-
Notifications
You must be signed in to change notification settings - Fork 1k
/
__init__.py
181 lines (161 loc) · 5.89 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright (c) 2024, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file has been modified from its original version
#
import os
import pathlib
import subprocess
import torch
from torch.utils import cpp_extension
# Setting this param to a list has a problem of generating different
# compilation commands (with different order of architectures) and
# leading to recompilation of fused kernels. Set it to empty string
# to avoid recompilation and assign arch flags explicitly in
# extra_cuda_cflags below
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
def load(neox_args=None):
# Check if cuda 11 is installed for compute capability 8.0
cc_flag = []
if torch.version.hip is None:
_, bare_metal_major, bare_metal_minor = _get_cuda_bare_metal_version(
cpp_extension.CUDA_HOME
)
if int(bare_metal_major) >= 11:
cc_flag.append("-gencode")
cc_flag.append("arch=compute_80,code=sm_80")
if int(bare_metal_minor) >= 1:
cc_flag.append("-gencode")
cc_flag.append("arch=compute_86,code=sm_86")
if int(bare_metal_minor) >= 4:
cc_flag.append("-gencode")
cc_flag.append("arch=compute_87,code=sm_87")
if int(bare_metal_minor) >= 8:
cc_flag.append("-gencode")
cc_flag.append("arch=compute_89,code=sm_89")
if int(bare_metal_major) >= 12:
cc_flag.append("-gencode")
cc_flag.append("arch=compute_90,code=sm_90")
# Build path
srcpath = pathlib.Path(__file__).parent.absolute()
buildpath = srcpath / "build"
_create_build_dir(buildpath)
# Determine verbosity
verbose = True if neox_args is None else (neox_args.rank == 0)
# Helper function to build the kernels.
def _cpp_extention_load_helper(
name, sources, extra_cuda_flags, extra_include_paths
):
if torch.version.hip is not None:
extra_cuda_cflags = ["-O3"] + extra_cuda_flags + cc_flag
else:
extra_cuda_cflags = (
["-O3", "-gencode", "arch=compute_70,code=sm_70", "--use_fast_math"]
+ extra_cuda_flags
+ cc_flag
)
return cpp_extension.load(
name=name,
sources=sources,
build_directory=buildpath,
extra_cflags=[
"-O3",
],
extra_cuda_cflags=extra_cuda_cflags,
extra_include_paths=extra_include_paths,
verbose=verbose,
)
# ==============
# Fused softmax.
# ==============
if torch.version.hip is not None:
extra_include_paths = [os.path.abspath(srcpath)]
else:
extra_include_paths = []
if torch.version.hip is not None:
extra_cuda_flags = [
"-D__HIP_NO_HALF_OPERATORS__=1",
"-D__HIP_NO_HALF_CONVERSIONS__=1",
]
else:
extra_cuda_flags = [
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"--expt-relaxed-constexpr",
"--expt-extended-lambda",
]
# Upper triangular softmax.
sources = [
srcpath / "scaled_upper_triang_masked_softmax.cpp",
srcpath / "scaled_upper_triang_masked_softmax_cuda.cu",
]
scaled_upper_triang_masked_softmax_cuda = _cpp_extention_load_helper(
"scaled_upper_triang_masked_softmax_cuda",
sources,
extra_cuda_flags,
extra_include_paths,
)
# Masked softmax.
sources = [
srcpath / "scaled_masked_softmax.cpp",
srcpath / "scaled_masked_softmax_cuda.cu",
]
scaled_masked_softmax_cuda = _cpp_extention_load_helper(
"scaled_masked_softmax_cuda", sources, extra_cuda_flags, extra_include_paths
)
# fused rope
sources = [
srcpath / "fused_rotary_positional_embedding.cpp",
srcpath / "fused_rotary_positional_embedding_cuda.cu",
]
fused_rotary_positional_embedding = _cpp_extention_load_helper(
"fused_rotary_positional_embedding",
sources,
extra_cuda_flags,
extra_include_paths,
)
def _get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output(
[cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True
)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
def _create_build_dir(buildpath):
try:
os.mkdir(buildpath)
except OSError:
if not os.path.isdir(buildpath):
print(f"Creation of the build directory {buildpath} failed")
def load_fused_kernels():
try:
import scaled_upper_triang_masked_softmax_cuda
import scaled_masked_softmax_cuda
import fused_rotary_positional_embedding
except (ImportError, ModuleNotFoundError) as e:
print("\n")
print(e)
print("=" * 100)
print(
f"ERROR: Fused kernels configured but not properly installed. Please run `from megatron.fused_kernels import load()` then `load()` to load them correctly"
)
print("=" * 100)
exit()
return