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1

Introducing Go

When learning a new language, there are three
things that you need to understand. The first
and most important is the abstract model that
the language presents. The next is the concrete
syntax. Finally, you need to learn your way
around the standard libraries and the common
idioms of the language.
This chapter will look at the abstract model
that Go presents to programmers. If you want
to dive straight into real examples, skip to the
next chapter, which covers the concrete syntax.
The rest of the book will cover highlights from
the Go standard library and the various idioms
that you will find common in Go code.

Go and C
In the late ’60s, a small team at the Bell Telephone
Laboratories wrote a simple operating system
called UNICS, a very lightweight system inspired
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by the MULTICS project, on the PDP-7 minicomputer
that they had access to. When they wanted to
port it to another system, they had to rewrite
all of the code, which was written in PDP-7
assembly language.
To make the transition easier, they wanted to be
able to share as much code as possible between
different versions. They needed a language that
was sufficiently low-level that a simple compiler
(the only kind that existed in the ’60s) could
generate efficient machine code from it, yet
which hid most of the irrelevant details of the
target machine. BCPL was close, but it was too
complex in some areas and lacked some required
features in others.
Dennis Ritchie created the C programming
language as a derivative of BCPL, and eventually
most of the PDP-11 version of UNIX was
rewritten in it. When UNIX was ported to the
VAX, they just needed to retarget the compiler
and write a small amount of very low-level
assembly code. The majority of the system
could be recompiled without modification.
Since its initial public release in 1978, C has
become a very popular language. It is the de
facto standard low-level language for programming
these days, and it even finds use in a significant
amount of application development.
The point of a low-level language is to provide
an abstract machine model to the programmer
that closely reflects the architecture of the
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concrete machines that it will target. There is no
such thing as a universal low-level language: a
language that closely represents the architecture
of a PDP-11 will not accurately reflect something
like a modern GPU or even an old B5000
mainframe. The attraction of C has been that,
in providing an abstract model similar to a PDP-
11, it is similar to most cheap consumer CPUs.
Over the last decade, this abstraction has
become less like the real hardware. The C
abstract model represents a single processor
and a single block of memory. These days, even
mobile phones have multicore processors, and
a programming language designed for single-
processor systems requires significant effort
to use effectively. It is increasingly hard for
a compiler to generate machine code from C
sources that efficiently uses the resources of the
target system.
In 2007, Robert Griesemer, Pike, and Ken
Thompson began work on a new language.
Thompson had both been instrumental in the
creation of C and Pike had worked on it later
at Bell Labs, being members of the original
UNIX team that drove the development of C.
The aim of Go, their new language, was to fill
the same niche today that C fit into in the ’80s.
It is a low-level language for multiprocessor
development. Experience with C taught them
that a successful systems programming language
ends up being used for application development,
so Go incorporates a number of high-level
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features, allowing developers to use it for things
like web services or desktop applications, as well
as very low-level systems.
Both Pike and Thompson worked on Plan
91, a system designed to be a “better UNIX
than UNIX.” Plan 9 eventually gave birth to
the Inferno distributed operating system. For
Inferno, Pike created the Limbo programming
language. If you’ve used Limbo, you will find
a lot of ideas very similar. The module system,
channel-based communication, garbage collection,
much of the type system, and even a lot of the
syntax in Go are inherited directly from Limbo.
The reference implementation of Go is based on
the Plan 9 compiler toolchain.
If you come from C, then many things in Go
will seem familiar, but some will seem strange.
As a trivial example, variable declarations in
Go usually look like they are written back to
front to C programmers, although if you come
from other members of the Algol family, such
as Pascal, then these may not seem so strange.
Most of these changes come from decades of
experience working with C, and seeing ways in
which it can be improved.

Why Go?
In recent years, scalability has become a lot more
important than raw speed. Moore’s law tells us

1Named after the film Plan 9 from Outer Space.
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that the number of transistors on a CPU can
be expected to double roughly every 18 months.
For a long time, this roughly corresponded to a
doubling in performance for a single thread of
execution. Now, it generally means that you get
twice as many cores.
It used to be that you just had to wait six
months, and your C code would run twice as
fast on a new machine. This is no longer true.
Now, if you want your code to be faster on new
machines, then it must be parallel.
C is inherently a serial language. Various
libraries, such as POSIX threads and OpenMP,
make it possible to write multithreaded code in
C, but it’s very hard to write code that scales
well. In creating DragonFly BSD, Matt Dillon
observed that there was no point in creating
an N:M threading model—where N userspace
threads are multiplexed on top of M kernel
threads—because C code that uses more than a
handful of threads is very rare.
Go, in contrast, was designed with concurrency
in mind. If you write idiomatic Go, then you
will write code that, conceptually, does lots of
things in parallel. The compiler and runtime
environment can easily run this code on a single
core by simply timeslicing between the various
parts. They can also run it on a manycore
machine by distributing the tasks across different
threads.
This is a very important advantage. In the
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past, I had to write some code that would work
on my single-core laptop and yet scale up to
a 64-processor SGI machine. Doing this in C
was very hard, but doing the same thing in
Erlang was trivial. In Erlang, I wrote code that
used over a thousand Erlang processes, and the
runtime automatically distributed them across
the available cores.
The disadvantage of the Erlang version was that
Erlang performs significantly worse than C in a
single thread. Until you have a large number of
available cores, the single-threaded C version will
be faster than the concurrent Erlang version.
Go combines the best of both worlds. In single-
threaded performance, it is close to C, yet it
encourages a programming style that scales well
to large numbers of cores. It’s important to
remember that the number of available cores
is likely to follow a geometric growth pattern.
Currently, two to eight cores is common2 and
machines with more than about 16 cores are
expensive. In a few years, you will see mobile
phones with 64 cores and laptops with even
more. Writing C code that scales to two, or even
eight cores is quite difficult but not insanely
hard. Writing C code that scales to 64 or 256
cores is very challenging. With a language
designed for concurrency, it is much easier.
Concurrency is the most obvious advantage

2If you are reading this book in a few years, this will
probably seem laughably dated.
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of Go, but it is not the only one. Go aims to
provide a rich set of features without overcomplicating
the language. Contrast this with C++, where
even after having worked on a standard library
implementation and a couple of compilers for the
language, I still find myself having to refer to the
spec periodically.
Go also includes a rich standard library, which
makes developing complex web applications easy.
It provides a number of mid-level abstractions,
which provide high-level access to low-level
features. We’ll look at one of those in detail in
Chapter 5, Arrays and Slices.

Goroutines and Channels
The fundamental concurrency primitive in Go
is the goroutine. This is a pun on coroutine, a
method of flow control popularized by Simula. A
goroutine is a like function call that completes
asynchronously. Conceptually, it runs in parallel,
but the language does not define how this
actually works in terms of real parallelism.
A Go compiler may spawn a new operating
system thread for every goroutine, or it may
use a single thread and use timer signals to
switch between them. The exact implementation
mechanism for goroutines is not specified by the
language and may change over time.
By themselves, goroutines are not very useful.
C lets you create threads almost as easily as
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Go lets you create goroutines, yet that doesn’t
make it easy to write concurrent code in C.
Creating concurrent subprograms (threads, child
processes, or goroutines) is the easy part of the
problem. The difficult part is communicating
between them.
C does not provide any primitives for communicating
between threads, because C does not recognize
threads; they are implemented in libraries.
Threads all share an address space, so it is
possible to write your own code for communicating
between them, and anyone who has written
concurrent C code has probably done this at
least once.
Go, in contrast, is designed for concurrency. It
uses a form of C. A. R. Hoare’s Communicating
Sequential Processes (CSP) formalism to facilitate
communication between goroutines. CSP defines
communication channels that events can be sent
down. Go programs can create channels and use
them to communicate between threads.
A good rule of thumb for concurrent code is that
the complexity of debugging it is proportional
to the number of concurrent tasks multiplied
by the number of possible ways in which they
can interact. Because C threads use a shared-
everything model, the number of possible ways
in which they can interact is very large.
This is made worse by the fact that it is trivial
for errors in code using pointers to mean that
two C threads are sharing a data structure that
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they shouldn’t, for example via a buffer overrun
or a dangling pointer. These problems do not
manifest in Go because Go adds one feature
to C and removes another. Go programs use
garbage collection, making dangling pointers
impossible, and disallows pointer arithmetic,3
making most other categories of pointer-related
errors impossible. We’ll look at this later, in
Understanding the Memory Model.
Creating a goroutine is intended to be much
cheaper than creating a thread using a typical C
threading library. The main reason for this is the
use of segmented stacks in Go implementations.
The memory model used by early C implementations
was very simple. Code was mapped (or copied)
into the bottom of the address space. Heap
(dynamic memory) space was put in just above
the top of the program, and the stack grew down
from the top of the address space. Low-level
memory management worked using the brk()
system call to add more pages at the top of the
heap segment and the sbrk() call to add more
pages at the bottom of the stack segment.
Threading complicated this. The traditional C
stack was expected to be a contiguous block of
memory. When you create a new thread, you
need to allocate a chunk of memory big enough
for the maximum stack size. Typically, that’s
about 1MB of RAM. This means that creating
a thread requires allocating 1MB of RAM, even

3Except via the unsafe package.
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if the thread is only ever going to use a few KB
of stack space. This is required because compiled
C code assumes that it can allocate more stack
memory by moving the stack pointer. Operating
systems usually mark the page below the bottom
of the stack as no-access, so small stack overflows
will cause a segmentation fault.
Go functions are more clever. They treat the
stack as a linked list of memory allocations. If
there is enough space in the current stack page
for their use, then they work like C functions;
otherwise they will request that the stack grows.
A short-lived goroutine will not use more than
the 4KB initial stack allocation, so you can
create a lot of them without exhausting your
address space, even on a 32-bit platform.
Goroutines are not intended to be implemented
as kernel threads. The language does not make
hard guarantees on their concurrency. Like Java
threads or Erlang processes, a large number
of goroutines can be multiplexed onto a small
number of kernel threads. This means that
context switches between goroutines is often
cheaper than between POSIX threads.

Selecting a Compiler
At the time of writing, there are two stable Go
compilers. The reference implementation is Gc,
although it is commonly referred to as 6g. This
is based on the Plan 9 compiler toolchain.
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The Plan 9 toolchain programs are named with
a number indicating the architecture that they
target, followed by a letter indicating their
function. The three architectures supported by
Go are ARM (5), x86-64 (6), and i386 (8). If you
are using ARM, you would use the 5g command
instead of 6g to compile Go programs, and 5l
instead of 6l to link them.
The alternative is a front end for the GNU
Compiler Collection (GCC), called gccgo.
This turns Go code into more or less the same
intermediate representation that GCC uses for
Fortran, C, and C++, and then subjects it to
the same set of optimizations, again producing
native code.
Currently, Gc is probably the better choice,
although gccgo is starting to produce better
code. It is the reference implementation of
Go, and so is the subject of the most active
development. There are several important
differences between them, however.
The most obvious is that gccgo uses operating
system threads to implement goroutines, and will
not use segmented stacks in all configurations.
This means that creating a goroutine is as
expensive as creating a thread in C. If you are
writing code with a high order of parallelism,
then this will make gccgo much slower than 6g.
If your code only uses a few goroutines, and
doesn’t create them very frequently, then the
better optimization back end in GCC may make
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it faster.
It’s worth remembering that both compilers
produce native executables. Go uses the same
implementation model as Objective-C: native
binaries and a small runtime library implementing
the dynamic functionality. There is no virtual
machine interpreting or JIT-compiling code. It
would be possible to write a dynamic recompilation
environment for Go, but the current implementations
are static compilers. This means that distributing
an application written in Go is as easy as
distributing an application written in any other
compiled language. You need to include any
libraries that you use, but users don’t need a
large runtime environment, as they do with
.NET, Java, or Python code, for example.
Since Go is a relatively new language, there
will almost certainly be new implementations
appearing over time. For example, it is currently
possible to use the gcc front end with the LLVM
code generator via the DragonEgg plugin, and a
native Go front end for LLVM is likely to appear
at some point.
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Creating a Simple Go Program

0 $ 6g hello.go
1 $ 6l hello.6
2 $ ./6.out
3 Hello World!
4 $ go run hello.go
5 Hello World!

If you’re using the Gc compiler, then you need
to invoke the version of it specific to your
architecture. If you’re on an x86-64 system, then
this will be 6g. This takes a list of Go source
files and produces object code. The object code
must then be linked to produce the final binary.
At first glance, this is very similar to C, where
you also first run the compiler and then the
linker. There are a number of differences, which
mostly make Go easier to compile.
When you run 6g, it looks for import directives
and inserts references to the relevant packages
into the object code. This means that you
usually don’t need to specify any libraries to
the linker: it will read the required packages
from the object code file that you give it and
link all of those into the resulting executable.
The linking step is needed to combine all of the
Go packages that you use, along with any C
libraries that you call via the foreign function
interface, into a single executable. The compiler
performs partial linking to produce packages.
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The final linking step is only required when
you want to import all of the separate bits of
code and combine them with the system-specific
preamble that all executables share.
The compiler and linker both generate default
filenames from the target architecture. In the
example at the start of this section, the 6g
compiler generates a hello.6 object code file. If
you used 8g instead, and generated 32-bit x86
code, then the resulting file would be hello.8
and the 8l linker would produce 8.out instead
of 6.out. These are just the default output
filenames. You can use -o with both tools to
specify another filename.
As of Go 1.0, all of the details of this are
typically hidden from you. The go command
can compile and run programs for you with a
single step. Simply type go run followed by the
name of the source file and it will do all of this
for you. If you specify the -x flag, then you can
see exactly what this tool does as it runs.

The Go Type System
Go is a language with static typing and tight
coupling between components. Go is also a
language with dynamic typing and loose coupling
between components. The language allows you
to select which of these is more appropriate for
each use case.
Go has a range of C-like primitive types and
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structures that are similar to C structures, with
the addition of methods (which are allowed on
all Go types, not just structures) but without
any form of inheritance. If you call a method on
an expression with a static type directly, then
the methods on it are just syntactic sugar on
function calls. They are statically looked up and
called.
The other side of the Go type system is visible
via interfaces. Unlike Java interfaces or Objective-
C protocols, they support duck typing4 and don’t
have to be explicitly adopted. Any type that
implements the methods that an interface lists
implicitly implements that interface. If you’ve
used languages in the Smalltalk family, including
Python or Ruby, then you’re probably familiar
with duck typing.
Interface types can be used as variable types.
When you call any method on an interface-typed
variable, it uses dynamic dispatch to find the
correct method implementation.
Go also supports introspection on types. You
can query any variable to find out whether it
is an instance of a specified type, or whether it
implements a specified interface. This makes
it easy to write generic data structures in Go.
You can either define an interface specifying
the methods that you require, or use the empty
interface, which can be used to represent any

4If it walks like a duck and quacks like a duck, it’s a
duck.
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type (including primitive types) if you are
just storing values and don’t need to call any
methods.
One of the most useful features for a lazy
programmer is the type inference that the Go
compiler does. This allows you to avoid explicit
type annotations on most variable declarations.
If you combine initialization with declaration,
then the compiler will infer the variable’s type
from the type of the expression assigned to it.

Understanding the Memory
Model
Go uses garbage collection (GC). Generally,
people have one of two reactions to this. If you
come from a high-level language, like Java,
C#, Ruby, Python, or Smalltalk, then your
reaction is likely to be “So what? It’s a standard
language feature these days.” People coming
from C or C++, in contrast, tend to regard GC
as a decadent luxury and a sign of incompetence
among programmers in general. Oh, and they
also want you to get off their lawn.
Garbage collection means that you don’t have
to think about when to deallocate memory. In
Go, you explicitly allocate values, but they are
automatically reclaimed when they are no longer
required. There is no equivalent of C’s free() or
C++’s delete. As with other garbage collected
languages, it is still possible to leak objects if
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you accidentally keep references to them after
you stop using them.
When you’re writing single-threaded code,
garbage collection is a luxury. It’s nice to have,
but it’s not a vital feature. This changes when
you start writing multithreaded code. If you are
sharing pointers to an object between multiple
threads, then working out exactly when you
can destroy the object is incredibly hard. Even
implementing something like reference counting
is hard. Acquiring a reference in a thread
requires an atomic increment operation, and
you have to be very careful that objects aren’t
prematurely deallocated by race conditions.
Like Java, and unlike C or C++, Go does not
explicitly differentiate between stack and heap
allocations. Memory is just memory. If you
create an object with local scope, then current
implementations will allocate it on the stack
unless it has its address taken somewhere.
Future implementations might always allocate it
in a young GC generation and then move it to
another generation if it has remaining references
after a short amount of time. Alternatively,
they may perform better escape analysis to
allocate objects on the stack even if they have
their address taken, as long as they are never
referenced after the function in which they are
allocated returns.
Go is designed to make garbage collection
relatively easy to implement, although the
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existence of interior pointers makes it harder
than a language like Java or Smalltalk. There
are strict restrictions on where pointers can
be stored, so the collector can, in theory,
always tell, for example, the difference between
an integer and a pointer value. In current
implementations, Go uses fairly conservative
garbage collection, although that is one of the
areas that is likely to improve in future versions.
Because Go is designed for concurrency, the
memory model defines explicitly what to expect
when two goroutines touch the same memory:
in short, there are no guarantees. Go does
not enforce any constraints on the order that
memory accesses occur with regard to each
other. The compiler is free to reorder any
memory accesses within a goroutine, as long as
that reordering does not alter the semantics of
the goroutine running in isolation. For example,
consider the following bit of pseudocode:

a = b;
use(b)
use(a);
b = 12;

The compiler is free to rearrange the statements
so that the user-visible effect is not changed
within the scope of this block. For example, this
would be a valid reordering:

use(b)
a = b;
b = 12;
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use(a);

Although the statements reading and writing
the values of the two variables are no longer in
the same order, it is not possible for the user
to distinguish the difference. This means that
you have to be very careful when using shared
memory from two goroutines: if either variable
in this example is shared then this kind of
optimization would have confusing consequences.
In general, it’s a good idea to only share read-
only strutures. We’ll look at some alternatives
for mutable data in Chapter 10, Concurrency
Design Patterns.
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A Go Primer

One of the goals of Go was a consistent and
unambiguous syntax. This makes it easy for
tools to examine Go programs, and also makes
it easy to learn. Unhelpful compiler errors make
it difficult to learn a language, as anyone who
has made a typo in C++ code using templates
will know.
In C, for example, function and global variable
declarations have almost the same syntax. This
means that the compiler can’t easily tell which
one you meant if you make an error. It gives you
helpful error messages like “expected ;” on a line
where you don’t think a semicolon is expected at
all.
The Go grammar was designed to make it
possible for the compiler to tell you more
accurately what you did wrong. It was also
designed to avoid the need to state something
that can be easily inferred. For example, if you
create a variable and set its value to 42, the
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compiler could probably guess that this variable
should be an integer, without it being explicitly
stated. If you initialize it with a function call,
then the compiler can definitely tell that the
type should be whatever the function returned.
This was the same problem that C++ 2011
solves with the auto type.
Go adopts JavaScript’s idea of semicolon
insertion, and takes it a step further. Any line
that can be interpreted as a complete statement
has a semicolon implicitly inserted at the end by
the parser.1 This means that Go programs can
freely omit semicolons as statement terminators.
This adds some constraints, for example
enforcing a brace style where open braces are at
the end of the line at the start of flow-control
statements, rather than on their own. If you
happen to be a human, this is unfortunate,
because it means that you can’t use the highly
optimized symmetry recognition paths, which
evolution has spent the last million or so years
optimizing in your visual cortex, for recognizing
code blocks.
This chapter contains an overview of Go syntax.
This is not a complete reference. Some aspects
are covered in later chapters. In particular, all
of the concurrency-related aspects of Go are
covered in Chapter 9, Goroutines.

1This is an oversimplification. The exact rules for
semicolon insertion are more complicated, but this rule of
thumb works in most cases.
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The Structure of a Go Source
File

1 package main
2 import "fmt"
3

4 func main() {
5 fmt.Printf("Hello World!\n")
6 }

From: hello.go

A Go source file consists of three parts. The first
is a package statement. Go code is arranged in
packages, which fill the rôles of both libraries
and header files in C. The package in this
example is called main, which is special. Every
program must contain a main package, which
contains a main() function, which is the program
entry point.
The next section specifies the packages that this
file uses and how they should be imported. In
this example, we’re importing the fmt package.
Once the fmt package has been imported, any
of its exported types, variables, constants, and
functions can be used, prefixed by the name
of the package. In this simple example, we’re
calling Printf(), a function similar to C’s
printf, to print “Hello World!” in the terminal.
Although Go uses static compilation, it’s
important to realize that import statements
are much closer to Java or Python import
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directives than to C inclusions. They do not
include source code in the current compilation
unit. Unlike Java and Python packages, Go
packages are imported when the code is linked,
rather than when it is run. This ensures that a
Go application will not fail because of a missing
package on the deployment system, at the cost
of increasing the size of the executable. Packages
in Go are more important than in languages like
Java, because Go only provides access control at
the package level, while Java provides it at the
class level.
When you compile a package (from one or
more .go files) with the Gc compiler, you get an
object code file for the package. This includes
a metadata section that describes the types
and functions that the package exports. It also
contains a list of the packages that this package
imports.
The input to the 6l linker is always a .6 file for
the main package. This file contains references
to every package that the main package imports,
which may in turn reference further packages.
The linker then combines them all.
This eliminates one of the most irritating
problems with building complex C programs:
you include a header, and then have to work out
which library provided it and add the relevant
linker flags. With Go, if a package compiles, it
will link. You don’t have to provide any extra
flags to the linker to tell it to link things that
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you’ve referenced via import directives.
The remainder of a Go file contains declarations
of types, variables, and functions. We’ll explore
that for the rest of this chapter.
You may find that you have two packages
that you want to import that have the same
name. This would cause problems in Go. The
badStyleImport.go example is functionally
equivalent to the example at the start of this
section but renames the fmt package, calling it
format. Renaming a package when you import it
is usually a bad idea, because it makes your code
harder for people to read. You should only ever
use it when you explicitly need to disambiguate
two packages with the same name.

0 package main
1 import format "fmt"
2

3 func main() {
4 format.Printf("Hello World!\n")
5 }

From: badStyleImport.go
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Declaring Variables

4 var i int
5 var Θ float32
6 var explicitly, typed, pointers *complex128
7 int_pointer := &i
8 another_int_pointer := new(int)
9 generic_channel := make(chan interface{})

From: variables.go

Variables are declared with the var keyword,
followed by the variable name, and finally
by the type. The existence of a specific
keyword for variable declarations makes it
easy to differentiate them from other types of
statements.
Writing the type at the end looks weird to
people familiar with C-family languages, but it
makes sense when you read the code. A (typed)
variable declaration is an instruction saying, for
example, “declare the variable foo to have the
type int.”
One of the variables declared at the start of this
section uses T (theta) as a variable name. Go
permits identifiers to start with any symbols that
Unicode classes as letters. This can sometimes
be very useful, such as if variable names are
mathematical quantities. Don’t abuse it, though:
the person maintaining your code will not thank
you if you use characters that he can’t type on
his keyboard for frequently used variables.
A declaration statement may declare multiple
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variables, but they all have the same type. In C,
some may have the type that is written at the
start of the declaration, some may be pointers to
that type, some may be pointers to pointers to
that type, and so on. The form used by Go is far
less prone to ambiguity.
You will rarely use the long form of declarations.
One of the key ideas in writing good code is the
principle of minimum scope. This means that
the scope of a variable—the lexical region where
it is valid—should be as small as possible for
the variable’s lifetime. One corollary of this is
that variables should be declared immediately
before their first use and initialized as part of
their declaration.
Go provides a shorthand syntax, the :=
initialization operator, which does this. Using
this notation, you can declare and initialize a
variable in a single statement. More importantly,
you avoid the need to declare a type for the
variable: the type of the variable is the type of
the expression used to initialize it.
The example at the start of this section shows
both kinds of declaration. It also introduces Go’s
syntax for pointers. The variable int_pointer
is initialized using the address-of operator (&).
This should be familiar to C programmers: it
returns the address in memory of an object.
The returned value, however, is more similar
to a Java reference than a C pointer. You
can’t perform arithmetic using Go pointers,
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nor use them interchangeably with arrays. As
with Java references, you can pass Go pointers
around without having to worry about when
the underlying object will be deallocated. It will
automatically be freed when the last reference is
destroyed. Unlike Java references, you can make
pointers to primitive types, not just to structures
(Go’s equivalent of objects).
In this example, you could return int_pointer
from this function without any problems. This
may seem strange to C programmers, because
it points to a variable declared locally. The Go
compiler will try to allocate i on the stack,
but that’s just an implementation detail. If its
address is taken and it is returned from the
function then it will be allocated on the heap
instead.
This example creates another integer pointer,
in a different way. The new() built-in function
creates a new integer and returns a pointer to
it. This is semantically equivalent to declaring
an integer variable and then taking its address.
Neither guarantees how the underlying storage
will be allocated. You can pass any type
to new(), but it is not the standard way of
allocating everything.
Go includes three special types, which we’ll
look at in a lot more detail later in this book:
slices, maps, and channels. These are reference
types, meaning that you always access them via
a reference. If you assign one map-typed variable
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to another, then you will have two variables
referring to the same map. In contrast, if you
assign one integer-typed variable to another,
then you will have two variables with the same
value, but modifying one will not affect the
other.
Instances of reference types in Go are created
with the make() built-in function. This is similar
to new(), but also performs initialization of the
built-in types. Values returned by new() are
simply zeroed. They are not guaranteed to be
immediately useful, although good style suggests
that they should be.

Declaring Functions

4 func printf(str string, args ...interface{}) (int
, error) {

5 _, err := fmt.Printf(str, args...)
6 return len(args), err
7 }
8

9 func main() {
10 count := 1
11 closure := func(msg string) {
12 printf("%d %s\n", count, msg)
13 count++
14 }
15 closure("A Message")
16 closure("Another Message")
17 }

From: functions.go
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Functions in Go are declared using the func
keyword. As with variable declarations, the
return type goes at the end. This can be a single
value, or a list of values. The printf() function
in the example shows several important features
of Go. This is a variadic function, which returns
multiple values: an integer and an error. The
integer is the number of variadic arguments
passed to it, and the error code is one of the
values returned from the Printf() function from
the fmt package.
Note the syntax for calling functions that return
multiple values. The return values must either
all be ignored, or all assigned to variables. The
blank identifier, _, can be used for values that
you wish to discard.
Variadic functions in Go are particularly
interesting. In C, a variadic function call just
pushes extra parameters onto the stack, and
the callee has to know how to pop them off. In
Go, all variadic parameters are delivered as a
slice (see Chapter 5, Arrays and Slices; for now
you can think of a slice as being like an array).
The variadic parameters must all be of the same
type, although you can use the empty interface
type (interface{}) to allow variables of any
type and then use type introspection to find out
what they really are.
The main() function in the example is the
program entry point. Unlike many other
languages, this takes no arguments. Command-
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line arguments and environment variables are
stored globally in Go, making it easy to access
them from any function, not just one near the
program entry point.
Inside this function, you’ll see a closure defined.
Closures in Go are declared as anonymous
functions, inside other functions. The closure
can refer to any variables in the scope where
it is declared. In this example, it refers to the
count variable from the outer function’s scope.
It would continue to do so even after the outer
function returned. In Go, there is no distinction
between heap and stack allocated variables,
except at the implementation level. If a local
variable is referenced after the function that
contains it, then it is not freed when the function
returns. If closure were stored in a global
variable, for example, then count would not be
deallocated, even after the function returned.
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Looping in Go

1 package main
2 import "fmt"
3

4 func main() {
5 loops := 1
6 // while loop:
7 for loops > 0 {
8 fmt.Printf("\nNumber of loops?\n")
9 fmt.Scanf("%d", &loops)

10 // for loop
11 for i := 0 ; i < loops ; i++ {
12 fmt.Printf("%d ", i)
13 }
14 }
15 // Infinite loop
16 for {
17 // Explicitly terminated
18 break
19 }
20 }

From: loop.go

In C, you have three kinds of loops, all with
different syntax and overlapping semantics. Go
manages to have more expressive loop semantics,
but simple and uniform syntax.
Every loop in Go is a for statement. We’ll only
look at the forms that mirror C loop constructs
here. The form that iterates over a collection is
explained in Chapter 5, Arrays and Slices.
The loop.go example shows the three types
of general for loops in Go. The last one is
the simplest. This is an infinite loop, with an
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explicit break statement to terminate it. You’d
most commonly use this form for an event loop
that would not terminate in normal use. Like
C, Go also has a continue statement that
immediately jumps to the start of the next loop
iteration, or exits the loop if the loop condition
no longer holds.
Both the break and continue statements
support an optional label for jumping out of
nested loops. Note that the label is not a jump
target; it is just used to identify the loop.

5 for i := 0 ; i<10 ; i++ {
6 L:
7 for {
8 for {
9 break L

10 }
11 }
12 fmt.Printf("%d\n", i)
13 }

From: break.go

You can see this in the break.go example. The
break statement jumps out of the two inner
loops, but does not prevent the Printf call
from running. It jumps to the end of the loop
immediately after L:, not to the start.
Most of the time, you won’t use infinite loops
and explicit escapes. The other two types of
for loops in Go are analogous to while and for
loops in C and the older form of for loops in
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Java. The outer loop in the example at the start
of this section will test its condition and loop as
long as it is true. The inner loop first performs
the initialization (i := 0) then tests the loop
condition (i < loops), and runs the loop clause
as long as it’s true. Between each loop iteration,
it runs the increment clause (i++). If you’ve used
any vaguely C-like language, then this will be
very familiar to you. The only difference between
a Go for loop and a C for loop is that the Go
version does not require brackets.
There are a couple of interesting things in
this loop. The first is the creation of the loop
variable (i) at the loop scope. This is similar to
C99 or C++. The variable that is declared in
the loop initialization clause is only in scope for
the duration of the loop.
The second is the increment statement. Note
that I did not call it a postincrement expression.
The designers of Go decided to eliminate
the confusion between preincrement and
postincrement expressions in C. In Go, the
increment statement is not an expression, and
only the suffix syntax is allowed. This line
increments the variable, but it does not evaluate
to anything. Writing something like a := b++
is not valid Go. Writing ++b is invalid in all
contexts in Go: there is no prefix form of the
operator.
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Creating Enumerations

4 const (
5 Red = (1<<iota)
6 Green = (1<<iota)
7 Blue, ColorMask = (1<<iota), (1<<(iota+1))-1
8 )

From: enum.go

There are several places in Go where it is
obvious that someone has spent a lot of thought
designing exactly the right syntax for most
common uses of a language feature. Enumeration
constants are the most obvious example of this
attention to detail.
There is no divide between constants and
enumerations in Go. This mirrors their
implementation in C, where enumerated types
can be used interchangeably with integers.
Groups of constants within the same declaration
in Go are used for enumerations.
There are two common uses for enumerated
types. The first is defining a set of mutually-
exclusive options. The second is defining a set
of overlapping flags. Typically, you’ll use a
sequence of numbers for the first and a sequence
of powers of 2 for the second. You can then
create a bitfield by bitwise-oring a combination
of enumeration values together.
In C, and most other languages with enumerated
types, you need to explicitly provide the
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numerical values for the second type of
enumeration. The first will be automatically
numbered by the compiler.
Go provides a much more flexible mechanism
for defining enumerations. The iota predeclared
identifier is similar to the GNU C __COUNTER__
preprocessor macro, but it’s more powerful. It
is an integer constant expression. In a normal
program scope, it evaluates to zero, but in the
scope of a constant declaration it is initially zero
but then incremented on each line where it is
used.
Unlike __COUNTER__, iota is scoped. It is zero
on the first line of the group in this example, and
will always be zero in the first line of this group,
irrespective of how it is used elsewhere. If you
have multiple const groups in a single source
file, then iota will be zero at the start of each of
them.
The example at the start of this section shows
how to declare a group of constants for use as
an enumerated type. This simple example shows
the low 3 bits of a bitfield being used to store
three flags indicating the presence of three color
values. The ColorMask constant is defined to
provide the value that must be bitwise-and’d
with an integer to give the three color flags.
It’s possible to reference constants from other
constant declarations, so you can combine this
kind of declaration easily. For example, you
could provide another constant declaration
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describing another group of flags within a set,
and then extend this declaration to use them in
the next few bits of the bitfield.
Similarly, you can extend existing constant
declarations by inserting another iota expression
earlier. This will then renumber all subsequent
values, so it’s important to be careful when the
constants are part of a binary interface.
Constants—and therefore enumerations—in
Go are not limited to integers. Other types
can be specified in the same way. The enum.go
example also shows the declaration of the
complex constant i, with the same definition as
in mathematics.

10 const (
11 i complex128 = complex(0, 1)
12 )

From: enum.go

Declaring Structures

4 type Example struct {
5 Val string
6 count int
7 }

From: struct.go

Structures in Go are somewhat richer than
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C structures. One of the most important
differences is that Go structures automatically
support data hiding.
Any top-level type, method, or variable name
that starts with a capital letter is visible outside
of the package in which it is declared. This
extends to structure fields. In C, if you only put
some fields from a structure in a header, then
you will encounter problems when someone tries
to allocate an instance of it on the stack: his
compiler won’t allocate enough space for it. Go
packages export the offsets of the public fields.
This allows them to be created and their public
fields accessed from other compilation units.
The example at the start of this section defines
a structure with two fields. The first, a string, is
public and can be accessed from anywhere. The
second, an integer, is private and is only visible
to code in the same package as this definition.
A structure doesn’t have to declare any public
fields. You can create opaque types by defining a
structure where all of the fields are private.
If you’re coming from a class-based language
like C++ or Java, then you may be wondering
why there are public and private fields, but
not protected ones. The answer is quite simple:
there is no inheritance in Go, so protected would
have no meaning. Public and private also have
slightly different meanings in Go and a language
like Java. A private field in a Go structure can
be accessed by any code in the same package,
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not just by methods of that structure. If you
come from Objective-C, then you can think of
private fields in Go structures like @package
instance variables in Objective-C. If you come
from C++, then think of all Go functions in
a package as implicitly being friends of all
structures declared in the same package.

Defining Methods

9 type integer int
10 func (i integer) log() {
11 fmt.Printf("%d\n", i);
12 }
13 func (e *Example) Log() {
14 e.count++
15 fmt.Printf("%d %s\n", e.count, e.Val)
16 }

From: methods.go

If you’ve used a class-based language, then you
are probably wondering why the last example
didn’t define any methods defined on the
structure. In Go, you may define methods on
any concrete type that you define, not just on
structures. The example at the start of this
section defines two Log() methods—recall that
the uppercase start letter makes them public—
one on the structure defined in the last section
and one on a named integer type.
The Go type system lets you assign any int to
this named type without an explicit cast, but not
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vice versa. It also prevents you from assigning
between two named types. This can be very
useful for variables representing quantities. You
could, for example, define kilometer and mile
types and have the compiler reject any code
where you attempted to assign one to the other.
You cannot add methods to existing types—
Go does not have an equivalent of Objective-C
categories—but you can define new named types
and add methods to them.
Methods are declared just like functions,
except that there is one extra parameter—the
receiver—declared before the function name.
One of the interesting syntactic quirks of Go
is that there is no this or self keyword. You
can give the receiver any name that you want,
and this name does not have to be consistent
between methods. This idea comes from Oberon-
2 and should be popular with people who like
the “no magic” philosophy of languages like
Objective-C: the receiver is not an implicit
hidden parameter that the compiler inserts; it
is an explicit parameter just like any other.
The method on the structure in the example
at the start of this section takes a pointer as
the receiver. This means that it can modify
fields of the receiver and these changes will be
shared. Methods do not have to take pointers:
the other method in the example takes a value.
If a method takes a value type, then it can still
be called with either a value or a pointer, but it
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will receive a copy of the structure, so changes
that it makes will not be visible from the caller.
When talking about expressions with an explicit
type, methods are just functions. You call a
method on a structure by using the dot notation,
and you declare the parameter that declares
how the structure is passed to the method in a
special way, but this is just some syntactic sugar.
Methods called in this way are semantically
equivalent to functions that just take the receiver
as an argument: they are statically resolved and
are just function calls.
That’s not the real power of methods, though.
When you call a method via an interface
(described in the next section), you get late-
bound dynamic lookup. This dual nature of
Go methods means that you have a single
abstraction that can be used in the same way
as either C types or Smalltalk objects. If you
require performance, then you can use statically
typed definitions and avoid the dynamic lookup.
If you require flexibility, then you can use the
late binding mechanism of interfaces.
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Implementing Interfaces

5 type cartesianPoint struct {
6 x, y float64
7 }
8 type polarPoint struct {
9 r, θ float64

10 }
11

12 func (p cartesianPoint) X() float64 {return p.x }
13 func (p cartesianPoint) Y() float64 {return p.y }
14 func (p polarPoint) X() float64 {
15 return p.r*math.Cos(p.θ)
16 }
17 func (p polarPoint) Y() float64 {
18 return p.r*math.Sin(p.θ)
19 }
20 func (self cartesianPoint) Print() {
21 fmt.Printf("(%f, %f)\n", self.x, self.y)
22 }
23 func (self polarPoint) Print() {
24 fmt.Printf("(%f, %f◦)\n", self.r, self.θ)
25 }
26 type Point interface {
27 Printer
28 X() float64
29 Y() float64
30 }
31 type Printer interface {
32 Print()
33 }

From: interface.go

The dynamic dispatch mechanism in Go is
reminiscent of StrongTalk, a strongly typed
Smalltalk dialect. Interfaces describe a set of
methods that a type understands. Unlike Java
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interfaces or Objective-C protocols, they do not
need to be explicitly adopted.
Any type can be assigned to a variable with
an interface type, as long as it implements all
of the required methods. In some cases, this
can be checked at compile time. For example,
if one interface is a superset of another, then
casting from the superset to the subset is always
valid, as is casting from a structure type to
an interface when the compiler sees that the
structure implements the interface.
In other cases, it is not. These cases require
a type assertion, detailed in the next section,
which will generate a runtime panic if they fail.
This means that any variable with an interface
type is guaranteed to either be nil, or hold a
valid value of a concrete type that implements
the interface.
The example from the start of this section
shows the creation of new structure types,
and interfaces that they implement. Note
that the structure can be defined before the
interface. In fact, structures can be defined in
entirely different packages to interfaces. This is
especially useful if various third-party structures
all implement the same method or group of
methods: you can define a new interface that
can be any one of them.
There are two interfaces declared in this
example, both following Go naming conventions.
The Printer interface defines a single method,
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Note: If you’re coming from C++, then you
should use interfaces in most of the places where
you’d use templates in C++. Rather than defining
template functions or classes (which Go doesn’t
support), define an interface that specifies the set
of methods that you need, and use it where you
would use the template parameter in C++.

so it follows the convention of appending the -er
suffix to the method name to give the interface
name.
The other interface uses interface composition
to extend the Printer interface. This one
defines an abstract data type. It provides
methods for accessing the horizontal and vertical
coordinates of a two-dimensional point. Interface
composition is effectively equivalent to interface
inheritance in Java. You can use it in some
places where you would consider using single or
multiple inheritance in other languages.
This example provides two structures that
implement this interface, one using Cartesian
and the other using polar coordinates. This is a
simple example of how an interface can be used
to hide the implementation. The two structures
both start with lowercase letters, so they will
not be exported from this package, while the
interfaces will. You could extend this example
by providing functions to construct a Point from
polar and Cartesian coordinates, each returning
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one of a different kind of structure.
When you are dealing with interfaces, the
distinction between methods that take pointers
and ones that take values becomes more
important. If you tried to assign an instance
of this example structure to an interface that
required the Log() method, then the assignment
would be rejected. Assigning a pointer to an
instance of this structure would work.
This seems counterintuitive. If you have a
value, then you can always take its address to
get a pointer, so why are the two method sets
distinct? The answer is very simple: it helps
avoid bugs. When you pass a value, you create
a copy of a structure. When you pass a pointer,
you alias the structure. If you pass a value
and then implicitly, via method invocation on
an interface, pass a pointer, then any changes
that the method made would be made to the
temporary copy, not to the original structure.
This is probably not what you want, and if it
is then you can just pass the pointer originally,
rather than the copy.
The Go FAQ gives an example of a case where
this could be problematic:
var buf bytes.Buffer
io.Copy(buf, os.Stdin)

The io.Copy() function copies data from
something that implements the io.Reader
interface to something that implements the
io.Writer interface. When you call this
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function, it will pass a copy of buf as the first
argument, because Go always passes by value,
not by reference. It will then try to copy data
from the standard input into the new copy of
buf. When the function returns, the copy of
buf will no longer be referenced, so the garbage
collector will free it.
What the person writing this code probably
wanted to do was copy data from the standard
input into buf. The Go type system will
reject this, because buf does not implement
the io.Writer interface: the method for
writing bytes to a buffer modifies the buffer
and therefore requires a pointer receiver. By
disallowing this, Go lets you get an error at
compile time and trivially fix it by writing this
instead:

var buf bytes.Buffer
io.Copy(&buf, os.Stdin)

If Go allowed values to use methods that are
declared as requiring a pointer, then you would
instead spend ages wondering why this line
appeared to be reading the correct amount
of data, but wasn’t storing any of it in the
buffer that you declared. This is part of the
Go philosophy of avoiding ambiguity. It just
takes one extra character to make a pointer
when you need one. That small amount of extra
effort is a lot less than the time you’d spend
debugging code where you meant one thing and
Go assumed that you meant something else.
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Casting Types

4 type empty interface {}
5 type example interface {
6 notImplemented()
7 }
8

9 func main() {
10 one := 1
11 var i empty = one
12 var float float32
13 float = float32(one)
14 switch i.(type) {
15 default:
16 fmt.Printf("Type error!\n")
17 case int:
18 fmt.Printf("%d\n", i)
19 }
20 fmt.Printf("%f\n", float)
21 // This will panic at run time
22 var e example = i.(example)
23 fmt.Printf("%d\n", e.(empty).(int))
24 }

From: cast.go

Unlike C, Go does not allow implicit casting.
This is not laziness on the part of the
implementors: implicit casting makes it easy
for very subtle bugs to slip into code. I recently
had to find a bug in some code that had
gone undetected for several years, where an
implicit cast meant that a value was incorrectly
initialized. The code looked correct, until you
checked the type declarations of everything
involved, which were spread over multiple files.
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This is another example of the Go philosophy.
You should never need to state the obvious
to the compiler, but you should always have
to explicitly specify things that are otherwise
ambiguous.
The example at the start of this section shows
several casts. The concept of casting in other
languages is embodied by two concepts in Go.
The first is type conversion; the second is type
assertion.
A type conversion is similar to a cast in C.
It reinterprets the value as a new type. The
conversion from int to float32 is an example of
this. The resulting value is a new floating-point
value with the same value as the integer. In
some cases, the conversion is only approximate.
For example, a conversion in the other direction
will result in truncation. A type conversion from
an integer to a string type will return a single-
character string interpreting the integer as a
unicode value.
Type assertions are more interesting. They do
not convert between types; they simply state to
the compiler that the underlying value has the
specified type. This assertion is checked at run
time. If you try running this example, you will
see that it aborts with a runtime panic.
This is because of the type assertion telling
the compiler that the type of i is something
that implements the example interface. In
fact, the underlying type is int, which does
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1 1
2 1.000000
3 panic: interface conversion: int is not main.

example: missing method notImplemented
4

5 goroutine 1 [running]:
6 main.main()
7 /Users/theraven/Documents/Books/GoPhrasebook/

startsnippets/cast.go:22 +0x20d
8

9 goroutine 2 [syscall]:
10 created by runtime.main
11 /Users/theraven/go/src/pkg/runtime/proc.c:219
12 exit status 2

Output from: cast.go

not implement the notImplemented() method
that this interface specifies. The type check fails
on the type assertion. If you come from C++,
you can think of type assertions as roughly
equivalent to a dynamic_cast that throws an
exception2 on failure.
The final cast-like construct in Go is the type
switch statement. This is written like a normal
switch statement, but the switch expression is
a type assertion to type and the cases have type
names, rather than values.
The type switch in the example is used as a
simple type check, like a C++ dynamic_cast.

2Runtime panics are not quite analogous to C++
exceptions. The differences are covered in Chapter 8,
Handling Errors.



ptg7913130

50 CHAPTER 2: A Go Primer

It is more common to use type switches when
defining generic data structures (see Chapter 4,
Common Go Patterns) to allow special cases for
various types.
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When I first learned C, the compiler supported
16-bit ints and 32-bit longs. A few years later,
it became more common for int to be 32 bits. A
lot of code was written with assumptions about
the sizes of C types, and this caused people a
lot of problems when 64-bit systems became
common.
The C99 standard introduced the stdint.h
header, which defined types like uint32_t,
an unsigned integer that was 32 bits on any
platform. This helped a bit, but on some
platforms a cast between a uint32_t and an
unsigned int was safe and wouldn’t generate
a warning, since they were the same underlying
type, while on others it was not.
Go learned from this mess and provides
explicitly sized integer and floating-point types
from the start. A uint64 is always a 64-bit
unsigned integer. An int16 is always a 16-bit
signed integer.
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Sometimes, you don’t want to specify the
exact size of a type. Go also provides int and
uint types, which have more or less the same
definition as in C. They are a natural size for the
machine, but always at least 32 bits.1 Unlike
the C equivalent, you cannot implicitly cast
between int and any explicitly sized type. This
avoids the case where code is performing a safe
conversion on one platform but not on another.

Converting Between Strings and
Numbers

1 package main
2 import "fmt"
3 import "strconv"
4

5 func main() {
6 var i int
7 fmt.Scanf("%d", &i)
8 str := strconv.FormatInt(int64(i), 10)
9 hex, _ := strconv.ParseInt(str, 16, 64)

10 fmt.Printf("%d\n", hex)
11 }

From: str2num.go

We’ve already seen some examples of converting
between numbers and strings using the fmt
package. You can use numerical format specifiers
with functions like Printf() and Scanf() to

1Go does not currently support any 16-bit
architectures, and probably never will.
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read and write numbers, but that’s often overkill
for a simple conversion.
The strconv package contains various functions
to just perform the conversions. These allow
conversion between numerical types and strings,
in both directions, optionally with a specified
number base.
The example at the start of this section shows a
rather convoluted sequence of conversions. This
first reads some characters from the standard
input, which it interprets as a decimal integer.
It then constructs a string from this, and then
parses the string as a base-16 integer. Finally, it
outputs the value as a base-10 integer again.
Prior to Go 1.0, the functions in this package
had quite confusing names for various number
bases. Now the large range of functions has been
replaced by a simpler set of more generic ones.
The example uses FormatInt() to create a string
from the integer and ParseInt() to perform the
inverse conversion.
We’re ignoring the second value returned from
strconv.ParseInt(). This is an error value,
and we assume that the input is always valid. If
you are getting the string from user input then
you should probably check the error value.
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Using Large Integers

1 package main
2 import "math/big"
3 import "fmt"
4

5 func main() {
6 var n int
7 fmt.Printf("Compute how many Fibonacci numbers?

")
8 fmt.Scanf("%d", &n)
9 last := big.NewInt(1)

10 current := big.NewInt(1)
11 for i := 0 ; (i < n) && (i < 2) ; i++ {
12 fmt.Printf("1\n")
13 }
14 for i := 2 ; i < n ; i++ {
15 last.Add(last, current)
16 tmp := last
17 last = current
18 current = tmp
19 fmt.Printf("%s\n", current.String())
20 }
21 }

From: fib.go

The math/big package defines two types: one for
arbitrary-length integers and one for arbitrary-
size rational numbers, represented as fractions.
These each define a set of operations, all
following the same general, slightly unintuitive,
form.
Operations such as Add are methods on these
types. The receiver is set to the result of
performing the operation on the two operands
and returned. This means that a.Add(b,c) on
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a type from the big package is equivalent to
a = b + c on built-in numeric types.
The example at the start of this section shows
how to use big integers to compute the Fibonacci
sequence. This program creates two big integers,
one for each of the last two values in the
sequence.
There is no explicit typing in this program
(except for the small integer used for the loop).
This is one of the nice things about Go: you
rarely have to worry about types; you can rely
on type inference everywhere. The three big
integers are all pointers to big int structures.
One of the advantages of garbage collection is
that you don’t have to care about this. Variables
will automatically be cleaned up whether they
are pointer or structure types.
A big integer implementation of any kind will
need to store an arbitrary amount of data, so
it’s more efficient if we reuse them. To compute
the sequence, we just add the last two values
together and then loop, discarding the old
last value implicitly in the addition and then
swapping them.
The swap operation is very cheap, because they
are pointer types: we are just changing how we
refer to the two objects, not copying them.
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Converting Between Numbers
and Pointers

1 package main
2 import "fmt"
3 import "unsafe"
4

5 func main() {
6 str := "A Go variable"
7 addr := unsafe.Pointer(&str)
8 fmt.Printf("The address of str is %d\n", addr)
9 str2 := (*string)(addr)

10 fmt.Printf("String constructed from pointer: %s
\n", *str2)

11 address := uintptr(addr)
12 address += 4
13 // This has undefined behavior!
14 str3 := (*string)(unsafe.Pointer(address))
15 fmt.Printf("String constructed from pointer: %s

\n", *str3)
16 }

From: ptr2int.go

In BCPL, there was no distinction between
integer and pointer types; there was just a single
word type, which stored a value that could fit
in a register. If you did some arithmetic on
such a value, it was treated as an integer; if you
dereferenced it then it was treated as a pointer.
C added some explicit typing, so integers and
pointers were treated as distinct types, but still
allowed implicit conversions between pointers
and pointer-sized integers. It also allowed various
forms of arithmetic on pointers. In C, a pointer
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is just a number representing an address in
memory, with a small amount of type checking
to prevent you from doing some of the more
obviously stupid things that it’s possible to do
with pointers.
In Go, pointers and integers are completely
distinct types. Converting between them is
supported via the unsafe package, as shown in
the example at the start of this section.

Note: Unsafe operations are not always
supported. Passing the -u flag to the Go compiler
disables it. This is commonly used in hosted Go
environments, including the Google App Engine.

The first thing that you should notice about this
example is that it is convoluted and verbose.
This is intentional: doing low-level things with
pointers is very rarely the correct thing to do,
and Go doesn’t want to encourage this kind of
behavior. In C, you often have to do pointer
arithmetic because the language doesn’t provide
a sensible way of doing what you want. In Go,
you commonly only need to access pointers as
integers for interfacing with other languages, or
for some very low-level tasks. Abstractions like
slices avoid the need in common cases.
The unsafe package provides a Pointer type,
which represents an arbitrary pointer. This
has some special properties. It can be cast
to and from a uintptr, giving a numerical
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value representing the address. It can also be
cast to and from any other Go pointer type.
This completely bypasses the type checking
mechanisms in Go, and so there is no guarantee
that the resulting pointer is valid.
The example first converts the pointer back
to its original type. It then does some invalid
pointer arithmetic and tries to convert the result
to a string pointer, which it then dereferences.
If you try running this example, then it may exit
normally after showing some random value for
the last two statements, but it is more likely to
abort with a runtime panic delivered as a result
of receiving a segmentation fault signal.
Don’t let the panic mislead you into thinking
that Go will always catch this error. Sometimes
this will appear to work correctly but give you
bizarre results. The unsafe package is correctly
named: It allows you to do unsafe things. Unlike
C, Go makes it explicit when you are doing
potentially unsafe things with pointers.
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1 The address of str is 0x421310a0
2 String constructed from pointer: A Go variable
3 unexpected fault address 0xd00000000
4 throw: fault
5 [signal 0xb code=0x1 addr=0xd00000000 pc=0x17053]
6

7 goroutine 1 [running]:
8 bytes.(*Buffer).WriteString(0x4214e008, 0

xd00000000, 0x6f472041, 0xd, 0x0, ...)
9 go/src/pkg/bytes/buffer.go:119 +0x9d

10 fmt.(*fmt).padString(0x4214e098, 0xd00000000, 0
x6f472041, 0xd00000000)

11 go/src/pkg/fmt/format.go:140 +0xe8
12 fmt.(*fmt).fmt_s(0x4214e098, 0xd00000000, 0

x6f472041, 0x57770)
13 go/src/pkg/fmt/format.go:287 +0x60
14 fmt.(*pp).fmtString(0x4214e000, 0xd00000000, 0

x6f472041, 0x73, 0x6f472041, ...)
15 go/src/pkg/fmt/print.go:504 +0xb8
16 fmt.(*pp).printField(0x4214e000, 0x57770, 0

x42131080, 0x73, 0x0, ...)
17 go/src/pkg/fmt/print.go:744 +0xa47
18 fmt.(*pp).doPrintf(0x4214e000, 0x9ebf4, 0

x400000024, 0x442148f70, 0x100000001, ...)
19 go/src/pkg/fmt/print.go:1046 +0x7b0
20 fmt.Fprintf(0x4212ea50, 0x42148008, 0x9ebf4, 0x24

, 0x442148f70, ...)
21 go/src/pkg/fmt/print.go:181 +0x7c
22 fmt.Printf(0x9ebf4, 0x6972745300000024, 0

x442148f70, 0x100000001, 0x42131080, ...)
23 go/src/pkg/fmt/print.go:190 +0x97
24 main.main()
25 ptr2int.go:15 +0x1ea
26

27 goroutine 2 [syscall]:
28 created by runtime.main
29 go/src/pkg/runtime/proc.c:219
30 exit status 2

Output from: ptr2int.go
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4

Common Go
Patterns

The first step to fluent use of any programming
language is understanding the design patterns
and idioms that are commonly used. Learning
the syntax is only the first step to learning
how to think in the language, akin to learning
vocabulary and basic grammar in a natural
language. People speaking a second language
often make very amusing mistakes by literally
translating idioms from their first language.
Programming languages are no different.
If you’ve read C++ code written by Java
programmers, or vice versa, then you’ve
probably encountered this. Just translating an
approach that you would use in one language
into another will work (as long as both languages
are equally expressive), but it will usually give
horrible code.
Design patterns in a programming language
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are like the idioms of a natural language. Some
work in a lot of languages; others don’t. Quite
often, you will find that design patterns in one
language work around a missing feature. For
example, resource acquisition is initialization
(RAII) is a common C++ idiom, yet it makes
no sense in a garbage-collected language
because object lifetimes are not related to their
scopes. Better techniques (such as Go’s defer
statement) exist to solve the same problem. Go,
like every other language, has a set of common
patterns that are not necessarily applicable
elsewhere.

Zero Initialization

5 type Logger struct {
6 out *os.File
7 }
8

9 func (l Logger) Log(s string) {
10 out := l.out
11 if (out == nil) {
12 out = os.Stderr
13 }
14 fmt.Fprintf(out, "%s [%d]: %s\n", os.Args[0],

os.Getpid(), s)
15 }
16

17 func (l *Logger) SetOutput(out *os.File) {
18 l.out = out
19 }

From: log.go
One of the important concepts in Go is the zero
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value. When you declare a new variable, or
when you create a value with the new() built-
in function, it is initialized to the zero value for
the type.
As its name implies, the zero value is the value
when all of the memory used by the type is filled
with zeros. It is common for Go data types to be
expected to work with their zero value, without
any further initialization. For example, the zero
value for a Go mutex is an unlocked mutex: you
just need to create the memory for it and it’s
ready to use. Similarly, the zero value for an
arbitrary-precision integer in Go represents the
value zero.
In other languages, the two-stage creation
pattern is common. This separates the allocation
and initialization of objects into two explicit
steps. In Go, there is no support for explicitly
managing memory. If you declare a local variable
and then take its address, or declare a pointer
and use new() to create an object that it points
to, the compiler is likely to generate the same
code. The way in which you declare an object is
a hint to the compiler, not an instruction. There
is therefore little point in supporting two-stage
creation in Go.
The second stage is also often redundant. An
initializer that takes no arguments should not
have to be stated. The fact that it can be
commonly leads to bugs.
A concrete example of this is the POSIX thread
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API mutex. On FreeBSD, this is a pointer
and a NULL value will be implicitly initialized.
With the GNU/Linux implementation, it is a
structure, and using an uninitialized version has
undefined behavior. The compiler, however, has
no way of knowing the difference between an
initialized and an uninitialized mutex, so it will
not give any warnings. A program that forgets
to initialize the mutex can compile without any
warnings, even at the highest warning level,
and it may work sometimes, but it will fail
unpredictably on some platforms.
In Go, this kind of bug is very rare. The
common structures all use the zero initialization
pattern, which means that you can always use a
newly created instance of them immediately. The
only time that you need to explicitly initialize
one is when you want something other than the
default behavior.
The same is true of other types. A pointer in
Go is always initialized to nil, unless explicitly
initialized to point to a valid object. In contrast,
a pointer in C declared as a local value can
contain any value. It may point to a live
variable, or to an invalid memory address.
The Go approach has several advantages. First,
there is no need for the compiler to perform
complex flow analysis to warn you that a
variable might be used uninitialized: there is
no such thing as an uninitialized variable. This
sounds simple, but determining if a variable may
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be used before being initialized is nontrivial,
and modern C compilers still don’t always get it
right. Secondly, it simplifies code. You only ever
explicitly initialize a variable when you want to
then use the value that you assigned to it.
You should aim to support this pattern in any
Go structures that you define. Usually, this is
easy. If your structure contains other structures
as fields, and these structures support this
pattern, then you get support for free.
If you are relying on other values, then it
can be more complex. This is especially true
with pointers: They do not support the zero
initialization pattern. If you call a method on
a nil pointer then you will get a crash unless the
method is careful not to dereference the pointer.
The example at the start of this section shows
one way of implementing the zero initialization
pattern for structures that contain pointers.
This example defines a structure for generating
log messages and sending them to a file. The
zero structure implicitly uses the standard error
file descriptor, rather than a file stored in the
structure.
Note that we are not setting the out field in the
structure to anything; if it is not set, we are just
using a different value. There are two reasons for
this. The first is largely aesthetic: it lets us tell
the difference between a Logger that is writing
to the standard output because it has been
explicitly set to use the standard output, and
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one that is using it implicitly. In this particular
example, it’s not very important, but in other
cases it can be.
The other reason is that it means that this
method does not need to take a pointer to the
structure. This is quite important because of
how it relates to the Go type system. If you call
a method via an interface, then methods that
accept a pointer are only callable if the interface
variable contains a pointer.
For example, you could define an interface that
defined the Log() method and create a variable
of this type. Then you could assign an instance
of the Logger structure to that variable. You
could also assign a pointer to an instance of the
Logger structure to this variable. Both would
work, because the Log() method is callable from
both instances of the structure and pointers
to instances. If the method took a pointer
argument, then you would only be able to call
it on pointers. It’s therefore good style in Go
to only require methods to take a pointer when
they modify the structure, or if the structure
is so large that copying it on every method call
would be prohibitive.
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Generic Data Structures

4 type stackEntry struct{
5 next *stackEntry
6 value interface{}
7 }
8 type stack struct {
9 top *stackEntry

10 }
11

12 func (s *stack) Push(v interface{}) {
13 var e stackEntry
14 e.value = v
15 e.next = s.top
16 s.top = &e
17 }
18 func (s *stack) Pop() interface{} {
19 if s.top == nil {
20 return nil
21 }
22 v := s.top.value
23 s.top = s.top.next
24 return v
25 }

From: genericStack.go
The empty interface type is a very important
part of the Go type system. This has a similar,
although slightly more generic, place to
void* in C: It can represent any type. The
empty interface literally means “any type that
implements—at the least—no methods,” a
restriction matched by every type.
It is common to use the empty interface type in
generic data structures. If you can store values
of the generic interface type, then you can store
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values of any type. You can’t, however, perform
any operations on them.
If you want to create something like a set,
then you must define a mechanism for defining
equality, which typically involves defining
an interface with an isEqual() method or
something similar. If you are creating a data
structure that doesn’t need to be aware of the
representation or semantics of the values that
it contains, then you should use the empty
interface.
The example at the start of this section shows
a generic stack type, with Push() and Pop()
methods, capable of storing any Go type. The
implementation is very simple: a singly-linked
list of a private structure type that stores a
value.
You can use the same technique when creating
far more complex data structures. The
advantage of using the empty interface type is
that it allows both structure and primitive types
to be stored. In the next section, we’ll look at
how you can extend this general approach and
specialize it for specific types.
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Specialized Generic Data
Structures

31 func (s *stack) pushInt(v int64) {
32 if (s.isInteger) {
33 top := s.top.(*integerStackEntry)
34 if top.value == v {
35 top.count++
36 return
37 }
38 }
39 var e integerStackEntry
40 e.value = v
41 e.next = s.top
42 s.top = &e
43 s.isInteger = true
44 }
45 func (s *stack) Push(v interface{}) {
46 switch val := v.(type) {
47 case int64: s.pushInt(val)
48 case int: s.pushInt(int64(val))
49 default:
50 var e genericStackEntry
51 e.value = v
52 e.next = s.top
53 s.top = &e
54 s.isInteger = false
55 }
56 }

From: specializedStack.go

Suppose you wanted to use the stack from
the last section in a push-down automaton.
You’d probably be mainly pushing and popping
integers, and often pushing the same integer
several times in a row. There’s a large potential
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for optimization: you can have a specialized
version of the stack entry that stores an integer
and a count. If you push the same integer twice,
then you just increment the count, saving the
overhead of an allocation.
The example at the start of this section shows
an expanded Push() method that does this. This
now uses two types: one for the generic case and
one for the integer case.

4 type stackEntry interface {
5 pop() (interface{}, stackEntry)
6 }
7 type genericStackEntry struct {
8 next stackEntry
9 value interface{}

10 }
11 func (g genericStackEntry) pop() (interface{},

stackEntry) {
12 return g.value, g.next
13 }
14 type integerStackEntry struct {
15 value int64
16 count int
17 next stackEntry
18 }
19 func (i *integerStackEntry) pop() (interface{},

stackEntry) {
20 if (i.count > 0) {
21 i.count--
22 return i.value, i
23 }
24 return i.value, i.next
25 }

From: specializedStack.go
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When you push an integer, it uses a type switch
statement to determine the type, and checks
whether the last value to be pushed was an
integer and if it has the same value as the top
value. In this case, it just increments the count.
This example splits the specialized work up a
bit between the generic data structure and the
specialized components. You might want to
modify it to add a tryPush() method to the
stackEntry interface, which would try to add
the value without adding a new stack entry. If
this failed, then you could allocate a new entry
of the same type.
This pattern shows one of the big advantages
of the loose coupling that Go provides. The
interface to the stack that uses a combination
of genericStackEntry and integerStackEntry
structures for its elements is completely
compatible with the one from the last section,
but is now more efficient for storing large
sequences of identical integer values. The details
of the two concrete structures implementing
stack entries are completely hidden.
You can use this same approach to implement
generic collections and then specialize them for
your data. Complex collections in languages
like Go typically incorporate this kind of self-
optimizing behavior.
This is a fairly simple example and the saving in
this case is not particularly worthwhile. If you
were implementing a real stack, then a slice of
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empty interfaces would almost certainly be a lot
faster and use less memory. The point of this
example is to show you the general pattern, not
how to write an efficient stack in Go.
This pattern is very useful in more complex
data structures. For example, the underlying
implementation of the map types uses a similar
technique, generating a hash value based on
the underlying type. You might want to do
something similar, providing a built-in hash
for basic types, using a zero hash by default, or
using the Hash() method if one exists.

Implementation Hiding

27 type Stack interface {
28 Push(interface{})
29 Pop() interface{}
30 }
31 func NewStack() Stack {
32 return &stack{}
33 }

From: genericStack.go

Interfaces in Go are exactly what their name
implies. They define how you interact with a
type, not how it is implemented. If users of your
structure do not need to be able to access any
of the fields, then it is good style to only export
an interface exposing the public methods, rather
than the structure itself.
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The example at the start of this section shows a
public interface for the two stack structures that
we’ve defined already this chapter, along with
a function for constructing it. By convention,
the function that creates the concrete instance
is named NewSomething(), if Something is the
name of the interface.
This is not the only way of hiding
implementation details. Any structure member
that does not start with a capital letter is
automatically hidden, and is only accessible
from within the package in which it is declared.
As such, the structures that we’ve defined to
implement the stacks are already hiding the
details of their implementation: none of their
fields is visible from other packages.
The correct approach to use depends on how
you expect people to use your structures.
Only exporting the interface gives you the
most flexibility, because you can completely
change any details of the implementation
without altering code that uses it. You can even
implement several different structures optimized
for different use cases and return different ones
depending on the use. On the other hand,
this approach prevents people from allocating
instances of your structure on the stack, and
prevents you from using the zero initialization
pattern.
Although Go does not support explicit stack
allocation, the compiler will try to allocate
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structures on the stack as an implementation
detail if they are short-lived and do not have
their address taken. This is very fast, as it
just requires modifying the value of a register:
variables on the stack are allocated just by
moving the stack pointer. If the object is
returned as a pointer via a constructor function,
then the compiler is unable to do this, and will
need to request memory that is managed by the
garbage collector. For short-lived structures, this
can be a significant performance penalty.
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Type Embedding

4 type A struct {}
5 type B struct {}
6 func (_ A) Print() { fmt.Printf("A printed\n") }
7 func (_ B) Print() { fmt.Printf("B printed\n") }
8 func (a A) PrintA() { a.Print() }
9 type C struct {

10 A
11 *B
12 }
13 func main() {
14 var c C
15 c.B = &B{}
16 // Implicitly inherited
17 c.PrintA()
18 // Not allowed: ambiguous
19 // c.Print()
20 // Explicitly disambiguated
21 c.B.Print()
22 c.A.Print()
23 }

From: embed.go

Go doesn’t support subclassing, but it is possible
to achieve something similar via the limited form
of implicit delegation that Go does support.
If you make an unnamed field in a Go structure,
then any methods defined by the type of the
field are implicitly added to the enclosing
structure. The example at the start of this
section contains a structure C that has two
unnamed fields: fields with a type (A and B*),
but with no name.
Note that the receiver for any of these methods
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will be the field, not the outer structure. This
means that, even if the receiver is a pointer, it
is not possible for it to access any of the fields
in the outer structure. This can be slightly
inconvenient. For example, it would be useful to
be able to provide a List structure that could be
added to any structure that needed list behavior,
adding a Next() method returning the next item
in the list, but this is not possible.
The example at the start of this section shows
a problem that can occur when embedding
structures in this way: What happens when two
inner structures implement the same methods?
There are lots of ways of solving this problem,
including priority schemes, which can get very
complicated with multiple layers of nesting.

Note: There is no direct Go equivalent of a
C++ virtual base class. If a Go structure contains
structures A and B as fields, and each of these
contains an instance of a C as a field, then the
outer structure will always contain two instances
of C. It is possible to achieve something similar
by making A and B contain a pointer to C,
and explicitly setting them to point to the same
instance.

The Go solution is to make programmers
explicitly specify what they mean. Calling
c.Print() in this example (the commented-
out line) would cause the compiler to reject
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the program: it can’t figure out which Print()
method you really mean without potentially
introducing bugs into your program. You could
extend this example by adding an explicit
Print() method to C that delegated to one of
the fields, or implemented the method in some
other way.
Note that this example uses both a pointer and
a value as fields, but the methods work on both.
Exactly the same rules for methods apply in this
case. The pointer field will add methods that
take a value or a pointer, and the value field will
add methods that take the value.
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Arrays and Slices

Almost every programming language has a data
structure that it calls an array, but the exact
semantics vary considerably. In some languages,
an array is a dynamically resizeable ordered
collection of objects. In others, it’s a block of
memory, with some vague hint that it probably
contains variables of a specific type.
In Go, arrays are a very low-level data structure.
Like C arrays, they are simply blocks of memory,
but there are some important differences.
Remember that Go does not permit pointer
arithmetic. In C, array subscripting is just
another way of writing pointer arithmetic, and
you can use array and pointer types almost
interchangeably.
In Go, pointers and arrays are distinct types.
Because arrays and pointers are distinct, there is
no such thing in Go as an arbitrary-sized array.
The size of a Go array is intrinsic to its type. An
array of 10 integers is a different type than an
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array of 5 integers.
One side effect of this is that there is automatic
bounds checking with Go arrays. In C, you can
trivially allocate an array of 10 elements, cast it
to a pointer, access elements beyond the end of
the array, and end up with undefined behavior.

1 package main
2 import "fmt"
3 func main() {
4 var a [2]int
5 for i := 0 ; i<15 ; i++ {
6 fmt.Printf("Element: %d %d\n", i, a[i])
7 }
8 }

From: overflow.go

The overflow.go example shows a simple Go
program that declares a small array and then
tries to access past the end of it. The compiler
doesn’t catch this as a static type error, because
it isn’t doing enough range analysis to know that
the index variable extends past the end of the
array. The runtime system, however, does catch
it.

1 Element: 0 0
2 Element: 1 0
3 panic: runtime error: index out of range

Output from: overflow.go



ptg7913130

Creating Arrays 81

When you run this example, you get a runtime
panic, which we’ll look at in more detail
in Chapter 8, Handling Errors. This is a
recoverable runtime error. A similar program
in C would just silently access a random stack
location. If you assigned to the variable, the C
version would corrupt the stack, while the Go
version would give you a helpful error.
Note that this is not a sensible idiom for
iterating over an array. We’ll look at a better
way of doing so later.

Creating Arrays

4 var a1 [100]int
5 var matrix [4][4]float64
6 a2 := [...]int{1, 1, 2, 3, 5}

From: array.go

As mentioned earlier, the type of a Go array
is a combination of its size and the type of its
elements. This means that the size of the array
must be known at compile time. That does not
mean that it must be explicit. The third form
of array declaration in the example at the start
of this section shows how to create an array
whose size is inferred. This creates an array of
five integers, with a static type of [5]int.
Arrays can contain any types, including other
arrays. The middle example creates an array of
arrays of floating-point values. All arrays are



ptg7913130

82 CHAPTER 5: Arrays and Slices

values. If you assign from one array to another,
you get a copy of the array.

1 package main
2 import "fmt"
3

4 func main() {
5 a1 := [...]int{1, 2}
6 a2 := a1
7 a2[0] = 3
8 fmt.Printf("%d %d\n", a1[0], a2[0])
9 }

From: arrayAssign.go

Contrast this with C, where you can treat
the name of the array as a pointer to its
first element. This highlights an important
philosophical difference between C and Go.

1 1 3

Output from: arrayAssign.go

Copying an array is potentially very slow: it’s
a linear time operation. Assigning a pointer,
in contrast, is a very fast operation. C favors
the fast operation by making it the default and
requiring the programmer to explicitly state
when he wants the slow operation.
Aliasing a data structure is fast, but it’s also
a very common source of bugs, especially in
concurrent code. Go, therefore, defaults to
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copying. Go makes it possible to write fast code,
but makes it easy to write correct code. This is
the opposite of the C philosophy, which makes
it easy to write fast code and possible to write
correct code.

Slicing Arrays

4 var a1 [100]int
5 firstHalf := a1[:50]
6 secondHalf := a1[50:]
7 middle := a1[25:75]
8 all := a1[:]

From: slice.go

If you’ve looked at any C code, you’ll have
noticed a common idiom: passing a pointer and
a length as arguments to a function. This allows
you to pass an array of an arbitrary size to a
function. The downside of this approach is that
it’s entirely informal. A typo can easily make
you pass the wrong size, and then you’re back to
memory corruption.
In Go, a much cleaner replacement for this
idiom is formalized in the language. Rather
than passing an array, or a pointer to the array,
you pass a slice. A slice is a view on an array.
If you’ve written JavaScript code with the
WebGL extension, then this will be familiar
to you: Go slices are conceptually similar to
ArrayBufferView objects, while Go arrays are
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similar to ArrayBuffers.
If you compile with gccgo, then you can inspect
the implementation of a slice easily. It’s just a C
structure that stores a pointer to the array, its
size, and its capacity.

Note: Slices have both a size and a capacity.
The size is the number of array elements that
you can access from that slice. The capacity is
the maximum size slice that you can make by
extending that slice, which is at most the size of
the underlying array but may be less if you are
using slices to restrict access to a range within an
array. You can often ignore the capacity.

Slices are often used as function call parameters,
because their size is a dynamic property, rather
than an attribute of the type. If you use an
array type as a function parameter, then the
size is embedded in the type and callers can’t
pass a larger array. If you use a slice type, then
the caller can pass a reference to any size of
memory allocation and the callee can test that
it’s adequate.
There are other uses for slices. For example,
you can use them to provide restricted range
checking on an array. This can be a useful way
of adding some sanity checking: use a slice of the
array rather than the entire array and you can
make sure that you didn’t accidentally exceed
the bounds you thought were the limit.
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The syntax for creating slices from arrays
(or other slices) is shown at the start of this
section. Slices are created from ranges in existing
arrays or slices, with the start and end indexes
separated by a colon. If either of the indexes
is omitted, then the slice extends to that end.
As with most modern languages, Go arrays and
slices are indexed from zero.

Resizing Slices

3 func main() {
4 s0 := make([]int, 2, 10)
5 s1 := append(s0, 2)
6 s2 := append(s0, 3)
7 fmt.Printf("Element: %d %d\n", s1[2], s2[2])
8 s0 = []int{0, 1}
9 s1 = append(s0, 2)

10 s2 = append(s0, 3)
11 fmt.Printf("Element: %d %d\n", s1[2], s2[2])
12 }

From: expandSlice.go

Resizing a slice is something of a misnomer. A
slice itself is an immutable. You can’t expand
a slice, but you can create a new slice that is a
larger reference to the same array, or to a new,
larger, array containing the same values.
It’s very important to be aware of exactly which
of these operations you are preforming. Consider
the example at the start of this section. It
performs the same two append() operations on
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two different slices, both with the same size, but
with very different results.

1 Element: 3 3
2 Element: 2 3

Output from: expandSlice.go

The first slice has two elements, but a capacity
of 10. This means that it is backed by an array
of 10 elements, and just refers to the first two.
The append() operation will create a new slice
pointing to the same array, and set the next
element in the array. The second append()
operation does exactly the same thing. Slices s1
and s2 are both referencing the same underlying
array, and the creation of s2 modified s1.
The slice created with the []int{0, 1}
initializer has a capacity of two. The two
append() operations now create a new array,
copy the contents of the array that backs s0 into
it, and then set the third element.
You have to be very careful to think about
aliasing when you use slices. If you have multiple
slices referencing overlapping sections of a single
array, then changes in one will be reflected in the
others. Usually when you’re using slices, this is
what you want.
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Truncating Slices

3 func truncate(slice []int) []int {
4 var s []int = make([]int, len(slice))
5 copy(s, slice)
6 return s
7 }

From: sliceShrink.go
Slices are just views on arrays. This means that
they are very cheap to create; you just have to
allocate a few words of memory describing the
range within the array. This is a constant-time
operation, independent of the size of the slice. In
contrast, creating a copy of the array is a linear
time operation, and so usually best avoided.
Quite often, you will use a slice for a dynamic
buffer and, after a sequence of operations, end
up with a small slice pointing to a large array.
When this happens, it’s tempting to just use the
small slice and forget about the large array.
Unfortunately, because slices refer to entire
arrays, this means that the garbage collector will
ensure that the array is not freed until the slice
has been freed. If you allocate a 10MB array,
it will remain in memory even if the only thing
referencing it is a slice pointing to a one-value
range.
The example at the start of this section shows
a function that creates a new slice, backed by
a new array, and then truncates it. If you use
the result of this function, instead of the slice
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that you pass as an argument, the GC is free to
delete the original array.
Be careful with the advice in this section. It’s
tempting to fall prey to premature optimization
and aggressively copy arrays. Always be aware
of the lifespan of your new slice if you’re doing
this. There’s no point copying a chunk of data
just to allow the GC to collect an array a few
milliseconds earlier. As always, profile first, and
optimize second.

Iterating Over Arrays

1 package main
2 import "fmt"
3 import "time"
4 func main() {
5 var a [100]int
6 // The slow way
7 for i := 1 ; i < 10 ; i++ {
8 fmt.Printf("Element %d is %d\n", i, a[i])
9 }

10 // The fast way
11 subrange := a[1:10]
12 for i, v := range subrange {
13 fmt.Printf("Element: %d %d\n", i, v)
14 }
15 // The parallel way
16 for i, v := range subrange {
17 go fmt.Printf("Element: %d %d\n", i, v)
18 }
19 time.Sleep(10000000)
20 }

From: iterate.go
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A few years ago, some researchers at IBM
discovered that one of the main reasons for Java
code being slower than C was the cost of bounds
checking. Iterating over all of the elements in an
array is a very common idiom in any language.
In C, this is implemented just by adding the size
of an element to a pointer value. In Java, and
other high-level languages, it requires checking
that the pointer value is in range as well.
A lot of research effort has gone into trying
to remove these run-time bounds checks, but
it’s not a trivial problem in the general case.
You can improve performance a lot by helping
the compiler and using idioms that allow it to
perform the bounds check once per loop, rather
than once per iteration.
The example at the start of this section shows
three ways of iterating over part of an array. The
first is a C-like way of doing it. The second is
more idiomatic Go. Note the use of a slice to
define a range within the array for iteration. You
can use the entire array here in exactly the same
way, but defining a slice allows you to iterate
over a range within the array quickly and easily.
The third approach is the most interesting. This
iterates over the array, with each loop iteration
running in a separate goroutine. This pattern is
most useful if you are doing a fairly significant
amount of work with each element in the array.
More commonly, you’d want to mix these
approaches. If you want to process a lot of
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elements in an array, then you can use slices to
split it up into smaller chunks and then use a
concurrent goroutine for each of the slices.
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Manipulating
Strings

C was created in America, back when it was
fashionable to pretend that the rest of the world
didn’t exist, so it used 7-bit ASCII1 characters
to represent strings.
Go is more recent, and since then most
technology companies in the USA have
discovered that it’s quite a good idea to support
other languages, mostly so you can sell things to
people in other countries. Go uses UTF-8. This
is entirely unsurprising, as UTF-8 was originally
designed (on a diner placemat) by Rob Pike and
Ken Thompson, two of the designers of Go.
Go strings are slightly higher-level than

1American Standard Code for Information
Interchange, a format based on the assumption that
there was no need to interchange information with people
who used accents on letters, non-Latin characters, or
currencies other than dollars.
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C strings, and there are some important
differences. The most obvious is that the Go
string type is immutable, like C constant strings
and Java strings. Although strings behave very
much like arrays, they are a separate type, with
their own unique behavior. In some cases, you
can treat a string as an array (or, rather, a slice)
of bytes, while in others the fact that it contains
Unicode character data becomes important.

Comparing Strings

5 str1 := "A string"
6 str2 := "A " + "string"
7 if (str1 == str2) {
8 fmt.Printf("’%s’ and ’%s’ are equal\n", str1,

str2)
9 }

10 if (&str1 == &str2) {
11 fmt.Printf("’%s’ and ’%s’ are identical\n",

str1, str2)
12 }
13 str2 += " with a suffix"
14 if (str1 < str2) {
15 fmt.Printf("’%s’ comes before ’%s’\n", str1,

str2)
16 }

From: compareStrings.go

Go strings are a high-level type, and have the
concept of equality built in. A large percentage
of bugs in C code relate to the handling of
strings, and fixing this was one of the important
tasks when designing Go.
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This is obvious when you look at comparing
strings in the two languages. In C, a string
is just a pointer to some bytes somewhere in
memory. In Go, it is a real data type, built on
the same low-level abstraction, but providing a
more human-friendly interface.
When you use the normal comparison operators
in Go, you get a result that makes sense
considering the semantic content of the string.
If two strings have the same character contents,
they are considered equal. The less-than and
greater-than operators will return an ordering
based on their lexical ordering.
Unfortunately, this highlights one of the areas in
which Go is currently very weak: localization.
Strings are ordered based on the Unicode
values of their constituent characters. In some
locales, this is correct, but in others it is not.
For example, the ordering between E and É
is highly dependent on the locale. In some,
they should be together, but in other locales,
accented characters come after all non-accented
characters. Go does not currently provide any
locale-aware means of sorting strings. In C++,
you could use operator overloading to define
a new string type that supported locale-aware
sorting. The lack of operator overloading in Go
makes this impossible.
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Note: Go is under constant development, so
just because certain functionality doesn’t exist at
the time of writing does not mean that it won’t
exist by the time you read this. Check the Go
package directory (http://golang.org/pkg/)
for locale support; it may have been added since
publication.

Processing a String One
Character at a Time

4 func main() {

5 str := "Étoilé"
6 // Don’t do this!
7 for i := 0 ; i<len(str) ; i++ {
8 fmt.Printf("%c", str[i])
9 }

10 fmt.Printf("\n")
11 // Do this instead
12 for _, c := range str {
13 fmt.Printf("%c", c)
14 }
15 fmt.Printf("\n")
16 }

From: stringIterate.go
The naïve way of iterating over the characters
in a string would be to use a for loop indexing
each character. This almost works, but it
iterates over every byte, not every character.
UTF-8 is a way of encoding Unicode characters.
There are several different encodings for

http://golang.org/pkg/
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Unicode, with UTF-8 and UTF-16 being the
two most common. Both of these are multibyte
character encodings, meaning that one character
may be represented by more than one byte. In
fact, they are both variable-length encodings as
well. The 8 and 16 in their names refer to the
number of bits in the smallest encodings.
A character encoded in UTF-8 is somewhere
between one and four bytes long, depending on
the character. The 128 ASCII characters are all
single bytes, while other characters are longer.
If you iterate over a string using byte indexes,
then your code may work. Only one of the
characters in this section so far has had a
multibyte encoding in UTF-8: the ï in naïve.
Without that, it would be perfectly safe to treat
this entire section as ASCII when manipulating
it. If English is your native language, then it’s
very easy to test code dealing with strings with
input data that looks representative, and then
have it break the first time someone else uses it.

1 ÃtoilÃ©

2 Étoilé

Output from: stringIterate.go

Fortunately, there is another alternative. The
standard Go iteration pattern also works on
strings. This returns each character, as a 32-bit
integer representing a single Unicode character.
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Even this isn’t quite correct. Unicode supports
the idea of composed characters, where a single
character is defined by a sequence of code points.
Fortunately, unless you are writing a text layout
engine, it’s almost always safe to ignore these.

Processing a Partial String One
Character at a Time

1 package main
2 import "fmt"
3 import "unicode/utf8"
4

5 func main() {

6 str := "Étoilé"
7 rune := make([]byte, 0, 4)
8 for i := 0 ; i<len(str) ; i++ {
9 rune = append(rune, str[i])

10 if (utf8.FullRune(rune)) {
11 char, _ := utf8.DecodeRune(rune)
12 fmt.Printf("%c", char)
13 rune = rune[0:0]
14 }
15 }
16 fmt.Printf("\n")
17 }

From: partialStringIterate.go
When you have a complete string in memory,
it’s easy to iterate over it, but what happens
when you are receiving text from the network,
or reading it from the disk? In both cases, you
will typically end up with buffers full of bytes in
UTF-8 format.
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With ASCII data, this wouldn’t be a problem.
One byte means one character. With UTF-
8, a single byte may be a character, or it may
be the first byte in a multibyte character. The
unicode/utf8 package provides some helpful
functions for telling these two apart.
The example from the start of this section uses
a static string, but the same code would work on
a stream of bytes acquired from any source. It
collects the bytes into a short buffer until they
represent a complete character, and then decodes
them.
This is quite cumbersome. It demonstrates
some of the more powerful string manipulation
facilities in Go, but in real code you’d be much
more likely to use something along the lines of
the partialStringIterate2.go example.

4 func main() {

5 str := "Étoilé"
6 bytes := str[0:7]
7 str2 := string(bytes)
8 for i, c := range str2 {
9 if (0xFFFD == c) {

10 str2 = str2[i:]
11 break
12 } else {
13 fmt.Printf("%c", c)
14 }
15 }
16 fmt.Printf("\n")
17 }

From: partialStringIterate2.go
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This uses normal string iteration, but checks for
the value 0xFFFD, used to represent an invalid
rune. If it finds one, then it stores the partial
string and then escapes from the loop.
For efficiency, you could skip this check for the
majority of the string, and only perform it on
the last few bytes. If you find an invalid rune
somewhere before the end of the string, it means
that your input data is invalid.
This example starts by slicing a string in the
middle of a multibyte sequence, in the middle
of the trailing é in Étoilé. This is very easy to do
by accident. In general, you should avoid slicing
strings directly. The utf8 package contains a
Slice() function, which slices a string at run
indexes, rather than at byte indexes.

Splitting and Trimming Strings

2

3 import "strings"
4 import "fmt"
5

6 func main() {
7 str := "\tThis is a string \n"
8 str = strings.Trim(str, " \t\n\r")
9 words := strings.Split(str, " ")

10 for _, word := range words {
11 fmt.Printf("%s\n", word)
12 }
13 }

From: trimStrings.go
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The strings package contains some helpful
functions for manipulating string data. This
includes splitting and searching strings.
One very common activity is trimming the
whitespace from the ends of a string. Both the
trimStrings.go and splitString.go examples show
ways of doing this.
The first explicitly declares the characters to
treat as spaces: space, tab, carriage return, and
line feed. The second is more interesting. It
uses the IsSpace() function from the unicode
package. This function identifies whether any
Unicode character is classed as a space. You can
use the same mechanism with other functions
to trim other types of leading and trailing
data. The unicode package provides some other
functions that you can use here, but you can also
define your own, to define a set algorithmically.
If you’ve ever used strtok() or strsep() in
C, then you’ll appreciate the ease of splitting
strings in Go. The Split() function from the
strings package splits a string according to a
provided separator. In the example at the start
of this chapter, we use it to split a string into
words, separated by spaces. The result is a slice
of strings, so you can easily iterate over it just as
you would any other slice.
Splitting a string at a specific character index is
a bit harder. The splitString.go example shows
what happens when you get this wrong. This
shows two ways of splitting a string in half.
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1 package main
2 import "strings"
3 import "unicode"
4 import "exp/utf8string"
5 import "fmt"
6

7 func main() {
8 str := "\tthe important rôles of utf8 text\n"
9 str = strings.TrimFunc(str, unicode.IsSpace)

10 // The wrong way
11 fmt.Printf("%s\n", str[0:len(str)/2])
12 // The right way
13 u8 := utf8string.NewString(str)
14 FirstHalf := u8.Slice(0, u8.RuneCount()/2)
15 fmt.Printf("%s\n", FirstHalf)
16 }

From: splitString.go

1 the important r?
2 the important rô

Output from: splitString.go

The first way is the obvious approach. You slice
the string, using half its length as the index
for the end of the slice. This, unfortunately,
slices the string right down the center of the ô
character.
The second way is a little bit more involved.
This uses the exp/utf8string package, first to
count the number of runes in the string and then
to split the string at a run index, rather than a
byte index.
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Note: This example uses a package from the
exp hierarchy, which is not part of the standard Go
1.0 install. To run it, you will need to download
the exp packages from the Go repository. If you
are using the trunk version of Go, you probably
have them installed already. Packages in the exp
hierarchy are experimental and are intended to
become standard parts of the Go library when they
are finished. If you are using a Go release after 1.0
then you may find that the package is available
without the exp/ prefix.

This involved creating a String structure,
wrapping the string. If you’re doing a lot of
complex things to a string, then this is a lot
more efficient than using the underlying string
directly.
Note that the utf8string package is in the exp
hierarchy. This means that it is considered
experimental and its functionality may be
incorporated into another package (unicode/utf8
would be an obvious choice) or change before the
package is finalized.
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Copying Strings

5 str := "A string"
6 bytes := make([]byte, len(str))
7 copy(bytes, str)
8 strCopy := string(bytes)

From: stringCopy.go

Strings in Go are immutable, so there is no need
to copy them. There is, however, a need to copy
the data that they contain. The copy() built-
in function allows you to copy a string into a
preallocated byte slice, returning the number of
bytes that it copied.
Once you’ve got the string data in a slice, you
can modify it in any way that you want. You
can then construct a new string from the slice
with the standard string() conversion. You
can also use append() to append a string to an
existing slice of bytes.
Note that when you do this the string data will
be copied twice, once into the slice and once to
create the new string. This is fairly inefficient, so
it should be avoided except for short strings.

Creating Strings from Patterns

5 str := fmt.Sprintf("%T %#v, %d, %v", main, main,
42, "aubergine")

From: sprintf.go
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Most of the examples so far have used the
fmt.Printf() function for output. This is quite
similar to the standard C printf() function, but
with a few improvements. The main difference is
due to how Go handles variadic functions. Every
argument passed to Printf() after the format
string is passed in a slice of empty interface
elements. The function can inspect each one and
see what its type is.
This means that most of the format specifiers
in C’s printf() function are redundant. Their
main purpose is to tell the function how to
decode arguments that are pushed onto the
stack. Go functions don’t need help with that.
That’s not to say that they’re entirely pointless.
There is sometimes ambiguity as to how a value
should be represented. For example, the %f
format specifier omits an exponent from floating-
point values, while %E always displays them.
Go introduces three interesting format specifiers,
shown in the example at the start of this section.
The %v specifier shows the value in its default
format, either using a built-in formatter or
calling the String() method on structures that
implement one. The %#v specifier is similar, but
it outputs the value as a Go-syntax literal value.
%T prints the type.
The last of these can be incredibly useful
for debugging. If you have received a value
somewhere in some code via an empty interface,
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you can just print its type with this function,
rather than having to trace all of the way back
to where it was declared.

Matching Patterns in Strings

5 var static = regexp.MustCompile(", *")
6

7 func main() {
8 r, _ := regexp.Compile("abcd*")
9 str := "abcddd fish, wibble abcd, abc, foo"

10 fmt.Printf("Replaced: %v\n", r.ReplaceAllString
(str, "bar"))

11 fmt.Printf("Replaced: %v\n", static.
ReplaceAllString(str, ". "))

12 }

From: regex.go

Most modern languages provide some support
for regular expressions. Some, like Perl and
JavaScript, embed this support in the language.
Most others provide them as part of the
standard library.
In Go, regular expressions are provided via the
regexp package. This defines a Regexp type,
encapsulating a regular expression. These are
created by compiling string representations
of regular expressions into an internal state-
machine representation. The compiled regular
expression can then be applied to strings, byte
slices, or rune readers.
The example at the start of this section shows
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one of the most common uses for regular
expressions: replacing all matching occurrences
in a string with a new pattern. You can also
request the locations of the matches and perform
your own substitution, or simply report their
locations.
Compiling a regular expression is quite
expensive. If you are using a regular expression
more than once, then it’s a good idea to create
it once and then store it. The MustCompile()
function helps with this. It is equivalent to
Compile() when the input string is valid, but
panics if it is not. If you use it when initializing
globals, as in the example, then your program
will fail to start if your regular expression is
invalid.
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Working with
Collections

Go, in common with most other languages,
provides arrays as a fundamental low-level
collection type. It adds slices on top of arrays to
provide a safe way of accessing arbitrary memory
ranges.
In the standard library, Go also provides a small
range of collection types, but there’s also one
more that is part of the language: maps. Other
languages call these dictionaries, associative
arrays, or (not quite accurately) hash tables.
They define a unique set of keys, each of which
has one value associated with it.
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Creating a Map

1 package main
2 import "fmt"
3

4 type Any interface {}
5

6 func main() {
7 a := make(map[int] string)
8 b := make(map[Any] int)
9 a[12] = "A string in a map"

10 b[12] = 12
11 b["12"] = 13
12 b[12.0] = 14
13 fmt.Printf("%s %d %d\n", a[12], b[12], b["12"])
14 }

From: map.go
If you’ve ever worked on a C project, then
you’ve probably implemented some form of map.
The lack of any kind of map data type in the
standard library is one of the things that people
most often miss when moving from a high-level
language to C.
The designers of Go decided to add a map as a
built-in type to address this. The map type in
Go is similar to the std::map type in C++. It is
defined by the types of its keys and values.
There are no restrictions on the type of the
values stored in a map. Keys are a little bit
more complicated. Typically, you will want to
use either integers or strings as keys in a map.
Explicitly stating the type allows the compiler to
warn you if you are trying to use the wrong type
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as a key.
You can also use an interface type as a map key.
This is very flexible, but turns off the compile-
time type checking. The compiler will let you use
any type that implements the interface as a key,
but that doesn’t mean that it will work.
Key types must have the equality operator
defined, and there is no operator overloading in
Go, so this restricts you to the built-in types.
This includes pointers, so you can use pointer
types as map keys. Prior to 1.0, using structures
as keys would generate a run-time panic. In Go
1.0, equality is defined on structures recursively,
so two structures are equal if their fields are all
equal.

1 A string in a map 12 13

Output from: map.go

Note that there is no conversion performed when
you use different types as keys. The example
from the start of this chapter defines a map
from an interface type to integers. It then uses
three different representations of the number 12
(integer, string, and floating-point) as keys. All
of these set different values. This may come as a
surprise if you are used to a language with weak
typing.
Maps, like other Go reference types, are created
with the make() built-in function. If you try
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to create a map with new(), then this will
appear to work, but you will get a pointer to
an uninitialized reference to map, rather than a
reference to a map. The map that this points to
will be the nil map, and any attempt to modify
it will cause a run-time panic. The following
code is valid Go, and so it will compile; it just
won’t work:

c := new(map[int] string)
// This will panic at run time.
(*c)[1] = "foo"

The fact that new() returns a pointer while
make() returns a reference makes it difficult
to make this mistake in practice. It’s hard to
accidentally type (*c) when you mean c, and if
you wrote c here then the compiler would reject
the code because you’re trying to use a pointer
as a map.
The make() function takes the map type as the
first argument. If a second argument is specified,
then this is the initial capacity of the map.
Most of the time, you can ignore this. Maps will
dynamically resize themselves as elements are
added. If you are about to add a large (known)
number of entries to a map, then you can avoid
some resizing overhead by creating a map of the
required size initially, but usually it’s safe to just
let the map grow as required.
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Storing Unordered Groups of
Objects

1 package main
2 import "fmt"
3

4 func main() {
5 set := make(map[string] bool)
6 set["A"] = true
7 fmt.Printf("%t %t\n", set["A"], set["B"])
8 // Setting to false does not remove the value
9 set["A"] = false

10 for k, v := range set {
11 fmt.Printf("%s %t\n", k, v)
12 }
13 // Remove the element from the set
14 delete(set,"A")
15 for k, v := range set {
16 fmt.Printf("%s %t\n", k, v)
17 }
18 }

From: set.go
You can think of a set as a map from objects to
boolean values. In Go, that’s exactly how you
would implement one.
This works because of the idea of a zero value,
which is essential to a lot of Go patterns. Every
Go type has an associated zero value. This is the
value that is created by interpreting a block of
zero-value bytes that is the same size as the type
as an instance of that type.
When you look up a key that is not present in a
map, the map returns the zero value. The zero
value for a bool is false. You can therefore test
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membership in a set by simply checking whether
the value for a specific key is true or false.
The example from the start of this section
defines a set of strings and shows the one slight
complication with this approach. A zero value
is returned both when the key does not exist
and when the key is associated with the zero
value. This is apparent when you iterate over the
map. The first loop tells you that the key "A" is
associated with the value false.
You can also explicitly remove values from the
map, rather than setting them to the zero value,
by using the delete() built-in function. This
takes a map as the first argument and the key to
remove as the second.

Using Lists

6 l := list.New()
7 l.PushBack(42)
8 l.PushBack(main)
9 l.PushBack("A string")

10 for e := l.Back() ; e != nil ; e = e.Prev() {
11 fmt.Printf("%v\n", e.Value)
12 }

From: list.go

The Go standard library defines a few
collections, including lists. The list package
contains a good example of how interface types
in Go can be composed. Lists are formed from
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elements, which wrap some other Go type. This
means that you can store anything that you
want in a list.
Note that, unlike maps, lists are not built in.
This means that you only have one list type,
not one list type for every possible element type.
You can only pass types as arguments to built-in
functions like new() and make(), not to library
functions like list.New(). So it is impossible to
have a list of a specific type without using type
introspection, and if you do that then you still
don’t get compile-time checking.
Lists use the empty interface type for objects
stored in list entries. We looked at this in
Chapter 4, Common Go Patterns. It allows any
Go type to be stored, without any checking.
In practice, this lack of explicit type checking
is rarely a problem. If you really feel that you
need it, then you can define some wrappers that
set and get list elements with explicit types and
always use them.
In the example at the start of this section, we
store three differently typed values in a list: an
integer, a string, and a function. This shows the
type-agnostic nature of the list in particular, and
the empty interface type in general.
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Defining New Collections

4 type Hashable interface {
5 Hash() int
6 IsEqual(Hashable) bool
7 }
8 type HashTable struct {
9 table map[int] []Hashable

10 }
11 func (h HashTable) Find(value Hashable) Hashable{
12 if (h.table == nil) { return nil }
13 l := h.table[value.Hash()]
14 if l == nil { return nil }
15 for _, e := range(l) {
16 if value.IsEqual(e) {
17 return e
18 }
19 }
20 return nil
21 }
22 func (h *HashTable) Add(value Hashable) {
23 if h.Find(value) != nil { return }
24 hash := value.Hash()
25 if (h.table == nil) {
26 h.table = make(map[int] []Hashable)
27 }
28 l := h.table[hash]
29 h.table[hash] = append(l, value)
30 }

From: hashTable.go

If you are designing a new collection, it’s usually
a good idea to be as generic as possible. This
means using the empty interface type if you can,
and a simple interface if you can’t.
The example at the start of this section shows
a simple hash table implementation, with
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secondary chaining. This uses a map from
integers to slices and then chains values off the
end of each slice. The Go specification does
not define how the map is implemented, but
in existing implementations it’s already a hash
table, so this is slightly redundant and would not
make much sense outside of an example.
For things to go into a hash table, they must
be able to provide a hash, and they must define
equality. The Hashable interface defines two
methods that must be implemented by values
going into the hash table.
If you wanted to store some of the Go primitive
types in this collection, then you’d have a
problem. Something like a string or an int
does not implement these (or any other)
methods, so you can’t pass one to a function
that requires its arguments to do so.
Fortunately, there is a simple solution. You
can define a new type that uses one of these
as the underlying representation and then add
methods to that. The example does this for
strings, defining a str type that is a string with
the required extra methods.
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32 type str string
33 func (s str) Hash() int {
34 return len(s)
35 }
36 func (s str) IsEqual(other Hashable) bool {
37 return s == other.(str)
38 }
39

40 func main() {
41 var h HashTable
42 h.Add(str("Foo"))
43 h.Add(str("Foo"))
44 h.Add(str("Bar"))
45 h.Add(str("Wibble"))
46 fmt.Printf("%v %v %v\n", h.Find(str("Foo")), h.

Find(str("Bar")), h.Find(str("Wibble")))
47 }

From: hashTable.go
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Handling Errors

Most code contains bugs. Good code is aware of
this and will handle them gracefully. Really good
code uses formal methods to prove that there are
no bugs, but most people can’t afford really good
code.
Most of the sample code in this book pretends
that errors never happen. This book has quite
small pages, and proper error-handling code
for any of the examples would fill them up very
quickly with things that are largely irrelevant to
the point of the example.
Most errors that can be detected at run time
come from one function or method calling
another with invalid inputs. The best way of
handling this depends a lot on the language.
For example, Erlang discourages defensive
programming at the module level; if your module
is in an undefined state, you should kill it and
create a new version. In C, you are encouraged
to validate every input and check every return
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value. In Java, you can defer error handling
by using exceptions. Lisp and Smalltalk let
you inspect the stack when an error occurs
and dynamically fix the code that gave you the
wrong input.
Go doesn’t have a one-size-fits-all solution for
errors. There are two common patterns for
errors, depending on their severity, and some
others that can be used for specific situations.

Deferring Cleanup

4 func callLocked(lock *sync.Mutex, f func()) {
5 lock.Lock()
6 defer lock.Unlock()
7 f()
8 }

From: defer.go
Quite often there’s a lot of code between the
place that caused an error and the place that
can handle it. Quite often, it is important for
code to be safe in both the presence and absence
of errors. If your function is somewhere between
a panic and a recover,1 it should not break.
One obvious example of this is releasing a
mutex. We’ll look at mutexes in more detail in
Chapter 9, Goroutines. If you’ve not come across
them before in another language, you can think
of them as simple locks. Once a mutex is locked,

1Explained in detail in the next section.
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any other goroutine attempting to lock it will
block until the mutex is unlocked. This means
that forgetting to unlock a mutex that you’ve
locked can cause your program to deadlock.
If you acquire a mutex, then you should make
sure that you release it no matter how your
function exits, whether via an explicit return,
implicitly reaching the end of the function, or a
panic causing the stack to unwind.
The defer statement lets you do exactly this.
You can think of this as being analogous to
GCC’s __attribute__((cleanup)), C++ local
destructors, or finally and @finally in Java
and Objective-C, respectively. The function
call in the defer statement happens when the
function exits.
The example at the start of this section shows
a function that takes a mutex and a function as
arguments, and calls the function with the mutex
lock. The complete example calls this with
a nil function, which causes a runtime panic.
No matter what happens when the function is
called, this function will then unlock the mutex.
Of course, the program may then still abort,
but the cleanup code should still run correctly.
If the goroutine where this function was called
terminates for any reason, it will not accidentally
leave the mutex locked.
You can use this same mechanism for releasing
operating system resources, for example closing
a file that you have been using. This ensures
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that your code does not leak file descriptors. The
garbage collection in Go means that you do not
have to use this mechanism to free memory.
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Panicking and Recovering

1 package main
2 import "fmt"
3

4 func badFunction() {
5 fmt.Printf("Select Panic type (0=no panic, 1=

int, 2=runtime panic)\n")
6 var choice int
7 fmt.Scanf("%d", &choice)
8 switch choice {
9 case 1:

10 panic(0)
11 case 2:
12 var invalid func()
13 invalid()
14 }
15 }
16

17 func main() {
18 defer func() {
19 if x := recover(); x != nil {
20 switch x.(type) {
21 default: panic(x)
22 case int:
23 fmt.Printf("Function panicked with a

very unhelpful error: %d\n", x)
24 }
25 }
26 }()
27 badFunction()
28 fmt.Printf("Program exited normally\n")
29 }

From: panic.go
You may have heard that Go does not have
exceptions. This is somewhat misleading. Go’s
panic mechanism is semantically equivalent to



ptg7913130

122 CHAPTER 8: Handling Errors

an exception in other languages. What Go lacks
is a culture of using exceptions for flow control.
Exceptions are so named because they are
intended to be used for exceptional conditions.
A lot of programmers seem to interpret this to
mean that they don’t happen on quite every call.
Go uses the stronger term, panic, to indicate
that this mechanism should only be used when
there is no obvious recovery mechanism.
The most common response to a panic is for
the program to exit. In some cases, it may be
possible to recover. In a multiuser program, such
as a web app, the correct response to a panic
might be to delete the session that caused the
panic but not touch any other users’ data.
In general, it’s much easier to decide when
to panic than when to recover. You should
panic when you can’t think of a good way of
continuing. For example, Go will panic if you
try to dereference a nil pointer. This implies
that something has gone wrong somewhere, and
continuing would probably be dangerous.
Deciding when to recover is harder. A panic
is usually caused by some very unexpected
behavior, so the program may be in an undefined
state. Attempting to resume is often a bad idea.
Even attempting to clean up can be dangerous:
there was a vulnerability in OpenSSH not
so long ago that was caused by a bug in
cleanup code that ran as the result of abnormal
termination.
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This mechanism is controlled by the panic()
and recover() built-in functions. The panic()
function takes an empty interface argument (i.e.
a value of any type) and begins unwinding the
stack, executing any of the code in any defer
statements as it goes.
If a defer statement contains a call to
recover(), the argument to panic() is
returned. This will be nil if the defer clause
is being called as a result of a normal function
exit, not as part of a panic.
The example at the start of this section shows
two ways of panicking: one with an explicit
call to panic() and one by calling an invalid
function, which causes the runtime to generate
a panic.
The defer statement uses recover() to
check for the panic. It then uses a type switch
statement to determine the type of the panic. If
it’s an int, then we know that it’s the example
panic and so just discard it. Otherwise, we
pass it back to panic(). Note the output for
the runtime panic shows that it was recovered,
before the program exited.
This example has largely used the panic and
recover mechanism to implement a try-catch-
finally mechanism. The point of this is to show
you that the panicking is as expressive as these
mechanisms, not to show you good practice.
In general, you should avoid calling recover()
unless you are absolutely certain that it is safe to
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1 $ ./6.out
2 Select Panic type (0=no panic, 1=int, 2=runtime

panic)
3 0
4 Program exited normally
5 $ ./6.out
6 Select Panic type (0=no panic, 1=int, 2=runtime

panic)
7 2
8 panic: runtime error: invalid memory address or

nil pointer dereference [recovered]
9 panic: runtime error: invalid memory address or

nil pointer dereference
10

11 [signal 0xb code=0x1 addr=0x0 pc=0x0]
12

13 runtime.panic+0xac /Users/theraven/go/src/pkg/
runtime/proc.c:1060

14 runtime.panic(0x5e008, 0xf8400013d0)
15

16 $ ./6.out
17 Select Panic type (0=no panic, 1=int, 2=runtime

panic)
18 1
19 Function panicked with a very unhelpful error: 0

Output from: panic.go

recover.
If you are recovering from expected panics, as
happens in this example, then it’s a good sign
that your code is wrong. Panics should never be
expected in good code, because it means that
you’ve missed some error handling. The call to
invalid in badFunction() should be bracketed
with a check that it is not a nil function.
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Returning Error Values

1 package main
2 import "errors"
3 import "fmt"
4 import "math"
5

6 func sqrt(i int) (result float64, error error) {
7 if i < 0 {
8 return 0, errors.New("Invalid argument")
9 }

10 return math.Sqrt(float64(i)), nil
11 }
12

13 func main() {
14 // Ignoring error value, because 2 is a valid

input
15 r, _ := sqrt(2)
16 fmt.Printf("sqrt(2) = %f\nEnter another number\

n", r)
17 var i int
18 fmt.Scanf("%d", &i)
19 root, err := sqrt(i)
20 if err == nil {
21 fmt.Printf("sqrt(%d) = %f\n", i, root)
22 } else {
23 fmt.Printf("Error: %s\n", err.Error())
24 }
25 }

From: error.go

The common way of returning errors in C is to
return a known-invalid value, like -1 or NULL,
and then use a side channel for passing back the
error value. There are two major problems with
this approach. It is not easy to spot code that is
missing error checks and it requires overloading
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values, which makes the code hard to read.
In Go, the most common idiom for reporting
errors is to use the multiple return values
capability to return the normal result and an
error. It is obvious when code is missing error
checking because it is ignoring the error return
value.
The example at the start of this section defines
a simple sqrt() function that returns an error if
you pass it a negative input, which would give a
complex number as a result and could therefore
not be returned as a float64.
The first call to this function ignores the error
value. Without the comment, someone reading
the code would be suspicious of this cavalier
disregard for the error code. With the comment,
they’d still not regard it as good code, but would
understand why it was omitted.
When passing user-provided input to the
function, checking the error is important, so in
the second call the error is checked and we give
up if there is any error.
This function shows the error built-in type.
This is an interface that just defines one method,
for generating a string value describing the error.
The simplest way of constructing these is to
use the New() function, which is currently the
only function defined in the errors package. This
returns a new error wrapping a string.
For more complex error reporting, you may want
to provide your own structure implementing
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this interface and providing some extra fields or
methods that users can examine for better error
handling.
Lots of low-level code uses the Errno type, which
wraps a UNIX-style error number. Unlike the
UNIX or C version, this is returned using the
same mechanism that we’ve just seen, not some
side-channel involving macros and thread-local
storage.

Error Delegates

5 type sqrtError interface {
6 invalidArgument(int) (int, error)
7 }
8 func sqrt(i int, e sqrtError) (result float64,

err error) {
9 for i < 0 {

10 var err error
11 i, err = e.invalidArgument(i)
12 if err != nil {
13 return 0, err
14 }
15 }
16 return math.Sqrt(float64(i)), nil
17 }

From: errorDelegate.go

One powerful error handling pattern that is not
yet common in Go is the error delegate pattern.
This pattern is well suited to Go’s interface
typing, which makes it very easy to create simple
objects.
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Error delegates in Go are interfaces with one
method per type of error, implementing a
recovery behavior. The example at the start of
this section shows the last example, extended to
take an error delegate as an argument.
This is a slightly oversimplified example, which
contains an obvious bug—it doesn’t check that
the error delegate is not nil before calling
invalidArgument() on it, so it will crash if you
pass nil as the error delegate—but it should
serve to illustrate the general pattern.
When the error is encountered, rather than
aborting, the code now gives the error delegate
a chance to fix it—in this case, by providing
a replacement for the invalid argument. The
exact mechanism by which this replacement is
provided is up to the caller.
The errorDelegate.go example includes a simple
example delegate that just asks the user for
another version. Alternatively, one might just
return an absolute value. In extreme cases, it
might panic.
This pattern takes a little bit more effort to
use than the simple error-value return and so
is best used for errors in complex functions.
In this example, it is massive overkill, because
it’s faster and as powerful to simply retry the
sqrt() call with different arguments if an error
is encountered. If a function performs a lot of
complex steps and might fail at any point in the
middle, then it’s better to use something like
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19 type sqrtHandler struct {}
20 func (_ sqrtHandler) invalidArgument(i int) (int,

error) {
21 fmt.Printf("%d is not valid, please enter

another value\n", i)
22 fmt.Scanf("%d", &i)
23 return i, nil
24 }
25

26 func main() {
27 fmt.Printf("Enter a number\n")
28 var i int
29 fmt.Scanf("%d", &i)
30 root, err := sqrt(i, sqrtHandler{})
31 if err == nil {
32 fmt.Printf("sqrt(%d) = %f\n", i, root)
33 } else {
34 fmt.Printf("Error: %s\n", err.Error())
35 }
36 }

From: errorDelegate.go

this.
For example, if you had a function that copied
a lot of files, then an error delegate would be a
good way of handling problems. You may want
to continue if one file copy fails, or you may wish
to abort, or possibly modify the file permissions
(or allow the user to do so) and continue.
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Goroutines

Goroutines are the basic primitive for
concurrency in Go and are very easy to
create. Go is intended for a world in which the
number of available cores keeps increasing, so it
encourages a concurrent programming style. The
easy creation of goroutines is a key part of that.

Creating Goroutines

6 go fmt.Printf("Printed in the background\n")
7 i := 1
8 go fmt.Printf("Currently, i is %d\n", i)
9 go func() {

10 fmt.Printf("i: %d\n", i)
11 }()
12 i++
13 time.Sleep(1000000000)

From: goroutine.go
You create a new goroutine by prefixing any
function call with the keyword go. This creates
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a new goroutine containing the call frame and
schedules it to run.
The newly created goroutine behaves like a
thread in other languages. It can access its
arguments, any globals, and anything reachable
from them.
If you want to do more than just call an existing
function, then you can combine the go statement
with an anonymous function. The third go
statement in the example shows a common error
in writing this kind of code, as you can see from
the output.

1 Printed in the background
2 Currently, i is 1
3 i: 2

Output from: goroutine.go

The goroutine that references the variable i
takes it as a parameter. This means that its
value is copied into the call frame for the new
goroutine. The second goroutine references it
indirectly via the closure. This means that it
shares a reference to i with the caller. When
the caller increments the variable, the change is
reflected in the goroutine.
When I ran this example, the third Printf()
statement told me that i was 2, but this is
not guaranteed. The goroutine may execute
immediately, or it may execute before the
increment.
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The situation is actually slightly more
complicated than that. We looked at the Go
memory model in Chapter 1, Introducing Go.
The compiler does not have any constraints
on the ordering of memory accesses from a
concurrent goroutine, so it is completely free to
fold the increment into the initialization. This
means that the line written after the goroutine
was created may actually run before.
The Sleep() call at the end stops the main
goroutine from exiting before the spawned one
has had a chance to produce any output. Go
does not require all goroutines to exit before the
program terminates.
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Synchronizing Goroutines

1 package main
2 import "fmt"
3 import "sync"
4

5 func main() {
6 m := make(map[int] string)
7 m[2] = "First Value"
8 var lock sync.Mutex
9 go func() {

10 lock.Lock()
11 m[2] = "Second Value"
12 lock.Unlock()
13 }()
14 lock.Lock()
15 v := m[2]
16 lock.Unlock()
17 fmt.Printf("%s\n", v)
18 }

From: mutex.go

As we saw in the last section, it’s often
important to enforce some synchronization
between concurrent parts of the program. This
is not surprising: if some background task is
completely independent of everything else,
then it should probably be part of a different
program.
The sync package provides mutexes. These are
simple locks that can be held by at most one
goroutine at a time. Mutexes are an example
of the zero initialization pattern that we saw in
Chapter 4, Common Go Patterns. This means
that a mutex with a zero value is treated as
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an unlocked mutex and is ready to use. The
example at the start of this section shows this:
the mutex is used as soon as it is created, with
no explicit initialization required.

Note: In this chapter, we’re looking at some
low-level synchronization primitives that are similar
to the ones that you would expect to find in other
languages. Using things like mutexes and condition
variables is often not good idiomatic Go. You
would often be better served by some of the
techniques covered in Chapter 10, Concurrency
Design Patterns.

Mutexes in Go work just as they do in any other
language. They provide two methods, Lock()
and Unlock(), for acquiring and releasing the
mutex.
The example at the start of this section uses a
mutex to protect a map. Operations on maps
are not atomic, so attempts to modify them
concurrently from two goroutines have undefined
behavior. This example use a simple lock to
protect the map so that the two goroutines can
attempt to modify it without any problems.
We’ll look at a better way of implementing
a concurrent map in Go in Chapter 10,
Concurrency Design Patterns.
Note that this approach doesn’t make any
guarantees about which order the two goroutines
access the map. Most of the time you run this
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example, you will see the first value printed,
because the spawned goroutine will not finish
starting until after the original has acquired the
lock.
It is possible to enforce ordering by moving
the lock.Lock() line out of the spawned
goroutine. The main goroutine will then block
on the second lock.Lock() call until the
spawned goroutine releases the lock by calling
lock.Unlock() before returning.
This means that Go “mutexes” are actually
binary semaphores, rather than true mutexes.
They do not have an owner, which means that
they cannot support recursive use (calling
Lock() on the same mutex twice in the same
goroutine causes it to deadlock) and that they
do not support error checking behavior. These
would be very irritating limitations in other
languages.
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Waiting for a Condition

1 package main
2 import "fmt"
3 import "sync"
4

5 func main() {
6 m := make(map[int] string)
7 m[2] = "First Value"
8 var mutex sync.Mutex
9 cv := sync.NewCond(&mutex)

10 updateCompleted := false
11 go func() {
12 cv.L.Lock()
13 m[2] = "Second Value"
14 updateCompleted = true
15 cv.Signal()
16 cv.L.Unlock()
17 }()
18 cv.L.Lock()
19 for !updateCompleted {
20 cv.Wait()
21 }
22 v := m[2]
23 cv.L.Unlock()
24 fmt.Printf("%s\n", v)
25 }

From: condvar.go

Go provides condition variables, which are
similar to their POSIX equivalent. The
condvar.go example extends the example from
the last section to ensure that the write from
the concurrent goroutine has completed before
reading. For this simple use, it would be better
to use a wait group, as discussed in the section



ptg7913130

138 CHAPTER 9: Goroutines

Performing Actions in the Background.
A condition variable allows one or more
goroutines to sleep until some condition is met.
They are typically used in a solution to the
producer-consumer problem. It’s quite unlikely
that you will actually want to use them in
Go, because channels provide a much better
solution to this, but they can be useful when
implementing algorithms designed for other
systems.
Condition variables have a lock associated with
them. The Go implementation allows any type
that implements the Locker interface to be used,
but in this example we use a mutex. The L field
of the condition variable can be used to access
this lock directly.
When you call Wait(), the lock is atomically
released and the goroutine goes to sleep. If
the lock is not held by the calling goroutine,
then the call to Wait() will panic. When
another goroutine calls either Signal() or
Broadcast() on the condition variable, then
sleeping goroutines wake up and attempt to
reacquire the lock. Signal() wakes just one,
while Broadcast() wakes them all.
Typically, you will want to call these functions
with the lock held, or there is a chance of
wakeup events being lost. This is not required
and can be avoided if you know that they will be
called later with the lock held.
Condition variables, as their name would imply,



ptg7913130

Waiting for a Condition 139

are intended to be used to monitor a condition.
In this example, the condition that the cv
condition variable is protecting is the state of
the updateCompleted variable. If this variable
is true, then we say that the condition holds.
Conditions do not have to be simple variables;
they can also be the result of some computation.
The example shows the common pattern for
using a condition variable. The producer
acquires the lock, updates the condition (the
updateCompleted variable), and then signals
the condition variable (cv) before releasing the
lock. The consumer acquires the lock, tests the
condition, and, if it doesn’t hold, then it sleeps
on the condition variable. It then reacquires the
lock when the producer releases it, releases it
itself, and continues.
There are two possible execution orders for this
example. The original goroutine—the main()
function—may acquire the lock first. If this
happens, then updateCompleted will be false,
so it will call Wait(), atomically releasing the
lock. At this point, the spawned goroutine will
acquire the lock, do its modifications, and then
signal the condition variable and release the lock,
allowing the original goroutine to continue.
Alternatively, the spawned goroutine will
grab the lock first. In this case, the original
goroutine will probably block on the Lock() call,
although it may not if the spawned goroutine
completes its updates first. Either way, it
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will not proceed past this line until the other
goroutine has released the lock. At this point,
updateCompleted will be true, so it won’t wait
and will proceed to completion immediately.

Performing Thread-Safe
Initialization

5 type LazyInit struct {
6 once sync.Once
7 value int
8 }
9 func (s *LazyInit) Value() int {

10 s.init()
11 return s.value
12 }
13 func (s *LazyInit) init() {
14 s.once.Do(func() { s.value = 42 })
15 }
16 func (s *LazyInit) SetValue(v int) {
17 s.value = v
18 }
19

20 func main() {
21 var l LazyInit
22 fmt.Printf("%d\n", l.Value())
23 l.SetValue(12)
24 fmt.Printf("%d\n", l.Value())
25 }

From: once.go
Most Go structures use the zero initialization
pattern, so when you create a structure that
uses them, you generally don’t do explicit
initialization. Sometimes, however, you do,
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and it’s often best to support lazy initialization
rather than require an explicit call to an
initializer.
The example from the start of this section shows
a trivial type that encapsulates an integer. This
supports the zero initialization pattern, but it
has an initial value of 42, rather than zero. To
support this, it uses the Once type from the sync
package. This is similar to pthread_once() in
the POSIX threading API, although it’s easier to
use.
The Once object has a Do() method, which
takes a function as an argument. It will run that
function exactly once, as you might have guessed
from the name. This is thread-safe, so calling
Do() twice from different goroutines will still
only run it once, and will cause the second caller
to block until the first has completed.
In general, this pattern will be more expensive
than using a designated initializer. At best, it
will require one extra branch to check whether
the object has been initialized. A good Go
compiler will make this overhead small, but it
will still exist.
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Performing Actions in the
Background

7 func main() {
8 var w sync.WaitGroup
9 for _, v := range os.Args {

10 w.Add(1)
11 go func(str string) {
12 fmt.Printf("%s\n", strings.ToUpper(str))
13 w.Done()
14 }(v)
15 }
16 w.Wait()
17 }

From: wait.go

Performing some action in the background is one
of the most common uses for a goroutine. If you
have all of the data required for a calculation,
but you don’t need the result immediately, then
you can start it running in the background in a
goroutine and then do something else and wait
for it to complete when you actually need the
result.
The sync package provides wait groups to
make this easier. You can implement these
yourself with channels quite easily but it’s
convenient to use the preprepared version. If
you’re coming from Java, then you may have
used the CountDownLatch class: Go wait groups
are used for a similar purpose.
Wait groups are similar to counting semaphores.
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You can increment and decrement their value,
and block if the value is not zero. There are two
typical ways of using wait groups. In both cases,
you call Done() from within the background
goroutine to indicate that it’s finished, but you
initialize the waiting value in one of two ways.
If you are launching a fixed-number of
background goroutines, then you can just call
Add() once with the number as the argument.
Alternatively, you may be launching a variable
number of them. For example, if you are reading
input from a channel, then you might want to
create a background goroutine for each message
that you receive. At the end, you’d want to
make sure that you wait for all of the processing
to complete.
The example at the start of this section shows
how to use wait groups to implement the latter
pattern. This iterates over every argument
passed to the program and, in the background,
prints the uppercase version of it. If you try
removing the last line of this example, you’ll find
that it doesn’t print any output: the main()
function—and therefore the program—exits
before the first background goroutine has a
chance to print any output.
Using the arguments array here is a fairly
trivial example, but it shows how you can
spawn an arbitrary number of goroutines in the
background and wait for them all to finish.
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Communicating Via Channels

1 package main
2 import "fmt"
3

4 func main() {
5 m := make(map[int] string)
6 m[2] = "First Value"
7 c := make(chan bool, 1)
8 go func() {
9 m[2] = "Second Value"

10 c <- true
11 }()
12 _ = <- c
13 fmt.Printf("%s\n", m[2])
14 }

From: chan.go
Creating parallel subprograms cheaply is useful,
but the real strength of Go comes from the
ease with which these detached goroutines can
communicate. So far this chapter has looked at
the primitive synchronization operations that
you’d expect to find in any vaguely modern
language. Hopefully, you will never need to use
these in Go programs.
Go provides channels, based on Hoare’s
Communicating Sequential Processes (CSP)
formalism. A channel is quite like a UNIX
pipe: you can put data down one end and get
it out at the other. It supports buffering, with a
configurable buffer size. Unlike pipes, channels
are typed. When you create a channel, you
specify the type of values that will be passed
along it. Of course, you can use the empty
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interface type if you want to be able to pass
values of any type and detect the type at the
receiving end.
Channels encourage a style of programming
that scales easily without increasing debugging
complexity. All of the techniques that we’ll
look at in Chapter 10, Concurrency Design
Patterns, involve channels. Many of them can be
implemented in other languages using mutexes,
condition variables, and so on, but most of the
time this involves implementing channels on top
of these lower-level primitives.
You can also replace the lower-level
synchronization primitives with channels. The
example at the start of this section shows how to
replace explicit synchronization via condition
variables with implicit synchronization via a
channel. This example is equivalent to the one
from the last section, but is much simpler.

Note: Most of the examples in this chapter are
doing a very small amount of work in a spawned
goroutine. It is almost certainly more expensive
to set up the synchronization primitives and
spawn the concurrent goroutine than it would
be to just do the work in the caller. The point
of these examples is to demonstrate the use of
synchronization mechanisms, not to encourage you
to do trivial amounts of work in parallel.

This example starts by creating a channel. As
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with maps and slices, channels are created with
the make() built-in function. The first argument
is a channel type, and the second is the size
of the buffer. In this example, we just want a
single element buffered, because we’re only ever
sending one value over the channel. We use bool
as the type for the channel, although any type
would be fine because we’re not actually using
the result.
In the spawned goroutine, we send the value
true through the channel. The caller tries to
read a value from the channel. This will block
until a value is sent. In this simple example,
we’re just discarding the received value.
For clarity, I’ve assigned the value that we read
from the channel to the blank identifier. In Go,
receive operations are expressions. The <- c
part evaluates to the first value received on
channel c. This can be either stored somewhere,
passed as a function argument, or ignored. You
can, for example, write someFunction(<-c) to
block until a value is received on the channel and
then call someFunction() with this value as the
argument.
This is about the simplest possible use for a
channel. It serves to illustrate the fact that
channels provide simple solutions to some of the
problems that you’d typically solve with mutexes
or condition variables in other languages.
Channels are not just a replacement for
condition variables; they allow a flexible
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message-passing design for concurrent programs.
We’ll look at several more complex examples of
their use in the rest of the book.
If you’re coming from Erlang, then you may
find this construct quite familiar. There are
some important differences. Erlang uses actor-
model concurrency but uses CSP-derived syntax
for sending and receiving messages. Go uses
CSP, but with its own syntax. The important
difference between Erlang’s Actor model and
CSP is the existence of channels. In Erlang,
you send messages to process identifiers. In Go,
you send them to channels, which are a slightly
higher level of abstraction.
A message sent to a Go channel may be received
by any goroutine, including the one that
originally sent it. Two messages sent to a single
channel may be handled by different goroutines.
In contrast, a message sent to an Erlang process
is always handled by that process. It’s trivial
to implement either of these models on top
of the other. You can implement Erlang-style
communication by simply creating a channel
for each goroutine that you spawn and sharing
the sending end but keeping the receiving end
private. You can implement channels in Erlang
by either using an indirection layer, where one
process forwards messages to one or more others,
or by tagging messages that you send with a
channel identifier to allow them to be sorted at
the final receiving end.
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Using Multiple Channels

27 func main() {
28 abort := make(chan bool)
29 count := make(chan int)
30 go cancel(abort)
31 go countDown(count)
32 for {
33 select {
34 case i := <- count:
35 if 0 == i {
36 selfDestruct()
37 return
38 }
39 fmt.Printf("%d seconds remaining\n", i)
40 case a := <- abort:
41 if a {
42 fmt.Printf("Self destruct aborted\n")
43 } else {
44 selfDestruct()
45 }
46 return
47 }
48 }
49 }

From: selfDestruct.go

Quite often, you want to be able to receive input
from one of a small group of goroutines. This is
not possible with the normal receive statement,
because it blocks when attempting to read from
the channel.
The select statement is similar to a switch
statement, but it selects based on the availability
of communication channels rather than on a
truth value. The select statement will pick one
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and perform the relevant communication, which
can be a send or a receive operation.
You can also implement a non-blocking receive
with the select statement. If there is a
default: clause, then that will be executed
if none of the channels in case statements are
ready; otherwise it will block until one becomes
ready.

5 func cancel(abort chan bool) {
6 fmt.Printf("This program will self destruct, do

you wish to cancel?\n")
7 var r int
8 fmt.Scanf("%c", &r)
9 switch r {

10 default: abort <- false
11 case ’y’: abort <- true
12 case ’Y’: abort <- true
13 }
14 }
15

16 func countDown(count chan int) {
17 for i := 10 ; i >= 0 ; i-- {
18 count <- i
19 time.Sleep(1000000000)
20 }
21 }

From: selfDestruct.go

The selfDestruct.go example uses a select
statement to receive input from one of two
channels. One counts down from ten to zero,
once per second, while the other sends a boolean
value based on user input. If the timer reaches
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zero, or the user actively chooses not to cancel,
then this example calls the selfDestruct()
function. If the user cancels, then it exits
normally.
This same pattern can be employed in any
situation where you have multiple possible inputs
from channels but don’t know which one is likely
to have data first. In this example, one channel
comes from the user, so it may contain data
immediately, never, or some time between the
two. Channels from the network also fall into
this category.
A more interesting case for this pattern is when
you have steps of a parallel computation taking
different amounts of time. It lets you receive
partial responses in the order in which they
are ready and then start the next phase of
computation immediately.
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Concurrency
Design Patterns

In Chapter 9, Goroutines, we looked at a number
of ways of synchronizing activities between
goroutines, using patterns that are common
in other languages. As with other facets of
the language, there are some idioms that are
natural in Go, but which would not make sense
in another language.
Concurrency is a core part of Go. Spawning a
new goroutine, which is roughly analogous to a
thread, requires you to type three characters,
including the space. The implementation of
these goroutines in gc is similarly lightweight—
slightly more than a function call but not much.
In gccgo, it is equivalent to an operating system
thread.
In the last chapter, we saw that Go has more or
less the same set of synchronization primitives
as the POSIX threads API. This means that
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you can take any algorithm designed for threads
and implement it in Go very easily. Doing so is
usually a bad idea, and is very rarely idiomatic
Go. In this chapter, we’ll look at some of the
techniques for designing scalable applications in
Go.

Timing Out Connections

12 func timeout(t chan bool) {
13 time.Sleep(5000000000)
14 t <- true
15 }
16

17 func main() {
18 t := make(chan bool)
19 s := make(chan string)
20 go readString(s)
21 go timeout(t)
22 select {
23 case msg := <- s:
24 fmt.Printf("Received: %s\n", msg)
25 case <- t:
26 fmt.Printf("Timed out\n")
27 }
28 }

From: timeout.go

Go channels do not support a timeout
automatically. This is intentional, because it’s
difficult to design a timeout mechanism that is
sufficiently general to be usable in all situations.
Instead, Go provides a mechanism for you to
implement timeouts yourself.
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The select statement allows you to wait for
data from any channel. The example at the
start of this section shows how to spawn a new
goroutine to provide a timeout. This goroutine
sleeps for five seconds and then sends a message
back. The message itself is irrelevant. Here, we
just use a boolean value, but it’s only the fact
that the message is sent that matters, not its
content.
The select statement here is used to time out
a single connection. Either the first channel
delivers a string within five seconds, or the
timeout will cause anything that it sends to be
ignored.
Note that we don’t close the channel that
readString() will write to when the timeout
occurs. If the readString() goroutine put a
string into the channel in between closing it and
exiting, then we’d get a runtime panic, which is
not what we want. Instead, we silently discard
the message that it sends.
That is not always the correct decision. If you
want the other end to be able to know that an
object has been freed, then it’s a good idea to
close the channel. This allows the sender to
handle the panic and clean up any resources
related to generating the data. An even better
solution would be to send a canceled message
down another channel, so the goroutine knew
that you’d get bored with waiting for it to finish.
In this example, we’re only timing out a single
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connection, but this same pattern works for
an arbitrary number of channels in the select
statement. You can implement the timeout
signal more efficiently using a timer, as discussed
in Chapter 11, Dates and Times.

Aliased xor Mutable
There is one rule that makes writing concurrent
programs easy:
No object should be both aliased and
mutable.
This is a general pattern for any language,
but is particularly relevant to Go. Because Go
uses a shared-everything model, you can pass
pointers to objects down channels easily. You
then have two concurrent goroutines that have
references to the same object. If you haven’t
been very careful, you now probably have some
race conditions. If you’ve been slightly careful,
you probably have the potential for deadlock.
If two goroutines try to modify the same object
simultaneously, then you need to think very
carefully about their possible interactions. As
any experienced programmer knows, code that
you need to think about carefully in order to be
sure it is correct is most likely to be code that
contains bugs.
To avoid this, follow a simple rule. If you ever
pass a pointer through a channel, make sure
that you immediately discard your copy of it.



ptg7913130

Aliased xor Mutable 155

Passing a pointer through a channel should pass
ownership of the pointee to the receiver.
The same rule applies to arguments passed when
starting a new goroutine. The caller should
not keep pointers to any objects that the new
goroutine can modify.
You can use slices to enforce this when sharing
an array between multiple goroutines. One
fairly common use for parallelism is performing
the same transformation on every element in
an array. You can do this with a collection of
goroutines, each working on a small range within
the array. If you start each goroutine with a non-
overlapping slice of the array, then the array as a
whole is only mutable from the calling goroutine.
If it then waits for all modifications to complete,
then your code is safe. It is not possible to
expand a slice beyond its declared capacity, even
if the underlying array has enough space to do
so.
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Share Memory by
Communicating

5 type request struct {
6 key int
7 value string
8 ret chan string
9 }

10

11 func set(m chan request, key int, value string)
string {

12 result := make(chan string)
13 m <- request{key, value, result}
14 return <-result
15 }
16

17 func runMap(c chan request) {
18 m := make(map[int] string)
19 for {
20 req := <- c
21 old := m[req.key]
22 m[req.key] = req.value
23 req.ret <- old
24 }
25 }
26

27 func main() {
28 m := make(chan request)
29 go runMap(m)
30 fmt.Printf("Set %s\n", set(m, 1, "foo"))
31 fmt.Printf("Set %s\n", set(m, 1, "bar"))
32 }

From: sharedMap.go
Channel references are the primary exception to
the rule from the last section. It is perfectly safe
to share channel references between goroutines,
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because they provide implicit synchronization.
In a language like C or Java, you would typically
implement a shared dictionary by creating
a non-concurrent dictionary and a mutex
lock. Whenever you wanted to manipulate the
dictionary, you would acquire the lock, perform
the manipulation, and then release the lock.
This pattern is possible in Go. The sync package
provides a mutex implementation that can be
used for this kind of task. This lets you enjoy all
of the difficulties of lock-based programming that
you’ve probably encountered in other languages.
If you are feeling lazy, and would prefer to spend
your time worrying about the problems that
your program is intended to solve, rather than
about the minutiae of thread safety, then Go
provides another alternative. The example at
the start of this section provides a (very) simple
implementation of a shared map. This uses
channels for implicit synchronization.
This simple implementation only defines one
operation, implemented in the set() function,
which sets a new value and returns the old one.
The map itself is local to a goroutine. In a
cleaner implementation, you would probably
put the channel in an opaque interface and
have a function that created the goroutine
and the channel, rather than exposing the
implementation details like this.
When you call the set() function, it creates
a request, sends it across the channel, and
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then waits for the reply. The channel performs
implicit synchronization for you. Requests sent
across the channel are serialized, so there is no
possibility of multiple concurrent accesses.
If you extend this map to have separate methods
for setting and accessing values, then you can
even benefit from concurrency. A set operation
does not need to wait for a reply: it can simply
push the key and value into the channel and
return immediately. This set operation will
complete after any pending operations in the
queue.
From the perspective of the calling goroutine,
any sequence of set and get operations will
appear to be processed in sequence. If you do
two set operations followed by a get, then only
the get will block, and it won’t return until after
the two set operations have completed. It is
completely safe to access the map from multiple
goroutines in this way, although you must take
care if you want to ensure that updates from one
goroutine are seen by another.
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Transactions by Sharing
Channels

36 func HandleRequests(m map[int] string,
37 c chan Request) {
38 for {
39 req := <- c
40 switch (req.requestType) {
41 case Get:
42 req.ret <- m[req.key]
43 case Set:
44 m[req.key] = req.value
45 case BeginTransaction:
46 HandleRequests(m, req.transaction)
47 case EndTransaction:
48 return
49 }
50 }
51 }

From: transactionMap.go

One of the biggest problems with lock-based
concurrency is that it is impossible to compose
operations in a general way. Imagine that you
have a thread-safe map implementation, with
set and get operations that can be called from
multiple threads and are guaranteed to be
atomic. Now try to define an atomic increment
operation in terms of these: It’s not possible.
An atomic increment operation needs to do
a get, and then a modify, and then a set and
needs to ensure that there are no other get or
set operations happening until it completes. The
simplest solution would be to add the atomic
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increment operation directly to the map and
ensure that it holds the same lock that protects
the get and set. When you need a more complex
composite operation, then you need to further
complicate your concurrent map.
This is difficult to get right. Fortunately,
Go provides a much simpler mechanism.
The transactionMap.go example shows an
extended version of the concurrent map from the
example in the last section. This version defines
operations to begin and end transactions.

Note: The sharedMap.go and
transactionMap.go examples both use a structure
for sending requests. In the second example, most
of the requests only use some of the structure
fields. This is not a significant overhead for a
simple map, because the request structure is small,
so you’re only wasting a few bytes if you only use
half of it.
For more complex data structures, you may want
to consider using an interface type for requests.
The interface would define an accessor to get
the type, and an accessor to get specific request
types. Each structure that implemented the
interface would return either itself or nil from
each accessor.
If you encapsulate your concurrent data type
behind a small set of public functions, then it’s
very easy to switch between the two approaches.
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When you begin a transaction, the goroutine
handling the map temporarily puts the channel
to one side and starts listening for operations
from the new one. This effectively gives the
caller exclusive access to the map for a sequence
of operations, until the transaction has been
completed.

19 func get(m chan Request, key int) string {
20 result := make(chan string)
21 m <- Request{Get, key, "", result, nil}
22 return <-result
23 }
24 func set(m chan Request, key int, value string) {
25 m <- Request{Set, key, value, nil, nil}
26 }
27 func beginTransaction(m chan Request) chan

Request{
28 t := make(chan Request)
29 m <- Request{BeginTransaction, 0, "", nil, t}
30 return t
31 }
32 func endTransaction(m chan Request) {
33 m <- Request{EndTransaction, 0, "", nil, nil}
34 }

From: transactionMap.go

With this simple interface to the shared
map, you can trivially implement an atomic
append or atomic capitalize operation on the
values held in the map. You just need to call
beginTransaction(), then get(), perform
whatever modification you wanted to make, and
finally call set() and endTransaction().
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This is a fairly primitive implementation of
transactions. These transactions are blocking,
and don’t support any form of rollback. A more
complex implementation might create a new
goroutine that handled all of the operations
in the transaction on a copy of the map, and
then passed the set of changes to the original.
This would either merge them or reject them,
depending on whether there were any conflicts.

Concurrent Objects

10 type ConcurrentMap struct {
11 ch chan request
12 init sync.Once
13 }
14 func (cm *ConcurrentMap) Set(key int, value

string) string {
15 cm.init.Do(func () {
16 cm.ch = make(chan request)
17 go runMap(cm.ch)
18 })
19 result := make(chan string)
20 cm.ch <- request{key, value, result}
21 return <-result
22 }

From: concurrentMap.go

It’s often convenient to use concurrency
implicitly in Go. We’ve seen how to do that
using some wrapper functions earlier in this
chapter, but these still made the channel
explicit.
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The example at the start of this section is a
tidier version of the shared map from earlier.
If you put this in a package, then users can use
the Set() method without ever being aware of
the way it is implemented. All that they know is
that this is a shared map that can be used safely
from multiple goroutines.
This pattern is very useful for testing, because
it provides the same benefits as data hiding
in other contexts. You can easily change the
implementation of the concurrent map. You
may want to implement another version using
a simple mutex and compare the performance;
being able to do this without modifying any code
that uses the map is very useful.
The other advantage of using a structure,
rather than a collection of functions, is that
it lets you use interfaces. You could define a
concurrent map and a non-shared map with the
same interface, and code that didn’t care about
thread safety could just use whichever one it was
passed.
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Implementing Futures in Go

6 type futureInt64 struct {
7 ch chan int64
8 v int64
9 collect sync.Once

10 }
11 func (f *futureInt64) String() string {
12 f.collect.Do(func() { f.v = <- f.ch })
13 return strconv.FormatInt(f.v, 10)
14 }
15 func fib(n int64) (int64, int64) {
16 if n < 2 { return 1,1 }
17 f1, f2 := fib(n-1)
18 return f2, f1+f2
19 }
20 func Fib(n int64) fmt.Stringer {
21 var ch futureInt64
22 ch.ch = make(chan int64)
23 go func() {
24 _, f := fib(n)
25 ch.ch <- f
26 }()
27 return &ch
28 }
29 func main() {
30 f := Fib(100)
31 fmt.Printf("The 100th Fibonacci number is: ")
32 fmt.Printf("%v\n", f)
33 }

From: futureFib.go

With goroutines, you can implement functions
that run in the background. With channels, you
can also collect their results asynchronously. The
pattern shown at the start of this section shows
how to implement futures, sometimes called
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promises, in Go.
The Fib() function computes a number in
the Fibonacci sequence, in a newly spawned
goroutine, and returns a structure that implicitly
synchronizes when it is accessed.
This simple return value only implements one
method, declared in the fmt package, which
converts a value to a string. For more complex
return types, you’d need to create a more
complex future type, which forwarded all of the
declared messages to a field containing the real
return value, once it had been received.
The advantage of this approach is that it allows
a completely serial programming style, while
still providing concurrency. Users of the Fib()
function may act as if it is a purely sequential
function, yet it will run in the background and
only actually block the calling goroutine when it
tries to use the return value.
As before, the amount of work done in the
spawned goroutine is not really enough to justify
creating a new goroutine. This pattern is more
applicable where you have a bit more work to
do.
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Coalescing Events

6 func later(deferRunning chan bool, delay time.
Duration, f func()) {

7 t := time.NewTimer(delay)
8 for {
9 select {

10 case cont := <- deferRunning:
11 if cont {
12 t = time.NewTimer(delay)
13 } else {
14 f()
15 return
16 }
17 case <- t.C:
18 f()
19 t = time.NewTimer(delay)
20 }
21 }
22 }
23

24 func main() {
25 deferRunning := make(chan bool)
26 buffer := ""
27 go later(deferRunning, 3000000000,
28 func() { fmt.Printf("User entered %s\n",

buffer) })
29 b := make([]byte, 1)
30 for b[0] != ’\n’ {
31 os.Stdin.Read(b)
32 deferRunning <- true
33 buffer += string(b)
34 }
35 deferRunning <- false

From: idle.go

A common problem in interactive applications
is running some code in the background in
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response to user input without increasing
latency. For example, a text editor may want
to run a spell checker or syntax highlighting
task in the background. In theory, you want
to do this after every keystroke, but if you
spell check an entire document after every
keystroke then you’re going to end up doing
a lot of redundant work. A better solution,
which is almost indistinguishable from the user’s
perspective, is to run the background task after
a few seconds (or a large fraction of a second) of
inactivity.
The example at the start of this section shows
how to do this. The program first spawns a
background goroutine with a function to run
when a timeout expires, a channel for deferring
it, and a timeout. The function will be called a
fixed delay after the last time it is deferred.

Note: Most UNIX systems implement buffering
in the terminal. If you run this example from such
a terminal then the program will not receive the
input until you press Enter, so it will not defer
execution of the background task.

This trivial example reads from the standard
input, and defers execution of the background
task until after it is completed. The task itself is
also trivial, but you could easily replace it with
something that did real work on the input.
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Map Reduce, Go Style

17 func Map(fileName string, intermediate chan
Partial) {

18 file, err := os.Open(fileName)
19 if err == nil {
20 var s scanner.Scanner
21 s.Init(file)
22 tok := s.Scan()
23 for tok != scanner.EOF {
24 intermediate <- Partial{s.TokenText(),

fileName}
25 tok = s.Scan()
26 }
27 }
28 intermediate <- Partial{"", ""}
29 }
30

31 func Reduce(token string, files []string, final
chan Result) {

32 counts := make(map[string] int)
33 for _, file := range files {
34 counts[file]++
35 }
36 final <- Result{token, counts}
37 }

From: mapReduce.go

It seems fitting that a programming language
developed by Google should make it easy to
implement the concurrency pattern that made
Google so successful: Map Reduce. This involves
splitting an algorithm into two concurrent steps.
One runs on chunks of the input and produces
pairs of intermediate results; the other folds the
intermediate results to produce a final result.
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The code at the start of this section shows the
Go implementations of these two components
for the canonical application of Map Reduce:
indexing a set of files. In this case, it’s creating
an index of the tokens used in the examples
in this book. The map phase works on a
single source file and generates a stream of
(filename, token) pairs, which it then delivers
as intermediate results.
Once the map phase has run, the reduce phase
runs once for each token and counts the number
of occurrences of the filename in the generated
intermediate lists, providing a final result. You
could use this to quickly search these source files:
for each search term, you end up with a list of
files and the number of times it occurs in that
file.
The map and reduce functions are specific to the
application of this pattern, but they need to be
supported by some more generic code. In this
example, the collectIntermediates() function
does most of this work. This first collects the
results from the Map() function and then spawns
instances of the Reduce() function and finally
delivers their collected results.
The collectIntermediates() function is quite
simple. Hopefully you can follow it quite easily:
it doesn’t contain anything that we haven’t
looked at already, although it does combine quite
a lot of parts of Go in one place. The Map()
function will send some unknown number of
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39 func collectPartials(intermediate chan Partial,
40 count int,
41 final chan map[string]

map[string] int) {
42 intermediates := make(map[string] []string)
43 for count > 0 {
44 res := <- intermediate
45 if res.value == "" && res.key == "" {
46 count--
47 } else {
48 v := intermediates[res.key]
49 if v == nil {
50 v = make([]string, 0, 10)
51 }
52 v = append(v, res.value)
53 intermediates[res.key] = v
54 }
55 }
56 collect := make(chan Result)
57 for token, files := range intermediates {
58 go Reduce(token, files, collect)
59 }
60 results := make(map[string] map[string] int)
61 // Collect one result for each goroutine we

spawned
62 for _, _ = range intermediates {
63 r := <- collect
64 results[r.token] = r.counts
65 }
66 final <- results
67 }

From: mapReduce.go

intermediate results as it runs. We use an empty
pair as a placeholder indicating that it’s finished.
The collectIntermediates() function is called
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with a known number of Map() goroutines, so it
just decrements this count each time one finishes
and then stops waiting for new results once it
hits zero.
This part of the code builds a list of
intermediate results for each token. When there
are no more partial results to collect, it spawns a
goroutine for each token to do the reduce step.
This then passes back a map containing the
number of times each word appears in a list.
You could produce a better index by putting this
into an array and sorting it by occurrences. I
didn’t do that here, because it adds complexity
without showing you any more that’s relevant to
implementing the Map Reduce pattern.
After all of the reduce steps have run, this
function again collects their results in a map and
delivers it as the final result. This function is the
only bit of serial code in this pattern; the map
and reduce steps can run with a large degree of
parallelism. As long as the work that they are
doing is large in comparison with collecting the
results, this approach can scale very well.
The program using this is quite simple. The
main() function just spawns one copy of the
Map() function for each .go file and one copy of
the collectIntermediates() function, joins
them with channels, and waits for the result.
Most of the main() function is simply
determining whether a file has a .go suffix, and
then printing the final results. As with most
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69 func main() {
70 intermediate := make(chan Partial)
71 final := make(chan map[string] map[string] int)
72 dir, _ := os.Open(".")
73 names, _ := dir.Readdirnames(-1)
74 go collectPartials(intermediate, len(names),

final)
75 for _, file := range names {
76 if (strings.HasSuffix(file, ".go")) {
77 go Map(file, intermediate)
78 } else {
79 intermediate <- Partial{"", ""}
80 }
81 }
82 result := <- final
83 for token, counts := range result {
84 fmt.Printf("\n\nToken: %v\n", token)
85 total := 0
86 for file, count := range counts {
87 fmt.Printf("\t%s:%d\n", file, count)
88 total += count
89 }
90 fmt.Printf("Total: %d\n", total)
91 }
92 }

From: mapReduce.go

other things we’ve seen, the indexing step runs
entirely in the background. This version just
blocks waiting for the result to arrive on the
final channel. It’s processing a relatively small
amount of data, so will complete in a fraction of
a second. If you passed it a larger input, then
you could do something else while waiting for
the background indexing to complete. This is a
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common pattern in API documentation or help
viewers: they allow browsing while constructing
the index.
As with other Go patterns, there is no explicit
synchronization in this example. We don’t
even import the sync package: there are no
mutexes, no condition variables, no wait groups.
Synchronization happens implicitly via channels.
In most Map Reduce implementations, the
framework goes to a lot of effort to avoid
spawning too many threads to run efficiently.
The cheap concurrency in Go means that we
don’t need to worry about that: we can just
spawn a lot of goroutines and let the runtime
sort it out.
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Dates and Times

Unsurprisingly, given its antecedents, Go inherits
the UNIX notion of time. Time is represented at
the low level by the number of seconds since the
UNIX Epoch: the start of 1970 UTC. Local time
is calculated from this by applying a time zone
offset, and can then be converted into something
suitable for display, such as a year, month, and
day.
Most Go APIs use nanoseconds for time
intervals. It’s important to differentiate between
time and time intervals. A time is a fixed
point relative to some epoc date and depends
on things like the current time zone. A time
interval, in contrast, is a quantity that makes
sense in isolation.
The time package includes two types for
representing these two concepts. A Duration
represents a length of time, while a Time
represents a fixed point in time.
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Finding the Current Date

7 fmt.Printf("%d seconds since the Epoc\n", now.
Unix())

8 fmt.Printf("%d nanoseconds since the Epoc\n", now
.UnixNano())

From: now.go

The lowest-level mechanism for getting the time
is in the runtime package and is private to the
implementation. The private now() function in
the runtime is a very thin wrapper around the
gettimeofday() system call on UNIX and its
equivalent on other systems. The system call
returns a structure containing the number of
elapsed seconds and microseconds.
The time package provides a convenient
function, Now(), which returns a Time structure
encapsulating the time. This structure also
contains a time zone, so you can safely compare
instances of it even if they are related to
different events. You can then use its Unix()
and UnixNano() methods, which return the time
in seconds and nanoseconds, respectively.
The Time structure provides a large number of
other methods for inspecting and comparing
times. We’ll look at some of them in the rest of
this chapter.
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Converting Dates for Display

7 now := time.Now()
8 fmt.Printf("Today is %s\n", now.Format("Monday"))
9 fmt.Printf("The time is %s\n", now.Format(time.

Kitchen))

From: localNow.go

When it comes to user interaction, we
unfortunately see some big gaps in the Go
standard library. Just as C assumed that
everyone used text representable in ASCII,
Go assumes that everyone uses the Gregorian
calendar. This is fine if you only expect to have
users in America or Europe, but in other parts of
the world it’s likely to cause problems.

Note: Check the current documentation for the
time package before using it. Hopefully it will
have improved by the time you read this. The
current implementation is full of implicit US-centric
conventions. It is difficult to use in code that
needs to work in Europe (it does not allow non-
English day names to be used in format strings),
and impossible to use in countries using the
Islamic or Chinese calendars, which are completely
unsupported.

If you only have to worry about people using
the Gregorian calendar, then Go provides some
useful features. The Time structure encapsulates
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a local date, as represented by the Gregorian
calendar. This has public fields containing
things like the month and day. You can either
access these fields explicitly, or you can use the
Format() method to prepare such a date for
display.
Go date format strings are slightly non-obvious.
Rather than defining a format string with escape
sequences for things like the day of the week,
they uses a specific date. This date is the fifth
second after the fourth minute of the third
hour in the afternoon of the second day of the
first month, in the sixth year in the second
millennium, with time zone offset -0700. This
date was chosen because the value for each date
component is different. Each component is in
order when written in the middle-endian date
format popular in the USA.
If you want to specify a date format explicitly,
then you must write how this date would be
represented using your format. For example, a
little-endian date with a 24-hour time and an
abbreviated day-of-the-week would be written as
the string "2006-1-2 (Mon) 15:04:05".
The package provides several standard formats.
The most useful is time.RFC3339. This
defines the long format from ISO 8601 format,
which defines the international standard for
unambiguous date formatting. The example at
the start of this section uses the time.Kitchen
standard, which defines a simple format for
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times, suitable for use in locales that use 12-hour
time.

Parsing Dates from Strings

6 var t string
7 fmt.Printf("Enter a time\n")
8 fmt.Scanf("%s", &t)
9 parsed, err := time.Parse("03:04PM", t)

10 if err != nil {
11 parsed, err = time.Parse("15:04", t)
12 }
13 if err != nil {
14 fmt.Printf("Error: %s\n", err.Error())
15 } else {
16 fmt.Printf("Time in seconds since the Epoc: %d\

n", parsed.Unix())
17 }

From: parseTime.go

The Parse() function is the inverse of the
Format() method. It allows you to construct a
Time structure from a string, with a specified
format.
The format string is the first argument and
is in the format discussed in the last section.
The example at the start of this section tries
parsing two times: first as a 12-hour time with
an explicit AM or PM, and then as a 24-hour
time. If neither of these works, then it gives up.
You’ll notice, if you run this example, that the
seconds since the epoc is always a large negative
number. This is because the date component of
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the parsed time will be 0, putting the time about
two millennia in the past.
If you want the time to be relative to today, then
you need to explicitly set the date part.

Calculating Elapsed Time

7 parsed, _ := time.Parse("2/1/2006", "15/6/1982")
8 now := time.Now()
9 parsedSeconds := parsed.Unix()

10 fmt.Printf("%d seconds difference\n", now.Unix()-
parsedSeconds)

11 diff := now.Sub(parsed)
12 fmt.Printf("%s difference\n", diff.String())

From: diffTime.go

If you have two times in seconds or nanoseconds,
then it’s trivial to work out the difference
between them. If they are in calendar format,
then it’s different.
The simplest way of calculating a time difference
is to convert both times to UNIX times, and
then do the calculation. UNIX time is always
in UTC: on UNIX systems, the system clock is
set to UTC (or GMT on older systems) and the
user-visible time is calculated by adding an offset
to this time. This means that changing the time
zone of the system will not confuse things like
file modification times. It’s a good idea to adopt
the same policy in your own code.
The example at the start of this section shows
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two ways of comparing dates. The first converts
both to nanoseconds and then does simple
subtraction to compare them. The second uses
the Sub() method on the Time structure, which
returns a Duration. This encapsulates a time
interval and can be converted to hours, minutes,
seconds, nanoseconds, or a string representation
containing all three.

Receiving Timer Events

6 time.AfterFunc(2000000000, func () {
7 fmt.Printf("Timer expired\n")
8 })
9 timer := time.NewTimer(3000000000)

10 time := <- timer.C
11 fmt.Printf("Current time: %d nanoseconds\n", time

.UnixNano())

From: timer.go

We’ve already looked at explicitly spawning
goroutines to generate timer events, but the
time package also provides some convenience
functions for doing this. The Timer structure
waits for a fixed length of time, and then either
sends a message along its channel, or calls a
function, depending on how it was created.
Using timers is usually more efficient
than spawning a new goroutine. They are
implemented using a heap. A spawned goroutine
sleeps for the interval until the next timer is
due to run, and then fires all timers that have
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expired when it wakes up. This means that you
only have one parallel goroutine running, no
matter how many timers you use. Spawning
a goroutine is quite cheap, but not spawning a
goroutine is usually even cheaper.
It’s not always quite so clear cut. The timer,
as currently implemented, uses a mutex to
protect the heap, which means that there is the
possibility of contention if you are concurrently
creating a lot of timers. In practice, however, it’s
always likely to be more efficient to use a timer
than implement your own version.
If you create a timer with NewTimer, then it
will send the current nanosecond time along the
channel created as its C field when it expires. If
you call AfterFunc() instead, then the channel
will not be used. The function that you pass will
be called in its own goroutine when the timer
expires.
Timers do not make any real-time guarantees.
The timer is guaranteed not to be triggered
before the timeout expires, but it may be
triggered any time after that, depending on
the machine load, the accuracy of the available
timers, the operating system’s scheduler, and
various other concerns.
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Accessing Files
and the
Environment

If you’re going to write any nontrivial Go code,
eventually you will get to the point where you
need to interact with things outside of your
program. The most common mechanism for
persistent storage on modern systems is the
filesystem, and it’s quite rare to see a program
that doesn’t need to read files, even if it isn’t
writing any.
If you want to write portable code, the filesystem
is one of the more tricky areas that you have
to deal with. Any modern operating system
provides a file store, which is a mapping from
filenames to sequences of bytes. Beyond that, the
semantics can vary considerably.
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Manipulating Paths

1 package main
2 import "fmt"
3 import "path"
4 import "path/filepath"
5

6 func main() {
7 components := []string{"a", "path", "..", "with",

"relative", "elements"}
8 path := path.Join(components...)
9 fmt.Printf("Path: %s\n", path)

10 decomposed := filepath.SplitList(path)
11 for _, dir := range decomposed {
12 fmt.Printf("%s%c", dir, filepath.Separator)
13 }
14 fmt.Printf("\n")
15 }

From: path.go

File paths are one of the most common causes
of headaches when porting code. These days,
you generally only have to worry about Windows
and UNIX paths, which use backslash and slash
characters as separators, respectively. This is a
significant improvement. Systems like MacOS
Classic and VMS used other separators, and
supporting all of them was quite complex.
When constructing a file path, you need to be
careful to always use the correct separator.
The filepath package allows you to do this
yourself, using the filepath.Separator or
filepath.SeparatorString constants. These
store the character or string representation of
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the separator, respectively. It’s a good idea
to use the string version, because you may
find that you eventually want to run your Go
code on a platform that uses a multicharacter
separator, such as ::, although no such platforms
are supported by the current implementation.
There are very few situations in which
constructing a path using string manipulation
is actually the right thing to do. In most cases,
you want to use the Join() and SplitList()
functions. These combine a slice of strings into
a single string with the correct path separators
and separate a string into its components,
respectively.
Note how the Join() function is called in the
example. This is an example of a variadic
function, like Printf(). Unlike C, variadic
functions in Go can be called either by an
explicit argument list or by a slice. The ...
suffix on the slice indicates that it should be
passed as the variadic argument set, rather than
as a single argument. This appears redundant
here, but it can be important. If the function
accepted variadic arguments of the empty
interface type, then the slice could be passed
either as the argument list or as the only
element in that list, and the ellipsis is required
to disambiguate these two cases.
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Reading a File

5 func main() {
6 file, err := os.Open("fileRead.go")
7 if err != nil{
8 fmt.Printf("Error: %s\n", err.Error())
9 return

10 }
11 buffer := make([]byte, 100)
12 for n, e := file.Read(buffer) ; e == nil ; n, e

= file.Read(buffer) {
13 if n > 0 {
14 os.Stdout.Write(buffer[0:n])
15 }
16 }
17 }

From: fileRead.go

The os package contains a File type that
encapsulates a file and allows you to access it.
As with C’s stdio.h, it also defines three always-
extant instances of this type, one for each of the
three standard channels.
The example at the start of this section shows
a simple program that reads its source code
and prints it to the standard output. This uses
the Open() function, which always opens files
for reading. If you need to write to a file, then
you need to use the more general OpenFile()
function and specify the os.O_RDWR flag or
something similar.
At the lowest level, file I/O works via slices of
bytes. A file is a sequence of bytes. Any more
convenient interfaces must be built on top of this
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abstraction.
Remember that slices are immutable objects that
represent mutable data, so the Read() function
cannot modify the extent of the slice. When
this program prints its output, it needs to slice
buffer to the length that Read() indicated that
it returned, unless the program length happens
to be an exact multiple of the slice size.
When you reach the end of a file, Read() will
return an EOF error and a zero length. In this
example, we assume that the only read error is
caused by reaching the end of the file, but for
more complex uses you might want more robust
error handling.
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Reading One Line at a Time

13 lineReader := bufio.NewReaderSize(file, 20)
14 for line, isPrefix, e := lineReader.ReadLine() ;

e==nil ;
15 line, isPrefix, e = lineReader.ReadLine() {
16 fmt.Printf("%.3d: ", lineNumber)
17 lineNumber++
18 os.Stdout.Write(line)
19 if isPrefix {
20 for {
21 line, isPrefix, _ = lineReader.ReadLine()
22 os.Stdout.Write(line)
23 if !isPrefix { break }
24 }
25 }
26 fmt.Printf("\n")
27 }

From: lineRead.go

If you are reading a file containing binary data,
then the techniques discussed in the last section
are fine. If you are reading a text file, then you
probably want to read one line at a time and
then do some processing. The bufio package
provides a reader that allows you to read a line
at a time.
When you create a buffered reader with the
NewReaderSize() function, it allocates an
internal buffer. In this example, that buffer is
20 bytes long, which is enough for most, but not
all, lines in this file. The reader will read into
this buffer until it finds a line break, and then
return a slice of the buffer.
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Because the slice is backed by the buffer, you
must be careful to copy the data, not just the
slice, if you want it to persist between calls
to ReadLine(). This function returns three
values. As well as the slice and the error code,
it also returns a flag indicating whether the slice
represents a partial line.
The example at the start of this section prints
the source code for the program with line
numbers, so it needs to be able to differentiate
between reading a single line and reading part of
a line. If the isPrefix flag is set, then it knows
that it is reading part of a line. Subsequent calls
to ReadLine() will return more of the line. The
isPrefix flag remains set until it returns the
last segment in a line.
If you’re using the line reader, then you will
probably want a loop somewhat similar to the
one shown in this example, with each iteration of
the outer loop processing an entire line. It would
be trivial to write a generic wrapper around
this that builds a long array of bytes for the
entire slice. This is not provided by default,
because doing so means that feeding it a file
with a single 1GB line would require you to
read 1GB into memory. Although this interface
is slightly harder to use, it has the advantage
that it uses a deterministic amount of memory,
making it much easier to reason about your
code’s performance, independently of the data
that it might be accessing.
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Determining if a File or
Directory Exists

6 fmt.Printf("Enter a file name\n")
7 var s string
8 fmt.Scanf("%s", &s)
9 fi, err := os.Stat(s)

10 if err != err {
11 fmt.Printf("%s does not exist!\n", s)
12 return
13 }
14 if fi.IsDir() {
15 fmt.Printf("%s is a directory\n", s)
16 }
17 mode := fi.Mode()
18 if mode & os.ModeSymlink == os.ModeSymlink {
19 fmt.Printf("%s is a symbolic link\n", s)
20 }

From: isFile.go

Quite often, you will find that you need to check
whether a file exists before you try to use it.
This is not so important when you are accessing
individual files: you can typically open them
with a combination of flags that fails if they
don’t exist. Even if a file does exist, it may
not be usable. If it’s a directory or a link, for
example, then you may want to interact with it
in a different way than if it is a regular file. For
example, if the user tells your program to open a
directory, then you may wish to recursively open
every file in the directory, rather than opening
the directory as if it were a file.
The example at the start of this section checks
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whether a named file exists, and if it does then
it also checks whether it is a directory or a
symbolic link. This uses the Go Stat() function,
which wraps the stat() system call and wraps
the returned platform-dependent structure in a
platform-independent Go structure.
In particular, you should note how we check
whether a file is a symbolic link. The Stat()
call will attempt to follow symbolic links. If
it succeeds, then the returned structure will
describe the file or directory at the end of the
link, which won’t itself be a symbolic link, so
its mode won’t have its symlink flag set. If, on
the other hand, the file is a broken symlink, the
returned structure will describe the link itself.
If you want to inspect a symbolic link directly,
then you can use Lstat() instead. This is
almost identical to Stat(), but it makes no
attempt to follow links. As such, the result from
this call will not let you tell whether the target
of a link is a directory.
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Checking Environment Variables

6 var debugLevel int
7

8 func debugLog(level int, msg string, args ...
interface{}) {

9 if debugLevel > level { fmt.Printf(msg, args
...) }

10 }
11

12 func main() {
13 debugLevel, _ = strconv.Atoi(os.Getenv("DEBUG")

)
14 debugLog(3, "Starting\n")
15 }

From: envDebug.go

Environment variables provide a fairly simple
mechanism for setting some state for a program
before it runs. The environment is a set of key-
value pairs, which can be set on the command
line or in code. When a program starts, it
typically inherits the environment from its
parent process, with any modifications that
process made explicitly.
Environment variables can be useful for tunable
parameters. The example at the start of this
section sets an integer value indicating the
debug level based on the value of an environment
variable. If this environment variable is not set,
then the Getenv() call will return the empty
string and Atoi will return 0, so the default
debug level is zero. If you want a different
default, then you would need to explicitly set
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it.

1 $ ./6.out
2 $ DEBUG=4 ./6.out
3 Starting

Output from: envDebug.go

The environment is stored as an array of strings
in the os.Envs variable. The Getenv() function,
on its first call, copies the environment variables
into a map, so subsequent lookups only require
a map lookup, rather than a linear search. It’s
still relatively expensive to do a map lookup
and then parse a decimal string, though, so this
program caches the result.
Whether you need to do this kind of caching
depends on the format of the data and how
often it’s called. A debug logging function is
expected to be called quite often, and should
return quickly if it is not used. Looking up the
environment variable and parsing the integer
value for every call would be expensive. In
other cases, this is not important because the
code looking up the environment variable either
wants to access the string directly, is called
infrequently, or does something so expensive that
it’s not worth optimizing this small part of it.
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Network Access

When C was created, computers were rare
and expensive. It was still fairly common for
a company to have a single computer. Now, a
computer that isn’t connected to a network is
considered an oddity.
Being able to interact with the network is
important for most programs. Go has a variety
of packages in the standard library for network
access, which is hardly surprising when you
consider that Google is the language’s main
backer.
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Connecting to Servers

6 func tryConnect(network, host string, port int)
net.Conn {

7 p := strconv.Itoa(port)
8 addr := net.JoinHostPort(host, p)
9 c, e := net.Dial(network, addr)

10 if e == nil { return c }
11 return nil
12 }

From: connect.go
If you are used to high-level languages, then
you will find Go’s basic network support quite
primitive. Go incorporates convenient high-level
wrappers for various protocols, but the socket-
style APIs are somewhat baroque.
The example at the start of this section shows
how to connect, given a host, a network, and
a port. The host can be any network address.
The network indicates the lower-layer protocol.
For example, "tcp" indicates a TCP connection,
running on either IPv4 or IPv6, while "udp6"
indicates a UDP connection running on top of
IPv6.
The Dial() function from the net package is
responsible for creating the connection. This
either returns an error or a valid connection.
This takes the address as a single string,
containing the host’s address and port number,
so you must first combine these two values into a
single string using the JoinHostPort() function.
Before you can use this function, you must look
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up a valid host address and the port number for
the service that you are using. This is something
that would be done automatically for you with
a high-level API, but must be done explicitly in
Go.

14 func connect(network, service, host string) net.
Conn {

15 _, addrs, _ := net.LookupSRV(service, network,
host)

16 for _, srv := range addrs {
17 c := tryConnect(network, srv.Target, int(srv.

Port))
18 if c != nil {
19 return c
20 }
21 }
22 port, _ := net.LookupPort(network, service)
23 ips, _ := net.LookupHost(host)
24 for _, ip := range ips {
25 c := tryConnect(network, ip, port)
26 if c != nil {
27 return c
28 }
29 }
30 return nil
31 }

From: connect.go

Unfortunately, Go does not provide a single
interface encapsulating the various low-level
lookup methods. There are generally two ways
in which you can get a valid port number. One
is via a static lookup for the IANA-assigned
standard port, typically listed in the operating
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system’s /etc/services file. The other is via an
SRV record, specifying a nonstandard port for
this service.
Go provides a mechanism for performing both
kinds of lookup. The LookupSRV() function
returns a list of SRV entries. In the connect.go
example, we just check these in the order that
they are returned, ignoring their weight and
priority values.
If there is no SRV record for the specified
server, then you must fall back to static
lookup, using LookupPort(). You can then use
LookupHost() to find a set of network addresses
that correspond to the host name, independent
of the service. As with the set returned by
LookupSRV, this example tries each one in turn
until it finds one that works.

33 func main() {
34 c := connect("tcp", "http", "informit.com")
35 c.Write([]byte("GET / HTTP/1.1\r\nHost:

informit.com\r\n\r\n"))
36 buffer := make([]byte, 1024)
37 c.Read(buffer)
38 fmt.Printf("%s", buffer)
39 }

From: connect.go

The returned connection has a few methods
that you can use for network communication. In
this example, we’ve used the generic connection
interface, which just provides methods for
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reading and writing slices of bytes. Packet-
based connections, such as UDP, will return
something implementing the PacketConn
interface, supporting operations that allow
writing packets to specific addresses and reading
packets along with their associated address.

Distributing Go

1 package main
2 import "old/netchan"
3 import "fmt"
4

5 func main() {
6 counter := 0
7 ch := make(chan int, 1)
8 server := netchan.NewExporter()
9 server.Export("Counter", ch, netchan.Send)

10 server.Export("foo", make(chan bool, 12),
netchan.Send)

11 err := server.ListenAndServe("tcp", "localhost
:1234")

12 if err != nil {
13 fmt.Printf("Error: %s\n", err.Error())
14 return
15 }
16 for {
17 counter++
18 ch <- counter
19 }
20 }

From: chanserver.go

One of the big advantages of using channels to
communicate is that it makes the distinction
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between threads and processes more blurred. If
a goroutine communicates with the rest of the
program entirely via channels that copy values,
rather than passing pointers, then it does not
need to be sharing memory with the rest of the
program.
If a goroutine does not need to be sharing
memory with the rest of the program, then
you can trivially run it in another process.
More importantly, you can run this process on
a completely different computer. All of this is
possible with only small modifications to the
code.
The chanserver.go file shows a simple example, a
counter that returns a new value every time it is
queried. The setup uses the netchan package to
export a channel via a TCP connection, but the
remainder of the code is unchanged. It would be
exactly the same if the channel communicated
with a local goroutine.

Note: The netchan package is in old/ and will
not be supported in the Go 1.0 release. A new
version is due to be added sometime after Go
1.0. This example will probably not work in an
unmodified form with the new netchan package,
but the core idea of simply rerouting channel
messages over the network should remain valid.

Exporting the channel for remote connections is
very simple. The Exporter and Importer types
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from the netchan package handle all of the hard
work. They wrap a network socket and a local
channel, transferring messages between them.
Preparing the exporter requires configuring the
two sides: the local channel and the network
interface. The Export() method provides the
local part. It associates a channel with a name,
and specifies the direction in which messages will
be sent. Here, we are declaring that the channel
should be published as Counter and that this
process will be using the channel for sending
data. You can call this method several times,
if you want to export multiple channels over the
same connection.
The ListenAndServe() method is the other
part. It listens for incoming connections on the
specified network address and connects remote
channels to the ones that it’s advertised.
The client, in the chanclient.go example, is
similar. The Importer works in the same way,
but in reverse. First it connects to a remote
server, then it connects local channels to remote
channels, identified by name. The Import()
function in this example constructs the new
Importer, connected to the server. When you
run this program, the results might surprise you.
It appears that the counter is being increased
by two each time. What’s really happening is
that every other message is being lost. This is
because the Importer buffers received messages.
The server sends one value which is read by
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1 package main
2 import "old/netchan"
3 import "fmt"
4

5 func main() {
6 conn, err := netchan.Import("tcp", "localhost

:1234")
7 if err != nil {
8 fmt.Printf("Error: %s\n", err.Error())
9 return

10 }
11 ch := make(chan int)
12 err = conn.Import("Counter", ch, netchan.Recv,

1)
13 if err != nil {
14 fmt.Printf("Error: %s\n", err.Error())
15 return
16 }
17 fmt.Printf("Counter: %d\n", <-ch)
18 }

From: chanclient.go

1 $ ./6.out
2 Counter: 1
3 $ ./6.out
4 Counter: 3
5 $ ./6.out
6 Counter: 5

Output from: chanclient.go

the client, and another which is buffered by the
client. The client then exits, and the contents of
its buffer are lost.
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As Senator Stevens would tell you, Go programs
are a series of tubes. The capacity of each tube
is the size of its buffer. When you place a value
into a channel, it is stored in this buffer. If the
channel becomes unreferenced, then the garbage
collector will free it, and will also free all values
stored in the buffer. You can think of a channel
like a tube that you push balls into. When it is
full, you must remove a ball from the other end
before you can put a new one in. If you throw
the tube away, then you also throw away all of
the balls still inside it.
Try extending this example so that it doesn’t
lose messages. The simplest way of doing this
is to export two channels, one in each direction,
and only send a counter value in response to an
explicit request. Most of the time, you’ll want
bidirectional communication, so this isn’t too
much extra effort.
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Serving Objects

5 type Counter struct {
6 count int
7 }
8 type Arg struct { Increment int }
9 type Result struct { Value int }

10 func (c *Counter) Value(in *Arg, out *Result)
error {

11 c.count += in.Increment
12 out.Value = c.count
13 return nil
14 }
15

16 func main() {
17 server := rpc.NewServer()
18 server.RegisterName("GoCounter", new(Counter))
19 l, _ := net.Listen("tcp", ":1234")
20 server.Accept(l)
21 }

From: server.go

The net/rpc package provides a generic
mechanism for implementing Remote Procedure
Call (RPC) functionality. This is split into
two parts: one that is responsible for the
programmer interface and another that is
responsible for the wire protocol.
The package allows you to perform RPC either
via a direct socket connection or over HTTP.
The jsonrpc package provides an implementation
of the wire protocol component for JSON-RPC.
This is primarily useful if you need to export
objects that non-Go code can call. JSON-RPC
is a language-agnostic RPC mechanism and is
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fairly widely supported.
The example at the start of this section shows a
very simple server. This exports a single method,
as GoCounter.Value(), via the underlying
RPC mechanism. By default, this uses the gob
encoding, which is a Go-specific serialization for
objects.
The Value() method on the Counter is
automatically exported, because it takes
two pointer arguments and returns an error
code. The two arguments are used for the
input and output parameters for the RPC,
respectively. When a request is received, this
will be called with the received arguments in the
first arguments. It should then fill in values in
the structure passed via the second argument
and return nil, or an error condition if it failed.
The Accept() method called here will handle
each connection in a new goroutine: If you
connect to this example fast enough then you
will see a race condition. It is a blocking call, so
normally it would be called in a new goroutine,
but in this example the server does nothing
except serve the object so that is not necessary.
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Calling Remote Procedures

5 type Arg struct { Increment int }
6 type Result struct { Value int }
7

8 func main() {
9 client, _ := rpc.Dial("tcp", ":1234")

10 var r Result
11 client.Call("GoCounter.Value", &Arg{1}, &r)
12 fmt.Printf("%d\n", r.Value)
13 }

From: client.go

An RPC server is about as useful as the first
telephone. A second telephone, or in this case
an RPC client, is required to make it useful. The
client component uses a very similar interface.
The input and output arguments must be
marshaled in the same way, into a structure with
one field per argument, passed by pointer.
The example at the start of this section contains
all of the code required to connect to the server
from the last example and call its exported
method. The rpc.Dial() function creates a new
RPC client, connected to the specified network
address. This is the same address that we passed
to the Listen() function in the server.
The Call() method performs the remote call.
This marshals the argument into the correct
format for transmission, calls the remote
procedure with the name given in the first
argument, and then extracts the results into the
structure in the second argument.
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Web Applications

It should come as no surprise that a language
developed by a web giant should have a lot of
standard library support for the Internet. The
textproto package, for example, contains generic
functionality for implementing protocols that
work on a challenge-response basis, exchanging
lines of text. These include SMTP, NNTP,
HTTP, and so on.
Go is now usable in the Google App Engine,
so it’s not surprising that developing web
applications is one of the main reasons to choose
Go. In this chapter, we’ll look at several of the
features that allow you to integrate with the
web.
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Integrating with a Web Server

5 type webCounter struct {
6 count chan int
7 }
8 func NewCounter() *webCounter {
9 counter := new(webCounter)

10 counter.count = make(chan int, 1)
11 go func() {
12 for i:=1 ;; i++ { counter.count <- i }
13 }()
14 return counter
15 }
16 func (w *webCounter) ServeHTTP(r http.

ResponseWriter, rq *http.Request) {
17 if rq.URL.Path != "/" {
18 r.WriteHeader(http.StatusNotFound)
19 return
20 }
21 fmt.Fprintf(r, "You are visitor %d", <-w.count)
22 }
23 func main() {
24 err := http.ListenAndServe(":8000", NewCounter

())
25 if err != nil {
26 fmt.Printf("Server failed: ", err.Error())
27 }
28 }

From: webServer.go

The simplest way of serving web clients from
Go is to use the integrated web server in the
net/http package. This provides a stub web
server that delegates the handling of requests
to your code.
The example at the start of this section is about
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the simplest dynamic web page possible. It
returns a plain text string with a message and
an integer that increments every call. Note that
the ResponseWriter implements the io.Writer
interface, so it can be used with the functions
from the fmt package and other functions that
produce output of this kind.
When you run this example, you just need to
point your browser at http://localhost:8000
and you will see the output. Every time the
server receives a connection request, it will serve
a simple (text only) page telling the user his hit
number.
If you are already running a web server, but
want to provide some dynamic components
from Go, then you should take a look at the
fastcgi package. This uses the same interface
that the webCounter structure in this example
implements, but associates it with a path in
an existing server, rather than a port on a new
server.
This example may appear more complicated
than required, at first glance. Why are we using
a channel to provide a stream of incrementing
integers? Couldn’t we just increment a field? We
could, if we used an atomic increment from the
atomic package, but this is a somewhat cleaner
approach.
Every time a request is received, the
ServeHTTP() method will be called in a new
goroutine. A simple increment statement is not
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atomic, so if two requests were handled at the
same time then one of the increments could get
lost. For an example this simple, that doesn’t
really matter, but in anything more complex it
might.
Spawning a new goroutine to provide the
sequence is an example of the share memory by
communicating pattern that we saw in Chapter
10, Concurrency Design Patterns. Using this, we
don’t have to worry about concurrency. Each
response will get a new value, irrespective of
whether they are sequential or concurrent.
Note that counter values are not lost here,
unlike some earlier examples, because all of
the goroutines are sharing the same channel.
The channel is not being deallocated with some
counter values still stored in it, until the server
exits.
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Connecting to Web Servers

10 client := &http.Client{}
11 client.CheckRedirect =
12 func(req *http.Request, via []*http.Request)

error {
13 fmt.Fprintf(os.Stderr, "Redirect: %v\n", req.

URL);
14 return nil
15 }
16 var url string
17 if len(os.Args) < 2 {
18 url = "http://golang.org"
19 } else {
20 url = os.Args[1]
21 }
22 page, err := client.Get(url)
23 if err != nil {
24 fmt.Fprintf(os.Stderr, "Error: %s\n", err.Error

())
25 return
26 }
27 io.Copy(os.Stdout, page.Body)
28 page.Body.Close()

From: wget.go

A typical web application or web service acts as
both a client and a server, collecting data from
other web services and providing it to clients,
who may be end users or other web services. The
client part in Go is even simpler than the server
side.
The http.Client structure provides a very
simple way of communicating with web servers.
You can either construct a request yourself—
using the same structure that was delivered to
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the ServeHTTP() function in the last section—or
just specify a URL.
The example at the top of this section is a
very simple tool for fetching a specified web
page, or the Go home page if none is explicitly
given. It then writes the contents of the page
to the standard output. If the final page
was found after following some redirections,
it reports each redirection on the standard
error. For every redirection, the client calls its
CheckRedirect function, if one is set. This
allows you to set custom policies for handling
redirections, although this simple example just
logs a message.
Note in particular how the page is written to the
standard output. The Get() method will return
immediately when the server starts delivering
data; it won’t wait until the entire resource
has been downloaded. This is particularly
useful if the URL points to something like a
CD or DVD disk image or a large movie. The
response contains a field that implements the
io.ReadCloser interface. You can read the data
from this as it arrives. In this example, we’re
just using the io.Copy() function to write it
straight to the standard output.
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Parsing HTML

14 tokenizer := html.NewTokenizer(page.Body)
15 foundStart := false
16 for {
17 ty := tokenizer.Next()
18 if ty == html.ErrorToken { break }
19 if ty != html.StartTagToken { continue }
20 t := tokenizer.Token()
21 if t.Data != "a" { continue }
22 for _, attr := range t.Attr {
23 if "href" == attr.Key {
24 if !foundStart ||
25 ((len(attr.Val) > 4) &&
26 "http" == attr.Val[0:4] ){
27 if ".." == attr.Val {
28 foundStart = true
29 }
30 break
31 }
32 fmt.Printf("%s\n", attr.Val)
33 }
34 }
35 }

From: pkgList.go

Fetching a remote HTTP resource is usually only
part of the problem. Interpreting the result is
the other part. Parsing HTML is a common task
for web applications, either interpreting HTML
delivered from another server or validating
HTML uploaded by clients.
The example at the start of this section uses the
exp/html package, which contains an HTML5
parser, to read the package list from http:
//golang.org/pkg/ and try to find the package

http://golang.org/pkg/
http://golang.org/pkg/
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names. This is a fairly simple screen scraper.
It assumes that every relative link after the
link to the enclosing directory is the name of
a package, and writes it out to the standard
output. Because it relies on the structure of the
page, this example may break at any point in the
future if the structure of the package list page
changes.

Note: This example uses a package from the
exp hierarchy, which is not part of the standard Go
1.0 install. To run it, you will need to download
the exp packages from the Go repository. If you
are using the trunk version of Go, you probably
have them installed already. Packages in the exp
hierarchy are experimental and are intended to
become standard parts of the Go library when they
are finished. If you are using a Go release after 1.0
then you may find that the package is available
without the exp/ prefix.

Unfortunately, the html package expects well-
formed HTML as input, so it is not useful for
validating user input. It is, however, useful for
interpreting HTML from other sources. Most
HTML5 provides better semantic markup than
the Go package list and you can use this package
to extract and transform parts of it easily.
The basic interface to the HTML5 tokenizer is
the Tokenizer structure, which takes a reader
and then provides a stream of tokens. Rather
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Note: The html package is intended for parsing
well-formed HTML 5. If you are parsing XML, then
the xml package provides a very similar interface.

than constructing a new Token for every token
in the input stream, we call the Next() method
first. This returns the type of the next token,
allowing us to skip character data and close tags.
If we’ve found an open tag, then we ask it to
construct a Token structure representing that
tag.
You can use the same approach when importing
HTML, for example from ad networks or other
third-party sites, to only allow a white-listed set
of tags, simply discarding any that are not in
your white list.
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Generating HTML

6 type webCounter struct {
7 count chan int
8 template *template.Template
9 }

10 func NewCounter() *webCounter {
11 counter := new(webCounter)
12 counter.count = make(chan int, 1)
13 go func() {
14 for i:=1 ;; i++ { counter.count <- i }
15 }()
16 counter.template, _ = template.ParseFiles("

counter.html")
17 return counter
18 }
19 func (w *webCounter) ServeHTTP(r http.

ResponseWriter, rq *http.Request) {
20 if rq.URL.Path != "/" {
21 r.WriteHeader(http.StatusNotFound)
22 return
23 }
24 w.template.Execute(r, struct{Counter int}{<-w.

count})
25 }

From: htmlServer.go

We’ve looked at how to serve data over HTTP,
but the name Hypertext Transfer Protocol
implies that we probably want to be sending
data in the Hypertext Markup Language, rather
than plain text.
The text/template package provides a very
flexible way of generating HTML, and other
structured formats. It allows you to insert
placeholders into documents and then replace
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them with dynamic data. The example at the
start of this section uses the counter.html file as
the template. This is a simple HTML file that
contains a Counter placeholder that we want to
replace with the actual counter value.

1 <!doctype html>
2 <html>
3 <head>
4 <title>Go Web Counter</title>
5 </head>
6 <body>
7 <h1>A Simple Example</h1>
8 <p>You are visitor: {{.Counter}}</p>
9 </body>

10 </html>

From: counter.html

The template package uses some of the
techniques involving the reflect package that
we will look at in Chapter 15, Interacting with
the Go Runtime. To see how it works, we’ll
start at the end, with the Execute() call in the
ServeHTTP() method. This applies the template,
writing the output to the writer given in the first
argument. The second argument is a structure
with one field for every value referenced in the
template. Here, we use an anonymous structure
with one field, Counter, which is the current
counter value. Executing the template replaces
the counter placeholder with this value.
The Template structure was constructed earlier.
This example uses the ParseFiles() function
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to create and initialize a template using a file
on the disk. It will then construct an internal
map of where everything needs to be inserted,
allowing it to be quickly executed.
The template package provides a very powerful
language for inserting data into the template. In
this example, we’ve only looked at the simplest
case—a single field being inserted once—but it’s
worth looking at the rest of the language if you
find that this isn’t enough.
While powerful, the template language is
not as flexible as something like PHP: it is
not a complete programming language for
generating HTML. This is intentional. This
package serves as an abstraction layer between
programmers and user interface designers. The
interface designers just need to tell the back-end
programmers what kind of data they need. They
can then generate templates for displaying it,
without encoding any of the application logic in
the presentation layer.
You may prefer to use the html/template
package, which is designed to be used with
unsafe input. It assumes that the template
is sanitized but that the arguments to it are
not. In this example, we are generating the
arguments to Execute(), so we don’t need to
worry. If we were taking user input then having
something else sanitizing it automatically would
be handy.
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Interacting with
the Go Runtime

One of the advantages of a dynamic language
is that the internals of the implementation
are exposed for your use. This lets you do
various metaprogramming things that are much
harder in static languages. The go package
and its subpackages let you do very complex
metaprogramming by transforming the abstract
syntax tree of a Go program, but even without
going that deep into the implementation there
are lots of interesting things that you can do.
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Finding the Type of a Variable

8 switch t.Kind() {
9 case reflect.Int, reflect.Uint,

10 reflect.Int8, reflect.Int16,
11 reflect.Int32, reflect.Int64,
12 reflect.Uint8, reflect.Uint16,
13 reflect.Uint32, reflect.Uint64,
14 reflect.Uintptr:
15 fmt.Printf("%v is some kind of integer\n",

v)
16 case reflect.Struct:
17 fmt.Printf("%#v is a structure\n", v)
18 r := reflect.TypeOf(struct{ io.Reader}{})
19 r = r.Field(0).Type
20 if t.Implements(r) {
21 fmt.Printf("%#v implements the io.Reader

interface\n", v)
22 }
23 }

From: type.go

The reflect package provides true reflection.
Reflection is a superset of introspection, but
some languages that just provide support
for introspection claim to support reflection.
Introspection allows you to inspect low-level
properties of various elements in a program,
reflection allows you to modify them as well.
The simplest use for the reflect package is simple
type introspection, querying a variable to find
out its type. There are two important structures
in the reflect package that you can use for
this. These are Type and Value. The former
encapsulates a type, the latter a value. You can
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construct either from an existing value.
Go’s reflection support is limited to values. You
can’t construct new types at run time, but you
can construct new values and modify existing
ones using the reflection APIs. That’s usually
enough, because constructing new types at run
time has limited utility.
One of the slightly ugly parts of Go is that
interfaces are not first-class values. This means
that the only way of getting the type of an
interface is indirectly. In the example at the
start of this function, we get a Type structure
for the io.Reader type by first getting one for
an unnamed structure that has a field of this
type, and then asking for the type of the field. It
would be nice if we could just do something like:
type := reflect.TypeOf(io.Reader)

Unfortunately, in Go, only built-in functions can
take types as arguments, and the reflection APIs
are not built in. As an alternative, you might
think about doing this:
var v io.Reader
type := reflect.TypeOf(v)

This also won’t work, because it’s the value
that is passed to the function, not the variable.
The value is nil, and so there is no way for the
function to know that we meant nil interpreted
as a io.Reader. The work around that we use is
to create an anonymous structure like this:
type := reflect.TypeOf(struct{ io.Reader}{})
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This passes an empty instance of a structure
that contains an io.Reader field. The TypeOf()
function can then get the structure type, and we
can then use its Field() method to get the type
of the structure.
For primitive types, we just need to inspect the
Kind field of the Type. If this corresponds to one
of the primitive types, no further introspection
is required: if something is an int then you
already know everything about its type. If it is
a structure, then you can inspect its fields, its
methods, what interfaces it implements, and so
on.
Note that, for simple cases (including the
example at the start of this section), a type
switch statement will achieve the same thing
with significantly less overhead.
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Finalizing Structures

5 type example struct {
6 Str string
7 }
8 func finalizer(e *example) {
9 fmt.Printf("Finalizing %s\n", e.Str)

10 }
11 func NewExample() *example {
12 e := new(example)
13 runtime.SetFinalizer(e, finalizer)
14 return e
15 }
16 func main() {
17 e := NewExample()
18 e.Str = "a structure"
19 e = NewExample()
20 runtime.GC()
21 }

From: finalize.go

Since Go is garbage collected, you don’t
need to write destructors. Once an object is
destroyed, the objects that it references will
become unreachable and they will be collected
automatically. Sometimes, however, you will
create a structure that needs to do some explicit
cleanup when it is destroyed.
In a lot of garbage-collected languages, there
is explicit support at the language level for
finalizers — methods that run automatically
when an object is collected. Typically this takes
the form of a specially named method.
Go lacks such support at the language level,
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for a good reason. Finalizers do not run
deterministically, and so code that relies on
them is usually wrong. They should only be used
for defensive programming, in case the user of
a structure forgets an explicit cleanup, not for
things that must be run.
For example, the File structure in the os
package registers a finalizer that closes the file
descriptor. This means that you can forget to
call Close() explicitly before allowing a File
to be collected and you won’t run out of file
descriptors. This is safe, because if the finalizer
does not run then the operating system will close
the file descriptor when the program exits. If
code is required to run, for example to ensure
on-disk consistency, then a finalizer is the wrong
solution. This caveat does not usually apply
to defer statements, because they will always
execute unless the process image is corrupted.
In Go, finalizers are not methods, they are
just functions. This has the interesting effect
that different instances of a structure can
have different finalizers, and they can even be
closures.
The example at the start of this section shows a
more conventional use for finalizers, where one is
registered for every instance of a new structure
when it is created. Note that we need to call the
NewExample() function twice in this example
for it to work.1 This is because there is still a

1This may change with future versions. In particular,
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reference on the stack left over from the last call
to NewExample().
This is a good example of why you should not
rely on finalizers. If you change the second call
to just set the value to nil, then intuitively you
can see that the object is no longer referenced,
but the finalizer may not be called. If the
variable is set to nil, then the compiler notices
that it is a dead store and simply removes
the assignment, so e is left pointing to the
old value. If you call NewExample(), then the
compiler knows that this has side effects so
won’t (currently) optimize it away. This is
highly dependent on the implementation details
of the compiler. Whether the finalizer runs
depends on the implementation of the particular
implementation of the compiler that you use,
which should highlight how unreliable they are.

there is currently ongoing work on escape analysis in the
compiler, so that the compiler will be able to manually
manage memory for values when it can prove their
lifecycle.
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Copying Arbitrary Types

5 func copyAny(inV, outV reflect.Value) {
6 t := inV.Type()
7 if t.Kind() != reflect.Struct {
8 outV.Set(inV)
9 } else {

10 for i:=0 ; i<t.NumField() ; i++ {
11 copyAny(inV.Field(i), outV.Field(i))
12 }
13 }
14 }
15 func duplicate(in interface{}) interface{} {
16 outV := reflect.Indirect(reflect.New(reflect.

TypeOf(in)))
17 copyAny(reflect.ValueOf(in), outV)
18 return outV.Interface()
19 }

From: copy.go

Copying is a surprisingly complex concept in
programming languages. Copying a simple
structure is trivial, just create a new bit of
memory that contains the same values as the
original. This becomes more complex when the
structure references other values. Should copying
recursively copy all referenced structures, or
should it alias them? It gets even more complex
when you think about external resources. Should
copying a structure that encapsulates a file copy
the file, or just give you another view into the
same file? What about a socket?
Because if this difficulty in definition, the reflect
package does not provide a single function
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for copying arbitrary types. The example at
the start of this section defines a simple copy
function using the reflect package. This is
semantically equivalent to simple assignment
in Go, although vastly less efficient. It walks
structures, using their reflected values, and
assigns each element in turn.
This example does not follow pointers, it just
copies their value. You could try extending
it to use the same techniques shown in the
duplicate() function to create new instances
of structures accessed by pointer and copy their
contents. Although this example is quite simple,
it shows most of the core functionality of the
reflect package: you can use it to get the type of
a value, construct a new instance of a type, and
set a value independent of its type.
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Constructing Function Calls

26 z := big.NewInt(0)
27 z, isInt := z.SetString(s, 0)
28 if isInt {
29 stack = append(stack, z)
30 } else {
31 m, ok := findMethod(s, z)
32 if ok {
33 argc := m.Func.Type().NumIn()
34 last := len(stack)-1
35 argv := make([]reflect.Value, argc)
36 argv[0] = reflect.ValueOf(stack[last])
37 for i:=0 ; i<argc-1 ; i++ {
38 argv[i+1] =reflect.ValueOf(stack[last-i])
39 }
40 m.Func.Call(argv)
41 }
42 }

From: calc.go

The reflection interface allows you to fully
use the power of a dynamic language. It is
almost powerful enough to write a complete
Go interpreter. The calc.go example is a simple
stack-based calculator that uses the big package
to implement arithmetic.
The first thing that you should notice about
this example is that it does not contain a
command parser. When you run it, you can
enter commands like Add or Sub, and it will
apply them to the top elements on the stack, yet
there is nothing parsing these commands in the
code.
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1 123
2 [123]
3 456
4 [123 456]
5 Sub
6 [123 333]
7 Sub
8 [123 210]
9 90

10 [123 210 90]
11 Add
12 [123 210 300]

Output from: calc.go

The commands that the user enters are mapped
directly to methods. The findMethod() function
uses reflection to find a method with the
specified name and then this is called, again via
the reflection interface.

9 func findMethod(name string, value interface{}) (
reflect.Method, bool) {

10 t := reflect.TypeOf(value)
11 for i:=0 ; i<t.NumMethod() ; i++ {
12 if m := t.Method(i); m.Name == name {
13 return m, true
14 }
15 }
16 return reflect.Method{}, false
17 }

From: calc.go
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Calling C Functions

1 package arc4random
2 // #include <stdlib.h>
3 import "C"
4

5 func arc4random() uint32 {
6 return uint32(C.arc4random())
7 }

From: cgo.go

Go, at least in the form of the Gc compiler,
has a built-in foreign function call interface
for supporting the de-facto lingua franca of
the UNIX world: C. The C pseudo-package
and associated tool provide a way of calling C
directly from Go. This is very easy to use, in
terms of source, but building code that uses cgo
is slightly more complicated.
A cgo source file imports the C pseudo-package,
immediately after some optional comments that
specify include files, linker flags, and so on. The
cgo tool processes the source code and generates
several files.

1 $ go tool cgo cgo.go
2 $ ls _obj/
3 _cgo_.o _cgo_export.h _cgo_main.c
4 _cgo_defun.c _cgo_flags cgo.cgo1.go
5 _cgo_export.c _cgo_gotypes.go cgo.cgo2.c

Output from: cgo
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The _cgo_defun.c file contains the bridge
code and must be compiled with the Plan
9 C compiler (6c or similar, depending on
the architecture). The other C files must be
compiled with the system C compiler and the
.go file with the standard Go compiler.

Note: cgo is only officially supported when
building packages, not when building programs.
If you are using some C libraries, then you should
compile wrap them in a Go package and use that
from your program, rather than interleaving Go and
C throughout your code.

This process is quite involved, and it’s better not
to do it yourself. If you are using the standard
go build system to build your package, which
we’ll look at in Chapter 16, Distributing Go
Code, then it will automatically invoke cgo for
every .go file that imports the C package.
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16

Distributing Go
Code

After you’ve written some Go code, there is a
good chance that you are going to want other
people to be able to use it. Because Go is
statically compiled, you can distribute binary
packages just as you would distribute code
written in C, or any other statically compiled
language.

1 $ otool -L 6.out
2 6.out:
3 /usr/lib/libSystem.B.dylib

Output from: otool

Programs compiled by Gc are statically linked,
so you can just distribute the output from 6l
without worrying about any other libraries. If
you are distributing code—especially packages—
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in source form, then Go provides a few helper
utilities to make your life a bit easier.

Installing Third-Party Packages

0 $ go get github.com/dustin/gomemcached
1 $ go install github.com/dustin/gomemcached
2 $ ls ~/go/src/pkg/github.com/dustin/gomemcached/
3 README.markdown client
4 gocache mc_constants.go
5 mc_constants_test.go server
6 $ ls ~/go/pkg/darwin_amd64/github.com/dustin/
7 gomemcached.a

Go packages, like Go executables, can be
distributed in binary format. As with binary
executables, these are limited to one architecture
and one platform, so it’s not the recommended
distribution mechanism.
The go command provides a very easy-to-use
mechanism for installing Go packages from
source. Typically, you will use it in two stages.
The go get command will fetch the code from
the remote repository. Go knows about several
specific code locations, including Google Code
and GitHub. For others, you can specify a URL
with the revision control system name appended,
such as example.com/my/project.hg to fetch from
a mercurial repository. The go install command
then builds and installs it.
The sources will be put in the src/pkg directory
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in your Go installation and the compiled
binary in the pkg directory, in a subdirectory
corresponding to your architecture.
The URL at the start of this section is for a
package providing a memcached implementation
for Go. If you want to use this package, then
you should specify the entire remote path in the
import directive, like this:

import mc "github.com/dustin/gomemcached/
client"

This allows multiple packages with the same
name to coexist, as long as they have different
URLs.
There are lots of other packages available beyond
the standard library, although, as with any
other language, the quality varies considerably.
You can find a list of most of them on the Go
dashboard: http://godashboard.appspot.com/
package

http://godashboard.appspot.com/package
http://godashboard.appspot.com/package
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Creating Packages

1 package eg
2

3 // An example interface in a package
4 type Example interface {
5 // Returns the name of this type
6 Name() string
7 // Unique identifier for the type
8 id() uint32
9 }

10

11 // Creates a new value implementing
12 // the Example interface
13 func NewExample() Example {
14 return new(concreteType)
15 }

From: pkg/src/eg/types.go

We’ve created lots of packages already in the
examples. Or, more accurately, we’ve created
one package—called main—a lot of times. If you
look in the pkg directory in your Go installation,
then you will find one .a file for each package
that you have installed.
A .a file is an archive—a static library. It
contains the output from the compiler. The Go
compiler, unlike a C compiler, emits quite a lot
of metadata in the resulting binary, including the
set of exported functions and types.
Small packages, including a lot of the standard
library packages, are compiled from single source
files. Others may be compiled from more than
one. If you are compiling multiple files into a
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single package, then you must pass them to Gc
as a single invocation. This is required because
individual files in a package may have mutual
dependencies, which can only be resolved by
considering their source files in combination.
The eg example package shows this. It is a
trivial package containing two files. If you try
to compile either in isolation, then you will get
errors. The pkg/src/eg/concrete.go file refers to
an interface that is not defined in that file; the
pkg/src/eg/types.go file refers to a structure that
is defined elsewhere.

1 package eg
2

3 type concreteType struct {}
4 const (
5 concreteTypeId uint32 = 0
6 )
7

8 func (s concreteType) Name() string {
9 return "Concrete type"

10 }
11 func (s concreteType) id() uint32 {
12 return concreteTypeId
13 }
14 func (s concreteType) isEqual(o Example) bool {
15 return concreteTypeId == o.id()
16 }

From: pkg/src/eg/concrete.go

Source files within the same package may refer
to each other’s private variables and types.
There is no such thing as a file-local variable in
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Go. Source files are just a convenience for the
programmer; they do not have any significance
to the language. Unlike C, there is no extern
directive in Go, telling the compiler that a
symbol that it can’t see really does exist. The
Go compiler must be able to find all symbols
that it wants to refer to, either in source files or
packages.
Most of the examples so far have been self
contained, so we haven’t spent much time
looking at Go’s visibility rules. Other languages
have a set of keywords describing the visibility of
various symbols. Go uses a simpler approach:
anything that starts with a capital letter1 is
public, and so can be accessed from another
package. Anything else is private, meaning that
it may only be accessed from the same package.
To build the package, you need to use the go
build and go install tools. The build step is
actually optional: if you omit it then go install
will run it implicitly. Before running either
command, you need to make sure that Go can
find your source files, and that subsequent
compilations will be able to find the generated
package. This is controlled through the GOPATH
environment variable. This contains a list of
paths that Go will use, in addition to the install
location for the main Go environment.
Go packages must conform to the same layout

1As defined by the Unicode specification, including
non-Latin uppercase letters like Θ.
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as the main Go tree. The directory that you add
to the GOPATH should contain a src directory,
which should contain one subdirectory for each
package. When you run go install, it will create a
pkg directory if one doesn’t already exist and
will install the package there. You can then
import it just as you would any other package.

1 $ export GOPATH=‘pwd‘
2 $ ls
3 src
4 $ go build eg
5 $ go install eg
6 $ ls
7 pkg src
8 $ file pkg/darwin_amd64/eg.a
9 pkg/darwin_amd64/eg.a: current ar archive

Output from: gobuild
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Documenting Your Code

0 $ go doc eg
1 PACKAGE
2

3 package eg
4 import "eg"
5

6 TYPES
7

8 type Example interface {
9 // Returns the name of this type

10 Name() string
11 // contains filtered or unexported methods
12 }
13 An example interface in a package
14

15 func NewExample() Example
16 Creates a new value implementing
17 the Example interface

Go does not have header files to help separate
interface and implementation. This separation
is imposed by the language, and anyone reading
the source can easily see which symbols will be
exported and which are kept private.
Having to read the source code for a package
to understand how it works is not ideal, and
shouldn’t be encouraged. The go doc utility
reads all of the source files for a package,
extracts all comments that appear above public
declarations, and presents them to the user.
Persuading developers to write documentation
is one of the hardest tasks in programming, so
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godoc is intended to be trivial to use. There is
no special syntax for using it: it extracts any
comment that appears above a declaration.
Hopefully, by the time you’ve read this far,
you’ve looked at the package documentation on
the Go web site. If so, then you’ve already seen
the output from godoc. In fact, you’ve used the
tool directly. When run with the -http flag, it
not only generates HTML, it also runs as a web
server publishing the documentation.
You can specify the -src flag to generate internal
documentation. This is less useful because
people using the internal interfaces are probably
looking at the source files, but the output from
godoc can be easier to navigate.

Staying Up to Date

0 $ go tool fix -diff trimStrings.go
1 diff trimStrings.go fixed/trimStrings.go
2 @@ -6,7 +6,7 @@
3 func main() {
4 str := "\tThis is a string \n"
5 str = strings.Trim(str, " \t\n\r")
6 - words := strings.Split(str, " ", -1)
7 + words := strings.Split(str, " ")
8 for _, word := range words {
9 fmt.Printf("%s\n", word)

10 }
11 $ go tool fix trimStrings.go
12 trimStrings.go: fixed stringssplit
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The Go language and libraries are constantly
evolving. It would be quite frustrating to have to
keep rewriting a large Go application to prevent
it from breaking with newer versions of the
language. Fortunately, this is not required: the
fix tool will do it for you.
Since I started writing this book, the
strings.Split() function that I used in
the trimStrings.go example in Chapter 6,
Manipulating Strings, went from taking three
arguments to taking two, so I needed to modify
it. The example at the start of this section shows
how I did it.
I never entirely trust automatic code rewriting
tools, so I chose to run fix with the -diff option
first. This shows the changes that it will make so
that you can check them for sanity. This change
looked sensible, so I ran the tool again and it
modified the example.
If you run go tool fix -help then it will list all of
the modifications that it can make. You may
find that you don’t want to make all of these
changes and you can use the -r option to restrict
it to a list of only some of them.



ptg7913130

17

Debugging Go

In an ideal world, you would write Go code,
compile it, and then it would work perfectly the
first time. In fact, you’ll probably find that this
is quite common. Go is designed so that there is
little ambiguity in the source code, eliminating a
lot of common bugs.
Go is still a relatively young language, so it
doesn’t have quite the same level of debugging
support of more mature languages. People
have been writing buggy C and C++ code for
decades, so there are lots of tools available to
help them.

Using a Debugger
Go versions prior to 1.0 included a debugger
called ogle. This is named after a company
named something like Go ogle that has funded
a lot of the development of Go. This was not
ready in time for the 1.0 release, so it was
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removed. Current versions of Go produce
DWARF debugging metadata, the same format
used by compilers for other languages. There are
some Go packages for parsing this, so ogle may
be resurrected in the future. Until then you can
debug Go code with a recent version of the GNU
Debugger (GDB).
Unfortunately, Go is only supported by version
7.1 and later of gdb. This version is released
under version 3 of the GNU General Public
License and so is not shipped by default on Mac
OS X or FreeBSD, only on GNU/Linux. If you
are using another platform then you will have to
download and compile it yourself.

Note: On OS X, debuggers (and any other
programs that inspect another process’s memory
state) must be explicitly authorized. You can find
instructions for configuring gdb here: http://
sourceware.org/gdb/wiki/BuildingOnDarwin

To start gdb, just pass it the name of your
compiled Go code. We’ll take a look at a slightly
modified version of the overflow.go example from
Chapter 5, Arrays and Slices, which showed a
runtime panic caused by attempting to access
a value out of the permitted range in an array.
The modified version, sliceOverflow.go, does
the same thing but with a slice into the array,
rather than the array itself, so that we can look
at slices in the debugger.

http://sourceware.org/gdb/wiki/BuildingOnDarwin
http://sourceware.org/gdb/wiki/BuildingOnDarwin
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When we run this, in or out of the debugger, we
get a run-time panic. We can put a breakpoint
on runtime.panic to catch all of these, but
this specific one is an index-related panic,
so we start by putting the breakpoint on
runtime.panicindex. Don’t worry about
remembering this: it shows up on the stack trace
generated on the crash.

1 $ gdb 6.out
2 (gdb) source ~/go/src/pkg/runtime/runtime-gdb.py
3 Loading Go Runtime support.
4 (gdb) break runtime.panicindex
5 Breakpoint 1 at 0xfe09: file go/src/pkg/runtime/

runtime.c, line 80.
6 (gdb) run
7 Breakpoint 1, runtime.panicindex ()
8 at go/src/pkg/runtime/runtime.c:80
9 80 runtime·panicindex(void)

10 (gdb) up
11 #1 0x000000000000209a in main.main ()
12 at overflow.go:6
13 7 fmt.Printf("Element: %d %d\n", i, a[i])
14 (gdb) info locals
15 i = 1
16 slc = []int = {0}
17 (gdb) p $len(slc)
18 $1 = 1

Output from: gdb

The debugger does not have native support for
interpreting Go types; this is provided by some
extensions written in Python and automatically
interprets Go types for us. These appear in the
debug metadata as typedefs of a format that the
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script can spot and interpret.
When we run the code in the debugger it stops
where we put the breakpoint: on the function in
the Go runtime that generates the panic. This
isn’t a very interesting thing to look at, so we go
up to the stack frame that actually caused the
panic and look at the local variables, with the
info locals command.
There are three locals in this function: an index,
an array, and a slice. Only two appear in the
debugger, because the optimizer has already
removed the array. From here, it’s obvious what
the problem is: the index we are using is 1, but
the slice only has one element (at index 0), so
this is out of range.
To make absolutely certain, we can check the
length and capacity of the slice with the $len
and $cap functions provided by the Python
script.
The GNU debugger is very powerful. You can,
for example, configure breakpoints to only
trigger when a specific condition is met, or break
when a specific region in memory is touched.
A full description of all of these features is far
beyond the scope of this book. Check the gdb
manual for more details.
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Misunderstanding Memory
Ordering

1 package main
2 import "fmt"
3

4 func main() {
5 var s string
6 var flag bool
7 go func() {
8 fmt.Scanf("%s", &s)
9 flag = true

10 }()
11 for !flag {}
12 fmt.Printf("%s\n", s)
13 }

From: orderingBug.go

The Go memory model makes it quite easy to
write concurrent code that doesn’t do quite what
you expect. Consider the example at the start
of this section. If you look quickly at this code,
you might expect it to spawn a new goroutine
that waits for user input and spin until this
input is received. When the input is received,
the spawned goroutine will set the flag and the
main goroutine will continue.
In fact, I have no idea what will happen if you
try to run this code. When I run it, it asks for
input and then infinite loops. According to the
Go specification, printing an empty string and
then exiting without ever waiting would also be
valid behavior.
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This is because Go places very weak constraints
on the observability of changes to memory
between goroutines. The compiler is completely
free to reorder the setting of flag to before the
setting of s within the spawned goroutine. It is
also free to completely eliminate the setting of
flag, because it is a dead store within the scope
of this goroutine.
This weak ordering requirement is quite
irritating when you first start using Go, but it
has two significant advantages. The first is that
the Go compiler is free to be very aggressive
about optimizing code, without having to do
complex concurrency modeling. The more
important benefit is that it strongly discourages
you from writing code like this, which depends
on subtle interactions between shared resources.
The fixedOrdering.go example shows an idiomatic
Go version of the same program. This is shorter,
doesn’t do busy waiting (so doesn’t waste CPU
and battery power), and is much easier to reason
about and debug.

5 s := make(chan *string)
6 go func() {
7 var buffer string
8 fmt.Scanf("%s", &buffer)
9 s <- &buffer

10 }()
11 fmt.Printf("%s\n", *(<-s))

From: fixedOrdering.go
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The easiest way of avoiding this kind of bug
is simply to avoid sharing memory between
goroutines. In Go, this is easy because you can
always use channels to communicate. You can,
of course, pass pointers between goroutines via
channels. The fixed example does this, which
avoids the need to copy the data down the
channel, so the overhead is relatively small.

Spotting Concurrency Bugs

11 c.count += in.Increment
12 out.Value = c.count
13 return nil

From: server.go

The example above is a snippet from an earlier
example, and shows the most common silent
error in Go code. As a stand-alone function, this
is fine. Unfortunately, it is not thread-safe and it
is called from multiple goroutines.
The offending line is the increment statement.
This will compile to a load, add, store sequence.
If the goroutine is interrupted in the middle,
then two versions of this function could load the
same value, perform the addition, and then store
the result, losing one of the adds.
This is an example of a race condition and
is caused by violating the mutable-xor-
shared principle, as discussed in Chapter 10,
Concurrency Design Patterns. There are several
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ways of fixing this. We looked at one in the
section Integrating with a Web Server in Chapter
14, Web Applications, where the shared integer
was replaced with a channel that produced a
sequence of integers. Another solution is to
replace the += with a call to atomic.AddInt32()
or atomic.AddInt64().
The latter solution is faster, but it requires you
to make sure that you use atomic operations
every time you modify the shared value. The
former solution is simpler, because the value is
then no longer shared and so it is very hard to
create a race condition around it.
There are still some concurrent problems that
can occur with channels. The most common
is caused by the lack of guaranteed delivery.
Channels are buffered, so just because a send
operation has succeeded does not mean that
the value has been delivered anywhere. We saw
an example of that in the section Distributing
Go in Chapter 13, Network Access. That
example involved a channel being forwarded
over a network, but the same principle applies
elsewhere. If the receiving end of a channel loses
its reference then any objects still in the channel
buffer will be garbage collected.
If you need to make sure that values that you
send are really received, then you need an extra
layer of buffering. When you send a message,
you store a copy of it until you receive an
acknowledgment. If the acknowledgment is not
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received, then you need some error handling
code.
The synchronous nature of Go channels also
means that they are potentially prone to
deadlock. If two goroutines are waiting for each
other to send data down a channel then you
have deadlock. This is the simplest case, but
it’s possible to have quite complex dependency
graphs.
There are several ways to try to avoid this
problem. The simplest is to arrange your
communication into request-response hierarchies,
so no goroutine can depend on data from a node
closer to the root of the tree. This can be quite
difficult to arrange, but hopefully most of your
goroutines will be leaf nodes, which don’t depend
on any others to be able to send a response.
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Restricting Behavior

1 package example
2

3 type Public interface {
4 Name() string
5 }
6

7 type Example struct {
8 name string
9 }

10 func (e Example) Nme() string {
11 return e.name
12 }
13

14 func NewExample() Example {
15 return Example{"No Name"}
16 }

From: conformanceError.go

When you start debugging, you have a large set
of things that can possibly go wrong. Anything
that you can do to reduce the number of possible
things that can go wrong is helpful. This is
the main reason why Go encourages you to
use channels rather than shared memory for
communication: it dramatically reduces the
number of possible interactions, and therefore
the number of places for bugs to hide.
When you start debugging, it’s always helpful
to make sure that the code is doing what you
think it is doing. Go doesn’t provide a built-in
mechanism for assert statements, for two good
reasons: they are often used as a crutch to avoid
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proper error handling, and their presence in test
code can cause tests to be skipped.
Part of the aim of omitting assertions was to
encourage Go developers to write proper error-
handling code. In Go, it’s usually quite obvious
when you’re skipping error handling, because
you have function calls that return multiple
values, some of which are ignored. The first
thing to do is check that you are properly
handling errors, even ones that you think are
unlikely to occur.
Type-related errors in Go are relatively
uncommon, but are still possible. The example
at the start of this section shows a (contrived)
simple interface and an implementation of this
interface, with a bug. The bug is a typo in the
Name() method: something very easy to do.
When you compile this, it reports no errors, but
something later trying to assign the concrete
implementation to the interface will break. If
the assignment happens via the empty interface,
for example by inserting the structure into a
collection and then retrieving it, then it may not
be caught until some time later.
The fixedConformanceError.go example shows two
possible ways of making the compiler detect this
for you.
The first is to simply make the function return
an interface type. This is only really viable if
callers will only want to access the type via
methods exported through the interface. If this
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14 func NewExample() Public {
15 return Example{"No Name"}
16 }
17 func NewExample2() Public {
18 e := Example{"No Name"}
19 e.(Public)
20 return e
21 }

From: fixedConformanceError.go

is acceptable, then you should also consider
making the concrete type private and only
exporting it via the interface.

1 $ 6g fixedConformanceError.go
2 fixedConformanceError.go:15: Example.Name is a

field, not a method
3 fixedConformanceError.go:15: cannot use struct

literal (type Example) as type Public in
return argument:

4 Example does not implement Public (missing Name
method)

5 fixedConformanceError.go:19: invalid type
assertion: e.(Public) (non-interface type
Example on left)

6 fixedConformanceError.go:20: Example.Name is a
field, not a method

7 fixedConformanceError.go:20: cannot use e (type
Example) as type Public in return argument:

8 Example does not implement Public (missing Name
method)

Output from: fixedConformanceError.go

The other option is to add a type assertion. This
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tells the compiler that you think that the type
that you have conforms to the specified interface.
The compiler checks this, and tells you that your
assumption is wrong. If the compiler can’t check
the type requirement accurately, then it will
insert a run-time check.
It’s also a good idea to use slices to enforce
range checking. The overflowError.go example
shows a simple error, where you accidentally
overwrite a range in an array with a subsequent
call.

4 func setRange(i, j int, slice []int) {
5 for n:=0 ; i<j ; i++ {
6 slice[n] = i
7 n++
8 }
9 }

10

11 func main() {
12 var arr [100]int
13 setRange(20, 50, arr[20:])
14 setRange(50, 80, arr[:])
15 fmt.Printf("Array: %v\n", arr)
16 }

From: overflowError.go

This example is trivial, but it’s fairly common
to see concurrent goroutines accessing parts
of an array like this. The fix is quite simple.
If you specify exact ranges in the slice, as in
fixedOverflowError.go, then the code will panic
if it tries to access part of the array beyond the
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range specified with the slice.

11 func main() {
12 var arr [100]int
13 setRange(20, 50, arr[20:50])
14 setRange(50, 80, arr[0:19])
15 fmt.Printf("Array: %v\n", arr)
16 }

From: fixedOverflowError.go

It’s worth using this facility whenever you are
tempted to pass a slice to a function. Restrict
the range to the part that you expect to be
modified, and you’ll get a hard error, which is
easy to pinpoint and debug, if it goes over. If
the broken example had used two concurrent
goroutines, rather than two synchronous calls,
then it would have generated the expected
result some times, but not others, depending
on the order in which the two goroutines were
scheduled. This kind of bug is very hard to find
and fix.
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Building Unit Tests

1 package eg
2 import "testing"
3

4 func TestExample(t *testing.T) {
5 e := NewExample()
6 // Don’t do this!
7 _ = e.(*concreteType)
8 if e.Name() != "Concrete type" {
9 t.Fail()

10 }
11 t.Errorf("This test is buggy")
12 }

From: eg/eg_test.go

Go includes a simple but powerful unit test
framework. The eg_test.go file shows a simple
set of unit tests for the package in the last
chapter.
These are run by simply invoking the go test
command with eg as the argument. This will
build the package along with any files with
names ending in _test.go, and then run any
functions that start with Test and have the
signature shown above.
The argument to testing functions is a pointer
to a structure used for reporting failures. This
test will unconditionally fail, so you can see what
happens when a test fails.
The error message just before the failure tells
you what went wrong; in this case it was our
buggy test that always failed unconditionally.
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1 $ go test eg
2 --- FAIL: TestExample (0.00 seconds)
3 eg_test.go:11: This test is buggy
4 FAIL
5 FAIL eg 0.012s

Output from: gotest

If the previous test had failed, then we would
have no useful error. This is bad style, because it
makes finding the cause of the problem difficult.
This test contains another example of very bad
testing style. If the type assertion had failed,
then this test would have panicked. There is no
recover() call, so this would abort without later
tests being run. This is a problem if you want to
be able to get helpful error reports from users.
Well written unit tests can be very helpful
in preventing regressions, but they are not a
panacea. Make certain that you are testing the
correct thing. One project that I’ve worked
on requires unit tests, and they generally test
the exact behavior, rather than the high-level
semantics, so a large change involves modifying
a load of tests, completely defeating the point of
the tests.
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220
regexp, 104
runtime, 176
strconv, 53
strings, 99
sync, 134, 142,
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package, 216
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package, 97
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