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Overview

Can divide overheads up into four main categories:

• Lack of parallelism

• Load imbalance

• Synchronisation

• Communication
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Lack of parallelism

• Tasks may be idle because only a subset of tasks are 

computing

• Could be one task only working, or several.

- work done on task 0 only

- with split communicators, work done only on task 0 of each 

communicator

• Usually, the only cure is to redesign the algorithm to exploit 

more parallelism. 
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Load imbalance
• All tasks have some work to do, but some more than others....

• In general a much harder problem to solve than in shared 

variables model

- need to move data explicitly to where tasks will execute

• May require significant algorithmic changes to get right

• Again scaling to large processor counts may be hard

- the load balancing algorithms may themselves scale as O(p) or worse.
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• MPI profiling tools report the amount of time spent in each 

MPI routine

• For blocking routines (e.g. Recv, Wait, collectives) this time 

may be a result of load imbalance. 

• The task is blocked waiting for another task to enter the 

corresponding MPI call

- the other tasks may be late because it has more work to do

• Tracing tools often show up load imbalance very clearly

- but may be impractical for large codes, large task counts, long runtimes
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Synchronisation

• In MPI most synchronisation is coupled to communication

- Blocking sends/receives

- Waits for non-blocking sends/receives

- Collective comms are (mostly) synchronising

• MPI_Barrier is almost never required for correctness

- can be useful for timing

- can be useful to prevent buffer overflows if one task is sending a lot of 
messages and the receiving task(s) cannot keep up.

- think carefully why you are using it! 

• Use of blocking point-to-point comms can result in 

unnecessary synchronisation.

- Can amplify “random noise” effects (e.g. OS interrupts)
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Communication

• Point-to-point communications

• Collective communications
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Small messages
• Point to point communications typically incur a start-up cost

- sending a 0 byte message takes a finite time

• Time taken for a message to transit can often be well modeled 

as

where Tl is start-up cost or latency, Nb is the number of bytes 

sent and Tb is the time per byte. In terms of bandwidth B:

• Faster to send one large message vs many small ones

- e.g. one allreduce of two doubles vs two allreduces of one double

- derived data-types can be used to send messages with a mix of types
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Communication patterns

• Can be helpful, especially when using trace analysis tools, to 

think about communication patterns

- Note: nothing to do with OO design!

• We can identify a number of patterns which can be the cause 

of poor performance.

• Can be identified by eye, or potentially discovered 

automatically

- e.g. the SCALASCA tool highlights common issues  
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Late Sender

• If blocking receive is posted before matching send, then the 

receiving task must wait until the data is sent.

Send

Recv
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Out-of-order receives

• Late senders may be the result of having blocking receives in 

the wrong order.

Send

Recv Recv

Send

Send

Recv Recv

Send
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Late Receiver

• If send is synchronous, data cannot be sent until receive is 

posted

- either explicitly programmed, or chosen by the implementation because 

message is large

- sending task is delayed

Send

Recv
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MPI Progression

• You probably think of MPI as running continuously

- e.g. asynchronous / non-blocking comms happen “in the background”

- communications and calculation overlap in time

• This is not generally true

- MPI library is single-threaded by default, i.e. communications can only 

be processed when your program calls an MPI function

- MPI treats calls as manual interrupts and will try to “progress” 

communications by matching outstanding sends and receives before 

actually doing what you have asked it to! 

• If you issue a non-blocking send

- it may be sent immediately if there is an existing receive

- if not, it cannot be sent until the next explicit MPI call (which may be 

unrelated to the outstanding communication itself)
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Late Progress

• Non-blocking send returns, but implementation has not yet 

sent the data.

- A copy has been made in an internal buffer

• Send is delayed until the MPI library is re-entered by the 

sender.

- receiving task waits until this occurs

Isend

Recv

Recv
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Non-blocking comms

• Both late senders and late receivers may be avoidable by 

more careful ordering of computation and communication

• However, these patterns can also occur because of “random 

noise” effects in the system (e.g. network congestion, OS 

interrupts)

- not all tasks take the same time to do the same computation

- not all messages of the same length take the same time to arrive

• Can be beneficial to avoid delays by using all non-blocking 

comms entirely (Isend, Irecv, WaitAll)

- post all the Irecv’s as early as possible
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Normal halo swapping

halo swap

swap data into 4 halos: i=0, i=M+1, j=0, j=M+1

  loop i=1:M; j=1:N;

  new(i,j) = 0.25*(   old(i-1,j) + old(i+1,j)

                    + old(i,j-1) + old(i,j+1)

                    – edge(i,j)               )
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Point-to-point

• Do not impose unnecessary ordering of messages

- loop now just counts the correct number of messages

• Alternative

- first issue a separate non-blocking receive for each source

- then issue a single Waitall

loop over sources:

  receive value from     

  particular source;

  end loop

loop over sources:

  receive value from 

  any source;

  end loop
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Halo swapping

• Do not impose unnecessary ordering of messages

• Extensions

- can now overlap communications with core calculation

- only need to wait for receives before non-core calculation

- wait for sends to complete before starting next core calculation

loop over directions:

  send up; recv down;

  send down; recv up;

end loop

loop over directions:

  isend up; irecv down;

  isend down; irecv up;

 end loop

wait on all requests;
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Overlapping

halo swap

start non-blocking sends/recvs

  loop i=2:M-1; j=2:N-1;

  new(i,j) = 0.25*(   old(i-1,j) + old(i+1,j)

                    + old(i,j-1) + old(i,j+1)

                    – edge(i,j)               )

wait for completion of non-blocking sends/recvs

complete calculation at the four edges
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Persistent communications
• Standard method: run this code every iteration

MPI_Irecv(..., procup, ..., &reqs[0]);

MPI_Irecv(..., procdn, ..., &reqs[1]);

MPI_Isend(..., procdn, ..., &reqs[2]);

MPI_Isend(..., procup, ..., &reqs[3]);

MPI_Waitall(4, reqs, statuses);

• Persistent comms: setup once
MPI_Recv_init(..., procup, ..., &reqs[0]);

MPI_Recv_init(..., procdn, ..., &reqs[1]);

MPI_Send_init(..., procdn, .... &reqs[2]);

MPI_Send_init(..., procup, ..., &reqs[3]);

- Every iteration:
MPI_Startall(4, reqs);

MPI_Waitall (4, reqs, statuses);

- Message ordering not guaranteed to be preserved

• may need to use tags to correctly match messages

29



Neigbourhood Collectives

• Standard collectives are applied to whole communicator

- e.g. MPI_Allgather collects data from all P processes

• Neighbourhood collectives apply to neighbouring processes

- e.g. MPI_Neighbor_allgather only collects data from your neighbours

- requires communicator to be constructed with a topology

• Regular grid

- Cartesian topology via MPI_Cart_create

- in 3D grid, gather from six nearest neighbours up, down, left, right, ...

• General communications pattern

- requires a graph topology

- each process connected to an arbitrary number of neighbours
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Use for halo swapping

• MPI_Neighbor_alltoall implements halo swapping

- send and receive data with all your neighbours

• Simple 3D cartesian grid illustrated in halobench exercise

- for multidimensional arrays need to play tricks with datatypes to 

send and receive correct data (see later talk)

• MPI library can implement in any way it chooses

- hopefully efficiently!

- code is much more elegant and compact than point-to-point
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Collective communications

• Can identify similar synchronisation patterns for collective 

comms as for point-to-point...
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Late Broadcaster

• If broadcast root is late, all other tasks have to wait

• Also applies to Scatter, Scatterv

Bcast

Bcast

Bcast
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Early Reduce

• If root task of Reduce is early, it has to wait for all other tasks 

to enter reduce

• Also applies to Gather, GatherV

Reduce

Reduce

Reduce
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Wait at NxN

• Other collectives require all tasks to arrive before any can 

leave.

- all tasks wait for last one

• Applies to Allreduce, Reduce_Scatter, Allgather, Allgatherv, 

Alltoall, Alltoallv

Alltoall

Alltoall

Alltoall
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Collectives
• Collective comms are (hopefully) well optimised for the 

architecture

- Rarely useful to implement them your self using point-to-point

• However, they are expensive and force synchronisation of 

tasks

- helpful to reduce their use as far as possible

- e.g. in many iterative methods, a reduce operation is often needed to 

check for convergence

- may be beneficial to reduce the frequency of doing this, compared to the 

sequential algorithm

• Non-blocking collectives added in MPI-3

- may not be that useful in practice … 
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General advice

• Try to avoid imposing any non-essential message ordering

- when messages are actually sent can change on every run

• Try to allow MPI to deal with messages as they happen

- issue all sends and receives as non-blocking

• issue receives as early as possible

• complete with a single Waitall()

- or set up as persistent comms

• be careful about message ordering

- or use neigbourhood collectives

• Avoid unnecessary collective calls e.g. by aggregation

- do you really need any of those barriers?!?
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Summary

Can divide overheads up into four main categories:

• Lack of parallelism

- Cannot split work up into enough pieces

• Load imbalance

- Pieces for each processor are not identical amount of work

• Synchronisation

- Processors waiting for each other

• Communication

- Inefficient patterns of communication
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