-
Notifications
You must be signed in to change notification settings - Fork 1k
/
neox_args.py
954 lines (761 loc) · 24.6 KB
/
neox_args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
import subprocess
from dataclasses import dataclass
try:
from .template import NeoXArgsTemplate
except ImportError:
from template import NeoXArgsTemplate
try:
from typing import Literal
except ImportError:
from typing_extensions import Literal
ATTENTION_TYPE_CHOICES = [
"global",
"local",
"sparse_fixed",
"sparse_variable",
"bigbird",
"bslongformer",
"gmlp",
"amlp",
]
def get_git_commit_hash():
""" Gets the git commit hash of your current repo (if it exists) """
try:
git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
git_hash = git_hash.decode()
except subprocess.CalledProcessError:
git_hash = None
return git_hash
@dataclass
class NeoXArgsParallelism(NeoXArgsTemplate):
"""
Parallelism Arguments
"""
pipe_parallel_size: int = 0
"""
Number of pipeline parallel stages. Disable with 0.
"""
model_parallel_size: int = 1
"""
Size of the model parallelism.
"""
pipe_partition_method: str = "type:transformer|mlp"
"""
method used to distribute model layers across pipeline stages. Choose from "parameters", which balances the number
of parameters on each pipeline stage, "uniform", which naively balances the number of layers per stage, or
"type:[regex]", which balances layers whose class names match [regex]
"""
world_size: int = None
"""
Total world size (i.e number of gpus in cluster). Configured post-launch using distributed launcher
"""
is_pipe_parallel: bool = False
"""
flag to determine whether pipeline parallelism is on - shouldn't be set by user, is automatically determined
according to pipeline parallel size.
"""
@dataclass
class NeoXArgsModel(NeoXArgsTemplate):
"""
Model Arguments
"""
precision: Literal["fp16", "fp32", "bfloat16"] = None
"""
description of the used precision, either one of fp16 or fp32 (and in the future bf16).
"""
num_layers: int = None
"""
Number of transformer layers.
"""
hidden_size: int = None
"""
Transformer hidden size.
"""
num_attention_heads: int = None
"""
Number of transformer attention heads.
"""
seq_length: int = None
"""
Maximum sequence length to process.
"""
max_position_embeddings: int = None
"""
Maximum number of position embeddings to use. This is the size of position embedding.
"""
norm: Literal["layernorm", "rmsnorm", "scalenorm"] = "layernorm"
"""
Normalization layer to use. Choose from "layernorm", "rmsnorm", "scalenorm".
"""
layernorm_epsilon: float = 1.0e-5
"""
Layer norm epsilon.
"""
rms_norm_epsilon: float = 1.0e-8
"""
Root mean squared norm epsilon
"""
scalenorm_epsilon: float = 1.0e-8
"""
Scalenorm epsilon
"""
pos_emb: Literal[
"learned", "rotary", "sinusoidal", "rpe", "alibi", "none"
] = "learned"
"""
Type of positional embedding to use - choose from 'learned', 'rotary', 'sinusoidal', 'rpe', 'none'
"""
rpe_num_buckets: int = 32
"""
T5 relative positional encoding number of buckets, default 32.
"""
rpe_max_distance: int = 128
"""
T5 relative positional encoding max distance, default 128.
"""
no_weight_tying: bool = False
"""
Disables weight tying between embedding weights and final Linear layer
"""
attention_config: list = None
"""
Attention configuration for gpt-neox
The first item in the list specifies the attention type(s), and should be a list of strings. The second item
specifies the number of times to repeat those attention types in the full list.
attention type choices: [global, local, sparse_fixed, sparse_variable, bslongformer, bigbird]
So a 12 layer network with only global attention could be specified like:
[[[`global`], 12]]
or a 12 layer network with alternating global / local like:
[[[`global`, `local`], 6]]
If none is specified, this defaults to
[[[`global`], n_layers]]
"""
sparsity_config: dict = None
"""
Sparsity configuration dict as defined in https://www.deepspeed.ai/docs/config-json/#sparse-attention
Note that since neox is autoregressive, attention is always "unidirectional" and `horizontal_global_attention` is
always false.
The main difference between our sparsity config and deepspeed's is that `mode` is ignored - since it is instead
specified in attention_config defining each layer.
An example config is given below:
"sparse_attention": {
"block": 16,
"different_layout_per_head": true,
"num_local_blocks": 4,
"num_global_blocks": 1,
"num_different_global_patterns": 4,
"num_random_blocks": 0,
"local_window_blocks": [4],
"global_block_indices": [0],
"global_block_end_indices": None,
"num_sliding_window_blocks": 3
}
"""
num_unique_layers: int = None
"""
Number of unique transformer layers. num-layers should be divisible by this value. Currently only has an effect when pipe_parallel_size=0.
"""
param_sharing_style: str = "grouped"
"""
Ordering of the shared parameters. For example, for a num-layers=4 and --num-unique-layers=2, we will have the following ordering for two unique layers 1 and 2-: grouped: [1, 2, 1, 2] and spaced: [1, 1, 2, 2].
"""
make_vocab_size_divisible_by: int = 128
"""
Pad the vocab size to be divisible by this value. This is added for computational efficiency reasons.
"""
activation: Literal["gelu", "geglu", "relu", "softsign", "swish", "mish"] = "gelu"
"""
Activation function to use - choose from ["gelu", "geglu", "relu", "softsign", "swish", "mish"]
"""
scaled_upper_triang_masked_softmax_fusion: bool = False
"""
Enable fusion of query_key_value_scaling time (upper diagonal) masking and softmax.
"""
scaled_masked_softmax_fusion: bool = False
"""
Enable fusion of query_key_value_scaling general masking and softmax.
"""
bias_gelu_fusion: bool = False
"""
Enable bias and gelu fusion.
"""
bias_dropout_fusion: bool = False
"""
Enable bias and dropout fusion.
"""
fp16_lm_cross_entropy: bool = False
"""
Move the cross entropy unreduced loss calculation for lm head to fp16.
"""
init_method_std: float = 0.02
"""
Standard deviation of the zero mean normal distribution used for weight initialization.
"""
apply_query_key_layer_scaling: bool = False
"""
Scale Q * K^T by 1 / layer-number. If this flag is set, then it will automatically set attention-softmax-in-fp32 to true
"""
use_cpu_initialization: bool = False
"""
If set, affine parallel weights initialization uses CPU
"""
attention_softmax_in_fp32: bool = False
"""
Run attention masking and softmax in fp32.
"""
rotary_pct: float = 1.0
"""
pct of hidden dims to apply rotary positional embedding to
"""
rotary_emb_base: int = 10000
"""
Base for rotary positional embedding
"""
init_method: Literal[
"normal",
"scaled_normal",
"orthogonal",
"scaled_orthogonal",
"xavier_uniform",
"xavier_normal",
"wang_init",
"small_init",
] = "normal"
"""
Init function used on all layers except ff residual outputs - choose from
["normal", "scaled_normal", "orthogonal", "scaled_orthogonal", "xavier_uniform", "xavier_normal", "wang_init", "small_init"]
"""
output_layer_init_method: Literal[
"normal",
"scaled_normal",
"orthogonal",
"scaled_orthogonal",
"xavier_uniform",
"xavier_normal",
"wang_init",
"small_init",
] = "scaled_normal"
"""
Init function used for ff residual outputs - choose from
["normal", "scaled_normal", "orthogonal", "scaled_orthogonal", "xavier_uniform", "xavier_normal", "wang_init", "small_init"]
"""
gmlp_attn_dim: int = 64
"""
the dimension of the single head self attention in gmlp model (not used in gpt models).
If None - gmlp model doesn't use attention.
"""
gpt_j_residual: bool = False
"""
If false, we use the conventional residual path:
x = x + attn(ln1(x))
x = x + mlp(ln2(x))
Otherwise, we use the residual path from GPT-J, which offers a slight speedup:
x = ln(x)
x = x + attn(x) + mlp(x)
"""
soft_prompt_tuning: dict = None
"""
Dictionary configuring the soft prompt tuning parameters.
If enabled, will train *only* the soft prompt, and freezes the rest of the model.
parameters in the dict are:
'enabled': bool = True # enables soft prompting
'num_tokens': int = 10 # length of the soft prompt in tokens
'init_string': str = '' # if provided, initialize the soft prompt with the word embeddings of this string
'init_range': float = 0.5 # if no init string is provided, initialize the soft prompt with a uniform distribution between -init_range and init_rang
"""
output_layer_parallelism: Literal["row", "column"] = "row"
"""
Parameter controlling whether the output layer is parallelized over the hidden dim (row) or the vocab dim (column)
"""
@dataclass
class NeoXArgsOptimizer(NeoXArgsTemplate):
"""
Optimizer Arguments
"""
optimizer_type: Literal[
"adam", "onebitadam", "cpu_adam", "cpu_torch_adam", "sm3", "madgrad_wd"
] = "adam"
"""
Type of optimizer to use. Choose from ['adam', 'onebitadam', 'cpu_adam', 'cpu_torch_adam', 'sm3', 'madgrad_wd]
"""
zero_stage: int = None
"""
Zero Optimizer stage
"""
zero_reduce_scatter: bool = None
"""
Zero: Uses reduce or reduce scatter instead of allreduce to average gradients
"""
zero_contiguous_gradients: bool = None
"""
Zero: Copies the gradients to a contiguous buffer as they are produced. Avoids memory fragmentation during backward pass. Only useful when running very large models.
"""
zero_reduce_bucket_size: int = None
"""
Zero: Number of elements reduced/allreduced at a time. Limits the memory required for the allgather for large model sizes
"""
zero_allgather_bucket_size: int = None
"""
Zero: Number of elements allgathered at a time. Limits the memory required for the allgather for large model sizes
"""
lr: float = None
"""
Max Learning rate during training
"""
@dataclass
class NeoXArgsLRScheduler(NeoXArgsTemplate):
"""
LR Scheduler Arguments
"""
lr_decay_style: Literal["constant", "linear", "cosine", "exponential"] = "linear"
"""
Learning rate decay function. Choose from 'constant', 'linear', 'cosine', 'exponential'.
"""
lr_decay_iters: int = None
"""
Number of iterations to decay learning rate over, If None defaults to --train-iters
"""
min_lr: float = 0.0
"""
Minumum value for learning rate. The scheduler clips values below this threshold.
"""
warmup: float = 0.01
"""
Percentage of total iterations to warmup on (.01 = 1 percent of all training iters).
"""
override_lr_scheduler: bool = False
"""
Reset the values of the scheduler (learning rate,warmup iterations, minimum learning rate, maximum number of iterations, and decay style from input arguments and ignore values from checkpoints. Note that all the above values will be reset.
"""
use_checkpoint_lr_scheduler: bool = False
"""
Use checkpoint to set the values of the scheduler (learning rate, warmup iterations, minimum learning rate, maximum number of iterations, and decay style from checkpoint and ignore input arguments.
"""
@dataclass
class NeoXArgsLogging(NeoXArgsTemplate):
"""
Logging Arguments
"""
use_wandb: bool = None
"""Flag indicating if wandb is to be used."""
wandb_group: str = None
"""Weights and Biases group name - used to group together "runs"."""
wandb_team: str = None
"""Team name for Weights and Biases."""
wandb_project: str = "neox"
"""wandb project name"""
wandb_host: str = "https://api.wandb.ai"
"""url of the wandb host"""
git_hash: str = get_git_commit_hash()
"""current git hash of repository"""
log_dir: str = None
"""
Directory to save logs to.
"""
tensorboard_writer = None
"""
initialized tensorboard writer
"""
tensorboard_dir: str = None
"""
Write TensorBoard logs to this directory.
"""
log_interval: int = None
"""
Interval between logging.
"""
log_param_norm: bool = False
"""
Log the frob norm of the parameters to wandb / tensorboard (useful for debugging).
"""
log_grad_norm: bool = False
"""
Log the frob norm of the gradients to wandb / tensorboard (useful for debugging).
(N.B - this will only work with pp = 0 for now, as we don't have access to the gradients of the model because
deepspeed.)
"""
log_optimizer_states: bool = False
"""
Log the frob norm of the optimizer states to wandb / tensorboard (useful for debugging).
"""
log_gradient_noise_scale: bool = False
"""
Whether to log the gradient noise scale when training (cf. https://arxiv.org/abs/1812.06162 for explanation)
"""
gradient_noise_scale_n_batches: int = 5
"""
Number of batches to accumulate gradients for in the gradient noise scale logger.
"""
gradient_noise_scale_cpu_offload: bool = False
"""
Whether to offload the buffered gradients to cpu when measuring gradient noise scale.
"""
@dataclass
class NeoXArgsOther(NeoXArgsTemplate):
"""
Misc. Arguments
"""
distributed_backend: str = "nccl"
"""
Which backend to use for distributed training.
"""
local_rank: int = None
"""
local rank passed from distributed launcher.
"""
rank: int = None
"""
global rank of process being run (passed in via distributed launcher)
"""
lazy_mpu_init: bool = False
"""
If set to True, initialize_megatron() skips DDP initialization and returns function to complete it instead. Also turns on use-cpu-initialization flag. This is for external DDP manager.
"""
short_seq_prob: float = 0.1
"""
Probability of producing a short sequence.
"""
eod_mask_loss: bool = False
"""
Mask loss for the end of document tokens.
"""
adlr_autoresume: bool = False
"""
Enable auto-resume on adlr cluster.
"""
adlr_autoresume_object = None
"""
imported autoresume
"""
adlr_autoresume_interval: int = 1000
"""
Intervals over which check for auto-resume termination signal
"""
seed: int = 1234
"""
Random seed used for python, numpy, pytorch, and cuda.
"""
onnx_safe: bool = False
"""
Use workarounds for known problems with Torch ONNX exporter
"""
deepscale: bool = False
"""
(Deprecated) enable DeepSpeed (helper flag for user code, no impact on DeepSpeed backend)'
"""
deepscale_config: str = None
"""(Deprecated) deepscale json configuration file."""
deepspeed_mpi: bool = False
"""
Run via MPI, this will attempt to discover the necessary variables to initialize torch distributed from the MPI environment
"""
user_script: str = None
"""
user script to be run
"""
iteration: int = None
"""
Set during training
"""
do_train: int = None
"""
Set during training
"""
do_valid: int = None
"""
Set during training
"""
do_test: int = None
"""
Set during training
"""
global_num_gpus: int = None
"""
Set during launching
"""
@dataclass
class NeoXArgsTokenizer(NeoXArgsTemplate):
"""
Tokenizer Arguments
"""
tokenizer_type: Literal[
"GPT2BPETokenizer", "HFTokenizer", "HFGPT2Tokenizer", "CharLevelTokenizer"
] = "GPT2BPETokenizer"
"""
Type of tokenizer to use - should be one of ["GPT2BPETokenizer", "HFTokenizer", "HFGPT2Tokenizer", "CharLevelTokenizer"]
"""
padded_vocab_size: int = None
"""
Total (padded) vocabulary size of tokenizer. Configured after launching of training,
as it's dependent on the parallelism size.
"""
tokenizer = None
"""
tokenizer object loaded into memory and accesible by other functions
"""
@dataclass
class NeoXArgsTraining(NeoXArgsTemplate):
"""
Training Arguments
"""
data_path: str = None
"""
Path to combined dataset to split.
"""
train_data_paths: list = None
"""
List of paths to train datasets.
"""
test_data_paths: list = None
"""
List of paths to test datasets.
"""
valid_data_paths: list = None
"""
List of paths to validation datasets.
"""
train_data_weights: list = None
"""
List of 'weights' that decide how often to sample from each training dataset when blending datasets. If None, defaults to equal weighting.
Should be a list the same length as `train_data_paths`
"""
valid_data_weights: list = None
"""
List of 'weights' that decide how often to sample from each validation dataset when blending datasets. If None, defaults to equal weighting.
Should be a list the same length as `valid_data_paths`
"""
test_data_weights: list = None
"""
List of 'weights' that decide how often to sample from each test dataset when blending datasets. If None, defaults to equal weighting.
Should be a list the same length as `test_data_paths`
"""
weight_by_num_documents: bool = False
"""
If True, Builds dataset weights from a multinomial distribution over groups of data according to the number of
documents in each group.
WARNING: setting this to True will override any user provided weights
We sample from a group according to the probability p(L) ∝ |L| ** α,
where p(L) is the probability of sampling from a given group,
|L| is the number of examples in that datapoint,
and α is a coefficient that acts to upsample data from underrepresented groups
Hence α (`alpha`) allows us to control how much to 'boost' the probability of training on low-resource groups.
See https://arxiv.org/abs/1911.02116 for more details
"""
weighted_sampler_alpha: float = 0.3
"""
Alpha value for `weight_by_num_documents`. Only has an effect if `weight_by_num_documents` = True.
when alpha = 1, the probability of sampling from a given group = n_samples / total_samples
as alpha -> 0, the probability of sampling from all groups becomes equal, and number of documents has no effect
as alpha -> inf, the probability of sampling from the groups with *the most samples* -> 1
"""
data_impl: str = "infer"
"""
Implementation of indexed datasets.
"""
mmap_warmup: bool = False
"""
Warm up mmap files.
"""
save: str = None
"""
Output directory to save checkpoints to.
"""
load: str = None
"""
Directory containing a model checkpoint.
"""
checkpoint_validation_with_forward_pass: bool = False
"""
save input and output of a forward pass with the checkpoint and validate after load
"""
save_interval: int = None
"""
Number of iterations between checkpoint saves.
"""
no_save_optim: bool = False
"""
Do not save current optimizer.
"""
no_save_rng: bool = False
"""
Do not save current rng state.
"""
no_load_optim: bool = False
"""
Do not load optimizer when loading checkpoint.
"""
no_load_rng: bool = False
"""
Do not load rng state when loading checkpoint.
"""
finetune: bool = False
"""
Load model for finetuning. Do not load optimizer or rng state from checkpoint and set iteration to 0. Assumed when loading a release checkpoint.
"""
batch_size: int = None
"""
training microbatch size per gpu
"""
train_iters: int = None
"""
Number of iterations to run for training.
"""
eval_iters: int = 100
"""
Number of iterations to run for evaluation validation/test for.
"""
keep_last_n_checkpoints: int = None
"""
Number of last checkpoints to keep
"""
eval_interval: int = 1000
"""
Interval between running evaluation on validation set.
"""
split: str = "969, 30, 1"
"""
Comma_separated list of proportions for training, validation, and test split. For example the split 90,5,5 will use 90% of data for training, 5% for validation and 5% for test.
"""
vocab_file: str = None
"""
Path to the vocab file.
"""
merge_file: str = None
"""
Path to the BPE merge file.
"""
num_workers: int = 2
"""
Dataloader number of workers.
"""
exit_interval: int = None
"""
Exit the program after the iteration is divisible by this value.
"""
attention_dropout: float = 0.1
"""
Post attention dropout probability.
"""
hidden_dropout: float = 0.1
"""
Dropout probability for hidden state transformer.
"""
weight_decay: float = 0.01
"""
Weight decay coefficient for L2 regularization.
"""
checkpoint_activations: bool = False
"""
Checkpoint activation to allow for training with larger models, sequences, and batch sizes.
"""
checkpoint_num_layers: int = 1
"""
Chunk size (number of layers) for checkpointing.
"""
deepspeed_activation_checkpointing: bool = True
"""
DEPRECATED - TODO: remove
Uses activation checkpointing from deepspeed
"""
contiguous_checkpointing: bool = False
"""
Contiguous memory checkpointing for activations.
"""
checkpoint_in_cpu: bool = False
"""
Move the activation checkpoints to CPU.
"""
synchronize_each_layer: bool = False
"""
does a synchronize at the beginning and end of each checkpointed layer.
"""
profile_backward: bool = False
"""
Enables backward pass profiling for checkpointed layers.
"""
partition_activations: bool = False
"""
Partition Activations across GPUs before checkpointing.
"""
gas: int = None
"""gradient_accumulation_steps""" # TODO this is a duplicate, remove?
clip_grad: float = None
"""
Gradient clipping based on global L2 norm.
"""
hysteresis: int = 2
"""
hysteresis for dynamic loss scaling
"""
dynamic_loss_scale: bool = None
"""
flag indicating whether dynamic loss scale is used
"""
loss_scale: float = None
"""
Static loss scaling, positive power of 2
values can improve fp16 convergence. If None, dynamic loss scaling is used.
"""
loss_scale_window: float = 1000.0
"""
Window over which to raise/lower dynamic scale.
"""
min_scale: float = 1.0
"""
Minimum loss scale for dynamic loss scale.
"""
char_level_ppl: bool = False
"""
Whether to calculate character level perplexity as well as token level perplexity. (may incur a time cost)
"""
@dataclass
class NeoXArgsTextgen(NeoXArgsTemplate):
"""
Text Generation arguments
"""
text_gen_type: str = None
"""
How to generate text/sample the model.
Options: `unconditional`, `input-file`, `interactive`
"""
temperature: float = 0.0
"""
exponential scaling output distribution ("higher == more risk")
"""
top_p: float = 0.0
"""
Top-p (nucleus) sampling chooses from the smallest possible set of tokens whose cumulative probability exceeds the probability top_p.
"""
top_k: int = 0
"""
integer between 0 and the models vocab size. Filters out any logits with a probability less than that of the top_kth token.
"""
maximum_tokens: int = 64
"""
maximum number of tokens to be generated
"""
sample_input_file: str = None
"""
Get input from file instead of interactive mode, each line is an input.
"""
sample_output_file: str = None
"""
Output file
"""
num_samples: int = 0
"""
Number of samples to generate unconditionally, defaults to 0 and interactive conditional sampling
"""
recompute: bool = False
"""
During generation recompute all attention instead of using previously computed keys/values.
Should be set to true for sparse attention models
"""
eval_results_prefix: str = ""
"""
prefix to which to save evaluation results - final fp will be {eval_results_prefix}_eval_results_yy-mm-dd-HH-MM.json
"""
eval_tasks: list = None
"""
Tasks to evaluate on using lm_eval_harness
"""