# Copyright (c) 2024, EleutherAI # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import math from torch.nn.parameter import Parameter from megatron import mpu from megatron.model.positional_embeddings import SinusoidalPositionalEmbedding from megatron.model.init_functions import get_init_methods class Embedding(torch.nn.Module): """Language model embeddings. Arguments: hidden_size: hidden size vocab_size: vocabulary size max_sequence_length: maximum size of sequence. This is used for positional embedding embedding_dropout_prob: dropout probability for embeddings init_method: weight initialization method num_tokentypes: size of the token-type embeddings. 0 value will ignore this embedding """ def __init__( self, neox_args, hidden_size, vocab_size, max_sequence_length, embedding_dropout_prob, init_method, num_tokentypes=0, use_pos_emb=True, ): super(Embedding, self).__init__() self.hidden_size = hidden_size self.init_method = init_method self.num_tokentypes = num_tokentypes self.mup_embedding_multiplier = ( float(neox_args.mup_embedding_multiplier) if neox_args.use_mup else 1.0 ) # Word embeddings (parallel). self.word_embeddings = mpu.VocabParallelEmbedding( neox_args=neox_args, num_embeddings=vocab_size, embedding_dim=self.hidden_size, init_method=self.init_method, ) self._word_embeddings_key = "word_embeddings" if neox_args.use_bnb_optimizer: try: import bitsandbytes as bnb self.embedding_module = bnb.nn.StableEmbedding except ModuleNotFoundError: print( "Please install bitsandbytes following https://github.com/facebookresearch/bitsandbytes." ) raise Exception else: self.embedding_module = torch.nn.Embedding # Position embedding (serial). self.use_pos_emb = use_pos_emb if self.use_pos_emb: self.embedding_type = neox_args.pos_emb if self.embedding_type == "learned": self.position_embeddings = self.embedding_module( max_sequence_length, self.hidden_size ) self._position_embeddings_key = "position_embeddings" # Initialize the position embeddings. self.init_method(self.position_embeddings.weight) elif self.embedding_type == "sinusoidal": self.position_embeddings = SinusoidalPositionalEmbedding( self.hidden_size ) # Token type embedding. # Add this as an optional field that can be added through # method call so we can load a pretrain model without # token types and add them as needed. self._tokentype_embeddings_key = "tokentype_embeddings" if self.num_tokentypes > 0: self.tokentype_embeddings = self.embedding_module( self.num_tokentypes, self.hidden_size ) # Initialize the token-type embeddings. self.init_method(self.tokentype_embeddings.weight) else: self.tokentype_embeddings = None # Embeddings dropout self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob) self.opt_pos_emb_offset = neox_args.opt_pos_emb_offset # For ticking position ids forward self.layer_past = None def add_tokentype_embeddings(self, num_tokentypes): """Add token-type embedding. This function is provided so we can add token-type embeddings in case the pretrained model does not have it. This allows us to load the model normally and then add this embedding. """ if self.tokentype_embeddings is not None: raise Exception("tokentype embeddings is already initialized") if torch.distributed.get_rank() == 0: print( "adding embedding for {} tokentypes".format(num_tokentypes), flush=True ) self.num_tokentypes = num_tokentypes self.tokentype_embeddings = self.embedding_module( num_tokentypes, self.hidden_size ) # Initialize the token-type embeddings. self.init_method(self.tokentype_embeddings.weight) def forward(self, input_ids, position_ids, tokentype_ids=None): # Embeddings. words_embeddings = self.word_embeddings(input_ids) if self.use_pos_emb and self.embedding_type in ["learned", "sinusoidal"]: if self.opt_pos_emb_offset: if self.layer_past is not None: position_ids = position_ids + self.layer_past + 1 self.layer_past = position_ids[:, -1] # OPT always adds 2 for some reason, according to the HF implementation position_ids = position_ids + self.opt_pos_emb_offset position_embeddings = self.position_embeddings(position_ids) embeddings = words_embeddings + position_embeddings else: embeddings = words_embeddings if tokentype_ids is not None: assert self.tokentype_embeddings is not None embeddings = embeddings + self.tokentype_embeddings(tokentype_ids) else: assert self.tokentype_embeddings is None # Dropout. embeddings = self.embedding_dropout(embeddings) # Y_emb = m_emb * embed(X) embeddings = torch.mul(embeddings, self.mup_embedding_multiplier) return embeddings class EmbeddingPipe(Embedding): """Extends Embedding to forward attention_mask through the pipeline.""" @property def word_embeddings_weight(self): """Easy accessory for the pipeline engine to tie embeddings across stages.""" return self.word_embeddings.weight def forward(self, args): assert ( len(args) == 3 ), f"Expected 3 arguments (input_ids, position_ids, attention_mask), but got {len(args)}." input_ids = args[0] position_ids = args[1] attention_mask = args[2] embeddings = super().forward(input_ids, position_ids) return embeddings, attention_mask class SoftEmbedding(torch.nn.Module): def __init__( self, neox_args, wte, n_tokens: int = 10, init_range: float = 0.5, init_string: str = "", ): super(SoftEmbedding, self).__init__() self.n_tokens = n_tokens self.neox_args = neox_args self.init_range = init_range self.init_string = init_string self.soft_embedding_weight = torch.nn.parameter.Parameter( self.initialize_embedding(wte) ) def initialize_embedding(self): if self.init_string: embeds = torch.LongTensor( self.neox_args.tokenizer.tokenize(self.init_string) ).to(self.embedding_module.weight.device) embeds = self.embedding_module(embeds) if embeds.shape[0] >= self.n_tokens: embeds = embeds[: self.n_tokens, :] # slice else: embeds = embeds.repeat(math.ceil(self.n_tokens / embeds.shape[0]), 1)[ : self.n_tokens, : ] # pad up to n_tokens return embeds return torch.Tensor(n_tokens, neox_args.hidden_size).uniform_( -self.random_range, self.random_range ) def forward(self, args: tuple): in_inference = len(args) == 3 # embeddings, layer_past, attention_mask in_train = len(args) == 2 # embeddings, attention_mask if in_train: embedding, attention_mask = args else: embedding, layer_past, attention_mask = args soft_embedding = self.soft_embedding_weight.repeat( embedding.shape[0], 1, 1 ) # repeat batch_size times if in_train: # append soft embedding at the beginning in training embedding = torch.cat((soft_embedding, embedding), dim=1) embedding = embedding[:, : self.neox_args.seq_length, ...] return embedding, attention_mask else: if not (exists(layer_past) and layer_past.numel() > 0): # if in inference, on the first forward pass, we want to do the same as in training (append soft embedding) embedding = torch.cat((soft_embedding, embedding), dim=1) embedding = embedding[:, : self.neox_args.seq_length, ...] # otherwise, we're in incremental mode, and just want to forward the single embedding (since the soft prompt has already been cached) return embedding, layer_past, attention_mask