
SGE 1.0.4 - Manual
Draft

Lukas Grassauer

last changed: 2022-12-02

About
sge is a game engine primarily designed for autonomous agent playing discrete
and sequential games.

Prerequisites
Java Installation
sge is written for Java 11 which is available under jdk.java.net. Verify the version
with

java -version

The version should be at least 11.

Engine Installation
The engine itself is bundled with all it's dependencies in a fat-jar, usually named
sge-1.0.4-exe.jar and can be executed with

java -jar sge-1.0.4-exe.jar

It does not have to be installed in a classical sense.

Vocabulary
Match A certain number (can also be only one) of agents play a single game.
Round consists of every players turn.

1

https://jdk.java.net/

Turn consists of all the actions a player makes until he ends his turn. If a
turn consists only of a single action it is also called a move.

Action something the player can do which can end the turn or lead into another
action.

Synopsis
sge

The engine is a executable jar file which loads other jar files and the usage follows
the POSIX principle (note java -jar sge-1.0.4-exe.jar is substituted by
sge):

sge [ENGINE-OPTIONS]... [COMMAND [COMMAND-OPTIONS...] [COMMAND-ARGUMENTS]...]

It is important to note that straying from that principle might result in unex-
pected behaviour.

The engine has, as of version 1.0.4, two working commands:

1. match
2. tournament

Generally the engine either takes paths or strings as input from the user. The
engine automatically determines if a string is a path to a file, and if not it falls
back to interpreting it as a string.

sge match

A match is a single game that is played by agents. There are several ways to
allow agents to play matches against each other.

Firstly the engine will create a list of agents that are going to play in this match.
This list is called the agent configuration. Should the user not have given any, it
adds unused agents, and finally human players should those run out as well.

The agents are then instantiated and the match is played in this order. This
implicitly sets the number of players.

Arguments

sge match can optionally take paths to a game file, agent file(s) and agent
configurations. The engine will determine what is what automatically. For
example:

sge match gameJar agent1Jar agent2Jar

2

will start a match with the game provided by gameJar with the agent provided
by agent1Jar vs the agent provided agent2Jar.

Or if the order of the players matters (provided agent1Jar provides agent1 and
agent2Jar provides agent2):

sge match gameJar agent1Jar agent2Jar agent1 agent2 agent1

will start a match with the game provided by gameJar. The players are in that
order an instance of agent1, agent2 and another instance of agent1.

Options

1. --debug

This option is a flag.

Starts the engine in debug mode. No timeouts and verbose is turned on
once (Log level is reduced by one).

2. -a, --agent

This option has an arity of '1..*'.

This is a more explicit variant to give configuration of agents. This needs
to be terminated by another option or --.

3. -b, --board

This option has an arity of '1'.

Use a different board instead of the default. This can be a path or a string,
depending on the game, one or both is allowed.

4. -c, --computation-time

This option has an arity of '1'.

Determine how long an agent is allowed to compute before a timeout.
Humans cannot timeout. The unit is per default seconds, however it can
be controlled by -u or --time-unit.

5. -d, --directory

This option has an arity of '1..*'.

This is a more explicit variant to give jars of game and agents. Every
subdirectory will be considered. This needs to be terminated by another
option or --.

6. -f, --file

This option has an arity of '1..*'.

3

This is a more explicit variant to give jars of game and agents. This needs
to be terminated by another option or --

7. -h, --help

This option is a flag.

Gives an usage overview.

8. --max-actions

This option has an arity of '1'.

Limit the number of actions per match. The game is aborted and the
utility is measured as if it was ended regularly.

9. -p, --number-of-players

This option has an arity of '1'.

Either set implicitly by the agent-configuration, the minimum required to
play or explicitly by this option.

10. -q, --quiet

This option is a flag.

Increases the log level by one. These flags can be used cumulatively. -qqq
therefore turns off any logging.

11. -r, -s, --shuffle

This option is a flag.

Shuffles the agent configuration before starting the match.

12. -u, --time-unit

This option has an arity of '1'.

This allows to scale the computation time.

13. -v, --verbose

This option is a flag.

Decreases the log level by one. These flags can be used cumulatively. -vv
therefore turns on all logging.

sge tournament

A tournament are one or more matches which determine the outcome of a
tournament.

Per default all agents which are loaded are included in the tournament. Via the
agent-configuration it is possible to limit the contestants.

4

Arguments

sge tournament can optionally take paths to a game file, agent file(s) and agent
configurations. The engine will determine what is what automatically. For
example:

sge tournament gameJar agent1Jar agent2Jar

will start a tournament with the game provided by gameJar with the agent
provided by agent1Jar vs the agent provided agent2Jar.

If only a select number of agents are to play in a tournament append the their
agent names:

sge tournament gameJar agent1Jar agent2Jar agent3Jar agent1 agent2 agent1

will start a tournament with the game provided by gameJar. The players are in
that order an instance of agent1, agent2 and another instance of agent1, but
not agent3.

Options

1. --debug

This option is a flag.

Starts the engine in debug mode. No timeouts and verbose is turned on
once (Log level is reduced by one).

2. -a, --agent

This option has an arity of '1..*'.

This is a more explicit variant to give configuration of agents. This needs
to be terminated by another option or --.

3. -b, --board

This option has an arity of '1'.

Use a different board instead of the default. This can be a path or a string,
depending on the game, one or both is allowed.

4. -c, --computation-time

This option has an arity of '1'.

Determine how long an agent is allowed to compute before a timeout.
Humans cannot timeout. The unit is per default seconds, however it can
be controlled by -u or --time-unit.

5

5. -d, --directory

This option has an arity of '1..*'.

This is a more explicit variant to give jars of game and agents. Every
subdirectory will be considered. This needs to be terminated by another
option or --.

6. -f, --file

This option has an arity of '1..*'.

This is a more explicit variant to give jars of game and agents. This needs
to be terminated by another option or --

7. -h, --help

This option is a flag.

Gives an usage overview.

8. -m, --mode

This option has an arity of '1'.

As of version 1.0.4 sge tournament supports the following tournament
modes:

(a) Round Robin

Default. Valid value: Round_Robin

Requires at least 2 agents, but has no upper limit. Matches can be
played with 2 agents, but at most as many as tournament contestants.

Every combination of agent is played once.

(b) Double Round Robin

Valid value: Double_Round_Robin

Requires at least 2 agents, but has no upper limit. Matches can be
played with 2 agents, but at most as many as tournament contestants.

Every permutation of agent is played once.

9. --max-actions

This option has an arity of '1'.

Limit the number of actions per match. The game is aborted and the
utility is measured as if it was ended regularly.

10. -p, --number-of-players

This option has an arity of '1'.

6

Implicitly the minimum required to play or explicitly by this option. Note
that this does not change the number of involved agents in a tournament
but rather how many are playing in a single match.

11. -q, --quiet

This option is a flag.

Increases the log level by one. These flags can be used cumulatively. -qqq
therefore turns off any logging.

12. -r, -s, --shuffle

This option is a flag.

Shuffles the agent configuration before starting the tournament.

13. -u, --time-unit

This option has an arity of '1'.

This allows to scale the computation time.

14. -v, --verbose

This option is a flag.

Decreases the log level by one. These flags can be used cumulatively. -vv
therefore turns on all logging.

Writing for sge
Writing an Agent
Build environment

Through the build tool make sure that following attributes are ensured:

• Source Compatibility: 1.11
• Following Manifest attributes

– 'Sge-Type': 'agent'
– 'Agent-Class': path.to.actual.agent
– 'Agent-Name': The name of the agent

• Engine is in classpath
• Recommended: Game is in classpath

To achieve this in gradle you have two options:

1. Jitpack (no GitHub Account required)

Add the following to your ‘build.gradle‘:

sourceCompatibility = 1.11

7

repositories {
maven { url 'https://jitpack.io' }

}

dependencies {
implementation("com.github.Entze:Strategy-Game-Engine:v1.0.4")

}

jar {
manifest {
attributes("Sge-Type": "agent",

"Agent-Class": "path.to.actual.agent",
"Agent-Name": "The name of the agent")

}
}

2. GitHub Packages (GitHub Account required)

Add the following to your ‘build.gradle‘:

sourceCompatibility = 1.11

repositories {
maven {

url = uri("https://maven.pkg.github.com/Entze/Strategy-Game-Engine")
credentials {

username = project.findProperty("gpr.user")
?: findProperty("github.actor")
?: System.getenv("GITHUB_ACTOR")

password = project.findProperty("gpr.key")
?: findProperty("github.token")
?: System.getenv("GITHUB_TOKEN")

}
}
// if you want to write an agent for a particular game (such as Risk)
maven {

url = uri("https://maven.pkg.github.com/Entze/sge-risk")
credentials {

username = project.findProperty("gpr.user")
?: findProperty("github.actor")
?: System.getenv("GITHUB_ACTOR")

password = project.findProperty("gpr.key")
?: findProperty("github.token")

8

?: System.getenv("GITHUB_TOKEN")
}

}
}

dependencies {
implementation("at.ac.tuwien.ifs.sge:sge:1.0.4")

}

jar {
manifest {
attributes("Sge-Type": "agent",

"Agent-Class": "path.to.actual.agent",
"Agent-Name": "The name of the agent")

}
}

This requires that either gpr.user or github.actor are set in the gradle
config or the environment variable GITHUB_ACTOR is set (equivalently for
the key/token).

Usually this can be done by adding a gradle.properties with the (un-
quoted) key value pairs like so:

github.actor=MyUserName
github.token=ghp_...

The token is a personal access token. Learn to set one up at
docs.github.com/en/authentication/keeping-your-account-and-data-
secure/creating-a-personal-access-token

Development Environment

1. Intellij IDEA

First create a new Gradle project, by selecting File, then New and then
Project. . . (see Figure 1).

Select Gradle (see Figure 2) and then follow the wizard.

After that replace the contents of the build.gradle file with that given
in Build Environment.

2. Eclipse

First create a new Gradle project, by selecting File, then New and then
Project. . . (see Figure 3)

Select Gradle, then Gradle Project (see Figure 4) and then follow the
wizard. After that replace the contents of the build.gradle file with that

9

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

Figure 1: Create a new project in Intellij IDEA.

Figure 2: Select the Gradle project template.

10

Figure 3: Create a new project in Eclipse.

Figure 4: Select the Gradle project template.

11

given in Build Environment.

Implementing the GameAgent Interface

In order to write an agent for sge a class has to implement the in-
terface GameAgent. It is also highly recommended to extend from
at.ac.tuwien.ifs.sge.agent.AbstractAgent. It provides comparators
which allow to compare games by utility and heuristic value and a method
shouldStopComputation() which checks if the a certain part (per default half)
of the computation time was already used.

Here an minimal working example that chooses the first available option of any
game:

import at.ac.tuwien.ifs.sge.agent.*;
import at.ac.tuwien.ifs.sge.engine.Logger;

public class FirstAgent<G extends Game<A, ?>, A> extends AbstractGameAgent<G, A>
implements GameAgent<G, A> {

public FirstAgent(Logger log){
super(log);

}

@Override
public A computeNextAction(G game,

long computationTime,
TimeUnit timeUnit){

//optionally set AbstractGameAgent timers
super.setTimers(computationTime, timeUnit);
//choose the first option
return List.copyOf(game.getPossibleActions()).get(0);

}

}

Note that there has to exist at least a constructor with at.ac.tuwien.ifs.sge.engine.Logger
as argument. This logger does not have to be used though.

Every instance of the agents is created via this constructor. This also means
that if the same agent plays against itself two instances of it are created.

Every agent also has the methods setUp(numberOfPlayers, playerNumber)
called before every match, tearDown() called after every match, and destroy()
called before shutting down. These methods can be used to get resources in place
or to destroy them. Note that the same instance is used for multiple matches.

12

Game API

Every game follows the Game<A, B> API, where A is an action and B is the
board.

The javadoc explains every method and their contracts in detail, however here
are the most important relisted.

/**
* Checks whether the game is over yet. Once this state is reached it can
* not be left.
*
* @ return true if and only if game over
*/

boolean isGameOver();

/**
* Checks which player' s move it is and returns the id of the player.
* A negative number indicates some indeterminacy which is resolved by
* the game itself.
*
* @ return the id of the player
*/

int getCurrentPlayer();

/**
* Applies the (public) utility function for the given player. The
* utility function is the final measure which determines how
* " good" a player does. The player with the highest value is
* considered the winner. On equality it is considered a tie.
*
* @ param player - the player
* @ return the result of the utility function for the player
*/

double getUtilityValue(int player);

/**
* Applies the heuristic function for the given player. This function
* is a more lax measure in how " good" a player does, it is not used
* to determine the outcome of a game. Per default the same as
* getUtilityValue().
*
* @ param player - the player
* @ return the result of the heuristic function for the player
*/

default double getHeuristicValue(int player) {

13

return getUtilityValue(player);
}

/**
* Collects all possible moves and returns them as a set. Should the
* game be over an empty set is returned instead.
*
* @ return a set of all possible moves
*/

Set<A> getPossibleActions();

/**
* Returns a copy of the current board. Notice that only in non- canonical
* games some information might be hidden.
*
* @ return the board
*/

B getBoard();

/**
* Checks whether doAction(action) would not throw an exception.
*
* @ param action - the action
* @ return true - iff the action is valid and possible
*/

boolean isValidAction(A action);

/**
* Does a given action.
*
* @ param action - the action to take
* @ return a new copy of the game with the given action applied
* @ throws IllegalArgumentException - In the case of a non- existing action or null
* @ throws IllegalStateException - If game over
*/

Game<A, B> doAction(A action);

/**
* Returns the record of all previous actions and which player has done it.
*
* @ return the record of all previous actions
*/

List<ActionRecord<A>> getActionRecords();

/**
* If the game is in a state of indeterminacy, this method will return an

14

* action according to the distribution of probabilities, or hidden
* information. If the game is in a definitive state null is returned.
*
* @ return a possible action, which determines the game
*/

A determineNextAction();

Logging

The standard logger implementation provides five levels of logging.

1. Trace (level −2)
2. Debug (level −1)
3. Info (level 0)
4. Warn (level 1)
5. Error (level 2)

A logger can be configured with pre and post strings which are pre- and appended
to some of the printed strings.

An API-abiding agent is passed a logger which has the same level as the engine.
This can be useful as repeated printing is suboptimal for the performance,
however some debug information is sometimes useful.

Every level of logging has a couple of variants. Using debug as example:

• debug (prints pre, the message, post and newline)
• deb (same as debug but without newline in the end)

Those two now have multiple variants again:

• debugf (prints a formatted string, behaving like String.format)
• debugEnum (prints a message and a number, mostly used for indicating

that something is counted)
• debugProcess (prints a message and a progress percentage, as well as the

explicit values, mostly used for indicating that something is processed)

Every variant of these have variants again

• _debug (Print no pre)
• debug_ (Print no post)
• _debug_ (Print no pre and post)

This can be double checked in the javadoc.

Debugging

To effectively debug (in JUnit for example). You can create a new instance of
the game with the constructor and an instance of your agent.

15

@Test
public void text_example(){
ExampleGame exampleGame = new ExampleGame();
FirstAgent agent = new FirstAgent();

// Bring game and agent to the required state

ExampleAction action = agent.determineNextAction(exampleGame, 30, TimeUnit.SECONDS);
ExampleGame next = (ExampleGame) exampleGame.doAction(action);

//Test if agent behaves as expected

}

16

	About
	Prerequisites
	Java Installation
	Engine Installation
	Vocabulary

	Synopsis
	sge
	sge match
	Arguments
	Options

	sge tournament
	Arguments
	Options

	Writing for sge
	Writing an Agent
	Build environment
	Development Environment
	Implementing the GameAgent Interface
	Game API
	Logging
	Debugging

