
Concurrency in Go
(or, Erlang done right)

Programming Model

Mostly CSP/π-calaculus (not actually formalized):
goroutines+channels

Go concurrency motto:
"Do not communicate by sharing memory; instead, share
memory by communicating"

+ Full-fledged shared memory

Goroutines

Think threads (however no join operation)

go foo()

go logger.Printf("Hello, %s!", who)

go func() {
 logger.Printf("Hello, %s!", who)
 ...
}()

Channels

Basically typed bounded blocking FIFO queues.

// synchronous chan of ints
c := make(chan int)

// buffered chan of pointers to Request
c := make(chan *Request, 100)

Channels: First-class citizens

You can pass them as function arguments, store in containers,
pass via channels, etc.

Moreover, channels are not tied to goroutines. Several
goroutines can send/recv from a single channel.

Channels: input/output

func foo(c chan int) {
 c <- 0
 <-c
}

func bar(c <-chan int) {
 <-c
}

func baz(c chan<- int) {
 c <- 0
}

Channels: closing

func producer(c chan *Work) {
 defer close(c)
 for {
 work, ok := getWork()
 if !ok { return }
 c <- work
 }
}

// consumer
for msg := range c {
 process(msg)
}

Why no goroutine join?
Usually it's required to return some result anyway.

 c := make(chan int, N)

 // fork
 for i := 0; i < N; i++ {
 go func() {
 result := ...
 c <- result
 }()
 }

 // join
 sum := 0
 for i := 0; i < N; i++ {
 sum += <-c
 }

Select

Select makes a pseudo-random choice which of a set of possible
communications will proceed:

select {
 case c1 <- foo:
 case m := <-c2:
 doSomething(m)
 case m := <-c3:
 doSomethingElse(m)
 default:
 doDefault()
}

Select: non-blocking send/recv

reqChan := make(chan *Request, 100)

httpReq := parse()
select {
 case reqChan <- httpReq:
 default:
 reply(httpReq, 503)
}

Select: timeouts

select {
 case c <- foo:
 case <-time.After(1e9):
}

Example: Barber Shop
var seats = make(chan Customer, 4)

func barber() {
 for {
 c := <-seats
 // shave c
 }
}
go barber()

func (c Customer) shave() {
 select {
 case seats <- c:
 default:
 }
}

It is that simple!

Example: Resource Pooling

Q: General pooling functionality
Any has in their code somewhere, a good pooling mechanism
for interface type maybe? Or just somthing one could adapt and
abstract? I'm sure some db drivers should have this, any ideas?

Sounds a bit frightening...

Example: Resource Pooling (cont)
The solution is just

pool := make(chan *Resource, 100)

Put with [nonblocking] send.
Get with [nonblocking] recv.

It is that simple!

Haa, works like a charm.
Go makes things so nice and simple, yet so powerful!
Thanks

Example: Actor-oriented programming
type ReadReq struct {
 key string
 ack chan<- string
}

type WriteReq struct {
 key, val string
}

c := make(chan interface{})

go func() {
 m := make(map[string]string)
 for {
 switch r := (<-c).(type) {
 case ReadReq:
 r.ack <- m[r.key]
 case WriteReq:
 m[r.key] = r.val
 }
 }
}()

Example: Actor-oriented programming

c <- WriteReq{"foo", "bar"}

ack := make(chan string)
c <- ReadReq{"foo", ack}
fmt.Printf("Got", <-ack)

It is that simple!

Example: Thread Pool

[This page intentionally left blank]

Why does pure CSP suck?

CSP-style memory allocation:

ack1 := make(chan *byte)
Malloc <- AllocReq{10, ack1}

ack2 := make(chan *byte)
Malloc <- AllocReq{20, ack2}

obj1 := <-ack1
obj2 := <-ack2

WTF??1!

Why does pure CSP suck?
Some application code is no different!

var UidReq = make(chan chan uint64)
go func() {
 seq := uint64(0)
 for {
 c := <-UidReq
 c <- seq
 seq++
 }
}()

ack := make(chan uint64)
UidReq <- ack
uid := <-ack

Why does pure CSP suck?

“Message passing is easy to implement. But everything gets turned
into distributed programming then” (c) Joseph Seigh

- Additional overheads
- Additional latency
- Unnecessary complexity (asynchrony, reorderings)
- Load balancing
- Overload control
- Hard to debug

Shared Memory to the Rescue!

var seq = uint64(0)
...
uid := atomic.AddUint64(&seq, 1)

Simple, fast, no additional latency, no bottlenecks, no
overloads.

Shared Memory Primitives

sync.Mutex
sync.RWMutex
sync.Cond
sync.Once
sync.WaitGroup

runtime.Semacquire/Semrelease

atomic.CompareAndSwap/Add/Load

Mutexes
sync.Mutex is actually a cooperative binary semaphore - no
ownership, no recursion.

mtx.Lock()
go func() {
 ...
 mtx.Unlock()
}
mtx.Lock()

func foo() {
 mtx.Lock()
 defer mtx.Unlock()
 ...
}

General Scheme
90% of CSP on higher levels
+10% of Shared Memory on lower levels

Accept
AcceptAccept

Read/Pars
e Cache

AcceptAcceptDisk IO
AcceptAcceptWrite

CSP

Shared
Memory

Statistics Config/Settings Resource
Polling

Quota/Licensing
mgmt

Race Detector for Go

Currently under development in Google MSK (no obligations to
deliver at this stage).

The idea is to provide general support for dynamic analysis
tools in Go compiler/runtime/libraries.

And then attach almighty ThreadSanitizer technology to it.

If/when committed to main branch, user just specifies a single
compiler flag to enable it.

Scalability
The goal of Go is to support scalable fine-grained concurrency. But it
is [was] not yet there.

Submitted about 50 scalability-related CLs. Rewrote all sync primitives
(mutex, semaphore, once, etc), improve scalability of chan/select,
memory allocation, stack mgmt, etc.

"I've just run a real world benchmark provided by someone using mgo
with the r59 release, and it took about 5 seconds out of 20, without any
changes in the code."

Still to improve goroutine scheduler.

Thanks!

