
MPI Optimisation

Advanced Message-Passing Programming

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

3

https://creativecommons.org/licenses/by-nc-sa/4.0/

Overview

Can divide overheads up into four main categories:

• Lack of parallelism

• Load imbalance

• Synchronisation

• Communication

4

Lack of parallelism

• Tasks may be idle because only a subset of tasks are

computing

• Could be one task only working, or several.

- work done on task 0 only

- with split communicators, work done only on task 0 of each

communicator

• Usually, the only cure is to redesign the algorithm to exploit

more parallelism.

5

Load imbalance
• All tasks have some work to do, but some more than others....

• In general a much harder problem to solve than in shared

variables model

- need to move data explicitly to where tasks will execute

• May require significant algorithmic changes to get right

• Again scaling to large processor counts may be hard

- the load balancing algorithms may themselves scale as O(p) or worse.

9

• MPI profiling tools report the amount of time spent in each

MPI routine

• For blocking routines (e.g. Recv, Wait, collectives) this time

may be a result of load imbalance.

• The task is blocked waiting for another task to enter the

corresponding MPI call

- the other tasks may be late because it has more work to do

• Tracing tools often show up load imbalance very clearly

- but may be impractical for large codes, large task counts, long runtimes

10

Synchronisation

• In MPI most synchronisation is coupled to communication

- Blocking sends/receives

- Waits for non-blocking sends/receives

- Collective comms are (mostly) synchronising

• MPI_Barrier is almost never required for correctness

- can be useful for timing

- can be useful to prevent buffer overflows if one task is sending a lot of
messages and the receiving task(s) cannot keep up.

- think carefully why you are using it!

• Use of blocking point-to-point comms can result in

unnecessary synchronisation.

- Can amplify “random noise” effects (e.g. OS interrupts)

11

Communication

• Point-to-point communications

• Collective communications

12

Small messages
• Point to point communications typically incur a start-up cost

- sending a 0 byte message takes a finite time

• Time taken for a message to transit can often be well modeled

as

where Tl is start-up cost or latency, Nb is the number of bytes

sent and Tb is the time per byte. In terms of bandwidth B:

• Faster to send one large message vs many small ones

- e.g. one allreduce of two doubles vs two allreduces of one double

- derived data-types can be used to send messages with a mix of types

13

T
p

=T
l
+N

b
T
b

T
p

=T
l
+
N
b

B

Communication patterns

• Can be helpful, especially when using trace analysis tools, to

think about communication patterns

- Note: nothing to do with OO design!

• We can identify a number of patterns which can be the cause

of poor performance.

• Can be identified by eye, or potentially discovered

automatically

- e.g. the SCALASCA tool highlights common issues

14

Late Sender

• If blocking receive is posted before matching send, then the

receiving task must wait until the data is sent.

Send

Recv

15

Out-of-order receives

• Late senders may be the result of having blocking receives in

the wrong order.

Send

Recv Recv

Send

Send

Recv Recv

Send

16

Late Receiver

• If send is synchronous, data cannot be sent until receive is

posted

- either explicitly programmed, or chosen by the implementation because

message is large

- sending task is delayed

Send

Recv

17

MPI Progression

• You probably think of MPI as running continuously

- e.g. asynchronous / non-blocking comms happen “in the background”

- communications and calculation overlap in time

• This is not generally true

- MPI library is single-threaded by default, i.e. communications can only

be processed when your program calls an MPI function

- MPI treats calls as manual interrupts and will try to “progress”

communications by matching outstanding sends and receives before

actually doing what you have asked it to!

• If you issue a non-blocking send

- it may be sent immediately if there is an existing receive

- if not, it cannot be sent until the next explicit MPI call (which may be

unrelated to the outstanding communication itself)

18

Late Progress

• Non-blocking send returns, but implementation has not yet

sent the data.

- A copy has been made in an internal buffer

• Send is delayed until the MPI library is re-entered by the

sender.

- receiving task waits until this occurs

Isend

Recv

Recv

19

Non-blocking comms

• Both late senders and late receivers may be avoidable by

more careful ordering of computation and communication

• However, these patterns can also occur because of “random

noise” effects in the system (e.g. network congestion, OS

interrupts)

- not all tasks take the same time to do the same computation

- not all messages of the same length take the same time to arrive

• Can be beneficial to avoid delays by using all non-blocking

comms entirely (Isend, Irecv, WaitAll)

- post all the Irecv’s as early as possible

20

Normal halo swapping

halo swap

swap data into 4 halos: i=0, i=M+1, j=0, j=M+1

 loop i=1:M; j=1:N;

 new(i,j) = 0.25*(old(i-1,j) + old(i+1,j)

 + old(i,j-1) + old(i,j+1)

 – edge(i,j))

22

Point-to-point

• Do not impose unnecessary ordering of messages

- loop now just counts the correct number of messages

• Alternative

- first issue a separate non-blocking receive for each source

- then issue a single Waitall

loop over sources:

 receive value from

 particular source;

 end loop

loop over sources:

 receive value from

 any source;

 end loop

23

Halo swapping

• Do not impose unnecessary ordering of messages

• Extensions

- can now overlap communications with core calculation

- only need to wait for receives before non-core calculation

- wait for sends to complete before starting next core calculation

loop over directions:

 send up; recv down;

 send down; recv up;

end loop

loop over directions:

 isend up; irecv down;

 isend down; irecv up;

 end loop

wait on all requests;

24

Overlapping

halo swap

start non-blocking sends/recvs

 loop i=2:M-1; j=2:N-1;

 new(i,j) = 0.25*(old(i-1,j) + old(i+1,j)

 + old(i,j-1) + old(i,j+1)

 – edge(i,j))

wait for completion of non-blocking sends/recvs

complete calculation at the four edges

25

Persistent communications
• Standard method: run this code every iteration

MPI_Irecv(..., procup, ..., &reqs[0]);

MPI_Irecv(..., procdn, ..., &reqs[1]);

MPI_Isend(..., procdn, ..., &reqs[2]);

MPI_Isend(..., procup, ..., &reqs[3]);

MPI_Waitall(4, reqs, statuses);

• Persistent comms: setup once
MPI_Recv_init(..., procup, ..., &reqs[0]);

MPI_Recv_init(..., procdn, ..., &reqs[1]);

MPI_Send_init(..., procdn, &reqs[2]);

MPI_Send_init(..., procup, ..., &reqs[3]);

- Every iteration:
MPI_Startall(4, reqs);

MPI_Waitall (4, reqs, statuses);

- Message ordering not guaranteed to be preserved

• may need to use tags to correctly match messages

29

Neigbourhood Collectives

• Standard collectives are applied to whole communicator

- e.g. MPI_Allgather collects data from all P processes

• Neighbourhood collectives apply to neighbouring processes

- e.g. MPI_Neighbor_allgather only collects data from your neighbours

- requires communicator to be constructed with a topology

• Regular grid

- Cartesian topology via MPI_Cart_create

- in 3D grid, gather from six nearest neighbours up, down, left, right, ...

• General communications pattern

- requires a graph topology

- each process connected to an arbitrary number of neighbours

30

Use for halo swapping

• MPI_Neighbor_alltoall implements halo swapping

- send and receive data with all your neighbours

• Simple 3D cartesian grid illustrated in halobench exercise

- for multidimensional arrays need to play tricks with datatypes to

send and receive correct data (see later talk)

• MPI library can implement in any way it chooses

- hopefully efficiently!

- code is much more elegant and compact than point-to-point

31

Collective communications

• Can identify similar synchronisation patterns for collective

comms as for point-to-point...

32

Late Broadcaster

• If broadcast root is late, all other tasks have to wait

• Also applies to Scatter, Scatterv

Bcast

Bcast

Bcast

33

Early Reduce

• If root task of Reduce is early, it has to wait for all other tasks

to enter reduce

• Also applies to Gather, GatherV

Reduce

Reduce

Reduce

34

Wait at NxN

• Other collectives require all tasks to arrive before any can

leave.

- all tasks wait for last one

• Applies to Allreduce, Reduce_Scatter, Allgather, Allgatherv,

Alltoall, Alltoallv

Alltoall

Alltoall

Alltoall

35

Collectives
• Collective comms are (hopefully) well optimised for the

architecture

- Rarely useful to implement them your self using point-to-point

• However, they are expensive and force synchronisation of

tasks

- helpful to reduce their use as far as possible

- e.g. in many iterative methods, a reduce operation is often needed to

check for convergence

- may be beneficial to reduce the frequency of doing this, compared to the

sequential algorithm

• Non-blocking collectives added in MPI-3

- may not be that useful in practice …

36

General advice

• Try to avoid imposing any non-essential message ordering

- when messages are actually sent can change on every run

• Try to allow MPI to deal with messages as they happen

- issue all sends and receives as non-blocking

• issue receives as early as possible

• complete with a single Waitall()

- or set up as persistent comms

• be careful about message ordering

- or use neigbourhood collectives

• Avoid unnecessary collective calls e.g. by aggregation

- do you really need any of those barriers?!?

37

Summary

Can divide overheads up into four main categories:

• Lack of parallelism

- Cannot split work up into enough pieces

• Load imbalance

- Pieces for each processor are not identical amount of work

• Synchronisation

- Processors waiting for each other

• Communication

- Inefficient patterns of communication

38

	Slide 2: MPI Optimisation
	Slide 3: Reusing this material
	Slide 4: Overview
	Slide 5: Lack of parallelism
	Slide 9: Load imbalance
	Slide 10
	Slide 11: Synchronisation
	Slide 12: Communication
	Slide 13: Small messages
	Slide 14: Communication patterns
	Slide 15: Late Sender
	Slide 16: Out-of-order receives
	Slide 17: Late Receiver
	Slide 18: MPI Progression
	Slide 19: Late Progress
	Slide 20: Non-blocking comms
	Slide 22: Normal halo swapping
	Slide 23: Point-to-point
	Slide 24: Halo swapping
	Slide 25: Overlapping
	Slide 29: Persistent communications
	Slide 30: Neigbourhood Collectives
	Slide 31: Use for halo swapping
	Slide 32: Collective communications
	Slide 33: Late Broadcaster
	Slide 34: Early Reduce
	Slide 35: Wait at NxN
	Slide 36: Collectives
	Slide 37: General advice
	Slide 38: Summary

