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Abstract
In this paper, a fast template matching algorithm of two-stage and dual-check bounded partial correlation (TDBPC) based 
on normalized cross-correlation (NCC) of single-check bounded partial correlation is proposed. According to the principle 
of continuous rows, the template and the sub-image under matching are divided into three subregions to obtain two upper 
boundary terms of NCC and get two checking conditions then. In this way, it is possible to quickly eliminate matching 
points that cannot provide a better cross-correlation score regarding the current best candidate. Generally, to get the highest 
cross-correlation score, the sub-image has to traverse through the whole image. In addition, the two-stage search strategy 
of coarse–fine proposed in this paper can further reduce the calculation and improve matching efficiency. The initialization 
parameters are selected experimentally or automatically. Experimental results show that the TDBPC algorithm proposed in 
this paper can solve high computational complexity and long matching time of NCC template matching and make it possible 
to achieve real-time template matching in industrial vision positioning fields. The feasibility of this algorithm in practical 
application is proved.

Keywords  Vision positioning · Real-time template matching · Dual-check bounded partial correlation · Two-stage search 
strategy

1  Introduction

Template matching is a technique to find the location of a 
given reference template in a target scene or target image. 
It is often used in the field of image processing. It can also 
be applied to automatic visual positioning in industrial 

applications. For example, Chen et al. [1] proposed an auto-
mated vision positioning system using the template match-
ing algorithm of image pyramid hierarchical search strategy, 
which realized high-efficiency, high-precision positioning 
and dicing of semiconductor chips in an automatic dicing 
saw. Zhong et al. [2] used a blob-based template match-
ing algorithm to distinct polycrystalline chips, fragmen-
tary chips, and standard chips. Besides, template matching 
algorithms can also be used in metal surface defect detec-
tion[3, 4]. Connell et al. [5] used a template matching algo-
rithm to implement an online character recognition system, 
quickly identifying handwritten characters. Therefore, tem-
plate matching has many applications in industrial vision 
positioning.

The core of this technique lies in the algorithm used by 
template matching. The core algorithm of template matching 
can be divided into feature-based and grey-based template 
matching algorithms. The feature-based matching algorithm 
based on scale-invariant feature transform (SIFT) is one of 
the most popular algorithms[6]. Wu et al. [7] proposed a 
non-contact palmprint verification method that consists of 
three steps: image preprocessing, SIFT feature extraction 
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and matching, and matching refinement. A speeded-up 
robust feature (SURF) is proposed based on SIFT, which 
is several times faster than SIFT descriptor and has better 
stability on multiple images[8]. Teh et al. [9] proposed a 
method of analyzing image moments, and various types of 
moments can be used in image recognition. Some funda-
mental image processing issues such as image representa-
tion ability, noise sensitivity, and redundancy of information 
are appropriately addressed. The Zernike moment has been 
proven to be a very powerful descriptor, but its computation 
is very complicated. Hwang et al. [10] proposed a method 
to reduce computation complexity by using the Zernike 2-D 
basis functions instead of Zernike 1-D radial polynomials to 
decrease the amount of calculation. Wee et al. [11] proposed 
a method that minimizing geometrical and numerical errors 
of Zernike moment by mapping all the pixels of the discrete 
image inside the unit disk to reduce the amount of calcu-
lation. Revaud et al. [12] used the phrase information and 
improved the Zernike moment to provide a more accurate 
similarity measure. The feature-based template matching 
algorithm is complicated and time-consuming. As a result, 
it is challenging to meet real-time requirements. Conversely, 
the gray-based template matching algorithm is more suitable 
for real-time needs in practical applications.

The grey-based template matching algorithm includes the 
difference and the similarity measure method. Barnel et al. 
[13] proposed the difference measure of the sum of absolute 
difference (SAD). Bei et al. [14] presented an accelerated 
method of partial distortion elimination (PDE). Another 
accelerated method of successive elimination algorithm 
(SEA) based on SAD is also proposed by Li et al. [15]. 
Wang et al. [16] used SEA to achieve fast estimation for 
motion vectors. And Atallah [17] presented a SAD accel-
eration algorithm with lower time complexity. In addition, 
Essannouni et al. [18] proposed an adjustable SAD match-
ing algorithm using the frequency domain, which realizes a 
transformation from a spatial domain to a frequency domain. 
Although the SAD algorithm does not require complicated 
calculations, it is sensitive to noise and light intensity and 
not very adaptable. Therefore, the similarity measure of 
normalized cross-correlation (NCC) appeared in template 
matching [19]. Although NCC in raw form is not efficient, 
various techniques have been developed to accelerate it 
with the characteristics of versatility and adaptability, such 
as fast Fourier transform (FFT), the most common method 
to speed up this algorithm [20–24]. Stefano et al. [25] pro-
posed a bounded partial correlation (BPC) algorithm of the 
upper boundary of NCC to accelerate the algorithm, and the 
acceleration effect of different upper boundaries is different 
[26, 27]. Wen-Chia et al. [28] combined the BPC algorithm 
with circular projection to achieve a more adaptable template 
matching algorithm. To further improve the efficiency of 
template matching, a top-down search strategy using image 

pyramids was adopted[29]. A two-stage search strategy was 
also adopted, which first matched the sub-template and then 
used the whole template to perform a complete matching in 
the candidate points[30, 31]. A heuristic iterative method 
was used to select a best set of templates in the template for 
matching rather than the whole template [32].

Due to the significant computation of the NCC algorithm, 
this paper proposes a tighter upper boundary dual-check 
bounded partial correlation (DBPC) based on single-check 
BPC. A subsampling technique that minimizes the amount 
of sampling calculation is used to realize a two-stage search 
strategy of coarse–fine matching. The principle of selecting 
three initialization parameters for the DBPC algorithm is 
carried out experimentally or automatically. Experimental 
results show that the accuracy and efficiency of the improved 
NCC algorithm (TDBPC) are high.

2 � Related work

The similarity measure between the template and a sub-
window of the target image is the core part of the template 
matching algorithm. A good review is given in [33]. The 
most common similarity measure methods include the sum 
of absolute differences (SAD), the sum of squared differ-
ences (SSD), and normalized cross-correlation (NCC). In 
recent years, algorithm research is to realize template match-
ing in complex scenes or unconstrained environments. Ita-
mar et al. [34] proposed a novel similarity measure for tem-
plate matching named deformable diversity similarity, robust 
to complex deformation, significant background clutter, and 
occlusions. Simon et al. [35] presented a robust template 
matching algorithm: occlusion aware template matching 
(OATM), which is superior in its ability to match under 
significant deformation and occlusion. Oron et al. [36] pro-
posed a template matching algorithm named Best-Buddies 
Similarity (BBS), and it is robust against complex geometric 
deformation and high levels of outliers. A template matching 
algorithm called A-MNS[37] is presented, and this algo-
rithm can overcome challenges such as background clutter, 
occlusion, arbitrary rotation transformation and nonrigid 
deformation. Therefore, the research goal has been to put 
forward a more robust template matching algorithm in the 
complex scene or unconstrained environment in the past few 
years. Nowadays, the proposed algorithms have been more 
and more complex with stronger performance. However, the 
real-time performance of the algorithms in practical indus-
trial vision positioning applications is ignored.

Therefore, research for template matching algorithms 
has also focused on efficiency. To achieve real-time tem-
plate matching, many strategies of accelerating algorithms 
have been applied. Accelerated methods of partial distortion 
elimination (PDE) [14] and successive elimination algorithm 
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(SEA) [15] are used in template matching based on SAD. 
And the strategy of bounded partial correlation (BPC) [25] 
to speed up template matching based on NCC is also applied. 
The PDE, SEA, BPC accelerated strategies are essentially a 
“pruning strategy” used to speed up the original algorithms.

NCC is a versatile similarity measure, while it is not effi-
cient in spatial domain form, especially for real-time tem-
plate matching algorithms. In this paper, a pruning method 
using two (weaker and stronger) upper bounds of the nor-
malized cross-correlation (NCC) named TDBPC algorithm 
is applied, which can resolve the compatibility between the 
theory of template matching algorithm and practical appli-
cations, and make it possible to achieve real-time template 
matching in industrial vision positioning fields.

3 � Bounded partial correlation

3.1 � Single‑check bounded partial correlation based 
on NCC

NCC is a classical similarity measure for template matching. 
It is said that the most correlated matching point is the loca-
tion of the template in the scene image for template match-
ing with a single target by calculating a correlation between 
the template and the scene image. Let T be a template of size 
M × N and I the scene image of size W × H. The NCC at (x, 
y) is defined as

The numerator of Eq. (1) is denoted as C(x, y), repre-
senting the correlation term between the template and the 
matching sub-image. The denominator represents a prod-
uct of L2 norms |I(x, y)|2 of the matching sub-image and L2 
norms |T|2 of the template. The former of the denominator 
in Eq. (1) can be computed very efficiently using a recursive 
technique, known as box-filtering [38], which makes the cal-
culation independent of the template area and requires only 
four elementary operations per image position. The latter of 
the denominator in Eq. (1) can be precomputed at initializa-
tion time. The position with the largest NCC score is the best 
matching position.

Set an upper boundary of C(x, y) to α(x, y), then

By normalizing α(x, y), an upper boundary for NCC(x, y) 
was obtained as follows:

(1)

NCC(x, y) =

∑N−1

j=0

∑M−1

i=0
I(x + i, y + j) ⋅ T(i, j)

�∑N−1

j=0

∑M−1

i=0
I(x + i, y + j)2 ⋅

�∑N−1

j=0

∑M−1

i=0
T(i, j)2

(2)�(x, y) ≥ C(x, y) =

N−1∑

j=0

M−1∑

i=0

I(x + i.y + j) ⋅ T(i, j)

Given an initialized similarity threshold η, then a check 
condition at matching point (x, y) is obtained as follows:

If condition (4) is satisfied, the matching process can 
proceed with the next point without calculating C (x, y). 
It is guaranteed that the current matching point does not 
correspond to the new maximum correlation. If not, it is 
necessary to compute C(x, y), normalize it and recheck the 
condition (5).

If condition (5) is false, it indicates that the similarity of 
a current matching point is close to maximum similarity. 
Assign a greater similarity to η, record the position of the 
current point, and then match the next point. If condition (5) 
is satisfied, it indicates that the current point cannot provide 
a better similarity than a candidate point, thereby directly 
dealing with the next point. As the matching process pro-
gresses, η will increase to further accelerate the matching 
speed. It is just like a “pruning” algorithm, a very well-
known and used algorithm in the computer science com-
munity using an upper bound to reduce the complexity of 
computing of C (x, y) so that the matching speed can be 
accelerated as the matching process progresses.

How to choose a suitable α(x, y) is the key to the whole 
algorithm. Stefano et al. [26] proposed an upper boundary 
algorithm that divides the template and sub-image under 
matching into two subregions according to the same prin-
ciple, forming two sub-terms of α(x, y): partial correlation 
term P(x, y) and partial term β(x, y)

Substituting (4) to form a single-check BPC algorithm, 
and the partition diagram is in Fig. 1a.

(3)
�(x, y)

|I(x, y)|2 ⋅ |T|2
≥

C(x, y)

|I(x, y)|2 ⋅ |T|2
= NCC(x, y)

(4)
𝛼(x, y)

|I(x, y)|2 ⋅ |T|2
< 𝜂

(5)
C(x, y)

|I(x, y)|2 ⋅ |T|2
< 𝜂

(6)

�(x, y) = P(x, y) + �(x, y)

=

n∑

j=0

M−1∑

i=0

I(x + i, y + j) ⋅ T(x, y)

+

√√√√
N−1∑

j=n+1

M−1∑

i=0

I(x + i, y + j)2 ⋅

√√√√
N−1∑

j=n+1

M−1∑

i=0

T(i, j)2
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3.2 � Dual‑check bounded partial correlation (DBPC) 
algorithm

In this paper, a DBPC algorithm is proposed based on the 
BPC2 algorithm[25], which divides the template and match-
ing sub-image into three subregions according to a similar 
principle, as shown in Fig. 1b. w1 is taken as a subregion for 
calculating partial correlation term and w2 + w3 as a subre-
gion for calculating partial term. Then we can get the first 
upper boundary of Eq. (7)

and obtain first check condition

Accordingly, w1 + w2 are taken as a subregion for cal-
culating the partial correlation term and w3 as a subregion 
for calculating the partial term. Then we can get the second 
upper boundary Eq. (9) tighter than Eq. (7)

and obtain a second check condition

The partial correlation term of Eqs. (7) and (9) can be 
directly computed, and the partial term of two equations 
can be subdivided into the partial term of the template and 

(7)

�1(x, y) = P1(x, y) + �1(x, y)

=

n1∑

j=0

M−1∑

i=0

I(x + i, y + j) ⋅ T(i, j) +

√√√√
N−1∑

j=n1+1

M−1∑

i=0

I(x + i, y + j)2 ⋅

√√√√
N−1∑

j=n1+1

M−1∑

i=0

T(i, j)2

(8)
𝛼1(x, y)

|I(x, y)|2 ⋅ |T|2
< 𝜂

(9)

�2(x, y) = P2(x, y) + �2(x, y)

=

n2∑

j=0

M−1∑

i=0

I(x + i, y + j) ⋅ T(i, j) +

√√√√
N−1∑

j=n2+1

M−1∑

i=0

I(x + i, y + j)2 ⋅

√√√√
N−1∑

j=n2+1

M−1∑

i=0

T(i, j)2

(10)
𝛼2(x, y)

|I(x, y)|2 ⋅ |T|2
< 𝜂

matching sub-image. And the former can be precomputed 
at initialization time, while the latter need to be efficiently 
computed using the box-filtering technique. Additionally, 
the square sum of the pixel of three subregions is efficiently 
calculated using three filters by box-filtering technique, and 
the corresponding formulas are defined as follows:

Fig. 1   Row-based partitioning rules of including a single-check partitioning; b dual-check partitioning

Thus the fast compute of two upper boundaries signifi-
cantly reduced the computation of C(x, y).

(11)�1 - 1(x, y,M − 1, n1) =

n1∑

j=0

M−1∑

i=0

I(x + i, y + j)2

(12)�1 - 2(x, y,M − 1, n2) =

n2∑

j=n1 + 1

M−1∑

i=0

I(x + i, y + j)2

(13)�1 - 3(x, y,M − 1,N − 1) =

N−1∑

j=n2+1

M−1∑

i=0

I(x + i, y + j)2
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According to Fig. 1b, the selection of n1 and n2 directly 
determines the number of rows occupied by each subregion. 
Therefore, two correlation ratios are defined as follows:

The parameter value of Cr1 and Cr2 is critical to affecting 
matching efficiency.

3.3 � Two‑stage and dual‑check bounded partial 
correlation (TDBPC) algorithm

The procedures of the DBPC algorithm are as follows and 
shown in Fig. 2a:

Step1: Initialize η and Cr1, Cr2, and compute |T|2 and Eqs. 
(11), (12), (13).

Step2: Compute the first upper boundary α1(x, y) of 
Eq. (7).

Step3: Judge the first check condition of Eq. (8). If satis-
fied, proceed with the next point by skipping the current 
point; if not, compute the second upper boundary α2(x, y) of 
Eq. (9) and judge the second check condition of Eq. (10). If 
satisfied, proceed with the next point by skipping the current 
point; if not, NCC(x, y) needs to be computed.

(14)Cr1 =
n1 + 1

N
; Cr2 =

n2 + 1

N

Step4: Judge Eq. (5). If satisfied, it is not the best match-
ing point; if not, it is close to the best matching point. Then 
the maximum similarity value is assigned to η, and the posi-
tion (x, y) of the current point is recorded.

Step5: Traverse the whole scene image and repeat 
step2 ~ step4 until a most similar matching point is found.

To further improve the efficiency of template matching, 
a two-stage search strategy of coarse–fine is adopted in the 
DBPC algorithm. The original scene image and template are 
subsampled based on pixel area relationship to get sampling 
image and template used in coarse matching. The sampling 
factor k depends on the size of the image and is automati-
cally selected to minimize the total number of operations 
required by both searches. Following a principle of mini-
mizing computation, the optimal sampling factor f can be 
computed by Eq. (15). The first term of this function rep-
resents the number of operations executed by subsampling 
images. The second term represents the number of opera-
tions carried out in a 4 k × 4 k neighborhood of the original 
scene image. This subsampling method is different from the 
“image pyramid” method [39, 40]. Equation (15) is used to 
dynamically select the size of the sampling factor for differ-
ent images instead of the fixed sampling factor like “image 
pyramid” so that matching efficiency can be very high. Use 

Fig. 2   Flow charts of a DBPC 
algorithm and TDBPC algo-
rithm
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the DBPC algorithm to perform coarse matching by match-
ing the sampling scene image and template image to obtain 
the best coarse matching point (xc, yc). A best coarse match-
ing point (xc, yc) is mapped to the original scene image to 
obtain a mapped point (f × xc, f × yc).

What’s more, the effect of this mapping depends on the 
result of the coarse matching stage. If the coarse matching 
stage is correctly matched, then the mapping process is cor-
rect. Finally, fine matching of the full template is performed 
in a 4f × 4f neighborhood centered on a mapped point (f × xc, 
f × yc) to obtain a final matching point.

So, the procedures of the TDBPC algorithm proposed in 
this paper are as follows and shown in Fig. 2b:

Step 1: Compute an optimal sampling factor f by Eq. (15).
Step 2: Downsample to obtain sampling scene image and 
the template according to f.
Step 3: Use the DBPC algorithm to perform a coarse 
matching by matching the sampling scene image and 
template image to obtain a best coarse matching point.
Step 4: Map the best coarse matching point to the original 
scene image, and perform a fine matching used by the 
DBPC algorithm in a 4f × 4f neighborhood centered on a 
mapping point to obtain a final matching point.

4 � Determination of initialization parameters 
of the DBPC algorithm

4.1 � The metric of algorithm efficiency

A total number of matching points P was computed when 
searching for a scene image in the DBPC algorithm, as 
below:

The number of points satisfying that first check condition 
of single-check BPC in Eq. (8) is S1. The number of points 
satisfying that second check condition in Eq. (10) is S2. Then 
we can define two elimination ratios, which represents a pro-
portion of elimination points by checking conditions to the 
total points P, as follows:

A metric of efficiency R is introduced to measure the effi-
ciency of this algorithm, which represents the ratio of a total 
number of operations required between the proposed algo-
rithm and standard NCC(x, y) during calculating per point. 

(15)

f = argmin
k
{
(W −M + 1)(H − N + 1)MN

k4
+ (4k)2MN}

(16)P = (W −M + 1) ⋅ (H − N + 1)

(17)Er1 = S1∕P, Er2 = S2∕P

The smaller the value of R is, the faster the computation of 
the proposed algorithm and the higher the efficiency. For the 
standard NCC(x, y) function, the total number of operations 
for calculating the similarity per point is (M·N + 4).

For single-check BPC, the total computation operations 
Q1 and R1 are

For the DBPC algorithm, conditions (8) and (10) need to 
be considered simultaneously. The total computation opera-
tions Q2 and R2 are

The test used four 8-bit grayscale images with different 
resolutions in the board detection field. The template for 
each image is obtained from another image collected in the 
same conditions. The image and corresponding template are 
shown in Fig. 3. The specific parameters of the image are 
shown in Table 1.

4.2 � The effect of η on matching efficiency R2

The check conditions (8) and (10) show that initialization 
threshold η affects the matching efficiency. If it is too low, 
the accelerated effect becomes not obvious. Inversely, it 
may incorrectly match because the maximum similarity in 
real matching may be less than the given η. In the test, we 
keep Cr1 = 0.4, Cr2 = 0.2, η = 0.94, 0.95, 0.96, 0.97, respec-
tively, and change R2 to analyze the effect of η on matching 
efficiency.

As shown in Fig. 4, R2 is less than 50% for all images, 
indicating that the DBPC algorithm can reduce computa-
tion by more than half to the standard NCC(x, y). And with 
the increase of η, R2 gradually decreases, indicating that 
the matching efficiency increases. R2 < 22% for image2 and 
R2 < 31% for image4 shows that different images have differ-
ent sensitivity at η. Therefore, with Cr1 and Cr2 unchanged, η 
only needs to prevent exceeding the maximum actual simi-
larity. The closer the selected value is to the actual maximum 
similarity, the smaller the value of R2 and the higher the 
matching efficiency of the algorithm.

(18)Q1 = (P − S1) ⋅M ⋅ N + S1 ⋅M ⋅ (n1 + 1) + 8 ⋅ P

(19)

R1 =
Q1

P ⋅ (M ⋅ N + 4)
=

[
(1 − Er1) + Er1 ⋅ Cr1

]
⋅M ⋅ N + 8

M ⋅ N + 4

(20)

Q2 =(P − S2) ⋅M ⋅ N + (S2 − S1) ⋅M ⋅ (n2 + 1)

+ S1 ⋅M ⋅ (n1 + 1) + 12 ⋅ P

(21)

R2 =
Q2

P ⋅ (M ⋅ N + 4)

=

[
(1 − Er1) + (Er2 − Er1) ⋅ Cr2 + Er1 ⋅ Cr1

]
⋅M ⋅ N + 12

M ⋅ N + 4
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Therefore, in the practical application of industrial 
visual positioning, generating a random point algorithm 
is proposed to automatically determine the initialization 
threshold η to avoid the uncertainty of manually specify-
ing the initialization threshold η. The strategy to automati-
cally determine the initialization threshold η is as follows: 
If there is no prior knowledge related to the matched target 

Fig. 3   Test image of different 
resolution for circuit board

Table 1   The parameters of 
images

Scene image W × H (pixel) Template M × N (pixel) Matching point; Maximum similarity

Image1 1280 × 960 T1 242 × 238 [581,567] 0.978054
Image2 960 × 640 T2 167 × 165 [167,165] 0.993716
Image3 640 × 480 T3 151 × 194 [151,194] 0.996353
Image4 480 × 320 T4 114 × 145 [194,178] 0.99232

Fig. 4   Matching efficiency R2 with initialization threshold η 

Fig. 5   Two methods for automatically determining initialization 
threshold η a schematic diagram of uniform distribution, b schematic 
diagram of Gaussian distribution, c The pseudocode of determining 
initialization threshold
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position, the uniform distribution algorithm can be used to 
generate random points, as shown in Fig. 5a. Otherwise, 
the Gaussian distribution algorithm can generate random 
points, as shown in Fig. 5b. The pseudocode of determining 
the initialization threshold is shown in Fig. 5c, where ratio 
represents the ratio of the number of random points to the 
entire search space. The Gaussian_distri and Uniform_distri 
functions indicate that the coordinates of random points are 
obtained through Gaussian distribution or uniform distribu-
tion, respectively. The number of random points generated 
can be determined according to the size of the search space; 
if the search space is megapixels, the number of random 
points generated can be determined by taking up 0.001 to 
0.005 of the entire search space. If the search space is less 
than megapixels, the number of random points generated can 
be determined by taking up 0.01 to 0.05 of the entire search 
space. Assuming that the number of random points is rN, 
then the determination strategy of initialization threshold 
η is:

4.3 � The effect of Cr1 on elimination ratio Er1 
and matching efficiency R1

From Eqs. (7) and (9), the selection of n1 and n2, namely Cr1 
and Cr2, directly affects the value of the two upper boundary 
α1(x, y) and α2(x, y) and, further, affects matching efficiency 
of condition (8) and (10). Firstly, Cr2 and η are kept constant, 
and only the influence of Cr1 on the elimination ratio Er1 and 
the R1 is considered. The algorithm is tested using the above 
images. In the test, we keep η = 0.95, Cr2 = 0.9 unchanged, 
and Cr1 was sequentially taken from 0.1 to 0.8 by an incre-
ment of 0.1. By observing the Er1 and R1, the influence of 
Cr1 on the matching efficiency can be analyzed.

(22)� =
rN−1
max
i=0

NCC(xi, yi)

As is shown in Fig. 6a, with the increase of Cr1, Er1 
increases overall and finally tends to 1. The varying degree 
of Er1 has a turning-point around Cr1 = 0.3 in all images. 
When Cr1 < 0.3, Er1 increases dramatically with the increase 
of Cr1. Once Cr1 > 0.3, Er1 begins to rise to 1. It is indicated 
that there is such a turning point of Cr1 (minimum Cr1) where 
Er1 can be maximized. However, Fig. 6b shows that the trend 
of R1 decreases firstly and then increases with the increase 
of Cr1, and there is a minimum R1 in theory. It demonstrates 
that there is a maximum efficiency theoretically. Addition-
ally, it can be seen that R1 is less than 50%, and its trend 
changes when Cr1 is between 0.2 and 0.4, which verifies that 
there is an optimal R1 that makes this algorithm’s efficiency 
optimal. Considering both Fig. 6a, b, it is possible to have 
an optimal Cr1, making Er1 big enough and R1 small enough. 
As the corresponding relationship between R1 and Cr1 is dis-
crete, it is not easy to find a special Cr1 for different images 
in practice. But it is easier to find an optimal range of Cr1. 
Consequently, when Cr1 is in the range from 0.2 to 0.4, the 
computation can be reduced by more than 50% compared to 
the standard NCC (x, y).

4.4 � The effect of Cr1 and Cr2 on matching efficiency 
R2

The relationship between R2 and parameter pair (Cr1, Cr2) 
is discrete. Since 0 < Cr1 < Cr2 < 1, R2 can be tested using 36 
parameter pairs shown in Table 2.

In the test, we keep η = 0.95 and the 36 parameter pairs 
are used to test the above four images, and then observe the 
change of R2 to analyze the algorithm’s efficiency. The tested 
results are shown in Fig. 7.

The horizontal coordinate represents the sequence num-
ber of the parameter pair. These 36 parameter pairs (Cr1, 
Cr2) have different effects on R2 of different images. But 
tested results of four images fluctuate. All of them have 
seven troughs and R2 is less than 30%, which shows that 

Fig. 6   a Elimination ratio Er1 
and b matching efficiency R1 
with Cr1
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the computation can be reduced by more than 70% com-
pared to the standard NCC(x, y) and the effect is remark-
able. However, seven parameter pairs for each image troughs 

are not the same. Therefore, the above 36 parameter pairs 
are further used to test 60 images of different sizes, 36 R2 
data are obtained for each image, sorted in order from small 
to large. For each image, selecting the parameter pair cor-
responding to the first 7 data so that 420 parameter pairs 
can be obtained. Then seven parameter pairs are selected 
according to frequency, and they can be referenced in actual 
industrial template matching. Table 3 shows that the num-
ber of occurrences of the first seven parameter pairs in the 
420 data exceeds 60% of the total data, indicating that these 
seven parameter pairs are reliable as references in actual 
industrial template matching. Further, if one does not want 
to determine which one of the seven parameter pairs is used 
as a parameter of algorithm performance through experi-
ments. By default, selecting a parameter pair (0.2, 0.4) as the 
algorithm’s default performance parameter can also achieve 
a good acceleration effect.

5 � Test of matching efficiency

Sixty-six images on natural lighting are divided into six 
groups. In every group, one image was used for the source 
of the template and the other 10 for testing. The tested 
images are collected with the background of the industrial 
PCB board template matching positioning application. The 
template image per group is the same, but the position of 
scene images is different. In other words, scene images of 
different target positions are matched with the same template 
to facilitate the subsequent algorithm efficiency test. Images 
of each group are shown in Fig. 8. The information of each 
group is shown in Table 4. The TDBPC algorithm is formed 
by combining the DBPC algorithm and a two-stage search 
strategy, which is used to test match efficiency in this paper.

From Sect. 4, the selection of the algorithm performance 
parameters, (Cr1, Cr2) and η, is very important to the per-
formance of the TDBPC algorithm. It would be preferable 

Table 2   Tested parameter pairs 
of correlation ratio

Sequence Cr2 Cr1 Sequence Cr2 Cr1 Sequence Cr2 Cr1

1 0.2 0.1 13 0.6 0.3 25 0.8 0.4
2 0.3 0.2 14 0.6 0.2 26 0.8 0.3
3 0.3 0.1 15 0.6 0.1 27 0.8 0.2
4 0.4 0.3 16 0.7 0.6 28 0.8 0.1
5 0.4 0.2 17 0.7 0.5 29 0.9 0.8
6 0.4 0.1 18 0.7 0.4 30 0.9 0.7
7 0.5 0.4 19 0.7 0.3 31 0.9 0.6
8 0.5 0.3 20 0.7 0.2 32 0.9 0.5
9 0.5 0.2 21 0.7 0.1 33 0.9 0.4
10 0.5 0.1 22 0.8 0.7 34 0.9 0.3
11 0.6 0.5 23 0.8 0.6 35 0.9 0.2
12 0.6 0.4 24 0.8 0.5 36 0.9 0.1

Fig. 7   Matching efficiency R2 with (Cr1, Cr2)

Table 3   Tested results of 60 images

Sequence (Cr1, Cr2) Frequency

3 (0.1, 0.3) 0.114286
6 (0.1, 0.4) 0.097619
5 (0.2, 0.4) 0.092857
1 (0.1, 0.2) 0.083333
2 (0.2, 0.3) 0.080952
10 (0.1, 0.5) 0.07619
9 (0.2, 0.5) 0.071429
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for the selection of parameters to be automated rather than 
obtained through experiments. Therefore, there are two 
different ways to determine these parameters. Firstly, the 
parameters are automatically selected. Initialization thresh-
old η is automatically determined by the random number 
method (see Sect. 4.2), and correlation ratio parameter pairs 
(Cr1, Cr2) are by default parameter pairs (see Sect. 4.4). Sec-
ondly, the parameters are obtained through experiments. 
The template matching algorithm depends on the image 
data itself. On the other hand, in practical applications with 

a fixed scene, the tested parameters obtained by the cor-
responding images are returned to the application itself. 
This approach is more in line with the needs of practical 
applications to get almost optimal parameters. Therefore, 
performance parameters obtained through experiments may 
be more efficient than automatically determined parameters. 
But relatively speaking, it takes a little more time, depend-
ing on the quality of the automatically selected parameters.

Firstly, an image and corresponding template of each 
group were chosen in Fig. 8. After initializing threshold η, 
the TDBPC algorithm is used to test 7 referenced parameter 
pairs. Because of a large amount of calculation, the matching 
efficiency R2 in coarse matching is taken as a metric to select 
an optimal (Cr1, Cr2). The matching result of the six chosen 
images is shown in Table 5.

Based on the minimum R2, the initialization parameter 
(Cr1, Cr2) used by six groups of test images was selected 
in Table 5. And the test platform is the Windows platform 
equipped with a 2.3 GHz processor, Intel(R) Core(TM) 
i5-4200U CPU and 4.00 GB of RAM. Use C++ to run a 
program of the algorithm in the integrated development 

Fig. 8   Test image and corresponding template selected in each group

Table 4   The size of scene images and templates

Sequence Scene image(pixel) Template(pixel)

Group1 2560 × 1440 509 × 507
Group2 1440 × 1280 264 × 260
Group3 1280 × 960 202 × 208
Group4 960 × 640 231 × 236
Group5 640 × 480 182 × 188
Group6 480 × 320 124 × 117

Table 5   Matching efficiency R2 in coarse matching for 7 referenced (Cr1, Cr2) and parameter selection

Sequence η Referenced:(Cr1, Cr2) Selected: (Cr1, Cr2)

(0.1,0.2) (0.1,0.3) (0.2,0.3) (0.1,0.4) (0.2,0.4) (0.1,0.5) (0.2,0.5)

Group1-1 0.86 0.457062 0.364058 0.299895 0.404163 0.273981 0.495183 0.298983 (0.2,0.4)
Group2-1 0.91 0.371212 0.352257 0.291426 0.386281 0.255896 0.472865 0.272925 (0.2,0.4)
Group3-1 0.96 0.312256 0.214651 0.233464 0.262388 0.250185 0.311941 0.268722 (0.1,0.3)
Group4-1 0.97 0.119945 0.131727 0.207211 0.143797 0.207189 0.155944 0.207244 (0.1,0.2)
Group5-1 0.9 0.913734 0.495006 0.483474 0.524662 0.501598 0.587613 0.553018 (0.2,0.3)
Group6-1 0.98 0.16935 0.202745 0.22493 0.24045 0.221122 0.27972 0.221318 (0.1,0.2)
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environment of VS2017. The TDBPC algorithm proposed 
in this paper is compared with template matching based 
on FFT in Ref. [23], single-check BPCj in Ref. [25], and 
single-check BPCcs with another upper boundary in Ref. 
[26]. These algorithms are also strategies to accelerate NCC 
calculations comparable to the algorithms in this paper. All 
algorithms are developed based on Opencv, a third-party 
computer vision open source library. All tested under the 
same platform and the same data, and the test time is also 
averaged after 30 tests. The test results of the six group 
images are shown in Fig. 9 and Table 6.

The results of the four algorithms are similar, and the 
efficiency of the TDBPC algorithm is prioritized concerning 
the other three algorithms. However, the accelerated effect of 
this algorithm is different for different size scene images and 
templates. The matching time of the same group of images 
fluctuates due to the different illumination. The matching 
efficiency of the TDBPC algorithm is about 2 times that 
of the FFT-based NCC algorithm. Also, this efficiency is 
more evident in group1 ~ group4. The matching efficiency 
of the TDBPC algorithm is about 1.8 times that of the BPCj 
algorithm, and it is more evident in group one, four and six. 
The matching efficiency of the TDBPC algorithm is about 
1.5 times that of the two-stage BPCcs algorithm, and it is 
more apparent in group one, four and six. With the increase 
in image resolution, the matching efficiency of the TDBPC 
algorithm increases significantly compared with the other 

three algorithms. Besides, Fig. 9a shows that the average 
matching time used by the TDBPC algorithm to match an 
image with a resolution of 2560 × 1440 about 3.7 million 
pixels is about 115 ms, which means that it can process 522 
images per minute in practical application. When matching 
an image with a resolution of 480 × 320 about 150,000 pix-
els, the average time is about 5 ms. Therefore, its rapidity 
meets practical requirements as well.

6 � Conclusion

In this paper, by selecting reasonable η, Cr1, Cr2 of the DBPC 
algorithm, combining with a two-stage search strategy, a 
TDBPC algorithm based on single-check BPC of NCC was 
proposed. This TDBPC algorithm can resolve the compat-
ibility between the theory of template matching algorithm 
and practical applications, and make it possible to achieve 
real-time template matching in industrial vision positioning 
fields. It is indicated that the closer the initialization thresh-
old η is to the maximum similarity of the actual image, the 
higher the matching efficiency. A relative optimal parameter 
pair (Cr1, Cr2) can be selected from 7 referenced parameter 
pairs given in this paper to make a template matching for dif-
ferent images. The experiments show that the matching effi-
ciency of this algorithm is about 2 times, 1.8 times and 1.5 
times of algorithm based on FFT (fast Fourier transform), 

Fig. 9   a Matching time of four algorithms, b matching time ratio of three algorithms to TDBPC algorithm

Table 6   The average matching 
time (ms) of six groups of 
images for four algorithms

Algorithms Group 1 Group 2 Group 3 Group 4 Group  5 Group 6

The TDBPC algorithm 115.162 47.302 28.407 14.630 14.996 4.975
The FFT algorithm 224.210 119.391 68.901 33.793 17.318 10.136
The BPCcs algorithm 144.619 61.244 40.884 27.541 16.044 9.703
The BPCj algorithm 194.622 68.479 42.349 35.581 21.541 10.844
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two-stage BPCj and two-stage BPCcs by selecting appropri-
ate initialization parameters, respectively, and the feasibility 
of this algorithm in practical application is proved.

7 � Future work

The proposed algorithm is still an accelerated algorithm of 
the NCC template matching. The matching speed and accu-
racy of the algorithm are quite high, but the adaptability of 
the algorithm is not very strong. Therefore, we will research 
the adaptability of the algorithm in future research work to 
correctly and quickly match the target in complex scenes 
or unconstrained environments such as image rotation, dif-
ferent scales, complex illumination, image deformation and 
multiple targets under meeting the requirement of industrial 
vision positioning.
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