

Code Conventions for the JavaScript
Programming Language

about, 2
array literals, 19
blank lines, 11, 204

210 | Index

block statement spacing, 31
brace alignment, 30
continue statement, 36
default case statement, 34
equality operators, 47, 199
eval() function, 48, 204
falling through switch statements, 34
for-in loops, 38
function call spacing, 43
function declarations, 42, 194
hasOwnProperty() method, 37
immediate function invocation, 44
indentation levels, 7, 185
line length, 9, 185
naming conventions, 14, 197
object literals, 18, 189
quotation marks for strings, 15
statement termination, 8
statements and curly braces, 29
switch statement format, 32
variable declarations, 40, 194
with statement, 35, 204

comments
annotating code with, 192
blank lines and, 11
browser-specific hacks and, 26, 190
difficult-to-understand code and, 25, 190
documentation, 27, 190
multiline, 23, 27, 191
potential author errors and, 25, 190
single-line, 21–22, 190
usage considerations, 24–27

compound statements, 200
compression process

about, 157
build-time, 158–160
runtime, 157

<concat> task
about, 145
eol attribute, 146
fixlastline attribute, 146
headers and footers, 147

concatenating files
about, 145–147
dealing with last lines, 146

config object
about, 92
properties file and, 93

configuration data

about, 91
externalizing, 92
storing, 93–94

constants
about, 13
naming conventions, 13, 198

constructors
about, 13
naming conventions, 13, 197

Content Delivery Network (CDN), 127
continue statement, 36
Continuum CI system, 184
Crockford, Douglas, 2

(see also Code Conventions for the
JavaScript Programming Language)
duck typing, 88
JSLint tool, 2

CSS
keeping JavaScript out of, 55
keeping out of JavaScript, 56

CSS layer
about, 53
keeping JavaScript out of, 55
loose coupling, 54

CSS Lint project, 128
cssText property, 56
curly braces

aligning, 30
object literals and, 18
statements and, 29

D
Date reference type, 85
decimal points

hanging, 16
leading, 16

define() function, 75
delete operator, 107
<delete> task, 177
design patterns

about, 108
facade pattern, 110
observer pattern, 51
tight coupling and, 54

development builds, 178, 179
directory structure

basic layout, 128–132
best practices, 127

do...while statement, 30, 202

Index | 211

docs subdirectory, 129, 164
document object

all property, 119, 120, 121
childNodes property, 121
getElementById() method, 85, 104, 107,

117, 119
getElementsByClassName() method, 106
getElementsByTagName() method, 119
uniqueID property, 120

documentation comments, 27, 190
documentation generators

about, 27, 161
additional information, 206
JSDoc Toolkit, 161–163
YUI Doc, 163–165

Dojo Style Guide
block statement spacing, 31
brace alignment, 30
continue statement, 36
decimal points, 16
default case statement, 34
falling through switch statements, 34
function call spacing, 43
indentation levels, 7
naming conventions, 11, 13, 14
statement termination, 8
statements and curly braces, 29
switch statement format, 32
variable declarations, 40

Dojo Toolkit
error handling, 98
file and directory structure, 129
module loader, 76
one-global approach, 71

DOMWrapper object
addClass() method, 111
classList property, 111
remove() method, 111

doSomething() function, 57
duck typing, 88

E
<echo> element, 134
ECMA-262 specification, 100
ECMAScript

Array.isArray() method, 88
camel case convention, 11
function declarations, 42
modules and, 74

polyfills and, 111
preventing modification, 112
strict mode, 44, 48
type coercion, 46
with statement, 35

equality operators, 45–47, 199
Error object

about, 96, 100
message property, 101
types supported, 100–102

Error reference type, 85, 96
errors, throwing (see throwing errors)
eval() function

about, 47, 204
strict mode and, 48

EvalError object, 100
event handling

about, 79
application logic rule, 80
onclick attribute, 57
passing around event object, 81–82
usage considerations, 79

event object
about, 79
clientX property, 80
clientY property, 80
passing around, 81–82

<exec> task, 164, 170, 173
expression() function, 55

F
facade pattern, 110
facades, 110
factory functions, 74
feature detection

about, 117–119
browser inference and, 120–122
feature inference and, 119
suggestions using, 123

feature inference
about, 119
cautions using, 122

file and directory structure
basic layout, 128–132
best practices, 127

<filelist> task
baking files, 148
concatenating files, 145
finding files, 139

212 | Index

files
baking, 148–149
compression process, 157–160
concatenating, 145–147
finding, 139
license, 148
minification process, 151–157

<fileset> task
concatenating files, 145
converting into property, 159
finding files, 139, 141
<jshint> task and, 143
<phantomjs> task and, 173

FIXME annotation, 193
<footer> element, 147
for statement

about, 35, 201
break statement and, 35
continue statement and, 36
curly braces and, 30
variable declarations and, 40

for-in statement
about, 35, 37
hasOwnProperty() method and, 37

formatting rules
blank lines, 10, 204
function call spacing, 42
indentation levels, 5–7, 185
line breaking, 9
line length, 8, 185
literal values, 14–19
naming conventions, 11–14
statement termination, 7–8

function calls, spacing, 42
Function constructor, 48, 87
functions, 41

(see also global variables and functions;
specific functions)
declaring, 41–42, 194
defining, 68
detecting, 87
factory, 74
immediate invocation of, 43
naming conventions, 11–13, 197
new operator and, 14
with statement and, 35

G
global object, 67

global variables and functions
about, 67
code fragility, 68
creating accidentally, 69–70
naming collisions, 68
one-global approach, 71–76
problems with, 67–69
testing difficulty, 69
zero-global approach, 76

Google JavaScript Style Guide
array literals, 19
block statement spacing, 31
brace alignment, 30
eval() function, 48
for-in loops, 38
function call spacing, 43
function declarations, 42
indentation levels, 7
multiline strings, 15
naming conventions, 11, 13, 14
object literals, 18
primitive wrapper types, 49
quotation marks for strings, 15
statement termination, 8
with statement, 35

Gradle CI system, 184
<gzip> task

about, 158
destfile attribute, 158
src attribute, 158

<gzipall> task, 160

H
HACK annotation, 193
Handlebars templating system, 63
hanging decimal points, 16
<header> element

about, 147
trimleading attribute, 148

Hoare, C.A.R., 51
HTML layer

about, 53
keeping JavaScript out of, 57–59
keeping out of JavaScript, 59
loose coupling, 54

Hungarian notation, 11

Index | 213

I
if statement

about, 201
curly braces and, 30

immediate function invocation
about, 43
strict mode, 44

importPackage() function, 159
in operator, 89, 90
indentation levels

about, 5, 185
case statement, 32
line breaking and, 9
line length and, 8, 185
spaces for, 6
style guide references, 7
switch statement, 32
tabs for, 6

inheritance
object-based, 108
prototypal, 108
type-based, 109

innerHTML property, 59
insertAdjacentHTML() function, 62
installing

Ant build tool, 133
JsTestDriver utility, 174
PhantomJS engine, 172

instanceof operator, 85–87
integration builds, 178, 180

J
Jasmine tests, 172
Java properties file, 93
JavaScript layer

about, 53
keeping CSS out of, 56
keeping HTML out of, 59
keeping out of CSS, 55
keeping out of HTML, 57–59
loose coupling, 54

Jenkins CI system, 181–183
jQuery

error handling, 98
facades and, 110
file and directory structure, 129
loading from server, 61
module loader, 76

naming conventions, 13
one-global approach, 71

jQuery Core Style Guide
block statement spacing, 31
brace alignment, 30
equality operators, 47
eval() function, 48
falling through switch statements, 34
function call spacing, 43
indentation levels, 7
quotation marks for strings, 15
statement termination, 8
statements and curly braces, 29

js subdirectory, 129
<jsdoc> task

about, 163
outputdir attribute, 163
templates attribute, 163

JSDoc Toolkit, 27, 161–163
<jshint> task

about, 143
options attribute, 143

JSHint tool
about, 2, 206
accidental globals, 70
continue statement, 36
decimal points, 16
equality operators, 47
eval() function, 48
function declarations, 42
hasOwnProperty() method, 37
incorporating into build system, 139
naming conventions, 14
newcap option, 14
octal numbers, 16
primitive wrapper types, 49
programming practices, 51
statement termination, 8
statements and curly braces, 29
strict mode, 45

JSLint tool
about, 2, 206
accidental globals, 70
continue statement, 36
decimal points, 16
equality operators, 47
eval() function, 48
function declarations, 42
hasOwnProperty() method, 37

214 | Index

immediate function invocation, 44
naming conventions, 14
octal numbers, 16
primitive wrapper types, 49
programming practices, 51
statement termination, 8
statements and curly braces, 29
strict mode, 45
switch statement format, 33

JSONP (JSON with padding), 94
<jstestdriver> task

about, 175
config attribute, 175
outputdir attribute, 175

JsTestDriver utility, 173–175

L
leading decimal points, 16
Lecomte, Julien, 151
license files, 148
line formatting rules

blank lines, 10, 204
case statement, 32
line breaking, 9
line length, 8, 185
multiline comments and, 23

literal values
about, 14
array literals, 19
null, 16, 18
numbers, 15
object literals, 18
strings, 14
undefined, 17

<loadfile> task, 148
<loadproperties> element, 136
local variables

accidental globals and, 69
blank lines and, 11
defining, 40
with statement and, 35

loose coupling of UI layers
about, 53–55
keeping CSS out of JavaScript, 56
keeping HTML out of JavaScript, 59
keeping JavaScript out of CSS, 55
keeping JavaScript out of HTML, 57–59

M
<mapper> task, 153
meta subdirectory, 129
methods

adding, 105–106
blank lines and, 11
naming conventions, 12
overriding, 104
removing, 107
setting to null, 107
with statement and, 35

minification process
about, 151
Closure Compiler, 152, 154–155
tools supporting, 206
UglifyJS minifier, 152, 156–157
YUI Compressor, 151–154

<mkdir> task, 177
modifying objects

adding methods, 105–106
better approaches, 108–111
object ownership and, 103
overriding methods and, 104
polyfills and, 111
preventing, 112–114
removing methods, 107
rules overview, 104

modules
about, 74
AMD, 75–76
creating, 74
one-global approach, 74–75
YUI, 74

mod_deflate module, 158
MooTools, 120
multiline comments, 23, 27, 191
multiline strings, 15

N
namespaces

about, 72
creating, 72
one-global approach, 72–73
YUI modules and, 74

naming collisions, 68
naming conventions

about, 11, 197
constants, 13

Index | 215

constructors, 13
functions, 11–13
variables, 11–13

navigator.userAgent property, 116
new operator, 14
newline, terminating statements with, 7
NodeList collection type, 106
null special value

about, 16
avoiding comparisons, 83–90
as primitive types, 83, 186
setting methods to, 107
testing for, 84
type coercion and, 46
typeof operator and, 18, 85

Number() casting function, 46
numbers

about, 15
decimal points and, 16
octal format, 16
as primitive types, 48, 83, 186
typeof operator and, 84

O
object literals

about, 18, 189
curly braces and, 18

Object object
create() method, 108
freeze() method, 113
hasOwnProperty() method, 37, 90
isExtensible() method, 112
isFrozen() method, 113
isSealed() method, 113
preventExtension() method, 112
seal() method, 113
toString() method, 46, 88
valueOf() method, 46

object ownership, 103
object properties

detecting, 89–90
for-in loop and, 35, 37
naming conventions, 198
with statement and, 35

Object reference type, 85
object-based inheritance, 108
objects, 85

(see also modifying objects)
about, 85

detecting arrays, 88
detecting functions, 87
detecting reference values, 85–87
sealing, 113

observer pattern, 51
octal numbers, 16
one-global approach

about, 71
AMD modules, 75–76
modules, 74–75
namespaces, 72–73
YUI modules, 74

operators
equality, 45–47, 199
line breaking and, 9
spacing, 187
tenary, 199

overriding methods, 104

P
parentheses, 43, 188
parsing minifiers, 151–157
Pascal case convention, 14
PhantomJS engine, 172–173
<phantomjs> task, 173
planning builds, 178–181
polyfills (shims), 111
primitive types

about, 48, 186
detecting, 83–85

programming practices
about, 51
avoiding globals, 67–77
avoiding null comparisons, 83–90
browser detection, 115–123
event handling, 79–82
loose coupling of UI layers, 53
modifying objects, 103–114
separating configuration data from code,

91–94
throwing out errors, 95–102

<project> element
default attribute, 134
name attribute, 134

project object (Ant)
about, 159
createTask() method, 159
getProperty() method, 159

properties (see object properties)

216 | Index

<property> element
about, 136
name attribute, 136
value attribute, 136

Props2Js tool, 94
prototypal inheritance, 108
Prototype library, 105

Q
QUnit tests, 172
quotation marks, 15

R
RangeError object, 100
reference values

about, 85
detecting, 85–87
detecting arrays, 88
detecting functions, 87

ReferenceError object, 70, 100
release builds, 178, 180
<replaceregexp> task

about, 148
byline attribute, 149
flags attribute, 149
match attribute, 149
replace attribute, 149

require() function, 76
RequireJS module loader, 76
return statement, 200
REVIEW annotation, 193
Rhino engine, 140
runtime compression, 157

S
<script> element

embedding JavaScript in HTML, 58, 59
language attribute, 158
text property, 62
type property, 62, 63

scripts
naming collisions in, 68
PhantomJS engine support, 172
strict mode, 44
zero-global approach, 76

semicolons
terminating statements with, 7
variable declarations and, 69

setInterval() function, 48
setTimeout() function, 48, 119
shims (polyfills), 111
single-line comments, 21–22, 190
Souder, Steve, 55
spaces for indentation levels, 6
spacing rules

block statements, 31
function calls, 42
operators, 187
parentheses, 188
white space, 204

SproutCore Style Guide
brace alignment, 30
equality operators, 47
function call spacing, 43
indentation levels, 7
naming conventions, 11, 13
statements and curly braces, 29
variable declarations, 40

square brackets, array literals and, 19
src directory, 128, 139, 164
<srcfile> element, 141, 153
statements, 31

(see also specific statements)
about, 200
blank lines and, 11
block statement spacing, 31
brace alignment, 30
compound, 200
curly braces and, 29
terminating, 7

storing configuration data, 93–94
strict mode

about, 198
avoiding accidental globals, 70
immediate function invocation, 44
preventing object modification, 114
with statement and, 35

String.toUpperCase() method, 49
strings

about, 14
multiline, 15
as primitive types, 48, 83, 186
quotation marks and, 15
typeof operator and, 84

style guidelines
about, 1
basic formatting, 5–19

Index | 217

comments, 21–28, 190
functions, 41–48
operators, 45–47
primitive wrapper types, 48
statements and expressions, 29–38
useful tools, 2
variables, 39–41

style object, 56
switch statement

about, 31, 202
default, 34
falling through, 33
indentation, 32

SyntaxError object, 100

T
tabs for indentation levels, 6
<target> element

depends attribute, 135
name attribute, 134

<targetfile> element, 153
templates, client-side, 61
tenary operator, 199
terminating statements, 7
test directory, 128
testing

automated, 167–175
event handling and, 80
global variables and functions, 69
for null special value, 84
for sort() method, 88
tools supporting, 207
YUI Test Selenium Server and, 168–170

<tests> element, 169
tests subdirectory, 129
throw operator, 95, 96
throwing errors

about, 95–96
advantages of, 97
determining when, 97–99
error types, 100–102
rules of thumb, 99
try-catch statement and, 99

timestamps, 147
TODO annotation, 192
try-catch statement

about, 203
curly braces and, 30
error handling and, 96, 99–100

type coercion, 45–47
type-based inheritance, 109
TypeError object, 101
typeof operator

basic syntax, 84
detecting functions, 87
detecting reference values, 85
null special value and, 18, 85
primitive types and, 83–85
undefined special value and, 17, 84, 187

U
UglifyJS minifier, 152, 156–157
<uglifiyjs> task

about, 157
outputdir attribute, 157

UI layers, 53
undefined special value

about, 17
as primitive types, 83, 187
type coercion and, 46
typeof operator and, 17, 84, 187

Unofficial Ruby Usage Guide, 9
URIError object, 101
<url> element, 169
user-agent detection

about, 115–116
browser inference and, 120–122
cautions using, 122

V
validation

<apply> task and, 140
finding files, 139
improving, 141–143

var statement
about, 39–41
accidental globals and, 69

variable declaration hoisting, 40
variables, 39

(see also global variables and functions)
assigning values to, 199
avoiding null comparisons, 83–90
blank lines and, 11
declaring, 39–41, 69, 194
line breaking and, 10
naming conventions, 11–13, 197
type coercion and, 45–47

218 | Index

W
while statement

about, 202
curly braces and, 30

white space, 204
window object

ActiveXObject property, 119, 121
name property, 70
overloading in browsers, 67
requestAnimationFrame() method, 118
XMLHttpRequest property, 121

with statement
about, 204
strict mode and, 35

wrappers, 110

X
XMLHttpRequest object, 60
XXX annotation, 193

Y
<yeti> task, 171
Yeti tool, 171
YUI class

add() method, 74
use() method, 74

YUI Compressor, 151–154
YUI Doc, 163–165
YUI library

commenting browser-specific hacks, 26
commenting difficult-to-understand code,

25
commenting potential author errors, 26
error handling, 98
facades and, 110
file and directory structure, 129
loading from server, 61
namespaces, 72
one-global approach, 71
YUI Doc and, 163
YUI modules, 74
YUIDoc tool, 27

YUI modules, 74
YUI Test Selenium Server

about, 167
creating Ant target, 170
setting up, 168
usage considerations, 168–170

<yuicompressor> task
about, 154
outputdir attribute, 154

<yuidoc> task
about, 165
inputdir attribute, 165
outputdir attribute, 165

YUIDoc tool, 27
<yuitest-selenium> task, 170

Z
Zaytsev, Juriy, 88
zero-global approach, 76

Index | 219

About the Author
Nicholas C. Zakas is a front-end consultant, author, and speaker. He worked at Yahoo!
for almost five years, where he was front-end tech lead for the Yahoo! home page and
a contributor to the YUI library. He is the author of Professional JavaScript for Web
Developers (Wrox, 2012), Professional Ajax (Wrox, 2007), and High Performance Java-
Script (O’Reilly, 2010). Nicholas is a strong advocate for development best practices
including progressive enhancement, accessibility, performance, scalability, and main-
tainability. He blogs regularly at http://www.nczonline.net/ and can be found on Twitter
via @slicknet.

Colophon
The animal on the cover of Maintainable JavaScript is a Greek tortoise.

Greek tortoises (Testudo graeca), also known as spur-thighed tortoises, are currently
divided into at least 20 known subspecies, and as such vary greatly in size, weight, and
color. They inhabit areas of North Africa, southern Europe, and southwest Asia, where
they tend to prefer hot, arid regions; however, they can also be found on mountain
steppes and seashore dunes. Their genetic richness makes their classification difficult
and results largely from their crossbreeding; tortoises from different groups often mate,
resulting in offspring of widely varying colors and sizes. For this reason, one of the best
ways to identify a particular specimen is to know where it came from.

Greek tortoises range in size from 8 inches to around 12 inches. The “spurs” on their
thighs refer to the two small tubercles that sit on either side of the tail, and in general,
their carapace, or upper shell, is oblong rectangular. They’re also generally character-
ized by large scales on their front legs; flecks on the spine and rib plates, with a larger,
dark fleck on the underside; and an upper shell that’s undivided over the tail.

Greek tortoises’ mating instincts kick in immediately after they awake from hiberna-
tion. One or two weeks before egg-laying takes place, the tortoises move around their
habitat—digging in, tasting, and smelling the dirt—in order to find the ideal egg-laying
area. One or two days before laying eggs, the female Greek tortoise becomes aggressive
in order to establish dominance in the community so that her eggs will not be disturbed.
Their average lifespan is 50 years.

The cover image is from Cassell’s Natural History. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

http://shop.oreilly.com/product/9780596802806.do
http://shop.oreilly.com/product/9780596802806.do
http://www.nczonline.net/

	Table of Contents
	Introduction
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Part I. Style Guidelines
	Chapter 1. Basic Formatting
	Indentation Levels
	Statement Termination
	Line Length
	Line Breaking
	Blank Lines
	Naming
	Variables and Functions
	Constants
	Constructors

	Literal Values
	Strings
	Numbers
	Null
	Undefined
	Object Literals
	Array Literals

	Chapter 2. Comments
	Single-Line Comments
	Multiline Comments
	Using Comments
	Difficult-to-Understand Code
	Potential Author Errors
	Browser-Specific Hacks

	Documentation Comments

	Chapter 3. Statements and Expressions
	Brace Alignment
	Block Statement Spacing
	The switch Statement
	Indentation
	Falling Through
	default

	The with Statement
	The for Loop
	The for-in Loop

	Chapter 4. Variables, Functions, and Operators
	Variable Declarations
	Function Declarations
	Function Call Spacing
	Immediate Function Invocation
	Strict Mode

	Equality
	eval()
	Primitive Wrapper Types

	Part II. Programming Practices
	Chapter 5. Loose Coupling of UI Layers
	What Is Loose Coupling?
	Keep JavaScript Out of CSS
	Keep CSS Out of JavaScript
	Keep JavaScript Out of HTML
	Keep HTML Out of JavaScript
	Alternative #1: Load from the Server
	Alternative #2: Simple Client-Side Templates
	Alternative #3: Complex Client-Side Templates

	Chapter 6. Avoid Globals
	The Problems with Globals
	Naming Collisions
	Code Fragility
	Difficulty Testing

	Accidental Globals
	Avoiding Accidental Globals

	The One-Global Approach
	Namespaces
	Modules
	YUI modules
	Asynchronous Module Definition (AMD) Modules

	The Zero-Global Approach

	Chapter 7. Event Handling
	Classic Usage
	Rule #1: Separate Application Logic
	Rule #2: Don’t Pass the Event Object Around

	Chapter 8. Avoid Null Comparisons
	Detecting Primitive Values
	Detecting Reference Values
	Detecting Functions
	Detecting Arrays

	Detecting Properties

	Chapter 9. Separate Configuration Data from
 Code
	What Is Configuration Data?
	Externalizing Configuration Data
	Storing Configuration Data

	Chapter 10. Throw Your Own Errors
	The Nature of Errors
	Throwing Errors in JavaScript
	Advantages of Throwing Errors
	When to Throw Errors
	The try-catch Statement
	Throw or try-catch?

	Error Types

	Chapter 11. Don’t Modify Objects You Don’t Own
	What Do You Own?
	The Rules
	Don’t Override Methods
	Don’t Add New Methods
	Don’t Remove Methods

	Better Approaches
	Object-Based Inheritance
	Type-Based Inheritance
	The Facade Pattern

	A Note on Polyfills
	Preventing Modification

	Chapter 12. Browser Detection
	User-Agent Detection
	Feature Detection
	Avoid Feature Inference
	Avoid Browser Inference
	What Should You Use?

	Part III. Automation
	Chapter 13. File and Directory Structure
	Best Practices
	Basic Layout

	Chapter 14. Ant
	Installation
	The Build File
	Running the Build
	Target Dependencies
	Properties
	Buildr

	Chapter 15. Validation
	Finding Files
	The Task
	Improving the Target
	Other Improvements
	Buildr Task

	Chapter 16. Concatenation and Baking
	The Task
	Line Endings
	Headers and Footers
	Baking Files

	Chapter 17. Minification and Compression
	Minification
	Minifying with YUI Compressor
	Minifying with Closure Compiler
	Minifying with UglifyJS

	Compression
	Runtime Compression
	Build-Time Compression

	Chapter 18. Documentation
	JSDoc Toolkit
	YUI Doc

	Chapter 19. Automated Testing
	YUI Test Selenium Driver
	Setting Up a Selenium Server
	Setting Up YUI Test Selenium Driver
	Using the YUI Test Selenium Driver
	The Ant Target

	Yeti
	PhantomJS
	Installation and Usage
	The Ant Target

	JsTestDriver
	Installation and Usage
	The Ant Target

	Chapter 20. Putting It Together
	Missing Pieces
	Planning the Build
	The Development Build
	The Integration Build
	The Release Build

	Using a CI System
	Jenkins
	Other CI Systems

	Appendix A. JavaScript Style Guide
	Indentation
	Line Length
	Primitive Literals
	Operator Spacing
	Parentheses Spacing
	Object Literals
	Comments
	Single-Line Comments
	Multiline Comments
	Comment Annotations

	Variable Declarations
	Function Declarations
	Naming
	Strict Mode
	Assignments
	Equality Operators
	Ternary Operator
	Statements
	Simple Statements
	return Statement
	Compound Statements
	if Statement
	for Statement
	while Statement
	do Statement
	switch Statement
	try Statement

	White Space
	Things to Avoid

	Appendix B. JavaScript Tools
	Build Tools
	Documentation Generators
	Linting Tools
	Minification Tools
	Testing Tools

	Index

