
MPI 3.0 Neighbourhood

Collectives
Advanced Message-Passing Programming

Overview

• Review of topologies in MPI

• MPI 3.0 added new neighbourhood collective operations:

- MPI_Neighbor_allgather[v]

- MPI_Neighbor_alltoall[v|w]

• Example usage:

- Halo-exchange can be done with a single MPI communication call

• Practical:

- Replace all point-to-point halo-exchange communication with a

single neighbourhood collective in your MPP coursework code

3

Topologies

• Imagine 2D domain decomposition of an L x L array

- domain split up into P subdomains of size L/Px x L/Py , Px * Py = P

- nearest-neighbour interaction implies nearest-neighbour comms

- results in a 2D grid of Px x Py processes (which swap halos)

• Decomposition of unstructured mesh of N elements

- domain split up into P subdomains each of N/P elements

- nearest-neighbour interaction implies nearest-neighbour comms

- results in a general graph of P processes (which swap halos)

• each process communicates with an arbitrary number of neighbours

- can be weighted: vertex = computation cost, edges = comms load

- comms graphs typically undirected

• if A communicates with B then B communicates with A

4

Topology communicators

• Regular n-dimensional grid or torus topology

- MPI_CART_CREATE

• General graph topology

- MPI_GRAPH_CREATE

• All processes specify all edges in the graph (not scalable)

• General graph topology (distributed version)

- MPI_DIST_GRAPH_CREATE_ADJACENT

• all processes specify both their incoming and outgoing neighbours

- incoming and outgoing the same for undirected graph

- MPI_DIST_GRAPH_CREATE

• any process can specify any edge in the graph (too general?)

• only need to specify outgoing neighbours

- MPI library must do communication to work out the global pattern

5

Topology communicators

• Testing the topology type associated with a communicator

- MPI_TOPO_TEST

• Finding my neighbours in a cartesian topology

- MPI_CART_SHIFT

- Find out how many neighbours there are of any process

• MPI_GRAPH_NEIGHBORS_COUNT

- Get the ranks of all neighbours of any process

• MPI_GRAPH_NEIGHBORS

- Find out how many neighbours I have

• MPI_DIST_GRAPH_NEIGHBORS_COUNT

- Get the ranks of all my neighbours

• MPI_DIST_GRAPH_NEIGHBORS

6

Example

• Useful example program at:

https://riptutorial.com/mpi/example/29195/graph-topology-

creation-and-communication

7

https://riptutorial.com/mpi/example/29195/graph-topology-creation-and-communication
https://riptutorial.com/mpi/example/29195/graph-topology-creation-and-communication

Example (cont)
#include <mpi.h>

#include <stdio.h>

#define nnode 4

int main()

{

 MPI_Init(NULL, NULL);

 int rank;

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 int source = rank;

 int degree;

 int dest[nnode];

 int weight[nnode] = {1, 1, 1, 1};

 int recv[nnode] = {-1, -1, -1, -1};

 int send = rank;

 // set dest and degree.

 if (rank == 0)

 {

 dest[0] = 1;

 dest[1] = 3;

 degree = 2;

 }

 else if(rank == 1)

 {

 dest[0] = 0;

 degree = 1;

 }

8

else if(rank == 2)

 {

 dest[0] = 3;

 dest[1] = 0;

 dest[2] = 1;

 degree = 3;

 }

 else if(rank == 3)

 {

 dest[0] = 0;

 dest[1] = 2;

 dest[2] = 1;

 degree = 3;

 }

 // create graph.

 MPI_Comm graph;

 MPI_Dist_graph_create(MPI_COMM_WORLD, 1, &source, °ree, dest, weight,

 MPI_INFO_NULL, 1, &graph);

 // send and gather rank to/from neighbors.

 MPI_Neighbor_allgather(&send, 1, MPI_INT, recv, 1, MPI_INT, graph);

 printf("Rank: %i, recv[0] = %i, recv[1] = %i, recv[2] = %i, recv[3] = %i\n“,

 rank, recv[0], recv[1], recv[2], recv[3]);

 MPI_Finalize();

 return 0;

}

// Taken from https://riptutorial.com/mpi/example/29195/graph-topology-creation-

and-communication

Reordering

• Reorder = true enables remapping of processes

- e.g. try to place neighbours on the same node

• minimise number of inter-node communications over the network

• Can also take into account the weights

- equal computational load on each node

- minimise communications volume across network

• Interesting to see if / how well this is done in practice ...

9

Process Distribution (i)

• Imagine running 256 MPI processes on 4 nodes

- each node has 64 CPU-cores

- almost all systems put ranks 0-63 on node 0, 63-127 on node 1, ...

• But this may not be optimal!

10

Process Distribution (ii)

• We have a 64 x 1024 array

- create a cyclic 2D Cartesian

Communicator on 256 MPI

processes

- choose a 4 x 64 distribution so

each local domain is 16 x 16

square

• Each process communicates

with its 4 nearest neighbours

- 128 messages sent over the

network from each node

11

0

1

2

......

61

62

63

64

65

66

......

126

127

125

128

129

130

190

191

189

......

192

193

194

254

255

253

......

Node 0 Node 1 Node 2 Node 3

Process Distribution (iii)

12

0

60

124

1

61

125

2

62

126

3

63

127

......

64 65 66 67

......

......
• Switching the process axes is

much better

- 8 messages per node over network

• But how do we achieve this

after our program has started?

• Set reorder = TRUE

- hope rank 60 in COMM_WORLD

becomes rank 2 in COMM_CART

• and 3 becomes 192

• ...

• Or do the remapping by hand

- using MPI_Comm_split()

Node 0

Node 1

Rank in

COMM_W

ORLD

Job launcher options
• Reordering is just a logical change of rank

- actual MPI process doesn’t move

- might require you to exchange data between new and old ranks

• Sometime easier to do remapping at launch time

- change default allocation of processes -> CPU-cores rather than

accepting default and remapping within the MPI program

• SLURM

- srun has many (complicated) options for this - see manual for details!

• Tools can help here

- e.g. HPE “perftools” on ARCHER2 can analyse inter-process

communications and suggest an optimal mapping

13

Neighbourhood collective operations
• See section 8.6 in MPI 4.0 for blocking functions

- See section 8.7 in MPI 4.0 for non-blocking functions

- See section 8.8 in MPI 4.0 for an example application

• MPI_[N|In]eighbor_allgather[v]

- Send same piece of data to all neighbours

- Gather one piece of data from each neighbour

• MPI_[N|In]eighbor_alltoall[v|w]

- Send different data to each neighbour

- Receive different data from each neighbour

• Use-case: regular or irregular domain decompositions

- Where the decomposition is static or changes infrequently

- Because creating a topology communicator takes time

14

MPI_Neighbor_allgather

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour

To 2nd neighbour

To 3rd neighbour

sendbuf
sendtype

sendcount

recvbuf

recvtype

recvcount

• Same send buffer
for each outgoing
neighbour

• Contiguous chunks in
receive buffer from each
incoming neighbour

15

MPI_Neighbor_allgatherv

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour

To 2nd neighbour

To 3rd neighbour

sendbuf
sendtype

sendcount

recvbuf

recvtype

displs[5]

recvcounts[5]

• Same send buffer
for each outgoing
neighbour

• Non-contiguous
variable-sized chunks in
receive buffer from each
incoming neighbour

16

MPI_Neighbor_alltoall

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour
To 2nd neighbour
To 3rd neighbour

sendbuf sendtype

sendcount

recvbuf

recvtype

recvcount

• Contiguous chunks in
send buffer
for each outgoing
neighbour

• Contiguous chunks in
receive buffer from each
incoming neighbour

17

MPI_Neighbor_alltoallv

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour
To 2nd neighbour
To 3rd neighbour

sendbuf

sendtype

sdispls[3]

sendcounts[3]

recvbuf

recvtype

rdispls[5]

recvcounts[5]

• Non-contiguous variable-
sized chunks in send
buffer
for each outgoing
neighbour

• Non-contiguous variable-
sized chunks in receive
buffer from each
incoming neighbour

18

MPI_Neighbor_alltoallw

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour
To 2nd neighbour
To 3rd neighbour

sendbuf
sendtypes[3]

sdispls[3]

sendcounts[3]

recvbuf

recvtypes[5]

rdispls[5]

recvcounts[5]

• Non-contiguous variable-
sized chunks in send buffer
for each outgoing neighbour

• Non-contiguous variable-
sized chunks in receive buffer
for each incoming neighbour

• Different datatypes for every
outgoing and incoming chunk

• Displacements in bytes

19

for (int i=0;i<4;++i) {
 sendcounts[i] = 1;
 recvcounts[i]=1; }

sendtypes[0] = contigType;

senddispls[0] = (1*(rowLen+2)+1))*dblesize;

sendtypes[1] = contigType;

senddispls[1] = (colLen*(rowLen+2)+1)*dblesize;

sendtypes[2] = vectorType;

senddispls[2] = (1*(rowLen+2)+1)*dblesize;

sendtypes[3] = vectorType;

senddispls[3] = (2*(rowLen+2)-2))*dblesize;

// similarly for recvtypes and recvdispls

MPI_Neighbor_alltoallw

V
E
C
T
O
R

V
E
C
T
O
R

CONTIGUOUS

CONTIGUOUS

CONTIGUOUS

CONTIGUOUS
sendbuf

MPI_Neighbor_alltoallw(sendbuf, sendcounts, senddispls, sendtypes,
 recvbuf, recvcounts, recvdsipls, recvtypes,
 comm);

V
E
C
T
O
R

V
E
C
T
O
R

recvbuf

rowLen

colLen

20

i

j

Summary

• Useful for regular or irregular domain decomposition

- Where the decomposition is static or changes infrequently

• Investigate replacing point-to-point communication

- E.g. halo-exchange communication

• With neighbourhood collective communication

- Probably MPI_Neighbor_alltoallw / MPI_Ineighbor_alltoallw

• So that MPI can optimise the whole pattern of messages

- Rather than trying to optimise each message individually

• And so your application code is simpler and easier to read

21

	Slide 2: MPI 3.0 Neighbourhood Collectives
	Slide 3: Overview
	Slide 4: Topologies
	Slide 5: Topology communicators
	Slide 6: Topology communicators
	Slide 7: Example
	Slide 8: Example (cont)
	Slide 9: Reordering
	Slide 10: Process Distribution (i)
	Slide 11: Process Distribution (ii)
	Slide 12: Process Distribution (iii)
	Slide 13: Job launcher options
	Slide 14: Neighbourhood collective operations
	Slide 15: MPI_Neighbor_allgather
	Slide 16: MPI_Neighbor_allgatherv
	Slide 17: MPI_Neighbor_alltoall
	Slide 18: MPI_Neighbor_alltoallv
	Slide 19: MPI_Neighbor_alltoallw
	Slide 20: MPI_Neighbor_alltoallw
	Slide 21: Summary

