package main
import "fmt"

func main() {

_.Etfective Go

}

build simple, reliable & efficient software

451t

7 ik

HFofe LR
EaAFIRAg

M %

AR

Fhax

—/~Web/k % 2

Table of Contents

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.1
1.12
1.13
1.14
1.15
1.16
1.17

(Effective Go)) P 3z UiEhR

Effective Go - {23k GO 4 #2)

Introduction

Go is a new language. Although it borrows ideas from existing languages, it has unusual
properties that make effective Go programs different in character from programs written in its
relatives. A straightforward translation of a C++ or Java program into Go is unlikely to
produce a satisfactory result—Java programs are written in Java, not Go. On the other hand,
thinking about the problem from a Go perspective could produce a successful but quite
different program. In other words, to write Go well, it's important to understand its properties
and idioms. It's also important to know the established conventions for programming in Go,
such as naming, formatting, program construction, and so on, so that programs you write will
be easy for other Go programmers to understand.

This document gives tips for writing clear, idiomatic Go code. It augments the language
specification, the Tour of Go, and How to Write Go Code, all of which you should read first.

o)

7l

Go A—T12#EZT - RECHAANBTTHET HFSEL > BEEXRRGHFE > 247
M Go ALK LRTRTHEEET o HILA Y C++ K Java 5 BiFHA Go BEFH T4
AthE— % Java 25 AM Java hEH > ML Goe H—7 @ %M Go éﬁ)’*’)ﬁ"%"
MR s ARFRAE R B BRI TITER R R QAT o #8157 » 8% Go BF 5T » 3t
o I B2 AR AL 4 i%ﬂﬂ#% THeL AL~ BEEHMFRIANLE A ER ffﬁ’ﬁ%»
MR AR E R HKENAZR 7T -

AL A AT % 5 7EMWT ~ Hid b)) Go RABIE T — %55 o gE 2570~ Go &3 2k
AR e fT4%) Go 4a42 894h L3R » R b AT B X Ay -

Effective Go 1A 6o iES BIAT) LR AR » T HFEMERZITFFHE—H > RERD > F
{Q JP;] 79: iblb °

https://go-zh.org/ref/spec
https://tour.golang.org/
https://go-zh.org/doc/code.html
https://go-zh.org/ref/spec
https://tour.golang.org/
https://go-zh.org/doc/code.html

EICY
7l &
AL
AR
w2

o5

PR A

&l

Ak

u ik

Fofe LR
Ea IR

%

A

45i%

— A Web IR % %

© © o N OO~

N N O | N
N o g s~ wDdD -

PR BLEA © @2016.8.6 by bingoHuang, revision to Chinese & English version.

FERERGHH (AABRXIRRE) FRHE—§HE: £FE > FBRFHAR

7 » English + Computer Skills = Freedom (3%1i& + ITFH LAt = A W)

RIEFTHHRER o B HEMB AL AR 2IHF—11%EES (40 6o) MR
B 0 BRI IR B R TR A AN o FTAR R EHF A S BORAR T XIER » 1L %
COPANE ¥l R

4 %) %8 Golang ‘B M 42 44 69 3& SR X A2 o

B4 hellogee 2 BE6Y F UEAFR — » XA R A HIAE T TR 0T 5 BT 5% 69 4 > 399F
O PN

2P R GoETPLAAR RAEEE b UEiFR= B FE N ARE » T 54/F - K
ACFr Go-zh B 48 Wit » RIT %ALR 69 A > #AE SbAF A B RREG T STRR A o

R

2

N

HEFFELIR : Effective Go ¥ T
b S B _ b s

HEF LEFIR= : Effective Go T L

Read, Fork and Star

http://xiaolai.li/2016/06/12/makecs-preface/
https://golang.org
http://www.hellogcc.org
http://www.hellogcc.org/effective_go.html
https://go-zh.org/
https://go-zh.org/doc/effective_go.htm
https://github.com/Go-zh/go
https://golang.org/doc/effective_go.html
http://www.hellogcc.org/effective_go.html
https://go-zh.org/doc/effective_go.htm

e Read on Gitbook
e Fork on GitHub

o HMFE—T sTAR * AFEEZT# > IANERKGEH |

K TAERRE H R o ARG B 55 o 2 /5 0% 09T B

e [x] PDF# 2,
e [x] EPUB# =,

License

RAFFIERS ATARYRAsREZ - Z L (CC-BY) 3.0 it » KA KA BSD #
BLARA

https://www.gitbook.com/book/bingohuang/effective-go-zh-en/details
https://github.com/bingoHuang/effective-go-zh-en
https://c.163.com/dashboard#/m/nos/
http://bingohuang.nos-eastchina1.126.net/effective-go-zh-en-gitbook.pdf
http://bingohuang.nos-eastchina1.126.net/effective-go-zh-en-gitbook.epub

Introduction

7l &

Go is a new language. Although it borrows ideas from existing languages, it has unusual
properties that make effective Go programs different in character from programs written in its
relatives. A straightforward translation of a C++ or Java program into Go is unlikely to
produce a satisfactory result—Java programs are written in Java, not Go. On the other hand,
thinking about the problem from a Go perspective could produce a successful but quite
different program. In other words, to write Go well, it's important to understand its properties
and idioms. It's also important to know the established conventions for programming in Go,
such as naming, formatting, program construction, and so on, so that programs you write will
be easy for other Go programmers to understand.

Go A—T12#EZT - RECHAANBTFHETHSEL > BLEXRRGFE > 247
128 Go RABERR LR AR THEES - MALAH C++ X Java BF BiEH Go BF T 6k
AANHFTE—2rF Java 2 FAM Java h B8 > mA L Goe A—7 @ » M Go 89 A K *
STV o ARALAE R B Rl A T ATIE K Al Bl 8925 o 4k 6y 350 0 B4 Go &2)5 B 34T o
LML E LR R o TP L - BRAILs BEEHNFRIANLEHETE IHERS
B 4 R R SR AL R AT o

This document gives tips for writing clear, idiomatic Go code. It augments the language
specification, the Tour of Go, and How to Write Go Code, all of which you should read first.

AL HhAAT 4 5 FWT ~ 386y Go RABRE T —BHF o €& S0~ Go 155 2k
VAR o f it | Go %42 694 LA » B SLRATIE DG SR 1] 8 X S ST AS o

Examples

el

The Go package sources are intended to serve not only as the core library but also as
examples of how to use the language. Moreover, many of the packages contain working,
self-contained executable examples you can run directly from the golang.org web site, such
as this one (if necessary, click on the word"Example"to open it up). If you have a question
about how to approach a problem or how something might be implemented, the
documentation, code and examples in the library can provide answers, ideas and
background.

https://go-zh.org/ref/spec
https://tour.golang.org/
https://go-zh.org/doc/code.html
https://go-zh.org/ref/spec
https://tour.golang.org/
https://go-zh.org/doc/code.html
https://golang.org/src/
https://golang.org/
https://golang.org/pkg/strings/#example_Map

Go eLEg A AR ZAZ S > Bl B AL A& 22 2] defT 4] Go 13 5 689 =l R AL o bl > L ag—

Wbk 0,87 T TAEE > R 8T AT R 0 ARFT A B4R golang.org M 36 EiE4T €A 0 b
Yo TG TF (RELF T REAE) o wRARHEM R T REF AT R » RERAK
B dof LI ERIE] > LT VINF RIAD KRG EF ~ BRABLG G EH, o

https://go-zh.org/src/pkg/
https://golang.org/
https://golang.org/pkg/strings/#example_Map

Formatting

A AL

Formatting issues are the most contentious but the least consequential. People can adapt to
different formatting styles but it's better if they don't have to, and less time is devoted to the
topic if everyone adheres to the same style. The problem is how to approach this Utopia
without a long prescriptive style guide.

BRI ERAHT F 0 EHBEZAHRA T o RIEANTIRE & T F 8 4%

R > A2y 7 S AP 38 B AL & R B4 2 % FT A AR 0648) 80 40 A0 A > 6 38 3% R0 1R
B AE A B o FAILAE T SR MM @ EE TKGES AR

o

With Go we take an unusual approach and let the machine take care of most formatting
issues. The gofmt program (also available as go fmt, which operates at the package level
rather than source file level) reads a Go program and emits the source in a standard style of
indentation and vertical alignment, retaining and if necessary reformatting comments. If you
want to know how to handle some new layout situation, run gofmt; if the answer doesn't
seem right, rearrange your program (or file a bug about gofmt), don't work around it.

£ Go P &R A REHAZ » IEME R TR 6945 XALFA o gofmt #/57 (LT gofmt > &
ANt FmERIA) 4§ Go BFHRBIEERK LY ~ FF > REEFALFTERNE

e XA © 25 R A8 Jro 18 do A 40 38 — S 377 89 XA A By » 1h 2 X EAT gofmt s H BRI FRRAR »
HEHALRGEE (RER KA % gofmt 49 Bug) ° fa Rk b2l 4 o

As an example, there's no need to spend time lining up the comments on the fields of a
structure. Gofmt will do that for you. Given the declaration

LRI R TGN LI IR 8 F AR A o gofmt A TR+ M AT A
)3

type T struct {
name string
value int

type T struct {
name string
value int

gofmt will line up the columns:

gofmt &3 €|+t F4 :

type T struct {
name string
value int

type T struct {
name string
value int

All Go code in the standard packages has been formatted with gofmt.
Wk AP ET A # Go KA T2 M gofmt #& XL T °
Some formatting details remain. Very briefly:

FEH—REFHEIIG@ET » SEFHE

Indentation
We use tabs for indentation and gofmt emits them by default. Use spaces only if you
must.
Line length
Go has no line length limit. Don't worry about overflowing a punched card. If a line
feels too long, wrap it and indent with an extra tab.
Parentheses
Go needs fewer parentheses than C and Java: control structures (if, for, switch) do
not have parentheses in their syntax. Also, the operator precedence hierarchy is short
er and clearer, so
X<<8 + y<<16
means what the spacing implies, unlike in the other languages.

g

HAVE R F A (tab) %3 > gofmt KL A o EARINA HEA LZH AL EA o
R

Go HMATHYKRE A RA > SRR K o R —ATHAE KK > WTHATHATHIGEAE L tab %Kit o
#5

e C #» Java Go FTE6465 & 2844 (if ~ for # switch) EBFEHATRFERIES o sbil - R
R RARETIFE oS > Bk

X<<8 + y<<16
ERMT EHFATAEREL -

XAt

10

Commentary

A

Go provides C-style /* */ block comments and C++-style // line comments. Line
comments are the norm; block comments appear mostly as package comments, but are
useful within an expression or to disable large swaths of code.

GO EZ 4 C RAGHY IR IZAE /* *x/ Fo C++ RAGWAITIER /7 o ITEBREATH » Mz
BN TR ER SRLUTEERN — KERBEREA o

The program—and web server—godoc processes Go source files to extract documentation
about the contents of the package. Comments that appear before top-level declarations, with
no intervening newlines, are extracted along with the declaration to serve as explanatory text
for the item. The nature and style of these comments determines the quality of the
documentation godoc produces.

godoc B A —A A5 » L& —4 Web Hliﬁ‘%% v €3 Go YR AT > FHIRELE F 89 A
NE e MAEMBEAZA » 5% P AR EA TITHER > $5%F) —REIIRRE
kA Z A B BT - ﬂ’a&%ﬁ’]% Al Fo M4 R T godoc & M 89 A i &

Every package should have a package comment, a block comment preceding the package
clause. For multi-file packages, the package comment only needs to be present in one file,
and any one will do. The package comment should introduce the package and provide
information relevant to the package as a whole. It will appear first on the godoc page and
should set up the detailed documentation that follows.

FAOHE 5 —KOEE PRBEEETFHIH— A&&%oﬁ% AEATHYE &
EBEARTHNELPNE—IBPRT o G580 £ BIK %6 ﬁ@’%&% 848
%458 o BIFHIALE godoc R @R Ed » H A %"I‘éﬁ—}‘éﬁﬂ\] i m by LA o

A

/*
Package regexp implements a simple library for regular expressions.

The syntax of the regular expressions accepted is:

regexp:

concatenation { '|' concatenation }
concatenation:

{ closure }

closure:

term ['"*' | '+! 2]
term:

At

Y

character

"[' ['"A"] character-ranges ']'
"(' regexp ')'

*/

package regexp

/x
regexp EAEMEZIXEZRT —AHELGE o
%2 0 E W Rk RAE &Y
G R X

BB []| B)
B
{ A& 3}
iR
B ['x | '+ 121
%8
AT
g
Eyd
IS -V
(U OEMAKK ')
*/

package regexp

If the package is simple, the package comment can be brief.

ERACKHE > QEBERFTARE L -

// Package path implements utility routines for
// manipulating slash-separated filename paths.

12

Comments do not need extra formatting such as banners of stars. The generated output
may not even be presented in a fixed-width font, so don't depend on spacing for alignment—
godoc, like gofmt, takes care of that. The comments are uninterpreted plain text, so HTML
and other annotations such as _this_ will reproduce verbatim and should not be used. One
adjustment godoc does do is to display indented text in a fixed-width font, suitable for
program snippets. The package comment for the fmt package uses this to good effect.

AR FRTIANGER M EFTRERF - ARMBEETREZIAFTLFRE
0 ESLRERB T 2 F 0 godoc &% gofmt ARAE L FLHF 3 — 4 o AL TR A AT EY
A Rbig HTML L€ £MT _an A BEERR R il B R g R gl o
godoc FT#ag iR » AN CHBBANIAXFTFHRIE T RERF R ORFH & o fmt &2
B ERERR R T XA R4 A ROk o

Depending on the context, godoc might not even reformat comments, so make sure they

look good straight up: use correct spelling, punctuation, and sentence structure, fold long
lines, and so on.

godoc £ &2 EHHERALERI AT LT > Hsbslb/MafREA1A AR FN 5P 1 42 FEH
WS ~ r 5 AniB 5] BRI & KATH -

Inside a package, any comment immediately preceding a top-level declaration serves as a
doc comment for that declaration. Every exported (capitalized) name in a program should
have a doc comment.

AP AT RE AT @G ERAIGEA GE R ERE o ARET » BATEH (&
FHKE) LR GH A ERE -

Doc comments work best as complete sentences, which allow a wide variety of automated
presentations. The first sentence should be a one-sentence summary that starts with the
name being declared.

XA ERERIFALENG T I CARELZH AN T o B—am S E AR
Bk FELELHEE o

func Compile(str string) (regexp *Regexp, err error) {

func Compile(str string) (regexp *Regexp, err error) {

https://go-zh.org/pkg/fmt/
https://go-zh.org/pkg/fmt/

If the name always begins the comment, the output of godoc can usefully be run through
grep. Imagine you couldn't remember the name"Compile" but were looking for the parsing
function for regular expressions, so you ran the command,

% ERE G AL ARk godoc B L ARA T grep AT EAwA A o B fRIZ T
“Compile” Z ML AR » fa XL & E W] &k X6 AT 3 > AR T AE AT

$ godoc regexp | grep parse

If all the doc comments in the package began, "This function...", grep wouldn't help you
remember the name. But because the package starts each doc comment with the name,
you'd see something like this, which recalls the word you're looking for.

6L 8 BT AR AR L I B ATk 0 grep B AR ARiSAE G R o 12 d THEA B
A EARAAL LAk 0 R B REOAE » TR AREL FROAE o

$ godoc regexp | grep parse
Compile parses a regular expression and returns, if successful, a Regexp
parsed. It simplifies safe initialization of global variables holding
cannot be parsed. It simplifies safe initialization of global variables

Go's declaration syntax allows grouping of declarations. A single doc comment can
introduce a group of related constants or variables. Since the whole declaration is
presented, such a comment can often be perfunctory.

Go# F RBHEAHRAE Y » EAIBEREAB—ARAXAFEXLE - o TFRERS
P R BG -

var (
ErrInternal = errors.New("regexp: internal error")
ErrUnmatchedLpar = errors.New('"regexp: unmatched '('")
ErrUnmatchedRpar = errors.New('"regexp: unmatched ')'")

var (
ErrInternal = errors.New("regexp: internal error")
ErrUnmatchedLpar = errors.New('"regexp: unmatched '('")

ErrUnmatchedRpar errors.New('"regexp: unmatched ")'")

Grouping can also indicate relationships between items, such as the fact that a set of
variables is protected by a mutex.

PAE st TAF LA » W TALRAF ARKALAR X R > Bldo k—20d B FFIRRY 8

var (
countLock sync.Mutex
inputCount uint32
outputCount uint32
errorCount uint32

Names

w4

Names are as important in Go as in any other language. They even have semantic effect:
the visibility of a name outside a package is determined by whether its first character is
upper case. It's therefore worth spending a little time talking about naming conventions in Go
programs.

Edor L AL ECEZTPHRAL) € Go PR ETE - AR ENEEZ L rAEL ¢ Pldo» X
NLAEOIZLTR B ATEEANAFTHATARE T o RbH LF78 5010 k118
Go #BF PG LAT -

Package names

A

When a package is imported, the package name becomes an accessor for the contents.
After

G- NEEIFANE P QLRERT AENGFE o £

import "bytes"

the importing package can talk about bytes.Buffer. It's helpful if everyone using the package
can use the same name to refer to its contents, which implies that the package name should
be good: short, concise, evocative. By convention, packages are given lower case, single-
word names; there should be no need for underscores or mixedCaps. Err on the side of
brevity, since everyone using your package will be typing that name. And don't worry about
collisions a priori. The package name is only the default name for imports; it need not be
unique across all source code, and in the rare case of a collision the importing package can
choose a different name to use locally. In any case, confusion is rare because the file name
in the import determines just which package is being used.

2 WE AN B3EAeid T bytes.Buffer k51 A T o ZPTA AR 895 Rk EA
Fo BB RAAG A QR S AMESNLHR REHRGREAT R TEMR - %R
B BB NEHEANLRERGL » BR AR TRARIE1R® o err 99 LA H T
HEEIEE » WAEATIE % LA SN ZEAR o T2 S5 ARF 804 R o L% E

gAﬁﬁ%%ﬁﬂﬁﬁZﬁ’*#K%%ﬁ%ﬁ%ﬂ?%ﬁﬁf’W&ﬁ&ﬁiiw%%%
AT > WTHFANGBEF—NHL R o BR4fT > BIIHLRATERGE
AT A RAE o

Another convention is that the package name is the base name of its source directory; the
package in src/encoding/base64 is imported as "encoding/base64" but has name base64,
not encoding_base64 and not encodingBase64.

A—ANYERALL A LR B FHKKL M o £ src/pkg/encoding/base64 F &9 &2 4F 4
"encoding/base64" & A\ » H 8.4 & base64 © @ Ik encoding_base64 3
encodingBase64 -

The importer of a package will use the name to refer to its contents, so exported names in
the package can use that fact to avoid stutter. (Don't use the import . notation, which can
simplify tests that must run outside the package they are testing, but should otherwise be
avoided.) For instance, the buffered reader type in the bufio package is called Reader, not
BufReader, because users see it as bufio.Reader, which is a clear, concise name. Moreover,
because imported entities are always addressed with their package name, bufio.Reader
does not conflict with io.Reader. Similarly, the function to make new instances of ring.Ring—
which is the definition of a constructor in Go—would normally be called NewRing, but since
Ring is the only type exported by the package, and since the package is called ring, it's
called just New, which clients of the package see as ring.New. Use the package structure to
help you choose good names.

B SEAFTEARIALRIIALARE s A FHTSHELATUKBLFR o (FZE
A import . 2% 0 €T VAR AL R A AN K QI BT MK 0 R ISPE R EH F AL o)
Bl4= o bufio &% 894 &% B & XA »1 X Reader % JF BufReader * EI%J)ﬂF/I% € A
bufio.Reader » X Z=ANF R M HF 954 o o TR EANGRELRLCNG EL kA
% » Bt bufio.Reader + &4 io.Reader X £ % o R4 » H T8I ring.Ring #)#7 % 6] 89 %
(XA Go P RL) — M2 A NewRing » 1281 T Ring £ % &7 § B a9 — R
A Bk ring > B e T AR 4 New » BIR/A 6,895 @ » 2L1% ring.New o 1% €14
7T VAR By AR e 347 09 5 A o

Another short example is once.Do; once.Do(setup) reads well and would not be improved by
writing once.DoOrWaitUntilDone(setup). Long names don't automatically make things more
readable. A helpful doc comment can often be more valuable than an extra long name.

B — AR 42 694] F £ once.Do » once.Do(setup) & it & 4% F 0T » 1% A
once.DoOrWaitUntiiDone(setup) T & A ZIHF L o kG L H TR 2L 8 LTHRM - —pF
FA 8 BLRA SUAS 38 H AR S8 k% F AN AA o

Getters

R 3

Go doesn't provide automatic support for getters and setters. There's nothing wrong with
providing getters and setters yourself, and it's often appropriate to do so, but it's neither
idiomatic nor necessary to put Get into the getter's name. If you have a field called owner
(lower case, unexported), the getter method should be called Owner (upper case, exported),
not GetOwner. The use of upper-case names for export provides the hook to discriminate
the field from the method. A setter function, if needed, will likely be called SetOwner. Both
names read well in practice:

Go H Rt RELE (getter) An X E & (setter) LA FH 45 o R d A LRERREF R
BER o ABFRBEAIEM 252 Get RBIRKBENLFF » MAFESITM » kAL
2o B MRAMNL A owner (NEF s RGFH) FH ARBREZE L4 Owner (K5 > TH
) M3 GetOwner e KEFEHATFHEGIHAT AR 57l FERETIERF - &
REELE S 7k 0 SetOwner £/ 145 09384% - MAG L A AL RAIR S ¢

owner := obj.Owner()
if owner != user {
obj.SetOwner (user)

3

Interface names

o

By convention, one-method interfaces are named by the method name plus an -er suffix or
similar modification to construct an agent noun: Reader, Writer, Formatter, CloseNoaotifier etc.

BRAT » ROAS—NFEEO R S LG EG LML -er BR %4 % » 4 Reader ~
Writer ~ Formatter ~ CloseNotifier 5

There are a number of such names and it's productive to honor them and the function
names they capture. Read, Write, Close, Flush, String and so on have canonical signatures
and meanings. To avoid confusion, don't give your method one of those names unless it has
the same signature and meaning. Conversely, if your type implements a method with the
same meaning as a method on a well-known type, give it the same name and signature; call
your string-converter method String not ToString.

B RGP L AR S > RACNALREYRELE 2 EFHRAHE o Read ~ Write ~
Close ~ Flush ~ String 48 B A B E L Ao T L o A B Fob K > 5 TR XL AR AR
Tk RIFRAHIE NG ELIEXLHE o R » ZHROXVEAT 7% H—
ANAXBT R 4m b Z 8 77 M A AR R 69 & 3L > ARsRAR AR Rl 894 % o M FIF 7 ke b
A String 7 JF ToString °

MixedCaps
Tgigae ik

Finally, the convention in Go is to use MixedCaps or mixedCaps rather than underscores to
write multiword names.

% » Go ¥ 4 T 4% A %12 % MixedCaps 3 mixedCaps 3 T X £ 89 77 Xk ot % #4514 AR

Semicolons

%

Like C, Go's formal grammar uses semicolons to terminate statements, but unlike in C,
those semicolons do not appear in the source. Instead the lexer uses a simple rule to insert
semicolons automatically as it scans, so the input text is mostly free of them.

fo C—H# 2 Go Y EXBHAEAS) T RERES s o C AR E» RESFHFERS T B
Moo MmARZ > BESHELERN —LREHAN R AHIBEAST » HRAD P LKA

/\UT‘J

The rule is this. If the last token before a newline is an identifier (which includes words like
int and float64), a basic literal such as a number or string constant, or one of the tokens

&
=
—
m~

=
o
K e

9 BEFATMYRE MR ARIRA (83 int # float64 X K&y $£43) ~ &

BAE Y 1 %
F2 R AAF @A T AL —

S

B
%
Mm

break continue fallthrough return ++ --) }

the lexer always inserts a semicolon after the token. This could be summarized as, “if the
newline comes after a token that could end a statement, insert a semicolon”.

M 43] 7% -7 %%%ﬁ GAFIEE MIGAD T o AT AN @ e RIATAT AR RAEGH K
B> MiEAD 5

A semicolon can also be omitted immediately before a closing brace, so a statement such as

25T e M A0 RIS A BEE% 0 FiR

go func() { for { dst <- <-src } }()

needs no semicolons. Idiomatic Go programs have semicolons only in places such as for
loop clauses, to separate the initializer, condition, and continuation elements. They are also
necessary to separate multiple statements on a line, should you write code that way.

BAEYEBEGRES S - BFEGCoRRF R it4e for EIRF RN M TIN5 » Uk
BALE S ZBRE AT T wRBE—ITPBEELNEG WELAS TR

One consequence of the semicolon insertion rules is that you cannot put the opening brace
of a control structure (if, for, switch, or select) on the next line. If you do, a semicolon will be
inserted before the brace, which could cause unwanted effects. Write them like this

R R de AT o ARER T A —ANdE R LM (if ~ for > switch 2 select) 8 £ K#EFHAET —
ITowRBAMBM REARESTAH@IEA—NSF > BTG ARTEZGKE - REZRXMH
:_%’

if i < f() {
g()
}

not like this

R A

if i < f()
{

g()
}

if i < f()
{

a()
}

Control structures

TEW A

The control structures of Go are related to those of C but differ in important ways. There is
no do or while loop, only a slightly generalized for; switch is more flexible; if and switch
accept an optional initialization statement like that of for; break and continue statements take
an optional label to identify what to break or continue; and there are new control structures
including a type switch and a multiway communications multiplexer, select. The syntax is
also slightly different: there are no parentheses and the bodies must always be brace-
delimited.

Go P H & Mizdl 5 CAF S ML » BPEREZLAT AREZL o Go AA1EA do &
while &3 » A K —/~F 318 A 89 for 5 switch & % & — & ; if #= switch % for —# T#HEL Tk
By indeAbigé] 3 I TH—ANESRB R B SRR BN E0IHIER LN @ select o £
BIEAAA LY TE RARES 0 M TR LAE R KIEF T o

If

In Go a simple if looks like this:

£ Go F o —ANE E 89 if 15 8 AAKRB RN

if x > {
return y

Mandatory braces encourage writing simple if statements on multiple lines. It's good style to
do so anyway, especially when the body contains a control statement such as a return or
break.

BH R FTIRAERGE T L B0 M ST o 5324 TP &4 return 3 break 5 1% 4
AN A AL R 43 4 — PR de o

Since if and switch accept an initialization statement, it's common to see one used to set up
a local variable.

® T if = switch T2 w4567 > AR KRR ERAFREE 5 F N -

if err := file.Chmod(); err 1= {
log.Print(err)
return err

In the Go libraries, you'll find that when an if statement doesn't flow into the next statement—
that is, the body ends in break, continue, goto, or return—the unnecessary else is omitted.

£ Go ETF » IRERIE if B3GR aMATE T — %3568 > TREPEMATIR L break
continue ~ goto X return 2 K& » R LR 4 else 2H A% o

f, err := o0s.0pen(name)
if err I= {
return err

3
codeUsing(f)

This is an example of a common situation where code must guard against a sequence of
error conditions. The code reads well if the successful flow of control runs down the page,
eliminating error cases as they arise. Since error cases tend to end in return statements, the
resulting code needs no else statements.

THIZ—Aw WAGH I RAG LA E— AP 69455 5 o BRI AR %L > WAL
CHE R e T HERE L return 28 0 XL EHRBLZLE else T °

f, err := o0s.0pen(name)
if err I= {
return err
}
d, err := f.Stat()
if err I= {
f.Close()
return err
}

codeUsing(f, d)

Redeclaration and reassignment

TP A HRBRA

An aside: The last example in the previous section demonstrates a detail of how the := short
declaration form works. The declaration that calls 0s.Open reads,

AIE L LT FRE—ANATHREFTTES W =&l o BT 0s.0pen &9 5 A

f, err := o0s.0pen(name)

This statement declares two variables, f and err. A few lines later, the call to f.Stat reads,

%iEGERHTANEE ferre £ILITZX G » XA

d, err := f.Stat()

which looks as if it declares d and err. Notice, though, that err appears in both statements.
This duplication is legal: err is declared by the first statement, but only re-assigned in the
second. This means that the call to f.Stat uses the existing err variable declared above, and
just gives it a new value.

PR T fState CFRRKMTFEFHT direrre & REBANEGPHRENT err» 12X
HEEMAELSEY er BB — K EGFPRER BAE 5B PRIEARREET o
kAW R fStat i A A EBCEERAY err CRARKEHRMBE TR o

In a := declaration a variable v may appear even if it has already been declared, provided:
BT A CHRAFAGTE Y THIAA=FAF .

e this declaration is in the same scope as the existing declaration of v (if v is already
declared in an outer scope, the declaration will create a new variable §),

¢ the corresponding value in the initialization is assignable to v, and

e there is at least one other variable in the declaration that is being declared anew.

o ARERHLFEWM vATR—ERRT (v TEIIEERRTF AL > MHLKRFE A
KUE—ANHOTES)

o LMY EEXMAE MM ERT v B

o EWRFEPTE S FH AT LS R o

This unusual property is pure pragmatism, making it easy to use a single err value, for
example, in a long if-else chain. You'll see it used often.

AP B LA AR 0 R LRI 0 BIRAFRANTT AR T RIRAE R — A err 45> Blde
fe—/-48 5 K6 if-else T o IRSRILERMFRME -

§ It's worth noting here that in Go the scope of function parameters and return values is the

same as the function body, even though they appear lexically outside the braces that
enclose the body.

§ MBAF—IRAZ > BPAE Go F 89 A S fe R @£ 7 ik AT KEF 90> 2 efEm
B Fe % X FARAS RAR T o

For

The Go for loop is similar to—but not the same as—<C's. It unifies for and while and there is
no do-while. There are three forms, only one of which has semicolons.

Go # for IR EMT C> 2H RRAARE o €4 —T for 4= while » ~&A do-while T - €H =
YRR —HEENT o

for init; condition; post { }

for condition { }

for { }

for init; condition; post { }

for condition { }

for { }

Short declarations make it easy to declare the index variable right in the loop.

HEFARIERNEZHEBRAFTEATHREE

sum :=
for i (= 0; i< ;o i+ {

sum += i

If you're looping over an array, slice, string, or map, or reading from a channel, a range
clause can manage the loop.

BRI S R~ FH B XA AT RN EFRBUE & 0 range T 47 A8 # PR a2 A

S I YE T o

for key, value := range oldMap {
newMap [key]

value

}

If you only need the first item in the range (the key or index), drop the second:

HWRAFEGRDFHHE -0 (RXTAR) » BB =AHTT ¢

for key := range m {
if key.expired() {
(m, key)
}

If you only need the second item in the range (the value), use the blank identifier, an
underscore, to discard the first:

HEWRAFEG®RHFOH AR (E) » FRRAZGHFRA > PTRERERS —ME

sum :=
for _, value := range array {
sum += value

The blank identifier has many uses, as described in a later section.
TARRKEASHA X CoEB @ T PR o

For strings, the range does more work for you, breaking out individual Unicode code points
by parsing the UTF-8. Erroneous encodings consume one byte and produce the
replacement rune U+FFFD. (The name (with associated builtin type) rune is Go terminology
for a single Unicode code point. See the language specification for details.) The loop

2 FF4F % 0 range RESSIRBEE SARA] o € AR AFAT UTF-8 » 1§ B4k 569 Unicode 75 &
SE Wk o IR RAE ER —ANFF o FUF L U+FFFD R RH o (LR FU FRER

o
M rune & Go £/ Unicode A3 & 69718 o 15 N2 S) ° 43R

for pos, char := range "HA \ x80 " {
fmt.Printf("character %#U starts at byte position %d\n", char, pos)
3
prints
character U+ "H' starts at byte position

character U+672C '4' starts at byte position
character U+FFFD '®@' starts at byte position
character U+8A9E '?&' starts at byte position

for pos, char := range "H A\x803" {
fmt.Printf ("5 %#U 4 T5 742 E %d\n", char, pos)
3

T er

FH U+ A #TFVA
FH U+672C ' A &*fﬂ’r—*ﬁ
F/ U+FFFD 'G' #TF
FH U+BA9E &' &ﬁ-%‘z

mmmm

Finally, Go has no comma operator and ++ and -- are statements not expressions. Thus if
you want to run multiple variables in a for you should use parallel assignment (although that
precludes ++ and --).

&G GOzxﬁzi BUEF fm++ Ao - BB mIEAEIN - Atk ZHBEE for P2 %
ANEE S R RATFATREG TN (BACRIEL ++ Fo) |

for i, j := 0, (a)-1; i< 3j; i, j = i+1, j {
a[i], a[j] = a[j], a[i]
}
for i, j := 0, (a)-1; i< 3j; i, j = i+1, j {
a[i], a[j] = a[j], a[i]
}
Switch

Go's switch is more general than C's. The expressions need not be constants or even
integers, the cases are evaluated top to bottom until a match is found, and if the switch has
no expression it switches on true. It's therefore possible—and idiomatic—to write an if-else-
if-else chain as a switch.

Go#switch b CHREA « AEXXKXNEFEAFTEXE rcase B4 LM TR —#HITE
A BB ILE AL o % switch E@AA A& X » €I L& true » Btk » HA41T 3% if-else-if-
else % B . — /> switch » X4 & /54 Go 89 KA -

func unhex(c byte) byte {

switch {

case '0' <= c && c <= '9':
return c - 'O’

case 'a' <= c && c <= 'f':
return ¢ - 'a' +

case 'A' <= c && c <= 'F':
return ¢ - 'A' +

3

return

There is no automatic fall through, but cases can be presented in comma-separated lists.

switch F+ R~ 2 A # T# > 12 case TR LIE 5 5 F R | 540 B a2 32 5 4F

func shouldEscape(c byte) bool {
switch ¢ {

case 1 l’ |?|, I&l, l:l, I#l’ |+|, I%I:

return

}

return

Although they are not nearly as common in Go as some other C-like languages, break
statements can be used to terminate a switch early. Sometimes, though, it's necessary to
break out of a surrounding loop, not the switch, and in Go that can be accomplished by
putting a label on the loop and"breaking" to that label. This example shows both uses.

RECHNIEGo PR ZFLECRCiEZ AT % » 12 break & 6] 7T ¥A4# switch 3 AT £k o R

R switch » A MR RATHE B R IR o £ Go b o KA1 R B b AR BB > K
J “siy” BIAR LR o F@meghl TRAT KMk -

Loop:
for n := 0; n < (src); n += size {
switch {
case src[n] < sizeOne:
if validateOnly {
break
}
size =
update(src[n])

case src[n] < sizeTwo:
if n+l >= (src) {
err = errShortInput
break Loop
b
if validateOnly {
break
b
size =
update(src[n] + src[n+l]<<shift)

Of course, the continue statement also accepts an optional label but it applies only to loops.
4 & > continue B AL REHE L — AT E > AL BCRBABIFFEA o

To close this section, here's a comparison routine for byte slices that uses two switch
statements:

// Compare returns an integer comparing the two byte slices,
// lexicographically.
// The result will be 0@ if a == b, -1 if a < b, and +1 if a > b
func Compare(a, b []byte) int {
for i := 0; i< (a) && i < (b); i++ {
switch {
case a[i] > b[i]:
return
case a[i] < b[i]:
return

}

switch {

case (a) > (b):
return

case (a) < (b):
return

}

return

VEA X —F)%k » A5l 48 A A A switch 15 4 3t 5 F S B AT 4R

// Compare &5 35 by H R B — AN
// # a == s MERAR 2 a<bsMERA -1:2 a>b MERA +1-
func Compare(a, b []byte) int {
for i (= 0; 1< (a) && 1 < (b); i++ {
switch {

case a[i] > b[i]:
return

case a[i] < b[i]:
return

}

switch {

case (a) > (b):
return

case (a) < (b):
return

}

return

Type switch

RAEF

A switch can also be used to discover the dynamic type of an interface variable. Such a type
switch uses the syntax of a type assertion with the keyword type inside the parentheses. If
the switch declares a variable in the expression, the variable will have the corresponding
type in each clause. It's also idiomatic to reuse the name in such cases, in effect declaring a
new variable with the same name but a different type in each case.

var t interface{}
t = functionOfSomeType()
switch t := t.(type) {

default:

fmt.Printf("unexpected type %T", t) // %T prints whatever type t has
case bool:

fmt.Printf("boolean %t\n", t) // t has type bool
case int:

fmt.Printf("integer %d\n", t) // t has type int

case *bool:

fmt.Printf("pointer to boolean %t\n", *t) // t has type *bool
case *int:

fmt.Printf("pointer to integer %d\n", *t) // t has type *int

=

switch &T)ﬂi‘%lw’r&ﬂ AL o de AR BF AL HIET T8 X4EF type 12 A £
W ZE% o % switch EX XX FEFRAT —AEE > BLRAUTENEANTFHOTHEAZRLTE
st e R o LT case FEA —ANEFHLFEABLN » FIFETEHE N case ZFAT
— AR XAER L83 T E -

var t interface{}
t = functionOfSomeType()
switch t := t.(type) {

default:

fmt.Printf("unexpected type %T", t) // %T Wt AR
case bool:

fmt.Printf("boolean %t\n", t) // t & bool X
case int:

fmt.Printf("integer %d\n", t) // t & int E£H

case *bool:

fmt.Printf("pointer to boolean %t\n", *t) // t 5& *bool X%
case *int:

fmt.Printf("pointer to integer %d\n", *t) // t 5& *int £#

Functions

Multiple return values

% {i R =

One of Go's unusual features is that functions and methods can return multiple values. This
form can be used to improve on a couple of clumsy idioms in C programs: in-band error
returns such as -1 for EOF and modifying an argument passed by address.

Go AR MR Z —st A RE e F ETRE S MMl o XA ATUEEC P—EKIRE)
B B RERSE (Flhe A -1 &7 EOF) Aof5 2GR it Hohb 2 A 8 52 % o

In C, a write error is signaled by a negative count with the error code secreted away in a
volatile location. In Go, Write can return a count and an error: “Yes, you wrote some bytes
but not all of them because you filled the device”. The signature of the Write method on files
from package os is:

ECP » BABRERANBELAA—ANREUr1E) B RBARBEENRHATHILE - @
£ Go F s Write 2R BE AN FHF AR — A4 1 28 BEANT—RFY > f2H K4
BN AAEXEELH o £ os &F » FileWrite #9& 4 %4 :

func (file *File) Write(b []byte) (n int, err error)

and as the documentation says, it returns the number of bytes written and a non-nil error
when n !=len(b). This is a common style; see the section on error handling for more
examples.

Ede LA AT » BREFAF T F4£ nl=len(b) B &= —A 3 nil 49 error 44244 o &
A—#E L G AAE 0 B 5w RAERALE—F o

A similar approach obviates the need to pass a pointer to a return value to simulate a

reference parameter. Here's a simple-minded function to grab a number from a position in a
byte slice, returning the number and the next position.

EAVT AR — 40 1§ R 60 7 ok o I 0 BB T A R e A4 o U i 389 2 BT F
AP AR E R > B SRR T~ E -

func nextInt(b []byte, i int) (int, int) {
for ; i < (b) && !isbigit(b[i]); i++ {

}

X :=

for ; i < (b) && isbDigit(b[i]); i++ {
X = x* + int(b[i]) - 'O’

}

return x, i

You could use it to scan the numbers in an input slice b like this:

TR T BN > AL caMMANR b RRRET -

for i (= 0; 1< (b); {
X, 1 = nextInt(b, 1)
fmt.Println(x)

Named result parameters

b R A

The return or result "parameters" of a Go function can be given names and used as regular
variables, just like the incoming parameters. When named, they are initialized to the zero
values for their types when the function begins; if the function executes a return statement
with no arguments, the current values of the result parameters are used as the returned
values.

Go Ity R EEH LR 4" Tiké 4 » AEAERTEEM » REAAAH A—H o &

%5 0 — Bz RIS AT 0 bﬂ]&té\ﬁ'ﬁmﬁé%ﬁ’%;@j&ﬁ!#ﬁl&éﬁﬁfﬁ D FRAEIMATT —
51 FEHEG return E4) >0 ME R 4560 5 AEG KA

The names are not mandatory but they can make code shorter and clearer: they're
documentation. If we name the results of nextint it becomes obvious which returned int is
which.

AR & ‘3%%'1'&66 s A2 AT REAR D F e 42T ¢ EATREAE A o F &A1 E T nextint
R MACAEH int WAL ET o

func nextInt(b []byte, pos int) (value, nextPos int) {

Because named results are initialized and tied to an unadorned return, they can simplify as
well as clarify. Here's a version of io.ReadFull that uses them well:

BTG LRt LR LHEE RAGRE » B3RS ITE KA | 2 @ iFnF o
T @ # io.ReadFull #t & MR4F 6946 F -

func ReadFull(r Reader, buf []byte) (n int, err error) {
for (buf) > && err == {
var nr int
nr, err = r.Read(buf)
n += nr
buf = buf[nr:]

}
return
}
Defer

Go's defer statement schedules a function call (the deferred function) to be run immediately
before the function executing the defer returns. It's an unusual but effective way to deal with
situations such as resources that must be released regardless of which path a function takes
to return. The canonical examples are unlocking a mutex or closing a file.

Go # defer & e Al T % — MR ZAA (BPERPATRI) » %R EWAT defer 89 K4k
BEZ A ZBPMAT o € RAFIEWTF - B TR —RFHGHAF R > Blde £b AT %
1238] 0 AR LR BERCT IR R AL o A) T3 T AR B R e & P A o

func Contents(filename string) (string, error) {
f, err := os.0Open(filename)
if err I= {
return "", err

}
defer f.Close()

var result []byte

buf := ([]byte,)
for {
n, err := f.Read(buf[0:])
result = (result, buf[0:n]...)
if err I= {
if err == i0.EOF {
break
}

return "", err

3
b

return string(result),

func Contents(filename string) (string, error) {
f, err := o0s.0pen(filename)
if err I= {
return "", err

}
defer f.Close()

var result []byte
buf := ([Ibyte,)
for {

n, err := f.Read(buf[0:])

result = (result, buf[0:n]...)

if err 1= {

if err == i0.EOF {
break

}

return "", err

b
b

return string(result),

Deferring a call to a function such as Close has two advantages. First, it guarantees that you
will never forget to close the file, a mistake that's easy to make if you later edit the function
to add a new return path. Second, it means that the close sits near the open, which is much
clearer than placing it at the end of the function.

R % 4= Close L Rt HFCRF A A A 2G4 1 F— > BRARETREECXAIH o o R1R
e XA ZRB AT ey R e izn » ARFREARSLL - F= CF%RE “XH” &
T AR XEFCHERRERLEFHAT o

The arguments to the deferred function (which include the receiver if the function is a
method) are evaluated when the defer executes, not when the call executes. Besides
avoiding worries about variables changing values as the function executes, this means that
a single deferred call site can defer multiple function executions. Here's a silly example.

HARR [F 5 (W RGREA 7 EMNT QFEME) ARERPIATHRLRE AL

BARPATH A R - IFEFREFZ T EZEAJIBPATHAAE » FARTEREEANTH
RO TR S AR IAT o T EEANF LT -

for i := 0; 1 < 5; i++ {
defer fmt.Printf("%d ", 1)

Deferred functions are executed in LIFO order, so this code will cause 4 3 2 1 0 to be printed
when the function returns. A more plausible example is a simple way to trace function
execution through the program. We could write a couple of simple tracing routines like this:

MAER GG H AR RS # el (LIFO) 690 /5 4T » B3l AR £ R 3R EI i 2475 4 321
O —ANEEERFELNGH FABL—FE LG F AR RRIRRELGIAT o ROTT A%
B —xt [£ 8 IR IR AL

func trace(s string) { fmt.Println("entering:", s) }
func untrace(s string) { fmt.Println("leaving:", s) }

func a() {
trace("a")
defer untrace("a")

func trace(s string) { fmt.Println("entering:", s) }
func untrace(s string) { fmt.Println("leaving:", s) }

func a() {
trace("a")
defer untrace("a")

We can do better by exploiting the fact that arguments to deferred functions are evaluated
when the defer executes. The tracing routine can set up the argument to the untracing
routine. This example:

KATT AR A A Z A4 & 0 BPARAE R R 4069 52 A 8 defer ATEE 4 &A% RAE o SRIZHIAZT
43t ROIR I B A2 B A o AT HIF ¢

func trace(s string) string {
fmt.Println("entering:", s)
return s

}

func un(s string) {
fmt.Println("leaving:", s)

}

func a() {
defer un(trace("a"))
fmt.Println("in a"

3

func b() {
defer un(trace("b"))
fmt.Println("in b")

a()
b

func main() {
b()
}

prints

AT

entering: b
in b
entering: a
in a
leaving: a
leaving: b

For programmers accustomed to block-level resource management from other languages,
defer may seem peculiar, but its most interesting and powerful applications come precisely
from the fact that it's not block-based but function-based. In the section on panic and recover
we'll see another example of its possibilities.

stFAIMACET PHRERRELGES R - defer MA-FA BIEF - 128 RA MR KA
Bsk B THEATREMIEHSGH A - £ panic = recover BAF F » BN AR X TETH
P8 e F o

Data

5
Allocation with new

new %t

Go has two allocation primitives, the built-in functions new and make. They do different
things and apply to different types, which can be confusing, but the rules are simple. Let's
talk about new first. It's a built-in function that allocates memory, but unlike its namesakes in
some other languages it does not initialize the memory, it only zeros it. That is, new(T)
allocates zeroed storage for a new item of type T and returns its address, a value of type

*T . In Go terminology, it returns a pointer to a newly allocated zero value of type T.

Go RB:T AP o B RE » BP N R4 new ## make © BN FHRE » AT A RA
ARE o BAITREFIARRE AZRAM R E o (ERITLKRAH new o ZEMA RS EA
BEARERE > E5LCETTPORLRJLTE > EFamBibtAz > RAFENAEER - &
WAV new(T) 2AXBA T OHA)RCERGAHFER > HEEEHHI > LA -
RAA 1 894E o Al Go I ARIERL > BRI —AMNG4 0 mAgstiE @ o mey c XANA T8

KAA o

Dy

Since the memory returned by new is zeroed, it's helpful to arrange when designing your
data structures that the zero value of each type can be used without further initialization.
This means a user of the data structure can create one with new and get right to work. For
example, the documentation for bytes.Buffer states that "the zero value for Buffer is an
empty buffer ready to use." Similarly, sync.Mutex does not have an explicit constructor or Init
method. Instead, the zero value for a sync.Mutex is defined to be an unlocked mutex.

LA new BEI N AL EXR » AL BREITTRIEEME » HAF XA G RMAE T bt —F Ak
LT ZERE ZRIAE LM LA H A TR new €] 2 — 316934 FRRAEE F TAE o 4w >
bytes.Buffer & L% F #2 2| “K 44 69 Buffer st-2 & &4 9% 7 R o " Fl 4% > sync.Mutex
BA B XA REK Init 7%k 0 mEEME sync.Mutex st &2 M T LA CARAE 6 I FF 4
T o

The zero-value-is-useful property works transitively. Consider this type declaration.

TP A o BT R AN o

type SyncedBuffer struct {
lock sync.Mutex
buffer bytes.Buffer

Values of type SyncedBuffer are also ready to use immediately upon allocation or just
declaration. In the next snippet, both p and v will work correctly without further arrangement.

SyncedBuffer £ AL XA F AN R BIGFAEGRET c BEREBF > phv EF#—F
4b 3% Bp T S 2 TAE o

p := (SyncedBuffer)
var v SyncedBuffer

Constructors and composite literals

MiERFHRETE

Sometimes the zero value isn't good enough and an initializing constructor is necessary, as
in this example derived from package os.

AR E TS IR FE— MBI R > Wk 8 os & F 69 LB AT T o

func NewFile(fd int, name string) *File {
if fd < 0 {
return

}

f := (File)
f.fd = fd
f.name = name
f.dirinfo =
f.nepipe =
return f

There's a lot of boiler plate in there. We can simplify it using a composite literal, which is an
expression that creates a new instance each time it is evaluated.

RERARBI TR - KNTAILESFEREE > ZARE XA FR LA L
&) 5E 4]

func NewFile(fd int, name string) *File {
if fd < {
return

3
f := File{fd, name, , 0}
return &f

Note that, unlike in C, it's perfectly OK to return the address of a local variable; the storage
associated with the variable survives after the function returns. In fact, taking the address of
a composite literal allocates a fresh instance each time it is evaluated, so we can combine
these last two lines.

HEE S BRE— NG TENRIETARAFM > X85 CRF - mART 2 95E £
BECRC BARAA R o £l E » Y F—AF A5 F @G HIEE » Z0% 4 — A3 89 4] 9 B
NG > RILEAT 4 L@ e mATRAD & 5F ¢

return &File{fd, name, , 0}

The fields of a composite literal are laid out in order and must all be present. However, by
labeling the elements explicitly as field:value pairs, the initializers can appear in any order,
with the missing ones left as their respective zero values. Thus we could say

BT @ FERLMRIN7 23]t o {24 R4 F B AL 2T 69 XA HAn b L& 61k
FEE T AT B RERGFERMAKERTEME o Bk KNTRAALTHX :

return &File{fd: fd, name: name}

As a limiting case, if a composite literal contains no fields at all, it creates a zero value for
the type. The expressions new(File) and &File{} are equivalent.

YEERT » ZEESFOF O FHR » B ZZER T - £% X new(File) #»
&File{} A FH8) o

Composite literals can also be created for arrays, slices, and maps, with the field labels

being indices or map keys as appropriate. In these examples, the initializations work
regardless of the values of Enone, Eio, and Einval, as long as they are distinct.

BEeF@RIMTH TR ~ I b ARBRS » FBARZ 2 % 5] & 2B gHE N AL Lm & o
T F4e L2 ¥ > L% Enone ~ Eio A= Einval 894824 4 » R 2B 8945 & R B 3E4T ©

[...]string {Enone: "no error", Eio: "Eio", Einval: "invalid argument"}

n o
1

[]string {Enone: "no error", Eio: "Eio", Einval: "invalid argument"}

3
1]

map[int]string{Enone: "no error", Eio: "Eio", Einval: "invalid argument"}

Allocation with make

make 7-&C

Back to allocation. The built-in function make(T, args) serves a purpose different from
new(T). It creates slices, maps, and channels only, and it returns an initialized (not zeroed)
value of type T (not *1). The reason for the distinction is that these three types represent,
under the covers, references to data structures that must be initialized before use. A slice,
for example, is a three-item descriptor containing a pointer to the data (inside an array), the
length, and the capacity, and until those items are initialized, the slice is nil. For slices, maps,
and channels, make initializes the internal data structure and prepares the value for use. For
instance,

BEE NG5 ELER o NEXEK make(T, args) 89 B 89 R F T new(T) > © R A Fal&WH ~
BRAtFeds i o FFREIER AT (M +1) 9—ACandeit (RIFER) 094 o BT
EFORALT L=AARABARR LA RAEKIEXAE > SN EEATLAEI o Bl > 4
RAE—ANBAEZRARGRETF > 85— MG (KRAR;) RIEGIRHS - KEAREE >
F X Z AR > B R A nil o st Tk ~ B4t Fe13 38 0 make A T #4610 3R 69
BAE LA I A BTG AL R 6948 o 4] o

([1int, 10,)

allocates an array of 100 ints and then creates a slice structure with length 10 and a capacity
of 100 pointing at the first 10 elements of the array. (When making a slice, the capacity can
be omitted; see the section on slices for more information.) In contrast, new([Jint) returns a
pointer to a newly allocated, zeroed slice structure, that is, a pointer to a nil slice value.

SpR—A A 100 A int R ER B S —ARAA 10 A 100 5 b5k
PHA0AMRED IR BH o (LA A N RRETOES > RIELAA—F) 5

sAa B > new([lint) 41 B — 45 AT A ELH - LEEE WA A 0 B — A5G nil b 480

Bt

These examples illustrate the difference between new and make.

T@mag5F 8T new = make LR R 7] :

var p *[]int

([1int)
([1int,)

var v []int

var p *[]int ([]int)
*p = ([1int, ,)

Vo= ([1int,)

var p *[]int

([1int)
([1int,)

var v []int

var p *[]int ([]int)
*p = ([1int, ,)

Vo= ([1int,)

Remember that make applies only to maps, slices and channels and does not return a
pointer. To obtain an explicit pointer allocate with new or take the address of a variable
explicitly.

H184E > make RiEA T4t - A A fZ A RR W54 o 2 RAFAHAGIS4H > FH{E A
new 2B 5 o

Arrays
|

Arrays are useful when planning the detailed layout of memory and sometimes can help
avoid allocation, but primarily they are a building block for slices, the subject of the next
section. To lay the foundation for that topic, here are a few words about arrays.

EFmAR NER RN > BAAFFARNG > A TRELLSHALEIER > 2ENEZEA
B Rtttk o RAT—FOHEAT » FRBRPLEILGRA CHME -

There are maijor differences between the ways arrays work in Go and C. In Go,

e Arrays are values. Assigning one array to another copies all the elements.

¢ |n particular, if you pass an array to a function, it will receive a copy of the array, not a
pointer to it.

e The size of an array is part of its type. The types [10]int and [20]int are distinct.

UT A% E GoAr C FHIEERF] o £ Go F »

o FUEM o K — N EART F M RAXERETALE ©
o A B EMAENEANS R 0 BB R A— 8 KmIELR4T o
o FAHGRIALEAG -5 o XA [10]int 4= [20]int A F &9 o
The value property can be useful but also expensive; if you want C-like behavior and
efficiency, you can pass a pointer to the array.

A B BIERAR - RN F 5 5 FRAE CABENITAFKE RTAERE—1 R
BB AR 4T o

func Sum(a *[3]float64) (sum float64) {

for _, v := range *a {
sum += v
}
return
3
array := [...]float64{ 5 P }
X := Sum(&array)

func Sum(a *[3]float64) (sum float64) {

for _, v := range *a {
sum += v
}
return
}
array := [...]float64{ , , }
X := Sum(&array)

But even this style isn't idiomatic Go. Use slices instead.

12X HRE Go MMMk » B 4% o
Slices

1 B

Slices wrap arrays to give a more general, powerful, and convenient interface to sequences
of data. Except for items with explicit dimension such as transformation matrices, most array
programming in Go is done with slices rather than simple arrays.

bR A B BATHE > ARIBFONRBET BN BRA SR o RTEETHRI
KEZAHBEFIIN > Go F 4RI FABAAR A B LR R T ARE

Slices hold references to an underlying array, and if you assign one slice to another, both
refer to the same array. If a function takes a slice argument, changes it makes to the
elements of the slice will be visible to the caller, analogous to passing a pointer to the
underlying array. A Read function can therefore accept a slice argument rather than a
pointer and a count; the length within the slice sets an upper limit of how much data to read.
Here is the signature of the Read method of the File type in package os:

MR RAG T RE ZKBGF] A ZREEARART A — Nk » €145 AR —4%4a -

EENRBE AN REASEEN NESBWA AEGEBCTARAERERATRL» &
AR AL T JRE K484t - AL > Read R T#HEZ— MR £ 4 mk—MNgsti
— AR KERET TRRAIENG LR o AT A os &LF File £% 69 Read 7 %

A

func (file *File) Read(buf []byte) (n int, err error)

The method returns the number of bytes read and an error value, if any. To read into the first
32 bytes of a larger buffer buf, slice (here used as a verb) the buffer.

oy R BRI F Y Hoe — MR (BA) o B EMB RGP R b P EIAT 32 4
FH 0 REALRATIHA BT o

n, err := f.Read(buf[0:32])

Such slicing is common and efficient. In fact, leaving efficiency aside for the moment, the
following snippet would also read the first 32 bytes of the buffer.

BRMRGFTEFRAELZK o ZREAE s ATHERERERZEZFRGA 32 NFF o

var n int

var err error

for i := 0; i < 32; i++ {
nbytes, e := f.Read(buf[i:i+1])
if nbytes == |] e I= {
err = e
break
}

n += nbytes

var n int
var err error

for i := 0; 1 < 32; i++ {
nbytes, e := f.Read(buf[i:1i+1])
if nbytes == |] e !'= {
err = e
break
}

n += nbytes

The length of a slice may be changed as long as it still fits within the limits of the underlying
array; just assign it to a slice of itself. The capacity of a slice, accessible by the built-in
function cap, reports the maximum length the slice may assume. Here is a function to
append data to a slice. If the data exceeds the capacity, the slice is reallocated. The
resulting slice is returned. The function uses the fact that len and cap are legal when applied
to the nil slice, and return 0.

REM R FBERERAGRE > CHRERAETEN > RERCRTLAGHWH T -
MANEETRALINE R cap RIF > B LB GWR TRANRRKE - AT AR KB
Bl R R BHREBEALE T NaEHTEREWH - BEARAFEGH » %%
PP A 6 len #2 cap £ R AT nil WA WAL » ©4EE 0.

func Append(slice, data[]byte) []byte {
1:= (slice)
if 1 + (data) > (slice) {

newSlice := ([]byte, (1+ (data))*2)

(newSlice, slice)
slice = newSlice

}

slice = slice[0:1+ (data)]

for i, ¢ := range data {
slice[l+i] = ¢

}

return slice

func Append(slice, data[]byte) []byte {
1l := (slice)
if 1 + (data) > (slice) {

newSlice := ([Joyte, (l+len(data))*2)

(newSlice, slice)
slice = newSlice

}

slice = slice[0:1+ (data)]

for i, ¢ := range data {
slice[1+i] = ¢

}

return slice

We must return the slice afterwards because, although Append can modify the elements of
slice, the slice itself (the run-time data structure holding the pointer, length, and capacity) is
passed by value.

KA BN LMER K - B A RE Append TH K slice 8970%E » 12k 8 & (HLiEi7ad 448
BHELHg s kKEREE) ABTEEEY o

The idea of appending to a slice is so useful it's captured by the append built-in function. To
understand that function's design, though, we need a little more information, so we'll return
to it later.

b KB e A R IET AR 0 B 118 A& K%k append © B MR & A% 0 K
12 HE— LI E L RNBHERNBE -

Two-dimensional slices

—tEin R

Go's arrays and slices are one-dimensional. To create the equivalent of a 2D array or slice, it
is necessary to define an array-of-arrays or slice-of-slices, like this:

Go 3k AAntn B A A — Lty o BHEEN O BIAIME » LM T L — Nkt
K h 8k o AR

type Transform [3][3]float64
type LinesOfText [][]byte

type Transform [3][3]float64
type LinesOfText [][]byte

Because slices are variable-length, it is possible to have each inner slice be a different
length. That can be a common situation, as in our LinesOfText example: each line has an
independent length.

WThHKEATTH > AL ARTRINA ZATRKEGWR o £ £4718 LinesOfText #]
Fp oo XAFE LOER BT ALACHKRE -

text := LinesOfText{
[Jbyte("Now is the time"),
[Jbyte("for all good gophers"),
[Jbyte("to bring some fun to the party."),

Sometimes it's necessary to allocate a 2D slice, a situation that can arise when processing
scan lines of pixels, for instance. There are two ways to achieve this. One is to allocate each
slice independently; the other is to allocate a single array and point the individual slices into
it. Which to use depends on your application. If the slices might grow or shrink, they should
be allocated independently to avoid overwriting the next line; if not, it can be more efficient to
construct the object with a single allocation. For reference, here are sketches of the two
methods. First, a line at a time:

KOt se M B — R Bl LB F O RRAITH > IFFARSRZE - RI1VH AP

FAKRKBEINAE o —MRABRIHYEE—NR s A —FRTRA B —NEkw . ¥
EANRARBEOE o RN 7 X ATRGEN - Bk 2Kk IK%E > sk mBT R
PRFXBIBET AT 204 MERFBEFMES L LB o AT ERXAMF T
KIEARAG » (RBEAE o HAAE—R—1ITH ¢

picture := ([1[Juint8, YSize)

for i := range picture {
picture[i] = ([Juint8, XSize)

picture := ([J[]Juint8, YSize)

for i := range picture {
picture[i] = ([Juint8, XSize)

And now as one allocation, sliced into lines:

WA A —RGB » sHiT# TR

picture := ([1[Juint8, YSize)
pixels := ([Juint8, XSize*YSize)
for i := range picture {

picture[i], pixels = pixels[:XSize], pixels[XSize:]

3
picture := ([J[]Juint8, YSize)
pixels := ([Juint8, XSize*YSize)
for i := range picture {
picture[i], pixels = pixels[:XSize], pixels[XSize:]
}
Maps

Bk S

Maps are a convenient and powerful built-in data structure that associate values of one type
(the key) with values of another type (the element or value) The key can be of any type for
which the equality operator is defined, such as integers, floating point and complex numbers,
strings, pointers, interfaces (as long as the dynamic type supports equality), structs and
arrays. Slices cannot be used as map keys, because equality is not defined on them. Like
slices, maps hold references to an underlying data structure. If you pass a map to a function
that changes the contents of the map, the changes will be visible in the caller.

Bt R AR 3R K6 M REHOB S5 0 B T AR TR B R 8044 o JLAR T A AEATAR S b 44
FAXFHOEL > g A% L8 FAE 4 o (READSRD LR
FINT) ~ SH ORI o B R R BRANE » A SN AR ST AR L o Sk — -
B RS R R o B BRA A BAT o R AT HbRA) A > LA PR R A
T ¢

Maps can be constructed using the usual composite literal syntax with colon-separated key-
value pairs, so it's easy to build them during initialization.

BRAT T4 — AR 09 B & T @miB ik st AT i - 4R - AR M2 5 5[0 RLT AL R
CE Xk At NI

var timeZone = map[string]int{

HUTCII : * * ,
HESTII : * * ,
HCSTII : * * ,
HMSTII : * * ,
HPSTII ' * * ,

Assigning and fetching map values looks syntactically just like doing the same for arrays and
slices except that the index doesn't need to be an integer.

TR A Fo IR BB Y 4B 6945 % RALT 248 > R R 69T A 89 R 5] R ab A 5k o

offset := timeZone["EST"]

An attempt to fetch a map value with a key that is not present in the map will return the zero
value for the type of the entries in the map. For instance, if the map contains integers,
looking up a non-existent key will return 0. A set can be implemented as a map with value
type bool. Set the map entry to true to put the value in the set, and then test it by simple
indexing.

% X A LB A P R G B AE R BAE > B2 R R A PR g R A 6 R o filde o 5
ENBHELEH - BER - NTALENET LB 0 FETEIAR—MELEA bool #
BR At o W ZB At F a9 E N true TR ZEANES T > sbEl i q £ 69 &7 RVERP T H BT E
LhHik -

attended := map[string]bool{
"Ann":

I

"Joe":

I

3

if attended[person] {
fmt.Println(person, "was at the meeting")

}

attended := map[string]bool{
"Ann": ,
"Joe": ,

}

if attended[person] {
fmt.Println(person, "E/EFFET)

3

Sometimes you need to distinguish a missing entry from a zero value. Is there an entry for
"UTC" or is that the empty string because it's not in the map at all? You can discriminate with
a form of multiple assignment.

AHERFEEZRY>EXRARFRGALERLALA T o o xf T —AMEKR A X "UTC" 58 > &7
AR T RAEEZRDTENEM o RT AR S TRALGT Xk 9 HFEA L o

var seconds int
var ok bool
seconds, ok = timeZone[tz]

For obvious reasons this is called the “comma ok” idiom. In this example, if tz is present,
seconds will be set appropriately and ok will be true; if not, seconds will be set to zero and
ok will be false. Here's a function that puts it together with a nice error report:

B BNTHRZIA 25 ok BAE - ET@HBIFF » 2tz B4 0 seconds w2 KT
E L A4E 0 B ook 2K E A true s & A4 > seconds MK E A K » m ok 24K E A false °

func offset(tz string) int {
if seconds, ok := timezZone[tz]; ok {
return seconds

}

log.Println("unknown time zone:", tz)
return

To test for presence in the map without worrying about the actual value, you can use the
blank identifier (_) in place of the usual variable for the value.

\\s—-

BB AP R G B AR AR AR EIRGME » THRA = aiz24 (L) kKRB ZMEN

o

= AE
TE

— A&

Mn

_, present := timeZone[tz]

https://go-zh.org/doc/effective_go.html#blank
https://go-zh.org/doc/effective_go.html#blank

To delete a map entry, use the delete built-in function, whose arguments are the map and
the key to be deleted. It's safe to do this even if the key is already absent from the map.

T MR ST P A9 LR 0 TAE R M E R delete 0 B VABR ST R B ARM IR 0942 2 A o BPAE
AT e Z gt P o AR E R A o

(timeZone, "PDT")

(timeZone, "PDT")

Printing

AT EP

Formatted printing in Go uses a style similar to C's printf family but is richer and more
general. The functions live in the fmt package and have capitalized names: fmt.Printf,
fmt.Fprintf, fmt.Sprintf and so on. The string functions (Sprintf etc.) return a string rather than
filling in a provided buffer.

Go R ## XALAT i WA A= C 89 printf 2k KA > 2R T EFmEA o ZREZFZT fmt &
P o ﬂm%’iﬁ“‘é—?&i@if]k : 4= fmt.Printf ~ fmt.Fprintf » fmt.Sprintf 3 o F /4 % &4k
(Sprintf) £#RE—AFH$ > RIPPALRGEFR o

You don't need to provide a format string. For each of Printf, Fprintf and Sprintf there is
another pair of functions, for instance Print and Printin. These functions do not take a format
string but instead generate a default format for each argument. The Println versions also
insert a blank between arguments and append a newline to the output while the Print
versions add blanks only if the operand on neither side is a string. In this example each line
produces the same output.

HREFRE—AEXFH B o &4 Printf ~ Fprintf #= Sprintf 4% 25| 2t &2 5 9M 69 %%k > 4= Print
5 Println © X & RFHF FRFELZEXFHE > mAAENE S A R—HKINEX ° Printin £ 7
R TREEAPIHBANES > FEB BB I—MRATH > @ Print B 32 4E 25 AR
EAFHBEARIpEG o AT w] P AT~ A0 BA L —46) -

fmt.Printf("Hello %d\n",)
fmt.Fprint(os.Stdout, "Hello ", ,"\n")
fmt.Println("Hello",)
fmt.Println(fmt.Sprint("Hello ",))

The formatted print functions fmt.Fprint and friends take as a first argument any object that
implements the io.Writer interface; the variables os.Stdout and os.Stderr are familiar
instances.

fmt.Fprint — % 8948 XALAT P KRBT H AT LI T io.Writer 2 89 FHEAF -5 &
¥ 0s.Stdout 5 os.Stderr # & A1 gm0 45] F o

Here things start to diverge from C. First, the numeric formats such as %d do not take flags
for signedness or size; instead, the printing routines use the type of the argument to decide
these properties.

MZEA4 3k CHERFAT B4 0 & %d X EMEE X THLERFTHT IR DN
ARl ATHPIREAREZ S XY R R T X LGN -

var x uint64 = 1<<
fmt.Printf("%d %x; %d %x\n", X, X, int64(x), int64(x))

prints

S EIRd

fEFfffffffrfffff,

If you just want the default conversion, such as decimal for integers, you can use the
catchall format %v (for “value”); the result is exactly what Print and Println would produce.
Moreover, that format can print any value, even arrays, slices, structs, and maps. Here is a
print statement for the time zone map defined in the previous section.

SRR BRI B > o R TR AR R ME AR X %y (2 “4E7) 5 £

R 5 Print #= Println 89418 R 248 F] o sboh > IR X ERITIPESHE > L2 ofE5%4A -
MR Fe gt o AT RITH L—F b2 L0 R 46945 4] o

¥ W

fmt.Printf("%v\n'", timeZone)

which gives output

map[CST: PST: EST: UTC:0 MST: 1

fmt.Printf("%v\n'", timeZone)

5
3
e
ot

map[CST: PST: EST: UTC:0O MST: 1

For maps the keys may be output in any order, of course. When printing a struct, the
modified format %+v annotates the fields of the structure with their names, and for any value
the alternate format %#v prints the value in full Go syntax.

LK o BT A4 TT RERRAT ROM T A i o HATHR S ANIRET o B A9 X Yoty A RN A
MFBEREFEL » A — K %t L 28R Go AT -

type T struct {

a int
b float64
c string
}
t = &T{ 7, , "abc\tdef" }

fmt.Printf("%v\n", t)
fmt.Printf("%+v\n", t)
fmt.Printf("%#v\n", t)
fmt.Printf("%#v\n'", timeZone)

prints
AT Ep
&{ abc def}
&{a:7 b: c:abc def}
&main.T{a:7, b: , c:"abc\tdef"}
map[string] int{"CST": , "PST": , "EST": , "uTCc":0, "MST": }

(Note the ampersands.) That quoted string format is also available through %q when applied
to a value of type string or [[byte. The alternate format %#q will use backquotes instead if
possible. (The %q format also applies to integers and runes, producing a single-quoted rune
constant.) Also, %Xx works on strings, byte arrays and byte slices as well as on integers,
generating a long hexadecimal string, and with a space in the format (% Xx) it puts spaces
between the bytes.

(FEZL PO &FT) 2187 string X [|byte 18 » T %q ZAF 5 FHFHE @
X %Hq ERTRAEARI 5 o (%q#BRELTHATERFFL Bt F L5 5
HXFE) b %x DT ATFHE ~ FFHARLEL > AR —MRK 570 H]
FHE o mEEEGEX (% x) TXEFTIREANE, -

Another handy format is %T, which prints the type of a value.

B — Ak L 88 XA %T > €RATI R AN LA,

fmt.Printf("%T\n", timeZone) prints

AT

map[string] int

If you want to control the default format for a custom type, all that's required is to define a
method with the signature String() string on the type. For our simple type T, that might look
like this.

FHRBIER B L EBGRUAER > REAZEHE L —AEA String() string 2% 697 % o
TR LR T Tk A74 TR o

func (t *T) String() string {
return fmt.Sprintf("%d/%g/%q", t.a, t.b, t.c)

}
fmt.Printf("%v\n", t)

to print in the format

AT il TA X

/ /"abc\tdef"

(If you need to print values of type T as well as pointers to T, the receiver for String must be
of value type; this example used a pointer because that's more efficient and idiomatic for
struct types. See the section below on pointers vs. value receivers for more information.)

(Lo RIREZBAGE T O HAAEITIF XA T 6944 > String 89 H M 3h L/

&
AP T PR E R — AN R4 AAZXHLHRILEHRAMAR o £ 5FHF L
Yok =)

A E
164t vs. B4

Our String method is able to call Sprintf because the print routines are fully reentrant and
can be wrapped this way. There is one important detail to understand about this approach,
however: don't construct a String method by calling Sprintf in a way that will recur into your
String method indefinitely. This can happen if the Sprintf call attempts to print the receiver
directly as a string, which in turn will invoke the method again. It's a common and easy
mistake to make, as this example shows.

#£A189 String 7 FA TR Sprintf » R AITRBIRZT AT A EAF L XA HTXIEK - FT R
WREFF X > BH—NEEN@Y © F7RL A Sprintf k& String 7% » BAE &L
IR i%)2t 6989 String 7 % o % Sprintf KA — MEKF ATFH S ATt > mekdE
TR KSCAA T Sprintf B » ZARF AR S BN o XA —MEF LR > W TH AR o

https://go-zh.org/doc/effective_go.html#pointers_vs_values
https://go-zh.org/doc/effective_go.html#pointers_vs_values

type MyString string

func (m MyString) String() string {
return fmt.Sprintf("MyString=%s", m)

}

type MyString string

func (m MyString) String() string {
return fmt.Sprintf("MyString=%s", m)

3

It's also easy to fix: convert the argument to the basic string type, which does not have the
method.

EBAZIANFBUREE FGRELBRARRAGTHS LY CRAZXNF ko

type MyString string
func (m MyString) String() string {
return fmt.Sprintf("MyString=%s", string(m))

3

type MyString string
func (m MyString) String() string {
return fmt.Sprintf("MyString=%s", string(m))

}

In the initialization section we'll see another technique that avoids this recursion.
AL —F F 0 RAVE A B KR ARE)26 H — AR o

Another printing technique is to pass a print routine's arguments directly to another such
routine. The signature of Printf uses the type ...interface{} for its final argument to specify
that an arbitrary number of parameters (of arbitrary type) can appear after the format.

B —ARAT P BRI AT B A2 8 A B RAE B — AN A B o Printf 895 % 4 LR E 8
EAERT interface{} XA » IFK AW BREENEEZRE EERXBGHAT -

func Printf(format string, v ...interface{}) (n int, err error) {

Within the function Printf, v acts like a variable of type [Jinterface{} but if it is passed to
another variadic function, it acts like a regular list of arguments. Here is the implementation
of the function log.Printin we used above. It passes its arguments directly to fmt.Sprintin for

https://go-zh.org/doc/effective_go.html#initialization
https://go-zh.org/doc/effective_go.html#initialization

the actual formatting.

B

£ Printf &2 > v FAL R EHE [linterface{} £ AN T & » 2R ¥ eFEI F 4TS5
Hb o CHBEFAEAINART o ATAEEKNIATA L log.Printin 898, - ¥ A4
At 3% 26 fmt.Sprintln #4752 IR 69 4& XA o

N7
~

N
$

func Println(v ...interface{}) {
std.Output(2, fmt.Sprintln(v...))
3

func Println(v ...interface{}) {
std.Output(2, fmt.Sprintln(v...))
3

We write ... after v in the nested call to Sprintln to tell the compiler to treat v as a list of
arguments; otherwise it would just pass v as a single slice argument.

7% Sprintin K £RAAF » KK . BEVIBERERRFER vAE—INELT L TN
CaW v EME—MI R E A RER o

There's even more to printing than we've covered here. See the godoc documentation for
package fmt for the details.

BHRS X TATH IR A RARA o 115 % godoc *F fmt & &9 58T A -

By the way, a ... parameter can be of a specific type, for instance ...int for a min function that
chooses the least of a list of integers:

Wi —4 > AT BARG LA > Bl AERI] R T b RAE HE min > BB AT
7y .int KA o

func Min(a ...int) int {
min := int(Auint(0) >> 1)
for _, i := range a {
if i < min {
min = i
}
}

return min

func Min(a ...int) int {
min := int(Auint(0) >> 1)
for _, i := range a {
if 1 < min {

min = i
}
}
return min
3
Append
1B A

Now we have the missing piece we needed to explain the design of the append built-in
function. The signature of append is different from our custom Append function above.
Schematically, it's like this:

A EATV R A &3 append 69X T #AT4 A o append &3 89 &% R F T AT @ &A1 A
% SLE9 Append F3k o KBk - R

func (slice []T, elements ...T) []T

where T is a placeholder for any given type. You can't actually write a function in Go where
the type T is determined by the caller. That's why append is built in: it needs support from
the compiler.

B T AERLR ARG S o IRE RERE Go THE — LM T GilME AT
B 3k o KA AT append AR ERIAGRE - ©FRRIFSGXFF -

What append does is append the elements to the end of the slice and return the result. The
result needs to be returned because, as with our hand-written Append, the underlying array
may change. This simple example

append & &1 h RREWAZFREER o KMNLMBEGLER > REA L&KM F 5 Append
—H 0 BRZ BAT R AR o AT R 84T

x := []int{1,2,3}
X = (Xr ’ ’)
fmt.Println(x)

prints [1 2 3 4 5 6]. So append works a little like Printf, collecting an arbitrary number of
arguments.

¥4t [123456] - Bk append A &4% Printf AR4% » THELEZREO L4 -

But what if we wanted to do what our Append does and append a slice to a slice? Easy: use
... at the call site, just as we did in the call to Output above. This snippet produces identical
output to the one above.

{24 R &A% Append ARG — AN r R BBl 5 — AN b PR 2 RFE 0 AR T
F ..o sRR&RATE L@ A Output ARAE o AT AR R BEGHmb5 E— /2 4aF o

X := []int{1, 2,3}
y := []int{4,5,6}
X = (X, y...)

fmt.Println(x)

Without that ..., it wouldn't compile because the types would be wrong; y is not of type int.

R RA . ERER TRV RMEEREF BAy TA int £745 o

Initialization

144 1

Although it doesn't look superficially very different from initialization in C or C++, initialization
in Go is more powerful. Complex structures can be built during initialization and the ordering
issues among initialized objects, even among different packages, are handled correctly.

RENEmMEE » Go MBIt E CRCH++HMILARLKRKRER »BECHITETABK - £
AR 0 RART A E R L4 > TAEEAAL T R &2t £ 18] 89 4605 o

Constants

e

Constants in Go are just that—constant. They are created at compile time, even when
defined as locals in functions, and can only be numbers, characters (runes), strings or
booleans. Because of the compile-time restriction, the expressions that define them must be
constant expressions, evaluatable by the compiler. For instance, 1<<3 is a constant
expression, while math.Sin(math.Pi/4) is not because the function call to math.Sin needs to
happen at run time.

Go P ERELLTE c EMNARFHGE > FERENTREIRTELNAHHRLEE - §F
RAEART ~ T/ (FXL) ~ FHEEARE o b THRFEHGRA - &L ET89 R &K X LM
AATHBIFS REOFEREN o bl 1<<BHE—NFELEXN > &
math.Sin(math.Pi/4) M & » B A4 2t math.Sin 8 X $RF £ BT F 2R E -

In Go, enumerated constants are created using the iota enumerator. Since iota can be part

of an expression and expressions can be implicitly repeated, it is easy to build intricate sets
of values.

£ Go P KEFERHAMER ota bl - T iota T4 &k Xog—3 o » fmkik X T IAK
BANMETE » BHFLREBZHWER ZOBEGEST

type ByteSize float64

const (
/) BHRTE QAR R R L% F—ME
_ = // ignore first value by assigning to blank identifier

KB ByteSize = << (S)

MB

GB

TB

PB

EB

ZB

YB

The ability to attach a method such as String to any user-defined type makes it possible for
arbitrary values to format themselves automatically for printing. Although you'll see it most
often applied to structs, this technique is also useful for scalar types such as floating-point
types like ByteSize.

=

% 3
RGET TR > BPARRMEA — MR X B =35 o RERFTHLAINEIHEALATEH

®T T String LG F EMmAR P 2 LG EH L RkBR AT 8 3h#& ALEZA
g o

af

K {2¢ 2 T 1% ByteSize X £ 89F A ftr T F XL AR M b

func (b ByteSize) String() string {

switch {
case b >= YB:

return fmt.Sprintf("%.2fYB", b/YB)
case b >= 7B:

return fmt.Sprintf("%.2fzB", b/ZB)
case b >= EB:

return fmt.Sprintf("%.2fEB", b/EB)
case b >= PB:

return fmt.Sprintf("%.2fPB", b/PB)
case b >= TB:

return fmt.Sprintf("%.2fTB", b/TB)
case b >= GB:

return fmt.Sprintf("%.2fGB", b/GB)
case b >= MB:

return fmt.Sprintf("%.2fMB", b/MB)
case b >= KB:

return fmt.Sprintf("%.2fKB", b/KB)

}
return fmt.Sprintf("%.2fB", b)

The expression YB prints as 1.00YB, while ByteSize(1e13) prints as 9.09TB.

A#K X YB 2477 & 1.00YB » 1 ByteSize(1e13) Ml 44757 & 9.09TB °

The use here of Sprintf to implement ByteSize's String method is safe (avoids recurring
indefinitely) not because of a conversion but because it calls Sprintf with %f, which is not a
string format: Sprintf will only call the String method when it wants a string, and %f wants a
floating-point value.

££3% 2 Sprintf 52 2L ByteSize 8 String 7 &k %4 (Fa kR)2) » B FERG LR
Bl mAEL % RMT Sprintf > ©HFRE—MHFHEKKX : Sprintf REECEFLFHE
i A A String 7 % 0 f %f FE—AF AR o

Variables

IR

X2

Variables can be initialized just like constants but the initializer can be a general expression
computed at run time.

R EH AL FEEM > AL S EALT AR EATH AT — M k& K o

var (
home = os.Getenv("HOME")
user = o0s.Getenv("USER")

gopath = os.Getenv("GOPATH")

The init function

init & %

Finally, each source file can define its own niladic init function to set up whatever state is
required. (Actually each file can have multiple init functions.) And finally means finally: init is
called after all the variable declarations in the package have evaluated their initializers, and
those are evaluated only after all the imported packages have been initialized.

WG BARIMHATARLT LA THLAEE init R R EE—LLEZHRE . (EaH
AR TAMA A init Rk o) MENERABAENBILER 1 RAGETINA L
5 AR e AL R RSB init A 2R 0 AR init RA LA T F A LH
WANHEALIG & SR o

Besides initializations that cannot be expressed as declarations, a common use of init
functions is to verify or repair correctness of the program state before real execution begins.

B TR R AR R TR B B 8 RO - init R FOGE B AR £ S E S HATHT BB R
EALF RS o

func init() {
if user == "" {
log.Fatal("$USER not set'")

}
if home == "" {

home = "/home/" + user
}
if gopath == "" {

gopath = home + "/go"
}

// gopath may be overridden by --gopath flag on command line.
flag.Stringvar(&gopath, "gopath", gopath, "override default GOPATH")

func init() {
if user == "" {
log.Fatal("$USER not set'")

}
if home == "" {

home = "/home/" + user
}
if gopath == "" {

gopath = home + "/go"
}

// gopath T4 44TFE) --gopath 1Fi2E &3F -
flag.Stringvar(&gopath, "gopath", gopath, "override default GOPATH")

Methods
RS
Pointers vs. Values

184+ vs. 14

As we saw with ByteSize, methods can be defined for any named type (except a pointer or
an interface); the receiver does not have to be a struct.

iF 4= ByteSize AW » KATTAAEME R LG LA (RTRARED) TXF &3 HRET
Tl A SRR o

In the discussion of slices above, we wrote an Append function. We can define it as a
method on slices instead. To do this, we first declare a named type to which we can bind the
method, and then make the receiver for the method a value of that type.

A AT R &01% 5 T —4 Append Z3k o ERNMETHEEXL A WA G H % 4
o BN BAZFA-NCFLNERRRRE RS &> RBRGZH EQIE R A% LR
18 °

type ByteSlice []byte

func (slice ByteSlice) Append(data []byte) []byte {

}

type ByteSlice []byte
func (slice ByteSlice) Append(data []byte) []byte {

3

This still requires the method to return the updated slice. We can eliminate that clumsiness
by redefining the method to take a pointer to a ByteSlice as its receiver, so the method can
overwrite the caller's slice.

BV AE R GG EFBEAEHGH IR o AT HKRIH AL > RNNTRIEZHE L GT L
F& — A48 @) ByteSlice M5 HAE A G A A > IR RHF AR EFTRALAREG R
T o

func (p *ByteSlice) Append(data []byte) {
slice := *p

*p = slice

func (p *ByteSlice) Append(data []byte) {
slice := *p

*p = slice

In fact, we can do even better. If we modify our function so it looks like a standard Write
method, like this,

H 2 BAVEAT BT o 25 BAVIE R 2524 547 4 Write R0A8 77 7% » A3 4 >

func (p *ByteSlice) Write(data []byte) (n int, err error) {

slice := *p
*p = slice
return (data),

func (p *ByteSlice) Write(data []byte) (n int, err error) {

slice := *p
*p = slice
return (data),

then the type *Byteslice satisfies the standard interface io.Writer, which is handy. For
instance, we can print into one.

AL KA +pyteslice FLih A TARAEE] jo.Writer # » XK FEF LR o Hlde » AT AA T
TOPHEAREF AN o

var b ByteSlice
fmt.Fprintf(&b, "This hour has %d days\n", 7)

We pass the address of a ByteSlice because only *Byteslice satisfies io.Writer. The rule
about pointers vs. values for receivers is that value methods can be invoked on pointers and
values, but pointer methods can only be invoked on pointers.

#A14% ByteSlice 893uabtE N » B4 RA +*Byteslice 7 i 2 i0.Writer o vA$8 4T A8 A Bk 4
R APET A r A TR 4B AR 0 mAg4 A R AA T4 KRR o

This rule arises because pointer methods can modify the receiver; invoking them on a value
would cause the method to receive a copy of the value, so any modifications would be
discarded. The language therefore disallows this mistake. There is a handy exception,
though. When the value is addressable, the language takes care of the common case of
invoking a pointer method on a value by inserting the address operator automatically. In our
example, the variable b is addressable, so we can call its Write method with just b.Write.
The compiler will rewrite that to (&b).Write for us.

Z TSR X LN R A 484 7 F 7T oM5 B3R s AR A el F B R 3KE %
@%ﬂ$"%ﬁﬁ@&ﬁhﬁ%ﬁ’ﬂ%ﬁﬁ”fﬁﬁkﬁ%mo\kﬁ4ﬁ@%%%.
EGAEE T F 8y 0 AR R1RE T A A FhiE A BAE IR AT ﬁiﬁﬁ"‘ﬁxﬁ{ﬁﬁﬁﬁ'ﬁi}%m CEEE
%o RN TP > TEDbATFaE » AR R FA L b.Write kB €8 Write 7

%o RiFEESKECES A (&b).Write ©

By the way, the idea of using Write on a slice of bytes is central to the implementation of
bytes.Buffer.

AR —3% o £ F b i _LAE A Write 8948 7% €% bytes.Buffer AT 52 2L, o

Interfaces and other types

o5 LgRH

#Eo

Interfaces in Go provide a way to specify the behavior of an object: if something can do this,
then it can be used here. We've seen a couple of simple examples already; custom printers
can be implemented by a String method while Fprintf can generate output to anything with a
Write method. Interfaces with only one or two methods are common in Go code, and are
usually given a name derived from the method, such as io.Writer for something that
implements Write.

Go ?é@%éfﬂyaibiﬂﬂ‘%éﬁﬁ%ﬁ%ﬁ%T—*%4’73‘2‘%\ : ﬁa%%ﬁ#@?ﬂ%ﬁi” A AR A EIKT VA
MEZE c EMNCERLIHF S HELGTH T 3 @I LI String 7% > RATT LA ZLATH K

4 > midd Write 7 i » Fprintf M 58 st 4£477 2¢ %»F Al o £ GoREF > RES—AMFT
BB ORERL > BLLHRATRATENCHFTE > 4o io.Writer LA E I T Write #9—
xR e

A type can implement multiple interfaces. For instance, a collection can be sorted by the
routines in package sort if it implements sort.Interface, which contains Len(), Less(i, j int)
bool, and Swap(i, j int), and it could also have a custom formatter. In this contrived example
Sequence satisfies both.

AP RBARE LI S AN o flde—A LI T sort.Interface 3 2 89 £ 5L T it sort &% 69
BlAR#ATHE T o %4E D &4 Len() ~ Less(i, j int) bool A& Swap(i, jint) » %% » % ESMAT
AH —A 8 LR E o ATH EMEK BT Sequence =k Fl B it 2K A AP I o

type Sequence []int

func (s Sequence) Len() int {
return (s)

}

func (s Sequence) Less(i, j int) bool {
return s[i] < s[j]

}

func (s Sequence) Swap(i, j int) {
s[i], s[3] = s[j], s[i]

}

func (s Sequence) String() string {
sort.Sort(s)
str := "["
for i, elem := range s {
if 1 > {
str += " "

}
str += fmt.Sprint(elem)

}

return str + "]"

Conversions

XA 4%

The String method of Sequence is recreating the work that Sprint already does for slices.
We can share the effort if we convert the Sequence to a plain [Jint before calling Sprint.

Sequence # String 7 & Z# £ I T Sprint Ak LI EE o & KA1L A Sprint Z AT
Sequence 4% # A 4 A58 [[int 0 LA E F L LI EE o

func (s Sequence) String() string {
sort.Sort(s)
return fmt.Sprint([]int(s))

This method is another example of the conversion technique for calling Sprintf safely from a
String method. Because the two types (Sequence and []int) are the same if we ignore the
type name, it's legal to convert between them. The conversion doesn't create a new value, it

just temporarily acts as though the existing value has a new type. (There are other legal
conversions, such as from integer to floating point, that do create a new value.)

%7y kAR RASEBRIA > £ String % F L A2TRA Sprintf 89 5 A—F]F o KA B%E
Lg% > XA LA (Sequence = [lint) L FEAAF Gy » HbE —F A #THHRASE
b o HBABRAT2CNEHNME > CAZBLENANGRFRRANTEERD o (BA LS
R M A A A o do MR R A F REF)

It's an idiom in Go programs to convert the type of an expression to access a different set of
methods. As an example, we could use the existing type sort.IntSlice to reduce the entire
example to this:

EGoRFF > A FRIARANZ X EM#AITEABERGFERIET T N o Plde » K148 H I
A 9 sort.IntSlice £ A k FiL A =4 :

type Sequence []int

func (s Sequence) String() string {
sort.IntSlice(s).Sort()
return fmt.Sprint([]int(s))

type Sequence []int

func (s Sequence) String() string {
sort.IntSlice(s).Sort()
return fmt.Sprint([]int(s))

Now, instead of having Sequence implement multiple interfaces (sorting and printing), we're
using the ability of a data item to be converted to multiple types (Sequence, sort.IntSlice and
[Jint), each of which does some part of the job. That's more unusual in practice but can be
effective.

A > Fobik Sequence FH S ANED (PFpFedrip) o KRNTALIKEIELZ B BN 54
%7 (Sequence -~ sort.IntSlice #= [lint) kA% A48 & 69 5 58 > B R 5% P A0 TR — 30 - TAE o
BREZETRAALREFH » 2EEPRA AL

Interface conversions and type assertions

SEE LRSS

Type switches are a form of conversion: they take an interface and, for each case in the
switch, in a sense convert it to the type of that case. Here's a simplified version of how the
code under fmt.Printf turns a value into a string using a type switch. If it's already a string,
we want the actual string value held by the interface, while if it has a String method we want
the result of calling the method.

’}'_Jziii‘ TRAGEBG—MH X CHELT—NED > £dF (switch) FARIE L H| k5 x¢
GH L (case) » HAEEMAEXL LR LR A ZFEE o UTREA fmt.Printf i £ £ A
ERGEERAFHBOAIIR - ZCCERAFHS ENFEZ BB OP LT FHEM
% CH String Fik 0 RN EZRR G EPIFHER -

b

v@*t\

type Stringer interface {
String() string

3

var value interface{}
switch str := value.(type) {
case string:
return str
case Stringer:
return str.String()

3

type Stringer interface {
String() string

3

var value interface{}
switch str := value.(type) {
case string:
return str
case Stringer:
return str.String()

}

The first case finds a concrete value; the second converts the interface into another
interface. It's perfectly fine to mix types this way.

Fo— A URBEAREME » = RO R A F — N o X F X TiRE LA kL
FFALE o

What if there's only one type we care about? If we know the value holds a string and we just
want to extract it? A one-case type switch would do, but so would a type assertion. A type
assertion takes an interface value and extracts from it a value of the specified explicit type.
The syntax borrows from the clause opening a type switch, but with an explicit type rather
than the type keyword:

https://go-zh.org/doc/effective_go.html#type_switch
https://go-zh.org/doc/effective_go.html#type_switch

FEHRMA K —FEXUR ? 5 RN Fo B R EMA — A string MBZRIRER? RE—MHHL
R BFERIT ZEFREUYZT c R T HET—NEOE > FINFREIG TGP HE
Wagfh o LB AEARARBEARYGTH 2 FE—AWAGEY » @I type KT :

value. (typeName)

and the result is a new value with the static type typeName. That type must either be the
concrete type held by the interface, or a second interface type that the value can be
converted to. To extract the string we know is in the value, we could write:

R RN ZIMA A LA typeName 89 #4E o % R A LM A ZIFEDATIMA QG BRER »
F UGB T R H B R o« PRBENELZAPOTHE » T

str := value.(string)

But if it turns out that the value does not contain a string, the program will crash with a run-
time error. To guard against that, use the "comma, ok" idiom to test, safely, whether the
value is a string:

(CE VR E SR i A e S I W&/}?}b 354 B 454 0 o o 48 AR Bl
325, ok” WA MR C AR 2 HFIMTBAAR T A FH$

str, ok := value.(string)
if ok {

fmt.Printf("string value is: %q\n", str)
} else {

fmt.Printf("value is not a string\n")

}

str, ok := value.(string)
if ok {
fmt.Printf (" 54 F444 %g\n", str)
} else {
fmt.Printf (" %MEEFHF H\n")
}

If the type assertion fails, str will still exist and be of type string, but it will have the zero
value, an empty string.

RV TR > str RS HFLEAAFTHERY - LCRMARME PEFHE o

As an illustration of the capability, here's an if-else statement that's equivalent to the type
switch that opened this section.

B A st AR 698 0 X EA A if-else B6) » BFM T AV KGR A B -

if str, ok := value.(string); ok {
return str

} else if str, ok := value.(Stringer); ok {
return str.String()

}

iR JH

If a type exists only to implement an interface and has no exported methods beyond that
interface, there is no need to export the type itself. Exporting just the interface makes it clear
that it's the behavior that matters, not the implementation, and that other implementations
with different properties can mirror the behavior of the original type. It also avoids the need
to repeat the documentation on every instance of a common method.

EEARNAEGERARERT AN BRI A A TSRSG5 x> MZEARNAKEHLE
S REEZHEORIERNEFZTEIT ARSI > LAWK E I AR B 1%/R
WREAITH o ZLBEB R EAF N ARNECG B EERTE L o

In such cases, the constructor should return an interface value rather than the implementing
type. As an example, in the hash libraries both crc32.NewlEEE and adler32.New return the
interface type hash.Hash32. Substituting the CRC-32 algorithm for Adler-32 in a Go program
requires only changing the constructor call; the rest of the code is unaffected by the change
of algorithm.

LZFEFERLT » MR SRE—NMEOEmIEEZING KA o Hlde e hash EF »
crc32.NewlEEE #= adler32.New #F:& ©4& 0 £ A hash.Hash32 - & /& Go # /7 F A Adler-32
HEHARCRC-32° R EMSAMEJFCRAMET » L ARA N RZHEKT A o

A similar approach allows the streaming cipher algorithms in the various crypto packages to
be separated from the block ciphers they chain together. The Block interface in the
crypto/cipher package specifies the behavior of a block cipher, which provides encryption of
a single block of data. Then, by analogy with the bufio package, cipher packages that
implement this interface can be used to construct streaming ciphers, represented by the
Stream interface, without knowing the details of the block encryption.

FlA% 89 77 XAEIE crypto B F S A8 A £ — AR EL L XG5k E M A %4 o crypto/cipher
L% 8 Block # 048 & TR B FLNITH » CHEROLERRENE - 34 # bufio
ELEAL o ARAT I T %A% 0 8 K AT AR R T &L Stream A R R AES > AT
Fo B SR BBy L o

The crypto/cipher interfaces look like this:

crypto/cipher # v & f k3h A% A%

type Block interface {
BlockSize() int
Encrypt(src, dst []byte)
Decrypt(src, dst []byte)
}

type Stream interface {
XORKeyStream(dst, src []byte)

3

Here's the definition of the counter mode (CTR) stream, which turns a block cipher into a
streaming cipher; notice that the block cipher's details are abstracted away:

FATTHERX CTRRGEL > CWRpBERA RWE » ZERWmBEG @ T LHEHEAT o

func NewCTR(block Block, iv []byte) Stream

func NewCTR(block Block, iv []byte) Stream

NewCTR applies not just to one specific encryption algorithm and data source but to any
implementation of the Block interface and any Stream. Because they return interface values,
replacing CTR encryption with other encryption modes is a localized change. The
constructor calls must be edited, but because the surrounding code must treat the result only
as a Stream, it won't notice the difference.

NewCTR 9 5 B 3 AR T4 & 69 ho B F ik Ao 3B R » €& B THE4T 2t Block 4 @ #= Stream
B o BACIBEREDE > AL ChEREXNRRES CTR REMAIGEH - ik FK
g R AL MAAS L > A2 g TR B B 6K R Y% €A Stream 0 BB R4 &2
AFEGRH| o

Interfaces and methods

¥ A gy ik

Since almost anything can have methods attached, almost anything can satisfy an interface.
One illustrative example is in the http package, which defines the Handler interface. Any
object that implements Handler can serve HTTP requests.

& T IU-FAEAT R AR G A 7 % o B SLIUFAEAT XA GEH L — MR O o —MRARGH T
#A http &+ % L4 Handler # 2 ° fE4T 52 2L T Handler &) #t Z A7 445 % 2 HTTP # K o

type Handler interface {
ServeHTTP(ResponseWriter, *Request)

}

ResponseWriter is itself an interface that provides access to the methods needed to return
the response to the client. Those methods include the standard Write method, so an
http.ResponseWriter can be used wherever an io.Writer can be used. Request is a struct
containing a parsed representation of the request from the client.

ResponseWriter # 0424 T st 7 ik 6935 1 » BEF X FE AR B #i9HR o b TREF %
8,4 T Az £ 89 Write 7 % » B 3t hitp.ResponseWriter =T A T1E£47T io.Writer &] 893 % o
Request 441k 4 CL AT 89 & P 37k K o

For brevity, let's ignore POSTs and assume HTTP requests are always GETs; that
simplification does not affect the way the handlers are set up. Here's a trivial but complete
implementation of a handler to count the number of times the page is visited.

AR EAN s BRAVBAZPTA G HTTP 5 K& & GET 7 % » m A% POST 7% » XM HILAR
SRR ERFHNEITN c REANMENHAEGLERFTEZA » A TIRZFEANAT @K
LRI

type Counter struct {
n int

}

func (ctr *Counter) ServeHTTP(w http.ResponseWriter, req *http.Request) {
ctr.n++
fmt.Fprintf(w, "counter = %d\n", ctr.n)

type Counter struct {
n int

}

func (ctr *Counter) ServeHTTP(w http.ResponseWriter, req *http.Request) {
ctr.n++
fmt.Fprintf(w, "counter = %d\n", ctr.n)

(Keeping with our theme, note how Fprintf can print to an http.ResponseWriter.) For
reference, here's how to attach such a server to a node on the URL tree.

(B3R EA169 24 > 2% Fprintf 4= /T4 & %] http.ResponseWriter o) 4 4% » X 2F
T T T A —ANR G B E] URL ey — A9 & L o

import "net/http"

ctr := (Counter)
http.Handle("/counter", ctr)

But why make Counter a struct? An integer is all that's needed. (The receiver needs to be a
pointer so the increment is visible to the caller.)

12 %4+ 4 Counter 2 AR R ? —AMNEEES T o (B F LM A4 » B ERMETA
RAHEATR)

type Counter int

func (ctr *Counter) ServeHTTP(w http.ResponseWriter, req *http.Request) {
*ctr++
fmt.Fprintf(w, "counter = %d\n'", *ctr)

type Counter int

func (ctr *Counter) ServeHTTP(w http.ResponseWriter, req *http.Request) {
ctr++
fmt.Fprintf(w, "counter = %d\n'", *ctr)

What if your program has some internal state that needs to be notified that a page has been
visited? Tie a channel to the web page.

LG Pl > AR AR K B AT — A ARER ? A Web T @I AMEEE o

type Chan chan *http.Request

func (ch Chan) ServeHTTP(w http.ResponseWriter, req *http.Request) {
ch <- req
fmt.Fprint(w, "notification sent")

type Chan chan *http.Request

func (ch Chan) ServeHTTP(w http.ResponseWriter, req *http.Request) {
ch <- req
fmt.Fprint(w, "notification sent")

Finally, let's say we wanted to present on /args the arguments used when invoking the
server binary. It's easy to write a function to print the arguments.

wE o BREANTEZMBRAARS S #4251 A L5 Jargs o R £ > EAMTHE S
o R EATT -

func ArgServer() {
fmt.Println(os.Args)

3

How do we turn that into an HTTP server? We could make ArgServer a method of some
type whose value we ignore, but there's a cleaner way. Since we can define a method for
any type except pointers and interfaces, we can write a method for a function. The http
package contains this code:

Bt ds € oA HTTP R % B %R 2 &A1 7T L0 ArgServer 52 3L 4 3 A+ 7T Zwg Al 89 77 ik »

ARERAHER LT E o RARNTRAARISH A 0 UM ER T Lk » RAEL
B — AR B —AF ik o http & EAUATRA :

type HandlerFunc func(ResponseWriter, *Request)

func (f HandlerFunc) ServeHTTP(w ResponseWriter, req *Request) {
f(w, req)
}

type HandlerFunc func(ResponseWriter, *Request)

func (f HandlerFunc) ServeHTTP(w ResponseWriter, req *Request) {
f(w, req)
}

HandlerFunc is a type with a method, ServeHTTP, so values of that type can serve HTTP
requests. Look at the implementation of the method: the receiver is a function, f, and the
method calls f. That may seem odd but it's not that different from, say, the receiver being a
channel and the method sending on the channel.

HandlerFunc =A™~ E#A ServeHTTP # ikt £ A » Az XA G EHAELE HTTP K - &
MEXBEEZRLTENEN BREZE AR M ZAFRAAfo AERRRFE ZRLK
R E s RPAETEKETRT Mo Ay kB dZfz8LEEE o

To make ArgServer into an HTTP server, we first modify it to have the right signature.

AT % ArgServer IR HTTP R % £ > BRI MTILCWMASEN L -

func ArgServer(w http.ResponseWriter, req *http.Request) {
fmt.Fprintln(w, o0s.Args)

3

func ArgServer(w http.ResponseWriter, req *http.Request) {
fmt.Fprintln(w, o0s.Args)

3

ArgServer now has same signature as HandlerFunc, so it can be converted to that type to
access its methods, just as we converted Sequence to IntSlice to access IntSlice.Sort. The
code to set it up is concise:

ArgServer #= HandlerFunc FLAMA TAA R 692 % » RS &A1 A 45 4 4 A+ £ A 47 7]
C8 7k o &K% Sequence ##H IntSlice ¥417 7] IntSlice.Sort AVAE o & S AKAL IEH
B

http.Handle("/args", http.HandlerFunc(ArgServer))

When someone visits the page /args, the handler installed at that page has value ArgServer
and type HandlerFunc. The HTTP server will invoke the method ServeHTTP of that type,
with ArgServer as the receiver, which will in turn call ArgServer (via the invocation f(c, req)
inside HandlerFunc.ServeHTTP). The arguments will then be displayed.

%A A5 Jargs R@E » R P E R @4 ERFRA T4 ArgServer F2 XA
HandlerFunc © HTTP MR % % 44 ArgServer A 4E0 » AR % LA 8 ServeHTTP 7% » &
SR KIAM ArgServer (A3t f(c,req)) * HAEHARSB I THEk -

In this section we have made an HTTP server from a struct, an integer, a channel, and a
function, all because interfaces are just sets of methods, which can be defined for (almost)

any type.
AT KA —MEHER — AN — M- ANARE > EZT—AHTTP R %
R B—UMAZRAED RE TG ESLS > MU RAEAREGEE LA ik o

The blank identifier

% G iR IR AT

We've mentioned the blank identifier a couple of times now, in the context of for range loops
and maps. The blank identifier can be assigned or declared with any value of any type, with
the value discarded harmlessly. It's a bit like writing to the Unix /dev/null file: it represents a
write-only value to be used as a place-holder where a variable is needed but the actual
value is irrelevant. It has uses beyond those we've seen already.

KAV for-range B EFRA b4 PR EIJLVREOAFRK o Z AR IRA TR T RF A4 1T X
AT » M A A R EEWEFR - ©H A% Unix P4 /devinull TH : €& TR B 644 »
ABEETFERELETENGH T AEEILF o RNATEBCERLICHRAET o

The blank identifier in multiple assignment

% ERMA P B E QAR R

The use of a blank identifier in a for range loop is a special case of a general situation:
multiple assignment.

for range P83 F 2t E GAr R AF G A KA — A BAREF L 0 L —RGHF LA % T4 o

If an assignment requires multiple values on the left side, but one of the values will not be
used by the program, a blank identifier on the left-hand-side of the assignment avoids the
need to create a dummy variable and makes it clear that the value is to be discarded. For
instance, when calling a function that returns a value and an error, but only the error is
important, use the blank identifier to discard the irrelevant value.

ERBBEFERERERSANMEE PEPEANARTERMAFAEA - AR EGFRFRKE
GRETHRECELAN LS » FRFRBRAZEREEZF o Bl SEAXASHEET
CRBE— Ao — MR ERAEBRERER > MATRERNEGHRRIFREZALXGM o

if _, err := os.Stat(path); os.IsNotExist(err) {

fmt.Printf("%s does not exist\n", path)

Occasionally you'll see code that discards the error value in order to ignore the error; this is
terrible practice. Always check error returns; they're provided for a reason.

https://go-zh.org/doc/effective_go.html#for
https://go-zh.org/doc/effective_go.html#maps
https://go-zh.org/doc/effective_go.html#for
https://go-zh.org/doc/effective_go.html#maps

RAB R 2 A A Bosthixf £ A B RO RAD » X RGN LK o 15 F L EHREE >
EA SR RGEY o

fi, _ := os.Stat(path)
if fi.Isbir() {
fmt.Printf("%s is a directory\n'", path)

}

fi, _ := os.Stat(path)
if fi.IsDir() {
fmt.Printf("%s is a directory\n", path)

3

Unused imports and variables

RER) FAFE &

It is an error to import a package or to declare a variable without using it. Unused imports
bloat the program and slow compilation, while a variable that is initialized but not used is at
least a wasted computation and perhaps indicative of a larger bug. When a program is under
active development, however, unused imports and variables often arise and it can be
annoying to delete them just to have the compilation proceed, only to have them be needed
again later. The blank identifier provides a workaround.

FEFIANENORFAEANTER R RS AR o RAEA G G2 ERF BRI EIR %R
FRE o mOBEREA G TERRER IR » TA TR A LK Bug > A
MAERFFREIRT EFRFEREAGIAFRTE c FRUB MBI EN] » 24T TR
Yai¥ XTAF AR B EAN AT » RIREAIR - Z @A s a et — AN le s ik 7 £ o

This half-written program has two unused imports (fmt and io) and an unused variable (fd),
so it will not compile, but it would be nice to see if the code so far is correct.

BAET—FRFAANRERAGIN (fmtFrio) AEA—ARBEAYEE (fd) > HkE
FREGF > (225 5] B A A bR & R IEAE) > RA1LEARKREF B BA169 o

package main

import (
"fmt"
nigh
"log"
"og"

)

func main() {
fd, err := os.Open("test.go")
if err 1= {
log.Fatal(err)

To silence complaints about the unused imports, use a blank identifier to refer to a symbol
from the imported package. Similarly, assigning the unused variable fd to the blank identifier
will silence the unused variable error. This version of the program does compile.

ZirpERFEXTREMNFANEE FRZZAERERIACEACTHFT o R
FAREAGEE fd KT EGRRRFLEXARMEN T B4R o BRFOATIRATARFE o

package main

import (
"fmt"
nioh
"1og"

"og"

var _ = fmt.Printf
var _ io.Reader

func main() {
fd, err := os.Open("test.go")
if err 1= {
log.Fatal(err)

= fd

By convention, the global declarations to silence import errors should come right after the
imports and be commented, both to make them easy to find and as a reminder to clean
things up later.

BRBEH > BAVREFAF X ERE BiELAFASAEEZHR > IHETUEENES
K AEARBEFE YR o

Import for side effect

A @R w3 A

An unused import like fmt or io in the previous example should eventually be used or
removed: blank assignments identify code as a work in progress. But sometimes it is useful
to import a package only for its side effects, without any explicit use. For example, during its
init function, the net/http/pprof package registers HTTP handlers that provide debugging
information. It has an exported API, but most clients need only the handler registration and
access the data through a web page. To import the package only for its side effects, rename
the package to the blank identifier:

AT F fmt X io B ARG AN FAE R A RBEHEA XSS 1 TORELERDIZRA T
EERAITY c AN FIAENCRZHTHAER » REAEATAAGIER o Flde > f

net/http/pprof 89 init HEFIEFRT HTTP REAF G RKZ & o CAANTFHE APl 12
KB PR AFRuALELF N FA AT Web T @15 B 348 - 8L F A— M R4 A L a1
m%@ REKZOEGL A ZAIRRMA

import _ "net/http/pprof"

This form of import makes clear that the package is being imported for its side effects,
because there is no other possible use of the package: in this file, it doesn't have a name. (If
it did, and we didn't use that name, the compiler would reject the program.)

R AP G AAE XA R T
(

aEALMERmIAL > BARALCER BT qE 2k
XHF s CRALTF o (5

% %8
ECHRLTFRBANEAIER > RiIFRFKLSIELZAEF)
Interface checks

okt

As we saw in the discussion of interfaces above, a type need not declare explicitly that it
implements an interface. Instead, a type implements the interface just by implementing the
interface's methods. In practice, most interface conversions are static and therefore checked
at compile time. For example, passing an *os.rile to a function expecting an io.Reader will
not compile unless *os.File implements the io.Reader interface.

https://go-zh.org/doc/effective_go.html#interfaces_and_types

AR RMENE 20 PR E > ARV EFEXARFACEALT EANE D - RAaX
Z o BRARBREENT ENE 0Tk AETREAT BED - 2EET > RIEHyFE O
AR AFHZE B ERBEFI]EN o Flde s F—A *o0s.File FA—EIK j0.Reader 9%
G R 2WBiE > RIE *os.File FILT io.Reader #1 -

Some interface checks do happen at run-time, though. One instance is in the encoding/json
package, which defines a Marshaler interface. When the JSON encoder receives a value
that implements that interface, the encoder invokes the value's marshaling method to
convert it to JSON instead of doing the standard conversion. The encoder checks this
property at run time with a type assertion like:

RE st » AL d L EEITHZIT - Hl4 » encoding/json &% LT —4 Marshaler 4
T o % JSON %A RFRB) —ANEAT RFEDGE - A2 ZAD BRSER ZEGRAT
o M ILEEHN JSON » M dh it (T 0 R A o AD B 2 AT K00 S AR
Byt o RRARIXAE -

m, ok := val.(json.Marshaler)

If it's necessary only to ask whether a type implements an interface, without actually using
the interface itself, perhaps as part of an error check, use the blank identifier to ignore the
type-asserted value:

HEABRIMENSELUEE
CI

e T EA a‘ A FEEIREAE Ay (TRAHRRE
B3R9) o WA E G il

& %
ok Bk XAV S 648

if _, ok := val.(json.Marshaler); ok {
fmt.Printf("value %v of type %T implements json.Marshaler\n", val, val)

One place this situation arises is when it is necessary to guarantee within the package
implementing the type that it actually satisfies the interface. If a type—for example,
json.RawMessage—needs a custom JSON representation, it should implement
json.Marshaler, but there are no static conversions that would cause the compiler to verify
this automatically. If the type inadvertently fails to satisfy the interface, the JSON encoder
will still work, but will not use the custom implementation. To guarantee that the
implementation is correct, a global declaration using the blank identifier can be used in the
package:

LELARENCT FAOEY AR ZHE N > SELBRZIMHEL - ZENMRE (Hldo

json.RawMessage) &&—# T #69 JSON £ILE » B2 % %I json.Marshaler > FE I £
BAAHIERTUEREFRELAHBIEE c ZREVEL AR REBCRHLZED » B2

https://go-zh.org/doc/effective_go.html#interfaces_and_types
https://go-zh.org/pkg/encoding/json/
https://go-zh.org/doc/effective_go.html#interface_conversions
https://go-zh.org/pkg/encoding/json/
https://go-zh.org/doc/effective_go.html#interface_conversions
https://go-zh.org/pkg/encoding/json/#RawMessage
https://go-zh.org/pkg/encoding/json/#RawMessage

JSON &AL ST T » {2 Rt A T H 692 o HARLEIEH > ThEZzaPAE
ABRFREFA—ITERTE:

var _ json.Marshaler = (*RawMessage) ()

In this declaration, the assignment involving a conversion of a *RawMessage to a Marshaler
requires that *rawmMessage implements Marshaler, and that property will be checked at
compile time. Should the json.Marshaler interface change, this package will no longer
compile and we will be on notice that it needs to be updated.

LZERF > KATAA T —A *RawMessage 3% LR T T Marshaler » Atb k&K
*RawMessage 52 3L Marshaler » X Bt 2L B M3k & /2 4% Bt 44D o % json.Marshaler # @ %
Fx o e £EA L RIF nﬁ&ﬂ]ﬁ" REZTICERZEH -

The appearance of the blank identifier in this construct indicates that the declaration exists
only for the type checking, not to create a variable. Don't do this for every type that satisfies
an interface, though. By convention, such declarations are only used when there are no
static conversions already present in the code, which is a rare event.

ERAEMFEAEGRBRT WRTGEANBEERZATEERE - TZHFREHHL
oG eR TAEMEY - AN RERBYAELEFSLUVERNFRIFFEN > 5
ST AA F LA IF I

Embedding

M 4k

Go does not provide the typical, type-driven notion of subclassing, but it does have the
ability to “borrow” pieces of an implementation by embedding types within a struct or
interface.

Go # rRft Ay » XARH T RS 2B LK X BW AR B LR RIETF » E3haE

R L -

Interface embedding is very simple. We've mentioned the io.Reader and io.Writer interfaces
before; here are their definitions.

BEoREIEFTHE o KNZ AT F T io.Reader # io.Writer 30 » X 22189 E L ©

type Reader interface {
Read(p []byte) (n int, err error)

3

type Writer interface {
Write(p []byte) (n int, err error)

3

The io package also exports several other interfaces that specify objects that can implement
several such methods. For instance, there is io.ReadWriter, an interface containing both
Read and Write. We could specify io.ReadWriter by listing the two methods explicitly, but it's
easier and more evocative to embed the two interfaces to form the new one, like this:

0o B G T Lo Uk EAZITE LI ik o $lde i0.ReadWriter sk & A4~
6,4 Read #= Write 894 0 o &A1 4@ it & 7 37| 3 8 A7 0% k45 9 io.ReadWriter » 12
WA XANET AR HOE TP I REEHAE LR RN R

type ReadWriter interface {
Reader
Writer

type ReadWriter interface {
Reader
Writer

This says just what it looks like: A ReadWriter can do what a Reader does and what a Writer
does; it is a union of the embedded interfaces (which must be disjoint sets of methods). Only
interfaces can be embedded within interfaces.

3E e g F AL RAAE © ReadWriter 78 9% #4E1T Reader #= Writer T A B| 69 F 1 » © & Nk
TSR (BITLMERARGFEE) o« AAEBEOREHEARHEaTF o

The same basic idea applies to structs, but with more far-reaching implications. The bufio
package has two struct types, bufio.Reader and bufio.Writer, each of which of course
implements the analogous interfaces from package io. And bufio also implements a buffered
reader/writer, which it does by combining a reader and a writer into one struct using
embedding: it lists the types within the struct but does not give them field names.

FlAf ey KR ET AR A S HIKT » (2L & L 8 miRE - bufio & F A bufio.Reader =
bufio.Writer 2 AN Z MR LA » BIHE—MREZAT Hio PR ZELGED o kit
bufio i i it £ & reader/writer 3% L A4 2| MR+ » LI T F &+ 89 reader/writer : €&
MR P Il TREEA S EHRLTENTFHEL ©

type ReadWriter struct {
*Reader
*Writer

type ReadwWriter struct {
*Reader
*Writer

The embedded elements are pointers to structs and of course must be initialized to point to
valid structs before they can be used. The ReadWriter struct could be written as

N L EAIES LRI » SR CITEAE A AT LA AL A 48 S A 2L IR 38
4t o ReadWriter MR T 1 it 4o F 7 A & 3L ¢

type ReadWriter struct {
reader *Reader
writer *Writer

but then to promote the methods of the fields and to satisfy the io interfaces, we would also
need to provide forwarding methods, like this:

122 T #I T B T AR o 0 0 RAFIM T ERMH Z 67k AR

func (rw *ReadWriter) Read(p []byte) (n int, err error) {
return rw.reader.Read(p)

3

By embedding the structs directly, we avoid this bookkeeping. The methods of embedded
types come along for free, which means that bufio.ReadWriter not only has the methods of
bufio.Reader and bufio.Writer, it also satisfies all three interfaces: io.Reader, io.Writer, and
io.ReadWriter.

il it BN SR 0 RATHAEEE fbe s B0 o A AR ZHATAAEN A » R EF%RE
bufio.ReadWriter 71z &1 bufio.Reader #= bufio.Writer 8 7 7% » €L Rl & i#H L T 7| =44
O : io.Reader ~ io.Writer A & io.ReadWriter °

There's an important way in which embedding differs from subclassing. When we embed a
type, the methods of that type become methods of the outer type, but when they are invoked
the receiver of the method is the inner type, not the outer one. In our example, when the
Read method of a bufio.ReadWriter is invoked, it has exactly the same effect as the
forwarding method written out above; the receiver is the reader field of the ReadWriter, not
the ReadWriter itself.

TEAMREYSARETFTROEZTF R SAR—ANEEN REAHGFTELRANDRERG 7
o A2 B AR 0 %G RN ERARER > M o ERNGBITFF 0 I
bufio.ReadWriter 8 Read 7 Z#IRA B » €501 5 095 & 7 ik BA FAGER - HIE
& ReadWriter # reader F# ° # JF ReadWriter A% o

Embedding can also be a simple convenience. This example shows an embedded field
alongside a regular, named field.

A R T ARBAZA] o BB TRTT —MARTFEA—NFRGFLTH -

type Job struct {
Command string
*log.Logger

The Job type now has the Log, Logf and other methods of *log.Logger . We could have
given the Logger a field name, of course, but it's not necessary to do so. And now, once
initialized, we can log to the Job:

Job £RIMAER T Log ~ Logf ## *log.Logger 81H"E 7k o &A1 H AT AN Logger 24—
NFEL A2 RATLIX AW o e » —BnkeilE » KAIsEAE12 Kk Job T :

job.Log("starting now...")

The Logger is a regular field of the Job struct, so we can initialize it in the usual way inside
the constructor for Job, like this,

Logger & Job £ ##k ey H M FHK » FHIKM T Job 84 & &3P » 38 it — ke 7 X ki
BAGE » BRARIHE

func NewJob(command string, logger *log.Logger) *Job {
return &Job{command, logger}

}

or with a composite literal,
AL EEFE

job := &Job{command, log.New(os.Stderr, "Job: ", log.Ldate)}

If we need to refer to an embedded field directly, the type name of the field, ignoring the
package qualifier, serves as a field name, as it did in the Read method of our ReaderWriter
struct. Here, if we needed to access the *1log.Logger of a Job variable job, we would write
job.Logger, which would be useful if we wanted to refine the methods of Logger.

EEMNTFREEABEINAARFE s TALEORT L » AEBZFROEDLEAFERSE &
#% &A1 ReaderWriter 2 #1158 Read 7 & P B9 o 5 KA1 FR5F Job XR Y T F
job 8 *log.Logger ° T ¥AE3EE4E job.Logger o & &KAEHM % Logger 89 7 kB » X &3k
FAM o

func (job *Job) Logf(format string, args ...interface{}) {
job.Logger.Logf("%q: %s", job.Command, fmt.Sprintf(format, args...))

}

Embedding types introduces the problem of name conflicts but the rules to resolve them are
simple. First, a field or method X hides any other item X in a more deeply nested part of the
type. If log.Logger contained a field or method called Command, the Command field of Job

would dominate it.

Mk R Sl AP L P RGP > A2 R MM FREE « T FRIRTEXLRBEZRA
bR REHRENLER X & log.Logger &4 —M% A Command & F B R 7 % » Job #9

Command ¥ &R &€ o

Second, if the same name appears at the same nesting level, it is usually an error; it would
be erroneous to embed log.Logger if the Job struct contained another field or method called
Logger. However, if the duplicate name is never mentioned in the program outside the type
definition, it is OK. This qualification provides some protection against changes made to
types embedded from outside; there is no problem if a field is added that conflicts with
another field in another subtype if neither field is ever used.

HR> sraRREERERAR L TR BFLS LR o 25 Job MR+ &

Logger 89 F & R 7 % » B4 log.Logger M #: 2| L F gEst &~ £ 451k - A o x;’ﬁfé KL T
SEGRY T LI AL » AR T 24 o IARTAEBENDREERY L AMSK
HREEARY o A RERMWGFEEF AN TEEPYFEMAFR > AZZAH MR
b9 F BOKZ T 2R R R AR o

Concurrency
A
Share by communicating

Concurrent programming is a large topic and there is space only for some Go-specific
highlights here.

HRGBARENMERG AR - ZRTEE > LERF R — L Go HAHAS -

Concurrent programming in many environments is made difficult by the subtleties required to
implement correct access to shared variables. Go encourages a different approach in which
shared values are passed around on channels and, in fact, never actively shared by
separate threads of execution. Only one goroutine has access to the value at any given
time. Data races cannot occur, by design. To encourage this way of thinking we have
reduced it to a slogan:

E%i%ﬁ?’%i%ﬁ%?ﬁﬁﬁi%ﬁﬁﬁﬁﬁﬁ%@%’ﬁﬁéﬁ%%Tﬂﬁﬂﬁo

01EE BEFHAZ R AFHBRAIFEAE > 5L FAMARIPATHEARNFT S LFH
F o EAEZSL TR L 0 RA —A goroutine &Y% 15 R TR AR o FIE L F R T LR AL
To ATREIFHEEFX ENFCHA—goF:

Do not communicate by sharing memory; instead, share memory by communicating.
TEAFEFTAZ KRG meBRLEEREFTAL -

This approach can be taken too far. Reference counts may be best done by putting a mutex
around an integer variable, for instance. But as a high-level approach, using channels to
control access makes it easier to write clear, correct programs.

LAY 7 iR E LR o Bldhe > FI AT ECGA T AR T E R BT FRITFHEI o 124 —F
SRk IMATERIER G FI RSB R B RS o EAANES o

One way to think about this model is to consider a typical single-threaded program running
on one CPU. It has no need for synchronization primitives. Now run another such instance; it
too needs no synchronization. Now let those two communicate; if the communication is the
synchronizer, there's still no need for other synchronization. Unix pipelines, for example, fit

this model perfectly. Although Go's approach to concurrency originates in Hoare's
Communicating Sequential Processes (CSP), it can also be seen as a type-safe
generalization of Unix pipes.

KATT LOAE A 8g % BAZ 24T A £ CPU X L9 Rk FMEAER o €& FRMF FRAE o
WA B BAT—ANBAR ’E’)&%'%?ﬁ]“r‘05)@X'£iJ:’E’ﬂ‘MﬁJLﬁ'L‘f? H¥AfE I REMRE T E
MHARZAEATEZRLCRATT o i Unix FERGEARFBEA T ERZES - RE Go éﬁﬂ‘-%’:kiﬂ

7 Xk BT Hoare #8120 54 % (CSP) » TRAT VLA A XA 246 Unix & 869 5
A, o

Goroutines

Goroutines

They're called goroutines because the existing terms—threads, coroutines, processes, and
SO on—convey inaccurate connotations. A goroutine has a simple model: it is a function
executing concurrently with other goroutines in the same address space. It is lightweight,
costing little more than the allocation of stack space. And the stacks start small, so they are
cheap, and grow by allocating (and freeing) heap storage as required.

AR A goroutine ilﬁ%%‘é’?ﬂwa—&ﬁ WA~ BRFE IR EAERCGE

Lo Goroutine £74 & £ 694 A wE 5K € goroutine X & 4Tf Bl —3uiak E R 6 Hdk o B

%5 R > FTA AT R RAR TR 98 o M BRRIEZEF 109 el Rk
» REFEN A 2MARER G ER (FMER) MR -

Goroutines are multiplexed onto multiple OS threads so if one should block, such as while
waiting for 1/O, others continue to run. Their design hides many of the complexities of thread
creation and management.

Goroutine 72 % AR AL LETENSEEN » AL —NEAEMRE > bt F51/0 0
2 ety A2k 23547 o Goroutine AR THIEH T AR EA TG E 5 5 2 o

Prefix a function or method call with the go keyword to run the call in a new goroutine. When
the call completes, the goroutine exits, silently. (The effect is similar to the Unix shell's &
notation for running a command in the background.)

F2 BB BTy R AT e go RAETF AR5 /2 31 89 goroutine FIRAE o BIRM TG 0 %
goroutine . &% #H B E o (FHRA AR Unix Shell F85 & 5 » Btk S AEE G E
i)

go list.Sort()

go list.Sort()

A function literal can be handy in a goroutine invocation.

% % F @ £ goroutine A T IEFA M o

func Announce(message string, delay time.Duration) {
go func() {
time.Sleep(delay)
fmt.Println(message)

10

func Announce(message string, delay time.Duration) {
go func() {
time.Sleep(delay)
fmt.Println(message)

10

In Go, function literals are closures: the implementation makes sure the variables referred to
by the function survive as long as they are active.

£ Go ¥ BMFTENANEG : AEIAARET BEAZNNEFH A NG K 550 A
AR o

These examples aren't too practical because the functions have no way of signaling
completion. For that, we need channels.

R R AL LA RA BN AT AT R OETLE - Ak > £NE2ZHE
Channels
1z &

Like maps, channels are allocated with make, and the resulting value acts as a reference to
an underlying data structure. If an optional integer parameter is provided, it sets the buffer
size for the channel. The default is zero, for an unbuffered or synchronous channel.

G4t —H# > L FEZAE make k7 BAH/ o REREAS THREZIELEHGIA -
ERBET A THROGBEEB A > CRHRAA G ERELEFTRERD «c BIMAEE » AT ARF 4%
By X R g 4E 8 o

ci := (chan int)

cj := (chan int, 0)

cs := (chan *os.File,)
ci := (chan int)

cj := (chan int, 0)

cs := (chan *os.File,)

Unbuffered channels combine communication—the exchange of a value—with
synchronization—guaranteeing that two calculations (goroutines) are in a known state.

Ttk ik Az B AT &R LR EIE - CRAR (AA goroutine) THERA THERE -

There are lots of nice idioms using channels. Here's one to get us started. In the previous
section we launched a sort in the background. A channel can allow the launching goroutine
to wait for the sort to complete.

BEARSGWME > BANVAREAL T A L—F T RNEBE L THFHRIE - 28
1% 43 2 #h 89 goroutine F & HEF TR,

c := (chan int)

go func() {
list.Sort()
c <-
10
doSomethingForAwhile()

<-c
c := (chan int)
go func() {
list.Sort()
c <-

10
doSomethingForAwhile()
<-c

Receivers always block until there is data to receive. If the channel is unbuffered, the sender
blocks until the receiver has received the value. If the channel has a buffer, the sender
blocks only until the value has been copied to the buffer; if the buffer is full, this means
waiting until some receiver has retrieved a value.

%s‘%»li%ﬁ#iél %f(ER S —BME - ZRELRFRN N > A2AEEMEKRIEN > REL S
—HMAE EEERFEFG > NAEEAIMERE RN E TR A ABEAE %‘i«“l’li
i %:k%‘/\—n_ FRF LB R AN HORCE B — ANME A R o

A buffered channel can be used like a semaphore, for instance to limit throughput. In this
example, incoming requests are passed to handle, which sends a value into the channel,
processes the request, and then receives a value from the channel to ready the
“semaphore” for the next consumer. The capacity of the channel buffer limits the number of
simultaneous calls to process.

FE T ETHRAERE T E > BlhofRE| Hek & o AP > A EROHEHEL
handle * EMZEFHEMME » L FREE B AT ZZEF » UL 125" A&ELHET
—RFER-AFHEZFRYGEZERTT FEEMA process 8% LR o

var sem = (chan int, MaxOutstanding)

func handle(r *Request) {

sem <-
process(r)
<-sem
}
func Serve(queue chan *Request) {
for {
req := <-queue
go handle(req)
}
}
var sem = (chan int, MaxOutstanding)

func handle(r *Request) {
sem <-
process(r)
<-sem

}

func Serve(queue chan *Request) {
for {
req := <-queue
go handle(req)

Once MaxOutstanding handlers are executing process, any more will block trying to send
into the filled channel buffer, until one of the existing handlers finishes and receives from the
buffer.

— B4 MaxOutstanding M E# AN ETRE > TG AL L R4 2 £ KB R EEEZE
v RE BRI » BB XA EE T AL P R IRE— A A Ik

This design has a problem, though: Serve creates a new goroutine for every incoming
request, even though only MaxOutstanding of them can run at any moment. As a result, the
program can consume unlimited resources if the requests come in too fast. We can address
that deficiency by changing Serve to gate the creation of the goroutines. Here's an obvious
solution, but beware it has a bug we'll fix subsequently:

AR A AR FEA © RE R A MaxOutstanding 4 goroutine # ﬂlﬁiéﬁ » 12 Serve &
Ry FEA- A E KA T #769 goroutine © L2 R A 0 HiF KRG RE 0 BEFHAL
PRUGTEAL TR o A T RAZAP TR » &ATT A5 2L Serve kIR 44 3% Go # » XA
BB RT R 2R B S KRAME BB B Bug ©

func Serve(queue chan *Request) {
for req := range queue {
sem <-

go func() {
process(req)
<-sem

30

func Serve(queue chan *Request) {
for req := range queue {
sem <-

go func() {
process(req)
<-sem

30

The bug is that in a Go for loop, the loop variable is reused for each iteration, so the req
variable is shared across all goroutines. That's not what we want. We need to make sure

that req is unique for each goroutine. Here's one way to do that, passing the value of req as
an argument to the closure in the goroutine:

Bug #3LA& Go # for fAIRF » BIEREFAHRERN 2K ER > Bk req BEXEFTA B
goroutine A & ¥ » & RE KA LY o RATF Z4H1K req 1 T A4 goroutine kILAR L —
By o B —A 7 R EOLHE] > 3L req B9HEAE A S 45 A %)% goroutine 89 H &L F ¢

func Serve(queue chan *Request) {
for req := range queue {
sem <-
go func(req *Request) {
process(req)
<-sem

}(req)

Compare this version with the previous to see the difference in how the closure is declared
and run. Another solution is just to create a new variable with the same name, as in this

example:

VARH G AR AR 05 TA 2 6 £l o B — bRk RILA VU R84 T4
BHFGTE > o A& ¢

func Serve(queue chan *Request) {
for req := range queue {
req := req
sem <-
go func() {
process(req)
<-sem

30

func Serve(queue chan *Request) {
for req := range queue {
req := req
sem <-
go func() {
process(req)
<-sem

30

It may seem odd to write

B EAARA EFIE

req = req

but it's a legal and idiomatic in Go to do this. You get a fresh version of the variable with the
same name, deliberately shadowing the loop variable locally but unique to each goroutine.

{efe Go PRMBMAELSFEMALY - RAAR N EFRFTRZEEH—MIRA - Asbk
B3R 3% &5 G E £ 0 18 € 2t &4 goroutine fREFE— o

Going back to the general problem of writing the server, another approach that manages
resources well is to start a fixed number of handle goroutines all reading from the request
channel. The number of goroutines limits the number of simultaneous calls to process. This
Serve function also accepts a channel on which it will be told to exit; after launching the
goroutines it blocks receiving from that channel.

D AREREEG—AEA LR o B —FEEFIRGIT 7 ERAR B LK EH handle
goroutine » —#2 3% K13 13 B4 IE © Goroutine #9 2 ZR4] T Fl 698 A process 894 & o
Serve R # &k — AN il 43R B 691538 » £ B P A goroutine /& » C I L EH H 43 A58 F
HMH B o

func handle(queue chan *Request) {
for r := range queue {
process(r)

3

func Serve(clientRequests chan *Request, quit chan bool) {

for i := 0; i < MaxOutstanding; i++ {
go handle(clientRequests)
}

<-quit

func handle(queue chan *Request) {
for r := range queue {
process(r)

}

func Serve(clientRequests chan *Request, quit chan bool) {

for 1 := 0; 1 < MaxOutstanding; i++ {
go handle(clientRequests)

}

<-quit

Channels of channels

(EECR ROFEE

One of the most important properties of Go is that a channel is a first-class value that can be
allocated and passed around like any other. A common use of this property is to implement
safe, parallel demultiplexing.

Go REZYGHMAAFER—FME » CT UKy R;HAGE CEBI L FE o LA FHEE T
REAGE o AT 5 I -

In the example in the previous section, handle was an idealized handler for a request but we
didn't define the type it was handling. If that type includes a channel on which to reply, each
client can provide its own path for the answer. Here's a schematic definition of type Request.

e b —% 86 FF > handle £k FZ AL F KRG LT > ZHAH R LEHTLL R F
REH c ZREBEE-ANATRATEHENREE » RRAE—ANEPmAALDRE D TH
#4%2 o VAT A Request £ A 69 KA sL o

type Request struct {
args []int
f func([]int) int
resultChan chan int

The client provides a function and its arguments, as well as a channel inside the request
object on which to receive the answer.

FP MR T —ARRALE A WIMEFRA R T EA A BAE B 15

func sum(a []int) (s int) {

for _, v := range a {
S += v
}
return
}
request := &Request{[]int{3, 4, 5}, sum, (chan int)}

clientRequests <- request

fmt.Printf("answer: %d\n", <-request.resultChan)

func sum(a []int) (s int) {

for _, v := range a {
s += v
}
return
}
request := &Request{[]int{3, 4, 5}, sum, (chan int)}

clientRequests <- request

fmt.Printf("answer: %d\n", <-request.resultChan)

On the server side, the handler function is the only thing that changes.

R %38 0 R E X handler &3k o

func handle(queue chan *Request) {
for req := range queue {
req.resultChan <- req.f(req.args)

}

There's clearly a lot more to do to make it realistic, but this code is a framework for a rate-
limited, parallel, non-blocking RPC system, and there's not a mutex in sight.

AL EIRTHEARS TAERM > RERGRAEZA—AREAR ~ H4T ~ FEE RPC A
ROER » MBEHTEELFH -

Parallelization

411t

Another application of these ideas is to parallelize a calculation across multiple CPU cores. If
the calculation can be broken into separate pieces that can execute independently, it can be
parallelized, with a channel to signal when each piece completes.

KR B — AN AL S CPU S EEIMHAATHE o e RITH IS A IR TR
IHIATH LA CRTREFRTH L RN QB ERERE T » N FILFTLE -

Let's say we have an expensive operation to perform on a vector of items, and that the value
of the operation on each item is independent, as in this idealized example.

L ERNVE A XA REACGH] T o RAVEXN — R 7] 6 F R #ATRALTIRORE - RENRGHE

HAZ AL o

type Vector []float64

// Apply the operation to v[i], v[i+1] ... up to v[n-1].
func (v Vector) DoSome(i, n int, u Vector, c chan int) {
for ; i < n; i++ {
v[i] += u.0p(v[i])

c <- // signal that this piece is done

type Vector []float64

// ¥EEME v[i], v[i+1] ... &3] v[n-1]
func (v Vector) DoSome(i, n int, u Vector, c chan int) {
for ; 1 < n; i++ {
v[i] += u.Op(v[i])

c <- // EAZ 5 ERFTRE I L TR o

We launch the pieces independently in a loop, one per CPU. They can complete in any
order but it doesn't matter; we just count the completion signals by draining the channel after
launching all the goroutines.

EMEWTT B2 TR GRS > A4 CPU B HAT— ML o €A TRRILF 1 X
TRHAGR P AZRXBER XA 5 KORAF LA goroutine 465 Hlk » F A THEZ B F 89 T &,
SHRP o

const NCPU = // number of CPU cores

func (v Vector) DoAll(u Vector) {

c := (chan int, NCPU) // Buffering optional but sensible.
for 1 := 0; 1 < NCPU; i++ {
go v.DoSome(i* (v)/NCPU, (i+1)* (v)/NCPU, u, c)
}
// Drain the channel.
for i := 0; i < NCPU; i++ {
<-C // wait for one task to complete
}
// All done.

const NCPU =

func (v Vector) DoAll(u Vector) {
c := (chan int, NCPU)
; 1 < NCPU; i++ {
go v.DoSome(i* (v)/NCPU, (i+1)* (v)/NCPU, u, c)

for i :

3

for 1 := 0; 1 < NCPU; i++ {
<-c

}

The current implementation of the Go runtime will not parallelize this code by default. It
dedicates only a single core to user-level processing. An arbitrary number of goroutines can
be blocked in system calls, but by default only one can be executing user-level code at any
time. It should be smarter and one day it will be smarter, but until it is if you want CPU
parallelism you must tell the run-time how many goroutines you want executing code
simultaneously. There are two related ways to do this. Either run your job with environment
variable GOMAXPROCS set to the number of cores to use or import the runtime package
and call runtime. GOMAXPROCS(NCPU). A helpful value might be runtime.NumCPU(),
which reports the number of logical CPUs on the local machine. Again, this requirement is
expected to be retired as the scheduling and run-time improve.

B Al Go EATH 89 LK INF R L HATIATRA » CRA R P BERAGREE — LTS o
&£ & % £ 49 goroutine A1 7T A6 A LA FAREE » MAMLZRZKIARA —NEHAITA P B
R o CRm B EAEHE MACHRA TS TAEHAE - 20 E » ZHAZ CPU H4TH
47 0 3ROLIR &R EATEMR A Z FI A %) goroutine A8 AT ARG o A A APIRAZ TR B —H
89 » B2 B4R TAE ¥ GOMAXPROCS FRE T X ARBE A K » BLAFAN
runtime & 578 runtime. GOMAXPROCS(NCPU) ° runtime.NumCPU() #9144 T 4&4& A A >
CRBELAMNEGER CPU stk o SR MAEREL S ETHG RS B4R/
TR LA T %k o

Be sure not to confuse the ideas of concurrency—structuring a program as independently
executing components—and parallelism—executing calculations in parallel for efficiency on
multiple CPUs. Although the concurrency features of Go can make some problems easy to
structure as parallel computations, Go is a concurrent language, not a parallel one, and not
all parallelization problems fit Go's model. For a discussion of the distinction, see the talk
cited in this blog post.

EETRERAEALFFATOME | AL TR TR AT BB ERF G F ik b0 E
ATHEES CPU LFATHHAITHE - RE Go 94 R4 E L % B & J & 1T
THHE > 2 GomALTHHFRAMIEHITHES » L Go BB H RESHAGFITHMA o £T

https://blog.golang.org/2013/01/concurrency-is-not-parallelism.html

Al AL GER SN N &g
A leaky buffer

T fe 0 % % K

The tools of concurrent programming can even make non-concurrent ideas easier to
express. Here's an example abstracted from an RPC package. The client goroutine loops
receiving data from some source, perhaps a network. To avoid allocating and freeing buffers,
it keeps a free list, and uses a buffered channel to represent it. If the channel is empty, a
new buffer gets allocated. Once the message buffer is ready, it's sent to the server on
serverChan.

HFERROTELEZRBESHAXIFFRGEH - LEAMRILA RPC 896 F - 7
5% Go BINFE LXK » Th ﬂiﬂ%‘?’ﬂ%%iﬁ%&%ﬁ}% ARG RAFERETR » CRET —
NERAER ﬁi)ﬂ"/\%%ﬂl’ﬁa:\id‘ FREAT s A PR NEFTR o —BH &L+
Rt 0 BT serverChan A ZF| R F & o

var freelList = (chan *Buffer,)
var serverChan = (chan *Buffer)

func client() {
for {
var b *Buffer

select {
case b = <-freelList:

default:

b = (Buffer)
}
load(b)
serverChan <- b

https://blog.golang.org/2013/01/concurrency-is-not-parallelism.html

var freelList = make(chan *Buffer, 100)
var serverChan = make(chan *Buffer)

func client() {
for {
var b *Buffer
/) EHEFRTHZKAE » AT ARy BAFHY o
select {
case b = <-freeList:
/] RB—A s RER A o
default:
// FEER > Rkyfie— A6 o
b = new(Buffer)
}
load(b) /] MR ZFEIT — &K E o
serverChan <- b // A& EZRFE -

The server loop receives each message from the client, processes it, and returns the buffer
to the free list.

JB % BINE P smBIRBAFNE & REEN » AR EFREDLERI| K o

func server() {

for {
b := <-serverChan // Wait for work.
process(b)
// Reuse buffer if there's room.
select {

case freelList <- b:

// Buffer on free list; nothing more to do.
default:

// Free list full, just carry on.

func server() {
for {
b := <-serverChan
process(b)

select {
case freelList <- b:

default:

The client attempts to retrieve a buffer from freeList; if none is available, it allocates a fresh
one. The server's send to freeList puts b back on the free list unless the list is full, in which
case the buffer is dropped on the floor to be reclaimed by the garbage collector. (The default
clauses in the select statements execute when no other case is ready, meaning that the
selects never block.) This implementation builds a leaky bucket free list in just a few lines,
relying on the buffered channel and the garbage collector for bookkeeping.

& P oK BN freeList ¥ RIE PR 5 ZRA KT RTH » ChB 5B - IREFEH
b & % If 5| & freeList T A 2| 2| & C.i# » sul %0 REEHEF » AR IRER B =L -

(select & 4] F #9 default F 41 £ & A XM &0 147 » LKL ERA selects K& R 2L
£o) REFEPOEERBIREEE R R > ANRAEE TR R T — AT 5
Bk R FE A ERIER o

Errors

IR

Library routines must often return some sort of error indication to the caller. As mentioned
earlier, Go's multivalue return makes it easy to return a detailed error description alongside
the normal return value. It is good style to use this feature to provide detailed error
information. For example, as we'll see, 0s.Open doesn't just return a nil pointer on failure, it
also returns an error value that describes what went wrong.

B FAE @R R RS EA R IRIT T o LATREE > GoEFH S ER N »
BAFC AR EFIGMEN > LA IR EF e R R o AR XA R AR AT w89 45
AT A — AR RAFOGRAE o Hlde » RAVH B 24 3] > 0s.0pen £ KM T AL E— A nil 38
4t 0 LIRS —ANF el K452 99 error 4 o

-

By convention, errors have type error, a simple built-in interface.

BRAYT RO EBAE A error’ XE—ANANEYH LD -

type error interface {
Error() string

3

A library writer is free to implement this interface with a richer model under the covers,
making it possible not only to see the error but also to provide some context. As mentioned,
alongside the usual *os.File return value, 0s.Open also returns an error value. If the file is
opened successfully, the error will be nil, but when there is a problem, it will hold an
os.PathError:

R BEE AT EFTHREEMTUABRREZINZANED » IHRRE éju’iaw\’ T AE R A
—HFTFL o AL AE » BT FE *os.File RE{A > 0s.0pen &R E—A error 14 ° %
% AR A AT 0 error 1AsE A nil » MmAe R T FIAR > A A — A os.PathError ©

type PathError struct {
Op string
Path string
Err error

}

func (e *PathError) Error() string {
return e.Op + " " + e.Path + ": " + e.Err.Error()

3

type PathError struct {
Op string
Path string
Err error

3

func (e *PathError) Error() string {
return e.Op + " " + e.Path + ": " + e.Err.Error()

3

PathError's Error generates a string like this:

PathError # Error &4 4o T441213 & :

open /etc/passwx: no such file or directory

Such an error, which includes the problematic file name, the operation, and the operating
system error it triggered, is useful even if printed far from the call that caused it; it is much
more informative than the plain "no such file or directory".

HE UL ~ BAEfe AR R 8 &4’? AR > BB 7 AR AR IR 09T R A Ay

XA EOET
1z %#EIEE{EP B CHAEFTAN s G “RELEZIHRE i ¥ A%

R R
P o

When feasible, error strings should identify their origin, such as by having a prefix naming
the operation or package that generated the error. For example, in package image, the string
representation for a decoding error due to an unknown format is "image: unknown format".

$IR T B R T REIAE A E N0 kIR o lde F A RAE IR B L AT o Blde £ image EF o
W T R4nts X 5 AR $44% 09 F /5 % A “image: unknown format” °

Callers that care about the precise error details can use a type switch or a type assertion to
look for specific errors and extract details. For PathErrors this might include examining the
internal Err field for recoverable failures.

ZRRE RO FGTE Y > TR R RBERFRAAN T REARFTHEE > FLw
¥ o 2T PathErrors °» © R %% @24k E N6 Err FRAJATT R IZEEE

for try := 0; try < 2; try++ {
file, err = os.Create(filename)
if err == {
return
b

if e, ok := err.(*os.PathError); ok && e.Err == syscall.ENOSPC {
deleteTempFiles()
continue

}

return

for try := 0; try < 2; try++ {
file, err = os.Create(filename)
if err == {
return

}

if e, ok := err.(*os.PathError); ok & e.Err == syscall.ENOSPC {
deleteTempFiles()
continue

}

return

The second if statement here is another type assertion. If it fails, ok will be false, and e will
be nil. If it succeeds, ok will be true, which means the error was of type *os.Patherror , and
then so is e, which we can examine for more information about the error.

REUFE_LfAF—F LW Z o ZE R ok ¥4 false > e WA nil. €I » ok
WA true » X ERE %4 1EBT *os.pathError £& > e B AN X T H4E0E 513
8. o

]

Panic

Panic

https://go-zh.org/doc/effective_go.html#interface_conversions
https://go-zh.org/doc/effective_go.html#interface_conversions

The usual way to report an error to a caller is to return an error as an extra return value. The
canonical Read method is a well-known instance; it returns a byte count and an error. But
what if the error is unrecoverable? Sometimes the program simply cannot continue.

) VB R E AR 4R 0 — AR AL error 1E A RSN AR o AR A 69 Read 7 ik AA A&PT
B Fntg 4] » WRE —AFF HE A — A error o 184 FAE RN R TR B R ? A AR T A
REE G 415 4T o

For this purpose, there is a built-in function panic that in effect creates a run-time error that
will stop the program (but see the next section). The function takes a single argument of
arbitrary type—often a string—to be printed as the program dies. It's also a way to indicate
that something impossible has happened, such as exiting an infinite loop.

At BATREET A panic R > &5 A —ANBATRERFLERSF (REFEHREET
—¥) c GRBRBEL—MERRUVGEL (—RATHE) o FERFLLENITH o CLAE
RARAET EHZOEE > Wb AERBIRPERT o

func CubeRoot(x float64) float64 {

z = x/

for i (= 0; 1< ; 1++ {
prevz := z
z -= (z*z*z-x) / (3*z*z)
if veryClose(z, prevz) {

return z

}

}

(fmt.Sprintf("CubeRoot(%g) did not converge", X))

func CubeRoot(x float64) float64 {

z = x/

for i := 0; 1< ;o i++ {
prevz := z
z -= (z*z*z-x) / (3*z*z)
if veryClose(z, prevz) {

return z

}

}

(fmt.Sprintf("CubeRoot(%g) did not converge", X))

This is only an example but real library functions should avoid panic. If the problem can be
masked or worked around, it's always better to let things continue to run rather than taking
down the whole program. One possible counterexample is during initialization: if the library
truly cannot set itself up, it might be reasonable to panic, so to speak.

BALAR AT 0 S IREG R B B % panic o A FRR T AR B XA R 0 RIFH AR
WL EAT R TR EARG o — AT RO RBIZLEMEEI 1 ZEXANEEGFREIEATT
18 » A R4 d > 4 Panic® sk e € &E o

var user = o0s.Getenv("USER")

func init() {
if user == "" {
("no value for $USER")

}

Recover

W B

When panic is called, including implicitly for run-time errors such as indexing a slice out of
bounds or failing a type assertion, it immediately stops execution of the current function and
begins unwinding the stack of the goroutine, running any deferred functions along the way. If
that unwinding reaches the top of the goroutine's stack, the program dies. However, it is
possible to use the built-in function recover to regain control of the goroutine and resume
normal execution.

% panic A MAE (BEFRAHGEITIHER > Pl AR EARRXENH T LK) » £5
P 2] 250k B A K F B AT 0 FF S = goroutine 89 4% 0 EATAEATARAE R 89 KL o 5 &
2|i& goroutine A& 89 sk » B F R ALE o R KA T AR W) recover & &k #H RS
goroutine &9 4% #| AR H-4% Mk B E F AT o

A call to recover stops the unwinding and returns the argument passed to panic. Because

the only code that runs while unwinding is inside deferred functions, recover is only useful
inside deferred functions.

A recover 15 L @A o R BN panic 895 A& o o T B R A AR R &AL P
b9 AL f£ 54T o F 3L recover R AL A MR R 89 R E P A A K o

One application of recover is to shut down a failing goroutine inside a server without killing
the other executing goroutines.

recover 8 — AN A k£ R % 5 P 40k X K89 goroutine M £ F A S B E £ AT
goroutine °

func server(workChan <-chan *Work) {
for work := range workChan {
go safelyDo(work)

}

func safelyDo(work *Work) {
defer func() {

if err := (); err 1= {
log.Println("work failed:", err)
}
10
do(work)

In this example, if do(work) panics, the result will be logged and the goroutine will exit
cleanly without disturbing the others. There's no need to do anything else in the deferred
closure; calling recover handles the condition completely.

F2 b > 25 do(work) Ak & T Panic » £& R LWL K > Mk Go AW T 44| %3
R TaT#E L€ goroutine © &AL F /£ R & FBAETEFHE > recover 2247
"“13]] °

Because recover always returns nil unless called directly from a deferred function, deferred
code can call library routines that themselves use panic and recover without failing. As an
example, the deferred function in safelyDo might call a logging function before calling
recover, and that logging code would run unaffected by the panicking state.

o T HEEMAIMER HEF A recover Bt R 2R W nil » B Ak 4R 69 KA 59518 A R & 18 A
T panic #= recover 8 & & T2 kB o 4o /£ safelyDo F » 4 R 89 & 57T #7218)
recover A] B A 18K R E 0 Mz KR REE B AL Panic R A 69 KD &R oh o

With our recovery pattern in place, the do function (and anything it calls) can get out of any
bad situation cleanly by calling panic. We can use that idea to simplify error handling in
complex software. Let's look at an idealized version of a regexp package, which reports
parsing errors by calling panic with a local error type. Here's the definition of Error, an error
method, and the Compile function.

WS R EAEX do Rk (RLAM LT R) Ti@ A panic k& % £ 3089
R o BAVT AR A X AP BB R AICE R T 94 RLIE o 1ERATAF regexp & 6932 AL
FRAS » B A VAR BR 6945 % R AR Al panic kARE EAT4E% o AT A — error 23 4 Error 7
i%Fa—/~ Compile &%k 89 3L :

LRI

// Error is the type of a parse error; it satisfies the error interface.
type Error string
func (e Error) Error() string {

return string(e)

// error is a method of *Regexp that reports parsing errors by
// panicking with an Error.
func (regexp *Regexp) error(err string) {

panic(Error(err))

// Compile returns a parsed representation of the regular expression.
func Compile(str string) (regexp *Regexp, err error) {
regexp = new(Regexp)
// doParse will panic if there is a parse error.
defer func() {
if e := recover(); e != nil {
regexp = nil // Clear return value.
err = e.(Error) // Will re-panic if not a parse error.

10

return regexp.doParse(str), nil

// Error ZMIHEEGER > €HL error 0 o
type Error string
func (e Error) Error() string {

return string(e)

// error & *Regexp 7% vl A —A Error AKX Panic kIR%EMAT4E% o
func (regexp *Regexp) error(err string) {
panic(Error(err))

// Compile RWEIi%E N &K X MBATGE G EF o

func Compile(str string) (regexp *Regexp, err error) {
regexp = new(Regexp)
// doParse will panic if there is a parse error.
defer func() {

if e := recover(); e != nil {
regexp = nil // FHEBEEE o

g sz

err = e.(Error) // ZEXREMITHE > B EHARKX Panic °

10

return regexp.doParse(str), nil

110

If doParse panics, the recovery block will set the return value to nil—deferred functions can
modify named return values. It will then check, in the assignment to err, that the problem
was a parse error by asserting that it has the local type Error. If it does not, the type
assertion will fail, causing a run-time error that continues the stack unwinding as though
nothing had interrupted it. This check means that if something unexpected happens, such as
an index out of bounds, the code will fail even though we are using panic and recover to
handle parse errors.

% doParse A% X T Panic > % B 3244 B W% A nil —KIER G REAEB ISR T L iR
fho 2 err MBI T » KANKAIH S CEEMA AR Error kR EE - HEAA »
RABZH AR > sbit &5 A BT 4% » FRERODH > Gh— IR P BTE—4 -
GREBARELERLET — LG RIIBRZ LG EI » AALRPE KN T panic # recover %
23T AR AR 0 AR R BRI ©

With error handling in place, the error method (because it's a method bound to a type, it's
fine, even natural, for it to have the same name as the builtin error type) makes it easy to
report parse errors without worrying about unwinding the parse stack by hand:

WM BB ELE serror ik (BT EANMNPERLRERNG 7% > HABPMEECHAELN
error AL FHRLEAXEA) RRIEBREBHBRTHAER D > ML FE T HR LS BT
o

if pos == {
re.error("'*' illegal at start of expression")

3

Useful though this pattern is, it should be used only within a package. Parse turns its internal
panic calls into error values; it does not expose panics to its client. That is a good rule to
follow.

REZAEXBRA R - 1282 S40E SRR - Parse 235 3 A 3849 panic 7 4 4 error
i BH T @R AERE R panic o XA AMAESFE F) RAFAN o

By the way, this re-panic idiom changes the panic value if an actual error occurs. However,
both the original and new failures will be presented in the crash report, so the root cause of
the problem will still be visible. Thus this simple re-panic approach is usually sufficient—it's a
crash after all—but if you want to display only the original value, you can write a little more
code to filter unexpected problems and re-panic with the original error. That's left as an
exercise for the reader.

AR —3 o XA E AR K Panicty I F ik &4k 7 A L IREE R TPanictii o Adm > RERL

Jadb G F R H AR R RE T LT R ARGRBARZT GG o XfpHEe)E
AR R PanictI MO 2% AT » BFMALT—KRAF o BEERABRTREGME LTS

B — B R R R E B8 A 0 R
KA R LRI T2 B > ARG R AR AR K Panic © X Z;

7T o

A web server

— /™~ Web % %

Let's finish with a complete Go program, a web server. This one is actually a kind of web re-
server. Google provides a service at htip://chart.apis.google.com that does automatic
formatting of data into charts and graphs. It's hard to use interactively, though, because you
need to put the data into the URL as a query. The program here provides a nicer interface to
one form of data: given a short piece of text, it calls on the chart server to produce a QR
code, a matrix of boxes that encode the text. That image can be grabbed with your cell
phone's camera and interpreted as, for instance, a URL, saving you typing the URL into the
phone's tiny keyboard.

TERAVA—ANZHEE Go B—FIEA L RE > — 4~ Web IRF & o %A L FE R LA Web IR %
K9 EM o Google £ hitp://chart.apis.google.com LRET —AF 2 L8 A FHEHR A HE
IR o At MRSBRAEREL » BAAREEZXLEEA L1943 URL F o b2 5 H — b3k
FEHEXRBEET 847096930 @ S —PEILA e ANBEARS S RAER=44 (QR

Ay) o R E—AP AL URE) BAESETE o AR TT AR TR KR 0 BB —AFH
%o tbde URL » BHE# A TIRER DG F A& 40 URL 89 LR o

Here's the complete program. An explanation follows.

AT A REGAF » MG H — B o

http://chart.apis.google.com
http://chart.apis.google.com

package main

import (
"flag"
"html/template"
"log"
"net/http"

var addr = flag.String("addr", ":1718", "http service address") // Q=17, R=18
var templ = template.Must(template.New('"qr'").Parse(templateStr))

func main() {
flag.Parse()
http.Handle("/", http.HandlerFunc(QR))
err := http.ListenAndServe(*addr,)
if err I= {
log.Fatal("ListenAndServe:", err)

func QR(w http.ResponseWriter, req *http.Request) {
templ.Execute(w, req.FormValue('"s"))

const templateStr = °

<html>

<head>

<title>QR Link Generator</title>

</head>

<body>

{{if .}}

<img src="http://chart.apis.google.com/chart?chs=300x300&cht=qr&choe=UTF-8&chl={{.}}"
/>

.1}

{{end}}

<form action="/" name=f method="GET"><input maxLength=1024 size=70
name=s value="" title="Text to QR Encode"><input type=submit
value="Show QR" name=qr>

</form>

</body>

</html>

The pieces up to main should be easy to follow. The one flag sets a default HTTP port for
our server. The template variable templ is where the fun happens. It builds an HTML
template that will be executed by the server to display the page; more about that in a

moment.

main Z AT 89 KA R R HEMR o FMNAL—MeEARSFERXRETRIUSH D - ERTE
templ SE A &3 o BHMELN HTML BARE 2R EHITHETER @ o BB KN
¥ 3% tm it s o

The main function parses the flags and, using the mechanism we talked about above, binds
the function QR to the root path for the server. Then http.ListenAndServe is called to start
the server; it blocks while the server runs.

main & AN T S FoAr E AR KAV Z 9ALH S QR RBITRIR S R GRBAZ - R
iE A http.ListenAndServe B # MR % % ; CHEMREF B ETHLTHEERS -

QR just receives the request, which contains form data, and executes the template on the
data in the form value named s.

QR R#EZ &R ELIE R > AR s F 89 FIE FATHLR ©

The template package html/template is powerful; this program just touches on its
capabilities. In essence, it rewrites a piece of HTML text on the fly by substituting elements
derived from data items passed to templ.Execute, in this case the form value. Within the
template text (templateStr), double-brace-delimited pieces denote template actions. The
piece from {{if .}} to {{end}} executes only if the value of the current data item, called .
(dot), is non-empty. That is, when the string is empty, this piece of the template is
suppressed.

AR &, htmlftemplate EF B K BEF A LR ZHME o AR Lo il d £ BTHIFEIER T

"B TE (EXZLEREME) 54 templ.Execute HATEAMEE T HTML LA o R

A (templateStr) # » X KIEFTF LG LARTHERGHE I ({if .33 Bl {{end}} &

ﬁ‘%%’i{xﬁ %ﬁi%&%&lﬁ (ZEASE) WEFEERASHAT - Lk AW » TFFE AT - 3k
B BEAR LA B o

The two snippets {{.}} say to show the data presented to the template—the query string—
on the web page. The HTML template package automatically provides appropriate escaping
so the text is safe to display.

AFmBE (1) ATEREELFEERT (AREWFHFELTEWeb T @ LE) o
HTML 44k &34 B #h 2t T R# AT L 0 BT ARG B AL A o

The rest of the template string is just the HTML to show when the page loads. If this is too
quick an explanation, see the documentation for the template package for a more thorough
discussion.

ATHERFHERAET OB B EL T HTML - o R XBEABEREEER 545 % L
ORI R SR AR O R o

https://go-zh.org/pkg/html/template/
https://go-zh.org/pkg/html/template/

And there you have it: a useful web server in a few lines of code plus some data-driven
HTML text. Go is powerful enough to make a lot happen in a few lines.

WA T RAZT @ AJUUTRA ZAY » 88— L EERAHHHTMLI A WebR % % © Go
153 5% KB REIEAR & F AL ARIR 8 7 KR ok

	前言
	引言
	格式化
	注释
	命名
	分号
	控制结构
	函数
	数据
	初始化
	方法
	接口和其他类型
	空白标识符
	内嵌
	并发
	错误
	一个Web服务器

