
Learning Go

Author:
Miek Gieben

Thanks to:
Go Authors, Google

With the help and contributions from:

(in alphabetical order)

Adam J. Gray, Alex Sychev, Alexey Chernenkov, Andrea Spadaccini, Andrey Mirtchovski,
Anthony Magro, Babu Sreekanth, Ben Bullock, Bob Cunningham, Brian Fallik, Cecil New,
Damian Gryski, Dan Kortschak, David Otton, Fabian Becker, Filip Zaludek, Hadi Amiri,

Haiping Fan, Jaap Akkerhuis, JC van Winkel, Jeroen Bulten, Jinpu Hu, John Shahid, Jonathan
Kans, Joshua Stein, Makoto Inoue, Mayuresh Kathe, “mem”, Michael Stapelberg, Olexandr

Shalakhin, Paulo Pinto, Peter Kleiweg, Philipp Schmidt, Robert Johnson, Russel Winder, Sonia
Keys, Stefan Schroeder, Thomas Kapplet, T.J. Yang, “Cobold”, “Simoc”, “Uriel”†, Xing Xing.

And with minor contributions from:

Alexander Katasonov, Daniele Pala, Iaroslav Tymchenko, Nicolas Kaiser.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Miek Gieben – ©2010 - 2012

This work is licensed under the Attribution-NonCommercial-ShareAlike 3.0 Unported Li-
cense. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

All example code used in this book is hereby put in the public domain.

“Learning Go” has been translated into:

• Chinese, by Xing Xing,这里是中文译本: http://www.mikespook.com/learning-go/

Learning as we Go (1.0)
Supports the Go 1.1 release

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.mikespook.com/learning-go/

Contents

1 Introduction 2
Official documentation . 2
Hello World . 3
Compiling and running code . 4
Settings used in this book . 4
Variables, types and keywords . 4
Operators and built-in functions . 8
Go keywords . 8
Control structures . 9
Built-in functions . 13
Arrays, slices and maps . 14
Exercises . 17
Answers . 21

2 Functions 26
Scope . 27
Multiple return values . 28
Named result parameters . 28
Deferred code . 29
Variadic parameters . 30
Functions as values . 30
Callbacks . 31
Panic and recovering . 31
Exercises . 32
Answers . 35

3 Packages 42
Identifiers . 43
Documenting packages . 44
Testing packages . 44
Useful packages . 46
Exercises . 47
Answers . 49

4 Beyond the basics 52
Allocation . 52
Defining your own types . 54
Conversions . 56
Exercises . 58
Answers . 61

5 Interfaces 66
Methods . 68
Interface names . 69
A sorting example . 69
Exercises . 73
Answers . 75

6 Concurrency 78
More on channels . 80
Exercises . 80
Answers . 83

7 Communication 86
io.Reader . 87

ii Chapter: Contents

Some examples . 87
Command line arguments . 87
Executing commands . 88
Networking . 88
Exercises . 89
Answers . 93

A Colophon 100
Contributors . 100
License and copyright . 100

B Index 102

C Bibliography 104

List of Exercises
1 (1) Documentation . 17
2 (0) For-loop . 18
3 (0) FizzBuzz . 18
4 (1) Strings . 18
5 (1) Average . 19
6 (0) Average . 32
7 (0) Integer ordering . 32
8 (1) Scope . 32
9 (1) Stack . 32
10 (1) Var args . 33
11 (1) Fibonacci . 33
12 (1) Map function . 33
13 (0) Minimum and maximum . 33
14 (1) Bubble sort . 33
15 (1) Functions that return functions . 34
16 (0) Stack as package . 47
17 (2) Calculator . 48
18 (1) Pointer arithmetic . 58
19 (2) Map function with interfaces . 58
20 (1) Pointers . 58
21 (1) Linked List . 58
22 (1) Cat . 58
23 (2) Method calls . 59
24 (1) Interfaces and compilation . 73
25 (1) Pointers and reflection . 73
26 (2) Interfaces and max() . 73
27 (1) Channels . 80
28 (2) Fibonacci II . 81
29 (2) Processes . 89
30 (0) Word and letter count . 90
31 (0) Uniq . 90
32 (2) Quine . 90
33 (1) Echo server . 91
34 (2) Number cruncher . 91
35 (1) Finger daemon . 91

Preface
“Is Go an object-oriented language? Yes
and no.”

Frequently asked questions
GO AUTHORS

Audience
This is an introduction to the Go language from Google. Its aim is to provide a guide to
this new and innovative language.

This book assumes you already have Go installed on your system.

The intended audience of this book is people who are familiar with programming and
know some programming languages, be it C[3], C++[21], Perl[5], Java[15], Erlang[4], Scala[16]
or Haskell[1]. This is not a book that teaches you how to program, this is a book that just
teaches you how to use Go.

As with learning new things, probably the best way to do this is to discover it for yourself
by creating your own programs. Each chapter therefore includes a number of exercises
(and answers) to acquaint you with the language. An exercise is numbered as Qn, where
n is a number. After the exercise number another number in parentheses displays the
difficulty of this particular assignment. This difficulty ranges from 0 to 2:

0. easy;

1. intermediate;

2. difficult.

Then a short name is given, for easier reference. For example:

Q1. (1) A map function …

introduces a question numbered Q1 of a level 1 difficulty, concerning a map()-function.
The answers are included after the exercises on a new page. The numbering and setup
of the answers is identical to the exercises, except that an answer starts with An, where
the number n corresponds with the number of the exercise. Some exercises don’t have
an answer; these are marked with an asterisk.

Book layout

Chapter 1: Introduction
Describes the basic types, variables and control structures available in the lan-
guage.

Chapter 2: Functions
In the third chapter we look at functions, the basic building blocks of Go programs.

Chapter 3: Packages
In chapter 3 we see that functions and data can be grouped together in packages.
You will also see how to document and test your packages.

Chapter 4: Beyond the basics
After that we look at creating your own types in chapter 4. It also looks at allocation
in Go.

Chapter 5: Interfaces
Go does not support object orientation in the traditional sense. In Go the central
concept is interfaces.

Preface 1

Chapter 6: Concurrency
With the go keyword functions can be started in separate routines (called gorou-
tines). Communication with those goroutines is done via channels.

Chapter 7: Communication
In the last chapter we show how to interface with the rest of the world from within
a Go program. How to create files and read and write from and to them. We also
briefly look into networking.

I hope you will enjoy this book and the language Go.

Translations
The content of this book is freely available. This has already led to translations:

• Chinese translation by Xing Xing, 这里是中文译本: http://www.mikespook.
com/learning-go/ .

Miek Gieben, 2011, 2012 – miek@miek.nl

http://www.mikespook.com/learning-go/
http://www.mikespook.com/learning-go/
miek@miek.nl

1 Introduction

“I am interested in this and hope to do
something.”

On adding complex numbers to Go
KEN THOMPSON

What is Go? From the website [13]:

The Go programming language is an open source project to make programmers
more productive. Go is expressive, concise, clean, and efficient. Its concurrency
mechanisms make it easy to write programs that get the most out of multi core
and networked machines, while its novel type system enables flexible and mod-
ular program construction. Go compiles quickly to machine code yet has the con-
venience of garbage collection and the power of run-time reflection. It’s a fast,
statically typed, compiled language that feels like a dynamically typed, interpreted
language.

Go 1 is the first stable release of the language Go. This document and all exercises work
with Go 1 – if not, it’s a bug.
The following convention is used throughout this book:

• Code, keywords and comments are displayed in Source Code Pro;

• Extra remarks in the code ← Are displayed like this;

• Longer remarks get a number – ..1 – with the explanation following;

• Line numbers (if needed) are printed on the right side;

• Shell examples use a % as prompt;

• User entered text in shell examples is in bold, system responses are in a plain
bold font;

• An emphasized paragraph is indented and has a vertical bar on the left.

Official documentation
There is already a substantial amount of documentation written about Go. The Go TutorialWhen searching on

the internet use the
term “golang” in-
stead of plain “go”.

[12], and the Effective Go document [8]. The website http://golang.org/doc/ is a
very good starting point for reading up on Goa. Reading these documents is certainly not
required, but it is recommended.
Go 1 comes with its own documentation in the form of a program called go doc. If you are
interested in the documentation for the built-ins (see “Operators and built-in functions”
in the next chapter) you can fire it up, like so:

% go doc builtin

How to create your own package documentation is explained in chapter 3.
There are a few things that make Go different from other languages.

Clean and Simple
Go strives to keep things small and beautiful. You should be able to do a lot in only
a few lines of code;

ahttp://golang.org/doc/ itself is served by go doc.

http://golang.org/doc/
http://golang.org/doc/

Hello World 3

Concurrent
Go makes it easy to “fire off” functions to be run as very lightweight threads. These
threads are called goroutines b in Go;

Channels
Communication with these goroutines is done via channels [25, 18];

Fast
Compilation is fast and execution is fast. The aim is to be as fast as C. Compilation
time is measured in seconds;

Safe
Explicit casting and strict rules when converting one type to another. Go has
garbage collection, no more free() in Go, the language takes care of this;

Standard format
A Go program can be formatted in (almost) any way the programmers want, but an
official format exists. The rule is very simple: The output of the filter gofmt is the
officially endorsed format.

Postfix types
Types are given after the variable name, thus var a int, instead of int a; as one
would in C;

UTF-8
UTF-8 is everywhere, in strings and in the program code. Finally you can use Φ =
Φ + 1 in your source code;

Open Source
The Go license is completely open source, see the file LICENSE in the Go source code
distribution;

Fun
Programming with Go should be fun!

Erlang [4] also shares some of the features of Go. Notable differences between Erlang
and Go is that Erlang borders on being a functional language, where Go is an imperative
one. And Erlang runs in a virtual machine, while Go is compiled. Go also has a much
more Unix-like feel to it.

Go is the first C–like language that is widely available, runs onmany different platforms
and makes concurrency easy (or easier).

Hello World
In the Go tutorial, Go is presented to the world in the typical manner: letting it print
“Hello World” (Ken Thompson and Dennis Ritchie started this when they presented the
C language in the 1970s). We don’t think we can do better, so here it is, “Hello World” in
Go.

Listing 1.1. Hello world

package main ..0

import "fmt" ..1 // Implements formatted I/O.

/* Print something */ ..2
func main() { ..3
..4
fmt.Printf("Hello, world ; or καληµϵ́ρα κóσµϵ ; or こんにちは世界")
}

bYes, that sounds a lot like coroutines, but goroutines are slightly different as we will see in chapter 6.

4 Chapter 1: Introduction

Lets look at the program line by line.

..0 This first line is just required. All Go files start with package <something>, package
main is required for a standalone executable;

..1 This says we need fmt in addition to main. A package other than main is commonly
called a library, a familiar concept in many programming languages (see chapter 3).
The line ends with a comment which is started with //;

..2 This is also a comment, but this one is enclosed in /* and */;

..3 Just as package main was required to be first, import may come next. In Go,
package is always first, then import, then everything else. When your Go program is
executed, the first function called will be main.main(), which mimics the behavior
from C. Here we declare that function;

..4 On line 8 we call a function from the package fmt to print a string to the screen.
The string is enclosed with " and may contain non-ASCII characters. Here we use
Greek and Japanese.

Compiling and running code
The preferred way to build a Go program is to use the go tool. To build helloworld we
just enter:

% go build helloworld.go

This results in an executable called helloworld.

% ./helloworld

Hello, world; or καληµϵ́ρα κóσµϵ; or こんにちは世界

Settings used in this book
• Go itself is installed in ˜/go, and $GOROOT is set to GOROOT=˜/go ;

• Go source code we want to compile ourself is placed in ˜/g/src and $GOPATH is
set to GOPATH=˜/g . This variable comes into play when we start using packages
(chapter 3).

Variables, types and keywords
In the next few sections we will look at the variables, basic types, keywords and control
structures of our new language. Go has a C-like feel when it comes to its syntax. If
you want to put two (or more) statements on one line, they must be separated with a
semicolon (’;’). Normally you don’t need the semicolon.

Go is different from other languages in that the type of a variable is specified after the
variable name. So not: int a, but a int. When declaring a variable it is assigned the
“natural” null value for the type. This means that after var a int, a has a value of 0. With
var s string, s is assigned the zero string, which is "".

Declaring and assigning in Go is a two step process, but they may be combined. Compare
the following pieces of code which have the same effect.

Variables, types and keywords 5

Listing 1.2. Declaration with =
var a in t
var b bool
a = 15
b = false

Listing 1.3. Declaration with :=
a := 15
b := false

On the left we use the var keyword to declare a variable and then assign a value to it.
The code on the right uses := to do this in one step (this form may only be used inside
functions). In that case the variable type is deduced from the value. A value of 15 indicates
an int, a value of false tells Go that the type should be bool. Multiple var declarations
may also be grouped; const and import also allow this. Note the use of parentheses:

var (
x in t
b bool

)

Multiple variables of the same type can also be declared on a single line: var x, y int
makes x and y both int variables. You can also make use of parallel assignment:

a, b := 20, 16

Which makes a and b both integer variables and assigns 20 to a and 16 to b.
A special name for a variable is _ (underscore). Any value assigned to it is discarded. In
this example we only assign the integer value of 35 to b and discard the value 34.

_, b := 34, 35

Declared but otherwise unused variables are a compiler error in Go. The following code
generates this error: i declared and not used

package main
func main() {

var i in t
}

Boolean types

A boolean type represents the set of boolean truth values denoted by the predeclared
constants true and false. The boolean type is bool.

Numerical types

Go has the well known types such as int. This type has the appropriate length for your
machine, meaning that on a 32-bit machine it is 32 bits and on a 64-bit machine it is 64
bits. Note: an int is either 32 or 64 bits, no other values are defined. Same goes for uint.
If you want to be explicit about the length you can have that too with int32, or uint32.
The full list for (signed and unsigned) integers is int8, int16, int32, int64 and byte,
uint8, uint16, uint32, uint64. With byte being an alias for uint8. For floating point
values there is float32 and float64 (there is no float type). A 64 bit integer or floating
point value is always 64 bit, also on 32 bit architectures.
Note however that these types are all distinct and assigning variables which mix these
types is a compiler error, like in the following code:

Listing 1.4. Familiar types are still distinct
1package main

3func main() {
4var a in t ← Generic integer type

6 Chapter 1: Introduction

5var b int32 ← 32 bits integer type
6a = 15
7b = a + a ← Illegal mixing of these types
8b = b + 5 ← 5 is a constant, so this is OK
9}

Gives the error on the assignment on line 7:

types.go:7: cannot use a + a (type int) as type int32 in assignment
The assigned values may be denoted using octal, hexadecimal or the scientific notation:
077, 0xFF, 1e3 or 6.022e23 are all valid.

Constants

Constants in Go are just that — constant. They are created at compile time, and can only
be numbers, strings or booleans; const x = 42 makes x a constant. You can use iota c

to enumerate values.

const (
a = iota
b = iota

)

The first use of iota will yield 0, so a is equal to 0, whenever iota is used again on a
new line its value is incremented with 1, so b has a value of 1.

You can even do the following, let Go repeat the use of = iota:

const (
a = iota
b ← Implicitly b = iota

)

You may also explicitly type a constant, if you need that:

const (
a = 0 ← Is an int now
b st r ing = "0"

)

Strings

Another important built-in type is string. Assigning a string is as simple as:

s := "Hello World !"

Strings in Go are a sequence of UTF-8 characters enclosed in double quotes (”). If you use
the single quote (’) you mean one character (encoded in UTF-8) — which is not a string in
Go.

Once assigned to a variable the string can not be changed: strings in Go are immutable.
For people coming from C, the following is not legal in Go:

var s st r ing = "hello"
s[0] = 'c' ← Change first char. to ’c’, this is an error

To do this in Go you will need the following:

s := "hello"
c := []rune(s) ..0
c[0] = 'c' ..1

cThe word [iota] is used in a common English phrase, ’not one iota’, meaning ’not the slightest difference’,
in reference to a phrase in the New Testament: “until heaven and earth pass away, not an iota, not a dot, will pass
from the Law.” [27]

Variables, types and keywords 7

s2 := st r ing(c) ..2
fmt.Printf("%s\n", s2) ..3

..0 Convert s to an array of runes, see chapter 4 section “Conversions” on page 56;

..1 Change the first element of this array;

..2 Create a new string s2 with the alteration;

..3 print the string with fmt.Printf.

Multi-line strings

Due to the insertion of semicolons (see [8] section “Semicolons”), you need to
be careful with using multi line strings. If you write:

s := "Starting part"
+ "Ending part"

This is transformed into:

s := "Starting part" ;
+ "Ending part" ;

Which is not valid syntax, you need to write:

s := "Starting part" +
"Ending part"

Then Go will not insert the semicolons in the wrong places. Another way would be to
use raw string literals by using backquotes (`):

s := `Starting part
Ending part`

Be aware that in this last example s now also contains the newline. Unlike interpreted
string literals the value of a raw string literal is composed of the uninterpreted charac-
ters between the quotes.

Runes

Rune is an alias for int32. It is an UTF-8 encoded code point. When is this type useful? For
instance, when iterating over characters in a string. You can loop over each byte (which
is only equivalent to a character when strings are encoded in 8-bit ASCII, which they are
not in Go!). So to get the actual characters you should use the rune type.

Complex numbers

Go has native support for complex numbers. To use them you need a variable of type
complex128 (64 bit real and imaginary parts) or complex64 (32 bit real and imaginary
parts). Complex numbers are written as re + imi, where re is the real part, im is the
imaginary part and i is the literal ’i’ (

√
−1). An example of using complex numbers: The Printf() verb

%v, means “print
the value in its
default format”.

var c complex64 = 5+5i;fmt.Printf("Value is: %v", c)
will print: (5+5i)

Errors

Any non-trivial program will have the need for error reporting sooner or later. Because
of this Go has a builtin type specially for errors, called error.

var e error creates a variable e of type error with the value nil. This error type is an
interface – in chapter “Interfaces” we will explain what this means.

8 Chapter 1: Introduction

Operators and built-in functions
Go supports the normal set of numerical operators. Table 1.1 lists the current ones and
their relative precedence. They all associate from left to right.

Table 1.1. Operator precedence

Precedence Operator(s)

Highest * / % << >> & &^
+ - | ^
== != < <= > >=
<-
&&

Lowest ||

+ - * / and % all do what you would expect, & | ^ and &^ are bit operators for bitwise
and, bitwise or, bitwise xor and bit clear respectively. The && and || operators are logical
and and logical or. Not listed in the table is the logical not: !

Although Go does not support operator overloading (or method overloading for that mat-
ter), some of the built-in operators are overloaded. For instance, + can be used for integers,
floats, complex numbers and strings (adding strings is concatenating them).

Go keywords

Table 1.2. Keywords in Go

break default func interface select
case defer go map struct
chan else goto package switch
const fallthrough if range type
continue for import return var

Table 1.2 lists all the keywords in Go. We will cover them in the following paragraphs
and chapters. Some of them we have seen already.

• For var and const see “Variables, types and keywords” on page 4;

• package and import are briefly touched on in section “Hello World”. In chapter 3
they are documented in more detail.

Others deserve more text and have their own chapter/section:

• func is used to declare functions and methods;

• return is used to return from functions, for both func and return see chapter 2
for the details;

• go is used for concurrency, see chapter 6;

• select used to choose from different types of communication, see chapter 6;

• interface see chapter 5;

• struct is used for abstract data types, see chapter 4;

• type also see chapter 4.

Control structures 9

Control structures
There are only a few control structures in Go d. For instance there is no do or while
loop, only a for. There is a (flexible) switch statement and if and switch accept an
optional initialization statement like that of for. There also is something called a type
switch and a multiway communications multiplexer, select (see chapter 6). The syntax
is different (from that in C): parentheses are not required and the body must always be
brace-delimited.

If-else

In Go an if looks like this:

i f x > 0 { ← { is mandatory
return y

} else {
return x

}

Mandatory braces encourage writing simple if statements on multiple lines. It is good
style to do so anyway, especially when the body contains a control statement such as a
return or break.

Since if and switch accept an initialization statement, it’s common to see one used to
set up a (local) variable.

i f err := Chmod(0664) ; err != nil { ← nil is like C’s NULL
fmt.Printf(err) ← Scope of err is limited to if’s body
return err

}

You can use the logical operators (see table 1.1) as you would normally:

i f true && true {
fmt.Println("true")

}
i f ! false {

fmt.Println("true")
}

In the Go libraries, you will find that when an if statement doesn’t flow into the next
statement – that is, the body ends in break, continue, goto, or return – the unneces-
sary else is omitted.

f, err := os.Open(name, os.O_RDONLY, 0)
i f err != nil {

return err
}
doSomething(f)

This is an example of a common situation where code must analyze a sequence of error
possibilities. The code reads well if the successful flow of control runs down the page,
eliminating error cases as they arise. Since error cases tend to end in return statements,
the resulting code needs no else statements.

f, err := os.Open(name, os.O_RDONLY, 0)
i f err != nil {

return err
}
d, err := f.Stat()
i f err != nil {

dThis section is copied from [8].

10 Chapter 1: Introduction

return err
}
doSomething(f, d)

Syntax-wise the following is illegal in Go:

i f err != nil
{ ← Must be on the same line as the if

return err
}

See [8] section “Semicolons” for the deeper reasons behind this.

Goto

Go has a goto statement — use it wisely. With goto you jump to a label which must be
defined within the current function. For instance, a loop in disguise:

func myfunc() {
i := 0

Here: ← First word on a line ending with a colon is a label
println(i)
i++
goto Here ← Jump

}

The name of the label is case sensitive.

For

The Go for loop has three forms, only one of which has semicolons.

for init ; condition ; post { } ← Like a C for

for condition { } ← Like a while

for { } ← Endless loop

Short declarations make it easy to declare the index variable right in the loop.

sum := 0
for i := 0 ; i < 10 ; i++ {

sum += i ← Short for sum = sum + i
} ← i ceases to exist after the loop

Finally, since Go has no comma operator and ++ and - - are statements not expressions,
if you want to run multiple variables in a for you should use parallel assignment.

// Reverse a
for i, j := 0, len(a)-1 ; i < j ; i, j = i+1, j-1 {

a[i], a[j] = a[j], a[i] ← Parallel assignment
}

Break and continue

With break you can quit loops early. By itself, break breaks the current loop.

for i := 0 ; i < 10 ; i++ {
i f i > 5 {

break ← Stop this loop, making it only print 0 to 5
}
println(i)

}

Control structures 11

With loops within loops you can specify a label after break. Making the label identify
which loop to stop:

J: for j := 0 ; j < 5 ; j++ {
for i := 0 ; i < 10 ; i++ {

i f i > 5 {
break J ← Now it breaks the j-loop, not the i one

}
println(i)

}
}

With continue you begin the next iteration of the loop, skipping any remaining code. In
the same way as break, continue also accepts a label. The following loop prints 0 to 5.

for i := 0 ; i < 10 ; i++ {
i f i > 5 {

continue ← Skip the rest of the remaining code in the loop
}
println(i)

}

Range

The keyword range can be used for loops. It can loop over slices, arrays, strings, maps
and channels (see chapter 6). range is an iterator that, when called, returns the next
key-value pair from the thing it loops over. Depending on what that is, range returns
different things.

When looping over a slice or array range returns the index in the slice as the key and
value belonging to that index. Consider this code:

list := []st r ing {"a", "b", "c", "d", "e", "f"} ..0
for k, v := range list { ..1

// do what you want with k and v ..2
}

..0 Create a slice (see “Arrays, slices and maps” on page 14) of strings.

..1 Use range to loop over them. With each iteration range will return the index as
an int and the key as a string, starting with 0 and “a”.

..2 k will have the value 0…5, and v will loop through “a”…“f”.

You can also use range on strings directly. Then it will break out the individual Unicode
characters e and their start position, by parsing the UTF-8. The loop:

for pos, char := range "aΦx" {
fmt.Printf("character '%c' starts at byte position %d\n", char

, pos)
}

prints

character 'a' starts at byte position 0
character 'Φ' starts at byte position 1
character 'x' starts at byte position 3 ← Φ took 2 bytes

eIn the UTF-8 world characters are sometimes called runes. Mostly, when people talk about characters,
they mean 8 bit characters. As UTF-8 characters may be up to 32 bits the word rune is used. In this case the
type of char is rune.

12 Chapter 1: Introduction

Switch

Go’s switch is very flexible. The expressions need not be constants or even integers;
the cases are evaluated top to bottom until a match is found, and if the switch has no
expression it switches on true. It’s therefore possible – and idiomatic – to write an
if-else-if-else chain as a switch.

func unhex(c byte) byte {
switch {
case '0' <= c && c <= '9':

return c - '0'
case 'a' <= c && c <= 'f':

return c - 'a' + 10
case 'A' <= c && c <= 'F':

return c - 'A' + 10
}
return 0

}

There is no automatic fall through, you can however use fallthrough to do just that.
Without fallthrough:

switch i {
case 0: // empty case body
case 1:

f() // f is not called when i == 0!
}

And with:

switch i {
case 0: fallthrough
case 1:

f() // f is called when i == 0!
}

With default you can specify an action when none of the other cases match.

switch i {
case 0:
case 1:

f()
default:

g() // called when i is not 0 or 1
}

Cases can be presented in comma-separated lists.

func shouldEscape(c byte) bool {
switch c {
case ' ', '?', '&', '=', '#', '+': ← , as ”or”

return true
}
return false

}

Here’s a comparison routine for byte arrays that uses two switch statements:
..0
func Compare(a, b []byte) in t {

for i := 0 ; i < len(a) && i < len(b) ; i++ {
switch {
case a[i] > b[i]:

Built-in functions 13

return 1
case a[i] < b[i]:

return -1
}

}
switch { ..1
case len(a) < len(b):

return -1
case len(a) > len(b):

return 1
}
return 0 ..2

}

..0 Compare returns an integer comparing the two byte arrays lexicographically. The
result will be 0 if a == b, -1 if a < b, and +1 if a > b ;

..1 Strings are equal except for possible tail;

..2 Strings are equal.

Built-in functions
A small number of functions are predefined, meaning you don’t have to include any pack-
age to get access to them. Table 1.3 lists them all.f

Table 1.3. Pre–defined functions in Go

close new panic complex
delete make recover real
len append print imag
cap copy println

These built-in functions are documented in the builtin pseudo package that is included
in recent Go releases.

close
is used in channel communication. It closes a channel, see chapter 6 for more on
this.

delete
is used for deleting entries in maps.

len and cap
are used on a number of different types, len is used for returning the length of
strings and the length of slices and arrays. See section “Arrays, slices and maps” for
the details of slices and arrays and the function cap.

new
is used for allocating memory for user defined data types. See section “Allocation
with new” on page 52.

make
is used for allocating memory for built-in types (maps, slices and channels). See
section “Allocation with make” on page 53.

fYou can use the command go doc builtin to read the online documentation about the built-in types
and functions.

14 Chapter 1: Introduction

copy
is used for copying slices. See section “Slices” in this chapter.

append
is for concatenating slices. See section “Slices” in this chapter.

panic and recover
are used for an exception mechanism. See the section “Panic and recovering” on
page 31 for more.

print and println
are low level printing functions that can be used without reverting to the fmt pack-
age. These are mainly used for debugging.

complex, real and imag
all deal with complex numbers. Apart from the simple example we gave, we will
not further explain complex numbers.

Arrays, slices and maps
Storing multiple values in a list can be done by utilizing arrays, or their more flexible
cousin: slices. A dictionary or hash type is also available, it is called a map in Go.

Arrays

An array is defined by: [n]<type>, where n is the length of the array and <type> is the
stuff you want to store. Assigning or indexing an element in the array is done with square
brackets:

var arr [10] in t
arr[0] = 42
arr[1] = 13
fmt.Printf("The first element is %d\n", arr[0])

Array types like var arr [10]int have a fixed size. The size is part of the type. They can’t
grow, because then they would have a different type. Also arrays are values: Assigning
one array to another copies all the elements. In particular, if you pass an array to a function
it will receive a copy of the array, not a pointer to it.
To declare an array you can use the following: var a [3]int, to initialize it to something
other than zero use a composite literal: a := [3]int{1, 2, 3}. This can be shortened
to a := [...]int{1, 2, 3}, where Go counts the elements automatically.A composite literal

allows you to as-
sign a value directly
to an array, slice or
map.
See the section
“Constructors and
composite literals”
on page 54 for
more.

Note that all fields must be specified. So if you are using multidimensional arrays you
have to do quite some typing:

a := [2][2] in t { [2] in t {1,2}, [2] in t {3,4} }

Which is the same as:

a := [2][2] in t { [...] in t {1,2}, [...] in t {3,4} }

When declaring arrays you always have to type something in between the square brackets,
either a number or three dots (...) when using a composite literal. A long time ago this
syntax was further simplified, release notes from back then state:

The syntax for arrays, slices, and maps of composite literals has been simplified.
Within a composite literal of array, slice, or map type, elements that are themselves
composite literals may elide the type if it is identical to the outer literal’s element
type.

This means our example can become:

a := [2][2] in t { {1,2}, {3,4} }

Arrays, slices and maps 15

Slices

A slice is similar to an array, but it can grow when new elements are added. A slice always
refers to an underlying array. What makes slices different from arrays is that a slice is a
pointer to an array; slices are reference types, which means that if you assign one slice Reference types are

created with make.to another, both refer to the same underlying array. For instance, if a function takes a
slice argument, changes it makes to the elements of the slice will be visible to the caller,
analogous to passing a pointer to the underlying array. With:

sl := make([] int , 10)

you create a slice which can hold ten elements. Note that the underlying array isn’t
specified. A slice is always coupled to an array that has a fixed size. For slices we define
a capacity and a length. Figure 1.1 depicts the following Go code. First we create an
array of m elements of the type int: var array[m]int
Next, we create a slice from this array: slice := array[0:n]
And now we have:

• len(slice)== n ;

• cap(slice)== m ;

• len(array)== cap(array)== m .

Figure 1.1. Array versus slice

. . .

len == cap == m

array

slice

0

0

n-1

n-1

m-1

len == n

. . . m-1

cap == m

Given an array, or another slice, a new slice is created via a[I:J]. This creates a new slice
which refers to the variable a, starts at index I, and ends before index J. It has length
J - I.

// array[n:m], create a slice from array with elements n to m-1
a := [...] in t {1, 2, 3, 4, 5} ..0
s1 := a[2:4] ..1
s2 := a[1:5] ..2
s3 := a[:] ..3
s4 := a[:4] ..4
s5 := s2[:] ..5

..0 Define an array with 5 elements, from index 0 to 4;

..1 Create a slice with the elements from index 2 to 3, this contains: 3, 4;

..2 Create a slice with the elements from index 1 to 4, contains: 2, 3, 4, 5;

..3 Create a slice with all the elements of the array in it. This is a shorthand for:
a[0:len(a)];

16 Chapter 1: Introduction

..4 Create a slice with the elements from index 0 to 3, this is thus short for: a[0:4],
and yields: 1, 2, 3, 4;

..5 Create a slice from the slice s2, note that s5 still refers to the array a.

In the code listed in 1.5 we dare to do the impossible on line 8 and try to allocate some-
thing beyond the capacity (maximum length of the underlying array) and we are greeted
with a runtime error.

Listing 1.5. Arrays and slices
package main

func main() {
var array [100] in t ← Create array, index from 0 to 99
slice := array[0:99] ← Create slice, index from 0 to 98

slice[98] = 'a' ← OK
slice[99] = 'a' ← Error: ”throw: index out of range”
}

If you want to extend a slice, there are a couple of built-in functions that make life easier:
append and copy. From [10]:

The function append appends zero or more values x to a slice s and returns the
resulting slice, with the same type as s. If the capacity of s is not large enough
to fit the additional values, append allocates a new, sufficiently large slice that
fits both the existing slice elements and the additional values. Thus, the returned
slice may refer to a different underlying array.

s0 := [] in t {0, 0}
s1 := append(s0, 2) ..0
s2 := append(s1, 3, 5, 7) ..1
s3 := append(s2, s0...) ..2

..0 append a single element, s1 == []int{0, 0, 2};

..1 append multiple elements, s2 == []int{0, 0, 2, 3, 5, 7};

..2 append a slice, s3 == []int{0, 0, 2, 3, 5, 7, 0, 0}. Note the three dots!

And

The function copy copies slice elements from a source src to a destination dst
and returns the number of elements copied. Source and destination may overlap.
The number of elements copied is the minimum of len(src) and len(dst).

var a = [...] in t {0, 1, 2, 3, 4, 5, 6, 7}
var s = make([] int , 6)
n1 := copy(s, a[0:]) ← n1 == 6,s == []int{0, 1, 2, 3, 4, 5}
n2 := copy(s, s[2:]) ← n2 == 4, s == []int{2, 3, 4, 5, 4, 5}

Exercises 17

Maps

Many other languages have a similar type built-in. For instance, Perl has hashes, Python
has its dictionaries and C++ also has maps (as part of the libraries). In Go we have the map
type. A map can be thought of as an array indexed by strings (in its most simple form). In
the following listing we define a map which converts from a string (month abbreviation)
to an int – the number of days in that month. The generic way to define a map is with:
map[<from type>]<to type>

monthdays := map[st r ing] in t {
"Jan": 31, "Feb": 28, "Mar": 31,
"Apr": 30, "May": 31, "Jun": 30,
"Jul": 31, "Aug": 31, "Sep": 30,
"Oct": 31, "Nov": 30, "Dec": 31, ← Comma required

}

Note to use make when only declaring a map: monthdays := make(map[string]int)

For indexing (searching) in the map, we use square brackets. For example, suppose we
want to print the number of days in December: fmt.Printf("%d\n", monthdays["Dec
"])
If you are looping over an array, slice, string, or map a range clause will help you again,
which returns the key and corresponding value with each invocation.

year := 0
for _, days := range monthdays { ← key unused, hence _, days

year += days
}
fmt.Printf("Numbers of days in a year: %d\n", year)

Adding elements to the map would be done as:

monthdays["Undecim"] = 30 ← Add a month
monthdays["Feb"] = 29 ← Overwrite entry - for leap years

To test for existence , you would use the following[19]:

var value in t
var present bool

value, present = monthdays["Jan"] ← If exists present has value true
← Or better and more Go like

v, ok := monthdays["Jan"] ← Hence, the ”comma ok” form

And finally you can remove elements from the map:

delete(monthdays, "Mar") ← Delete ”Mar”, always rainy anyway

In general the syntax delete(m, x) will delete the map entry retrieved by the expres-
sion m[x].

Exercises

Q1. (1) Documentation

1. Go’s documentation can be read with the go doc program, which is included the
Go distribution.

go doc hash gives information about the hash package:

18 Chapter 1: Introduction

% go doc hash
PACKAGE

package hash

...

...

...

SUBDIRECTORIES

adler32
crc32
crc64
fnv

With which go doc command can you read the documentation of fnv contained
in hash?

Q2. (0) For-loop

1. Create a simple loop with the for construct. Make it loop 10 times and print out
the loop counter with the fmt package.

2. Rewrite the loop from 1. to use goto. The keyword for may not be used.

3. Rewrite the loop again so that it fills an array and then prints that array to the
screen.

Q3. (0) FizzBuzz

1. Solve this problem, called the Fizz-Buzz [23] problem:

Write a program that prints the numbers from 1 to 100. But for multiples
of three print “Fizz” instead of the number and for the multiples of five
print “Buzz”. For numbers which are multiples of both three and five print
“FizzBuzz”.

Q4. (1) Strings

1. Create a Go program that prints the following (up to 100 characters):
A
AA
AAA
AAAA
AAAAA
AAAAAA
AAAAAAA
...

2. Create a program that counts the number of characters in this string:
asSASA ddd dsjkdsjs dk

In addition, make it output the number of bytes in that string. Hint: Check out the
utf8 package.

3. Extend/change the program from the previous question to replace the three runes
at position 4 with ’abc’.

4. Write a Go program that reverses a string, so “foobar” is printed as “raboof”. Hint:
You will need to know about conversion; skip ahead to section “Conversions” on
page 56.

Exercises 19

Q5. (1) Average

1. Write code to calculate the average of a float64 slice. In a later exercise (Q6 you
will make it into a function.

Answers 21

Answers

A1. (1) Documentation

1. The package fnv is in a subdirectory of hash, so you will only need go doc
hash/fnv.

All the built-in functions are also accesible by using go doc builtin.

A2. (0) For-loop

1. There are a multitude of possibilities, one of the solutions could be:

Listing 1.6. Simple for loop
package main

import "fmt"

func main() {
for i := 0 ; i < 10 ; i++ { ← See page 10

fmt.Printf("%d\n", i)
}

}

Let’s compile this and look at the output.
% go build for.go
% ./for
0
1
.
.
.
9

2. Rewriting the loop results in code that should look something like this (only show-
ing the main-function):

func main() {
i := 0 ← Define our loop variable

Loop: ← Define a label
fmt.Printf("%d\n", i)
i f i < 10 {

i++
goto Loop ← Jump to the label

}
}

3. The following is one possible solution:

Listing 1.7. For loop with an array
func main() {

var arr [10] in t ← Create an array with 10 elements
for i := 0 ; i < 10 ; i++ {

arr[i] = i ← Fill it one by one
}
fmt.Printf("%v", arr) ← With %v Go prints the value for us

}

You could even do this in one fell swoop by using a composite literal:

22 Chapter 1: Introduction

a := [...] in t {0,1,2,3,4,5,6,7,8,9} ← Let Go count
fmt.Printf("%v\n", a)

A3. (0) FizzBuzz

1. A possible solution to this simple problem is the following program.

Listing 1.8. Fizz-Buzz
package main

import "fmt"

func main() {
const (

FIZZ = 3 ..0
BUZZ = 5

)
var p bool ..1
for i := 1 ; i < 100 ; i++ { ..2 ;

p = false
i f i%FIZZ == 0 { ..3

fmt.Printf("Fizz")
p = true

}
i f i%BUZZ == 0 { ..4

fmt.Printf("Buzz")
p = true

}
i f !p { ..5

fmt.Printf("%v", i)
}
fmt.Println() ..6

}
}

..0 Define two constants tomake the codemore readable. See section ”Constants”;

..1 Holds if we already printed something;

..2 for-loop, see section ”For”

..3 If divisible by FIZZ, print ”Fizz”;

..4 And if divisble by BUZZ, print ”Buzz”. Note that we have also taken care of
the FizzBuzz case;

..5 If neither FIZZ nor BUZZ printed, print the value;

..6 Format each output on a new line.

A4. (1) Strings

1. This program is a solution:

Listing 1.9. Strings
package main

import "fmt"

func main() {
str := "A"

Answers 23

for i := 0 ; i < 100 ; i++ {
fmt.Printf("%s\n", str)
str = str + "A" ← String concatenation

}
}

2. To answer this question we need some help from the unicode/utf8 package. First
we check the documentation with go doc unicode/utf8 | less. When we
read the documentation we notice func RuneCount(p []byte)int. Secondly we
can convert string to a byte slice with

str := "hello"
b := []byte(str) ← Conversion, see page 56

Putting this together leads to the following program.

Listing 1.10. Runes in strings
package main

import (
"fmt"
"unicode/utf8"

)

func main() {
str := "dsjkdshdjsdh....js"
fmt.Printf("String %s\nLength: %d, Runes: %d\n", str,

len([]byte(str)), utf8.RuneCount([]byte(str)))
}

3. Something along the lines of:

package main

import (
"fmt"

)

func main() {
s := "��� ���� �� �����"
r := []rune(s)
copy(r[4:4+3], []rune("abc"))
fmt.Printf("Before: %s\n", s) ;
fmt.Printf("After : %s\n", st r ing(r))

}

4. Reversing a string can be done as follows. We start from the left (i) and the right
(j) and swap the characters as we see them:

Listing 1.11. Reverse a string
import "fmt"

func main() {
s := "foobar"
a := []rune(s) ← Again a conversion
for i, j := 0, len(a)-1 ; i < j ; i, j = i+1, j-1 {

a[i], a[j] = a[j], a[i] ← Parallel assignment
}
fmt.Printf("%s\n", st r ing(a)) ← Convert it back

}

24 Chapter 1: Introduction

A5. (1) Average

1. The following code calculates the average.

sum := 0.0
switch len(xs) {
case 0: ..0

avg = 0
default: ..1

for _, v := range xs {
sum += v

}
avg = sum / float64(len(xs)) ..2

}

..0 If the length is zero, we return 0;

..1 Otherwise we calculate the average;

..2 We have to convert the value to a float64 to make the division work.

2 Functions

“I’m always delighted by the light touch
and stillness of early programming
languages. Not much text; a lot gets done.
Old programs read like quiet
conversations between a well-spoken
research worker and a well- studied
mechanical colleague, not as a debate
with a compiler. Who’d have guessed
sophistication bought such noise?”

RICHARD P. GABRIEL

Functions are the basic building blocks of Go programs; all interesting stuff happens in
them. A function is declared as follows:

Listing 2.1. A function declaration
..

..
0

.

..
1

.

..
2

.

..
3

.

..
4

.

..
5

type mytype in t ← New type, see chapter 4

func (p mytype) funcname(q in t) (r,s in t) { return 0,0 }

..0 The keyword func is used to declare a function;

..1 A function can optionally be bound to a specific type. This is called the receiver. A
function with a receiver is a method. This will be explored in chapter 5;

..2 funcname is the name of your function;

..3 The variable q of type int is the input parameter. The parameters are passed pass-
by-value meaning they are copied;

..4 The variables r and s are the named return parameters for this function. Functions
in Go can have multiple return values, see section ”Multiple return values” on page
28. If you want the return parameters not to be named you only give the types:
(int,int). If you have only one value to return you may omit the parentheses. If
your function is a subroutine and does not have anything to return you may omit
this entirely;

..5 This is the function’s body. Note that return is a statement so the braces around
the parameter(s) are optional.

Here are two examples. The first is a function without a return value, while the bottom
one is a simple function that returns its input.

func subroutine(in in t) { return }

func identity(in in t) in t { return in }

Functions can be declared in any order you wish. The compiler scans the entire file before
execution, so function prototyping is a thing of the past in Go. Go disallows nested func-
tions, but you can work around this with anonymous functions. See section “Functions as
values” on page 30 in this chapter.

Recursive functions work just as in other languages:

Scope 27

Listing 2.2. Recursive function
func rec(i in t) {

i f i == 10 {
return

}
rec(i+1)
fmt.Printf("%d ", i)

}

This prints: 9 8 7 6 5 4 3 2 1 0.

Scope
Variables declared outside any functions are global in Go, those defined in functions are
local to those functions. If names overlap — a local variable is declared with the same
name as a global one — the local variable hides the global one when the current function
is executed.

Listing 2.3. Local scope
.
package main

var a = 6

func main() {
p()
q()
p()

}

func p() {
println(a)

}

func q() {
a := 5 ← Definition
println(a)

}

Listing 2.4. Global scope
.
package main

var a = 6

func main() {
p()
q()
p()

}

func p() {
println(a)

}

func q() {
a = 5 ← Assignment
println(a)

}

In listing 2.3 we introduce a local variable a in the function q(). The local a is only
visible in q(). This is why the code will print: 656. In listing 2.4 no new variables are
introduced, there is only a global a. Assigning a new value to a will be globally visible.
This code will print: 655

In the following example we call g() from f():

Listing 2.5. Scope when calling functions from functions
package main

var a in t

func main() {
a = 5
println(a)
f()

}

func f() {

28 Chapter 2: Functions

a := 6
println(a)
g()

}

func g() {
println(a)

}

The output will be: 565. A local variable is only valid when we are executing the function
in which it is defined.

Multiple return values
One of Go’s unusual (for compiled languages) features is that functions and methods can
return multiple values (Python and Perl can do this too). This can be used to improve on
a couple of clumsy idioms in C programs: in-band error returns (such as -1 for EOF) and
modifying an argument. In Go, Write returns a count and an error: “Yes, you wrote some
bytes but not all of them because you filled the device”. The signature of *File.Write
in package os is:

func (file *File) Write(b []byte) (n int , err error)

and as the documentation says, it returns the number of bytes written and a non-nil
error when n != len(b). This is a common style in Go.

In the absence of tuples as a native type, multiple return values are the next best thing.
You can return precisely what you want without overloading the domain space with spe-
cial values to signal errors.

Named result parameters
The return or result parameters of a Go function can be given names and used as regular
variables, just like the incoming parameters. When named, they are initialized to the
zero values for their types when the function begins. If the function executes a return
statement with no arguments, the current values of the result parameters are returned.
Using these features enables you (again) to do more with less code a.

The names are not mandatory but they can make code shorter and clearer: they are doc-
umentation. If we name the results of nextInt it becomes obvious which returned int
is which.

func nextInt(b []byte, pos in t) (value, nextPos in t) { /* ... */ }

Because named results are initialized and tied to an unadorned return, they can simplify
as well as clarify. Here’s a version of io.ReadFull that uses them well:

func ReadFull(r Reader, buf []byte) (n int , err error) {
for len(buf) > 0 && err == nil {

var nr in t
nr, err = r.Read(buf)
n += nr
buf = buf[nr:len(buf)]

}
return

}

aThis is a motto of Go; “Do more with less code”

Deferred code 29

Deferred code
Suppose you have a function in which you open a file and perform various writes and
reads on it. In such a function there are often spots where you want to return early. If you
do that, you will need to close the file descriptor you are working on. This often leads to
the following code:

Listing 2.6. Without defer
func ReadWrite() bool {

file.Open("file")
// Do your thing
i f failureX {

file.Close() ←
return false

}

i f failureY {
file.Close() ←
return false

}
file.Close() ←
return true

}

A lot of code is repeated here. To overcome this Go has the defer statement. After defer
you specify a function which is called just before the current function exits.

The code above could be rewritten as follows. This makes the function more readable,
shorter and puts the Close right next to the Open.

Listing 2.7. With defer
func ReadWrite() bool {

file.Open("file")
defer file.Close() ← file.Close() is added to defer list
// Do your thing
i f failureX {

return false ← Close() is now done automatically
}
i f failureY {

return false ← And here too
}
return true

}

You can put multiple functions on the “deferred list”, like this example from [8]:

for i := 0 ; i < 5 ; i++ {
defer fmt.Printf("%d ", i)

}

Deferred functions are executed in LIFO order, so the above code prints: 4 3 2 1 0.

With defer you can even change return values, provided that you are using named result
parameters and a function literalb, i.e:

Listing 2.8. Function literal
defer func() {

/* ... */
}() ← () is needed here

bA function literal is sometimes called a closure.

30 Chapter 2: Functions

Or this example which makes it easier to understand why and where you need the braces:

Listing 2.9. Function literal with parameters
defer func(x in t) {

/* ... */
}(5) ← Give the input variable x the value 5

In this (unnamed) function you can access any named return parameter:

Listing 2.10. Access return values within defer
func f() (ret in t) { ← ret is initialized with zero

defer func() {
ret++ ← Increment ret with 1

}()
return 0 ← 1 not 0 will be returned!

}

Variadic parameters
Functions that take a variable number of parameters are known as variadic functions. To
declare a function as variadic:

func myfunc(arg ... in t) { }

The arg ...int instructs Go to see this as a function that takes a variable number of
arguments. Note that these arguments all have the type int. Inside your function’s body
the variable arg is a slice of ints:

for _, n := range arg {
fmt.Printf("And the number is: %d\n", n)

}

If you don’t specify the type of the variadic argument it defaults to the empty inter-
face interface{} (see chapter 5). Suppose we have another variadic function called
myfunc2, the following example shows how to pass variadic arguments to it:

func myfunc(arg ... in t) {
myfunc2(arg...) ← Pass it as-is
myfunc2(arg[:2]...) ← Slice it

}

Functions as values
As with almost everything in Go, functions are also just values. They can be assigned to
variables as follows:

Listing 2.11. Anonymous function
func main() {

a := func() { ← Define a nameless function and assign to a
println("Hello")

} ← No () here
a() ← Call the function

}

If we use fmt.Printf("%T\n", a) to print the type of a, it prints func().

Functions–as–values may be used in other places, for example maps. Here we convert
from integers to functions:

Callbacks 31

Listing 2.12. Functions as values in maps
var xs = map[in t]func() in t {

1: func() in t { return 10 },
2: func() in t { return 20 },
3: func() in t { return 30 }, ← Mandatory ,
/* ... */

}

Or you can write a function that takes a function as its parameter, for example a Map
function that works on int slices. This is left as an exercise for the reader (see exercise
Q12 on page 33).

Callbacks
Because functions are values they are easy to pass to functions, from where they can be
used as callbacks. First define a function that does “something” with an integer value:

func printit(x in t) { ← Function returns nothing
fmt.Printf("%v\n", x) ← Just print it

}

The signature of this function is: func printit(int), or without the function name:
func(int). To create a new function that uses this one as a callback we need to use
this signature:

func callback(y int , f func(in t)) { ← f has the function
f(y) ← Call the callback f with y

}

Panic and recovering
Go does not have an exceptionmechanism, like that in Java for instance: you cannot throw
exceptions. Instead it uses a panic-and-recover mechanism. It is worth remembering that
you should use this as a last resort, your code will not look, or be, better if it is littered
with panics. It’s a powerful tool: use it wisely. So, how do you use it?

The following description was taken from [7]:

Panic
is a built-in function that stops the ordinary flow of control and begins panicking.
When the function F calls panic, execution of F stops, any deferred functions in F
are executed normally, and then F returns to its caller. To the caller, F then behaves
like a call to panic. The process continues up the stack until all functions in the
current goroutine have returned, at which point the program crashes.

Panics can be initiated by invoking panic directly. They can also be caused by
runtime errors, such as out-of-bounds array accesses.

Recover
is a built-in function that regains control of a panicking goroutine. Recover is only
useful inside deferred functions.

During normal execution, a call to recoverwill return nil and have no other effect.
If the current goroutine is panicking, a call to recover will capture the value given
to panic and resume normal execution.

This function checks if the function it gets as argument will panic when it is executedc:

cCopied from a presentation of Eleanor McHugh.

32 Chapter 2: Functions

func throwsPanic(f func()) (b bool) { ..0
defer func() { ..1

i f x := recover() ; x != nil {
b = true

}
}()
f() ..2
return ..3

}

..0 We define a new function throwsPanic that takes a function as an argument (see
“Functions as values”). It returns true if f panics when run, else false;

..1 We define a defer function that utilizes recover. If the current goroutine panics,
this defer function will notice that. If recover() returns non-nil we set b to true;

..2 Execute the function we received as the argument;

..3 Return the value of b. Because b is a named return parameter (page 28), we don’t
specify b.

Exercises

Q6. (0) Average

1. Write a function that calculates the average of a float64 slice.

Q7. (0) Integer ordering

1. Write a function that returns its (two) parameters in the right, numerical (ascend-
ing) order:
f(7,2)→ 2,7
f(2,7)→ 2,7

Q8. (1) Scope

1. What is wrong with the following program?

1package main

3import "fmt"

5func main() {
6for i := 0 ; i < 10 ; i++ {
7fmt.Printf("%v\n", i)
8}
9fmt.Printf("%v\n", i)
10}

Q9. (1) Stack

1. Create a simple stack which can hold a fixed number of ints. It does not have to
grow beyond this limit. Define push – put something on the stack – and pop –
retrieve something from the stack – functions. The stack should be a LIFO (last
in, first out) stack.

Exercises 33

Figure 2.1. A simple LIFO stack

push(k)

pop() kki

l

m

i++

i--

0

2. Bonus. Write a Stringmethodwhich converts the stack to a string representation.
This way you can print the stack using: fmt.Printf("My stack %v\n", stack
)
The stack in the figure could be represented as: [0:m] [1:l] [2:k]

Q10. (1) Var args

1. Write a function that takes a variable number of ints and prints each integer on a
separate line

Q11. (1) Fibonacci

1. The Fibonacci sequence starts as follows: 1, 1, 2, 3, 5, 8, 13, . . . Or in mathematical
terms: x1 = 1;x2 = 1;xn = xn−1 + xn−2 ∀n > 2.
Write a function that takes an int value and gives that many terms of the Fibonacci
sequence.

Q12. (1) Map function A map()-function is a function that takes a function and a
list. The function is applied to each member in the list and a new list containing these
calculated values is returned. Thus:

map(f(), (a1, a2, . . . , an−1, an)) = (f(a1), f(a2), . . . , f(an−1), f(an))

1. Write a simple map()-function in Go. It is sufficient for this function only to work
for ints.

2. Expand your code to also work on a list of strings.

Q13. (0) Minimum and maximum

1. Write a function that finds the maximum value in an int slice ([]int).

2. Write a function that finds the minimum value in an int slice ([]int).

Q14. (1) Bubble sort

1. Write a function that performs a bubble sort on a slice of ints. From [24]:

It works by repeatedly stepping through the list to be sorted, comparing
each pair of adjacent items and swapping them if they are in the wrong
order. The pass through the list is repeated until no swaps are needed,
which indicates that the list is sorted. The algorithm gets its name from
the way smaller elements “bubble” to the top of the list.

[24] also gives an example in pseudo code:

procedure bubbleSort(A : list of sortable items)
do
swapped = fa lse
for each i in 1 to length(A) - 1 inclusive do:

34 Chapter 2: Functions

i f A[i-1] > A[i] then
swap(A[i-1], A[i])
swapped = true

end i f
end for

while swapped
end procedure

Q15. (1) Functions that return functions

1. Write a function that returns a function that performs a +2 on integers. Name the
function plusTwo. You should then be able do the following:

p := plusTwo()
fmt.Printf("%v\n", p(2))

Which should print 4. See section Callbacks on page 31 for information about this
topic.

2. Generalize the function from 1, and create a plusX(x) which returns functions
that add x to an integer.

Answers 35

Answers

A6. (0) Average

1. The following function calculates the average:

Listing 2.13. Average function in Go

func average(xs []float64) (avg float64) { ..0
sum := 0.0
switch len(xs) {
case 0: ..1

avg = 0
default: ..2

for _, v := range xs {
sum += v

}
avg = sum / float64(len(xs)) ..3

}
return ..4

}

..0 We use a named return parameter;

..1 If the length is zero, we return 0;

..2 Otherwise we calculate the average;

..3 We have to convert the value to a float64 to make the division work;

..4 We have an avarage, return it.

A7. (0) Integer ordering

1. Here we can use the multiple return values (section “Multiple return values”) from
Go:

func order(a, b in t) (int , in t) {
i f a > b {

return b,a
}
return a,b

}

A8. (1) Scope

1. The program does not even compile, because i on line 9 is not defined: i is only
defined within the for-loop. To fix this the function main() should become:

func main() {
var i in t
for i = 0 ; i < 10 ; i++ {

fmt.Printf("%v\n", i)
}
fmt.Printf("%v\n", i)

}

Now i is defined outside the for-loop and still visible afterwards. This code will
print the numbers 0 through 10.

A9. (1) Stack

36 Chapter 2: Functions

1. First we define a new type that represents a stack; we need an array (to hold the
keys) and an index, which points to the last element. Our small stack can only
hold 10 elements.

type stack s t ruct { ← stack is not exported
i in t
data [10] in t

}

Next we need the push and pop functions to actually use the thing. First we show
the wrong solution! In Go data passed to functions is passed-by-value meaning a
copy is created and given to the function. The first stab for the function push
could be:

func (s stack) push(k in t) { ← Works on copy of argument
i f s.i+1 > 9 {

return
}
s.data[s.i] = k
s.i++

}

The function works on the s which is of the type stack. To use this we just call
s.push(50), to push the integer 50 on the stack. But the push function gets a
copy of s, so it is not working the real thing. Nothing gets pushed to our stack this
way, for example the following code:

var s stack ← make s a simple stack variable
s.push(25)
fmt.Printf("stack %v\n", s) ;
s.push(14)
fmt.Printf("stack %v\n", s) ;

prints:
stack [0:0]
stack [0:0]

To solve this we need to give the function push a pointer to the stack. This means
we need to change push from
func (s stack)push(k int)→ func (s *stack)push(k int)
We should now use new() (see “Allocation with new” in chapter 4) to create a
pointer to a newly allocated stack, so line 1 from the example above needs to be
s := new(stack)
And our two functions become:

func (s *stack) push(k in t) {
s.data[s.i] = k
s.i++

}

func (s *stack) pop() in t {
s.i--
return s.data[s.i]

}

Which we then use as follows

func main() {
var s stack
s.push(25)
s.push(14)
fmt.Printf("stack %v\n", s)

}

Answers 37

2. While this was a bonus question, having the ability to print the stack was very
valuable when writing the code for this exercise. According to the Go documen-
tation fmt.Printf("%v") can print any value (%v) that satisfies the Stringer
interface. For this to work we only need to define a String() function for our
type:

Listing 2.14. stack.String()
func (s stack) String() st r ing {

var str st r ing
for i := 0 ; i <= s.i ; i++ {

str = str + "[" +
strconv.Itoa(i) + ":" + strconv.Itoa

(s.data[i]) + "]"
}
return str

}

A10. (1) Var args

1. For this we need the ...-syntax to signal we define a function that takes an arbi-
trary number of arguments.

Listing 2.15. A function with variable number of arguments
package main

import "fmt"

func main() {
prtthem(1, 4, 5, 7, 4)
prtthem(1, 2, 4)

}

func prtthem(numbers... in t) { ← numbers is slice of ints
for _, d := range numbers {

fmt.Printf("%d\n", d)
}

}

A11. (1) Fibonacci

1. The following program calculates Fibonacci numbers:

Listing 2.16. Fibonacci function in Go
package main

import "fmt"

func fibonacci(value in t) [] in t {
x := make([] int , value) ..0
x[0], x[1] = 1, 1 ..1
for n := 2 ; n < value ; n++ {

x[n] = x[n-1] + x[n-2] ..2
}
return x ..3

}

func main() {

38 Chapter 2: Functions

for _, term := range fibonacci(10) { ..4
fmt.Printf("%v ", term)

}
}

..0 We create an array to hold the integers up to the value given in the function
call;

..1 Starting point of the Fibonacci calculation;

..2 xn = xn−1 + xn−2;

..3 Return the entire array;

..4 Using the range keyword we “walk” the numbers returned by the Fibonacci
function. Here up to 10. And we print them.

A12. (1) Map function

Listing 2.17. A Map function
1.

func Map(f func(in t) int , l [] in t) [] in t {
j := make([] int , len(l))
for k, v := range l {

j[k] = f(v)
}
return j

}

func main() {
m := [] in t {1, 3, 4}
f := func(i in t) in t {

return i * i
}
fmt.Printf("%v", (Map(f, m)))

}

2. Answer to question but now with strings

A13. (0) Minimum and maximum

1. This function returns the largest int in the slice l:

func max(l [] in t) (max in t) { ..0
max = l[0]
for _, v := range l { ..1

i f v > max { ..2
max = v

}
}
return ..3

}

..0 We use a named return parameter;

..1 Loop over l. The index of the element is not important;

..2 If we find a new maximum, remember it;

..3 A “lone” return, the current value of max is now returned.

2. This function returns the smallest int in the slice l. It is almost identical to max:

Answers 39

func min(l [] in t) (min in t) {
min = l[0]
for _, v := range l {

i f v < min {
min = v

}
}
return

}

The interested reader may combine max and min into one function with a selector
that lets you choose between the minimum or the maximum, or one that returns
both values.

A14. (1) Bubble sort

1. Bubble sort isn’t terribly efficient, for n elements it scales O(n2). See QuickSort
[17] for a better sorting algorithm.
But bubble sort is easy to implement:

Listing 2.18. Bubble sort
func main() {

n := [] in t {5, -1, 0, 12, 3, 5}
fmt.Printf("unsorted %v\n", n)
bubblesort(n)
fmt.Printf("sorted %v\n", n)

}

func bubblesort(n [] in t) {
for i := 0 ; i < len(n) - 1 ; i++ {

for j := i + 1 ; j < len(n) ; j++ {
i f n[j] < n[i] {

n[i], n[j] = n[j], n[i]
}

}
}

}

Because a slice is a reference type the bubblesort function works and does not
need to return a sorted slice.

A15. (1) Functions that return functions

1.
func main() {

p2 := plusTwo()
fmt.Printf("%v\n",p2(2))

}

func plusTwo() func(in t) in t { ..0
return func(x in t) in t { return x + 2 } ..1

}

..0 Define a new function that returns a function. See how you you can just write
down what you mean;

..1 Function literals at work, we define the +2–function right there in the return
statement.

2. Here we use a closure:

40 Chapter 2: Functions

func plusX(x in t) func(in t) in t { ..0
return func(y in t) in t { return x + y } ..1

}

..0 Again define a function that returns a function;

..1 Use the local variable x in the function literal.

3 Packages

“^”

Answer to whether there is a bit wise
negation operator.
KEN THOMPSON

A package is a collection of functions and data. You declare a package with the package
keyword. The filename does not have to match the package name. The convention for
package names is to use lowercase characters. Go packages may consist of multiple files,
but they share the package <name> line. Let’s define a package even in the file even.go.

Listing 3.1. A small package
package even ← Start our own namespace

func Even(i in t) bool { ← Exported function
return i % 2 == 0

}

func odd(i in t) bool { ← Private function
return i % 2 == 1

}

Names that start with a capital letter are exported and may be used outside your package
(more on that later).

Now we just need to build the package. We create a directory under $GOPATH, and copy
even.go there (see “Compiling and running code” in chapter 1).

% mkdir $GOPATH/src/even
% cp even.go $GOPATH/src/even
% go build
% go install

Now we can use the package in our own program myeven.go:

Listing 3.2. Use of the even package
package main

import (..0
"even" ..1
"fmt" ..2

)

func main() {
i := 5
fmt.Printf("Is %d even? %v\n", i, even.Even(i)) ..3

}

..0 Import the following packages;

..1 The local package even is imported here;

..2 The official fmt package gets imported;

Identifiers 43

..3 Use the function from the even package. The syntax for accessing a function from
a package is <package>.Function().

% go build myeven.go
% ./myeven
Is 5 even? false

In Go, a function from a package is exported (visible outside the package, i.e. public)
when the first letter of the function name is a capital, hence the function name Even. If
we change our myeven.go on line 10 to use the unexported function even.odd:

fmt.Printf("Is %d even? %v\n", i, even.odd(i))

We get an error when compiling, because we are trying to use a private function:

myeven.go:10: cannot refer to unexported name even.odd

To summarize:

• Public functions begin with a capital letter;

• Private functions begin with a lowercase letter.

This convention holds true for other labels (new types, global variables) defined in the
package. Note that the term “capital” is not limited to US-ASCII - it extends to all bicam-
eral alphabets (Latin, Greek, Cyrillic, Armenian and Coptic).

Identifiers
Names are as important in Go as in any other language. In some cases they even have
semantic effect: for instance, the visibility of a name outside its package is determined
by the case of its first character. It’s therefore worth spending a little time talking about
naming conventions in Go programs.

The convention is to leave well-known legacy not-quite-words alone rather than try to
figure out where the capital letters go: Atoi, Getwd, Chmod. CamelCasing works best
when you have whole words to work with: ReadFile, NewWriter, MakeSlice.

Package names

When a package is imported (with import), the package name becomes the accessor for
the contents. After

import "bytes"

the importing package can talk about bytes.Buffer. It’s helpful if everyone using the
package can use the same name to refer to its contents, so the package name should be
good: short, concise and evocative. By convention packages are given lower-case single-
word names; there should be no need for underscores or mixedCaps. Err on the side of
brevity (since everyone using your package will be typing its name), and don’t worry about
collisions a priori.

The package name is only the default name for imports. You can override the default
accessor by providing your own name to the import statement:

import bar "bytes"

The function Buffer is now accessed as bar.Buffer. This means that the package name
does not need to be globally unique; in the rare case of a collision the importing code
can choose a different name to use locally. In any case confusion is rare because the file
name in the import determines just which package is being used.

44 Chapter 3: Packages

Another convention is that the package name is the base name of its source directory;
the package in src/pkg/compress/gzip is imported as compress/gzip but has name gzip,
not compress_gzip and not compressGzip.

The importer of a package will use the name to refer to its contents, so exported names in
the package can use that fact to avoid stutter. For instance, the buffered reader type in the
bufio package is called Reader, not BufReader, because users see it as bufio.Reader,
which is a clear, concise name. Moreover, because imported entities are always addressed
by their package name, bufio.Reader does not conflict with io.Reader. Similarly, the
function to make new instances of ring.Ring (package container/ring) —which is the
definition of a constructor in Go—would normally be called NewRing, but since Ring is
the only type exported by the package, and since the package is called ring, it’s called
just New. Clients of the package see that as ring.New. Use the package structure to help
you choose good names.

Another short example is once.Do (see package sync); once.Do(setup) reads well and
would not be improved by writing once.DoOrWaitUntilDone(setup). Long names
don’t automatically make things more readable. If the name represents something in-
tricate or subtle, it’s usually better to write a helpful doc comment than to attempt to put
all the information into the name.

Finally, the convention in Go is to use MixedCaps or mixedCaps rather than underscores
to write multi-word names.

Documenting packages
This text is copied
from [8]. Every package should have a package comment, a block comment preceding the package

clause. For multi-file packages, the package comment only needs to be present in one file,
and any one will do. The package comment should introduce the package and provide
information relevant to the package as a whole. It will appear first on the go doc page
and should set up the detailed documentation that follows. An example from the official
regexp package:

/*
The regexp package implements a simple library for
regular expressions.

The syntax of the regular expressions accepted is:

regexp:
concatenation '|' concatenation

*/
package regexp

Each defined (and exported) function should have a small line of text documenting the
behavior of the function. An example from the fmt package:

// Printf formats according to a format specifier and writes to standard
// output. It returns the number of bytes written and any write error
// encountered.
func Printf(format string, a ...interface) (n int, err error)

Testing packages
In Go it is customary to write (unit) tests for your package. Writing tests involves the
testing package and the program go test. Both have excellent documentation.

The go test program runs all the test functions. Without any defined tests for our even
package, go test yields:

Testing packages 45

% go test
? even [no test files]

Let us fix this by defining a test in a test file. Test files reside in the package directory and
are named *_test.go. Those test files are just like other Go programs, but go test will
only execute the test functions. Each test function has the same signature and its name
should start with Test:

func TestXxx(t *testing.T)

When writing test you will need to tell go test whether a test was successful or not.
A successful test function just returns. When the test fails you can signal this with the
following functions [11]. These are the most important ones (see go doc testing or
go help testfunc for more):

func (t *T) Fail()

Fail marks the test function as having failed but continues execution.

func (t *T) FailNow()

FailNow marks the test function as having failed and stops its execution. Any remaining
tests in this file are skipped, and execution continues with the next test.

func (t *T) Log(args ... inter face { })

Log formats its arguments using default formatting, analogous to Print(), and records
the text in the error log.

func (t *T) Fatal(args ... inter face { })

Fatal is equivalent to Log() followed by FailNow().

Putting all this together we can write our test. First we pick a name: even_test.go.
Then we add the following contents:

Listing 3.3. Test file for even package
1package even

3import "testing"

5func TestEven(t *testing.T) {
6i f ! Even(2) {
7t.Log("2 should be even !")
8t.Fail()
9}
10}

Note that we use package even on line 1 - the tests fall in the same namespace as the
package we are testing. This is not only convenient, but also allows tests of unexported
functions and structures. We then import the testing package, and on line 5 we define the
only test function in this file. The displayed Go code should not hold any surprises: we
check if the Even function works OK. Now, the moment we’ve been waiting for, executing
the test:

% go test
ok even 0.001s

Our test ran and reported ok. Success!

If we redefine our test function, we can see the result of a failed test:

46 Chapter 3: Packages

// Entering the twilight zone
func TestEven(t *testing.T) {

i f Even(2) {
t.Log("2 should be odd !")
t.Fail()

}
}

We now get:

FAIL even 0.004s
--- FAIL: TestEven (0.00 seconds)

2 should be odd!
FAIL

And you can act accordingly (by fixing the test for instance).

Writing new packages should go hand in hand with writing (some) documentation and
test functions. It will make your code better and it shows that you really put in the
effort.

The Go test suite also allows you to incorperate example functions which serve as docu-
mentation and as tests. These functions need to start with Example.

func ExampleEven() {
i f Even(2) {

fmt.Printf("Is even\n")
}
// Output:
// Is even

}

Those last two comments lines are part of the example, go test uses those to check the
generated output with the text in the comments. If there is a mismatch the test fails.

Useful packages
The standard Go repository includes a huge number of packages and it is even possible
to install more alongside your current Go installation. It is very enlightening to browse
the $GOROOT/src/pkg directory and look at the packages. We cannot comment on each
package, but the following are worth a mention: a

fmt
Package fmt implements formatted I/O with functions analogous to C’s printf and
scanf. The format verbs are derived from C’s but are simpler. Some verbs (%-
sequences) that can be used:

%v
The value in a default format. when printing structs, the plus flag (%+v) adds
field names;

%#v
a Go-syntax representation of the value;

%T
a Go-syntax representation of the type of the value.

io
This package provides basic interfaces to I/O primitives. Its primary job is to wrap
existing implementations of such primitives, such as those in package os, into
shared public interfaces that abstract the functionality, plus some other related
primitives.

aThe descriptions are copied from the packages’ go doc. Extra remarks are type set in italic.

Exercises 47

bufio
This package implements buffered I/O. It wraps an io.Reader or io.Writer ob-
ject, creating another object (Reader or Writer) that also implements the interface
but provides buffering and some help for textual I/O.

sort
The sort package provides primitives for sorting arrays and user-defined collections.

strconv
The strconv package implements conversions to and from string representations of
basic data types.

os
The os package provides a platform-independent interface to operating system
functionality. The design is Unix-like.

sync
The package sync provides basic synchronization primitives such as mutual exclu-
sion locks.

flag
The flag package implements command-line flag parsing. See “Command line argu-
ments” on page 87.

encoding/json
The encoding/json package implements encoding and decoding of JSON objects as
defined in RFC 4627 [2].

html/template
Data-driven templates for generating textual output such as HTML.

Templates are executed by applying them to a data structure. Annotations in the
template refer to elements of the data structure (typically a field of a struct or a
key in a map) to control execution and derive values to be displayed. The template
walks the structure as it executes and the “cursor” @ represents the value at the
current location in the structure.

net/http
The net/http package implements parsing of HTTP requests, replies, and URLs and
provides an extensible HTTP server and a basic HTTP client.

unsafe
The unsafe package contains operations that step around the type safety of Go pro-
grams. Normally you don’t need this package.

reflect
The reflect package implements run-time reflection, allowing a program to manip-
ulate objects with arbitrary types. The typical use is to take a value with static
type interface{} and extract its dynamic type information by calling TypeOf, which
returns an object with interface type Type.

See chapter 5, section “Introspection and reflection”.

os/exec
The os/exec package runs external commands.

Exercises

Q16. (0) Stack as package

1. See the Q9 exercise. In this exercise we want to create a separate package for that
code. Create a proper package for your stack implementation, Push, Pop and the
Stack type need to be exported.

48 Chapter 3: Packages

2. Write a simple unit test for this package. You should at least test that a Pop works
after a Push.

Q17. (2) Calculator

1. Create a reverse polish calculator. Use your stack package.

Answers 49

Answers

A16. (0) Stack as package

1. There are a few details that should be changed to make a proper package for
our stack. First, the exported functions should begin with a capital letter and so
should Stack. The package file is named stack-as-package.go and contains:

Listing 3.4. Stack in a package
package stack

// Stack holds the items.
type Stack s t ruct {

i in t
data [10] in t

}

// Push pushes an item on the stack.
func (s *Stack) Push(k in t) {

s.data[s.i] = k
s.i++

}

// Pop pops an item from the stack.
func (s *Stack) Pop() (ret in t) {

s.i--
ret = s.data[s.i]
return

}

2. To make the unit testing work properly you need to do some preparations. We’ll
come to those in a minute. First the actual unit test. Create a file with the name
pushpop_test.go, with the following contents:

Listing 3.5. Push/Pop test
package stack

import "testing"

func TestPushPop(t *testing.T) {
c := new(Stack)
c.Push(5)
i f c.Pop() != 5 {

t.Log("Pop doesn't give 5")
t.Fail()

}
}

For go test to workwe need to put our package files in a directory under $GOPATH/src:

% mkdir $GOPATH/src/stack
% cp pushpop_test.go $GOPATH/src/stack
% cp stack-as-package.go $GOPATH/src/stack
Yields:

% go test stack
ok stack 0.001s

A17. (2) Calculator

1. This is one answer:

50 Chapter 3: Packages

Listing 3.6. A (rpn) calculator
package main

import (
"bufio"
"fmt"
"os"
"strconv"

)

var reader *bufio.Reader = bufio.NewReader(os.Stdin)
var st = new(Stack)

type Stack s t ruct {
i in t
data [10] in t

}

func (s *Stack) push(k in t) {
i f s.i+1 > 9 {

return
}
s.data[s.i] = k
s.i++

}

func (s *Stack) pop() (ret in t) {
s.i--
i f s.i < 0 {

s.i = 0
return

}
ret = s.data[s.i]
return

}

func main() {
for {

s, err := reader.ReadString('\n')
var token st r ing
i f err != nil {

return
}
for _, c := range s {

switch {
case c >= '0' && c <= '9':

token = token + st r ing(c)
case c == ' ':

r, _ := strconv.Atoi(token)
st.push(r)
token = ""

case c == '+':
fmt.Printf("%d\n", st.pop()+

st.pop())
case c == '*':

fmt.Printf("%d\n", st.pop()*
st.pop())

case c == '-':

Answers 51

p := st.pop()
q := st.pop()
fmt.Printf("%d\n", q-p)

case c == 'q':
return

default:
//error

}
}

}
}

4 Beyond the basics

“Go has pointers but not pointer
arithmetic. You cannot use a pointer
variable to walk through the bytes of a
string.”

Go For C++ Programmers
GO AUTHORS

Go has pointers. There is however no pointer arithmetic, so they act more like references
than pointers that you may know from C. Pointers are useful. Remember that when you
call a function in Go, the variables are pass-by-value. So, for efficiency and the possibility
to modify a passed value in functions we have pointers.

You declare a pointer by prefixing the type with an ’*’: var p *int. Now p is a pointer to
an integer value. All newly declared variables are assigned their zero value and pointers
are no different. A newly declared pointer, or just a pointer that points to nothing, has
a nil-value. In other languages this is often called a NULL pointer in Go it is just nil.
To make a pointer point to something you can use the address-of operator (&), which we
demonstrate here:

Listing 4.1. Use of a pointer
var p * in t
fmt.Printf("%v", p) ← Prints nil

var i in t ← Declare integer variable i
p = &i ← Make p point to i

fmt.Printf("%v", p) ← Prints something like 0x7ff96b81c000a

De-referencing a pointer is done by prefixing the pointer variable with ’*’:

Listing 4.2. Dereferencing a pointer
p = &i ← Take the address of i
*p = 8 ← Change the value of i
fmt.Printf("%v\n", *p) ← Prints 8
fmt.Printf("%v\n", i) ← Idem

As said, there is no pointer arithmetic, so if you write: *p++, it is interpreted as (*p)++:
first reference and then increment the value. a

Allocation
Go also has garbage collection, meaning that you don’t have to worry about memory
deallocation.

To allocate memory Go has two primitives, new and make. They do different things and
apply to different types, which can be confusing, but the rules are simple. The follow-
ing sections show how to handle allocation in Go and hopefully clarifies the somewhat
artificial distinction between new and make.

Allocation with new

The built-in function new is essentially the same as its namesakes in other languages:
new(T) allocates zeroed storage for a new item of type T and returns its address, a value

aSee exercise 18.

Allocation 53

of type *T. In Go terminology, it returns a pointer to a newly allocated zero value of type
T. This is important to remember.

This means a user of the data structure can create one with new and get right to work. For
example, the documentation for bytes.Buffer states that “the zero value for Buffer is an
empty buffer ready to use.” Similarly, sync.Mutex does not have an explicit constructor
or Init method. Instead, the zero value for a sync.Mutex is defined to be an unlocked
mutex.

The zero-value-is-useful property works transitively. Consider this type declaration. See
section “Defining your own types” on page 54.

type SyncedBuffer s t ruct {
lock sync.Mutex
buffer bytes.Buffer

}

Values of type SyncedBuffer are also ready to use immediately upon allocation or just
declaration. In this snippet, both p and vwill work correctly without further arrangement.

p := new(SyncedBuffer) ← Type *SyncedBuffer, ready to use
var v SyncedBuffer ← Type SyncedBuffer, idem

Allocation with make

Back to allocation. The built-in function make(T, args) serves a purpose different from
new(T). It creates slices, maps, and channels only, and it returns an initialized (not zero)
value of type T, not *T. The reason for the distinction is that these three types are, under
the covers, references to data structures that must be initialized before use. A slice, for
example, is a three-item descriptor containing a pointer to the data (inside an array), the
length, and the capacity; until those items are initialized, the slice is nil. For slices,
maps, and channels, make initializes the internal data structure and prepares the value
for use.

For instance, make([]int, 10, 100) allocates an array of 100 ints and then creates a
slice structure with length 10 and a capacity of 100 pointing at the first 10 elements of
the array. In contrast, new([]int) returns a pointer to a newly allocated, zeroed slice
structure, that is, a pointer to a nil slice value. These examples illustrate the difference
between new and make.

var p *[] in t = new([] in t) ← Allocates slice structure;rarely useful
var v [] in t = make([] int , 100) ← v refers to a new array of 100 ints

var p *[] in t = new([] in t) ← Unnecessarily complex
*p = make([] int , 100, 100)

v := make([] int , 100) ← Idiomatic

Remember that make applies only to maps, slices and channels and does not return a
pointer. To obtain an explicit pointer allocate with new.

new allocates; make initializes

The above two paragraphs can be summarized as:

• new(T) returns *T pointing to a zeroed T

• make(T) returns an initialized T

And of course make is only used for slices, maps and channels.

54 Chapter 4: Beyond the basics

Constructors and composite literals

Sometimes the zero value isn’t good enough and an initializing constructor is necessary,
as in this example taken from the package os.

func NewFile(fd int , name st r ing) *File {
i f fd < 0 {

return nil
}
f := new(File)
f.fd = fd
f.name = name
f.dirinfo = nil
f.nepipe = 0
return f

}

There’s a lot of boiler plate in there. We can simplify it using a composite literal, which
is an expression that creates a new instance each time it is evaluated.

func NewFile(fd int , name st r ing) *File {
i f fd < 0 {

return nil
}
f := File{fd, name, nil, 0} ← Create a new File
return &f ← Return the address of f

}

It is OK to return the address of a local variable; the storage associated with the variable
survives after the function returns.

In fact, taking the address of a composite literal allocates a fresh instance each time it is
evaluated, so we can combine these last two lines.b

return &File{fd, name, nil, 0}

The items (called fields) of a composite literal are laid out in order andmust all be present.
However, by labeling the elements explicitly as field:value pairs, the initializers can ap-
pear in any order, with the missing ones left as their respective zero values. Thus we
could say

return &File{fd: fd, name: name}

As a limiting case, if a composite literal contains no fields at all, it creates a zero value
for the type. The expressions new(File) and &File{} are equivalent.

Composite literals can also be created for arrays, slices, and maps, with the field labels
being indices or map keys as appropriate. In these examples, the initializations work
regardless of the values of Enone, and Einval, as long as they are distinct.

ar := [...]st r ing {Enone: "no error", Einval: "invalid argument"}
sl := []st r ing {Enone: "no error", Einval: "invalid argument"}
ma := map[in t]st r ing {Enone: "no error", Einval: "invalid argument

"}

Defining your own types
Of course Go allows you to define new types, it does this with the type keyword:

type foo in t

bTaking the address of a composite literal tells the compiler to allocate it on the heap, not the stack.

Defining your own types 55

Creates a new type foo which acts like an int. Creating more sophisticated types is done
with the struct keyword. An example would be when we want record somebody’s name
(string) and age (int) in a single structure and make it a new type:

Listing 4.3. Structures
package main
import "fmt"

type NameAge s t ruct {
name st r ing ← Not exported
age in t ← Not exported

}

func main() {
a := new(NameAge)
a.name = "Pete" ; a.age = 42
fmt.Printf("%v\n", a)

}

Apropos, the output of fmt.Printf("%v\n", a) is

&{Pete 42}

That is nice! Go knows how to print your structure. If you only want to print one, or a
few, fields of the structure you’ll need to use .<field name>. For example to only print
the name:

fmt.Printf("%s", a.name) ← %s formats a string

More on structure fields

As said each item in a structure is called a field. A struct with no fields: struct {}

Or one with fourc fields:

s t ruct {
x, y in t
A *[] in t
F func()

}

If you omit the name for a field, you create an anonymous field, for instance:

s t ruct {
T1 ← Field name is T1
*T2 ← Field name is T2
P.T3 ← Field name is T3
x, y in t ← Field names are x and y

}

Note that field names that start with a capital letter are exported, i.e. can be set or read
from other packages. Field names that start with a lowercase are private to the current
package. The same goes for functions defined in packages, see chapter 3 for the details.

Methods

If you create functions that work on your newly defined type, you can take two routes:

1. Create a function that takes the type as an argument.

cYes, four (4).

56 Chapter 4: Beyond the basics

func doSomething(n1 *NameAge, n2 in t) { /* */ }

This is (you might have guessed) a function call.

2. Create a function that works on the type (see receiver in listing 2.1):

func (n1 *NameAge) doSomething(n2 in t) { /* */ }

This is a method call, which can be used as:

var n *NameAge
n.doSomething(2)

Whether to use a function or method is entirely up to the programmer, but if you want to
satisfy an interface (see the next chapter) you must use methods. If no such requirement
exists it is a matter of taste whether to use functions or methods.

But keep the following in mind, this is quoted from [10]:

If x is addressable and &x’s method set contains m, x.m() is shorthand for (&x).m().

In the above case this means that the following is not an error:

var n NameAge ← Not a pointer
n.doSomething(2)

Here Go will search the method list for n of type NameAge, come up empty and will then
also search the method list for the type *NameAge and will translate this call to (&n).
doSomething(2).

There is a subtle but major difference between the following type declarations. Also see
[10, section “Type Declarations”]. Suppose we have:

// A Mutex is a data type with two methods,
// Lock and Unlock.
type Mutex s t ruct { /* Mutex fields */ }
func (m *Mutex) Lock() { /* Lock impl. */ }
func (m *Mutex) Unlock() { /* Unlock impl. */ }

We now create two types in two different manners:

• type NewMutex Mutex;

• type PrintableMutex struct {Mutex }.

Now NewMutex is equal to Mutex, but it does not have any of the methods of Mutex. In
other words its method set is empty. But PrintableMutex has inherited the method set
from Mutex. In the words of [10]:

The method set of *PrintableMutex contains the methods Lock and Unlock
bound to its anonymous field Mutex.

Conversions
Sometimes you want to convert a type to another type. This is possible in Go, but there
are some rules. For starters, converting from one value to another is done by operators
(that look like functions: byte()) and not all conversions are allowed.

Conversions 57

Table 4.1. Valid conversions, float64 works the same as float32. Note that float32 has been
abbreviated to flt32 in this table to make it fit on the page.

From b []byte i []int r []rune s string f flt32 i int

To

[]byte × []byte(s)
[]int × []int(s)
[]rune × []rune(s)
string string(b) string(i) string(r) ×
ftl32 × flt32(i)
int int(f) ×

• From a string to a slice of bytes or runes.

mystring := "hello this is string"

byteslice := []byte(mystring)

Converts to a byte slice, each byte contains the integer value of the corresponding
byte in the string. Note that as strings in Go are encoded in UTF-8 some characters
in the string may end up in 1, 2, 3 or 4 bytes.

runeslice := []rune(mystring)

Converts to an rune slice, each rune contains a Unicode code point. Every character
from the string corresponds to one rune.

• From a slice of bytes or runes to a string.

b := []byte {'h','e','l','l','o'} // Composite
// literal

s := st r ing(b)
i := []rune {257,1024,65}
r := st r ing(i)

For numeric values the following conversions are defined:

• Convert to an integer with a specific (bit) length: uint8(int);

• From floating point to an integer value: int(float32). This discards the fraction
part from the floating point value;

• The other way around: float32(int);

User defined types and conversions

How can you convert between the types you have defined yourself? We create two types
here Foo and Bar, where Bar is an alias for Foo:

type foo s t ruct { in t } ← Anonymous struct field
type bar foo ← bar is an alias for foo

Then we:

var b bar = bar{1} ← Declare b to be a bar
var f foo = b ← Assign b to f

Which fails on the last line with:

cannot use b (type bar) as type foo in assignment
This can be fixed with a conversion:

58 Chapter 4: Beyond the basics

var f foo = foo(b)

Note that converting structures that are not identical in their fields is more difficult. Also
note that converting b to a plain int also fails; an integer is not the same as a structure
containing an integer.

Exercises

Q18. (1) Pointer arithmetic

1. In the main text on page 52 there is the following text:

…there is no pointer arithmetic, so if you write: *p++, it is interpreted as
(*p)++: first dereference and then increment the value.

When you increment a value like this, for which types will it work?

2. Why doesn’t it work for all types?

Q19. (2) Map function with interfaces

1. Use the answer from exercise Q12, but nowmake it generic using interfaces. Make
it at least work for ints and strings.

Q20. (1) Pointers

1. Suppose we have defined the following structure:

type Person s t ruct {
name st r ing
age in t

}

What is the difference between the following two lines?

var p1 Person
p2 := new(Person)

2. What is the difference between the following two allocations?

func Set(t *T) {
x = t

}

and

func Set(t T) {
x= &t

}

Q21. (1) Linked List

1. Make use of the package container/list to create a (doubly) linked list. Push the
values 1, 2 and 4 to the list and then print it.

2. Create your own linked list implementation. And perform the same actions as in
question 1

Q22. (1) Cat

1. Write a program which mimics the Unix program cat. For those who don’t know
this program, the following invocation displays the contents of the file blah:
% cat blah

Exercises 59

2. Make it support the n flag, where each line is numbered.

Q23. (2) Method calls

1. Suppose we have the following program. Note the package container/vector was
once part of Go, but has been removed when the append built-in was introduced.
However, for this question this isn’t important. The package implemented a stack-
like structure, with push and pop methods.

package main

import "container/vector"

func main() {
k1 := vector.IntVector{ }
k2 := &vector.IntVector{ }
k3 := new(vector.IntVector)
k1.Push(2)
k2.Push(3)
k3.Push(4)

}

What are the types of k1, k2 and k3?

2. Now, this program compiles and runs OK. All the Push operations work even
though the variables are of a different type. The documentation for Push says:

func (p *IntVector) Push(x int) Push appends x to the end of the vector.

So the receiver has to be of type *IntVector, why does the code above (the Push
statements) work correct then?

Answers 61

Answers

A18. (1) Pointer arithmetic

1. This will only work for pointers to point to numerical (int, uint, etc) values.

2. The ++ is only defined for numerical types and because there is no operator over-
loading in Go it fails (compilation error) otherwise.

A19. (2) Map function with interfaces

Listing 4.4. A generic map function in Go
1.

package main

import "fmt"

//* define the empty interface as a type
type e inter face { }

func mult2(f e) e {
switch f.(type) {
case int:

return f.(in t) * 2
case st r ing:

return f.(st r ing) + f.(st r ing) + f.(st r ing)
+ f.(st r ing)

}
return f

}

func Map(n []e, f func(e) e) []e {
m := make([]e, len(n))
for k, v := range n {

m[k] = f(v)
}
return m

}

func main() {
m := []e{1, 2, 3, 4}
s := []e{"a", "b", "c", "d"}
mf := Map(m, mult2)
sf := Map(s, mult2)
fmt.Printf("%v\n", mf)
fmt.Printf("%v\n", sf)

}

A20. (1) Pointers

1. In first line: var p1 Person allocates a Person-value to p1. The type of p1 is
Person.

The second line: p2 := new(Person) allocates memory and assigns a pointer to
p2. The type of p2 is *Person.

2. In the second function, x points to a new (heap-allocated) variable t which con-
tains a copy of whatever the actual argument value is.

62 Chapter 4: Beyond the basics

In the first function, x points to the same thing that t does, which is the same
thing that the actual argument points to.

So in the second function, we have an “extra” variable containing a copy of the
interesting value.

A21. (1) Linked List

1. The following is the implementation of a program using doubly linked lists from
container/list.

Listing 4.5. Doubly linked list using container/list
package main

import (
"fmt"
"container/list"

)

func main() {
l := list.New()
l.PushBack(1)
l.PushBack(2)
l.PushBack(4)

for e := l.Front() ; e != nil ; e = e.Next() {
fmt.Printf("%v\n", e.Value)

}
}

2. The following is a program implementing a simple doubly linked list supporting
int values.

Listing 4.6. Doubly linked list
package main

..0
import (

"errors"
"fmt"

)

type Value in t ..1

type Node s t ruct { ..2
Value
prev, next *Node

}

type List s t ruct {
head, tail *Node

}

..3
func (l *List) Front() *Node {

return l.head
}

func (n *Node) Next() *Node {

Answers 63

return n.next
}

func (l *List) Push(v Value) *List {
n := &Node{Value: v} ..4

i f l.head == nil { ..5
l.head = n

} else {
l.tail.next = n ..6
n.prev = l.tail ..7

}
l.tail = n ..8

return l
}

var errEmpty = errors.New("List is empty")

func (l *List) Pop() (v Value, err error) {
i f l.tail == nil { ..9

err = errEmpty
} else {

v = l.tail.Value ..10

l.tail = l.tail.prev ..11
i f l.tail == nil {

l.head = nil ..12
}

}

return v, err
}

func main() {
l := new(List)

l.Push(1)
l.Push(2)
l.Push(4)

for n := l.Front() ; n != nil ; n = n.Next() {
fmt.Printf("%v\n", n.Value)

}

fmt.Println()

for v, err := l.Pop() ; err == nil ; v, err = l.Pop()
{

fmt.Printf("%v\n", v)
}

}

..0 Include all the packages we need.

..1 Declare a type for the value our list will contain;

..2 declare a type for the each node in our list;

..3 Mimic the interface of container/list.

64 Chapter 4: Beyond the basics

..4 When pushing, create a new Node with the provided value;

..5 if the list is empty, put the new node at the head;

..6 otherwise put it at the tail;

..7 make sure the new node points back to the previously existing one;

..8 point tail to the newly inserted node.

..9 When popping, return an error if the list is empty;
..10 otherwise save the last value;
..11 discard the last node from the list;
..12 and make sure the list is consistent if it becomes empty;

A22. (1) Cat

1. The following is implemention of catwhich also supports a n flag to number each
line.

Listing 4.7. A cat program
package main

..0
import (

"io"
"os"
"fmt"
"bufio"
"flag"

)

var numberFlag = flag.Bool("n", false, "number each line") ..1

..2
func cat(r *bufio.Reader) {

i := 1
for {

buf, e := r.ReadBytes('\n') ..3
i f e == io.EOF { ..4

break
}
i f *numberFlag { ..5

fmt.Fprintf(os.Stdout, "%5d %s", i,
buf)

i++
} else { ..6

fmt.Fprintf(os.Stdout, "%s", buf)
}

}
return

}

func main() {
flag.Parse()
i f flag.NArg() == 0 {

cat(bufio.NewReader(os.Stdin))
}
for i := 0 ; i < flag.NArg() ; i++ {

Answers 65

f, e := os.Open(flag.Arg(i), os.O_RDONLY, 0)
i f e != nil {

fmt.Fprintf(os.Stderr, "%s: error
reading from %s: %s\n",

os.Args[0], flag.Arg(i), e.
String())

continue
}
cat(bufio.NewReader(f))

}
}

..0 Include all the packages we need;

..1 Define a new flag ”n”, which defaults to off. Note that we get the help for
free;

..2 Start the function that actually reads the file’s contents and displays it;

..3 Read one line at the time;

..4 Or stop if we hit the end;

..5 If we should number each line, print the line number and then the line itself;

..6 Otherwise we could just print the line.

A23. (2) Method calls

1. The type of k1 is vector.IntVector. Why? We use a composite literal (the {}),
so we get a value of that type back. The variable k2 is of *vector.IntVector,
because we take the address (&) of the composite literal. And finally k3 has also
the type *vector.IntVector, because new returns a pointer to the type.

2. The answer is given in [10] in the section “Calls”, where among other things it says:

A method call x.m() is valid if the method set of (the type of) x contains
m and the argument list can be assigned to the parameter list of m. If x
is addressable and &x’s method set contains m, x.m() is shorthand for
(&x).m().

In other words because k1 is addressable and *vector.IntVector does have the
Pushmethod, the call k1.Push(2) is translated by Go into (&k1).Push(2)which
makes the type system happy again (and you too — now you know this).d

dAlso see section “Methods” in this chapter.

5 Interfaces

I have this phobia about having my body
penetrated surgically. You know what I
mean?

eXistenZ
TED PIKUL

In Go, the word interface is overloaded to mean several different things. Every type hasThe following text
is from [22]. Writ-
ten by Ian Lance
Taylor — one of the
authors of Go.

an interface, which is the set of methods defined for that type. This bit of code defines a
struct type S with one field, and defines two methods for S.

Listing 5.1. Defining a struct and methods on it
type S s t ruct { i in t }
func (p *S) Get() in t { return p.i }
func (p *S) Put(v in t) { p.i = v }

You can also define an interface type, which is simply a set of methods. This defines an
interface I with two methods:

type I inter face {
Get() in t
Put(in t)

}

S is a valid implementation for interface I, because it defines the two methods which
I requires. Note that this is true even though there is no explicit declaration that S
implements I.
A Go program can use this fact via yet another meaning of interface, which is an interface
value:

func f(p I) { ..0
fmt.Println(p.Get()) ..1
p.Put(1) ..2

}

..0 Declare a function that takes an interface type as the argument;

..1 As p implements interface I it must have the Get() method;

..2 Same holds for the Put() method.

Here the variable p holds a value of interface type. Because S implements I, we can call
f passing in a pointer to a value of type S:

var s S ; f(&s)

The reason we need to take the address of s, rather than a value of type S, is because we
defined the methods on s to operate on pointers, see the code above in listing 5.1. This
is not a requirement — we could have defined the methods to take values — but then the
Put method would not work as expected.

The fact that you do not need to declare whether or not a type implements an interface
means that Go implements a form of duck typing[26]. This is not pure duck typing, be-
cause when possible the Go compiler will statically check whether the type implements
the interface. However, Go does have a purely dynamic aspect, in that you can convert
from one interface type to another. In the general case, that conversion is checked at run

Interfaces 67

time. If the conversion is invalid — if the type of the value stored in the existing interface
value does not satisfy the interface to which it is being converted — the program will fail
with a run time error.

Interfaces in Go are similar to ideas in several other programming languages: pure ab-
stract virtual base classes in C++, typeclasses in Haskell or duck typing in Python. How-
ever there is no other language which combines interface values, static type checking,
dynamic run time conversion, and no requirement for explicitly declaring that a type sat-
isfies an interface. The result in Go is powerful, flexible, efficient, and easy to write.

Which is what?

Let’s define another type that also implements the interface I:

type R s t ruct { i in t }
func (p *R) Get() in t { return p.i }
func (p *R) Put(v in t) { p.i = v }

The function f can now accept variables of type R and S. Suppose you need to know the
actual type in the function f. In Go you can figure that out by using a type switch.

func f(p I) {
switch t := p.(type) { ..0

case *S: ..1
case *R: ..2
case S: ..3
case R: ..4
default: ..5

}
}

..0 The type switch. Use (type) in a switch statement. We store the type in the
variable t;

..1 The actual type of p is a pointer to S;

..2 The actual type of p is a pointer to R;

..3 The actual type of p is a S;

..4 The actual type of p is a R;

..5 It’s another type that implements I.

Using (type) outside a switch is illegal. A type switch isn’t the only way to discover
the type at run-time. You can also use a “comma, ok” form to see if an interface type
implements a specific interface:

i f t, ok := something.(I) ; ok {
// something implements the interface I
// t is the type it has

}

When you are sure a variable implements an interface you can use:

t := something.(I)

68 Chapter 5: Interfaces

Empty interface

Since every type satisfies the empty interface: interface{}. We can create a generic
function which has an empty interface as its argument:

Listing 5.2. A function with an empty interface argument
func g(something inter face { }) in t {

return something.(I).Get()
}

The return something.(I).Get() is the tricky bit in this function. The value something
has type interface{}, meaning no guarantee of any methods at all: it could contain any
type. The .(I) is a type assertion which converts something to an interface of type I.
If we have that type we can invoke the Get() function. So if we create a new variable of
the type *S, we can just call g(), because *S also implements the empty interface.

s = new(S)
fmt.Println(g(s)) ;

The call to g will work fine and will print 0. If we however invoke g() with a value that
does not implement I we have a problem:

Listing 5.3. Failing to implement an interface
i := 5 ← Make i a “lousy” int
fmt.Println(g(i))

This compiles, but when we run this we get slammed with:

panic: interface conversion: int is not main.I: missing method Get

Which is completely true, the built-in type int does not have a Get() method.

Methods
Methods are functions that have a receiver (see chapter 2). You can define methods on
any type (except on non-local types, this includes built-in types: the type int can not
have methods). You can however make a new integer type with its own methods. For
example:

type Foo in t

func (self Foo) Emit() {
fmt.Printf("%v", self)

}

type Emitter inter face {
Emit()

}

Doing this on non-local (types defined in other packages) types yields:

Listing 5.4. Failure extending built-in types
func (i in t) Emit() {
fmt.Printf("%d", i)

}

cannot define new methods
on non-local type int

Listing 5.5. Failure extending non-local types
func (a *net.AddrError) Emit() {
fmt.Printf("%v", a)

}

cannot define new methods
on non-local type net.AddrError

Interface names 69

Methods on interface types

An interface defines a set of methods. A method contains the actual code. In other words,
an interface is the definition and the methods are the implementation. So a receiver can
not be an interface type, doing so results in a invalid receiver type ... compiler
error. The authoritative word from the language spec [10]:

The receiver type must be of the form T or *T where T is a type name. T is called
the receiver base type or just base type. The base type must not be a pointer or
interface type and must be declared in the same package as the method.

Pointers to interfaces

Creating a pointer to an interface value is a useless action in Go. It is in fact
illegal to create a pointer to an interface value. The release notes for the release
2010-10-13 that made them illegal leave no room for doubt:

The language change is that uses of pointers to interface values no longer
automatically de-reference the pointer. A pointer to an interface value is more
often a beginner’s bug than correct code.

From the [9]. If not for this restriction, this code:

var buf bytes.Buffer
io.Copy(buf, os.Stdin)

would copy standard input into a copy of buf, not into buf itself. This is almost never
the desired behavior.

Interface names
By convention, one-method interfaces are named by the method name plus the -er suffix:
Reader, Writer, Formatter etc.
There are a number of such names and it’s productive to honor them and the function
names they capture. Read, Write, Close, Flush, String and so on have canonical sig-
natures and meanings. To avoid confusion, don’t give your method one of those names
unless it has the same signature and meaning. Conversely, if your type implements a
method with the same meaning as a method on a well-known type, give it the same
name and signature; call your string-converter method String not ToString. Text copied from

[8].

A sorting example
Recall the Bubblesort exercise (Q14), where we sorted an array of integers:

func bubblesort(n [] in t) {
for i := 0 ; i < len(n)-1 ; i++ {

for j := i + 1 ; j < len(n) ; j++ {
i f n[j] < n[i] {

n[i], n[j] = n[j], n[i]
}

}
}

}

A version that sorts strings is identical except for the signature of the function:

func bubblesortString(n []st r ing) { /* ... */ }

Using this approach would lead to two functions, one for each type. By using interfaces
we can make this more generic. Let’s create a new function that will sort both strings
and integers, something along the lines of this non-working example:

70 Chapter 5: Interfaces

func sort(i [] inter face { }) { ..0
switch i.(type) { ..1

case st r ing: ..2
// ...

case int:
// ...

}
return /* ... */ ..3

}

..0 Our function will receive a slice of empty interfaces;

..1 Using a type switch we find out what the actual type is of the input;

..2 And then sort accordingly;

..3 Return the sorted slice.

But when we call this function with sort([]int{1, 4, 5}), it fails with:
cannot use i (type []int) as type []interface in function argument

This is because Go can not easily convert to a slice of interfaces. Just converting to an
interface is easy, but to a slice is much more costly. To keep a long story short: Go doesThe full mailing

list discussion on
this subject can be
found at [14].

not (implicitly) convert slices for you.

So what is the Go way of creating such a “generic” function? Instead of doing the type
inference ourselves with a type switch, we let Go do it implicitly: The following steps are
required:

1. Define an interface type (called Sorter here) with a number of methods needed for
sorting. We will at least need a function to get the length of the slice, a function
to compare two values and a swap function;

type Sorter inter face {
Len() in t ← len() as a method
Less(i, j in t) bool ← p[j] < p[i] as a method
Swap(i, j in t) ← p[i], p[j] = p[j], p[i] as a method

}

2. Define new types for the slices we want to sort. Note that we declare slice types;

type Xi [] in t
type Xs []st r ing

3. Implementation of the methods of the Sorter interface. For integers:

func (p Xi) Len() in t { return len(p) }
func (p Xi) Less(i int , j in t) bool { return p[j] < p[i] }
func (p Xi) Swap(i int , j in t) { p[i], p[j] = p[j], p[i]

}

And for strings:

func (p Xs) Len() in t { return len(p) }
func (p Xs) Less(i int , j in t) bool { return p[j] < p[i] }
func (p Xs) Swap(i int , j in t) { p[i], p[j] = p[j], p[i]

}

4. Write a generic Sort function that works on the Sorter interface.

A sorting example 71

func Sort(x Sorter) { ..0
for i := 0 ; i < x.Len() - 1 ; i++ { ..1

for j := i + 1 ; j < x.Len() ; j++ {
i f x.Less(i, j) {

x.Swap(i, j)
}

}
}

}

..0 x is now of the Sorter type;

..1 Using the defined functions, we implement Bubblesort.

We can now use your generic Sort function as follows:

ints := Xi{44, 67, 3, 17, 89, 10, 73, 9, 14, 8}
strings := Xs{"nut", "ape", "elephant", "zoo", "go"}

Sort(ints)
fmt.Printf("%v\n", ints)
Sort(strings)
fmt.Printf("%v\n", strings)

Listing interfaces in interfaces

Take a look at the following example of an interface definition, this one is from the pack-
age container/heap:

type Interface inter face {
sort.Interface
Push(x inter face { })
Pop() inter face { }

}

Here another interface is listed inside the definition of heap.Interface, this may look
odd, but is perfectly valid, remember that on the surface an interface is nothing more
than a listing of methods. sort.Interface is also such a listing, so it is perfectly legal
to include it in the interface.

Introspection and reflection

In the following example we want to look at the “tag” (here named “namestr”) defined in
the type definition of Person. To do this we need the reflect package (there is no other
way in Go). Keep in mind that looking at a tag means going back to the type definition.
So we use the reflect package to figure out the type of the variable and then access the
tag.

Listing 5.6. Introspection using reflection
..

..
0

.

..
1

.

..
2

type Person s t ruct {
name st r ing "namestr" ← "namestr" is the tag
age in t

}

func ShowTag(i inter face { }) { ← Called with *Person
switch t := reflect.TypeOf(i) ; t.Kind() {
case reflect.Ptr: ← A pointer, thus reflect.Ptr
tag := t.Elem().Field(0).Tag

72 Chapter 5: Interfaces

..0 We are dealing with a Type and according to the documentationa:

// Elem returns a type’s element type.
// It panics if the type’s Kind is not Array, Chan, Map, Ptr, or Slice.
Elem() Type

So on t we use Elem() to get the value the pointer points to;

..1 We have now dereferenced the pointer and are ”inside” our structure. We now use
Field(0) to access the zeroth field;

..2 The struct StructField has a Tagmember which returns the tag-name as a string.
So on the 0th field we can unleash .Tag to access this name: Field(0).Tag. This
gives us namestr.

To make the difference between types and values more clear, take a look at the following
code:

Listing 5.7. Reflection and the type and value
func show(i inter face { }) {

switch t := i.(type) {
case *Person:
t := reflect.TypeOf(i) ← Type meta data
v := reflect.ValueOf(i) ← Actual values
tag := t.Elem().Field(0).Tag ..0
name := v.Elem().Field(0).String() ..1

}
}

..0 Here we want to get to the “tag”. So we need Elem() to redirect the pointer, access
the first field and get the tag. Note we operate on t a reflect.Type;

..1 Now we want to get access to the value of one of the members and we employ
Elem() on v to do the redirection. Now we have arrived at the structure. Then we
go to the first field Field(0) and invoke the String() method on it.

Figure 5.1. Peeling away the layers using reflection. Going from
a *Person via Elem() using the methods described in go doc
reflect to get the actual string contained within.

reflect.Ptr
.Elem()

reflect.Value
.Field(0)

reflect.StructField

.String()

"Albert Einstein"
"Albert Einstein"

Setting a value works similarly as getting a value, but only works on exported members.
Again some code:

ago doc reflect

Exercises 73

Listing 5.8. Reflect with private member
type Person s t ruct {
name st r ing ← name
age in t
}

func Set(i inter face { }) {
switch i.(type) {
case *Person:
r := reflect.ValueOf(i)
r.Elem(0).Field(0).SetString("

Albert Einstein")
}

}

Listing 5.9. Reflect with public member
type Person s t ruct {
Name st r ing ← Name
age in t
}

func Set(i inter face { }) {
switch i.(type) {
case *Person:
r := reflect.ValueOf(i)
r.Elem().Field(0).SetString("

Albert Einstein")
}

}

The code on the left compiles and runs, but when you run it, you are greeted with a stack
trace and a run time error:

panic: reflect.Value.SetString using value obtained using unexported
field
The code on the right works OK and sets the member Name to “Albert Einstein”. Of course
this only works when you call Set() with a pointer argument.

Exercises

Q24. (1) Interfaces and compilation

1. The code in listing 5.3 on page 68 compiles OK — as stated in the text. But when
you run it you’ll get a runtime error, so something is wrong. Why does the code
compile cleanly then?

Q25. (1) Pointers and reflection

1. One of the last paragraphs in section “Introspection and reflection” on page 71,
has the following words:

The code on the right works OK and sets the member Name to “Albert Ein-
stein”. Of course this only works when you call Set() with a pointer argu-
ment.

Why is this the case?

Q26. (2) Interfaces and max()

1. In exercise Q13 we created a max function that works on a slice of integers. The
question now is to create a program that shows the maximum number and that
works for both integers and floats. Try tomake your program as generic as possible,
although that is quite difficult in this case.

Answers 75

Answers

A24. (1) Interfaces and compilation

1. The code compiles because an integer type implements the empty interface and
that is the check that happens at compile time.

A proper way to fix this is to test if such an empty interface can be converted and, if
so, call the appropriate method. The Go code that defines the function g in listing
5.2 – repeated here:

func g(any inter face { }) in t { return any.(I).Get() }

Should be changed to become:

func g(any inter face { }) in t {
i f v, ok := any.(I) ; ok { // Check if any can be

converted
return v.Get() // If so invoke Get()

}
return -1 // Just so we return anything

}

If g() is called now there are no run-time errors anymore. The idiom used is called
“comma ok” in Go.

A25. (1) Pointers and reflection

1. When called with a non-pointer argument the variable is a copy (call-by-value).
So you are doing the reflection voodoo on a copy. And thus you are not changing
the original value, but only this copy.

A26. (2) Interfaces and max()

1. The following program calculates a maximum. It is as generic as you can get with
Go.

Listing 5.10. Generic way of calculating a maximum
package main

func Less(l, r inter face { }) bool { ..0
switch l.(type) {
case int:

i f _, ok := r.(in t) ; ok {
return l.(in t) < r.(in t) ..1

}
case float32:

i f _, ok := r.(float32) ; ok {
return l.(float32) < r.(float32) ..2

}
}
return false

}

func main() {
var a, b, c in t = 5, 15, 0
var x, y, z float32 = 5.4, 29.3, 0.0

i f c = a ; Less(a, b) { ..3
c = b

76 Chapter 5: Interfaces

}
i f z = x ; Less(x, y) { ..4

z = y
}
println(c, z)

}

..0 We could have chosen tomake the return type of this function an interface{},
but that would mean that a caller would always have to do a type assertion
to extract the actual type from the interface;

..1 All parameters are confirmed to be integers. Now perform the comparison;

..2 Parameters are float32;

..3 Get the maximum of a and b;

..4 Same for the floats.

6 Concurrency

• “Parallelism is about performance;

• Concurrency is about program
design.”

Google IO 2010
ROB PIKE

In this chapter we will show off Go’s ability for concurrent programming using channels
and goroutines. Goroutines are the central entity in Go’s ability for concurrency. But what
is a goroutine? From [8]:

They’re called goroutines because the existing terms — threads, coroutines, pro-
cesses, and so on — convey inaccurate connotations. A goroutine has a simple
model: it is a function executing in parallel with other goroutines in the same
address space. It is lightweight, costing little more than the allocation of stack
space. And the stacks start small, so they are cheap, and grow by allocating (and
freeing) heap storage as required.

A goroutine is a normal function, except that you start it with the keyword go.

ready("Tea", 2) ← Normal function call
go ready("Tea", 2) ← ready() started as goroutine

The following idea for a program was taken from [20]. We run a function as two gorou-
tines, the goroutines wait for an amount of time and then print something to the screen.
On the lines 14 and 15 we start the goroutines. The main function waits long enough,
so that both goroutines will have printed their text. Right now we wait for 5 seconds on
line 17, but in fact we have no idea how long we should wait until all goroutines have
exited.

Listing 6.1. Go routines in action
8func ready(w str ing , sec in t) {
9time.Sleep(time.Duration(sec) * time.Second)
10fmt.Println(w, "is ready !")
11}

13func main() {
14go ready("Tea", 2)
15go ready("Coffee", 1)
16fmt.Println("I'm waiting")
17time.Sleep(5 * time.Second)
18}

Listing 6.1 outputs:

I'm waiting ← Right away
Coffee is ready! ← After 1 second
Tea is ready! ← After 2 seconds

If we did not wait for the goroutines (i.e. remove line 17) the program would be termi-
nated immediately and any running goroutines would die with it. To fix this we need some
kind of mechanism which allows us to communicate with the goroutines. This mecha-
nism is available to us in the form of channels. A channel can be compared to a two-way
pipe in Unix shells: you can send to and receive values from it. Those values can only be
of a specific type: the type of the channel. If we define a channel, we must also define

Concurrency 79

the type of the values we can send on the channel. Note that we must use make to create
a channel:

ci := make(chan int)
cs := make(chan st r ing)
cf := make(chan inter face { })

Makes ci a channel on which we can send and receive integers, makes cs a channel for
strings and cf a channel for types that satisfy the empty interface. Sending on a channel
and receiving from it, is done with the same operator: <−. Depending on the operands it
figures out what to do:

ci <− 1 ← Send the integer 1 to the channel ci
<−ci ← Receive an integer from the channel ci
i := <−ci ← Receive from the channel ci and store it in i

Let’s put this to use.

Listing 6.2. Go routines and a channel

var c chan int ..0

func ready(w str ing , sec in t) {
time.Sleep(time.Duration(sec) * time.Second)
fmt.Println(w, "is ready !")
c <− 1 ..1

}

func main() {
c = make(chan int) ..2
go ready("Tea", 2) ..3
go ready("Coffee", 1)
fmt.Println("I'm waiting, but not too long")
<−c ..4
<−c ..5

}

..0 Declare c to be a variable that is a channel of ints. That is: this channel can move
integers. Note that this variable is global so that the goroutines have access to it;

..1 Send the integer 1 on the channel c;

..2 Initialize c;

..3 Start the goroutines with the keyword go;

..4 Wait until we receive a value from the channel. Note that the value we receive is
discarded;

..5 Two goroutines, two values to receive.

There is still some remaining ugliness; we have to read twice from the channel (lines
14 and 15). This is OK in this case, but what if we don’t know how many goroutines
we started? This is where another Go built-in comes in: select. With select you can
(among other things) listen for incoming data on a channel.

Using select in our program does not really make it shorter, because we run too few
goroutines. We remove the lines 14 and 15 and replace them with the following:

Listing 6.3. Using select
14L: for {
15select {

80 Chapter 6: Concurrency

16case <−c:
17i++
18i f i > 1 {
19break L
20}
21}
22}

We will now wait as long as it takes. Only when we have received more than one reply
on the channel c will we exit the loop L.

Make it run in parallel

While our goroutines were running concurrently, they were not running in parallel. When
you do not tell Go anything there can only be one goroutine running at a time. With
runtime.GOMAXPROCS(n) you can set the number of goroutines that can run in parallel.
From the documentation:

GOMAXPROCS sets the maximum number of CPUs that can be executing simulta-
neously and returns the previous setting. If n < 1, it does not change the current
setting. This call will go away when the scheduler improves.

If you do not want to change any source code you can also set an environment variable
GOMAXPROCS to the desired value.

More on channels
When you create a channel in Go with ch := make(chan bool), an unbuffered channel
for bools is created. What does this mean for your program? For one, if you read (value
:= <−ch) it will block until there is data to receive. Secondly anything sending (ch<−5)
will block until there is somebody to read it. Unbuffered channels make a perfect tool
for synchronizing multiple goroutines.

But Go allows you to specify the buffer size of a channel, which is quite simply how
many elements a channel can hold. ch := make(chan bool, 4), creates a buffered
channel of bools that can hold 4 elements. The first 4 elements in this channel are
written without any blocking. When you write the 5th element, your code will block, until
another goroutine reads some elements from the channel to make room.

In conclusion, the following is true in Go:

ch := make(chan type, value)
{

value == 0 → unbuffered)
value > 0 → buffer value elements

Closing channels

When a channel is closed the reading side needs to know this. The following code will
check if a channel is closed.

x, ok = <−ch

Where ok is set to true the channel is not closed and we’ve read something. Otherwise
ok is set to false. In that case the channel was closed.

Read-only or write-only channels

Exercises

Q27. (1) Channels

Exercises 81

1. Modify the program you created in exercise Q2 to use channels, in other words,
the function called in the body should now be a goroutine and communication
should happen via channels. You should not worry yourself on how the goroutine
terminates.

2. There are a few annoying issues left if you resolve question 1. One of the problems
is that the goroutine isn’t neatly cleaned up when main.main() exits. And worse,
due to a race condition between the exit of main.main() and main.shower()
not all numbers are printed. It should print up until 9, but sometimes it prints
only to 8. Adding a second quit-channel you can remedy both issues. Do this.a

Q28. (2) Fibonacci II

1. This is the same exercise as the one given page 33 in exercise 11. For complete-
ness the complete question:

The Fibonacci sequence starts as follows: 1, 1, 2, 3, 5, 8, 13, . . . Or in math-
ematical terms: x1 = 1;x2 = 1;xn = xn−1 + xn−2 ∀n > 2.
Write a function that takes an int value and gives that many terms of the
Fibonacci sequence.

But now the twist: You must use channels.

aYou will need the select statement.

Answers 83

Answers

A27. (1) Channels

1. A possible program is:

Listing 6.4. Channels in Go
1package main

3import "fmt"

5func main() {
6ch := make(chan int)
7go shower(ch)
8for i := 0 ; i < 10 ; i++ {
9ch <− i
10}
11}

13func shower(c chan int) {
14for {
15j := <−c
16fmt.Printf("%d\n", j)
17}
18}

We start of in the usual way, then at line 6 we create a new channel of ints. In the
next line we fire off the function shower with the ch variable as it argument, so
that we may communicate with it. Next we start our for-loop (lines 8-10) and in
the loop we send (with <−) our number to the function (now a goroutine) shower.
In the function shower we wait (as this blocks) until we receive a number (line
15). Any received number is printed (line 16) and then continue the endless loop
started on line 14.

2. An answer is

Listing 6.5. Adding an extra quit channel
1package main

3import "fmt"

5func main() {
6ch := make(chan int)
7quit := make(chan bool)
8go shower(ch, quit)
9for i := 0 ; i < 10 ; i++ {
10ch <− i
11}
12quit <− false // or true, does not matter
13}

15func shower(c chan int , quit chan bool) {
16for {
17select {
18case j := <−c:
19fmt.Printf("%d\n", j)
20case <−quit:
21break
22}

84 Chapter 6: Concurrency

23}
24}

On line 20 we read from the quit channel and we discard the value we read. We
could have used q := <−quit, but then we would have used the variable only
once — which is illegal in Go. Another trick you might have pulled out of your hat
may be: _ = <−quit. This is valid in Go, but the Go idiom favors the one given
on line 20.

A28. (2) Fibonacci II

1. The following program calculates the Fibonacci numbers using channels.

Listing 6.6. A Fibonacci function in Go
package main
import "fmt"

func dup3(in <−chan int) (<−chan int , <−chan int , <−chan int
) {

a, b, c := make(chan int , 2), make(chan int , 2),
make(chan int , 2)

go func() {
for {

x := <−in
a <− x
b <− x
c <− x

}
}()
return a, b, c

}

func fib() <−chan int {
x := make(chan int , 2)
a, b, out := dup3(x)
go func() {

x <− 0
x <− 1
<−a
for {

x <− <−a+<−b
}

}()
return out

}

func main() {
x := fib()
for i := 0 ; i < 10 ; i++ {

fmt.Println(<−x)
}

}

// See sdh33b.blogspot.com/2009/12/fibonacci-in-go.html

7 Communication

“Good communication is as stimulating as
black coffee, and just as hard to sleep
after.”

ANNE MORROW LINDBERGH

In this chapter we are going to look at the building blocks in Go for communicating
with the outside world. We will look at files, directories, networking and executing other
programs. Central to Go’s I/O are the interfaces io.Reader and io.Writer.

Reading from (and writing to) files is easy in Go. This program only uses the os package
to read data from the file /etc/passwd.

Listing 7.1. Reading from a file (unbuffered)
package main
import "os"

func main() {
buf := make([]byte, 1024)
f, _ := os.Open("/etc/passwd") ..0
defer f.Close() ..1
for {

n, _ := f.Read(buf) ..2
i f n == 0 { break } ..3
os.Stdout.Write(buf[:n]) ..4

}
}

The following is happening here:

..0 Open the file, os.Open returns a *os.File, which implements io.Reader and
io.Writer;

..1 Make sure we close f again;

..2 Read up to 1024 bytes at the time;

..3 We have reached the end of the file;

..4 Write the contents to os.Stdout

If you want to use buffered IO there is the bufio package:

Listing 7.2. Reading from a file (buffered)
package main
import ("os" ; "bufio")

func main() {
buf := make([]byte, 1024)
f, _ := os.Open("/etc/passwd") ..0
defer f.Close()
r := bufio.NewReader(f) ..1
w := bufio.NewWriter(os.Stdout)
defer w.Flush()
for {

io.Reader 87

n, _ := r.Read(buf) ..2
i f n == 0 { break }
w.Write(buf[0:n])

}
}

..0 Open the file;

..1 Turn f into a buffered Reader. NewReader expects an io.Reader, so you might
think this will fail. But it does not. Anything that has such a Read() function
implements this interface. And from listing 7.1 we can see that *os.File indeed
does so;

..2 Read from the Reader and write to the Writer, and thus print the file to the screen.

io.Reader
As mentioned above the io.Reader is an important interface in the language Go. A lot (if
not all) functions that need to read from something take an io.Reader as input. To fulfill
the interface a type needs to implement only one method: Read(p []byte) (n int,
err error). The writing side is (you may have guessed) an io.Writer, which has the
Write method.
If you think of a new type in your program or package and youmake it fulfill the io.Reader
or io.Writer interface, the whole standard Go library can be used on that type!

Some examples
The previous program reads a file in its entirety, but a more common scenario is that you
want to read a file on a line-by-line basis. The following snippet shows a way to do just
that:

f, _ := os.Open("/etc/passwd") ; defer f.Close()
r := bufio.NewReader(f) ← Make it a bufio to access the ReadString method
s, ok := r.ReadString('\n') ← Read a line from the input
// ... ← s holds the string, with the strings package you can parse it

A more robust method (but slightly more complicated) is ReadLine, see the documenta-
tion of the bufio package.
A common scenario in shell scripting is that you want to check if a directory exists and if
not, create one.

Listing 7.3. Create a directory with the shell
i f [! -e name] ; then

mkdir name
else

error
f i

Listing 7.4. Create a directory with Go
i f f, e := os.Stat("name") ; e !=

nil {
os.Mkdir("name", 0755)

} else {
// error

}

The similarity between these two examples have prompted comments that Go has a
“script”-like feel to it, i.e. programming in Go can be compared to programming in an
interpreted language (Python, Ruby, Perl or PHP).

Command line arguments
Arguments from the command line are available inside your program via the string slice
os.Args, provided you have imported the package os. The flag package has a more
sophisticated interface, and also provides a way to parse flags. Take this example from a
DNS query tool:

88 Chapter 7: Communication

dnssec := flag.Bool("dnssec", false, "Request DNSSEC records") ..0
port := flag.String("port", "53", "Set the query port") ..1
flag.Usage = func() { ..2

fmt.Fprintf(os.Stderr, "Usage: %s [OPTIONS] [name ...]\n", os.
Args[0])

flag.PrintDefaults() ..3
}
flag.Parse() ..4

..0 Define a bool flag, -dnssec. The variable must be a pointer otherwise the package
can not set its value;

..1 Idem, but for a port option;

..2 Slightly redefine the Usage function, to be a little more verbose;

..3 For every flag given, PrintDefaults will output the help string;

..4 Parse the flags and fill the variables.

After the flags have been parsed you can used them:

i f *dnssec { ← Dereference the dnssec flag variable
// do something

}

Executing commands
The os/exec package has functions to run external commands, and is the premier way to
execute commands fromwithin a Go program. It works by defining a *exec.Cmd structure
for which it defines a number of methods. Let’s execute ls -l:

import "os/exec"

cmd := exec.Command("/bin/ls", "-l") ← Create a *cmd
err := cmd.Run() ← Run() it

The above example just runs “ls -l” without doing anything with the returned data, cap-
turing the standard output from a command is done as follows:

import "os/exec"

cmd := exec.Command("/bin/ls", "-l")
buf, err := cmd.Output() ← buf is a ([]byte)

Networking
All network related types and functions can be found in the package net. One of the most
important functions in there is Dial. When you Dial into a remote system the function
returns a Conn interface type, which can be used to send and receive information. The
function Dial neatly abstracts away the network family and transport. So IPv4 or IPv6,
TCP or UDP can all share a common interface.

Dialing a remote system (port 80) over TCP, then UDP and lastly TCP over IPv6 looks like
thisa:

aIn case you are wondering, 192.0.32.10 and 2620:0:2d0:200::10 are www.example.org.

www.example.org

Exercises 89

conn, e := Dial("tcp", "192.0.32.10:80")
conn, e := Dial("udp", "192.0.32.10:80")
conn, e := Dial("tcp", "[2620:0:2d0:200::10]:80")
← Mandatory brackets

If there were no errors (returned in e), you can use conn to read and write. The primitives
defined in the package net are:

// Read reads data from the connection.
Read(b []byte)(n int, err error)

This makes conn an io.Reader.

// Write writes data to the connection.
Write(b []byte)(n int, err error)

This makes conn also an io.Writer, in fact conn is an io.ReadWriter.b

But these are the low level nooks and cranniesc, you will almost always use higher level
packages. Such as the http package. For instance a simple Get for http:

package main
import ("io/ioutil" ; "http" ; "fmt") ..0

func main() {
r, err := http.Get("http://www.google.com/robots.txt") ..1
i f err != nil { fmt.Printf("%s\n", err.String()) ; return }

..2
b, err := ioutil.ReadAll(r.Body) ..3
r.Body.Close()
i f err == nil { fmt.Printf("%s", st r ing(b)) } ..4

}

..0 The imports needed;

..1 Use http’s Get to retrieve the html;

..2 Error handling;

..3 Read the entire document into b;

..4 If everything was OK, print the document.

Exercises

Q29. (2) Processes

1. Write a program that takes a list of all running processes and prints how many
child processes each parent has spawned. The output should look like:
Pid 0 has 2 children: [1 2]
Pid 490 has 2 children: [1199 26524]
Pid 1824 has 1 child: [7293]

• For acquiring the process list, you’ll need to capture the output of ps -e -opid,ppid,comm.
This output looks like:

PID PPID COMMAND
9024 9023 zsh

19560 9024 ps

bThe variable conn also implements a close method, this really makes it an io.ReadWriteCloser.
cExercise Q33 is about using these.

90 Chapter 7: Communication

• If a parent has one child you must print child, if there is more than one print
children;

• The process list must be numerically sorted, so you start with pid 0 and work
your way up.

Here is a Perl version to help you on your way (or to create complete and utter
confusion).

Listing 7.5. Processes in Perl
!/usr/bin/perl -l
my (%child, $pid, $parent) ;
my @ps=`ps -e -opid,ppid,comm` ; # Capture the output

from `ps`
foreach (@ps[1..$#ps]) { # Discard the header

line
($pid, $parent, undef) = split ; # Split the line,

discard 'comm'
push @{$child{$parent} }, $pid ; # Save the child PIDs on

a list
}
Walk through the sorted PPIDs
foreach (sort { $a <=> $b } keys %child) {

print "Pid ", $_, " has ", @{$child{$_} }+0, " child",
@{$child{$_} } == 1 ? ": " : "ren: ", "[@{$child{$_} }

]" ;
}

Q30. (0) Word and letter count

1. Write a small program that reads text from standard input and performs the fol-
lowing actions:

1. Count the number of characters (including spaces);
2. Count the number of words;
3. Count the numbers of lines.

In other words implement wc(1) (check you local manual page), however you only
have to read from standard input.

Q31. (0) Uniq

1. Write a Go program that mimics the function of the Unix uniq command. This
program should work as follows, given a list with the following items:
'a' 'b' 'a' 'a' 'a' 'c' 'd' 'e' 'f' 'g'
it should print only those item which don’t have the same successor:
'a' 'b' 'a' 'c' 'd' 'e' 'f'

Listing 7.8 is a Perl implementation of the algorithm.

Listing 7.8. uniq(1) in Perl
#!/usr/bin/perl
my @a = qw/a b a a a c d e f g/ ;
pr int my $first = sh i f t @a ;
foreach (@a) {

i f ($first ne $_) { pr int ; $first = $_ ; }
}

Q32. (2) Quine A Quine is a program that prints itself.

Exercises 91

1. Write a Quine in Go.

Q33. (1) Echo server

1. Write a simple echo server. Make it listen to TCP port number 8053 on localhost.
It should be able to read a line (up to the newline), echo back that line and then
close the connection.

2. Make the server concurrent so that every request is taken care of in a separate
goroutine.

Q34. (2) Number cruncher

• Pick six (6) random numbers from this list:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 50, 75, 100

Numbers may be picked multiple times;

• Pick one (1) random number (i) in the range: 1 . . . 1000;

• Tell how, by combining the first 6 numbers (or a subset thereof) with the operators
+,−,∗ and /, you can make i;

An example. We have picked the numbers: 1, 6, 7, 8, 8 and 75. And i is 977. This can be
done in many different ways, one way is:

((((1 ∗ 6) ∗ 8) + 75) ∗ 8)− 7 = 977

or
(8 ∗ (75 + (8 ∗ 6)))− (7/1) = 977

1. Implement a number cruncher that works like that. Make it print the solution in a
similar format (i.e. output should be infix with parenthesis) as used above.

2. Calculate all possible solutions and show them (or only show howmany there are).
In the example above there are 544 ways to do it.

Q35. (1) Finger daemon

1. Write a finger daemon that works with the finger(1) command.

From the Debian package description:

Fingerd is a simple daemon based on RFC 1196 [28] that provides an inter-
face to the “finger” program at most network sites. The program is supposed
to return a friendly, human-oriented status report on either the system at
the moment or a particular person in depth.

Stick to the basics and only support a username argument. If the user has a .plan
file show the contents of that file. So your program needs to be able to figure out:

• Does the user exist?

• If the user exists, show the contents of the .plan file.

Answers 93

Answers

A29. (2) Processes

1. There is lots of stuff to do here. We can divide our program up in the following
sections:

1. Starting ps and capturing the output;

2. Parsing the output and saving the child PIDs for each PPID;

3. Sorting the PPID list;

4. Printing the sorted list to the screen

In the solution presented below, we’ve used a map[int][]int, i.e. a map indexed
with integers, pointing to a slice of ints –which holds the PIDs. The builtin append
is used to grow the integer slice.

A possible program is:

Listing 7.6. Processes in Go
package main
import ("fmt" ; "os/exec" ; "sort" ; "strconv" ; "strings")

func main() {
ps := exec.Command("ps", "-e", "-opid,ppid,comm")
output, _ := ps.Output()
child := make(map[in t][] in t)
for i, s := range strings.Split(st r ing(output), "\n"

) {
i f i == 0 { continue } // Kill first line
i f len(s) == 0 { continue } // Kill last line
f := strings.Fields(s)
fpp, _ := strconv.Atoi(f[1]) // Parent's pid
fp, _ := strconv.Atoi(f[0]) // Child's pid
child[fpp] = append(child[fpp], fp)

}
schild := make([] int , len(child))
i := 0
for k, _ := range child { schild[i] = k ; i++ }
sort.Ints(schild)
for _, ppid := range schild {

fmt.Printf("Pid %d has %d child", ppid, len(
child[ppid]))

i f len(child[ppid]) == 1 {
fmt.Printf(": %v\n", child[ppid])
continue

}
fmt.Printf("ren: %v\n", child[ppid])

}
}

A30. (0) Word and letter count

1. The following program is an implementation of wc(1).

Listing 7.7. wc(1) in Go
package main

import (

94 Chapter 7: Communication

"os"
"fmt"
"bufio"
"strings"

)

func main() {
var chars, words, lines in t
r := bufio.NewReader(os.Stdin) ..0
for {

switch s, ok := r.ReadString('\n') ; true { ..1
case ok != nil: ..2

fmt.Printf("%d %d %d\n", chars,
words, lines) ;

return
default: ..3

chars += len(s)
words += len(strings.Fields(s))
lines++

}
}

}

..0 Start a new reader that reads from standard input;

..1 Read a line from the input;

..2 If we received an error, we assume it was because of a EOF. So we print the
current values;

..3 Otherwise we count the charaters, words and increment the lines.

A31. (0) Uniq

1. The following is a uniq implementation in Go.

Listing 7.9. uniq(1) in Go
package main

import "fmt"

func main() {
list := []st r ing {"a", "b", "a", "a", "c", "d", "e",

"f"}
first := list[0]

fmt.Printf("%s ", first)
for _, v := range list[1:] {

i f first != v {
fmt.Printf("%s ", v)
first = v

}
}

}

A32. (2) Quine

This solution is from Russ Cox. It was posted to the Go Nuts mailing list.

Answers 95

Listing 7.10. A Go quine
1.

/* Go quine */
package main
import "fmt"
func main() {
fmt.Printf("%s%c%s%c\n", q, 0x60, q, 0x60)
}
var q = `/* Go quine */
package main
import "fmt"
func main() {
fmt.Printf("%s%c%s%c\n", q, 0x60, q, 0x60)
}
var q = `

A33. (1) Echo server

1. A simple echo server might be:

Listing 7.11. A simple echo server
package main
import ("net" ; "fmt" ;"bufio")

func main() {
l, err := net.Listen("tcp", "127.0.0.1:8053")
i f err != nil {

fmt.Printf("Failure to listen: %s\n", err.
Error())

}
for {

i f c, err := l.Accept() ; err == nil { Echo(c
) }

}
}

func Echo(c net.Conn) {
defer c.Close()
line, err := bufio.NewReader(c).ReadString('\n')
i f err != nil {

fmt.Printf("Failure to read: %s\n", err.
Error())

return
}
_, err = c.Write([]byte(line))
i f err != nil {

fmt.Printf("Failure to write: %s\n", err.
Error())

return
}

}

When started you should see the following:
% nc 127.0.0.1 8053
Go is *awesome*
Go is *awesome*

2. To make the connection handling concurrent we only need to change one line in
our echo server, the line:

96 Chapter 7: Communication

i f c, err := l.Accept() ; err == nil { Echo(c) }

becomes:

i f c, err := l.Accept() ; err == nil { go Echo(c) }

A34. (2) Number cruncher

1. The following is one possibility. It uses recursion and backtracking to get an an-
swer.

Listing 7.12. Number cruncher
package main

import ("fmt" ; "strconv" ; "flag")

const (
_ = 1000 * iota
ADD
SUB
MUL
DIV
MAXPOS = 11

)

var mop = map[in t]st r ing {ADD: "+", SUB: "-", MUL: "*", DIV:
"/"}

var (
ok bool
value in t

)

type Stack s t ruct {
i in t
data [MAXPOS] in t

}

func (s *Stack) Reset() { s.i = 0 }
func (s *Stack) Len() in t { return s.i }
func (s *Stack) Push(k in t) { s.data[s.i] = k ; s.i++ }
func (s *Stack) Pop() in t { s.i-- ; return s.data[s.i] }

var found in t
var stack = new(Stack)

func main() {
flag.Parse()
list := [] in t {1, 6, 7, 8, 8, 75, ADD, SUB, MUL, DIV}
magic, ok := strconv.Atoi(flag.Arg(0)) // Arg0 is i
i f ok != nil { return }
f := make([] int , MAXPOS)
solve(f, list, 0, magic)

}

func solve(form, numberop [] int , index, magic in t) {
var tmp in t
for i, v := range numberop {

i f v == 0 { goto NEXT }
i f v < ADD { // it's a number, save it

Answers 97

tmp = numberop[i]
numberop[i] = 0

}
form[index] = v
value, ok = rpncalc(form[0 : index+1])

i f ok && value == magic {
i f v < ADD {

numberop[i] = tmp // reset
and go on

}
found++
fmt.Printf("%s = %d #%d\n", rpnstr(

form[0:index+1]), value, found)
}

i f index == MAXPOS-1 {
i f v < ADD {

numberop[i] = tmp // reset
and go on

}
goto NEXT

}
solve(form, numberop, index+1, magic)
i f v < ADD {

numberop[i] = tmp // reset and go on
}

NEXT:
}

}

func rpnstr(r [] in t) (ret st r ing) { // Convert rpn to
infix notation

s := make([]str ing , 0) // Still memory intensive
for k, t := range r {

switch t {
case ADD, SUB, MUL, DIV:

a, s := s[len(s)-1], s[:len(s)-1]
b, s := s[len(s)-1], s[:len(s)-1]
i f k == len(r)-1 {

s = append(s, b+mop[t]+a)
} else {

s = append(s, "("+b+mop[t]+a
+")")

}
default:

s = append(s, strconv.Itoa(t))
}

}
for _, v := range s { ret += v }
return

}

func rpncalc(r [] in t) (int , bool) {
stack.Reset()
for _, t := range r {

switch t {
case ADD, SUB, MUL, DIV:

i f stack.Len() < 2 { return 0, false

98 Chapter 7: Communication

}
a := stack.Pop()
b := stack.Pop()
i f t == ADD { stack.Push(b + a) }
i f t == SUB {

// disallow negative
subresults

i f b-a < 0 {
return 0, false

}
stack.Push(b - a)

}
i f t == MUL { stack.Push(b * a) }
i f t == DIV {

i f a == 0 {
return 0, false

}
// disallow fractions
i f b%a != 0 {

return 0, false
}
stack.Push(b / a)

}
default:

stack.Push(t)
}

}
i f stack.Len() == 1 { // there is only one!

return stack.Pop(), true
}
return 0, false

}

2. When starting permrec we give 977 as the first argument:
% ./permrec 977
1+(((6+7)*75)+(8/8)) = 977 #1
... ...
((75+(8*6))*8)-7 = 977 #542
(((75+(8*6))*8)-7)*1 = 977 #543
(((75+(8*6))*8)-7)/1 = 977 #544

A35. (1) Finger daemon

This solution is from Fabian Becker.

Listing 7.13. A finger daemon
1.

package main

import (
"bufio"
"errors"
"flag"
"io/ioutil"
"net"
"os/user"
"strconv"

)

Answers 99

func main() {
flag.Parse()
ln, err := net.Listen("tcp", ":79")
i f err != nil {

panic(err)
}
for {

conn, err := ln.Accept()
i f err != nil {

continue
}
go handleConnection(conn)

}
}

func handleConnection(conn net.Conn) {
defer conn.Close()
reader := bufio.NewReader(conn)
usr, _, _ := reader.ReadLine()

i f info, err := getUserInfo(st r ing(usr)) ; err != nil
{

conn.Write([]byte(err.Error()))
} else {

conn.Write(info)
}

}

func getUserInfo(usr st r ing) ([]byte, error) {
u, e := user.Lookup(usr)
i f e != nil {

return nil, e
}
data, err := ioutil.ReadFile(u.HomeDir + ".plan")
i f err != nil {

return data, errors.New("User doesn't have a
.plan file !\n")

}
return data, nil

}

A Colophon

This work was created with LATEX. The main text is set in the Google Droid fonts. All
typewriter text is typeset in DejaVu Mono.

Contributors
The following people have helped to make this book what it is today.

• Miek Gieben <miek@miek.nl>;

• JC van Winkel;

• Xing Xing, Chinese translation, 这里是中文译本: http://www.mikespook.com/
learning-go/ .

Help with proof reading, checking exercises and text improvements (no particular order
and either real name or an alias): Adam J. Gray, Alex Sychev, Alexey Chernenkov, Andrea
Spadaccini, Andrey Mirtchovski, Anthony Magro, Babu Sreekanth, Ben Bullock, Bob Cunning-
ham, Brian Fallik, Cecil New, Damian Gryski, Dan Kortschak, David Otton, Fabian Becker, Filip
Zaludek, Hadi Amiri, Haiping Fan, Jaap Akkerhuis, JC van Winkel, Jeroen Bulten, Jinpu Hu, John
Shahid, Jonathan Kans, Joshua Stein, Makoto Inoue, Mayuresh Kathe, “mem”, Michael Stapel-
berg, Olexandr Shalakhin, Paulo Pinto, Peter Kleiweg, Philipp Schmidt, Robert Johnson, Russel
Winder, Sonia Keys, Stefan Schroeder, Thomas Kapplet, T.J. Yang, “Cobold”, “Simoc”, “Uriel”†,
Xing Xing.

The following people provided smaller improvements, like nits, typos and other tweaks:
Alexander Katasonov, Daniele Pala, Iaroslav Tymchenko, Nicolas Kaiser.

Miek Gieben

Miek Gieben has amaster’s degree in Computer Science from
the Radboud University Nijmegen (Netherlands). He is in-
volved in the development and now the deployment of the
DNSSEC protocol – the successor of the DNS and as such
co-authored [6].

After playing with the language Erlang, Go was the first con-
current language that actually stuck with him.

He fills his spare time with coding in, and writing of Go. He
is the maintainer of the Go DNS library: https://github.
com/miekg/dns. He maintains a personal blog on http:
//www.miek.nl and tweets under the name @miekg. The
postings and tweets may sometimes actually have to do something with Go.

License and copyright
This work is licensed under the Attribution-NonCommercial-ShareAlike 3.0 Unported Li-
cense. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.
All example code used in this book is hereby put in the public domain.

©Miek Gieben – 2010, 2011.

<miek@miek.nl>
http://www.mikespook.com/learning-go/
http://www.mikespook.com/learning-go/
https://github.com/miekg/dns
https://github.com/miekg/dns
http://www.miek.nl
http://www.miek.nl
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

B Index
array

capacity, 15
length, 15
multidimensional, 14

buffered, 86
built-in

append, 14, 16
cap, 13
close, 13
complex, 14
copy, 14, 16
delete, 13
imag, 14
len, 13
make, 13, 52
new, 13, 52
panic, 14
print, 14
println, 14
real, 14
recover, 14

channel, 78
blocking read, 80
blocking write, 80
non-blocking read, 80
non-blocking write, 80
unbuffered, 80

channels, 3, 78
closure, 29
complex numbers, 14

deferred list, 29
duck typing, 66

field, 55
anonymous, 55

fields, 54
function

as values, 30
call, 56
literal, 29
literals, 30

generic, 69
goroutine, 78
goroutines, 3

interface, 66
set of methods, 66
type, 66
value, 66

io.Reader, 87

keyword

break, 9, 10
continue, 11
default, 12
defer, 29
else, 9
fallthrough, 12
for, 10
go, 78
goto, 10
if, 9
import, 43
iota, 6
map, 17
add elements, 17
existence, 17
remove elements, 17

package, 42
range, 11, 17
on maps, 11, 17
on slices, 11

return, 9
select, 79
struct, 55
switch, 12
type, 54

label, 10
literal

composite, 14, 54

method, 26
method call, 56
methods

inherited, 56
MixedCaps, 44

named return parameters, 26
networking

Dial, 88
nil, 52

operator
address-of, 52
and, 8
bit wise xor, 8
bitwise
and, 8
clear, 8
or, 8

channel, 79
increment, 52
not, 8
or, 8

package
bufio, 44, 47, 86

Index 103

builtin, 13
bytes, 43
compress/gzip, 44
encoding/json, 47
even, 42
flag, 47
fmt, 14, 46
html/template, 47
io, 46, 87
net/http, 47
os, 47
os/exec, 47, 88
reflect, 47, 71
ring, 44
sort, 47
strconv, 47
sync, 47
unsafe, 47

parallel assignment, 5, 10
pass-by-value, 26
private, 43
public, 43

receiver, 26
reference types, 15
runes, 11

scope
local, 27

slice
capacity, 15
length, 15

string literal
interpreted, 7
raw, 7

tooling
go, 4
build, 4
test, 44

type assertion, 68
type switch, 67

variables
_, 5
assigning, 4
declaring, 4
underscore, 5

C Bibliography

[1] Haskell Authors. Haskell. http://www.haskell.org/, 1990.

[2] D. Crockford. The application/json media type for javascript object notation (json).
http://www.ietf.org/rfc/rfc4627.txt, 2006.

[3] Brian Kernighan Dennis Ritchie. The C programming language, 1975.

[4] Ericsson Cooperation. Erlang. http://www.erlang.se/, 1986.

[5] Larry Wall et al. Perl. http://perl.org/, 1987.

[6] Kolkman & Gieben. Dnssec operational practices. http://www.ietf.org/rfc/
rfc4641.txt, 2006.

[7] Go Authors. Defer, panic, and recover. http://blog.golang.org/2010/08/
defer-panic-and-recover.html, 2010.

[8] Go Authors. Effective Go. http://golang.org/doc/effective_go.html, 2010.

[9] Go Authors. Go faq. http://golang.org/doc/go_faq.html, 2010.

[10] Go Authors. Go language specification. http://golang.org/doc/go_spec.html,
2010.

[11] Go Authors. Go package documentation. http://golang.org/doc/pkg/, 2010.

[12] Go Authors. Go tutorial. http://golang.org/doc/go_tutorial.html, 2010.

[13] Go Authors. Go website. http://golang.org/, 2010.

[14] Go Community. Function accepting a slice of interface types. http:
//groups.google.com/group/golang-nuts/browse_thread/thread/
225fad3b5c6d0321, 2010.

[15] James Gosling et al. Java. http://oracle.com/java/, 1995.

[16] LAMP Group at EPFL. Scala. http://www.scala-lang.org/, 2003.

[17] C. A. R. Hoare. Quicksort. http://en.wikipedia.org/wiki/Quicksort, 1960.

[18] C. A. R. Hoare. Communicating sequential processes (csp). http://www.usingcsp.
com/cspbook.pdf, 1985.

[19] Rob Pike. The Go programming language, day 2. http://golang.org/doc/
{G}oCourseDay2.pdf, 2010.

[20] Rob Pike. The Go programming language, day 3. http://golang.org/doc/
{G}oCourseDay3.pdf, 2010.

[21] Bjarne Stroustrup. The C++ programming language, 1983.

[22] Ian Lance Taylor. Go interfaces. http://www.airs.com/blog/archives/277,
2010.

[23] Imran On Tech. Using fizzbuzz to find developers... http://imranontech.com/
2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/,
2010.

[24] Wikipedia. Bubble sort. http://en.wikipedia.org/wiki/Bubble_sort, 2010.

[25] Wikipedia. Communicating sequential processes. http://en.wikipedia.org/
wiki/Communicating_sequential_processes, 2010.

http://www.haskell.org/
http://www.ietf.org/rfc/rfc4627.txt
http://www.erlang.se/
http://perl.org/
http://www.ietf.org/rfc/rfc4641.txt
http://www.ietf.org/rfc/rfc4641.txt
http://blog.golang.org/2010/08/defer-panic-and-recover.html
http://blog.golang.org/2010/08/defer-panic-and-recover.html
http://golang.org/doc/effective_go.html
http://golang.org/doc/go_faq.html
http://golang.org/doc/go_spec.html
http://golang.org/doc/pkg/
http://golang.org/doc/go_tutorial.html
http://golang.org/
http://groups.google.com/group/golang-nuts/browse_thread/thread/225fad3b5c6d0321
http://groups.google.com/group/golang-nuts/browse_thread/thread/225fad3b5c6d0321
http://groups.google.com/group/golang-nuts/browse_thread/thread/225fad3b5c6d0321
http://oracle.com/java/
http://www.scala-lang.org/
http://en.wikipedia.org/wiki/Quicksort
http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/cspbook.pdf
http://golang.org/doc/{G}oCourseDay2.pdf
http://golang.org/doc/{G}oCourseDay2.pdf
http://golang.org/doc/{G}oCourseDay3.pdf
http://golang.org/doc/{G}oCourseDay3.pdf
http://www.airs.com/blog/archives/277
http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
http://en.wikipedia.org/wiki/Bubble_sort
http://en.wikipedia.org/wiki/Communicating_sequential_processes
http://en.wikipedia.org/wiki/Communicating_sequential_processes

Bibliography 105

[26] Wikipedia. Duck typing. http://en.wikipedia.org/wiki/Duck_typing, 2010.

[27] Wikipedia. Iota. http://en.wikipedia.org/wiki/Iota, 2010.

[28] D. Zimmerman. The finger user information protocol. http://www.ietf.org/rfc/
rfc1196.txt, 1990.

http://en.wikipedia.org/wiki/Duck_typing
http://en.wikipedia.org/wiki/Iota
http://www.ietf.org/rfc/rfc1196.txt
http://www.ietf.org/rfc/rfc1196.txt

This page is intentionally left blank.

	Introduction
	Official documentation
	Hello World
	Compiling and running code
	Settings used in this book
	Variables, types and keywords
	Operators and built-in functions
	Go keywords
	Control structures
	Built-in functions
	Arrays, slices and maps
	Exercises
	Answers

	Functions
	Scope
	Multiple return values
	Named result parameters
	Deferred code
	Variadic parameters
	Functions as values
	Callbacks
	Panic and recovering
	Exercises
	Answers

	Packages
	Identifiers
	Documenting packages
	Testing packages
	Useful packages
	Exercises
	Answers

	Beyond the basics
	Allocation
	Defining your own types
	Conversions
	Exercises
	Answers

	Interfaces
	Methods
	Interface names
	A sorting example
	Exercises
	Answers

	Concurrency
	More on channels
	Exercises
	Answers

	Communication
	io.Reader
	Some examples
	Command line arguments
	Executing commands
	Networking
	Exercises
	Answers

	Colophon
	Contributors
	License and copyright

	Index
	Bibliography

